} o\ ‘ 1\ %
S DA raf

J\Iﬁcrﬁcnntroller
Projects in G

*ME}I@ olb 1’

Microcontroller Projects in C
for the 8051

This Page Intentionally Left Blank

Microcontroller Projects
in C
for the 8051

Dogan lbrahim

@

Newnes

OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI

Newnes
An imprint of Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
225 Wildwood Avenue, Woburn, MA 01801-2041
A division of Reed Education and Professional Publishing Ltd

—&A member of the Reed Elsevier plc group

First published 2000
© Dogan Ibrahim 2000

All rights reserved. No part of this publication
may be reproduced in any material form (including
photocopying or storing in any medium by electronic
means and whether or not transiently or incidentally
to some other use of this publication) without the
written permission of the copyright holder except
in accordance with the provisions of the Copyright,
Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd,
90 Tottenham Court Road, London, England W1P 9HE.
Application for the copyright holder’s written permission
to reproduce any part of this publication should be addressed
to the publishers

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 7506 46403

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

Tyeset by David Gregson Assciates, Beccles, Suffolk
Printed and bound in Great Britain

LANT A

British Trust for
Conservation Volunteers

FOR EVERY TITLE THAT WE PUBLISH, BUTTERWORTH-HEINEMANN
WILL PAY FOR BTCY TU PLANT AND CARE FOR A TREE.

’/0
BICV

Contents

Preface

Chapter 1 Microcomputer Systems

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction

Microcontroller Evolution
Microcontroller Architecture

8051 Family

Architecture of the 8051 Family

Pin Configuration

Timer/Counters

Interrupt Control

Minimum Microcontroller Configuration

1.10 Project Development

Chapter 2 Programming Microcontrollers in C

2.1

2.2
2.3
24
2.5

Data Types

2.1.1 bit

2.1.2 signed char/unsigned char
2.1.3 signed short/unsigned short
2.1.4 signed int/unsigned int
2.1.5 signed long/unsigned long
2.1.6 float

2.1.7 sbit

2.1.8 sfr

2.1.9 sfrl6

Memory Models

Interrupts

Structure of a Microcontroller-based C Program
Program Description Language
2.5.1 START-END

2.5.2 Sequencing

2.5.3 ITF-THEN-ELSE-ENDIF

15

16
16
16
17
17
18
18
18
19
19
19
20
21
22
22
24
24

Microcontroller Projects in C for the 8051

2.5.4 DO-ENDO

2.5.5 REPEAT-UNTIL
2.6 Internet Web Sites of Microcontroller Compilers
2.7 Further Reading

Chapter 3 Light Projects

PROJECT 1 — LED Binary Counter

PROJECT 2 — LED Chasing Circuit

PROJECT 3 — Random LED Pattern

PROJECT 4 — Cyclic LED Pattern

PROJECT 5 — LED Dice

PROJECT 6 — Hexadecimal Display

PROJECT 7 — Two-digit Decimal Count

PROJECT 8 — TIL311 Dice

PROJECT 9 — 7 Segment Display Driver

PROJECT 10 — Four-digit LED Display Interface

PROJECT 11 — Interrupt Driven Event Counter with 4-digit
LED Display

Chapter 4 Sound Projects

PROJECT 12 — Simple Buzzer Interface
PROJECT 13 — Small Speaker Interface (Using the Timer Interrupt)
PROJECT 14 — Two-tone Small Speaker Interface

(Using the Timer Interrupt)
PROJECT 15 — Electronic Siren (Using the Timer Interrupt)
PROJECT 16 — Electronic Siren (Using the Timer Interrupt)

Chapter 5 Temperature Projects

PROJECT 17 — Using a Digital Temperature Sensor

PROJECT 18 — Digital Thermometer with Centigrade/Fahrenheit
Output

PROJECT 19 — Digital Thermometer with High Alarm Output

PROJECT 20 — Digital Thermometer with High and Low Alarm
Outputs

PROJECT 21 - Using Analogue Temperature Sensor IC with A/D
Converter

Chapter 6 RS232 Serial Communication Projects
PROJECT 22 — Output a Simple Text Message from the RS232 Port

PROJECT 23 — Input/Output Example Using the RS232 Port
PROJECT 24 — A Simple Calculator Program Using the RS232 Port
Appendix — ASCII code

GLOSSARY

Index

24
25
25
27

29

29
33
34
37
38
46
50
53
57
62
75

85

86
90
94

95
101

107

108
119

125
126

132

147
151

155
161
167
171
177

Preface

A microcontroller is a single chip microprocessor system which contains data
and program memory, serial and parallel I/O, timers, external and internal
interrupts, all integrated into a single chip that can be purchased for as little as
$2.00. It is estimated that on average, a middle-class household in America has
a minimum of 35 microcontrollers in it. About 34% of microcontroller
applications are in office automation, such as laser printers, fax machines,
intelligent telephones, and so forth. About one-third of microcontrollers are
found in consumer electronics goods. Products like CD players, hi-fi
equipment, video games, washing machines, cookers and so on fit into this
category. The communications market, automotive market, and the military
share the rest of the application areas.

Microcontrollers have traditionally been programmed using the assembly
language of the target microcontroller. Different microcontrollers from
different manufacturers have different assembly languages. Assembly
language consists of short mnemonic descriptions of the instruction sets.
These mnemonics are difficult to remember and the programs developed for
one microcontroller cannot be used for other types of microcontrollers. The
most common complaint about microcontroller programming is that the
assembly language is somewhat difficult to work with, especially during the
development of complex projects. The solution to this problem is to use high-
level languages. This makes the programming a much simpler task and the
programs are usually more readable, portable, and easier to maintain. There
are various forms of BASIC and C compilers available for most microcon-
trollers. BASIC compilers are usually in the form of interpreters and the code
produced is usually slow.

Another disadvantage of BASIC is that most BASIC compilers are not
structured and this makes the program maintenance a difficult task. In this
book we shall be using a fully featured professional C compiler to program our
target microcontroller.

Microcontroller Projects in C for the 8051

This book is about programming the 8051 family of microcontrollers using the
C language, and I have chosen the AT89C2051 microcontroller for all the
examples. AT89C2051 belongs to the industry standard 8051 family of
microcontrollers. AT89C2051 is a 20-pin device which is fully code compatible
with its bigger brother 8051. The device contains a serial port, 15 bits parallel
I/O, two timer/counters, six interrupt sources, 128 bytes of data RAM, and
2 Kbytes of reprogrammable flash program memory. There are many reasons
for choosing the AT89C2051, including its compatibility with the 8051 family
and the ease of erasing and reprogramming the device. There is no need to use
a UV eraser to erase the program memory. The memory can be erased and then
reprogrammed by using a low-cost programmer. Other reasons for using the
AT89C2051 are its low cost and small size. All of the examples given herein can
run on all members of the 8051 family.

Chapter 1 provides an introduction to the architecture of the 8051 family, with
special emphasis on the AT89C2051 microcontroller. Chapter 2 describes the
features of the C compiler used throughout the projects in this book. Addresses
of some popular web sites are also given in this chapter which contain
information on the 8051 family. Chapter 3 provides many light-based
projects. The circuit diagrams and the full C code of all the projects are
given with full comments and explanations. All the projects have been built and
tested on a breadboard. Chapter 4 is based on sound projects and there are
working projects from simple buzzer circuits to electronic organ projects.
Chapter 5 provides several working temperature-based projects using digital
temperature sensors and analogue-to-digital converters. Finally, Chapter 6
describes several RS232-based projects which explain how information can be
transferred between a microcontroller and external devices.

Dogan Ibrahim
1999, London

CHAPTER |

1.1

1.2

MICROCOMPUTER SYSTEMS

Infroduction

The term microcomputer is used to describe a system that includes a
microprocessor, program memory, data memory, and an input/output (I/O).
Some microcomputer systems include additional components such as timers,
counters, analogue-to-digital converters and so on. Thus, a microcomputer
system can be anything from a large computer system having hard disks, floppy
disks and printers, to single chip computer systems.

In this book we are going to consider only the type of microcomputers that
consist of a single silicon chip. Such microcomputer systems are also called
microcontrollers.

Microcontroller Evolution

First, microcontrollers were developed in the mid-1970s. These were basically
calculator-based processors with small ROM program memories, very limited
RAM data memories, and a handful of input/output ports.

As silicon technology developed, more powerful, §-bit microcontrollers were
produced. In addition to their improved instruction sets, these microcontrollers
included on-chip counter/timers, interrupt facilities, and improved I/O
handling. On-chip memory capacity was still small and was not adequate for
many applications. One of the most significant developments at this time was
the availability of on-chip ultraviolet erasable EPROM memory. This simpli-
fied the product development time considerably and, for the first time, also
allowed the use of microcontrollers in low-volume applications.

The 8051 family was introduced in the early 1980s by Intel. Since its
introduction, the 8051 has been one of the most popular microcontrollers
and has been second-sourced by many manufacturers. The 8051 currently has
many different versions and some types include on-chip analogue-to-digital
converters, a considerably large size of program and data memories,

1.3

Microcontroller Projects in C for the 8051

pulse-width modulation on outputs, and flash memories that can be erased and
reprogrammed by electrical signals.

Microcontrollers have now moved into the 16-bit market. 16-bit micro-
controllers are high-performance processors that find applications in
real-time and compute intensive fields (e.g. in digital signal processing or
real-time control). Some of the 16-bit microcontrollers include large amounts
of program and data memories, multi-channel analogue-to-digital converters, a
large number of I/O ports, several serial ports, high-speed arithmetic and logic
operations, and a powerful instruction set with signal processing capabilities.

Microcontroller Architecture

The simplest microcontroller architecture consists of a microprocessor,
memory, and input/output. The microprocessor consists of a central processing
unit (CPU) and the control unit (CU).

The CPU is the brain of a microprocessor and is where all of the arithmetic and
logical operations are performed. The control unit controls the internal
operations of the microprocessor and sends control signals to other parts of
the microprocessor to carry out the required instructions.

Memory is an important part of a microcomputer system. Depending upon the
application we can classify memories into two groups: program memory and
data memory. Program memory stores all the program code. This memory is
usually a read-only memory (ROM). Other types of memories, ¢.g. EPROM
and PEROM flash memories, are used for low-volume applications and also
during program development. Data memory is a read/write memory (RAM).
In complex applications where there may be need for large amounts of memory
it is possible to interface external memory chips to most microcontrollers.

Input/Output (I/O) ports allow external digital signals to be connected to the
microcontroller. I/O ports are usually organized into groups of 8 bits and each
group is given a name. For example, the 8051 microcontroller contains four
8-bit 1/O ports named PO, P1, P2, and P3. On some microcontrollers the
direction of the I/O port lines are programmable so that different bits of a port
can be programmed as inputs or outputs. Some microcontrollers (including the
8051 family) provide bi-directional I/O ports. Each I/O port line of such
microcontrollers can be used as inputs and outputs. Some microcontrollers
provide ‘open-drain’ outputs where the output transistors are left floating (e.g.
port PO of the 8051 family). External pull-up resistors are normally used with
such output port lines.

Microcomputer Systems 3

1.4

8051 Family

The 8051 family is a popular, industry standard 8-bit single chip micro-
computer (microcontroller) family, manufactured by various companies with
many different capabilities. The basic standard device, which is the first
member of the family, is the 8051, which is a 40-pin microcontroller. This
basic device is now available in several configurations. The 80C51 is the low-
power CMOS version of the family. The 8751 contains EPROM program
memory, used mainly during development work. The 89C51 contains flash
programmable and erasable memory (PEROM) where the program memory
can be reprogrammed without erasing the chip with ultraviolet light. The 8052
is an enhanced member of the family which contains more RAM and also more
timer/counters. There are many versions of the 40-pin family which contain on-
chip analogue-to-digital converters, pulse-width modulators, and so on. At the
lower end of the 8051 family we have the 20-pin microcontrollers which are
code compatible with the 40-pin devices. The 20-pin devices have been
manufactured for less complex applications where the I/O requirements are
not very high and where less power is required (e.g. in portable applications).
The AT89C1051 and AT89C2051 (manufactured by Atmel) are such micro-
controllers, which are fully code compatible with the 8051 family and offer
reduced power and less functionality. Table 1.1 gives a list of the characteristics
of some members of the 8051 family.

Table 1.1 Some popular members of the 8051 family
Device Program Data Timer/ 1/0O pins | Pin
memory memory counters count
AT89C1051 1K flash 64 RAM 1 15 20
AT89C2051 2K flash 128 RAM 2 15 20
AT89C51 4K flash 128 RAM | 2 32 40
AT89C52 8K flash 256 RAM | 3 32 40
8051AH 4K ROM 128 RAM 2 32 40
87C51H 4K EPROM 128 RAM 2 32 40
8052AH 8K ROM 256 RAM 3 32 40
87C52 8K EPROM 256 RAM | 3 32 40
87C54 16K EPROM 256 RAM | 3 32 40
87C58 32K EPROM 256 RAM | 3 32 40

1.5

1.6

Microcontroller Projects in C for the 8051

In this book all the projects are based upon the AT89C2051 microcontroller.
The code given will run on other members of the family, including the 40-pin
devices. The reasons for choosing the AT89C2051 are its low cost, low power
consumption, small space (20 pin), and powerful features.

In this chapter we shall be looking at the features of the 8051 family briefly
with more emphasis on the smaller AT89C2051. More information on these
microcontrollers can be obtained from the manufacturers’ data sheets.

Architecture of the 8051 Family

The 8051 is an 8-bit, low-power, high-performance microcontroller. There are
a large number of devices in the 8051 family with similar architecture and each
member of the family is downward compatible with each other. The basic 8051
microcontroller has the following features:

4 Kbytes of program memory
256 x 8 RAM data memory

32 programmable 1/O lines

Two 16-bit timer/counters

Six interrupt sources
Programmable serial UART port
External memory interface
Standard 40-pin package

The EPROM versions of the family (e.g. 8751) are used for development and
the program memory of these devices is erased with an ultraviolet light source.
The pin configuration of the standard 8051 microcontroller is shown in
Fig. 1.1.

The AT89C2051 is a low-end member of the 8051 family, aimed for less
complex applications. This device contains a 2Kbyte flash programmable
memory (PEROM) which can be erased and reprogrammed using a suitable
programmer. The AT89C2051 contains 128 bytes of RAM and 15 program-
mable I/O lines. The code developed for this device runs on a standard 8051
without any modification. As shown in Fig. 1.2, the AT89C2051 is housed in a
20-pin package.

Pin Configuration

Descriptions of the various pins are given below.

Microcomputer Systems 5

20 ALE PO.O/ADO |32
LHEA PO./AD1 2=
21 PSEN PO.2/AD2 | 3¢
=2 1RsT PO.3/AD3 |22
PO.4/AD4 |5
. P0.5/AD5 [—
15 xTAL2 PO.6/ADS a5
XTAL1 P0.7/AD7
——{ P10 P2.0/AD8 -5+
< P11 P2.1/AD9 5=
Sp12 P2.2/AD10 |55
21 p13 P2.3/AD11 |—5g
=2 P14 P2.4/AD12 |52
—— P15 P2.5/AD13 [—5=
- P16 P2.6/AD14 [—5&
L 1p17 P2.7/AD15
P3.ORXD
P3.1/TXD |12
P3.2/INTO [—1=
P3.3INTT |
P3.4/T0 |1
P3.5T1 [—2
P3.6MR [—=
P3.7/RD
8051

Figure 1.1.
Pin configuration of the standard 8051

RST

This is the reset input. This input should normally be at logic 0. A reset is
accomplished by holding the RST pin high for at least two machine cycles.
Power-on reset is normally performed by connecting an external capacitor and
a resistor to this pin (see Figs 1.3 and 1.4).

P3.0

This is a bi-directional 1/O pin (bit 0 of port 3) with an internal pull-up resistor.
This pin also acts as the data receive input (RXD) when the device is used as an
asynchronous UART to receive serial data.

é Microcontroller Projects in C for the 8051

d

-2 P3.0(RXD)VCC P1.7f—

24 P3.1(TXD) P1.6§e—

~£4 P3.2 (INTO) P1.5~

2] P3.3(INT1) P1.4fe_
21 P3.4(T0) P1.3js—
=21 p35(T1) mzﬁ_

89C2051
P3.7 P1.1

L
-4 RESET
10| P1.0f2—

GND
XTL1 XTL2

Figure 1.2.
Pin configuration of the standard AT89C2051

P3.1

This is a bi-directional I/O pin (bit 1 of port 3) with an internal pull-up resistor.
This pin also acts as the data transmit output (TXD) on the 8051 when the
device is used as an asynchronous UART to transmit serial data.

XTALT and XTAL2

These pins are where an external crystal should be connected for the operation
of the internal oscillator. Normally two 33 pF capacitors are connected with
the crystal as shown in Figs 1.3 and 1.4. A machine cycle is obtained by
dividing the crystal frequency by 12. Thus, with a 12 MHz crystal, the machine
cycle is 1 ps. Most machine instructions execute in one machine cycle.

P3.2

This is a bi-directional I/O pin (bit 2 of port 3) with an internal pull-up resistor.
This pin is also the external interrupt 0 (INTO) pin.

Microcomputer Systems 7

+5V
+ 40
e = PO.O/ADO |22
=5 EA PO.1/AD1 [—5=
CA1 22— PSEN P0.2/AD2 [—5=
= RST PO.3/AD3 =22
33pF PO.4/AD4 [—==
_E PO.5/AD5 p—==
[—1 %— XTAL2 P0.6/AD6 —gg
X1 1 ——px7AL P0.7/AD7 —=
—E[I 1 P10 P2.0/AD8 (41
- - £ P11 P2.1/AD9 5%
- 33pF 1 P12 P2.2/AD10 5=
C1 = P13 P2.3/AD11 5=
=— P14 P2.4/AD12 [—5=
=— P15 P2.5/AD13 5=
— P16 P2.6/AD14 5=
P17 P2.7/AD15 ===
P3.0/RXD %
P3.1/TXD R
P3.2/INT0 (—=
P3.3/INT1 (—=
P3.4/TO —1—5
P3.5/T1 6
P3.6/WR T
P3.7/RD }—=~
8051
20
Figure 1.3. -

Minimum 8051 configuration

P3.3

This is a bi-directional I/O pin (bit 3 of port 3) with an internal pull-up resistor.
This pin is also the external interrupt 1 (INT1) pin.

P3.4

This is a bi-directional I/O pin (bit 4 of port 3) with an internal pull-up resistor.
This pin is also the counter 0 input (T0) pin.

8 Microcontroller Projects in C for the 8051

+5vi

~21 P3.0(RXD)VCC P1.7f2_
24 P3.1(TXD) P1.6f8
£ 1 P3.2(INTO) P15
—~ P3.3(INT1) P1.4p8
+§y 3| P3.4(T0) P1.35_
2| P35 P12pse
c3 89C2051
5= qouF 1l P37 P1.1fi3
1
10 EE[SDET P1.0§2_
1
- XTL1 XTL2
R1 -
[] 8.2K v——| Dl——
C1 L \L Cc2
sspF T~ 12M T 33pF
= 1 1

Figure 1.4.
Minimum AT89C2051 configuration

P3.5

This is a bi-directional I/O pin (bit 5 of port 3) with an internal pull-up resistor.
This pin is also the counter 1 input (T1) pin.

GND
Ground pin.

P3.6

This is a bi-directional I/O pin. This pin is not available on the AT89C2051. It
is also the external memory write (WR) pin.

Microcomputer Systems (?

P3.7

This is a bi-directional I/O pin for bit 7 of port 3. On the standard 8051, this
pin is also the external data memory read (RD) pin.

P1.0

This is a bi-directional I/O pin for bit 0 of port 1. This pin has no internal pull-
up resistors on the 20-pin devices. It is also used as the positive input of the
analogue comparator (AINO) on the 20-pin device.

PI.1

This is a bi-directional I/O pin for bit 1 of port 1. This pin has no internal pull-
up resistors on the 20-pin devices. It is also used as the positive input of the
analogue comparator (AIN1) on the 20-pin device.

P1.2 to P1.7

These are the remaining bi-directional I/O pins of port 1. These pins have
internal pull-up resistors.

vCC
Supply voltage.

PO.0 to PO.7

These are the eight I/O pins of port 0 of the standard 8051. These pins have no
pull-up resistors. P0.0 to P0.7 are also used to provide the low addresses (A0 to
A7) and the data during fetches from external program memory and during
accesses to external data memory.

P2.0 to P2.7

These are the eight I/O pins of port 2 of the standard 8051. These pins have
pull-up resistors. P2.0 to P2.7 are also used to provide the high address (A8 to
A15) byte during fetches from external program memory and during accesses
to external data memory.

EA/VPP

This is the external access enable pin on the standard 8051. EA should be
connected to VCC for internal program executions. This pin also receives the
programming voltage during programming.

10

1.7

Microcontroller Projects in C for the 8051

PSEN

This is the program store enable pin on the 8051 devices. This pin is activated
when the device is executing code from external memory.

ALE/PROG

This is the address latch enable pin on the standard 8051 devices. This pin is
used to latch the low byte of the address during accesses to external memory.

Timer/Counters

The 8051 and AT89C2051 contain two timer/counters known as timer/counter
0 and timer/counter 1 (larger members of the 8051 family contain more timers/
counters). These timer/counters can be operated in several different modes
depending upon the programming of two registers TCON and TMOD, as
shown in Tables 1.2 and 1.3. These registers should be programmed before
using any timer or counter facilities of the microcontroller.

Table 1.2 TCON timer/counter control register

Bit name Bit position | Description

TF1 7 Timer 1 overflow flag. Set and cleared by
hardware
TR1 6 Timer 1 run control bit. Timer 1 is turned on when

TR1=1, and stopped when TR1=0

TFO 5 Timer O overflow flag. Set and cleared
by hardware

TRO 4 Timer 0 run control bit. Timer 0 is turned on
when TRO= 1, and stopped when TRO=0

IET 3 External interrupt 1 edge flag. Set and cleared
by hardware

IT1 2 External interrupt 1 type. IT1 =1 specifies
interrupt on falling edge. IT1 =0 specifies
inferrupt on low level

IEQ 1 External interrupt 0 edge flag. Set and cleared
by hardware

[TO 0 External interrupt 0 type. IT0= 1 specifies
interrupt on falling edge. IT0 =0 specifies
interrupt on low level

Microcomputer Systems '| '|

1.8

Table 1.3 TMOD timer/counter mode control register

TIMER 1 TIMER O
GATE C/T M1 MO GATE C/T M1 MO
GATE: When TRx is set and GATE = 1, TIMER/COUNTERX runs only while

the INTx pin is high. When GATE =0, TIMER/COUNTERX will run
only while TRx=1.

C/T: Timer or counter select bit. When C/T=0, operates as a fimer
(from internal clock). When C/T=1, it operates as a counter
(input from Tx input).

M1, MO: Timer/counter mode select bits are defined in Table 1.4.

TCON is the timer/counter control register and this register is bit addressable.
Table 1.4 M1, MO mode confrol bits

M1 MO Operating mode

0 0 13-bit fimer

0 1 16-bit timer/counter

1 0 8-bit auto-reload timer/counter
1 1 Two 8-bit fimers

For example, bit 4 of TCON is the counter 0 run control bit and setting this bit
starts counter 0. TCON register is at address 88 (hex) and bits in this register
can be accessed either by making reference to the address or by using compiler
reserved names (e.g. TRO).

TMOD is the timer/counter mode control register. This register sets the
operating modes of the two timer/counters as shown in Table 1.3. There are
three operating modes, known as modes 0, 1, and 2. TMOD is not bit
addressable and should be loaded by specifying all the 8 bits. For example,
loading hexadecimal byte 01 into TMOD sets timer 0 into mode 1 which is a
16-bit timer and is turned on and off by bit TR0 of TCON. Also, timer 1 is set
into mode 0 which is a 13-bit timer and is turned on and off by bit TR1 of
TCON.

Interrupt Control

The standard 8051 and AT89C2051 provide six interrupt sources:

'| 2 Microcontroller Projects in C for the 8051

1.9

Table 1.5 Interrupt entry locations in memory
Interrupt source Interrupt number Location in memory (hex)
External interrupt O 0 0003
Timer O 1 000B
External interrupt 1 2 0013
Timer 1 3 001B
Serial port 4 0023
Table 1.6 Inferrupt enable/disable bits
EA - - ES ET1 EX1 ETO EXO
Where:
EA: Global interrupt enable/disable. If EA=0, no interrupt will
be accepted. If EA=1, each interrupt source is individually
enabled or disabled by setfting or clearing its bit, given below.
ES: Serial port inferrupt enable bit.
ETT: Timer 1 interrupt enable bit.
EXT: External interrupt 1 enable bit.
ETO: Timer 0 interrupt enable bit.
EXO: External interrupt 0 enable bit.
e Two external interrupts (INTO and INT1)
e Two timer interrupts (timer 0 and timer 1)
e One serial port receive interrupt
e One serial port transmit interrupt

Each interrupt is assigned a fixed location in memory and an interrupt causes
the CPU to jump to that location, where it executes the interrupt service
routine. Table 1.5 gives the interrupt sources and the start of their service
routines in memory. Note that the serial port receive and transmit interrupts
point to the same location.

Each interrupt source can be individually enabled or disabled by setting or

clearing its interrupt enable bit. Table 1.6 gives the interrupt enable bit
patterns.

Minimum Microcontroller Configuration

The minimum microcontroller configurations of the 8051- and AT89C2051-
based microcontroller systems are shown in Figs 1.3 and 1.4. As can be seen

Microcomputer Systems '| 3

1.10

from these figures, only the following external components are required to have
a working microcontroller:

X1 Crystal (e.g. 12MHz)

Cl, C2 33 pF capacitors

C3 10 uF, 10V electrolytic capacitor
R1 8.2K, 0.125 W resistor

We shall be using the circuit in Fig. 1.4 in all of the projects described in this
book, except the last project which is based on a 40-pin device. The crystal
chosen for the projects is 12 MHz, which gives a basic instruction timing of
I pus. The power supply current of the AT89C2051 is around 15mA, but a
power supply which can deliver up to a few hundred milliamperes is
recommended so that the interface circuitry attached to the microcontroller
can be powered.

Project Development

Development of a AT89C2051 microcontroller project requires several devel-
opment tools. The following is a list of the tools that are essential:

e Suitable assembler or compiler which can generate machine code for the
AT89C2051 microcontroller. In this book we shall be developing the
projects using a C compiler.

e Chip programmer suitable to program AT89C2051 devices. There are
many programmers available on the market for this purpose. For example,
PG302 by Inguana labs, Evalu8r by Equinox Technologies, and others. The
programmer should be compatible with the code generated by the
assembler or the compiler so that the code can be downloaded to the
microcontroller. Notice that there is no ultraviolet erasing process.
AT89C2051 devices contain reprogrammmable flash memories which can
be erased and reprogrammed by electrical signals.

e A minimum AT89C2051 microcontroller hardware. Many manufacturers
offer development systems, consisting of a basic microcontroller, LED
lights, switches, buzzers etc. Some development systems include both
language compilers and hardware and such systems can be very useful
during project development.

Although the microcontroller used in the projects is the 20-pin AT89C2051, the
code given will run on all members of the 8051 family provided that there is
enough program and data memories.

This Page Intentionally Left Blank

CHAPTER 2
PROGRAMMING MICROCONTROLLERS IN C

The C programming language is a general-purpose high-level programming
language that offers efficient and compact code and provides elements of
structured programming. Many control and monitoring-based applications
can be solved more efficiently with C than with any other programming
language. C was originally available on mainframe computers, mini-
computers, and personal computers (PCs). The C programming language is
now available on most microcontrollers and microprocessors.

This book is not intended for teaching the C programming language. It is
assumed that the reader is familiar with programming in C. The aim of this
chapter is to show the special features of the C language when programming
microcontrollers. In this book, the industry standard C51 optimizing C
compiler is used throughout. This compiler has been developed by Keil
Elektronik GmbH. C51 is available on both MS-DOS and Windows-based
operating systems and the compiler implements the American National
Standards Institute (ANSI) standard for the C language.

There are many other high-level language compilers available for micro-
controllers, including PASCAL, BASIC, and other C compilers. Some of
these compilers are freely available as shareware products and some can be
obtained from the Internet with little cost. Also, some companies supply free
limited capability compilers, mainly for evaluation purposes. These compilers
can be used for learning the features of a specific product and in some cases
small projects can be developed with such compilers. Section 2.5 gives a list of
some sites where readers can find more information on high-level microcon-
troller compilers.

The C51 compiler has been developed for the 8051 family of microcontrollers.
This is one of the most commonly used industry standard C compilers for the
8051 family, and can generate machine code for most of the 20-pin and 40-pin
8051 devices and its derivatives, including the following microcontrollers:

Intel and others 8051, 80C51, and 87C51
Atmel 89C51, 89C52, 89C55, 8958252, and 89S53
Atmel 89C1051 and 89C2051

16

2.1

Microcontroller Projects in C for the 8051

AMD 80C321, 80C521, and 80C541
Dallas 80C320, 80C520, and 80C530
Signetics 8xC750, 8xC751, and 8xC752
Siemens 80C517 and 80C537

C51 is a professional, industry standard compiler with many features, including
a large number of built-in functions. In this chapter we shall be looking at the
features of the C51 programming language as applied to programming single
chip microcontrollers. More information on the C51 compiler is available from
Keil Elektronik GmbH (see the C51 Optimizing 8051 Compiler and Library
Reference Manual).

Data Types

The C51 compiler provides the standard C data types and in addition several
extended data types are offered to support the 8051 microcontroller family.
Table 2.1 lists the available data types (see the C51 reference manual for more
information).

Some of the data types are described below in more detail.

2.1.1 bit

These data types may be used to declare 1-bit variables.
Example:

bit my_flag:; /* declare my_flag as a bit variable */
my_flag=1; /* set my_flagto 1%/

2.1.2 signed char/unsigned char

These data types are as in standard C language and are used to declare signed
and unsigned character variables. Each character variable is 1 byte long
(8 bits). Signed character variables range from —128 to +127; unsigned
character variables range from 0 to 255.

Example:
unsigned char varl var2; /* declare varl and var2 as unsigned char */
varl =0xA4; /* assign hexadecimal A4 to variable varl */

var2=varl; /* assign varl to var2 */

Programming Microcontrollers In C '| 7

Table 2.1 CSI data types
Data type Bits Range
bit 1 Oorl
signed char 8 —128 to +127
unsigned char 8 0 to +255
enum 16 —32768 to +32767
signed short 16 —32786 to +32767
unsigned short 16 0 to 65535
sighed int 16 —32768 to +32767
unsigned int 16 0 to 65535
sighed long 32 —2147483648 to 2147483647
unsigned long 32 0 to 4294967295
float 32 +1.175494E-38 to +3.402823E+38
sbit 1 Oorl
sfr 8 0 to 255
sfr1é 16 0 to 65535

2.1.3 signed short/unsigned short

These data types are as in standard C language and are used to declare signed
and unsigned short variables. Each short variable is 2 bytes long (16 bits).
Signed short variables range from —32768 to +32767 and unsigned short
variables range from 0 to 65 535.

Example:

unsigned short temp;
unsigned short wind;

temp = 0x0C200;
wind =temp;

/* declare temp as unsigned short */

/* declare wind as unsigned short */

/* assign hexadecimal C200 o variable femp */
/* assign variable tfemp to wind */

2.1.4 signed int/unsigned int

As in the standard C language, these data types are used to declare signed and

18

Microcontroller Projects in C for the 8051

unsigned integer variables. Integer variables are 2 bytes long (16 bits). Signed
integers range from —32 768 to 432767 and unsigned integers range from 0 to
65 535.

Example:

unsigned int n1,n2; /* declare n1 and n2 as unsigned integers */
n1=10; /* assign 10 to nl */

n2=2*n1; /* multiply n1 by 2 and assign to n2 */

2.1.5 signed long/unsigned long

These data types are as in standard C language and are used to declare signed
and unsigned long integer variables. Each long integer variable is 4 bytes long
(32 bits).

Example:

unsigned long temp; /* declare temp as long integer variable */
temp =250000; /* assign 250000 to variable temp */
2.1.6 float

This data type is used to declare a floating point variable.

Example:

float 11,12; /* declare 11 and 12 as floating point variables */
11=25.4; /* assign 25.4 to t1 */

12 =sqri(t1); /* assign the square-root of 11 to 12 */

2.1.7 sbit

This data type is provided for the 8051 family and is used to declare an
individual bit within the SFR of the 8051 family. For example, using this data
type one can access individual bits of an I/O port.

Example:

sbit switch =P1A3; /* variable switch is assigned to bit 3 of port 1 */
switch=0; /* clear bit 3 of port 1 */

Programming Microcontrollers In C '| (?

2.1.8 sfr

This data type is similar to sbit but is used to declare 8-bit variables.

Example:

sfr P1=0x90; /* Port 1 address 0x90 assigned to P1 */

sfr P2 =0xAO0; /* Port 2 address OxAO assigned to P2 */

unsigned char my_data; /* declare my_data as unsigned character */
my_data=P1; /* read 8 bit data from port 1 and assign to my_data */
P2 =my_data++; /* increment my_data and send fo port 2 */

2.1.9 sfr16

This data type is similar to sfr but is used to declare 16-bit variables. When
using this data type, the low byte should precede the high byte.

Example:

Timer 2 of the 8052 microcontroller uses addresses 0xCC and 0xCD for the low
and high bytes. We can declare variable T2 to access both timer locations.

sfr16 T2=0xCC; /* Timer 2, T2L=CC and T2H=CD */
T2 =0xAEQ1; /* load Timer 2 with hexadecimal value AEQT */

2.2 Memory Models

8051 architecture supports both program (or code) and data memory areas.
Program memory is read-only and it cannot be written to. Depending upon the
type of processor used different amounts of internal program memory are
available. For example, 8051 provides 4 Kbytes of internal program memory.
Similarly, 89C2051 provides only 2 Kbytes of internal program memory. The
program memory can be increased by connecting additional external memory
to the basic microcontroller. There may be up to 64 Kbytes of program
memory.

Data memory resides within the 8051 CPU and can be read from and written
into. Up to 256 bytes of data memory are available depending upon the type of
microcontroller used.

The memory model determines what type of program memory is to be used for
a given application. There are three memory models, known as SMALL,
COMPACT, and LARGE, and the required model is specified using the
compiler directives. The SMALL memory model is used if all the variables

20

2.3

Microcontroller Projects in C for the 8051

reside in the internal data memory of the 8051. This memory model generates
the fastest and the most efficient code and should be used whenever possible. In
the COMPACT memory model, all variables reside in one page of external
data memory. A maximum of 256 bytes of variables can be used. This memory
model is not as efficient as the SMALL model. In the LARGE memory model,
all variables reside in external data memory. A maximum of 64 Kbytes of data
can be used. The LARGE model generates more code than the other two
models and thus it is not very efficient.

Compiling in the SMALL memory model always generates the fastest and the
smallest code possible since accessing the internal memory is always faster than
accessing any external memory.

Interrupts

The C51 compiler allows us to declare interrupt service routines (ISRs) in our
C code and then the program automatically jumps to this code when an
interrupt occurs. The compiler automatically generates the interrupt vectors
and entry and exit code for interrupt routines.

An ISR is declared similar to a function declaration but the interrupt number is
specified as part of the function declaration. For example, the following is a

declaration of the ISR for timer 1 interrupts (interrupt number 3):

Void timerl1() interrupt 3

{
}

interrupt service code goes in here

Similarly, the ISR for timer O (interrupt number 1) is declared as:

void timerQ() interrupt 1

{
}

interrupt service code goes in here
Note that we can specify the register bank to be used for the ISR with the using
function attribute:

void timerQ() interrupt 1 using 2

{
}

interrupt service code goes in here

Programming Microcontrollers In C 2 '|

24

Structure of a Microcontroller-based C Program

The structure of a C program developed for a microcontroller is basically the
same as the structure of a standard C program, with a few minor changes. The
structure of a typical microcontroller-based C program is shown in Fig. 2.1. It
is always advisable to describe the project at the beginning of a program using
comment lines. The project name, filename, date, and the target processor type
should also be included in this part of the program. The register definition file
should then be included for the type of target processor used. This file is
supplied as part of the compiler and includes the definitions for various
registers of the microcontroller. In the example in Fig. 2.1, the register
definition file for the Atmel 89C2051 type microcontroller is included. The
global definitions of the variables used should then be entered, one line for each
definition. The functions used in the program should then be included with the
appropriate comments added to the heading and also to each line of the

/

Project: Give project name

File: Give filename

Date: Date program was developed
Processor: Give target processor type

This is the program header. Describe your program here briefly.

/
#include <AT892051.h>
#define /* include your define statements here */
sbif /* include your bit definitions here */
int ...
char /* include your global declarations here */
void func1(/* include you functions here */
{
}
mainQ /* main code */

/* include comments here */

Figure 2.1.

Structure of a microcontroller C program

22

2.5

Microcontroller Projects in C for the 8051

functions. The main program starts with the keyword main(), followed by the
opening brackets ‘{’. The lines of the main program should also contain
comments to clarify the operation of the program. The program is terminated
by a closing bracket ‘}’.

An example program is shown in Fig. 2.2. This program receives an 8-bit data
from port 1 of an 89C2051 type microcontroller. The state of a switch,
connected to bit 0 of port 3, is then checked. If the switch is I, the value of
the data is doubled by calling function double_it. If, on the other hand, the state
of the switch is 0, the data value is incremented by 2 by calling function
inc_by2, and then the program stops. It is important to realize that there is no
returning point in a microcontroller program. Thus, where necessary, an
endless loop should be formed at the end to stop the program from going
into undefined parts of its code memory.

Program Description Language (PDL)

There are many methods that a programmer may choose to describe the
algorithm to be implemented by a program. Flow charts have been used
extensively in the past in many computer programming tasks. Although flow
charts are useful, they tend to create an unstructured code and also a lot of time
is usually wasted drawing them, especially when developing complex programs.
In this section we shall be looking at a different way of describing the operation
of a program, namely by using a program description language (PDL).

A PDL is an English-like language which can be used to describe the operation
of a program. Although there are many variants of PDL, we shall be using
simple constructs of PDL in our programming exercises, as described below.

2.5.1 START-END

Every PDL program (or sub-program) should start with a START statement
and terminate with an END statement. The keywords in a PDL code should be
highlighted in bold to make the code more clear. It is also good practice to
indent program statements between the PDL keywords.

Example:

Programming Microcontrollers In C 23

I/Drojecf: A simple test
File: TEST.C

Date: 10 August 1999
Processor: 89C2051

This program receives an 8-bit data from port 1 of the microcontroller and stores this data
in variable first. The state of a switch, connected to bit 0 of port 3, is then checked. If the
switch is 1, variable first is doubled by calling function double_it. If, on the other hand, the
state of the switch is O, variable first is incremented by 2 by calling to inc_by2

/
#include <AT892051.h>

#define ON 1
#define OFF O

sbit switch = P3AQ; /* switch is connected to bit 0 of port 3 */

/* Function to double a value */
unsigned char double_it(unsigned char x)
{

return (2*x);

/* Function to increment a value by 2 */
unsigned char inc_by2(unsigned char x)
{

return (x+2);

/* Start of MAIN program */
mainQ
{

unsigned char first,second;

first = P1; /* get 8-bit data from port 1 */
if(switch = = ON)
second=double_it(first); /* double the data if switch =1 */

else
second=inc_by2(first); /* otherwise increment by 2 */
for(:;) /* wait here forever */
{
}
} /* end of MAIN program */
Figure 2.2.

Example of a microcontroller C program

24

Microcontroller Projects in C for the 8051

2.5.2 Sequencing

For normal sequencing in a program, write the steps as short English text as if
you are describing the program.

Example:

Turn on the valve
Clear the buffer
Turn on the LED

2.5.3 IF-THEN-ELSE-ENDIF

Use IF, THEN, ELSE, and ENDIF statements to describe the flow of control
in your programs.

Example:

IF switch = 1 THEN
Turn on buzzer
ELSE
Turn off buzzer T
urn off LED
ENDIF

254 DO-ENDDO
Use DO and ENDDO control statements to show iteration in your PDL code.

Example:

Turn on LED
DO 5 times
Set clock to 1
Set clock to 0
ENDDO

A variation of the DO-ENDDO construct is to use other keywords like DO-
FOREVER, DO-UNTIL etc. as shown in the following examples.

Turn off the buzzer
IF switch = 1 THEN
DO UNTIL Port 1 = 2
Turn on LED
Read port 1
ENDDO
ENDIF

Programming Microcontrollers In C 25

2.6

or

DO FOREVER
Read data from port 1
Display data
Delay a second
ENDDO

2.5.5 REPEAT-UNTIL

This is another useful control construct which can be used in PDL codes. An
example is shown below where the program waits until a switch value is equal
to 1.

REPEAT
Turn on buzzer
Read switch value
UNTIL switch = 1

Internet Web Sites of Microcontroller Compilers

The amount of microcontroller software available on the Internet is huge and
there are many different example programs. Internet web sites of some popular
8051 family microcontroller compilers and other useful sites are given below.

Pascal compilers

Embedded Pascal — 8051/8051
http://www.grifo.it/SOFT/Lawicel/uk_EP_51.htm

Pascal 51
http://www.grifo.com/SOFT/KSC/Pascal51.htm

Embedded Pascal
http://www/users.iafrica.com/r/ra/rainier/index.htm

ElProg Pascal5S1
http://www.geocoties.com/SiliconValley/Campus/9592/index.html

SYSTEMS1 Pascal
http://www.spacetools.de/tools/space-program/space/products/s_050006.htm

26

Microcontroller Projects in C for the 8051

C Compilers

MICRO/C-51
htp://www.mcc-us.com/51tools.htm

Small C
http://www.newmicros.com/smallc51.html

IDE51-C
http://www.spjsystems.com/ide51.htm

SDCC (freeware 8051 C compiler)
http://www.geocoties.com/ResearchTriangle/Forum/1353/

C51
ttp://www .keilsoftware.com/home.htm

Various BASIC and C compilers
http://www.equinox-tech.com

MICRO-C
http://www.dunfield.com/dks.htm

Basic compilers

BASCOM
http://www.x54all.nl/~mcselec/bascom.html

TINY BASIC
http://www.code.archive.aisnota.com/

BASIKIT
http://www.mdllabs.com/basikit.htm

BXC-51
http://www.mindspring.com/~tavve/8051/bxc51.html

BEC-51
http://www.windspring.com/~tavve/8051/bec51.html

Useful site on 8051 software and hardware

http://www.cis.ohio-state.edu/hypertext/faq/usenet/microcontroller-faq/8051/

faq.html

Programming Microcontrollers In C 27

2.7

Further Reading

The following books and reference manuals are useful in learning to program
in C.

The C Programming Language (2nd edn)
Kernighan & Richie

Prentice-Hall, Inc.

ISBN 0-13-110370-9

C and the 8051: Programming and Multitasking
Schultz

PTR Prentice-Hall, Inc.

ISBN 0-13-753815-4

C for Dummies
Dan Gookin
ISBN 1-878058-78-9

C The Complete Reference
Herbert Schildt
ISBN 0-07-882101-0

Efficient C

Plum & Brodie
Plum Hall Inc.
ISBN 0-911537-05-8

C51 Compiler, Optimizing 8051 C Compiler and Library Reference
User’s Guide
Keil Elektronik GmbH

This Page Intentionally Left Blank

CHAPTER 3
LIGHT PROJECTS

This chapter describes simple light projects using the basic 89C2051 micro-
controller circuit described in earlier chapters. Over ten projects are given, from
very simple LED display projects to complex projects incorporating alpha-
numeric displays. For each project, the following information is given as
appropriate:

e Function: what the project does, its inputs and outputs.

e Circuit diagram: full circuit diagram of the project and explanation of how
the circuit works.

e Program description: functional description of the software in simple
English-like language (PDL).

e Program listing: full tested and working C program listing for each project,
including comments.

o Components required: listing of components required to build each project.

PROJECT 1 - LED Binary Counter

Function

This project counts up in binary and displays the result on eight LEDs
connected to port 1 of the microcontroller as shown in Fig. 3.1.

Circuit Diagram

As shown in Fig. 3.2 the circuit is extremely simple, consisting of the basic
89C2051-based microcontroller and eight LEDs connected to port 1 of the
microcontroller. Each microcontroller output pin can sink a maximum of
80 pA and source up to 20 mA. The manufacturers specify that the total source
current of a port should not exceed 80 mA. There are many different types of
LED lights on the market, emitting red, green, amber, white, or yellow colours.
Standard red LEDs require about 5 to 10 mA to emit visible bright light. There
are also low-current small LEDs operating from as low as 1 mA.

30 Microcontroller Projects in C for the 8051

Figure 3.1.
Output pattern of Project 1

In Fig. 3.2, the microcontroller outputs operate in current source mode where
an LED is turned on if the corresponding output is at logic LOW level. The
required value of the current limiting resistors can be calculated as follows:

Vs — V¢

R=
I

where V is the supply voltage (+5V), V¢ is the LED forward voltage drop
(about 2V), and I; is the LED forward current (1 to 30 mA depending on the
type of LED used). In this design if we assume an LED current of about 6 mA,
the required resistors will be:

R:¥:47OQ

Although eight individual resistors are shown in this circuit, it is possible to
replace these resistors with a single DIL (dual-in-line) resistor chain.

Program Description

The program is required to increment a value and then output to port 1 of the
microcontroller. Because the microcontroller operates at a very high speed, it is

Light Projects 3 '|

+5VT

D A +5v
R2
2| P3.0(RXD)VCC P1.7L——n—|:—o
2 J—-
2| P3.1(TXD) P1.6-‘13—-|q——|—_—_|—o
5| P3.2(INTO) P1.5w17___|(]_|:._0
Y g
L1 P3.3(INT1) P1.4ps K————
b
R2
+52§/ 2| pP3.4(T0) Prape I
b r
21 P3.5(T1) P1.21_4__K]__|:|_<
= cy 89C2051 5
= qopr AL P37 P1.1)2 Kl 1
L ¢
= | XTL1 XTL2
R1 -
[] 8.2K = “]{
C1 L~ L, C2
33pF 12M T 33pF

Figure 3.2.

Circuit diagram of Project 1

necessary to insert a delay in the program so that the LED outputs can be seen
visually. The following PDL describes the functions of the program:

START
Set count to 1
DO FOREVER
Output count to port 1
Increment count
Delay
ENDDO
END

32 Microcontroller Projects in C for the 8051

IéROJECT: PROJECT 1
FILE: PROJ1.C
DATE: August 1999
PROCESSOR: AT892051

This project counts up in binary and displays the result on eight LEDs connected to port 1.
The data is displayed with about 1 second delay between each output.

/
#include <AT892051.h>

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Start of main program */

mainQ
{
int LED=T; /*initialize count to 1%/
for(:;) /*Start of endless loop*/
{
P1=~LED; /*Invert and output™/
LED++; /*Increment the count™/
wait_a_second(; /*Wait about a second®/
}
}
Figure 3.3.

Program listing of Project 1

Program Listing

The full program listing is shown in Fig. 3.3. Variable LED is initialized to 1
and is used as the counter. The endless loop is set using the for statement with
no parameters. Variable P/ is defined in include file ‘AT892051.h’ and this is a
reserved name for port 1 of the microcontroller. Notice that variable LED is
complemented (using operator ‘~’) and then sent to the output port. This is
necessary since the output ports are configured to source current, i.e. an LED is
turned on when the corresponding port output is logic LOW. A delay of
approximately 1 second is obtained by the function wait_a_second. This
function is simply a dummy for loop and gives about 1 second delay when
the microcontroller is operated with a 12 MHz crystal. Different values of loop

Light Projects 3 3

count will give different delays. Also, different delays will be obtained with
other C compilers. More accurate and compiler independent delays can be
obtained using the timer utilities of the microcontroller.

Components Required

In addition to the components required by the basic microcontroller circuit, the
following components will be required for this project:

R2 470 Q, 0.125 W resistor (8 off), or DIL package
D LED (8 off)

PROJECT 2 - LED Chasing Circuit

Function

This project turns on the LEDs connected to port 1 of the microcontroller in
sequence, resulting in a chasing LED effect. The data is displayed with about 1
second delay between each output pattern. Figure 3.4 shows the output pattern
displayed by the LEDs.

Circuit Diagram

The same circuit (Fig. 3.2) as in Project 1 is used. The LEDs can be mounted in
a circular or in some other geometric form to enhance the chasing effect. Also,
different coloured LEDs can be used to give a colourful output.

Figure 3.4.
Output pattern of Project 2

34

Microcontroller Projects in C for the 8051

Program Description

The program is required to load a 1 into the top (or bottom) bit of a variable
and then shift the data right (or left) by one digit and display on the LEDs. A
delay will be required between each output. The following PDL describes the
functions of the program. In this PDL, the top bit of a variable is loaded and
data is shifted to the right:

START
Set count to 128
DO FOREVER
Output count to port 1
Shift count right by 1 digit
IF count = 0 THEN
Set count back to 128
ENDIF
Delay
ENDDO
END

Program Listing

The full program listing is shown in Fig. 3.5. Variable LED is initialized to 128
(top bit set to 1) and is used as the counter. The endless loop is set using the for
statement with no parameters. Variable P/ is defined in include file
‘AT892051.h’ and this is a reserved name for port 1 of the microcontroller.
Notice that variable LED is complemented and then sent to the output port.
This is necessary since the output ports are configured to source current, i.e. an
LED is turned on when the corresponding port output is logic LOW. The
count value is shifted right by one digit using the C compiler operator >’.
When the count reaches 0, it is reloaded with 128, i.e. the values of variable
LED will be 128, 64, 32, 16, 8, 4, 2, 1, 128, ... A delay of approximately
1 second is obtained by the function wait_a_second.

PROJECT 3 - Random LED Pattern

Function

This project turns on the LEDs connected to port 1 randomly. A random
number is generated between 0 and 32767 using the built-in C function rand
and then this is output to turn on the corresponding LEDs. The data is
displayed with about 1 second delay between each output pattern.

Light Projects 3 5

IéROJECT: PROJECT 2
FILE: PROJ2.C
DATE: August 1999
PROCESSOR: AT892051

This project turns on the LEDs connected to port 1 in sequence, resulting in a chasing LED
effect. The data is displayed with about 1 second delay between each output.

/
#include <AT892051.h>

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Start of main program */
mainQ

{
unsigned char LED=128; /initialize to 128*/

for(:;) /*Start of loop*/

{
P1=~LED; /*Invert and output*/
LED=LED >> 1; /*Shift to right*/
if(LED == O)LED=128; /*Set to 128%/
wait_a_second(); /*Wait a second*/

}

}
Figure 3.5.

Program listing of Project 2

Circuit Diagram

The same circuit (Fig. 3.2) as in Project 1 is used . The LEDs can be mounted in
different patterns and in different colours depending upon the application.

Program Description

The program is required to generate a random number and then output this
number to port 1 in order to turn on the corresponding LEDs. A small delay is
required between each output so that the LED patterns can be seen. The
following PDL describes the functions of the program:

36

Microcontroller Projects in C for the 8051

START
DO FOREVER
Generate a random number
Output number to port 1
Delay
ENDDO
END

Program Listing

The full program listing is shown in Fig. 3.6. Variable LED is used to hold the
data. The endless loop is set using the for statement with no parameters.

I/DROJECT: PROJECT 3
FILE: PROJ3.C
DATE: August 1999
PROCESSOR: AT892051

This project turns on the LEDs connected to port 1 randomly. A random number is
generated between 0 and 32767 and then this is output to turn on the corresponding
LEDs. The data is displayed with about 1 second delay between each output.

/
#include <stdlib.h>
#include <AT892051.h>

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Start of main program */
mainQ
{

int LED;

for(:;) /*Start of endless loop*/

{
/* Generate a random number between 0 and 32767 */

LED=rand();
P1=~LED; /*Invert and output*/
wait_a_second(; /*Wait a second®/

}

Figure 3.6.
Program listing of Project 3

Light Projects 37

Variable P/ is defined in include file ‘AT892051.h’ and this is a reserved name
for port 1 of the microcontroller. The built-in C function rand() generates a
random integer number between 1 and 32767 and this function is used to
generate a random number and store it in variable LED. The generated
number is complemented and output to port 1 of the microcontroller and
the process is repeated indefinitely with about 1 second delay between each
output pattern.

PROJECT 4 - Cyclic LED Pattern

Function

This project turns on the LEDs connected to port 1 in a cyclic manner such
that first only 1 LED is on, then 2 LEDs are on, then 3, 4, 5, ..., 8 are on
(Fig. 3.7). The process is repeated indefinitely with 1 second delay between each
output pattern.

Circuit Diagram

The same circuit (Fig. 3.2) as in Project 1 is used. The LEDs can be mounted in
different patterns and in different colours depending upon the application.

Program Description

The program is required to turn on the first LED (e.g. corresponding to
number 128) and then after a second delay turn on the LEDs corresponding to

+
tat,
90

<+

4
4
’
4
<+
4

R R
+ee e

Figure 3.7.
Output pattern of Project 4

38

Microcontroller Projects in C for the 8051

numbers 64, 32, 16 and so on until all eight LEDs are on (number 255). The
process is then repeated forever as shown in Fig. 3.7 with about 1 second delay
between each output pattern. The following PDL describes the functions of the
program:

START
Set count to 128
DO FOREVER
Output count to port 1
Shift count to right by 1 digit
IF count = 255 THEN
Delay
Output to port 1
Set count to 128
ENDIF
Delay
ENDDO
END

Program Listing

The full program listing is shown in Fig. 3.8. Variable LED is initialized to 128
(top bit on) and used to hold the data. This value is complemented and output
to port 1, and then shifted right by 1 digit using the C operator >>’. When all
the LEDs are on (LED = 255), the last value in the chain is displayed and
variable LED is set back to 128. The above process is repeated forever with
about 1 second delay between each output pattern.

PROJECT 5 - LED Dice

Function

This project simulates a dice by displaying a random number between 1 and 6,
on six LEDs connected to port 1 of the microcontroller. Bit 0 of port 3 (P3.0) is
used as the input and a push-button switch is connected to this pin. Every time
the switch is pressed, a new number is displayed.

Circuit Diagram

The circuit diagram of this project is shown in Fig. 3.9. Bit 0 of port 3 is
normally held at logic HIGH with the pull-up resistor R3. When switch S1 is
pressed, bit 0 of port 3 moves to logic LOW and is detected by the software. As

Light Projects 39

I/:’ROJECT: PROJECT 4
FILE: PROJ4.C
DATE: August 1999
PROCESSOR: AT892051

This project turns on the LEDs connected to port 1in a cyclic manner such that first only 1
LEDison,then 2,3,4,5, ..., 8 are on. The process is repeated. The data is displayed with
about 1 second delay between each output.

/
#include <AT892051.h>

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Start of main program */

mainQ
{
unsigned char LED=128; /Initialize count*/
for(:) /*Start of loop*/
{
P1=~LED; /*Invert and output*/
LED=LED | (LED >> 1); /*Obtain next value*/
if(LED == 255) /*If end of pattern ... */

{
wait_a_second();
P1=~LED;
LED=128;
}
wait_a_second(); /*Wait a second*/

}

Figure 3.8.
Program listing of Project 4

shown in Fig. 3.9, the seven LEDs have been mounted in a pattern to emulate
the dots on a real dice. The pattern displayed for different numbers is shown in
Fig. 3.10. As in a real dice, the first row can have up to two LEDs on
(corresponding to two dots on a dice), the second row up to three LEDs on,
and the third row can have up to two LEDs on.

40 Microcontroller Projects in C for the 8051

|:|:| P3.0 (RXD)VCC P17}
? 2] P3.1(TXD) P1.6e svA
L elps20NTO) P1SHE R |
2.1 P33 (NT1) P1.4fe
D D R2
+5V 2| p3.4(T0) p1.3fts
| 2 ¢ —
2| P3.5(T1) P1.2fu = - R2
cs 89C2051 PR Fiper a——a
= o AL| P37 P1.1f AR 5
1| RESET
P1.0fz o D
10 R2
= i:ﬂ XTL2 Kl
- R2
R1 4 ¥ !

5

] 10|
C1 L, C2
sspF T 12M T agpF

\
[4

Figure 3.9.
Circuit diagram of Project 5

O O 0O OO0 O e e o o o o

OO0 e0e 000 OO0 OO eOe

O O O OO0 O e e e ¢ o o
1 2 3 4 5 6

Figure 3.10.
LED pattern displayed for different dice numbers

Program Description

A random dice number is obtained during scanning of the push-button switch
as follows. The program scans the push-button switch continuously. If the
switch is not pressed (i.e. at logic HIGH), a number is incremented between 1
and 6. Whenever the push-button is pressed, the current value of the number is
read and this value is used as the new dice number. Since the switch is pressed
by the user in random, the numbers generated are also random numbers from 1
to 6. The new random number is displayed on the seven LEDs appropriately.

Light Projects 4 '|

After about 2 seconds delay, all LEDs are turned off and the above process is
repeated forever. The following PDL describes the functions of the program:

START
Initialize count to 0
DO FOREVER
IF Push-button is pressed THEN
Read the new dice number from count
Turn on the appropriate dice LEDs
Delay about 2 seconds
Turn off all LEDs
ELSE
Increment count
IF count = 7 THEN
Count = 1
ENDIF
ENDIF
ENDDO
END

Table 3.1 shows the random numbers generated and the corresponding LEDs
that will be turned on to give the dice display of Fig. 3.10.

As an example, if the number 3 is to be displayed then only LEDs D3, D4, and
D5 will be turned on. Similarly, for number 6, all LEDs except LED 4 will be
turned on.

Program Listing
The full program listing is shown in Fig. 3.11. Variable ON is defined as 0 and

Table 3.1 Dice Numbers and corresponding LED patterns

Number LED on

1 D4

D3, D5

D3, D4, D5

D1, D2, D4, D6, D7

2
3
4 D1, D2, D6, D7
5
6

D1, D2, D3, D5, D6, D7

42 Microcontroller Projects in C for the 8051

IéROJECT: PROJECT 5
FILE: PROJS.C
DATE: August 1998
PROCESSOR: AT892051

This is a dice simulator project. Seven LEDs are connected to port 1 of the microcontroller
and arranged as shown in the text. A push-button switch is connected to bit O of port 3
and when this switch is pressed, a new number is obtained between 1 and 6 and the
corresponding LEDs are turned on to simulate a real dice. After 2 seconds delay, all LEDs

are turned off and the user can throw a dice again.

#include <AT892051.h>

#define ON O
#define ALL_OFF OxFF

sbit button = P3A0; /*bit P3.0 is the push-button*/
sbit D1=P1A0; /*define dice patterns®/

sbit D2=P1A1;

sbit D3=P1A2;

sbit D4=P1A3;

sbit D5=P1/A4;

sbit D6=P1A5;

sbit D7=P1A6;

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Start of main program */

mainQ
{
int DICE=0; /¥Initialize to 0%/
for(:;) /*Start of loop*/
{
if(button == 0) /*Button pressed*/
{
switch(DICE)
{
case 1: /*DICE=1*/

D4=0N;
break;

/

Light Projects 4 3

}

case 2:

D3=ON;
D5=0ON;

break;
case 3:

D3=0ON;
D4=0ON;
D5=0ON;

break;
case 4:

D1=ON;
D2=0ON;
D6=0ON;
D7=0ON;

break;
case 5:

D1=0ON;
D2=0ON;
D4=0ON;
D6=0ON;
D7=0ON;

break;
case 6:

D1=0ON;
D2=0ON;
D3=0ON;
D5=0ON;
D6=0ON;
D7=0ON;

break;
}

wait_a_second();
wait_a_second(;

P1=ALL_OFF;

else

{

}

Figure 3.11.

Program listing of Project 5

DICE++;

if(DICE = = 7)DICE=1;

/*DICE=2%/

/*DICE=3*/

/*DICE=4*/

/*DICE=5"/

/*DICE=6"/

/*Wait 2 sec*/

/*LEDs OFF*/

/*Set to O'if 7%/

44

Microcontroller Projects in C for the 8051

variable ALL_OFF is defined as hexadecimal oxFF (i.e. all bits set). These
variables will be used to turn an LED on or to turn all LEDs off. Variable button
is assigned to bit 0 of port 3 using the C compiler sbit statement. Similarly, the
seven LEDs are assigned to bits 0 to 7 of port 1 using the shit statement.

Variable DICE is declared as an integer and holds the dice values. Inside the
endless for loop, variable button is tested. If button is 0, i.e. if the user presses
the push-button, then a switch statement is used to turn on the appropriate
LEDs as defined in Table 3.1. As an example, if the value of DICE is 2, LEDs
D3 and DS are turned on and the others are turned off. The break instructions
ensure that we jump out of the switch statement after executing a case block. A
dice value is displayed for 2 seconds and after this time all the LEDs are turned
off. If inside the endless for loop the button is not pressed (i.e. button is 1), then
variable DICE is incremented continuously. When DICEis 7, it is set back to 1.

A More Efficient Program

Notice that in this program we have used a switch statement and executed the
correct case block depending on the value of variable DICE. We can make the
program much more efficient and easy to follow if we create a simple table (an
array in the program) and in this table store the dice numbers against the
hexadecimal values of LED patterns. Table 3.2 shows the relationship between
the dice numbers, the LED patterns and the corresponding binary and
hexadecimal equivalents.

As an example, to display number 3 pattern, all we have to do is send
hexadecimal number 1C to port 1. Similarly, sending 77 will display the dice
pattern for number 6 on the LEDs.

The program listing given in Fig. 3.12 uses Table 3.2 to display dice patterns.
The hardware setup is again the same and bit 0 of port 3 is used as the push-

Table 3.2 Dice numbers and corresponding bit patterns

Number LED on Binary Hex

1 D4 00001000 08

D3, D5 00010100 14

D3, D4, D5 00011100 1C

D1, D2, D4, D6, b7 01101011 6B

2
3
4 D1. D2, D6, D7 01100011 63
5
6

D1, D2, D3, D5, D6, D7 01110111 77

Light Projects 4 5

I/DROJECT: PROJECT 5
FILE: PROJ5-1.C
DATE: August 1999
PROCESSOR: AT892051

This is a dice simulator project. Seven LEDs are connected to port 1 of the microcontroller
and mounted as shown in the text. A push-button switch is connected to bit 0 of port 3
and when this switch is depressed, a new number is obtained between 1 and 6 and the
corresponding LEDs are turned on to simulate a dice. After 2 seconds delay, all LEDs are
turmed off and the user can throw a dice again.

This code is more efficient than the previous dice code.

#include <AT892051.h>
#define ALL_OFF OxFF
sbit button = P3A0; /*Bit P3.0 is the push-button®/

/* Function to delay about a second */
void wait_a_second()
{
unsigned int x;
for(x=0;x<33000;x++);
1

/* Start of main program */

mainQ
{
int DICE=0; /*Initialize to 0%/
int DICE_ARRAY[6]={0x08,0x14,0x1C,0x63.,0x6B,0x77};
for(:;) /*Start of loop*/
{
if(loutton == 0) /*Button pressed?*/

{
P1=~DICE_ARRAY[DICE-1];

wait_a_second(); /*Wait 2 secs*/
wait_a_second();
P1=ALL_OFF; /*tumn off LEDs*/
}
else
{
DICE++; /*Inc DICE*/
if(DICE == 7)DICE=1; /*Set to O if 7%/

}
}

Figure 3.12.
More efficient code for Project 5

46

Microcontroller Projects in C for the 8051

button input. An integer array DICE ARRAY 1is created to store the
hexadecimal bit patterns as described in the table. Index 0 of this array
corresponds to dice number 1 (pattern generated by hexadecimal number 8)
and index 1 corresponds to dice number 2 (pattern generated by hexadecimal
number 14) and so on. Because the arrays in C are indexed from 0, we have to
subtract 1 from the array index in order to get the correct value. As shown in
the program listing in Fig. 3.12, variable button is tested inside the endless loop.
If the push-button is pressed, the hexadecimal bit pattern corresponding to
variable DICE-1 is obtained using the statement DICE_ARRAY[DICE-1] and
this value is complemented and sent to port 1 of the microcontroller. All the
displays are turned off after about 2 seconds delay. If the push-button is not
pressed, variable DICE is incremented continuously and set back to 1 when it
reaches 7.

Components Required

In addition to the components required by the basic microcontroller circuit, the
following components will be required for this project:

R2 470 €2, 0.125 W resistors (7 off)
R3 100K, 0.125 W resistor
D LEDs (7 off)

PROJECT 6 - Hexadecimal Display

Function

This project shows how a microcontroller can be interfaced to a TIL311 type
hexadecimal display. The program counts up from 0 to 9 and then in
hexadecimal format from A to F and then back to 0. This process is
repeated forever with a 1 second delay inserted between each count.

Circuit Diagram

The circuit diagram of this project is shown in Fig. 3.13. TIL311 is a popular
14-pin DIL small hexadecimal display, powered from +5V. Inputs A, B, C, D
of the display are the data inputs and these are connected to the lower part of
port 1 (P1.0 to P1.3). LATCH input (pin 5) controls the display. When
LATCH is LOW, new data is written to the display. When LATCH is high,
the display data is frozen. The LATCH input of the display is connected to bit
7 of port 1 (P1.7). A new data is displayed by sending the data to the A, B, C, D

Light Projects 47

j +5V

Figure 3.13.

+5V

2] P3.0 (RXD)VCC P1.7§2
=4 P3.1(TXD) P1.6j8_
~£ 1 P3.2(INTO) P15
4 P3.3(INT1) P1.488_
£ P3.4(T0) P1.34& 22 I D LATCH
24 P3.5(T1) P1.2{4 B1C
89C2051
Al P37 P1.132 21 B
1 TIL311
RESET P1.0k2 s | A
[GNP
- XTL1 XTL2 - =
~t |Dl 0
C1 L~ l l L C2 _L
33pF] 12M T 33pF -

Circuit diagram of Project 6

inputs and then the LATCH input is set to logic LOW and then back to HIGH.
Pins 1 and 14 of the display are connected to +5V and pins 7 and 8§ are
connected to the ground.

Program Description

The program is very simple. The count is initially set to 0 and the display latch
is set to 1 to avoid any unintentional write to the display. The count is then sent
to the display and the display latch is clocked. The next data value is obtained
by incrementing the count. When the count reaches 16, it is reset back to 0. The
following PDL describes the functions of the program. Function out til311
displays data on the TIL311:

4 8 Microcontroller Projects in C for the 8051

Main program

START
Set count to 0
Set display latch to 1
DO FOREVER
Call function out_til311 to display the count
Increment the count
IF count = 16 THEN
Count = 0
ENDIF
Delay a second
ENDDO
END

Function out_til311

Input: Count
Output: None

START
Set top bit of count
Send count to port 1
Set LATCH to LOW
Set LATCH to HIGH
END

Program Listing

The full program listing is shown in Fig. 3.14. Variable /atch is assigned to bit
7 of port 1 using the shit instruction of the compiler. Variable CNT is
initialized to 0 and function out_til311 is called to display the value of CNT.
CNT is then incremented by 1. When CNT is 16, it is reset back to 0. The
loop is repeated forever after a 1 second delay between each count. The
displayed data is:

012345678910ABCDEFO1...

Function out_til311 receives the data to be displayed as its argument (i.e. x).
The latch is initially set to 1 by logical ORing the data with hexadecimal value
0x80. The latch is then set to 0 to enable the data to be written to the display
and then back to 1 to freeze the display.

Light Projects 4(?

I/DROJECT: PROJECT 6
FILE: PROJ6.C
DATE: August 1999
PROCESSOR: AT892051

This is a counter project. ATIL311 type hexadecimal alphanumeric display is connected
to port 1 of the microcontroller. The program counts from 0 to 9 and then from A to F
(hexadecimal). The data is displayed with about 1 second delay between each output.
/

#include <AT892051.h>

sbit latch = P1A7; /*Bit P1.7 is the latch*/

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to display data on a TIL311 display */
void out_til311(¢int x)
{

P1=x | 0x80; /*Send data with latch=1*/
latch=0; /*Latch the data*/
latch=1; /*Set latch on*/

/* Start of main program */

mainQ
{
int CNT=0; /*Initialize count*/
latch=1; /*Set latch on*/
forC:;) /*Start of loop*/
{
out_tiI3T1(CNT); /*Output to TIL311%/
CNT++; /*Increment count™/
if(CNT == 16)CNT=0; /*Back to 0 if 16*/
wait_a_second(; /*Wait a second®/
}
}
Figure 3.14.

Program listing of Project 6

50

Microcontroller Projects in C for the 8051

It is interesting to note that, in many programming applications a variable is
incremented and then tested to see whether it reached a constant value. An
example is given in Fig. 3.14 where variable CNT is used:

CNT++;
If(CNT = = 16)CNT=0;

Note that the above C code could also be written in a more compact form as:

If(++CNT == 16)CNT=0;

Components Required

In addition to the components used for the basic microcontroller circuit, a
TIL311 type hexadecimal display will be required for this project.

PROJECT 7 - Two-Digit Decimal Count

Function

This project shows how a microcontroller can be interfaced to two TIL311 type
hexadecimal displays. This project counts up continuously from 0 to 99 in
decimal with about a second delay between each count.

Circuit Diagram

The circuit diagram of this project is shown in Fig. 3.15. Two TIL311 type
hexadecimal displays are used. Display MSD (most significant digit) will be
programmed to show the tens and LSD (least significant digit) will show the
units. Data inputs (A, B, C, D) of both displays are connected in parallel to
the lower part of port 1 (P1.0 to P1.3). LATCH inputs (pin 5) of the displays
are controlled separately. LATCH input of display MSD is connected to P1.7
and the same input of display LSD is connected to P1.6 of the microcon-
troller.

MSD data is displayed by sending the data to port 1 and then clocking pin
P1.7. Similarly, LSD data is displayed by sending data to port 1 but this time
clocking pin P1.6.

Light Projects 5 '|

Figure 3.15.

+5V
8 +5V
~2] P3.0 (RXD)VCC P1.7{2 A
=24 P3.1(TXD) P1.6J18 hid
12 I D LATCH
_10
=21 P3.2(INTO) P15 —_
13 C -
2| P3.3(INT1) P1.4
2 1B
| p3.4(T0) P1.3ps TIL311
S A
2| P35(T1) P1.2pa MSD
A1 P3 789C2051 P1.1p3 i i
1 =
e
2 -ol
ry XTL1 XTL2
12 | D LATCH
T , N
1
C1 L, ll:ll L, C2
BpF T 12M T 23pF B 1 C 2
= = z2lB
TIL311
3
LSD

Circuit diagram of Project 7

Program Description

The count is initially set to 0. The count is then sent to the display using a
function called out2_til311. This function separates the variable into two
decimal parts (MSD and LSD) and sends each part to the appropriate
display. The next data value is obtained by incrementing the count. When
the count reaches 100, it is reset back to 0. The following PDL describes the
functions of the program.

52 Microcontroller Projects in C for the 8051

Main program

START
Set count to 0
Set latches to 1
DO FOREVER
Call function out2_til311 with count to display the data
Increment the count
IF count = 100 THEN
Count = 0
ENDIF
Delay a second
ENDDO
END

Function out2_til311

Input: Count
Output: None

START
Extract the first digit (MSD) of count
Extract the second digit (LSD) of count
Set top two bits of MSD
Send MSD to port 1
Set MSD LATCH to LOW
Set MSD LATCH to HIGH
Set top two bits of LSD
Send LSD to port 1
Set LSD LATCH to LOW
Set LSD LATCH to HIGH
END

Program Listing

The full program listing is shown in Fig. 3.16. LATCH input of display MSD is
named latch_msd and is assigned to port pin P1.7 using the shit instruction.
Similarly, LATCH input of display LSD is named latch_Isd and is assigned to
port pin P1.6. The count (CNT) is initially set to 0 and both latches are set to 1
to avoid any accidental write to the displays. An endless loop is then formed
using the for statement with no arguments. Function out2_til311 is called inside
the loop to display the value of CNT. CNT is then incremented by 1 and when

Light Projects 5 3

it reaches 100, it is reset back to 0. The loop is repeated after a 1 second delay
between each output value. The displayed data is:

012345678910...9899012...

Function out2 til311 receives the data to be displayed (x) as its argument. This
data is then divided by 10 and assigned to integer variable msd and is the data
for the MSD display. The LSD data is calculated by subtracting /0*msd from
input variable x and then assigning this to an integer variable named /sd. The
top 2 bits of msd data are set to 1 by logical ORing the msd data with
hexadecimal constant 0xCO. This freezes both displays and avoids any
unwanted changes in the displayed data. The value of msd is then sent to
port 1 of the microcontroller by clocking the /atch_msd. Similarly, the top 2
bits of the /Isd data are set to 1 to avoid any accidental write to the wrong
display and then /sd is sent to port 1 of the microcontroller by clocking the
latch_Isd bit.

Components Required

In addition to the components used for the basic microcontroller circuit, two
TIL311 type hexadecimal displays will be required for this project.

PROJECT 8 - TIL311 Dice

Function

This project is a dice made up from a TIL311 type hexadecimal display. When
a push-button switch, connected to bit 0 of port 3, is depressed, a random
number between 1 and 6 is displayed on the display. After about 2 seconds the
display is cleared and the user can throw a dice again. The program runs in an
endless loop.

Circuit Diagram

The circuit diagram of this project is shown in Fig. 3.17. A TIL311 display is
connected as in Project 6. Additionally, a push-button switch (S1) is connected
to bit 0 of port 3. This pin is normally held at logic 1 with the pull-up resistor
R2 and goes to logic 0 when the switch is pressed.

Program Description

The display latch is initially set to logic 1 to avoid any accidental data
display. The state of push-button S1 is then checked continuously and when

5 4 Microcontroller Projects in C for the 8051

léROJECT: PROJECT 7
FILE: PROJ7.C
DATE: August 1999
PROCESSOR: AT892051

This is a dual display counter project. Two TIL311 type hexadecimal alphanumeric
displays are connected to port 1 of the microcontroller.

The program counts from 0 to 99 and then back o 0. The data is displayed with about 1
second delay between each outfput.

/
#include <AT892051.h>

sbit latch_msd = P1A7; /*Bit P1.7 is the msd latch*/
sbit latch_lsd = P1A6; /*Bit P1.6 is the Isd latch*/

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to display data on two TIL311 displays */
void out2_1il311(int x)
{

int Isd,msd;

msd=x/10; /*Find msd*/
Isd=x-10"msd; /*Find Isd*/

PT=msd | OxcO; /*Send msd data*/
latch_msd=0; /*Latch msd data*/
latch_msd=1; /*Set msd latch on*/
P1=lsd | OxcO; /*Send Isd data*/
latch_lsd=0; /*Latch Isd data*/
latch_lsd=1; /*Set Isd latch on*/

/* Start of main program */

main()

{
int CNT=0; /*Initialize count*/
latch_msd=1; /*Set msd latch on*/
latch_lsd=1; /*Set Isd latch on*/

for(:;) /*Start of loop*/

Light Projects 5 5

ouf2_tiI311(CND); /*Output to TIL311*/
CNT++; /*Increment count*/
if(CNT == 100)CNT=0; /*Back to 0 if 100*/
wait_a_second(); /*Wait a second*/
}
}
Figure 3.16.

Program listing of Project 7

$+5V
R2 EI
S1 100K
[ﬂ 2| P3.0(RXD)VCC P1.7h
l 21 P3.1(TXD) P1.6je_
- 6| p32(NTO) P15p— +5V
2] P3.3(INT1) P1.4fs
+Ez’y £ | P3.4(T0) P1.3fs 2 | D LATCH
<21 p3.5(T1) p1.2}s 3f{c -
= c3 89C2051
3 1opF A1 P37 P1.1p2 21 B
TIL311
1
RESET b1 0k ol A
oo
= | XTL1 XTL2 —
[] R1 1 Iml_-=
8.2K
c1 L ID' @1, C2 _l_
T |
33pF

Figure 3.17.
Circuit diagram of Project 8

the button is not pressed, a count is incremented between 1 and 6. When the
push-button is pressed, the current value of the count is sent to the display by
calling the function out_til311. The above process continues after about 2
seconds delay.

56 Microcontroller Projects in C for the 8051

The following PDL describes the functions of the program:

Main program

START
Set latch to 1
DO FOREVER
IF button is pressed THEN
Call function out_til311 with value of count
Delay 2 seconds
Clear the display
ELSE
Increment count
IF count = 7 THEN
Count = 1
ENDIF
ENDIF
ENDDO
END

Function out_til311

Input: Count
Output: None

START
Set top bit of count
Send count to port 1
Set LATCH to LOW
Set LATCH to HIGH
END

Program Listing

The full program listing is shown in Fig. 3.18 (see pp. 58 and 59). Display latch
(variable latch) is assigned to bit 7 of port 1 using the instruction sbit. Similarly,
the push-button is assigned to bit 0 of port 3 and is named button. Variable
DICE stores the random dice values.

The display latch is set to 1 to avoid any unwanted write to the display and the
endless loop starts with the for statement. When the button is pressed
(button =0), the current value of DICE is sent to function out til311 which
displays the value. After 2 seconds delay the display is cleared and the program
loop continues from the beginning.

Light Projects 57

If the button is not pressed (button = 1), the value of DICE is incremented
until it is 7 and then set back to 1.

Components Required

In addition to the components used for the basic microcontroller circuit, the
following components will be required:

Display TIL311 type hexadecimal display
R2 100K, 0.125 W resistor

PROJECT 9 - 7 Segment Display Driver

Function

This project shows how a 7 segment display can be interfaced to a micro-
controller. In this project, a 7 segment display is connected to port 1 of the
microcontroller and a program is written to count up from 0 to 9 and display
the data on the 7 segment display. The program runs in an endless loop and a 1
second delay is used between each output.

Circuit Diagram

Seven segment displays are used in many industrial and commercial applica-
tions. Basically the display consists of seven segments of LEDs, connected
either as common anode or common cathode. In a common-anode display the
anodes of all the LED segments are connected together. Similarly, all the
cathodes are connected together in a common-cathode display. Segments in a 7
segment display are identified by giving them letters from a to g as shown in
Fig. 3.19.

Figure 3.19.

Segments of a 7 segment display

5 8 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 8
FILE: PROJ8.C
DATE: August 1999
PROCESSOR: AT892051

This is a dice simulator project. A TIL311 type hexadecimal alphanumeric display is
connected to port 1 of the microcontroller.

When a push-button, connected to bit 0 of port 3, is depressed, a random number
between 1 and 6 is displayed on the hexadecimal display. After about 2 seconds the
displayed is cleared and the user can throw the dice again.

/
#include <AT892051.h>
sbit latch = P1A7; /*Bit P1.7 is the latch*/
sbit button = P3A0; /*Bit P3.0 is push-button*/

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to display data on a TIL311 display */
void out_fil311(unsigned char x)
{

P1=x | 0x80; /*Send data*/
latch=0; /*Latch the data*/
latch=1; /*Set latch on*/

/* Start of main program */
mainQ
{

unsigned char DICE;

latch=1; /*Set latch on*/
forC:;) /*Start of loop*/
{ if(loutton == 0) /*Button pressed*/
! out_tiI311(DICE); /*Display DICE*/
wait_a_second(); /*Wait 2 seconds..*/

wait_a_second();

Light Projects 59

out_til311(0); /*Clear display*/
}
else
{
DICE++; /*Inc DICE*/
if(DICE == 7)DICE=1; /*Set to 1if 7%/

}
}
}

Figure 3.18.
Program listing of Project 8

+5Vj

~21 P3.0(RXD)VCC P1.782

+5V
2 P3.1(TXD) P1.6e

o
5

£ | P32(NTO) P15

2| P3.3(INT1) P1.4fs 7

9

5V s | p34(ro) P13} T
2

2| P3.5(T1) plope [—1 3

6
c3 89C2051
= o M| P37 P1.1je 7
RESET o1 oke

)
10
[GN\D

LT O QM hQ

= | XTL1 XTL2
R1
[] 8.2K) IDI !
L]
Cc1 L L, C2

33pF I 12M T a3pF

Figure 3.20.
Circuit diagram of Project 9

Required characters are generated by turning on the appropriate LED
segments. Table 3.3 shows the segments that should be turned on to
generate the decimal numbers 0 to 9. A 1 in the table corresponds to the
segment being on.

The circuit diagram of Project 9 is shown in Fig. 3.20. A common-anode type
display is used in this project. The anode pins (3 and 8) are connected to +5V.

60 Microcontroller Projects in C for the 8051

Table 3.3
Number gfedcba
0 0111111
1 0000110
2 1011011
3 1001111
4 11700110
5 11701101
o) 11711100
7 0000111
8 1111111
9 1100111

Segments a to g are connected to port 1 of the microcontroller via 470 Q)
current limiting resistors. Segment a is connected to bit 0 of port 1, segment b
to bit 1 of port 1, segment ¢ to bit 2 of port 1 and so on.

Program Description

A bit map table has been created which shows the segments to be turned on
and the corresponding hexadecimal numbers that should be sent to the display
in order to display the required numbers, as shown in Table 3.4 (in this table x
is not used but included in the table so that the hexadecimal numbers can be
derived easily as two 4-bit nibbles).

The following PDL describes the functions of the program:

START
Initialize count and bit pattern array
DO FOREVER
Get bit pattern corresponding to count
Output bit pattern to port 1
Delay 1 second
Increment count
IF count = 10 THEN
Count = 0
ENDIF
ENDDO
END

Light Projects 6 '|

Table 3.4 Segments and corresponding bit patterns
Number xgfedcba Hex
0 00111111 3F
1 00000110 06
2 01011011 5B
3 01001111 4F
4 01100110 66
5 01101101 6D
6 01111100 7C
7 00000111 07
8 01111111 7F
9 01100111 67

Program Listing

The full program listing is shown in Fig. 3.21. Variable LED is initialized to 0.
The 7 segment bit pattern is loaded into array LED_ARRAY. The endless loop
is started with the for statement. Data is sent to the display by indexing the
LED ARRAY with the number to be displayed. The data is complemented
before it is output since the output ports are sourcing current and a segment is
turned on when the corresponding output bit is at logic 0. After a 1 second
delay, the variable LED is incremented by one, ready for the next display.
When variable LED reaches 10 it is reset back to 0.

The following data is displayed by the 7 segment display:

0123456789012...

Components Required

In addition to the components used for the basic microcontroller circuit, the
following components will be required:

R2 470 Q, 0.125 W resistors (8 off)
Display 7 segment common-anode display

62

Microcontroller Projects in C for the 8051

I/:’ROJECT: PROJECT 9
FILE: PROJ9.C
DATE: August 1999
PROCESSOR: AT892051

This is a 7 segment display interface project. The display is connected to port 1 of the
microcontroller and counts up from 0 to 9 with 1 second delay between each count.
/

#include <AT892051.h>

/* Function to delay about a second */
void wait_a_second()
{

unsigned int x;

for(x=0;x<33000;x++);

/* Start of main program */
mainQ
{
int LED=0; /[*initialize to 0%/
int LED_ARRAY(10)=
{Ox3F,0x06,0x5B,0x4F 0x66,0x6D ,0x7C ,0x07, Ox7F ,0x67
¥

for(:;) /*Start of loop*/

{
P1=~LED_ARRAY(LED); /*LED on*/

wait_a_second(); /*Wait a sec*/
LED++; /*Inc count*/
if(LED == 10)LED=0; /*Set to 0%/

}

Figure 3.21.
Program listing of Project 9

PROJECT 10 - Four-digit LED Display Interface

Function

This project shows how a 4-digit display can be interfaced to a microcontroller.
The display we shall be using in this project is the TSM5X34 series 0.3” 4-digit

Light Projects 6 3

VLED

LED DISPLAY

1
Brightness 7 —K]—
Contral > 35 OUTPUT BUFFERS)

I | External LEDs

35 LATCHES LOAD
Data Enable I l
Serial Data >|—— 35-BIT SHIFT REGISTER
5
Figure 3.22.

TSM5034 4-digit display

display with on-board driver. This display can be used in many microcon-
troller-based applications, including digital clocks, thermometer circuits,
instrument readouts, counters, voltmeters and so on. In this project we shall
design a 4-digit up-counter which counts from 0 to 9999. We shall be using this
display in some of our other projects as a visual readout device.

TSM5X34 Series Displays

The TSM5X34 is a 0.3” 4-digit display with on-board serial data input (Fig.
3.22). Serial data transfer from a microcontroller to the display is accomplished
with three signals: serial data, data enable, and clock. The data format consists
of a leading ‘1’, followed by 35 data bits, each bit corresponding to the
segments to be turned on in the display. All of the four digits are programmed
at the same time by sending 35 bits of serial data to the display. The clock input
is pulsed after each data is sent. The enable input should be at logic 0 to enable
programming of the device.

There are mainly two versions of the TSM series of displays. TSM5xxx devices
can drive two external LEDs and TSM6xxx series devices incorporate the

6 4 Microcontroller Projects in C for the 8051

Table 3.5 Bit patterns for each segment of the display

Bit Digit Segment Bit Digit Segment
1 1 A 18 B

2 1 B 19 3 C

3 1 C 20 3 D

4 1 D 21 3 E

5 1 E 22 3 F

6 1 F 23 3 G

7 1 G 24 3 Dp
8 1 Dp 25 4 A

9 2 A 26 4 B

10 2 B 27 4 C

11 2 C 28 4 D

12 2 D 29 4 E

13 2 E 30 4 F

14 2 F 31 4 G

15 2 G 32 4 Dp
16 2 Dp 33 - LED1
17 3 A 34 - LED2

colon character as part of the display. In the TSM5xxx series, TSM 5034 emits
red light, TSM5234 emits green light, and TSM5734 emits high efficiency red
light. In this project we shall be using the popular TSM5034 type display.

Thirty-five bits of data should be sent to the display following a ‘1’ start bit.
Table 3.5 shows the bit patterns for each segment of the display.

As an example, suppose that we want to turn on segment B of digit 1, segment
B of digit 2, segments C and D of digit 3, and segments A, B, and C of digit 4,
and we are not connecting any external LEDs to the display, and the decimal
points should be off. The bit pattern shown in Fig. 3.23 should then be sent to
the display (each bit should be clocked by sending a clock pulse).

Light Projects 65

1 01000000 01000000 00110000 11100000 00

L | I 1 I 1 J
DIGIT 1 DIGIT 2 DIGIT 3 DIGIT 4 LEDs

Start bit

Figure 3.23.

Bit pattern for the example

Table 3.6 Numbers and corresponding TSM5034 bit patterns
Number ABCDEFGDp Hex code
0 1717111100 FC
1 01100000 60
2 11011010 DA
3 117110010 F2
4 01100110 66
5 10110110 B6
6 10111110 BE
7 11100000 EQ
8 11111110 FE
9 117110110 F6

The easiest way of controlling the TSM display is to create a table of bit
patterns for each decimal digit 0 to 9. If we assume that segment A is the most
significant bit in this table, for a given digit we can read the required bit pattern
from the table and then send bits to the display by shifting the bits left, one bit
at a time for each digit. The total number of data bits sent will be 8 x 4 =32
bits for 4 digits, 2 bits for the two LEDs, making a total of 34. In addition, we
have to send a start bit, making an overall total of 35 bits.

Table 3.6 shows the relationship between the decimal numbers 0 to 9, the
corresponding TSM5034 bit patterns, and the corresponding values in hex-
adecimal.

66

Microcontroller Projects in C for the 8051

As an example, if we want to display the decimal number 2367, we have to send
the following bit pattern:

1 Start bit

11011010 Hexadecimal DA for decimal digit 2
11110010 Hexadecimal F2 for decimal digit 3

10111110 Hexadecimal BE for decimal digit 6
11100000 Hexadecimal EO for decimal digit 7

0 turn off LED 1

0 turn off LED 2

It will therefore be necessary to convert a given number into four decimal digits
and then use the above technique to display it.

A required digit can be totally blanked by sending all zeros for that digit. This
could be useful when it is required to blank the leading digits instead of
displaying zeros if the number to be displayed is less than four digits.

Circuit Diagram

The circuit diagram of Project 10 is shown in Fig. 3.24. The circuit is very
simple. Bit 6 of port 1 is connected to the clock input of the display.
Similarly, bit 7 of port 1 is connected to the data input of the display.
Display pin 7 is the brightness control input and it should be connected to
the supply voltage via a suitable resistor. A 0.01 pF capacitor is recom-
mended by the manufacturer as it stops any oscillations. VDD and VLED
should normally be connected to + 5V, although VLED can also be
connected to a smaller voltage for lower power consumption. The enable
input (pin 3) is connected to the ground. In multiple display operations it is
necessary to control the enable input of each device individually so that data
and clock can be routed to the required display.

Program Description

The program is a simple 4-digit decimal counter. A counter is initialized to 0
and the display is cleared at the beginning of the program. The counter is then
displayed and incremented in an endless loop. The following PDL describes the
functions of the program:

Light Projects 67

+5vi

(3

]

P3.0 (RXD)VCC P17

N

4

]

2
fe

2] P3.1(TXD)
41 P32 (INTO) P1.5
| P3.3(INT1) P1.4
3V s | pa4(ro) P1.3
21 P3.5(T1) P1.2
c3 89C2051
A P37 P1.1
ESET
RES P1.0
GND
XTLA XTL2
~ -
C1 L/ ID‘ v C2
33pF T 12M T 33pF
Figure 3.24.

Circuit diagram of Project 10

Main program

START

END

Initialize counter to 0
Call function clear_display

DO FOREVE

R

+5V4

— +5V

VDD VLED R?
Data TSM5X34 B[
CLK E GND “

Call function display_all with counter

Delay

Increment count

ENDDO

Function clear_display

Input: None
Output: None

START

Set display data to 1 (start bit)
Call function send_clock to send a clock pulse

.||._|

68

Microcontroller Projects in C for the 8051

END

Set display data to 0
Send 35 clock pulses

Function send_clock

Input: None
Output: None

START

END

Set display clock input to 1
Set display clock input to 0

Function display_all

Input: Count
Output: None

START

END

Convert data into 4 decimal digits

Call function display_digit to display Digit 1
Call function display_digit to display Digit 2
Call function display_digit to display Digit 3
Call function display_digit to display Digit 4

Function display_digit

Input: Digit value
Output: None

START

END

Get bit map of the digit to be displayed
Get top bit of the bit pattern
IF top bit = 0 THEN

Send 0 to the display data input
ELSE

Send 1 to the display data input
ENDIF
Send a clock pulse to the display
Shift bit map left by 1 bit

Light Projects 6(?

Program Listing

The full program listing is shown in Fig. 3.25. Variable LED is initialized to 0
at the beginning of the main program. Function clear_display is then called to
clear all digits of the display. The endless loop starts with the for statement.
Inside this loop, function display_all is called to display the value of variable
LED as four digits. digits on the TSM5034. The value of variable LED is then
incremented and the loop is repeated forever.

Function display_all receives the number to be displayed as its argument (1 in
this case). This number can range from 0 to 9999. First of all this number is
converted into four decimal digits and these digits are stored in integer
variables first, second, third, and fourth, where first is digit 1 and fourth is
digit 4. Function display_digit is then called to display the digit values. This
function stores the bit map of the display in array LED_ARRAY. The bit map
corresponding to the number to be displayed is obtained by the statement
n=LED_ARRAY[x]. The top bit of this bit map is then examined. If the top
bitis a 1 then a 1 is sent to the data input of the display, otherwise a 0 is sent to
the data input of the display. The display is then clocked by calling the function
send_clock, which sends a single clock pulse to the display. The bit map data is
then shifted left using the shift operator ‘<’ so that the second bit can be tested
and sent to the display. This is repeated for all 8 bits of the bit map.

Blanking Leading Zeros

The program listing given in Fig. 3.25 displays the data as a 4-digit number
with leading zeros. For example, number 27 is displayed as 0027. There are
many applications where we may want to blank the leading zeros. It is possible
to blank the leading zeros by setting all segments of the leading zero digits to
the off state. This is done in the program listing shown in Fig. 3.26. Here, a new
bit map 0 is introduced into array LED_ARRAY and the array dimension is
increased to 11. The new bit map is indexed with number 10. Function
display_all is changed so that blanks are displayed instead of leading zeros
when the number of digits is less than 4. For example, if the number to be
displayed is less than 1000, the first digit is displayed by using the bit map
defined by LED _ARRAY/[10], which is 0, i.e. all the segments of the digit are
set to 0. Similarly, if the number to be displayed is less than 100, the second
(and first) digit is displayed with the segments turned off.

General Display Program

There may be some applications where we may need to show leading zeros and
also the decimal points. The program listing given in Fig. 3.27 enables both the
leading zeros and the decimal points to be optionally displayed. Function

Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 10
FILE: PROJ10.C
DATE: August 1999
PROCESSOR: AT892051

This is a TSM5034-based 4-digit display interface project. The display counts up from 0 to
9999 with about 1 second delay between each count.

/
#include <AT892051.h>

sbit DISPLAY_CLOCK=P1A6;
sbit DISPLAY_DATA =P1A7;

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to send a clock pulse to the display */
void send_clockQ
{

DISPLAY_CLOCK=1;

DISPLAY_CLOCK=0;

/* Function to display a single digit */
void display_digit(int x)
{
unsigned char LED_ARRAY(10)=
{
OxFC ,0x60,0xDA 0xF2,0x66.,0xB6,0xBE, OXEOQ,OXFE,OxF6
|

unsigned char ntop_bit,i;

n=LED_ARRAY(X);
for(i=1;i<=8;i++)
{
fop_bit=n & 0x80; /*Get top bit*/
if(top_bit I= 0)
DISPLAY_DATA=1;
else
DISPLAY_DATA=0;

Light Projects 7 '|

send_clock();
n=n << 1;

/*Shift left by 1 digit*/

/* Function to display all 4 digits*/
void display_all(int n)

{

}

int r first second, third fourth;

first=n/1000;
r=n-1000*first;
second=r/100;
r=r-100*second;
third=r/10;
fourth=r-third*10;

DISPLAY_DATA=1;
send_clock();
display_digif(first);

display_digit(second);

display_digit(third);
display_digit(fourth);

DISPLAY_DATA=0;
send_clockQ;
send_clock():
send_clock();

/* display digit 1*/
/*display digit 2*/
/*display digit 3*/
/*display digit 4%/

/*35 clks required*/

/* Function to clear the display */
void clear_display(

{

/* Start of main program */

int i;
DISPLAY_DATA=0;
DISPLAY_CLOCK=0;
DISPLAY_DATA=1;
send_clock():
DISPLAY_DATA=0;

for(i=1;i<=35;i++)send_clock(;

main()

{

int LED=0;

/initialize to 0%/

72 Microcontroller Projects in C for the 8051

clear_display(); /*Clear display*/

for(:;) /*Start of loop*/
{
display_all(LED);
wait_a_second(); /*Wait a second*/
LED++; /¥Increment count*/
}
}

Figure 3.25.

Program listing of Project 10

display_all displays an integer number between 0 and 9999. This function is
called with the following arguments:

display_all(n,lz,dpl,dp2,dp3.dp4)

where:

n is the number to be displayed

1z is the leading zero blanking flag. If 1z=0, data is displayed with
leading zeros. If 1z=1, data is displayed with leading zeros
blanked.

dpl to dp4 these are the decimal point enable bits for digits 1 to 4
respectively. For example, if dpl =0 then the decimal point of
digit 1 is not displayed. If on the other hand, dpl1 =1 then the
decimal point of digit 1 is displayed.

For example, the function call:

display_all(124,0,0,1,0)

will display the following data:

012.4

i.e. leading zeros are enabled and a decimal point is inserted after digit 3.

Components Required

In addition to the components used for the basic microcontroller circuit, the
following components will be required for this project:

Light Projects 7 3

IéROJECT: PROJECT 10
FILE: PROJ10-1.C
DATE: August 1999
PROCESSOR: AT892051

This is a 7 segment display interface project. The display counts up from 0 to 9 with about
1 second delay between each count.

This program blanks the unused leading digits.

#include <AT892051.h>

sbit DISPLAY_CLOCK=P116;
sbit DISPLAY_DATA =P1A7;

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to send a clock pulse to the display */
void send_clock(
{

DISPLAY_CLOCK=1;

DISPLAY_CLOCK=0;

/* Function to display a single digit */
void display_digit(int x)
{
unsigned char LED_ARRAY(11)=
{
OxFC,0x60,0xDA 0xF2,0x66,0xB6 ,0xBE OXEQ,0xFE ,0xF6,0
b
unsigned char ntop_bit,i;

n=LED_ARRAY(X);
for(i=1;i<=8;i++)
{
top_bit=n & 0x80; /*Get top bit*/
if(top_bit 1= 0)
DISPLAY_DATA=1;
else

Microcontroller Projects in C for the 8051

DISPLAY_DATA=0;
send_clock();
n=n << 1; /*Shift left by 1 digit*/

/* Function to display all 4 digits */
void display_all(int n)
{

int r first, second,third fourth;

first=n/1000;
r=n-1000*first;
second=r/100;
r=r-100*second;
third=r/10;
fourth=r-third*10;

DISPLAY_DATA=1;
send_clockQ;

if(n < 1000) /*Blank leading zero*/
display_digit(10);

else
display_digit(first);

if(n < 100)
display_digit(10);

else
display_digit(second);

if(n < 10)
display_digit(10);

else
display_digit(third);

display_digit(fourth);

DISPLAY_DATA=0;

send_clockQ; /*35 clks required*/
send_clock(;

send_clockQ;

/* Function to clear the display */
void clear_display()
{

Light Projects 7 5

int i;
DISPLAY_DATA=0;
DISPLAY_CLOCK=0;
DISPLAY_DATA=1;
send_clockQ;
DISPLAY_DATA=0;
for(i=1;i<=35;i++)send_clock();
1

/* Start of main program */

mainQ

{
int LED=0; /*initialize to 0%/
clear_display(; /*Clear display*/
for(:;) /*Start of loop*/

{
display_all(LED);
wait_a_second(); /*Wait a second*/
LED++; /*Increment count™/

Figure 3.26
Program listing of Project 10 with leading zeros blanked

R2 8.2K, 0.125 W resistor
C4 0.01 pF capacitor
Display TSM5034

PROJECT 11 - Interrupt Driven Event Counter with 4-digit
LED Display

Function

This project shows how the external interrupt input of the microcontroller can
be programmed using the C language. The project is a simple interrupt-based
event counter which can count external events from 0 to 9999. A TSM5034
type 4-digit display is connected to port 1 of the microcontroller. Bit 0 of port 3
is connected to a push-button switch S1 which is used to clear the
display whenever required. External interrupt input INTO (pin 6) of the

/6

Microcontroller Projects in C for the 8051

IéROJECT: PROJECT 10
FILE: PROJ10-2.C
DATE: August 1999
PROCESSOR: AT892051

This is a 4-digit TSM5034 display interface project. The display counts up from 0 fo 9999
with about 1 second delay between each count.

This program shows the leading zeros with decimal points between digit 2 and 3.

#include <AT892051.h>

sbit DISPLAY_CLOCK=P116;
sbit DISPLAY_DATA =P1A7;

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to send a clock pulse to the display */
void send_clock(
{

DISPLAY_CLOCK=1;

DISPLAY_CLOCK=0;

/* Function to display a single digit */
void display_digit(int x,char dp)
{
unsigned char LED_ARRAY[11]=
{
OxFC,0x60,0xDA ,0xF2,0x66,0xB6,0xBE OXEQ,OxFE ,0xF6,0
b
unsigned char ntop_bit,i;
n=LED_ARRAY[X] | dp; /*Set decimal point*/
for(i=1;i<=8;i++)
{
top_bit=n & 0x80; /*Get top bit*/
if(fop_bit 1= 0)
DISPLAY_DATA=1;
else

Light Projects

/* Function to display all 4 digits */

DISPLAY_DATA=0;
send_clock();
n=n<<1;

void display_all(int n,char Iz,char dp1,char dp2,char dp3.char dp4)

{

/* This function clears the display */

int r first second,third fourth;

first=n/1000;
r=n-1000*first;
second=r/100;
r=r-100*second;
third=r/10;
fourth=r-third*10;

DISPLAY_DATA=1;

send_clockQ;

/* Blank leading zeros */

if(n < 1000 && Iz == 1)
display_digit(10,0);

else
display_digit(first,dp1);

if(n < 100 && Iz ==1)
display_digit(10,0);

else
display_digit(second.dp?2);

ifh <10 && lz==1)
display_digit(10,0);

else
display_digit(third,dp3);

iflz == 1)
display_digit(fourth,0);

else
display_digit(fourth,dp4);

DISPLAY_DATA=0;
send_clockQ;
send_clockQ;
send_clockQ;

77

/8

Microcontroller Projects in C for the 8051

void clear_display()

{
int i;
DISPLAY_DATA=0;
DISPLAY_CLOCK=0;
DISPLAY_DATA=1;
send_clockQ;
DISPLAY_DATA=0;
for(i=1;i<=35;i++)send_clock();

}

/* Start of main program */

mainQ

{
int LED=0; /*initialize to 0*/
clear_displayQ; /*Clear display*/
for(:;) /*Start of loop*/

{
display_all(LED,0,0,1,0,0);
wait_a_second(); /*Wait a second*/
LED++; /*Increment count®/
}
}

Figure 3.27.

Program listing of a more general display program

microcontroller is used as an edge-triggered event input. An external event
occurs when INTO is clocked from 1 to 0.

Circuit Diagram

Figure 3.28 shows a block diagram of the hardware. The push-button switch is
the reset input. External events are falling edge triggered. A TSM5034 display
shows the event count at any time.

The complete circuit diagram of this project is shown in Fig. 3.29. TSM 5034 is
connected to port 1 of the microcontroller. The clock input is connected to bit
6 of port 1 and the data input is connected to bit 7 of port 1. Bit 0 of port 3 is
connected to the event reset switch S1. This input is normally held at logic 1
with the pull-up resistor R3. When the switch is pressed the pin goes to logic 0
which can be detected by the software. External interrupt input INTO is used as
the event counter input. This pin is normally held at logic 1 with the pull-up
resistor R4. An external event occurs when this pin is clocked to 0. This

Light Projects 79

RESET COUNTER
O—
E|:| 00— TSM5034 4-digit display
L_ © Microcontroller] H} E E H}
INTERRUPT
Figure 3.28.

Block diagram of the event counter

+5th

RESET t]Rs +5VvA
s1
@ 2 | P3.0(RXD)VCC P1.7}2 [—— +5V
@ﬁ___ ra- P31 (TXD) P16 VDD VLED R2
7
d 8 | P3.2 (INTO) P15 Data TSM5X34 B
Edge-triggered interrupt 2| paznT1y p1.4ks c2
N CLK E GND I
+5V 2| p3.4(T0) P1.3pe 14 =
2.1 P3.5(T1) P1.2je 1
c3 89C2051 N
ul p3y P1Af—
RESET p1 ok
GND
XTLA XTL2
- Ink_—-=
C1 L lDl JL,c2

33pF I 12M I 23pF

Figure 3.29.
Circuit diagram of Project 11

generates an interrupt in the software which increments the count and displays
the total number of events occurred.

Program Description

The program first initializes the interrupt registers of the microcontroller so
that external interrupts on pin INTO can be detected. An endless loop is then

80

Microcontroller Projects in C for the 8051

formed with a for statement. Inside this loop the reset input (bit 0 of port 3) is
checked and when the reset switch is pressed, the counter is cleared to zero. The
interrupt service routine simply increments the current event count and
displays the result.

The following PDL describes the functions of the program:

Main program

START
Clear display
Initialize External interrupt INTO
DO FOREVER
IF RESET switch is pressed THEN
Clear event counter
Clear display
ENDIF
ENDDO
END

Interrupt service routine

START
Increment event counter
Display event counter
END

The display part of the program is the same as in Project 10 and is not
described here again.

Program Listing

The full program listing is shown in Fig. 3.30. Variable DISPLAY CLOCK
is the clock input of the display and is assigned to bit 6 of port 1.
DISPLAY DATA is the data input of the display and is assigned to bit 7 of
port 1. Bit 0 of port 3 is assigned to variable RESET COUNTER. Variable
EVENT is used as the event counter. The program first of all clears the display.
The interrupt registers of the microcontroller are then programmed. Statement
IT0 = I sets external interrupt input INTO so that interrupts can be recognized
on the falling edge (1 to 0) of this pin. Statement EFX0 =/ enables external
interrupt INTO. Statement EA =1 enables interrupts so that they can be
accepted by the microcontroller. Inside the endless loop the RESET input is
checked. If the user presses RESET (i.e. RESET _COUNTER =0), the counter
value EVENT is reset to zero and the display is cleared.

Light Projects 8 '|

I/DROJECT: PROJECT 11
FILE: PROJ11.C
DATE: August 1999
PROCESSOR: AT892051

This is a 4-digit TSM5034 display interface project. The display counts up from 0 to 9999
with about 1 second delay between each count.

This program shows the leading zeros with decimal points between digit 2 and 3.

#include <AT892051.h>

sbit DISPLAY_CLOCK=P1/6;
sbit DISPLAY_DATA =P1A7;
sbit RESET_COUNTER=P3A0;

int EVENT=0; /¥initialize to 0%/

/* Function to send a clock pulse to the display */
void send_clock(
{

DISPLAY_CLOCK=1;

DISPLAY_CLOCK=0;

/* Function to display a digit */
void display_digit(int x,char dp)
{
unsigned char LED_ARRAY[11]=
{
OxFC,0x60,0xDA 0xF2,0x66,0xB6,0xBE 0xEQ,OxFE ,0xF6,0
b
unsigned char n.top_bit.i;

N=LED_ARRAY(X) | dp; /*decimal point*/
for(i=1;i<=8;i++)
{
top_bit=n & 0x80; /*Get top bit*/
if(top_bit = 0)
DISPLAY_DATA=1;
else
DISPLAY_DATA=0;
send_clockQ;
n=n << 1; /*Shift by 1%/

Microcontroller Projects in C for the 8051

/* Function to display all 4 digits */
void display_all(int n,char Iz,.char dp1,char dp2,char dp3.char dp4)
{

int r first second.third fourth;

first=n/1000;
r=n-1000*first;
second=r/100;
r=r-100*second;
third=r/10;
fourth=r-third*10;

DISPLAY_DATA=1;
send_clockQ:;

if(n < 1000 && Iz == 1) /*Blank leading zero*/
display_digit(10,0);

else
display_digit(first,dp1);

if(n < 100 && Iz == 1)
display_digit(10,0);

else
display_digit(second.dp2);

if(n < 10 && Iz == 1)
display_digit(10.,0);

else
display_digit(third,dp3);

iflz == 1)
display_digit(fourth,0);

else
display_digit(fourth,dp4);

DISPLAY_DATA=0;
send_clockQ:;
send_clockQ:;
send_clockQ;

/* Function to clear the display */
void clear_display(
{
int i;
DISPLAY_DATA=0;
DISPLAY_CLOCK=0;
DISPLAY_DATA=1;

Light Projects 8 3

send_clock();

DISPLAY_DATA=0;

for(i=1;i<=35;i++)send_clockQ;
}

/* External interrupt INTO service routine */
cntQ interrupt 0
{
EVENT++;
display_all(EVENT,1,0,0,0,0);
}

/* Start of main program */

mainQ

{
clear_displayQ; /*Clear display*/
[TO=1; /*Interrupt on falling-edge*/
EXO=1; /*Enable interrupt INTO*/
EA=1; /*Enable interrupts*/
forC:;) /*Start of endless loop*/

{
if(RESET_COUNTER == Q)
{
EVENT=0;
clear_display();
}

}
Figure 3.30.

Program listing of Project 11

The interrupt service routine is declared by the function cnt() interrupt 0,
where 0 is the interrupt number. 89C2051 interrupt numbers are defined as
shown in Table 3.7.

Whenever input INTO goes from logic 1 to 0 an external interrupt is generated
and the program jumps to interrupt service routine declared by function
cnt() interrupt 0. This routine increments the event counter and displays the
result on the TSM5034. The displayed value is thus equal to the total number
of events on pin INTO.

Components Required

In addition to the standard components used by the microcontroller, the
following components will be required:

8 4 Microcontroller Projects in C for the 8051

Table 3.7 Infterrupt numbers
Interrupt No. Description
0 External interrupt 0
1 Timer O inferrupt
2 External interrupt 1
3 Timer 1 inferrupt
4 Serial port interrupt

Display TSM5034 4-digit display

R2 8.2K, 0.125 W resistor
R3, R4 100K, 9.125 W resistors
C4 0.01 pF capacitor

S1 push-button switch

CHAPTER 4
SOUND PROJECTS

In this chapter we shall be looking at how we can interface our microcontroller
to sound generating devices. Sound projects are based on audible devices and
these devices have many applications in electronics, ranging from warning
devices, burglar alarms, speech processing applications, electronic organs and
SO on.

Electronic sound generation requires an electronic audible device. There are
several such devices available:

® Piezo sounders: these devices operate by an external DC source. An internal
oscillator applies an AC signal to a piezo substrate and this causes
alternating deformation of the disc, producing sound output. These devices
require about 8 to 20mA current and generate a sound output of 80 to
100dBA, at a distance of approximately 30 cm. The frequency response of
these devices is in a narrow band, generally in the region 3 to 5 KHz. Piezo
sounders usually emit a single tone but some models can emit two or more
tones and can also provide pulsed tone outputs. Piezo sounders operate
over a wide DC voltage range and as a result of this, they are widely used in
small portable electronic equipment.

® Buzzers: these are mechanical devices which produce sound via a magne-
tized arm repeatedly striking a diaphragm. These devices operate with a DC
voltage and the current requirement is small, generally in the region of
10mA. Buzzers generate a ‘buzzing’ noise (single tone) in the frequency
range 300 to 500 Hz. Buzzers are small devices and they can be either panel
mounted or PCB mounted.

e Sounders: these audible devices generally operate with a DC voltage in the
range 3 to 24V. The current requirement is around 15mA. The sound
output of sounders is single tone at 3 KHz or less, with 80 to 85dBA at a
distance of 30 cm.

o Transducers: these devices generally operate with a small DC voltage
(around 3 V) and require external drive circuitry. Sound output is 85 dBA
or more at a distance of 30cm. The resonant frequency of transducers is
3KHz or less. These devices are usually used as mini speakers in PCB
mounted applications.

86

Microcontroller Projects in C for the 8051

e C(Coil type: these devices operate by a coil attracting and repelling a
magnetized diaphragm. The principle of operation is the same as a
loudspeaker and in fact these are tiny speakers. An external drive circuit
is required to generate sound. Coil type audible devices are generally used
when multitone sound or speech is required.

In this chapter we shall be interfacing our microcontroller to simple buzzers
and also to more complex audible devices.

PROJECT 12 - Simple Buzzer Interface

Function

This project shows how we can interface our microcontroller to a buzzer. When
a push-button switch is pressed (e.g. simulating a burglary), the buzzer will turn
on and off 30 times and then stop.

Circuit Diagram

The circuit diagram of this project is shown in Fig. 4.1. Bit 7 of port 1 is
connected directly to a small buzzer. This type of connection is possible if the
current requirement of the buzzer is not more than about 20mA. The port
output is in current source mode so that the buzzer will turn on when the port
output is at logic LOW (0V). Bit 0 of port 3 is connected to a push-button
switch which is normally held at logic HIGH by a pull-up resistor.

Program Description

The buzzer is initially turned OFF. The push-button switch is then checked and
when the switch is pressed, the buzzer is turned on and off 30 times, with a
1 second delay between each output. The following PDL describes the
functions of the program:

START
Turn OFF buzzer
DO FOREVER
IF push-button switch pressed THEN
DO 30 times
turn ON buzzer
delay
turn OFF buzzer
ENDDO
ENDIF
ENDDO
END

Sound Projects 87

51 i
R2
Sl + Buzzer
2 1 P3.0(RXD)VCC P1.7{2
j? 2| P3.1(TXD) P1.6pe_ B1
1 & P32(INTO) P1.5h7_
2| P3.3(INT1) P1.4fe
+§y 2| P3.4(T0) P1.3j5
2| p35(T1) P1.2f1s
5SS C3 89C2051
= qopF A1 P37 P1.1f3_
1
RESET P1.012—
A2 1 GND
- XTL1 XTL2
R1
|5 —o—
C1 1, C2
33pF " T 12M T 33pF

Figure 4.1.
Circuit diagram of Project 12

Program Listing

The program listing is given in Fig. 4.2. Variable BUZZER is defined as bit 7 of
port 1. Similarly, variable PUSH_BUTTON is defined as bit 0 of port 3. When
the program starts, BUZZER is set to OFF, where OFF is defined as logic
HIGH. The state of the PUSH_BUTTON switch is then checked continuously
in a loop. When the switch is pressed (PUSH_BUTTON =0), a for loop is set
to repeat 30 times. Inside this loop the buzzer is turned ON and OFF with a 1
second delay between each output.

Using Higher Current Buzzers

The buzzer used in Fig. 4.1 is assumed to draw not more than 20 mA and thus
we can connect the buzzer directly to the microcontroller. For buzzers that

8 8 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 12
FILE: PROJ12.C
DATE: August 1999
PROCESSOR: AT892051

This is a simple buzzer project. The buzzer sounds on and off for 30 seconds when a push-
button switch is pressed.

The buzzer is connected to bit 7 of port 1 directly and the buzzer is ON when the output of
the port is af logic LOW, i.e. when the output port is sourcing current. The push-button
switch is connected to bit 0 of port 3.

/
#include <AT892051.h>

sbit BUZZER=P1/7;
sbit PUSH_BUTTON =P3A10;

#define ON O
#define OFF 1

/* Function to delay about a second */
void wait_a_second(
{
unsigned int x;
for(x=0;x<33000;x++);
}

/* Start of main program */

main()

{
int i
BUZZER=OFF; /*Tumn buzzer off*/
for(::) /*endless loop*/

{
while(PUSH_BUTTON == 1) /*wait for push-button*/
{
}

for(i=1;i<=30;i++) /*do 30 times*/

{
BUZZER=ON; /*tum on buzzer*/
wait_a_second(; /*delay a second®/
BUZZER=OFF; /*turn off buzzer*/
wait_a_second(); /*delay a second*/

}
Figure 4.2.
Program listing of Project 12

Sound Projects 89

operate with higher currents it will be necessary to use a circuit similar to Fig.
4.3. In this circuit a MOSFET n-channel transistor is used as a switch. The
buzzer is connected to the drain (D) input and the gate (G) input is driven
directly from the microcontroller. The current drawn by the gate input is
practically zero. A VN66AFD type MOSFET can be used to switch currents
up to about 2 A.

$ oV B1
Buzzer
I+
4 N 8 T
|:|:| 2 | p3.0 (RXD)VCC P1.7194_|[IENMOSFET
? 3| P3.1(TXD) P1.6he_ |
— 51 P3.2 (INTO) P1.507
1 P3.3(INT1) P1.4ke
+§y -2 P3.4(T0) P1.3p5
24 P3.5(T1) P1.2fa—
c3 89C2051
=0 o A P37 P1.1f2
1
10 ZEEET P1.0§2 -
I
= | XTL1 XTL2
R1
[] 8.2K A IDI 0|
C1 v L c2
33pF T 12M T a3k

Figure 4.3.

Modified circuit diagram for higher current buzzers

90

Microcontroller Projects in C for the 8051

Components Required

In addition to the components used for the basic microcontroller circuit, the
following components will be required:

Bl small buzzer (e.g. TDB-05PN)
R2 100K, 0.5 W resistor

T1 VN66AFD MOSFET (optional)
Sl push-button switch

PROJECT 13 - Small Speaker Interface (Using the Timer
Interrupt)

Function

This project shows how we can interface our microcontroller to a small speaker
type audible device. In this project a continuous single tone output is produced
on the speaker when a push-button switch is activated. Timer interrupt of the
microcontroller is used to generate the time delay required for the tone. In this
project the frequency of the generated tone is 1 kHz (i.e. a period of 1 ms).

Circuit Diagram

The circuit diagram of this project is same as the one in Project 12 (i.e. Fig. 4.3)
except that the buzzer is replaced with a small speaker. Bit 7 of port 1 is
connected directly to a small speaker via a MOSFET transistor. The port
output is in voltage mode so that the speaker will turn on when the port output
is at logic HIGH (+ 5 V). Bit 0 of port 3 is connected to a push-button switch
which is normally held at logic HIGH by the pull-up resistor R2.

Program Description

The speaker is initially turned OFF. The push-button switch is then checked
and when the switch is pressed, timer 1 of the microcontroller is initialized to
generate interrupts at regular intervals. When a timer interrupt is generated the
state of the timer is reversed. i.e. if the timer is on, it is turned off and if it is off,
it is turned on. The frequency of this waveform is set to be in the audible range
and thus it generates an audible sound on the speaker.

The following PDL describes the functions of the program:

Sound Projects Q"

Main program

START
turn OFF speaker
IF push-button switch is pressed THEN
Initialize timer 1 to generate interrupts every 250 ps
Wait for timer interrupt
ENDIF
END

Timer 1 initialization

START
Enable timer 1 interrupts
Set timer 1 to mode 8-bit auto-reload
Load timer value 6 (i.e. count of 250 ps) into timer register
Enable microcontroller interrupts
Turn on timer 1
END

Timer 1 interrupt service routine

START
IF 500 ps has elapsed THEN
Complement speaker output
ENDIF
END

Program Listing

The full program listing is shown in Fig. 4.4. When the program starts a
variable called count is set to 0 and the speaker is turned off. The status of the
push-button switch is then checked. If the switch is pressed, function init_timer
is called to initialize timer 1 of the microcontroller.

Init_timer routine enables timer 1 of the microcontroller, sets timer 1 into 8-bit
auto-reload mode (mode 2) and loads the timer counter with 6 so that a timer
overflow will occur after 250 counts (i.e. when the timer rolls over from 256 to
0). The timer is then automatically reloaded with the same value. With a
microcontroller operating at 12 MHz, the timer clock cycle time is 1 pus since
the clock is divided by 12 internally. Thus, a timer interrupt will be generated
after every 250 us. When a timer interrupt is generated, control is directed to
the interrupt service routine (ISR) called timeril() as shown in Fig. 4.4. Note
that timer 1 interrupt number is 3. The ISR increments the global variable
count. Variable count reaches 2 after two interrupts, i.e. after 500 ps has

92 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 13
FILE: PROJ13.C
DATE: August 1999
PROCESSOR: AT892051

This is a simple speaker-based microcontroller project. A miniature speaker is connected
to bit 7 of port 1. The speaker normally operates when an alternating signal is applied
with the frequency in the audible range. A push-button switch is connected to bit O of
port 3 and the speaker turns ON when this switch is pressed.

The speaker is connected to bit 7 of port 1 via a MOSFET fransistor and the speaker is ON
when the output of the port is at logic HIGH.

Timer 1 is used to generafte a square wave with a period of 1ms (i.e. frequency 1kHz).
/

#include <AT892051.h>

sbit SPEAKER=P1A7;
sbit PUSH_BUTTON =P3/0;

int count;
/* Timer 1 initialization routine */

void init_timerQ
{

ET1=1; /*Enable timer 1 int*/
TMOD=0x20; /*Timer 1 in Mode 2%/
TH1=0x6; /%250 ps count™/
EA=T; /*Enable interrupts®/
TR1=1; /*Turn on timer 1%/

/* Timer 1 interrupt service routine */
fimer1Q interrupt 3
{

count++; /*Inc. count*/
if(count == 2) /*count=2%/
{

count=0; /*Reset count™/

SPEAKER=~SPEAKER;

/* Start of main program */
mainQ

Sound Projects Q 3

count=0; /*Initialize count*/
SPEAKER=0; /*Speaker OFF*/

while(PUSH_BUTTON == 1)
{
}

init_timerQ; /*Initialize timer*/

/* Endless loop. Wait here for timer inferrupt */
for(::)
{
}
}

Figure 4.4.

Program listing of Project 13

SPEAKER ON SPEAKER OFF

I

500 us 500 us
Timer value =6 Timer value =6

Figure 4.5.
Output waveform produced by Project 13

elapsed. The state of the speaker is then changed after 500 ps. As shown in
Fig. 4.5, the period of the generated waveform is thus 1 ms (500 us ON time
and 500 us OFF time, i.e. a frequency of 1kHz).

You can change the frequency of the tone easily by loading a different value
into the timer register.

Components Required

In addition to the components used for the basic microcontroller circuit, the
following components will be required:

Bl small speaker (e.g. T70L015H)
R2 100K, 0.5 W resistor
Tl VN66AFD MOSFET

S1 push-button switch

94

Microcontroller Projects in C for the 8051

PROJECT 14 - Two-tone Small Speaker Interface (Using
the Timer Interrupt)

Function

This project shows how we can interface our microcontroller to a small speaker
type audible device and generate two different tones. When power is applied to
the circuit, a continuous single tone of frequency 1kHz is output to the
speaker. When a push-button switch is pressed, the tone frequency is
changed to 500Hz. Timer 1 interrupt of the microcontroller is used to
generate the time delay required for the tones.

Circuit Diagram

The circuit diagram of this project is the same as the one in Project 12 (i.e. Fig.
4.3) except that the buzzer is replaced with a small speaker. Bit 7 of port 1 is
connected directly to a small speaker via a MOSFET transistor. The port
output is in voltage mode so that the buzzer will turn on when the port output
is at logic HIGH (4 5V). Bit 0 of port 3 is connected to a push-button switch,
which is normally held at logic HIGH by the pull-up resistor R2.

Program Description

The speaker is initially turned OFF. Timer 1 of the microcontroller is then
initialized to generate a continuous tone with a frequency of 1kHz, as in
Project 13. The push-button switch is then checked and when the switch is
pressed, the timer register value is doubled, i.e. the interrupt interval is
increased from 500 us to 1 ms. A waveform with a 1 ms on and 1 ms off time
has a frequency of 500 Hz.

The following PDL describes the functions of the program:
Main program

START
Turn OFF speaker
Initialize timer 1 to generate interrupts at 500 ps
(int_rate=2)
DO FOREVER
IF push-button switch is pressed THEN
Reload timer register for 1 ms interrupts
(int_rate =4)
ENDIF
ENDDO
END

Sound Projects Q 5

Timer 1 initialisation

START
Enable timer 1 interrupts
Set timer 1 to mode 8-bit auto-reload
Load timer value 6 (i.e. count of 250 ps) into timer register
Enable microcontroller interrupts
Turn on timer 1
END

Timer 1 interrupt service routine

START
IF (int_rate*250) ps has elapsed THEN
Complement speaker output
ENDIF
END

Program Listing

The full program listing is shown in Fig. 4.6. When the program starts a
variable called count is set to 0 and the speaker is turned off. Timer 1 is then
initialized with the int_rate =2 so that interrupts are generated every 500 ps, i.e.
an output frequency of 1kHz. The state of the push-button switch is then
checked. If the switch is pressed, the interrupt rate, int_rate, is changed to 4 so
that interrupts will be generated at every 4 x 250 pus =1 ms i.e. the frequency of
the generated waveform is changed to 500 Hz (1 ms on time and 1 ms off time).

timerl() is the timer 1 interrupt service routine with interrupt number 3. In this
routine, variable count is incremented and compared with the int_rate. When
the two are equal, the speaker output is complemented, i.e. if the speaker is on
it is turned off, and if off it is turned on.

The frequency of the generated tones can easily be changed by loading a
different value into the timer register or by changing the value of variable
int_rate.

PROJECT 15 - Electronic Siren (Using the Timer Interrupt)

Function

This project shows how we can interface our microcontroller to a small
speaker type audible device and generate a siren sound. When power is

96 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 14
FILE: PROJ14.C
DATE: August 1999
PROCESSOR: AT892051

This is a simple speaker-based project. A miniature speaker is connected to bit 7 of port 1.
The speaker normally operates when a varying signal is applied with the frequency in the
audible range. A push-butfon switch is connected to bit 0 of port 3.

When power is applied to the circuit, a 1 kHz audio signal is sent to the speaker. When the
push-button switch is pressed, the signal frequency is changed to 500 Hz (period =2 ms).

The speaker is connected to bit 7 of port 1 via a MOSFET transistor and the speaker is ON

when the output of the port is at logic HIGH.

Timer 1 is used to control the period of the square wave signals generated.

#include <AT892051.h>

sbit SPEAKER=P1A7;
sbit PUSH_BUTTON =P310;

int count,int_rate;
/* Timer 1 inifialization routine */

void init_timer()
{

ET1=1; /*Enable timer 1 int.*/
TMOD=0x20; /*Timer 1 in Mode 2%/
TH1=0x6; /*Load for 250 us count*/
EA=1; /*Enable interrupts™/
TR1=1; /*Turn on timer 1%/

/* Timer 1 inferrupt service routine */
timer1() interrupt 3
{
count++; /*Inc. count*/
if(tcount == int_rate)
{
count=0; /*Reset count™/
SPEAKER=~SPEAKER;

/* Start of main program */
mainQ

Sound Projects 97

count=0; /*Initialize count*/
SPEAKER=0; /*Speaker OFF*/
Int_rate=2; /*Set for 500 ps*/
init_timer(); /*Initialize timer*/
forC:;) /*Endless loop*/

{
if(PUSH_BUTTON == O)int_rate=4; /*Set o 1ms*/
}

Figure 4.6.
Program listing of Project 14

applied to the circuit, a continuous siren type sound is output from the
speaker. Both timer 0 and timer 1 of the microcontroller are used to generate
the required tones.

Circuit Diagram

The circuit diagram of this project is the same as the one in Project 12 (i.e.
Fig. 4.3) but there is no push-button switch and the buzzer is replaced with a
small speaker. Bit 7 of port 1 is connected directly to a small speaker via a
MOSFET transistor. The port output is in voltage mode so that the speaker
will turn on when the port output is at logic HIGH (+5V).

Program Description

In this project the frequency of the generated tone is varied continuously from
500 Hz to 10 kHz, thus producing a siren sound. Both timer 0 and timer 1 run
at the same time and generate interrupts. Timer 1 generates the output tone
and timer 0 changes the frequency of the generated tone continuously. This is
how the timers operate:

Timer 1 is in 8-bit auto-reload mode and the timer register is loaded with 50 ps
(count of 206). Thus a timer 1 interrupt is generated every 50 ps. Inside the
timer | interrupt service routine, a counter is incremented and its value
compared to a global variable called int _rate. When the two are equal the
speaker output is changed. The frequency of the generated output waveform is
then as follows (notice that the period is twice the timer count value since half
of the period is off and the other half is on):

98

Microcontroller Projects in C for the 8051

int_rate = 1 period = 100 ps frequency = 10kHz
int_rate = 2 period = 200 ps frequency = 5kHz
int_rate = 4 period = 400 ps frequency = 2.5kHz
int_rate = 5 period = 500 ps frequency = 2kHz

In general, we can say that the frequency of the generated tone is given by:
freq = 10/int_rate
where freq is in kHz.

In this project, variable int_rate is varied from 100 down to 1, i.e. the frequency
of the generated tone varies between 100 Hz and 10 kHz.

Timer 0 of the microcontroller is used to change the frequency of the tone by
changing the value of variable int_rate. Timer 0 is in 8-bit auto-reload mode
and the timer register is loaded with 56 so that it generates interrupts at every
200 ps. Inside the timer O interrupt service routine a counter is used and
variable int_rate is decremented by 1 when the counter counts by 200. Thus,
variable int_rate will be decremented every 200 x 200 ps = 40,000 ps or 40 ms.

In summary, the frequency of the generated tone will vary every 20 ms from
100 Hz to 10 kHz. The result is that a siren type output will be generated on the
speaker.

The following PDL describes the functions of the program:
Main program

START
Turn OFF speaker
Initialize timer 1 for auto-reload 50 ps interrupts
Initialize timer O for auto-reload 200 ps interrupts
Set int_rate for 100 Hz
DO FOREVER
Wait for timer interrupts
ENDDO

Timer initialization routine

START
Enable timer 1 interrupts
Set timer 1 to mode 8-bit auto-reload
Load timer 1 with 206 (i.e. count of 50 pus)

Sound Projects QQ

Enable timer 0 interrupts
Set timer 0 to mode 8-bit auto-reload
Load timer 0 with 56 (i.e. count of 200 ps)
Enable timer 0 interrupts
Turn timer 1 on
Turn timer 0 on

END

Timer 1 interrupt service routine

START
IF int_rate ps has elapsed THEN
Complement speaker output
ENDIF
END

Timer 0 interrupt service routine

START
IF 40 ms has elapsed THEN
Decrement int_rate
IF int_rate = 0 THEN
Set int_rate for 100 Hz
ENDIF
ENDIF
END

Program Listing

The full program listing is shown in Fig. 4.7. Variable SPEAKER is assigned to
bit 7 of port 1. When the program starts, variables count and timerl_overflow
are set to 0. The speaker is then turned off. Timers 0 and 1 are initialized by
calling function init_timers. The program then enters an endless loop and waits
until the timer interrupts occur.

Inside the timer 1 interrupt service routine, variable count is incremented and
compared to variable int_rate. When the two are equal, count is reset to 0 and
the speaker output is complemented.

Inside the timer 0O interrupt service routine, variable timerl_overflow is
incremented and when it reaches 200 (i.e. 200 x 200 us =40 ms), it is reset to
0 and int_rate is decremented so that a higher frequency tone could be
generated by timer 1. When int_rate reaches 0 it is reset back to 100 so that
the process can repeat.

'| OO Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 15
FILE: PROJ15.C
DATE: August 1999
PROCESSOR: AT892051

This is a simple speaker-based siren project. A miniature speaker is connected to bit 7 of
port 1. The speaker normally operates when an alternating signal is applied with the
frequency in the audible range.

When power is applied to the circuit, a 100 Hz audio signal is first sent to the speaker using
fimer 1. Timer O then runs and changes the frequency of the tone from 100Hz to 10kHz,
every 40ms. The effect is that an audible siren type output is produced.

The speaker is connected to bit 7 of port 1 via a MOSFET transistor and the buzzer is ON
when the output of the port is at logic HIGH.

Timers 0 and 1 are used fo generate variable frequency and variable pitch output.

#include <AT892051.h>

sbit SPEAKER=P1A7;

int count timer1_overflow.,int_rate;
/* Timer initialization routine */

void init_timersQ
{

ET1=1; /*Enable timer 1 interrupt*/
TMOD=0x20; /*Timer 1 in Mode 2%/
TH1=206; /*Timer 1 80 ps count™/
ETO=1; /*Enable timer O int.*/
TMOD=TMOD | 2; /*Timer 0 in Mode 2%/
THO=56; /*Timer 0 200 pus count®/
EA=1; /*Enable interrupts*/
TR1=1; /*Turn on timer 1%/

TRO=1; /*Turn on timer 0%/

/* Timer 1 interrupt service routine */
timer1Q) interrupt 3
{

count++; /*Inc. count*/
if(count == int_rate)
{

count=0; /*Reset count™/

SPEAKER=~SPEAKER;

Sound Projects '| O '|

/* Timer O interrupt service routine */
timer0(Q) interrupt 1
{
timer1_overflow++;
if(fimer1_overflow == 200) /*if 40 ms */
{
timer1_overflow=0;
int_rate—;
count=0; /*clear count™/
if(int_rate == 0)int_rate=100;

/* Start of main program */

mainQ
{
count=0; /*Initialize count*/
timer1_overflow=0;
SPEAKER=0; /*Speaker OFF*/
int_rate=100; /*Set for 100 Hz */
init_timersQ; /*Initialize timers*/
for(:;) /*Endless loop*/
{
}
}
Figure 4.7.

Program listing of Project 15

PROJECT 16 - Electronic Organ (Using the Timer Interrupt)

Function

This is a simple electronic organ project. A small speaker is connected to bit 0
of port 3 via a MOSFET transistor. Eight push-button switches are connected
to port 1 to act as the keyboard for the electronic organ. Timer 1 of the
microcontroller is used to generate time delays for the required frequencies.
Only one octave (eight notes) is provided.

Circuit Diagram

The circuit diagram of this project is shown in Fig. 4.8. The speaker is
connected to bit 0 of port 3. The keyboard switches are connected to port 1.

'| 02 Microcontroller Projects in C for the 8051

. T +5V
Buzzer
B1
+ R4 |RY| R4 |re |RE|R7 | RY | R
8 Cc
™ L___z_ P3.0 (RXD)VCC P”t — S1
B
21 P3.1(TXD) P1.6f8 o—¢ S2
— A
5| P3.2 (INTO) P1.5{L S3
G
~I1 P3.3(INT1) P1.4f1 o 5S4
F
+3V | p3.4(T0) P1.3ps S5
E
2. P3.5(T1) p1.2p4 S6
C2051 °
o P3.789 05 P11y S7
c
RESET
GND P1.0p2 S8
XTLA XTL2
S TS L
C1 L~ IDI s C2 -

33pF I 12M T 33F

Figure 4.8.

Circuit diagram of Project 16

Bit 0 is assigned to note C, bit 1 is assigned to note D, bit 2 is assigned to note E
and so on. The switches are normally held at logic HIGH with pull-up resistors
(R2 to R9). Pressing a switch sends a logic LOW to the microcontroller port.

Program Description

In this project timer 1 is used to generate the tones for the electronic organ. The
timer is in auto-reload mode and loaded to generate an interrupt every 50 ps
(i.e. loaded with 206 for a 12 MHz crystal). An endless for loop is formed and
the keyboard is scanned. When a key is pressed, the timer is reloaded with the
correct value so that the required tone can be generated.

The following octave was used for this project (the frequencies are in Hz):

Notes: C D E F G A B C
Freq: 262 294 330 349 392 440 494 524

Sound Projects '| O 3

The periods of the notes in ps are then given by (period = 1/frequency):

Notes: C D E F G A B C
Period: 3816 3401 3030 2865 2551 2272 2024 1908

The counter is loaded so that it generates an interrupt every 50 ps. The number
of counts (V) required for each note is therefore given by dividing the period by
50 ps, as shown below:

Notes: C D E F G A B C
N: 76 68 60 57 51 45 40 38

The following PDL describes the functions of the program:
Main program

START
Turn off speaker
Initialize timer 1
Initialize count
DO FOREVER
IF a key is pressed THEN
Load value of the key into variable tone
ENDIF
ENDDO
END

Timer 1 interrupt service routine
START

Increment count
IF count = tone THEN

count = ()
Complement speaker output
ENDIF

END

Program Listing

The full program listing is shown in Fig. 4.9. When the program is started, the
speaker is turned off and timer 1 is initialized to 8-bit auto-reload mode by
calling function init_timer. An endless for loop is then formed and the
keyboard is scanned. Normally port 1 contains the value 0xFF (255) when
no keys are pressed. When a key is pressed the pin corresponding to that key
goes to logic LOW. Variable key_pressed reads port 1 and complements the

'| 04 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 16
FILE: PROJ16.C
DATE: August 1999
PROCESSOR: AT892051

This is a simple electronic organ project. A small speaker is connected to bit 0 of port 3 via
a MOSFET transistor. The speaker normally operates when an alternating signal is applied
with the frequency in the audible range.

Eight push-button switches are connected to port 1 to act as the keyboard for the
electronic organ. Timer 1 is used to generate time delays for the required frequencies.

/

#include <AT892051.h>

sbit SPEAKER=P3/0;

int count tone;

/* Timer 1 initialization routine */

void init_timer()
{

ET1=1; /*Enable timer 1 int.”*/
TMOD=0x20; /*Timer 1 in Mode 2%/
TH1=206; /*Timer 1 80 ps count™/
TR1=1; /*Run timer 1*/

EA=T; /*Enable interrupts®/

/* Timer 1 interrupt service routine */
timer1Q interrupt 3
{
count++; /*Increment count®/
if(count == fone)
{
count=0; /*Reset count™/
SPEAKER=~SPEAKER;

/* Start of main program */
mainQ
{

unsigned char key_pressed;

count=0; /*Initialize count*/
SPEAKER=0;
init_timerQ; /*Initialize timers*/

for(:) /*Endless loop*/

Sound Projects '| 05

if(P1 1= OxFF) /*If a key pressed*/

{
TR1=1; /*Turn on timer*/
key_pressed=~P1; /*Complement key*/

/* Check which key pressed */
switch(key_pressed)
{

case 1: /*If key 1is pressed...”/
tone=76;
break;

case 2:
tone=68;
break;

case 4:
tone=60;
break;

case 8:
tone=57;
break;

case 16:
tone=51;
break;

case 32
tone=45;
break;

case 64:
tone=40;
break;

case 128:
tone=38;
break;

}

}

else

{
/* No key pressed */

SPEAKER=0;
count=0; /*Reset count®/
TR1=0; /*Stop timer*/

Figure 4.9.
Program listing of Project 16

'| Oé Microcontroller Projects in C for the 8051

value read so that the numbers obtained correspond to the key numbers as
powers of 2. Thus, as an example, when key C is pressed, key_pressed contains
1, when D is pressed, key_pressed is 2, when key E is pressed, key_pressed is 4
and so on. A switch statement is used to load variable fone with the correct
timer value so that the required tone can be generated on the speaker.

Components Required

In addition to the standard components used for the microcontroller, the
following components will be required for this project:

S1 to S§ SPDT switches

R2 to R9 100K, 0.125 W resistors

Bl small speaker

TI n-channel MOSFET transistor (e.g. VN66AFD)

CHAPTER 5

TEMPERATURE PROJECTS

Temperature measurement and control is one of the most common applica-
tions of microcontroller-based data acquisition systems. Four types of sensors
are commonly used to measure temperature in commercial and industrial
applications. These are thermocouples, resistive temperature devices (RTDs),
thermistors, and integrated circuit (1C) temperature sensors. Each sensor has its
unique advantages and disadvantages and by understanding how these sensors
work, and what types of signal conditioning are required for each, we can make
more accurate and reliable temperature measurement, monitoring, and control.

The typical characteristics of various temperature sensors are:

Thermocouples: these are inexpensive, and the most common temperature
sensors with a wide range of temperature range. Thermocouples work on
the principle that when two dissimilar metals are combined, a voltage
appears across the junction between the metals. By measuring this voltage,
we can get a temperature reading. Different combinations of metals create
different thermocouple voltages and there is a wide range of thermocouples
available for different applications. Thermocouples generate very low
voltages, typically 50 uV/°C. These low-level signals require special signal
conditioning to remove any possible noise. Thermocouples have non-linear
relationships to the measured temperature and as a result it is necessary
either to linearize the characteristics or to use look-up tables to obtain the
actual temperature from the measured voltage.

RTDs: an RTD is a resistor with its resistance changing with temperature.
The most popular type of RTD is made of platinum and has a resistance of
100 ©2 at 0°C. Because RTDs are resistive devices, a current must pass
through the RTD to produce a voltage that can be measured. The change in
resistance is very small (about 0.4 2/°C) and special circuitry is generally
needed to measure the small changes in temperature. One of the drawbacks
of RTDs is their non-linear change in resistance with temperature.

Thermistors: thermistors are metal oxide semiconductor devices whose
resistance changes with temperature. One of the advantages of thermistors
is their fast responses and high sensitivity. For example, a typical thermistor

'| O 8 Microcontroller Projects in C for the 8051

may have a resistance of 50k(2 at 25°C, but have a resistance of only 2k
at 85°C. Like RTDs, a current is passed through a thermistor and the
voltage across the thermistor is measured. Thermistors are very non-linear
devices and look-up tables are usually used to convert the measured voltage
to temperature. Thermistors are very small and one disadvantage of this is
that they can be self-heating under a large excitation current. This of course
increases the temperature of the device and can give erroneous results.

e IC temperature sensors: integrated circuit temperature sensors are usually 3-
or 8-pin active devices that require a power supply to operate and give out a
voltage which is directly proportional to the temperature. There are
basically two types of IC temperature sensor: analogue sensors are usually
3-pin devices and give out an analogue voltage of typically 10 mV/°C which
is directly proportional to the temperature; digital temperature sensors
provide 8- or 9-bit serial digital output data which is directly proportional
to the temperature.

In this chapter we shall be looking at how we can interface various temperature
sensors to our microcontroller in order to measure and display the ambient
temperature.

PROJECT 17 - Using a Digital Temperature Sensor

Function

This project shows how we can interface a DS1620 type digital temperature
sensor to our microcontroller. The ambient temperature is measured con-
tinuously and then displayed in degrees centigrade on three TIL311 type
alphanumeric displays. Positive temperature is displayed from 0°C to 125°C.
Negative temperature is displayed with a leading letter ‘E’ in the range down to
—55°C.

Circuit Diagram

The block diagram of this project is shown in Fig. 5.1. DS1620 is a digital 1C
temperature sensor which measures the ambient temperature and provides the
output as 9 bits of digital serial data. The microcontroller extracts the
temperature data from the DS1620 and then displays the temperature on
three TIL311 type alphanumeric displays.

Before describing the circuit diagram in detail, it is useful to look at the
operation of the DS1620 temperature sensor IC.

Temperature Projects '| OQ

Alphanumeric displays

TIL TIL TIL
M(lff\;%-OLLER 3n 311 311
CON
DS1620
<P
t T 1
Thermostat IC

Figure 5.1.

Block diagram of Project 17

DS1620 Digital Thermometer IC

DS1620 is a digital thermometer and thermostat IC that provides 9 bits of
serial data to indicate the temperature of the device. The pin configuration of
the DS1620 is shown in Fig. 5.2. VDD is the power supply which is normally
connected to a +5 V supply. DQ is the data input/output pin. CLK is the clock
input. RST is the reset input. The device can also act as a thermostat. THIGH
is driven high if the DS1620’s temperature is greater than or equal to a user
defined temperature TH. Similarly, TLOW is driven high if the DS1620’s
temperature is less than or equal to a user defined temperature TL. TCOM is
driven high when the temperature exceeds TH and stays high until the
temperature falls below TL. User defined temperatures TL and TH are
stored in non-volatile memory of the device so that they are not lost even
after removal of the power.

Data is output from the device as 9 bits, with the LSB sent out first. The
temperature is provided in 2’s complement format from —55°C to +125°C, in
steps of 0.5°C. Table 5.1 shows the relationship between the temperature and
data output by the device.

DQL] 1 8|_1vDD
CLK[] 2 7] THIGH
DS1620
RSTL]3 6 1 TLOW
GNDL 4 5[1TCOM

Figure 5.2.
Pin configuration of DS1620

'| '| O Microcontroller Projects in C for the 8051

Table 5.1 Temperature/data relationship of DS1620
Temp. (°C) | Digital output | Digital output | 2’s complement | Digital output
(binary) (hex) (decimal)
+125 011111010 OFA - 250
+25 000110010 032 - 50
0.5 0 00000001 001 - 1
0 0 00000000 000 - 0
-0.5 111111111 1FF 001 511
-25 111001110 1CE 032 462
-55 1 10010010 192 O6E 402

Operation of DS1620

Data input and output is through the DQ pin. When RST input is high, serial
data can be written or read by pulsing the clock input. Data is written or read
from the device in two parts. First, a protocol is sent and then the required data
is read or written. The protocol is 8-bit data and the protocol definitions are
given in Table 5.2. For example, to write the thermostat value TH, the
hexadecimal protocol data 01 is first sent to the device. After issuing this

Table 5.2 DS1620 Protocol definitions

PROTOCOL PROTOCOL DATA (hex)
Write TH 01

Write TL 02

Write configuration oC

Stop conversion 22

Read TH Al

Read TL A2

Read temperature AA

Read configuration AC

Start conversion EE

Temperature Projects '| '| '|

command, the next nine clock cycles clock in the 9-bit temperature limit which
will set the threshold for operation of the THIGH output.

For example, the following data (in hexadecimal) should be sent to the device
to set it for a TH limit of +50°C and TL limit of +20°C and then subsequently
to start the conversion:

01 Send TH protocol

64 Send TH limit of 50 (64 hex =100 decimal)
02 Send TL protocol

28 Send TL limit of 20 (28 hex =40 decimal)
EE Send conversion start protocol

A configuration/status register is used to program various operating modes of
the device. This register is written with protocol 0C (hex) and the status is read
with protocol AC (hex). Some of the important configuration/status register
bits are as follows:

Bit 0: This is the 1 shot mode. If this bit is set, the DS1620 will perform
one temperature conversion when the start convert protocol is sent.
If this bit is 0, the device will perform continuous temperature

conversions.

Bit 1: This bit should be set to 1 for operation with a microcontroller or
microprocessor.

Bit 5: This is the TLF flag and is set to 1 when the temperature is less than
or equal to the value TL.

Bit 6: This is the THF bit and is set to 1 when the temperature is greater
than or equal to the value of TH.

Bit 7: This is the DONE bit and is set to 1 when a conversion is complete.

The complete circuit diagram of this project is shown in Fig. 5.3. Bit 2 of port 3
is connected to the RST input of DS1620, bit 1 is connected to the clock input
and bit 0 of port 3 is connected to the DQ pin of the DS1620. Three TL311
type alphanumeric displays are connected to port 1 of the microcontroller.
Digit 1 is controlled from bit 7 of port 1, digit 2 from bit 6 of port 1, and digit 3
from bit 5 of port 1.

Program Description

The program reads the temperature from the DS1620 thermometer IC and
displays the temperature on three TIL311 type displays continuously with 1
second delay between each displayed output. The following PDL describes the
operation of the program:

'| '| 2 Microcontroller Projects in C for the 8051

+5VA

o

VDD DOM_2 | P3.0 (RXD)VCC P1.7[e

CLK{2-21 P3.1(TXD) P1.6§2

RSTR & | P32 (INTO) P15}z

TIL311

—~2— B

DIGIT 2
A

12

13

R

A
£ ez P1.4fe +5V
| “I |
+5V 8
2| p3.4(T0) P13 el
21 P3.5(T1) Plopdy 11 C
ca 89C2051 TIL311
= qopr] P37 P1.1{3 21 B
1 DIGIT 1
" EE'SDET Propd e | A
I
= | xTL1 XTL2 N]
R1
[] 8.2K N i [:]I i =
C1 L/ S C2
33pF T 2zm T

33pF

Figure 5.3.
Circuit diagram of Project 17

Main program

START
Set digit latches to 1
Configure DS1620
Start temperature conversion
DO FOREVER
Read temperature
Display temperature
Wait a second
ENDDO
END

Function configure DS1620

START

TIL311
B

DIGIT 3
A

~ cof

Set configuration/status register to 2 (i.e. continuous operation)

END

Temperature Projects '| '| 3

Function start temperature conversion

START
Send protocol EE (hex) to start temperature conversion
END

Function read temperature

START
Call function read_from_ds1620 to get the temperature
END

Function read_from_ds1620

START
Set RST bit to 1
Read 9-bit serial temperature data from DS1620
Set RST bit to 0

END

Function display temperature

START
IF temperature is negative THEN
Get 2’s complement of the temperature reading
Divide temperature by 2 to get real temperature
Set digit 1 to display letter ‘E’
Display temperature digits
ELSE
Divide temperature by 2 to get real temperature
Display temperature digits
ENDIF
END

Program Listing

The full program listing is given in Fig. 5.4. The display digit latches and the
DS1620 control lines are assigned to bit variables at the beginning of the
program. Also the used protocols are defined and assigned to global variables.
For example, read_temp is assigned to hexadecimal number AA, start_conv is
assigned to hexadecimal number EE and so on.

When the program starts, the digit latches digitl_latch, digit2 latch, and
digit3_latch are all set to 1 to avoid any erroneous writes to the displays. A
function configure_ds1620 is then called to set the configuration register/status

'| '| 4 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 17
FILE: PROJ17.C
DATE: August 1999
PROCESSOR: AT892051

This is a femperature monitoring project. A DS1620 type digital thermometer is used o
read the ambient temperature. The temperature is then displayed on three TL311 type
alphanumeric displays. The temperature range is —55°C to +125°C. Positive femperature
is displayed with leading zeros. Negative temperatures are displayed by inserting the
letter 'E” in front of the display. The display accuracy is +/— 1°C, i.e. there is no decimal
point in the displayed data.

The display is updated every second.

#include <AT892051.h>

sbit digit1_latch = P1A7; /*digit 1 latch*/

sbit digit2_latch = P1A¢; /*digit 2 latch*/

sbit digit3_latch = P1AS; /*digit 3 latch*/

sbit ds1620_dq = P3A0; /*DS1620 data pin*/

sbit ds1620_clk = P3AT; /*DS1620 clock pin*/

sbit ds1620_rst = P3A2; /*DS1620 reset pin*/

#define read_temp OxAA /*read temp command*/
#define start_conv OxEE /*start conversion command*/
#define write_config Ox0C /*write config command®/

/* Function to delay about a second */
void wait_a_second()
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to display data on three TIL311 displays. Negative temperature is displayed
with a leading ‘E’ character. Display range is —55 to +125. */

void display_temperature(unsigned int x)
{

unsigned int s;

int first,second,third;

if(x > 255) /*if negative™/

{
X=~X; /*complement temp*/
X++; /*add 1 for 2s comp*/
x=x & OxFF; [*exiract lower 8 bifs*/

X=X/2; /*get real temp*/

Temperature Projects '| '| 5

first=14;
second=x/10;

third=x-10*second;

}

else

{
X=X/2;
first=x/100;
s=x-100*first;
second=s/10;

third=s-second*10;

P1=first | OxEO;
digit1_latch=0;
digit1_latch=1;

P1=second | OxEO;
digit2_latch=0;
digit2_latch=1;

P1=third | OxEO;
digit3_latch=0;
digit3_latch=1;

/*display leading ‘E"*/

/*temp is positive*/
[*extract digit data*/

/*Send digit1 data*/
/*Latch the digit1 data*/
/*Set digit1 lafch on*/

/*Send digit2 data*/
/*Latch the digit2 data*/
/*Set digit2 latch on*/

/*Send digit3 data*/
/*Latch digit3 data*/
/*Set digit3 latch on*/

/* This function sends a data bit to DS1620 thermometer IC */
void write_ds1620_bit(unsigned char b)

{

ds1620_dg=b;
ds1620_clk=0;
ds1620_clk=1;
ds1620_dag=1;

/*send bit*/

/*set clock 0%/
/*set clock 1*/
/*set data 1*/

/* This function reads a data bit from DS1620 */
unsigned char read_ds1620_bitQ)

{

unsigned char b;

ds1620_clk=0;
b=ds1620_daq;
ds1620_clk=1;
return (b);

/*set clock 0%/
/*read a bit*/
/*set clock 1*/
[*return bit*/

/* This function writes data/configuratfion to DS1620 */

'| '| 6 Microcontroller Projects in C for the 8051

void write_to_ds1620(unsigned char ds1620_function,
unsigned char ds1620_data,
unsigned char bit_count)

{
unsigned char i,this_bit;

ds1620_rst=1; /*set reset to 1%/
for(i=0;i<8;i++) /*send function...*/
{
this_bit=ds1620_function >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
1
for(i=0;i<bit_count;i++) /*send data...*/
{
this_bit=ds1620_data >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
1
ds1620_rst=0;
1 /*set reset to 0%/

/* This function reads data/configuration from the DS1620 */
unsigned int read_from_ds1620(unsigned char ds1620_function,
unsigned char bit_count)
{

unsigned char i,this_bit;

unsigned int ds1620_data;

ds1620_data=0; /¥initialize data*/
ds1620_rst=1; /*set reset to 1%/
for(i=0;i<8;i++)

{ /*send function...*/

this_bit=ds1620_function >> i;

this_bit=this_bit & 0x01;

write_ds1620_bit(this_bit);
} /*read data*/
for(i=0;i<bit_count;i++)
{

ds1620_data=ds1620_data | read_ds1620_bit(Q << i
}
ds1620_rst=0;
refurn (ds1620_data);

/* This function configures the DS1620 for continuous operation */
void configure_ds16200)

Temperature Projects '| '| 7

write_to_ds1620(write_config,2.8);
wait_a_second():

/* This function starts the conversion */
void start_temp_conv()
{

write_to_ds1620(start_conv,0,0);

/* This function reads the temperature */
unsigned int read_temperature()
{

unsigned int t;

t=read_from_ds1620(read_temp.9); /*read temp*/
return (1); /*retun femp*/

/* Start of main program */
main()
{

unsigned int TEMP;

digit1_latch=1; /*Set digit1 latch*/

digit2_latch=1; /*set digit2 latch*/

digit3_latch=1; /*set digit3 latch*/

configure_ds16200):; /*configure DS1620%/

start_temp_conv(Q; /*start conversion*/

forC:;) /*endless loop*/

{
TEMP=read_temperature(); /*read temperature®/
display_temperature(TEMP); /*Output to TIL311*/
wait_a_second(); /*wait a second”/

}

}
Figure 5.4.

Program listing of Project 17

for continuous operation. Temperature conversion is then started by calling the
function start_temp_conversion. This function sends protocol EE (hex) to
the DS1620. An endless loop is then formed using the for statement
with no parameters. Inside this loop, function read temperature reads

'| '| 8 Microcontroller Projects in C for the 8051

the 9-bit temperature value and returns in variable TEMP. Function
display_temperature displays the temperature on the three TIL311 displays.
This loop is repeated with about a 1 second delay between each output.

Function read_temperature returns the temperature to the calling program as
an unsigned integer. This function calls function read from_ds1620 with the
argument AA (in hex) to get the temperature. Function read_from_ds1620 is a
general routine which reads data from the DS1620. This function sends a
protocol data to the DS1620 and then reads data bytes from the DS1620
corresponding to the sent protocol. The RST input of the device is first set to 1.
A for loop is then formed to iterate eight times to send serial protocol data to
the DS1620. LSB is sent out first. Local variable this_bit stores the bit to be
sent out at each iteration. Another for loop reads data from the DS1620 and
stores this data in variable ds/620_data. At the end of the read cycle the RST
input is set back to 0 and the data in ds/620_data is returned to the caller.

Function write_to_ds1620 is a general function and it sends a protocol,
followed by data bits, to the DS1620. The RST input of the DS1620 is first
set to 1. A for loop is then formed to iterate eight times and the protocol bits
are sent out serially to the DQ input of the DS1620. Variable this_bit stores the
bit to be sent out at each iteration. After this, another for loop sends out the
required number of data bits to the DS1620. At the end of the write cycle, the
RST input is returned to 0.

Function display_temperature receives the temperature data as its argument
and displays the temperature on the three TIL311 type alphanumeric displays.
If the temperature is negative, the first display digit is set to display letter ‘E’.
The temperature value to be displayed is divided by 2 since the temperature is
returned by the DS1620 in 0.5°C intervals. For example, a reading of decimal
100 corresponds to 50°C. Each digit is displayed after converting the data to
decimal format.

Components Required

In addition to the basic components required by the microcontroller, the
following components will be required for this project:

DS1620 thermometer IC
TIL311 alphanumeric displays (3 off)

Temperature Projects '| '| (?

PROJECT 18 - Digital Thermometer with Centigrade/
Fahrenheit Output

Function

This project is similar to Project 17, but in addition the outputs can display the
temperature in both Centigrade (°C) and Fahrenheit (°F). An SPDT switch is
connected to bit 3 of port 3 and the output of this switch is normally held at
logic high with a pull-up resistor. In this state the output display is in °C. When
the switch is pressed, the display changes to show the temperature in °F. The
rest of the project is the same as Project 17, i.e. the temperature is measured
with a DS1620 type thermometer IC and the output is displayed on three
TIL311 type alphanumeric displays.

Circuit Diagram

The block diagram of this project is shown in Fig. 5.5. The circuit diagram is
similar to the circuit of Project 17 with the addition of an SPDT switch to bit 3
of port 3. The temperature is sensed by the DS1620 thermometer IC and the
output is displayed either in °C or in °F based upon the state of the SPDT
switch. The full circuit diagram is shown in Fig. 5.6.

Program Description

The program is the same as the one in Project 17 except that the state of the
SPDT switch is monitored and when the switch is pressed, the temperature is
converted from °C to °F and then displayed accordingly. Negative tempera-
tures are displayed by inserting the leading letter ‘E’.

Alphanumeric displays

Ds1620 < TIL TIL TIL
MICRO- 311 311 31
CONTROLLER
Thermostat IC T T T
centigrade

Block diagram of Project 18

Figure 5.5.

'| 20 Microcontroller Projects in C for the 8051

+5V4
VbD DA 2| P3.0 (RXD)VCC P1.7f
DS1620
2 3 8
+ lonp O P3.1 (TXD) P16
= RsTl_s | P32(NTO) P15
A
1| P33(NTY) P14 +5V¢ +5V +5V
*8V o | p3a(ro — = B
- P24(T0) P1.3 21D 21D 21D
=1 P35 (T1) Propdy 1] c ulc slc
. | 89C2051 TIL311 TIL311 TIL311
= e | P37 Prapdl, 218 218 —21B
1 DIGIT 3
- RESET ook || 5| AP .| \DieIT2 2]
| 8NP
= | xTu XTL2 hl S N] ,\|]
R1 < T L ‘ = L
8.2K - - -
[] C1 L |I:II 1 C2 -
33pF] 12M T
33pF
— +5V 1 1
R2 ,
100K centigrade

Fahrenheit
s1

Figure 5.6.
Circuit diogram of Project 18

Program Listing

The full program listing of this project is shown in Fig. 5.7. Only the parts
which are different from Project 17 are described here. Variable mode is
assigned to bit 3 of port 3. The value of mode is checked in function
display_temperature. If mode is zero (i.e. in Fahrenheit mode), the temperature
is converted to °F by multiplying by 1.8 and adding 32. The final temperature
is then displayed as in Project 17.

Components Required

In addition to the standard components required by the microcontroller, the
following components will be required for this project:

Temperature Projects '| 2 '|

IéROJECT: PROJECT 18
FILE: PROJ18.C
DATE: August 1999
PROCESSOR: AT892051

This is a temperature monitoring project. A DS1620 type digital thermometer is used to
read the ambient temperature. The femperature is then displayed on three TL311 type
alphanumeric displays. The femperature range is —55°C to +125°C. Positive temperature
is displayed with leading zeros. Negative temperatures are displayed by inserting the
letter 'E’ in front of the display. The display accuracy is +/—1°C, i.e. there is no decimal
point in the displayed data.

The display is updated every second.

Bit 3 of port 3 is connected to a switch. This switch is normally held at logic 1 with a pull-up
resistor. When the switch is 1, the femperature is displayed in degrees centigrade. When
the switch is 0, the temperature is displayed in degrees Fahrenheit.

/
#include <AT892051.h>

sbit digit1_latch = P1A7; /*digit 1 latch*/

sbit digit2_latch = P1A¢; /*digit 2 latch*/

sbit digit3_latch = P1A5; /*digit 3 latch*/

sbit mode = P3A3; /*centigrade/fahrenheit select™/
sbit ds1620_dqg = P3A0; /*DS1620 data pin*/

sbit ds1620_clk = P3A1; /*DS1620 clock pin*/

sbit ds1620_rst = P3A2; /*DS1620 reset pin*/

#define read_temp OxAA /*read temp command*/
#define start_conv OxEE /*start conversion command®/
#define write_config Ox0C /*write config command®/

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to display data on three TIL311 displays. Negative temperature is displayed
with a leading ‘E’ character. Display range is —55 to +125. */

void display_temperature(unsigned int x)

{
unsigned int s;

int first,second,third;

'| 22 Microcontroller Projects in C for the 8051

/* This function sends a data bit to DS1620 thermometer IC */

if(x > 255)
{
X=~X;
X++;
x=X & OxFF;
X=X/2;

if(mode == 0)x=1.8"x+32;

first=14;
second=x/10;
third=x-10"*second;
}
else
{
X=X/2;

if(ode == 0)x=1.8"x+32;

first=x/100;
s=x-100*first;
second=s/10;
third=s-second*10;

P1=first | OxEO;
digit1_latch=0;
digit1_latch=1;

Pl=second | OxEO;
digit2_latch=0;
digit2_latch=1;

P1=third | OXEO;
digit3_latch=0;
digit3_latch=1;

/*if negative®/

/*complement temp*/
/*add 1 for 2s comp*/
/*extract lower 8 bits*/
/*get real temp*/

/*in fahrenheit*/
/*display leading “E"*/

/*temp is positive™/
/*in fahrenheit™/
/*extract digit data*/

/*Send diigit1 data*/
/*Latch the digit1 data*/
/*Set digit1 latch on*/

/*Send digit2 data*/
/*Latch the digit2 data®/
/*Set digit2 latch on*/

/*Send digit3 data*/
/*Latch digit3 data*/
/*Set digit3 latch on*/

void write_ds1620_bit(unsigned char b)

{

ds1620_dg=b;
ds1620_clk=0;
ds1620_clk=1;
ds1620_dg=1;

/*send bit*/

/*set clock 0%/
/*set clock 1%/
[*set data 1*/

/* This function reads a data bit from DS1620 */
unsigned char read_ds1620_bitQ)

{

Temperature Projects '| 2 3

unsigned char b;

ds1620_clk=0; /*set clock 0%/
b=ds1620_dq; /*read a bit*/
ds1620_clk=1; /*set clock 1*/
return (b); /*return bit*/

/* This function writes data/configuration to DS1620 */
void write_to_ds1620(unsigned char ds1620_function,
unsigned char ds1620_data, unsigned char bit_count)

unsigned char i this_bit;

ds1620_rst=1; /*set reset to 1%/
for(i=0;i<8;i++) /*send function...”/
{
this_bit=ds1620_function >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
}
for(i=0;i<bit_count;i++) /*send data...”/
{
this_bit=ds1620_data >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
}
ds1620_rst=0;
1 /*set reset to 0*/

/* This function reads data/configuration from the DS1620 */
unsigned int read_from_ds1620(unsigned char ds1620_function,
unsigned char bit_count)

unsigned char i.this_bit;
unsigned int ds1620_data;

ds1620_data=0; /*initialize data®/
ds1620_rst=1; /*set reset to 1%/
for(i=0;i<8;i++)

{ /*send function...*/

this_bit=ds1620_function >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
} /*read data*/
for(i=0;i<bit_count;i++)

'| 24 Microcontroller Projects in C for the 8051

ds1620_data=ds1620_data | read_ds1620_bit() << i;
}
ds1620_rst=0;
refurn (ds1620_data);
}

/* This function configures the DS1620 for continuous operation */
void configure_ds16200
{
write_to_ds1620(write_config,2,8);
wait_a_second();
}

/* This function starts the conversion */
void start_temp_conv()
{
write_to_ds1620(start_conv,0,0);
}

/* This function reads the temperature */
unsigned int read_temperature()
{

unsigned int t;

t=read_from_ds1620(read_temp.9): /*read temp*/
return (1); [*return temp*/
}

/* Start of main program */
mainQ)
{

unsigned int TEMP;

digit1_latch=1; /*Set digit1 latch*/

digit2_latch=1; /*set digit2 latch*/

digit3_latch=1; /*set digit3 latch*/

configure_ds16200; /*configure DS1620%/

start_temp_conv(); /*start conversion*®/

for(:;) /*Start of endless loop*/

{
TEMP=read_temperature(); /*read temperature®/
display_temperature(TEMP); /*Outpuf to TIL311*/
wait_a_second(); /*wait a second”/

}

}
Figure 5.7.

Program listing of Project 18

Temperature Projects '| 2 5

DS1620 thermometer IC

TIL311 alphanumeric displays (3 off)
Sl SPDT switch

R2 100K, 0.125 W resistor

PROJECT 19 - Digital Thermometer with High Alarm
Output

Function

This project is similar to Project 17 but a buzzer is connected to the THIGH
output of the DS1620 thermometer IC, via a MOSFET transistor. When the
temperature exceeds a preset value the buzzer turns on and stays on as long as
the temperature is above this value. In this project the alarm sounds when the
temperature is equal to or greater than 25°C.

Circuit Diagram

The circuit diagram of this project is shown in Fig. 5.8. The DS1620 ther-
mometer IC and the TIL311 displays are connected as in Projects 17 and 18. A
small buzzer is connected to the THIGH output of the DS1620 via a MOSFET
power transistor. Normally the THIGH output is at logic low level and this
output goes to logic high when the temperature exceeds the value TH stored in
the non-volatile memory of the DS1620.

Program Description

The program is basically the same as the one in Project 17 except that the
temperature high limit (TH) is set to 50 so that the THIGH output goes high
when the temperature is equal to or exceeds 25°C and this turns on the buzzer
to give a warning sound.

Program Listing

The full program listing is shown in Fig. 5.9. In addition to the program listing
of Project 17, a function called set_thigh is added to load the temperature high
limit. This function sends protocol number 01 to the DS1620 and then sends
the data value 50 to set TH to 25°C.

Required Components

In addition to the components used for Project 17, a MOSFET transistor (e.g.
VN66AFN) and a small buzzer will be required for this project.

'| 26 Microcontroller Projects in C for the 8051

+5V4
o o
VDD D@12 P3.0 (RXD)VCC P1.7f2
DS1620
2.3 A (TXD P1.6f&
4 lonp CLK P3.1()
- 3 6 . P1.5{
LTHIGP‘?ST P3.2 (INTO)
2 P3.3(INT1) P1.4p8
+5V
-2] P3.4(T0) P13
21 P3.5(T1) P1.204
o3 89C2051
5 g] P37 P1.143
1
LT
= | XTL1 XTL2
R1 < Al ol
8.2K 1
H C1 L ||:I[L, C2

+5V4 +5V
21D 21D
Bl C 3] C
TIL3NM TIL311
2. B —i-4 B
N ADIGIT1 5 ADIGITZ

+5VT

T 33pF

+5

Figure 5.8.

Circuit diagram of Project 19

\
B1
BUZZER
T1
l NMOSFET

D

c

TIL311
B

DIGIT 3
A

PROJECT 20 - Digital Thermometer With High and Low

Alarm Outputs

Function

This project is similar to Project 19 except that the DS1620 is programmed so
that a buzzer connected to the TCOM output of DS1620 turns on when the
temperature is equal to or greater than TH and it then turns off only when the
temperature drops below or equal to TL. In this project, TL is set to 25°C and

TH is set to 30°C.

Temperature Projects '| 27

I/:’ROJECT: PROJECT 19
FILE: PROJ19.C
DATE: August 1998
PROCESSOR: AT892051

This is a femperature monitoring project. A DS1620 type digital thermometer is used to
read the ambient temperature. The temperature is then displayed on three TL311 type
alphanumeric displays. The temperature range is —55°C to +125°C. Positive femperature
is displayed with leading zeros. Negative temperatures are displayed by inserting the
letter 'E’ in front of the display. The display accuracy is +/—1°C, i.e. there is no decimal
point in the displayed data.

The display is updated every second.

A buzzer alarm is connected to the THIGH output of DS1620. DS1620 IC is loaded so that
an alarm (buzzer) is generated when the temperature is above 25°C.

/
#include <AT892051.h>
sbit digit1_latch = P1A7; /*digit 1 latch*/
sbit digit2_latch = P1A6; /*digit 2 latch*/
sbit digit3_latch = P1AS; /*digit 3 latch*/
sbit ds1620_dq = P3A0; /*DS1620 data pin*/
sbit ds1620_clk = P3AT1; /*DS1620 clock pin*/
sbit ds1620_rst = P3A2; /*DS1620 reset pin*/
#define read_temp OxAA /*read temp command*/
#define start_conv OxEE /*start conversion command®/
#define write_config Ox0C /*write config command®/
#define write_thigh 0x01 /*write THIGH*/

/* Function to delay about a second */
void wait_a_second(
{

unsigned int x;

for(x=0;x<33000;x++);

/* Function to display data on three TIL311 displays. Negative temperature is displayed
with a leading 'E’ character. Display range is —55 to +125. */

void display_temperature(unsigned int x)

{
unsigned int s;

int first,second,third;

'| 28 Microcontroller Projects in C for the 8051

if(x > 255) /¥if negative®/

{
X=~X; /*complement temp*/
X++; /*add 1 for 2s comp*/
x=X & OxFF; [*extract lower 8 bits*/
X=X/2; /*get real temp*/
first=14; /*display leading ‘E"*/

second=x/10;
third=x-10*second;
}

else

{
X=X/2; /*temp is positive®/
first=x/100; /*extract digit data*/

s=x-100*first;
second=s/10;
third=s-second*10;

P1=first | OXEO; /*Send digit1 data*/
digit1_latch=0; /*Latch the digit1 data*/
digit1_latch=1; /*Set digit1 latch on*/
Pl=second | OxEO; /*Send digit2 data*/
digit2_latch=0; /*Latch the digit2 data*/
digit2_latch=1; /*Set digit2 latch on*/
P1=third | OxEO; /*Send digit3 data*/
digit3_latch=0; /*Latch digit3 data*/
digit3_latch=1; /*Set digit3 latch on*/

/* This function sends a data bit to DS1620 thermometer IC */
void write_ds1620_bit(unsigned char b)
{

ds1620_dg=Db; /*send bit*/

ds1620_clk=0; /*set clock 0%/
ds1620_clk=1; /*set clock 1*/
ds1620_dg=1; /*set data 1%/

/* This function reads a data bit from DS1620 */
unsigned char read_ds1620_bit()
{

unsigned char b;

Temperature Projects '| 29

ds1620_clk=0; /*set clock 0%/
b=ds1620_dq; /*read a bit*/
ds1620_clk=1; /*set clock 1%/
return (b); [*return bit*/

/* This function writes data/configuration to DS1620 */
void write_to_ds1620(unsigned char ds1620_function,
unsigned char ds1620_data, unsigned char bit_count)

unsigned char i,this_bit;

ds1620_rst=1; /*set reset to 1%/
for(i=0;i<8;i++) /*send function...”/
{
this_bit=ds1620_function >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
}
for(i=0;i<bit_count;i++) /*send data...”/
{
this_bit=ds1620_data >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
}
ds1620_rst=0;
} /*set reset to 0*/

/* This function reads data/configuration from the DS1620 */
unsigned int read_from_ds1620(unsigned char ds1620_function,
unsigned char bit_count)

unsigned char i.this_bit;
unsigned int ds1620_data;

ds1620_data=0; /¥initialize data®/
ds1620_rst=1; /*set reset to 1%/
for(i=0;i<8;i++)

{ /*send function...”/

this_bit=ds1620_function >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);

} /*read data*/

for(i=0;i<bit_count;i++)

{

'| 30 Microcontroller Projects in C for the 8051

ds1620_data=ds1620_data | read_ds1620_bit() << i;
}
ds1620_rst=0;
return (ds1620_data);

/* This function configures the DS1620 for contfinuous operation */
void configure_ds16200
{

write_to_ds1620(write_config,2,8);

wait_a_second();

/* This function starts the conversion */
void start_temp_conv(
{

write_to_ds1620(start_conv,0,0);

/* This function reads the temperature */
unsigned int read_temperature()
{

unsigned int t;

t=read_from_ds1620(read_temp.9); /*read temp*/
return (); [*retun temp*/

/* This function writes to the THIGH register */
void set_thigh(nt t)
{
write_to_ds1620(write_thigh.t,9);
wait_a_second();

/* Start of main program */
mainQ
{

unsigned int TEMP;

digit1_latch=1; /*Set digit1 latch*/
digit2_latch=1; /*set digit2 latch*/
digit3_latch=1; /*set digit3 latch*/

configure_ds16200; /*configure DS1620%/

Temperature Projects '| 3 '|

set_thigh(50); /*set THIGH for 25C*/

start_temp_conv(; /*start conversion®/

for(:;) /*endless loop*/

{
TEMP=read_temperature(; /*read temperature®/
display_temperature(TEMP); /*Output to TIL311*/
wait_a_second(; /*wait a second”/

}

}
Figure 5.9.

Program listing of Project 19

Circuit Diagram

The circuit diagram of this project is same as in Fig. 5.8 except that the
MOSFET transistor is connected to pin 5 (TCOM) of the DS1620 instead of
pin 7 (see block diagram, Fig. 5.10). A small buzzer is connected to the TCOM
output of the DS1620 via a MOSFET power transistor. Normally the TCOM
output is at logic low level and this output goes to logic high when the
temperature exceeds the value TH (stored in the non-volatile memory of the
DS1620) and then goes back to logic low when the temperature is equal to or
less than TL.

Program Description

The program is basically the same the as the one in Project 19 except that the
temperature high limit (TH) is set to 60 so that THIGH output goes high when

Thermostat 1C. Alphanumeric displays
Ds1620 <«—» MICRO- TIL TIL TIL
TCOM CONTROLLER 3 3 3
MOSFET T T T

Figure 5.10.
Block diagram of Project 20

'| 32 Microcontroller Projects in C for the 8051

the temperature is equal to or exceeds 30°C and TL is set to 50 so that the
TCOM output goes back to 0 when the temperature drops to 25°C or below,
i.e. the buzzer will turn on when the temperature reaches 30°C and it will go off
only when the temperature drops to 25°C or below.

Program Listing

The full program listing is shown in Fig. 5.11. This listing is the same as the
listing in Project 19 with the addition of a function called sez_tlow which sets
the low limit (TL) of the DS1620.

Required Components

This project uses the same components as in Project 19.

PROJECT 21 - Using Analogue Temperature Sensor IC with
A/D Converter

Function

This project shows how we can connect an analogue-to-digital (A/D) converter
IC to our microcontroller. In this project, an analogue temperature sensor IC
(LM35DZ) is used and its output is connected to an 8-bit A/D converter
(ADCO0804). The temperature is then displayed every second on a TSM5034
type 4-digit display. The block diagram of this project is shown in Fig. 5.12.

The A/D converter shown in this project can be connected to any kind of
analogue voltage. For example, a digital voltmeter can be constructed easily by
connecting the A/D converter input to an external voltage which is to be
measured.

Circuit Diagram

Before looking at the circuit diagram of this project, it will be useful if we look
at the ways an A/D converter can be connected to a microcontroller. There are
many types of A/D converters available on the market. Some converters
provide serial output data such that the output data is obtained from the
converter each time a clock pulse is sent to the converter. These converters are
very slow and are generally used where the speed of conversion is not
important and where space saving is required. Serial A/D converters
interface to a microcontroller by using only a few pins.

Standard A/D converters are generally used in medium- and high-speed
applications. An example of such an A/D converter is the ADC0804,

Temperature Projects '| 3 3

I/DROJECT: PROJECT 20
FILE: PROJ20.C
DATE: August 1999
PROCESSOR: AT892051

This is a temperature monitoring project. A DS1620 type digital thermometer is used to
read the ambient tfemperature. The temperature is then displayed on three TL311 type
alphanumeric displays. The temperature range is —55°C to +125°C. Positive femperature
is displayed with leading zeros. Negative temperatures are displayed by inserfing the
letter 'E’ in front of the display. The display accuracy is +/—1°C. i.e. there is no decimal

point in the displayed data.

The display is updated every second.

A buzzer alarm is connected to the TCOM output of DS1620. DS1620 IC is loaded so that
an alarm (buzzer) is generated when the temperature is above 30°C and the alarm
stops when the femperature drops below 25°C, i.e. THIGH is loaded with 30°C and TLOW

is loaded with 25°C

#include <AT892051.h>

sbit digit1_latch = P1A7;
sbit digit2_latch = P116;
sbit digit3_latch = P1A5;

sbit ds1620_dq = P3AQ;
sbit ds1620_clk = P3A1;
sbit ds1620_rst = P3A2;

#define read_temp OxAA
#define start_conv OxEE
#define write_config Ox0C
#define write_thigh 0x01
#define write_tlow 0x02

/*digit 1 latch*/
/*digit 2 latch*/
/*digit 3 latch*/

/*DS1620 data pin*/
/*DS1620 clock pin*/
/*DS1620 reset pin*/

/*read temp command*/
/*start conversion command*/
[*write config command*®/
[*write THIGH"/

[*write TLOW*/

/* Function to delay about a second */

void wait_a_second()
{
unsigned int x;
for(x=0;x<33000;x++);

/

/* Function to display data on three TIL311 displays. Negative temperature is displayed
with a leading ‘E’ character. Display range is —55 to +125. */

void display_temperature(unsigned int x)

{
unsigned int s;

'| 34 Microcontroller Projects in C for the 8051

int first,second,third;

if(x > 255) /¥if negative™/

{
X=~X; /*complement temp*/
X++; /*add 1 for 2s comp*/
x=x & OxFF; [*extract lower 8 bits*/
X=X/2; /*get real temp*/
first=14; /*display leading 'E"*/

second=x/10;
third=x-10*second;
}

else

{
X=X/2; /*temp is positive*/
first=x/100; [*extract digit data*/

s=x-100*first;

second=s/10;

third=s-second*10;
1

P1=first | OxEO; /*Send digit1 data*/
digit1_latch=0; /*Latch the digit1 data*/
digit1_latch=1; /*Set digit1 latch on*/
P1=second | OxEO; /*Send digit2 data*/
digit2_latch=0; /*Latch the digit2 data®/
digit2_latch=1; /*Set digit2 latch on*/
P1=third | OxEO; /*Send digit3 data*/
digit3_latch=0; /*Latch digit3 data*/
digit3_latch=1; /*Set digit3 latch on*/

/* This function sends a data bit to DS1620 thermometer IC */
void write_ds1620_bit(unsigned char b)
{

ds1620_dg=Db; /*send bit*/

ds1620_clk=0; /*set clock 0%/
ds1620_clk=1; /*set clock 1%/
ds1620_dao=1; [*set data 1*/

/* This function reads a data bit from DS1620 */
unsigned char read_ds1620_bitQ
{

unsigned char b;

Temperature Projects '| 35

ds1620_clk=0; /*set clock 0%/
b=ds1620_dq; /*read a bit*/
ds1620_clk=1; /*set clock 1%/
return (b); [*return bit*/

/* This function writes data/configuration to DS1620 */
void write_to_ds1620(unsigned char ds1620_function,
unsigned char ds1620_data, unsighed char bit_count)

unsigned char i,this_bit;

ds1620_rst=1; /*set reset to 17/
for(i=0;i<8;i++) /*send function...”/
{
this_bit=ds1620_function >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
}
for(i=0;i<bit_count;i++) /*send data...”/
{
this_bit=ds1620_data >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);
}
ds1620_rst=0;
} /*set reset to 0%/

/* This function reads data/configuration from the DS1620 */
unsigned int read_from_ds1620(unsigned char ds1620_function,
unsigned char bit_count)

unsigned char ithis_bit;
unsigned int ds1620_data;

ds1620_data=0; /¥initialize data*/
ds1620_rst=1; /*set reset to 1%/
for(i=0;i<8;i++)

{ /*send function...*/

this_bit=ds1620_function >> i;
this_bit=this_bit & 0x01;
write_ds1620_bit(this_bit);

} /*read data*/

for(i=0;i<bit_count;i++)

{

'| 36 Microcontroller Projects in C for the 8051

ds1620_data=ds1620_data | read_ds1620_bit() << i;
}
ds1620_rst=0;
return (ds1620_data);

/* This function configures the DS1620 for continuous operation */
void configure_ds16200
{

write_to_ds1620(write_config,2.8);

wait_a_second();

/* This function starts the conversion */
void start_temp_conv()
{

write_to_ds1620(start_conv,0,0);

/* This function reads the temperature */
unsigned int read_temperature()
{

unsigned int t;

t=read_from_ds1620(read_temp.9); /*read temp*/
return (); [*return temp*/

/* This function writes to the THIGH register */
void set_thigh(nt t)
{
write_to_ds1620(write_thigh,1,9);
wait_a_second():;

/* This function writes to the TLOW register */
void set_tlow(nt 1)
{
write_to_ds1620(write_flow.1,9);
wait_a_second();

/* Start of main program */
main()
{

Temperature Projects '| 37

unsigned int TEMP;

digit1_latch=1; [*set digit1 latch*/
digit2_latch=1; [*set digit2 latch*/
digit3_latch=1; /*set digit3 latch*/
configure_ds16200); /*configure DS1620%/
set_thigh(60); /*set THIGH for 30C*/
set_tlow(50); /*set TLOW for 25C*/
start_temp_convQ; /*start conversion®/
for(:;) /*endless loop*/

{
TEMP=read_temperature(); /*read temperature™/
display_temperature(TEMP); /*Output to TIL311*/
wait_a_second(); /*wait a second®/

}
Figure 5.11.

Program listing of Project 20

13“;[)2 .| ADC P 89C —» TSM5034
d 0804 2051

v

4-digit display
Temperature sensor

A/D converter
Microcontroller

Figure 5.12.
Block diagram of Project 21

manufactured by the National Semiconductor Corporation. The conversion
time of this A/D converter is 100 pus. As shown in Fig. 5.13, these converters
interface to the microcontroller using the following pins (only the pins used in a
standard application are shown):

DB0-DB7 8 data output pins
RD Read input

WR Write input
INTR Interrupt output

'| 38 Microcontroller Projects in C for the 8051

—| CLKR DRI
CLKIN
] 8 data outputs
DBO -
Analogue IN 1
—— | VIN+
ADC0804
—»| RD
INTR TP Conversion complete
—»| wr
Figure 5.13.

ADC0804 Functional pin configuration

CLK R/CLK IN Clock control inputs
VIN + Positive analogue input

DBO to DB7 are the digital output lines and the converted data appears on
these eight lines. An 8-bit converter has 256 possible combinations (0 to 255) of
output bit patterns. With a full-scale voltage of +5V, the accuracy of the
converter is 5/256=19.53mV. For example, a digital output pattern of
‘00010000 (i.e. decimal 16) corresponds to 312.48 mV. Similarly, a digital
output pattern of ‘10100000” (i.e. decimal 160) corresponds to 3124.8 mV or
3.124V and so on.

RD is the read data control pin and when RD is low (logic 0), output data
appears on the eight output pins. When RD is high (logic 1), the output is not
available.

WR input is normally at logic high and this input should be set to low and then
high again for a conversion to start.

INTR is the interrupt output of the A/D converter. A high to low pulse is
generated on this pin when a conversion is complete. This output is usually
used to generate an interrupt in the microcontroller so that the converted data
can be read.

ADCO0804 contains an internal oscillator and it is required to connect an
external resistor and a capacitor to pins CLK R and CLK IN to start the
oscillator.

VIN + is the pin where the analog input voltage should be applied.

Temperature Projects '| 39

+5V4
RS “’rx"—’l
CLK}2-21 P3.0 (RXD)VCC
+{ ISM DATA 1421 P3.1(TXD)
cs EGND
I ol P3.2 (INTO}& 21 RD
- = P3.4 (TO) {& 3] WR
P3.3 (INTT)[Z 21 INTR
P1.7f2 4 o7
+5V p1.6he 12 | ps
P 1o ADC0804 "
4 A
2| P3.5(T1) P14 12 15 E: Vin+ |8 ouT
c3 89C2051 P1.3 Lm3sDZ
=33 10pF a1 P37 P1.2p4 180 D2 GN
, P14 1 D1
" RESET p10kz 1 | o 1
{2 GND 1 | clkr i
N = | xTu1 XTL2 R2
s Il
H a2k ||:]| '™ cLkiNGs GND GND Vin]
c1 L L C2
33pF 12M T 33pF ca :L fl_ jl_ :I_
—T-— . I150pF - - = =
+8V R4 []R3
Figure 5.14.

Circuit diagram of Project 21

To make a single conversion the operation of the A/D converter can be
summarized using the following steps:

Set WR and RD high

Start conversion by setting WR low

Set WR back to high

Detect end of conversion when INTR goes low (usually by interrupt)
Set RD low and read data from DBO0 to DB7

Set RD high

The above process is of course repeated when more than one conversion is
required.

Figure 5.14 shows the full circuit diagram of Project 21. Data and clock inputs
of the TSM 5034 are connected to bits 1 and 0 of port 3 respectively. The eight

'| 40 Microcontroller Projects in C for the 8051

data outputs of the ADC0804 are connected to port 1. RD input is connected
to bit 2 of port 3. WR is connected to bit 4 of port 3. The interrupt output,
INTR, of the A/D converter is connected to bit 3 of port 3 which is the external
interrupt 1 (INT1) pin of the microcontroller. Analogue input voltage is
applied to pin 6 of the A/D converter and this input can be connected to
any kind of analogue voltage which is to be measured.

In this project, analogue data comes from an LM35DZ type IC analogue
temperature sensor. LM35DZ is a simple temperature sensor IC. Pin 1 of the
device is connected to a power supply (e.g. +5V), pin 3 is connected to the
ground. Pin 2 is the output and this output provides a voltage which is directly
proportional to the measured temperature. The device can measure tempera-
tures from 2°C up to 100°C (some types can measure a wider range) and the
output voltage to temperature relationship is 10 mV/°C. For example, at 20°C
the output is 200 mV. Similarly, at 35°C, the output voltage is 350 mV, and so
on. Internal oscillator of the A/D converter is activated by connecting an
external resistor and a capacitor to pins CLK R and CLK IN. Notice that bits
0 and 1 of port 1 are connected to +5V using pull-up resistors. This is
necessary in some applications since the output drivers at these pins are open
drain (i.e. there are no internal pull-up resistors).

Program Description

The display part of the program is as described in the light projects section of
the book. We shall therefore look at the way the A/D converter is controlled by
the software. The following PDL describes the operation of the project:

Main program

START
Clear display
Initialize microcontroller interrupts and A/D converter
Start conversion
DO FOREVER
ENDDO
END

Initialization function

START
Set A/D RD and WR pins to 1
Set INT1 to accept interrupts on high-to-low edge
Enable INT1 interrupts
Set microcontroller to accept interrupts
END

Temperature Projects '| 4"

Start conversion function

START
Set WR pin to 0
Set WR pin to 1
END

External interrupt INT1 service routine

START
Set RD to 0
Read temperature
Convert to mV
Set RD to 1
Display temperature
Wait a second
Start conversion
END

The program clears the display and then initializes the microcontroller so that
external interrupts on pin INT1 can be recognized. The A/D is then initialized
and the conversion started. At the end of a conversion, an interrupt is
generated by the A/D converter and execution jumps to the INT1 service
routine. Here, the converter data is read and displayed on the TSM5034
display. At the same time a new conversion is restarted.

Program Listing

The complete program listing is shown in Fig. 5.15. Display clock and display
data variables are assigned to pins 0 and 1, respectively, of port 3 of the
microcontroller. Similarly, A/D RD and A/D WR variables are assigned to
pins 2 and 4 of port 3 of the microcontroller. When the program starts it first
clears the display. Function initialize is then called to set the A/D RD and WR
inputs (4ADC_RD and ADC_WR) to 1. External interrupt pin INTI of the
microcontroller is also set (/7'/ = 1) in this routine to accept interrupts on high-
to-low transition and the microcontroller is configured to accept interrupts
(EA =1). Function start_conversion is then called to start an A/D conversion.
This function simply sets the WR input of the A/D to 0 and then back to 1. The
program then enters an endless loop and waits for external interrupts on its
INT] pin.

INTI has the interrupt number of 2. When a conversion is complete, control
passes to the interrupt service routine int/. In this routine, RD input of the A/D
converter is set to 0 to enable the output buffers and then the digital data is
read into port 1 of the microcontroller. The value read is then converted to true

'| 42 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 21
FILE: PROJ21.C
DATE: August 1999
PROCESSOR: AT892051

This is a digital tfemperature, using an analogue-to-digital converter.

An ADC0804 type A/D converter is connected to port 1 of the microcontroller. Also, a
TSM5034 type 4-digit display is connected to port 3. The microcontroller controls both the
display and the A/D converter.

An LM35DZ type analogue temperature sensor IC is used to measure the temperature.
The voltage output of the LM35DZ is fed to the analogue input of the A/D converter.
Temperatures from 0°C up to 100°C, in steps of 0.5°C, are displayed on the 4-digit
display.

/
#include <AT892051.h>

sbit DISPLAY_CLOCK=P3A0; /*display clock*/

sbit DISPLAY_DATA =P3/1; /*display data*/
sbit ADC_RD = P3A2; /*A-D RD input*/
sbit ADC_WR = P3A4; /*A-D WR input*/

unsigned int TEMPERATURE; /*A-D data*/

/* This function provides a 1 second delay */
void wait_a_second()
{

unsigned int x;

for(x=0;x<33000;x++);

/* This function ends a clock pulse to the display */
void send_clock(
{

DISPLAY_CLOCK=1;

DISPLAY_CLOCK=0;

/* This function displays a digit */
void display_digit(int x,char dp)
{
unsigned char LED_ARRAY[11]=
{
OxFC .0x60,0xDA 0xF2,0x66,0xB6,
OxBE ,OxEOQ,OxFE,OxF6.0

Temperature Projects '| 43

unsigned char ntop_bit,i;

n=LED_ARRAY(x) | dp;
for(i=1;i<=8;i++)
{
top_bit=n & 0x80; /*Get top bit*/
if(top_bit = 0)
DISPLAY_DATA=1;
else
DISPLAY_DATA=0;
send_clockQ:
n=n << 1; /*Shift left by 1 digit*/

/* This function displays all the 4 digits */
void display_all(int n)
{

int r first. second.third fourth;

first=n/1000;
r=n-1000*first;
second=r/100;
r=r-100*second;
third=r/10;
fourth=r-third*10;

DISPLAY_DATA=1;
send_clock();

if(n < 1000) /*Blank leading zeros*/
display_digit(10,0);

else
display_digit(first,0);

if(n < 100)
display_digit(10,0);

else
display_digit(second,0);

if(n < 10)
display_digit(10,1);

else
display_digit(third,1);

display_digit(fourth,0);

DISPLAY_DATA=0;

'| 44 Microcontroller Projects in C for the 8051

send_clock();
send_clock();
send_clock();

/* This function clears the display */
void clear_display(
{
int i;
DISPLAY_DATA=0;
DISPLAY_CLOCK=0;
DISPLAY_DATA=1;
send_clockQ:;
DISPLAY_DATA=0;
for(i=1,i<=35;i++)send_clock(;

/* This function initializes the A/D converter */
void initialize()
{

ADC_RD=1; /*set A-D RD to 1*/
ADC_WR=1; /*set A-D WR to 1*/

m=1; /*set falling edge interrupt®/
EX1=1; /*enable external INT1*/
EA=T; /*enable interrupts*/

/* This function starts an A-D conversion */

void start_conversion()

{
ADC_WR=0; /*set A-D WR to 0%/
ADC_WR=1; /*set A-D WR to 1%/

/* This is the external interrupt INT1 service routine */
int1Q interrupt 2
{

ADC_RD=0; /*set RD to 0%/

TEMPERATURE=P1; /*read A-D data*/
TEMPERATURE=TEMPERATURE*19.60; /*convert fo true temp*/
ADC_RD=1; /*set A-D RD to 1*/
display_all(TEMPERATURE); /*display the data*/
wait_a_second(); /*delay a bit*/

start_conversion(); /*display next conversion®/

Temperature Projects '| 45

/* Start of main program */

mainQ

{
clear_display(:; /*Clear display*/
initialize); /[¥inifialize A-D*/
start_conversion(); /*start conversion*/
forC:;) /*endless loop*/
{
}

}

Figure 5.15.

Program listing of Project 21

temperature and displayed by calling the function display_all. After about a
second delay, a new conversion is started and the above process repeats.

Required Components

In addition to the standard components required by the basic microcontroller
circuit, the following components are required for this project:

ADC0804 A/D converter 1C
TSM5034 Display IC
LM35DZ Temperature sensor IC

R2 10K

R3, R4 100K

R5 8.2K resistor

C4 150 pF capacitor
C5 0.1uF capacitor

All resistors are 0.125W.

This Page Intentionally Left Blank

CHAPTER 6
RS232 SERIAL COMMUNICATION PROJECTS

RS232 is a serial communications standard which enables data to be
transferred in serial form between two devices. Data is transmitted and
received in serial ‘bit stream’ from one point to another. Standard RS232 is
suitable for data transfer to about 50 m, although special low-loss cables can be
used for extended distance operation. Four parameters specify an RS232 link
between two devices. These are baud rate, data width, parity, and the stop bits,
and are described below:

® Baud rate: the baud rate (bits per second) determines how much informa-
tion is transferred over a given time interval. A baud rate can usually be
selected between 110 and 76 800 baud, e.g. a baud rate of 9600 corresponds
to 9600 bits per second.

e Data width: the data width can be either 8 bits or 7 bits depending upon the
nature of the data being transferred.

e Parity: the parity bit is used to check the correctness of the transmitted or
received data. Parity can either be even, odd, or no parity bit can be
specified at all.

e Stop bit: the stop bit is used as the terminator bit and it is possible to specify
either one or two stop bits.

Serial data is transmitted and received in frames where a frame consists of:

1 start bit

7 or 8 data bits
optional parity bit
1 stop bit

In many applications 10 bits are used to specify an RS232 frame, consisting of
1 start bit, 8 data bits, no parity bit, and 1 stop bit. For example, character ‘A’
has the ASCII bit pattern ‘01000001’ and is transmitted as shown in Fig. 6.1
with 1 start bit, 8 data bits, no parity, and 1 stop bit. The data is transmitted
least significant bit first.

When 10 bits are used to specify the frame length, the time taken to transmit or
receive each bit can be found from the baud rate used. Table 6.1 gives the time

'| 48 Microcontroller Projects in C for the 8051

START 1 0 0 0 0 0 1 0 STOP

Figure 6.1.
Transmitting character *A” (bit pattern 01000001)

Table 6.1 Bit times for different baud rates
Baud rate Bit time

300 3.33ms

600 1.66ms

1200 833 us

2400 416 ps

4800 208 ps

9600 104 ps

19200 52 s

taken for each bit to be transmitted or received for most commonly used baud
rates.

RS232 Connectors

As shown in Fig. 6.2, two types of connectors are used for RS232 commu-
nications. These are the 25-way D-type connector (known as DB25) and the
9-pin D-type connector (also known as DB9). Table 6.2 lists the most
commonly used signal names for both DB9 and DB25 type connectors. The
used signals are:

CONN-D25 CONN-D9
000
[oy Ooooooooﬁ)o o?ooooooci OQQ OJOTO
Figure 6.2.

RS232 connectors

RS232 Serial Communication Projects '| 4(?

Table 6.2 Commonly used RS232 signals
Description Signal 9 pin 25 pin
Carrier detect CD 1 8
Receive data RD 2 3
Transmit data D 3 2
Data terminal ready DTR 4 20
Signal ground SG 5 7
Data set ready DSR 6 6
Request to send RTS 7 4
Clear to send CTS 8 5
Ring indicator RI 9 22
SG: signal ground. This pin is used in all RS232 cables.
RD: received data. Data is received at this pin. This pin is used in all two-
way communications.
TD: transmit data. Data is sent out from this pin. This pin is used in all
two-way communications.
RTS: request to send. This signal is asserted when the device requests data to
be sent.
CTS: clear to send. This signal is asserted when the device is ready to accept
data.
DTR: data terminal ready. This signal is asserted to indicate that the device is
ready.
DSR: data set ready. This signal indicates, by the device at the other end,
that it is ready.
CD: carrier detect. This signal indicates that a carrier signal has been

detected by a modem connected to the line.

In some RS232 applications it is sufficient to use only the pins SG, RD, and
TD. Also, in some applications (e.g. when two similar devices are connected
together) it is necessary to twist pins RD and TD so that the transmit pin of
one device is connected to the receive pin of the other device and vice versa.

RS232 Signal Levels

RS232 is bi-polar and a voltage of +3 to +12V indicates an ON state (or
SPACE), while a voltage of —3 to —12V indicates an OFF state (or MARK).
In practice, the ON and OFF states can be achieved with lower voltages.

'| 50 Microcontroller Projects in C for the 8051

+C1 10 116 vCC

+v 20 115 GND

c1 3l ' 114 T1Out
+C2 40O 5313 R1In

-c2 50 | 112 R1 Out

v 60 111 T11In
T2 Out 7014 o} 110 T21n

R2 In &——D>——1J9 R20ut

Figure 6.3.
Pin configuration of MAX232

Standard TTL logic devices, including the 89C2051 microcontroller, operate
with TTL logic levels between the voltages of 0 and +5V. Voltage level
converter ICs are used to convert between the TTL and RS232 voltage
levels. One such popular IC is the MAX232, manufactured by MAXIM, and
operaters with +5V supply. The MAX232 is a 16-pin DIL chip incorporating
two receivers and two transmitters (see Fig. 6.3) and the device requires four
external capacitors for proper operation.

The 89C2051 microcontroller can output TTL level RS232 signals from its
TXD (or pin P3.1) pin and it can receive TTL level RS232 signals from its
RXD (or pin P3.0) pin. The microcontroller can be connected to external
RS232 compatible equipment via a MAX232 type voltage converter IC.

Controlling the RS232 Port

Before the serial port can be used it is necessary to set various registers:

SCON: this is the serial port control register. It should be set to hexade-
cimal 0x50 for 8-bit data mode.

TMOD: this register controls the timers for baud rate generation and it
should be set to hexadecimal 0x20 to enable timer 1 to operate in
8-bit auto-reload mode.

THI1: this register should be loaded with a constant so that the required
baud rate can be generated. Table 6.3 shows the values to be loaded
into THI1 and the corresponding baud rates for two different clock
rates.

TR1: this register starts/stops the timer and it should be set to 1 to start
timer 1.

TI: this register should be set to 1 to indicate ready to transmit.

RS232 Serial Communication Projects '| 5"

Table 6.3 TH1 values for different baud rates
Baud rate Clock SMOD TH1 value Error
9600 12.000 MHz 1 OxF9 7%
4800 12.000 MHz 0 OxF9 7%
2400 12.000 MHz 0 OxF3 0.16%
1200 12.000 MHz 0 OxE6 0.16%
9600 11.059 MHz 0 OxFD 0
4800 11.059 MHz 0 OxFA 0
2400 11.059 MHz 0 OxF4 0
1200 11.059 MHz 0 OxE8 0

Note that register SMOD should be set to 1 when we require 9600 baud at 12 MHz clock
rate. SMOD is set to 0 at reset time.

For example, the following function shows how we can initialize the serial port
for 2400 baud operation:

void serial_init()
{
SCON=0x50;
TMOD=0x20;
TH1=0xF3;
TR1=1;
TI=1;

PROJECT 22 - Output a Simple Text Message from the
RS232 Port

Function

This project shows how we can interface our microcontroller to an external
RS232 compatible device (e.g. an RS232 visual display unit, or COMI1 or
COM2 port of a PC) and send a text message to this device. The text message
‘THIS IS AN RS232 TEST MESSAGE’ is sent out continuously from the
microcontroller. The frame format used in this project is 2400 baud, 8 data
bits, no parity, and 1 stop bit.

'| 52 Microcontroller Projects in C for the 8051

Microcontroller
TXD - <
MAX232 >
RXD < r_l_l
RS232
display unit

Figure 6.4.
Block diagram of Project 22

Circuit Diagram

The block diagram of Project 22 is shown in Fig. 6.4. The TXD pin of the
microcontroller is connected to the MAX232 Maxim voltage converter IC and
the output of this IC can be connected to the input of a COM1 (or COM?2) port
of a PC, or to the input of an RS232 visual display unit. Similarly, the output
of the external RS232 device is connected to the RXD input of the micro-
controller via the MAX232 IC. A terminal emulation software can be activated
on the PC to receive and display any data arriving at its serial port.

The complete circuit diagram of this project is shown in Fig. 6.5. Pin P3.1 of
the microcontroller (TXD) is connected to pin 10 of the MAX232 converter IC.
Pin 7 of this IC is connected to the external RS232 compatible serial device
which is to receive and display our text message. Similarly, the output of the
RS232 device is connected to pin 8 input of the MAX232 IC and pin 9 output
of this IC is connected to pin 2 (RXD) serial input of the microcontroller.
Correct operation of MAX232 requires four external capacitors to be
connected as shown in the figure.

Program Description

The program initializes the RS232 port of the microcontroller and then sends a
test message to the port.

The following PDL describes the functions of the program:

START
Initialize RS232 port
DO FOREVER
Display text “THIS IS AN RS232 TEST MESSAGE’
ENDDO
END

RS232 Serial Communication Projects '| 5 3

A 5y

L2 { P3.0(RXD)VCC P1.7f2— A +5y conn-Ds

3| P3.1(TXD) P1.6f— r 16 (? Qe ? OS
| bl
£ P32(NTO) P1.5[ca

22yF ﬁ RS232 IN -

1 P3.3 (INT1) P1.4p8 2 .: RS232 QUT
10 1
8V 4| p3a(ro) P1.3fs— MAX232 [sscs
3 9 Ea
=21 P3.5(T1) pP1.2J4 6 1 4 +
c3 89C2051 cac | c4
= 1opr A4 P37 P11 22pF j 22pF
‘ * |5
10 ZESDET P1.0j2— \
= | XTL1 XTL2 15
R1 -
8.2k v-——“]l—ﬁ
C1 L 1o C2
33pF T 12M T 33pF
Figure 6.5.

Circuit diagram of Project 22

Program Listing

The program listing is given in Fig. 6.6. Notice that the standard input/output
library ‘stdio.h’ is included at the top of the program. The main program calls
function serial_init which initializes the RS232 port to 2400 baud and enables
transmissions. Standard C function printfis used to send the serial data to the
RS232 port. A carriage return and line feed pair (‘\n’) are sent after each
output.

It is important to notice that this simple program occupies about 1094 bytes in
the memory of the microcontroller. This is because the printf function is a
complex library function and is implemented in a large number of instructions.
A simple function can be developed to emulate some of the functionalities of
printf so that the output operations can be performed with less memory as
described below.

'| 54 Microcontroller Projects in C for the 8051

I/DI?OJECT: PROJECT 22
FILE: PROJ22.C
DATE: August 1999
PROCESSOR: AT892051

This project sends the text message: ‘THIS IS AN RS232 TEST MESSAGE’ to the RS232 serial
port of the microcontroller. The message is sent out continuously with a carriage return
and line feed af the end of each line.

The program occupies about 1094 bytes of memory

#include <stdio.h>
#include <AT892051.h>

/* Function to initialize the RS232 serial port */
void serial_initQ)
{

SCON=0x50; /* setup for 8-bit data */
TMOD=0x20; /* setup timer 1 for auto-reload */
TH1=0xF3; /* setup for 2400 baud */

TR1=1; /* tumn on timer 1 */

TI=1; /* indicate ready to transmit */

/* Start of main program */

mainQ

{
serial_initQ; /¥initialize serial port*/
for(:;) /*Start of loop*/

{
printfCTHIS IS AN RS232 TEST MESSAGE\N’);

}

Figure 6.6.
Program listing of Project 22

A Simple Serial Output Function

The 89C2051 microcontroller is equipped with 2 Kbytes of memory. It was
shown in the previous example that using the built-in printf function causes a
large part of this memory to be used, leaving little space for other operations.
Figure 6.7 shows a program listing that performs serial output functions
without using the printf function and the complete program occupies about
400 bytes of memory. In this program, the serial transmit register of the

RS232 Serial Communication Projects '| 55

microcontroller (SBUF) is used to send out data directly. Function send_serial
transmits a null-terminated string to the RS232 port of the microcontroller.
The program waits until the transmit register is empty (TI=1) before sending
out the next character. In this example, the string ‘ANOTHER TEST’ is
output continuously. Notice that calling this function with variable crif causes
a carriage return and line feed to be output at the end of the test message.

Components Required

The following components will be required in addition to the standard
microcontroller components:

MAX232 IC
C4 22 uF capacitor (4 off)
9 way or 25 way RS232 connector

PROJECT 23 - Input/Output Example Using the RS232 Port

Function

This project shows how we can input and output serial data using the built-in C
functions. In this example, the user is prompted to enter a character through
the RS232 terminal. The program then finds the next character (i.e. increments
the character by one) and outputs it to the user’s terminal.

Circuit Diagram

The circuit diagram of this project is the same as in Project 22 (i.e. Fig. 6.5).

Program Description

The RS232 serial port is initialized to operate at 2400 baud. The user is then
prompted to enter a character. This character is incremented by one and sent to
the serial output port.

The following PDL describes the functions of the program:

START
Initialize serial port
DO FOREVER
Display ‘Enter a character’
Read a character
Increment the character
Display the next character
ENDDO
END

'| 56 Microcontroller Projects in C for the 8051

IéROJECT: PROJECT 22
FILE: PROJ22-1.C
DATE: August 1999
PROCESSOR: AT892051

This project sends the text message: ‘ANOTHER TEST’ to the RS232 serial port of the
microcontroller. The message is sent out continuously with a carriage return and line
feed at the end of each line.

This program does not use the built-in function printf. The program occupies about 400
bytes of memory.

/
#include <stdio.h>
#include <AT892051.h>

/* Function to initialize the RS232 serial port */
void serial_initQ
{

SCON=0x50; /* setup for 8-bit data */
TMOD=0x20; /* setup timer 1 for auto-reload */
TH1=0xF3; /* setup for 2400 baud */

TR1=1; /* tun on timer 1 %/

TI=1; /* indicate ready to transmit */

/* This function displays a null-terminated string on the RS232 port */
void send_serial(unsigned char *s)
{

while(*s 1= 0x0)

{

SBUF="s; /*send out the character*/
While(! T) /*wait until sent*/

{

}

TI=0;

S++; /*get the next character”/

/* Start of main program */

mainQ

{
unsigned char crif|]={0x0D,0x0A ,0x0}; /*carriage return, line feed*/
serial_initQ; /*initialize serial port*/
for(:;) /*Start of loop*/

RS232 Serial Communication Projects '| 57

{
send_serial(CANOTHER TEST");
send_serial(crif);
}
}

Figure 6.7.
Output program which does not use the printf function

Program Listing

The program listing is shown in Fig. 6.8. Function serial_init initializes the
serial port for operation at 2400 baud with a 12 MHz crystal. Built-in function
printfis used to prompt the user to enter a character. A character is then read
from the user’s terminal using the standard C built-in function getchar and this
character is stored in a variable called c. Finally, this character is incremented
by one and is output to the RS232 port using function printf. The above
process is repeated indefinitely. This program occupies 1164 bytes of memory.

Input/Output Without Using the Built-in Functions

The above program uses the standard C built-in functions printf and getchar.
As a result the program is big. An example program is given in Fig. 6.9 which
does not use these built-in functions and thus occupies much less space in
memory.

Function serial_init is the same as before but note that the serial port interrupts
are enabled (EA =1 and ES=1). Function send_serial sends a null-terminated
string to the serial output port. Similarly, function send I _char sends a single
character to the serial port. Serial data is read in via the serial port interrupt
service routine (serial). Whenever a character is transmitted or received, the
interrupt service routine is activated automatically. The interrupt number of
the serial port is 4. Here, the receive interrupt register (RI) is checked and a
character is assumed to be received from the serial port if RI is non-zero. The
received character is copied from SBUF to a variable called received_character.

The main program calls function send_serial to display the message ‘Enter a
character’. If a character is received, this character is echoed on the user’s
terminal and the next character is displayed by incrementing and outputting
the variable received character. Function send 1 _char is then used to send a
carriage return and line feed after each output.

'| 58 Microcontroller Projects in C for the 8051

I/DROJECT: PROJECT 23
FILE: PROJ23.C
DATE: August 1999
PROCESSOR: AT892051

This project is an example of using both the input and the output serial data routines. A
character is received from the serial port. The next character is then calculated and
output to the user’s R$232 terminal.

This program occupies 1164 bytes in memory.

#include <stdio.h>
#include <AT892051.h>

/* Function to initialize the RS232 serial port */
void serial_initQ
{

SCON=0x50; /* setup for 8-bit data */
TMOD=0x20; /* setup timer 1 for auto-reload */
TH1=0xF3; /* setup for 2400 baud */

TR1=1; /* tumn on timer 1 %/

TI=1; /* indicate ready to transmit */

/* Start of main program */

mainQ

{
charc;
serial_initQ); /*initialize serial port*/
for(:;) /*Start of loop*/

{
printfC\nEnter a character’);
c=getcharQ; /*read a character*/
C++; /*next character*/
printf(The next character is: %c:.c);

}

Figure 6.8.
Program listing of Project 23

RS232 Serial Communication Projects '| 5(?

IéROJECT: PROJECT 23
FILE: PROJ23-1.C
DATE: August 1999
PROCESSOR: AT892051

This project reads a character from the user’s terminal, finds the next character and
displays on the user’s terminal. C built-in functions are not used in this program.

This program occupies 225 bytes of memory.

#include <stdio.h>
#include <AT892051.h>

unsigned char received_character;
int received_flag:

/* Function to initialize the RS232 serial port */
void serial_initQ
{

SCON=0x50; /* setup for 8-bit data */
TMOD=0x20; /* setup timer 1 for auto-reload */
TH1=0xF3; /* setup for 2400 baud */

TR1=1; /* tun on timer 1 */

TI=1; /* indicate ready to transmit */
EA=1; /*enable interrupts®/

ES=1; /*enable serial port interrupts*/

/* This function displays a null-terminated string on the RS232 port */
void send_serial(unsigned char *s)
{

while(*s 1= 0x0)

{

SBUF="s; /*send out the character®/
while(! TI) /*wait until sent™/

{

}

TI=0;

S++; /*get the next character®/

/* This function sends a single character to the serial port */
void send_1_char(unsigned char c)

'| 60 Microcontroller Projects in C for the 8051

SBUF=c; /*send out the character®/
while(! TI) /*wait until transmitted*/

{

}

TI=0;

/* Serial port interrupt service routine. Program jumps to this routine when a character is
fransmitted or received */

serialQ interrupt 4
{
if(RI) /*if a character received*®/
{
received_character=SBUF;
RI=0;
received_flag=1; /set received flag*/

/* Start of main program */
mainQ
{
received_flag=0;
serial_init(); /*initialize serial port*/

for(::) /*Start of loop*/
{
send_serialCEnter a character:”);
while(received_flag == 0)
{
}
received_flag=0;

send_1_char(received_character); /*echo*/
send_serial(‘'The next character is:");
received_character++; /*next char*/
send_1_char(received_character);
send_1_char(0x0D); /*send carriage return*/
send_1_char(Ox0A); /*send line feed*/

Figure 6.9.

Program not using the built-in C functions

RS232 Serial Communication Projects '| 6"

PROJECT 24 - A Simple Calculator Program Using the
RS232 Port

Function

This is a simple calculator project based upon the 89C51 type microcontroller.
The microcontroller is connected to an RS232 serial terminal. The user can
perform simple addition, subtraction, multiplication, and division of numbers
using the microcontroller.

Circuit Diagram

This project is based upon the 89C51 microcontroller. This is a 40-pin device
which is software compatible with the 89C2051 microcontroller. The 89C51
contains a 4 Kbyte flash program memory, 128 bytes of RAM, 32 program-
mable input/output lines, and six interrupt sources.

The circuit diagram of this project is shown in Fig. 6.10. A 12 MHz crystal and
two capacitors are connected to pins 18 and 19 of the microcontroller. Reset
input is connected to a capacitor and a resistor. Transmit output (TXD) and
receive input (RXD) of the device are connected to a MAX232 type RS232
converter IC. EA is the external program enable pin and this pin should be
connected to +5V for internal program executions.

Program Description

The program operates as a simple calculator. When power is applied to the
microcontroller, a menu is displayed on the user’s terminal and the user is
prompted to enter two numbers and the operation to be performed. A typical
dialogue is given below (note that the characters typed by the user are
underlined for clarity):

A SIMPLE MICROCONTROLLER-BASED CALCULATOR

Enter 2 integer numbers and the operation
to be performed. Valid operations are:

+ ADD

— SUBTRACT
* MULTIPLY
/ DIVIDE

Enter First Number: 5
Enter Second Number: 3
Enter Operation: +
Result = 8

A SIMPLE ...

+5V

40
R ae PO.O/ADO |32
S EA PO.1ADT |52
= PSEN P0.2/AD2 —36
RST Po3AD3 |32
PO4IAD4 |32
[l——__:l__—LL ARl I
—1 xTAL2 PO.6/ADS |23
1 bXTAL1 PO.7/AD7 {—=%
H——_l-—-,; P1.0 P2.0/AD8 [~21
. L P2.1/AD9 {25
Bl 212 P2.2/AD10 23 A5y CONNDS
C1 < P13 P23/AD11 52
P14 P24/AD12 52 b
—— P15 P25/AD13 5= 16
—{Pis P26/AD14 2T
Ldpi7 P2.7/AD15 [—22
0
P3.0/RXD C3 -
P3.1/TXD 22pFi 8 reomrn -
P3.2(INTO [~i% 5 7
P33NTI [—=
Pa.4mo 4 RS232 OUT
P35 fr2 1
P3EMR [—= 108]
7/RD [—L 1
: MAX232 -

89C51 J—ZO [| f 22pF

[15

Figure 6.10.
Circuit diogram of Project 24

RS232 Serial Communication Projects '| 6 3

The following PDL describes the operation of the program:

START

END

Initialize serial port

Display heading

Get a number 1

Get number 2

WHILE Operation is not valid
Get Operation to be performed

WEND

IF Operation = ‘+’
ADD the numbers

ELSE IF Operation = ‘-’
SUBTRACT the numbers

ELSE IF Operation = *’
MULTIPLY the numbers

ELSE IF Operation = /°
DIVIDE the numbers

ENDIF

Display the result

Program Listing

The program listing is given in Fig. 6.11. The serial port is initialized by the
function serial_init. The program then prints a heading and a menu using
the built-in function printf. The user is prompted to enter the numbers and the
operation to be performed. The first number is stored in variable numl using
the built-in function scanf. The second number is stored in variable num2. The
operation to be performed is stored in variable oper. A switch statement is then
used to select the required operation. The result of the calculation is stored in
variable result and this is then displayed using a printf function. The program
repeats forever unless stopped by the user.

Components Required

The following components will be required for this project:

89C51 microcontroller
MAX232 IC
12 MHz crystal

Cl 33 uF capacitors (2 off)
C2 10 uF capacitor

C3 22 uF capacitors (4 off)
R1

8.2K resistor (0.125 W)

9 way or 25 way RS232 connector

'| 64 Microcontroller Projects in C for the 8051

I/DROJ ECT: PROJECT 24
FILE: PROJ24.C
DATE: August 1999
PROCESSOR: AT892051

This is a simple calculator project based upon the 89C51 type 40-pin microcontroller. The
project enables the user to perform integer addition, subtraction, multiplication, and
division.

This program occupies just over 2720 bytes of memory.

#include <stdio.h>
#include <AT892051.h>

/* Function to inifialize the RS232 serial port */
void serial_initQ
{

SCON=0x50; /* setup for 8-bit data */
TMOD=0x20; /* setup timer 1 for auto-reload */
TH1=0xF3; /* setup for 2400 baud */

TR1=1; /* tumn on timer 1 %/

TI=1; /* indicate ready to transmit */

/* Start of main program */
mainQ)
{

inf num1,num?2 result;

char c,oper;
serial_init(); /*initialize serial port*/
for(:;) /*Start of loop*/

{
printfC\n\nA SIMPLE MICROCONTROLLER BASED CALCULATOR\N");
printf()
printfCEnter 2 integer numbers and the operation\n’);
printf(*to be performed. Valid operations are:\n");
printfC+ ADD\N");
printf('— SUBTRACT\N");
printf("* MULTIPLY\N");
printf(/ DIVIDEAN\n");
printfC'Enter First Number:”);
scanf('%d" . &num1);
c=gethar(;
printfCEnter Second Number:");

RS232 Serial Communication Projects '| 65

scanf('%d,&num?2’);
c=getchar(;
oper="";
while(oper |= '+’ && oper = '—" && oper = "*" && oper = "/")
{
printf('Enter Operation:”);
oper=getchar(;
printfC\n”);
}
switch (oper)
{
case '+
result=num1+num2;
break;
case -
resulf=num1-num?2;
break;
case ‘"
resut=num1*Num2;
break;
case ‘/"
result=num1/num2;
break;
}
printfCResult = %d\n’ result);

}
Figure 6.11.
Program listing of Project 24

This Page Intentionally Left Blank

Appendix

ASCIl CODE

ASCII codes of the first 128 characters are standard and the same code is used
between different equipment manufacturers. ASCII codes of characters
between 128 and 255 are also known as the extended ASCII characters and
these characters and their codes may differ between different computer
manufacturers. Below is a list of the most commonly used ASCII characters
and their codes both in hexadecimal and in binary.

Character Hex Binary Character Hex Binary

NUL 00 00000000 EM 19 00011001
SOH 01 00000001 SUB 1A 00011010
STX 02 00000010 ESC 1B 00011011
ETX 03 00000110 FS 1C 00011100
EOT 04 00000100 GS 1D 00011101
ENQ 05 00000101 RS 1E 00011110
ACK 06 00000110 Us IF 00011111
BEL 07 00000111 SP 20 00100000
BS 08 00001000 ! 21 00100001
HT 09 00001001 " 22 00100010
LF 0A 00001010 # 23 00100011
VT 0B 00001011 N 24 00100100
FF 0C 00001100 % 25 00100101
CR 0D 00001101 & 26 00100110
SO OE 00001110 ’ 27 00100111
ST OF 00001111 (28 00101000
DLE 10 00010000) 29 00101001
XON 11 00010001 * 2A 00101010
DC2 12 00010010 + 2B 00101011
XOFF 13 00010110 , 2C 00101100
DC4 14 00010100 - 2D 00101101
NAK 15 00010101 . 2E 00101110
SYN 16 00010110 / 2F 00101111
ETB 17 00010111 0 30 00110000

CAN 18 00011000 1 31 00110001

'| 68 Microcontroller Projects in C for the 8051

Character

O 01N L b W

A

PTTTINKK X E<L<CHVBOTOZIOCAT T IQTMOHIOQOW PR YV |

Hex

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
S5A
5B
5C
5D
SE
5F
60

Binary

00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000

Character

1w—~x—~[\l‘<><g<!:""”"‘.-0"5055'_'7~";""":7‘(m .o o0 o e

Hex

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
71
78
79
TA
7B
7C
D
TE
TF
80
81
82
83
84
85
86
87
88
89
8A
&B
8C
8D
8E
8F

Binary

01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111
10000000
10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111

Glossary '| 6(?

Character

P g e

i R

)
&

AT~ v ooy C

°
M

D= —

Hex

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
Al
A2
A3
A4
AS
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD

Binary

10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011060
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100
10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101

Character

BB 00 S B RT CHCCR X O OO OO Z T O T T T ITA) iy B B e o e S B

Hex

BE
BF
Co
Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
DO
DIl
D2
D3
D4
D5
D6
D7
DB
D9
DA
DB
DC
DD
DE
DF
EO
El
E2
E3
E4
ES
E6
E7
E8
E9
EA
EB

Binary

10111110
10111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011

'| 70 Microcontroller Projects in C for the 8051

Character

Sx Moo =y =

O O~ O B

o

Hex

EC
ED
EE
EF
FO
Fl
F2
F3
F4
F5

Binary

11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101

Character

(e}

hstiie g S = N A =)

Hex

F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

Binary

11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

Glossary

ADC Analogue-to-digital converter. A device that converts analogue signals
to a digital form for use by a computer.

Algorithm A fixed step-by-step procedure for finding a solution to a problem.
ANSI American National Standards Institute.

Architecture The arrangement of functional blocks in a computer system.

ASCII American Standard Code for Information Interchange. A widely used
code in which alphanumeric characters and certain other special characters are
represented by unique 7-bit binary numbers. For example, the ASCII code of
the letter ‘A’ is 65.

Assembler A software that translates symbolically represented instructions
into their binary equivalents.

Assembly language A source language that is made up of the symbolic
machine language statements. Assembly language is very efficient since there
is a one-to-one correspondence with the instruction formats and data formats
of the computer.

BASIC Beginners All-purpose Symbolic Instruction Code. A high-level
programming language commonly used in personal computers. BASIC is
usually an interpreted language.

Baud The unit of data transmission speed. Baud is often equated to the
number of serial bits transferred per second.

Baud rate Measurement of data flow in a serial communication system. Baud
rate is typically equal to bits per second. Some typical baud rates are 9600,
4800, 2400 and so on.

BCD Binary Coded Decimal. A code in which each decimal digit is binary
coded into 4-bit words. By representing binary numbers in this form, it is
readily possible to display and print numbers.

Bi-directional port An interface port that can be used to transfer data in either
direction.

Binary The representation of numbers in a base two system.
Bit A single binary digit.
Byte A group of 8 binary digits.

'| 72 Microcontroller Projects in C for the 8051

Chip A small rectangle of silicon on which an integrated circuit is fabricated.

Clock A circuit generating regular timing signals for a digital logic system. In
microcomputer systems clocks are usually generated by using crystal devices. A
typical clock frequency is 12 MHz.

CMOS Complementary Metal Oxide Semiconductor. A family of integrated
circuits that offers extremely high packing density and low power.

Compiler A program designed to translate high-level languages into machine
code.

Counter A register or a memory location used to record numbers of events as
they occur.

CRT Cathode Ray Tube. A display screen.

Cycle time The time required to access a memory location or to carry out an
operation in a computer system.

DAC Digital-to-analogue converter. A device that converts digital signals
into analogue form.

Decimal system Base 10 numbering system.

Development system Equipment used to develop microprocessor- and micro-
computer-based software and hardware projects.

Dot matrix Method of printing or displaying characters in which each
character is formed by a rectangular array of dots to give the required shape.

EAROM Electrically Alterable Read Only Memory. In this type of memory
part or all of the data can be erased and rewritten by applying electrical signals.

Edge triggered Circuit action initiated by the change of a signal. An edge
could be the change of a signal from 0 to 1 or from 1 to 0.

Emulator Software or hardware system that duplicates the actions of a
microprocessor or a microcomputer system.

EPROM Erasable Programmable Read Only Memory. This type of memory
can be erased by exposure to ultraviolet light and then reprogrammed using a
programmer.

Execute To perform a specified operational sequence in a program.
File Logical collection of data.
Flow chart Graphical representation of the operation of a program.

Gate A logic circuit having one or more inputs and a single output. For
example, NAND gate.

Half duplex A two-way communication system that permits communication
in one direction at a time.

Hardware The physical parts or electronic circuitry of a computer system.

Hexadecimal Base 16 numbering system. In hexadecimal notation, numbers

Glossary '| 7 3

are represented by the digits 0-9 and the characters A—F. For example, decimal
number 165 is represented as AS.

High-level language Programming language in which each instruction or
statement corresponds to several machine code instructions. Some high-level
languages are BASIC, FORTRAN, C, PASCAL and so on.

Input device An external device connected to the input port of a computer.
For example, a keyboard is an input device.

Input port Part of a computer that allows external signals to be passed into it.
Microcomputer input ports are usually 8 bits wide.

I/O Short for Input Output.

Input/Qutput The hardware within the computer that connects the computer
to external peripherals and devices.

Instruction cycle The process of fetching an instruction from memory and
executing it.

Instruction set The complete set of instructions of a microprocessor or a
microcomputer.

Interface To interconnect a computer to external devices and circuits.

Interrupt An external or internal event that suspends the normal program
flow within a computer and causes entry into a special interrupt program (also
called the interrupt service routine). For example, an external interrupt could
be generated when a button is pressed. An internal interrupt could be generated
when a timer reaches a certain value.

Interrupt vector Reserved memory locations where a program jumps when an
interrupt is detected.

ISR Interrupt Service Routine. A program that is entered when an external
or an internal interrupt occurrs. Interrupt service routines are usually high-
priority routines.

K Multiplier for 1024. For example, 1 Kbyte is 1024 bytes.

Language A prescribed set of characters and symbols which is used to convey
a program to a computer.

LCD Liquid Crystal Display. A low-powered display that operates on the
principle of reflecting incident light. An LCD does not itself emit light. There
are many varieties of LCDs. For example, numeric, alphanumeric, or
graphical.

LED Light Emitting Diode. A semiconductor device that emits a light when a
current is passed in the forward direction. There are many colours of LEDs.
For example, red, yellow, green, and white.

Level triggered Circuit action initiated by the presence of a signal.

Logic levels Voltage levels representing the two logical states (0 and 1) of a
digital signal. Logic HIGH is also called state 1 and logic LOW is called state 0.

'| 74 Microcontroller Projects in C for the 8051

LSD Least Significant Digit. The right-most digit. For example, the LSD of
number 123 is 3.

Machine code Lowest level in which programs are written. Machine code is
usually written in hexadecimal.

Microcomputer General-purpose computer using a microprocessor as the
CPU. A microcomputer consists of a microprocessor, memory, and input/
output.

Microprocessor A single large-scale integrated circuit which performs the
functions of a CPU.

Mnemonic A programming shorthand using letters, numbers, and symbols
adopted by each manufacturer to represent the instruction set of a micro-
processor.

MSD Most Significant Digit. The left-most digit of a number. For example,
the MSD of number 123 is 1.

Nibble A group of 4 binary bits.

NMOS Negative channel Metal Oxide Semiconductor. A device based on an
n-channel field-effect transistor cell.

Non-volatile memory A semiconductor memory type that holds data even if
power has been disconnected.

Octal Representation of numbers in base 8.

Op-code Operation Code. That part of an instruction which specifies the
function to be performed.

Output device An external device connected to the output port of a computer.
For example, a printer is an output device.

Output port Part of a computer that allows electrical signals to pass outside it.
Microcomputer output ports are usually 8 bits wide.

Parity A binary digit added to the end of an array of bits to make the sum of
all ones either odd or even. Parity is a method of checking the accuracy of
transmitted or received binary data.

PDL Program Description Language. Representation of the control and data
flow in a program using simple English-like sentences.

PEROM Flash Programmable and Erasable Memory. This type of memory
can be erased and reprogrammed using electrical signals only, i.e. there is no
need to use an ultraviolet light source to erase the memory.

Port An electrical logic circuit that is a signal input or output access point of
a computer.

Programmed I/O The control of data flow in and out of a computer under
software control.

PROM Programmable Read Only Memory. A type of semiconductor

Glossary '| 7 5

memory which can be programmed by the user using a special piece of
equipment called a PROM programmer (or PROM blower).

Pull-up resistor A resistor connected to the output of an open collector (or
open drain) transistor of a gate in order to load the output.

RAM Random Access Memory, also called read/write memory. Data in
RAM is said to be volatile and it is present only as long as the chips have power
supplied to them. When the power is cut off, all information disappears.

Register A storage clement in a computer. A register is usually 8 bits wide in
most microprocessors and microcomputers.

ROM Read Only Memory. A type of semiconductor memory that is read
only.

RS232 An internationally recognized specification for serial data transfer
between two devices.

Serial Information transfer on a single wire where each bit is transferred
sequentially with a time delay in between.

Software Program.

Start bit The first bit sent in a serial communication. There is only one start
bit in a frame of serial communication.

Stop bit The last bit sent in a serial communication. There can be one or two
stop bits per frame of a serial communication.

Syntax The rules governing the structure of a programming language.

Transducer A device that converts a measurable quantity into an electronic
signal. For example, a temperature transducer gives out an electrical signal
which may be proportional to the temperature.

TTL Transistor Transistor Logic. A kind of bipolar digital circuit.

UART Universal Asynchronous Receiver Transmitter. This is a semiconduc-
tor chip that converts parallel data into serial form and serial data into parallel
form. A UART is used in RS232 type serial communication.

USART Synchronous version of UART.

UV Ultraviolet light. Used to erase EPROM memories.
VDU Visual Display Unit.

Word A group of 16 binary digits.

This Page Intentionally Left Blank

Index

ADCO0804, 132,137,138 Float, 18

Analogue to digital converter, 132

Architecture of AT89C2051, 4 Hexadecimal display, 46
ASCII, 147,167 High current buzzer, 87
BASIC, 16 1EO. 10

Baud rate, 147 IE1: 10

B%t, 16 If-then-else, 24

Binary counter, 29 Interrupt, 11, 20

Buzzer, 85,86 Interrupt number, 12, 20

Byte, 4 Interrupt service routine, 20
Interrupt source, 12
Calculator program, 161 INTO, 6, 78, 79, 80, 83
C programming language, 13,15 INT1, 7
Cs51, 15, 16 ISR, 20
Counter, 10, 50 ITO, 10
Compiler, 13, 15 ITI1, 10
CPU, 2, 12
CTS, 149 LED, 29, 57
Cu, 2 LED dice, 38
LM35DZ, 132, 140
Data type, 16 LSD, 50, 51
Data memory, 2
Data width, 147 MAX?232, 150, 152
Digital thermometer, 119 Memory model, 19
Do-enddo, 24 Minimum configuration, 12
DS1620, 109 MOSFET, 89, 90, 92, 93, 94, 101, 131
DSR, 149 MSD, 50, 51
DTR, 149
Parity, 147
Electronic siren, 95 PASCAL, 15
End, 22 PDL, 22, 29
Electronic organ, 101 PEROM, 2, 3, 4
Enum, 17 Piezo sounder, 85
EPROM, 1,3, 4 Pin configuration, 4
External interrupt, 10,12 Program memory, 2

Event counter, 75 PSEN, 10

'| 78 Index

RAM, 1, 3,4
Repeat-until, 25
ROM, 1

RS232, 147, 148, 149, 150, 151, 155

RS232 connector, 148
RS232 signal level, 149
RST, 5

RTD, 107

RTS, 149

RXD, 150

Sbit, 17, 18

Serial port interrupt, 12
Sequencing, 24

Seven segment display, 57
Sfr, 17, 19

Sfrie, 17, 19

Signed char, 16

Signed int, 17

Signed long, 17

Signed short, 17
Sounder, 85

Start, 22

Start-end, 22

Stop bit, 147

TCON, 10
Temperature sensor, 107

TFO0, 10

TF1, 10

Thermistor, 107
Thermocouple, 107
THIGH, 109, 111, 125, 131
TIL311, 53

Timer, 10

Timer interrupt, 12, 90
TLOW, 109

TMOD, 10

Transducer, 85

TRO, 10

TRI, 10

TSM5034, 63, 64, 69, 75, 83
TXD, 150, 152

Unsigned char, 16
Unsigned int, 18
Unsigned long, 17,18
Unsigned short, 17,18

VN66AFD, 89
WR, 8

XTAL, 6

