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On the Biological Plausibility of Grandmother Cells: Implications for
Neural Network Theories in Psychology and Neuroscience
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A fundamental claim associated with parallel distributed processing (PDP) theories of cognition is that
knowledge is coded in a distributed manner in mind and brain. This approach rejects the claim that
knowledge is coded in a localist fashion, with words, objects, and simple concepts (e.g. “dog”), that is,
coded with their own dedicated representations. One of the putative advantages of this approach is that
the theories are biologically plausible. Indeed, advocates of the PDP approach often highlight the close
parallels between distributed representations learned in connectionist models and neural coding in brain
and often dismiss localist (grandmother cell) theories as biologically implausible. The author reviews a
range a data that strongly challenge this claim and shows that localist models provide a better account
of single-cell recording studies. The author also contrast local and alternative distributed coding schemes
(sparse and coarse coding) and argues that common rejection of grandmother cell theories in neuro-
science is due to a misunderstanding about how localist models behave. The author concludes that the
localist representations embedded in theories of perception and cognition are consistent with neuro-
science; biology only calls into question the distributed representations often learned in PDP models.
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Of the many different schools of neural network modeling,
the parallel distributed processing (PDP) approach is the most
influential within psychology (McClelland, Rumelhart, & PDP
Research Group, 1986; Rumelhart, McClelland, & the PDP
Research Group, 1986). A key claim of this approach is that
knowledge is coded in a distributed manner in the mind and the
brain. That is, knowledge is coded as a pattern of activation across
many processing units, with each unit contributing to many dif-
ferent representations. As a consequence, there is no one unit
devoted to coding a given word, object, or person. This contrasts
with the classic view, according to which knowledge is coded in a
localist fashion. That is, individual words, objects, simple con-
cepts, and the like are coded distinctly, with their own dedicated
representation. For example, the words mother and father would
be coded with distinct and nonoverlapping mental representations.
On any localist account, the words mother and father would be
linked by virtue of sharing some features (e.g., letters), but the
words themselves would be stored explicitly and separately in the
mind.

The rejection of localist coding schemes in favor of distributed
representations is a core principle of the PDP approach (e.g., Plaut
& Shallice, 1993; Seidenberg, 1993). But, it is important to note
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that it is not a principle of neural network theories in general (cf.
Bowers, 2002; Feldman & Ballard, 1982). Indeed, many neural
networks rely on local representations for their functioning.
In some cases, localist representations are built into a model
(e.g., Dell, 1986; Morton, 1979; McClelland & Elman, 1986;
McClelland & Rumelhart, 1981), and in other cases, they are
learned (e.g., Grossberg, 1980, 1987; Kruschke, 1992; Rumelhart
& Zipser, 1985). At present, localist and distributed neural net-
works have been applied to a wide range of cognitive phenomena,
and the goal in both cases is to identify a set of general principles
that apply across domains.

Given that neural networks can learn either local or distributed
representations, why have so many theorists rejected localist rep-
resentations in favor of distributed ones? Of course, criticisms
levied against localist models differ, case-by-case, but one under-
lying criticism is often raised against the approach as a whole;
namely, the models are thought to be biologically implausible. By
contrast, advocates of the PDP approach often highlight the link
between the distributed representations learned in PDP models and
the neural coding systems employed in the brain. For example, in
an article titled “Six Principles for Biologically Based Computa-
tional Models of Cortical Cognition,” O’Reilly (1998) included
distributed representations as Principle 2, writing,

The cortex is widely believed to use distributed representations to
encode information. A distributed representation uses multiple active
neuron-like processing units to encode information (as opposed to a
single-unit, localist representation), and the same unit can participate
in multiple representations . . . . Electrophysiological recordings dem-
onstrate that distributed representations are widely used in the cortex.
(p. 456)
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In a general review of cognitive neuroscience, McClelland
(2001) wrote,

Studies relying on microelectrodes to record from neurons in the
brains of behaving animals can allow researchers to study the repre-
sentations that the brain uses to encode information, and the evolution
of these representations over time . . . . These studies indicate, among
other things, that the brain relies on distributed representations.
(p- 2137)

Countless other similar quotes could be provided.

At first blush, these claims regarding the relative biological
plausibility of localist (grandmother) and distributed coding
schemes seem well founded. As reviewed by Gross (2002), few
neuroscientists have taken localist representations seriously. In-
deed, the term grandmother cell (a term often attributed to Jerry
Lettvin; cf. Gross, 2002) is generally used to ridicule the claim that
complex and meaningful stimuli are coded by individual cells in
the cortex. Finkel (1988) called them “infamous grandmother
cells” (p. 787). As noted by Connor (2005), “No one wants to be
accused of believing in grandmother cells” (p. 1036). Instead, after
50 years of single-cell recording studies, it is widely claimed (and
implicitly assumed) that the brain codes information with some
form of distributed coding. As Averbek, Latham, and Pouget
(2006) put it, “As in any good democracy, individual neurons
count for little; it is the population of activity that matters”
(p- 358).

Given all this, what is an advocate of localist representations to
do? Grandmother cells in brain are the physiological counterpart to
localist representations in cognitive models (e.g., Coltheart, Curtis,
Atkins, & Haller, 1993; Davis, 1999; Hummel & Holyoak, 2003;
McClelland & Rumelhart, 1981; Morton, 1969; Norris, 1994; Page
& Norris, 1998). If localist and PDP models are to be compared
(and assessed) in terms of their biological plausibility, grand-
mother cells had best not be a joke.

One response is to reject the assumption that cognitive models
should be evaluated on biological criteria. According to Broadbent
(1985), this is justified because neuroscience is only relevant at
what Marr (1982) called the implementational level of description.
On this view, psychological theory should only concern itself with
a computational description in which one considers the goals and
the strategies for carrying out mental processes. That is, according
to Broadbent, findings from neuroscience do not (and never will)
matter when developing theories in psychology. More pragmati-
cally, authors might agree that the brain codes information in a
distributed manner but still argue that attempts to link cognition to
brain hardware should wait till there is a better conceptual under-
standing of how the mind works—which is thought of as best
achieved through the development of localist models. However, 1
expect most researchers today would find these responses unsat-
isfying. With the rapid development of cognitive neuroscience, it
is becoming clear that cognitive theories can and should be con-
strained by biology.

Another (more common) response has been to ignore the neu-
roscience data taken to support distributed coding schemes,
namely, the single-cell electrophysiological recording studies dis-
cussed in detail in Part 2. It is not that these theorists reject
biological constraints to cognitive theories in general; indeed,
localist models are often inspired by neuropsychological findings

(e.g., Coltheart, 2004). Rather, I assume that the relevance of this
data is not appreciated.

Of course there is one more possible response for an advocate of
localist models. That is, the common claim that distributed repre-
sentations better capture key aspects of brain functioning can be
challenged. Although this latter position is rarely adopted, there
are a few prominent researchers in neuroscience who either en-
dorse the grandmother neuron hypothesis or who consider it a
serious option on the basis of the neurophysiological data (e.g.,
Barlow, 1972; Parker & Newsome, 1998; Thorpe, 1989, 2002).

This is the position taken here. Indeed, the main goal in this
article is to show that the current findings in neuroscience are
compatible with localist models in psychology. It is not my claim
that current data provide unambiguous support for localist coding
schemes. But, I do intend to show that there is no reason to prefer
distributed over localist representations on the basis of their rela-
tive biological plausibility. Indeed, I argue that the distributed
representations learned in PDP models are often inconsistent with
much of the relevant neuroscience data.

Although this article is largely directed to cognitive psycholo-
gists, [ hope the article is of some relevance to neuroscientists as
well. Despite the widespread rejection of grandmother cells in
neuroscience literature, there is now a large body of evidence
highlighting the extent to which single neurons respond selectively
to inputs, including words, objects, and faces. So why then do
neuroscientists favor distributed coding schemes? Part of the rea-
son is that the term “distributed representation” is used somewhat
differently in the two literatures. Indeed, the data taken to support
distributed coding schemes in the brain rarely provide any support
for the types of coding schemes employed in many PDP networks.
More importantly, there seems to be confusion in the neuroscience
literature with regard to how local coding schemes work, and what
sorts of data support or refute this framework. It is striking how
often data entirely consistent with localist coding in the brain is
taken to falsify this approach. My secondary goal is therefore to
clarify how localist models behave in order to challenge neurosci-
entists to reinterpret their findings in this light.

The article is organized in three sections. In Part 1, I set the
stage by describing in some detail the localist coding schemes
employed in cognitive models and highlight how this approach
differs from distributed coding schemes. Although the hypothesis
that a model (or brain) codes information in a localist manner
might at first appear to be a straightforward claim that is easy to
assess (and reject), there is in fact a great deal of confusion and
disagreement about what a grandmother cell might be—as high-
lighted by the excellent article by Page (2000) and the associated
commentaries. Certainly some versions of grandmother cells are
untenable, but these are often caricatures of a serious hypothesis.
Similarly, there is some confusion as to what constitutes a distrib-
uted coding scheme, and indeed, at least three different versions of
the hypothesis have been proposed. I describe three different types
of distributed coding, and contrast them with localist coding
schemes, so that it is possible to evaluate the various hypotheses in
light of the neuroscience data.

In Part 2, I review single-cell electrophysiological studies rele-
vant to the question of grandmother versus distributed coding
schemes in the brain. The review is organized around data col-
lected from simple organisms (e.g., sea slugs and flies), simple
responses in complex organisms (e.g., motion perception in ma-
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caque monkeys), and complex processes in complex organisms
(e.g., face recognition in humans).

In Part 3, I evaluate local and distributed theories based on the
data reviewed in Part 2. The two main conclusions I draw are that
the current data (a) lend some support to the grandmother cell
theory of mental representation and (b) strongly challenge the link
that is often drawn between the representations learned by PDP
models and the neural representations in brain. I also consider
various objections that are often raised against grandmother coding
schemes and show that these objections are wanting. I hope to
convince you that a grandmother cell hypothesis is not only
consistent with the data, but also plausible.

Part 1: Some Background, Definitions, and Confusions
Associated With the Concepts of Local and
Distributed Coding

Hubel and Wiesel (1962, 1968) provided some of the first
insights into the neural representations that support early vision.
They observed that single cells in the primary visual cortex (V1)
were driven by simple but readily interpretable visual inputs (a line
projected at a given location and orientation on the retina), and
these neurons (so-called simple cells) were organized into topo-
graphic maps. That is, V1 is organized into columns, with simple
cells in adjacent columns coding for similar but slightly different
line orientations at the same retinal position (cells in adjacent
columns code for line segments that vary by approximately 10° in
rotation). These columns are in turn organized into hypercolumns,
such that all simple cells within a given hypercolumn code for
lines at the same retinal location (albeit varying in orientation
preference), with adjacent hypercolumns coding for adjacent reti-
nal locations. In this way, V1 codes for a range of line orientations
in a range of retinal locations.

Most important for present purposes, Hubel and Wiesel (1968)
also found that information is coded in a hierarchical fashion, with
complex cells in V1 combining the inputs from multiple simple
cells in order to code for more complex stimuli. Konorsky (1967),
an early advocate of grandmother neurons (what he called “gnostic
units”) took these findings as strong support for this hypothesis.
On his view, simple and complex cells constitute the first levels of
a larger hierarchy that includes gnostic units on top. Hubel (1995)
also considered the implications of this hierarchal organization
within early vision and rejected the idea that the hierarchy could
continue to the level of grandmother cells. According to Hubel, it
is implausible to imagine that there could be one neuron corre-
sponding to a grandmother smiling, another corresponding to a
grandmother weeping, and yet another corresponding to a grand-
mother sewing. But this betrays a common confusion. It is indeed
implausible to suggest that there is a separate cell for each mental
state or action of grandma, but this has never been claimed by
advocates of local coding in cognitive psychology or neuroscience.
Hubel has only rejected a caricature of a grandmother cell. In fact,
confusions regarding this hypothesis are widespread, as I detail
below.

What Is a Localist Representation?

The defining feature of a localist representation is that it codes
for one thing, and accordingly, it is possible to interpret the

activation of a single unit (e.g., Bowers, 2002; Page, 2000; Thorpe,
1989). For example, if a simple cell is highly active, then you can
infer with a high degree of confidence that something in the world
is projecting a line of a given orientation on its receptive field (the
identification of the object can only be determined at a later stage
of processing, but it is sure to have the relevant feature). Similarly,
if the word cat is coded by a localist unit, then it is possible to
determine that cat was presented to the network by monitoring its
activation—no other unit need be consulted. Hummel (2000) high-
lighted the fact that a localist representation involves a relation
between a single unit and a meaningful equivalence class of
entities in the world. The set of entities that activate the unit might
all be instances of the word cat (regardless of font, size, position,
etc.), an image of a specific person’s face in whatever profile (a
view-independent face cell), or a specific face presented in a
restricted set of orientations (a view-specific face cell) and the like.
In each case, the key feature of the cell is that it is possible to
provide a meaningful description of the thing or the equivalence
class to which it responds.

Although this definition seems straightforward enough, at least
two points of potential confusion merit attention here. First, when
considering the plausibility of localist (and distributed) coding
schemes it is important to restrict the types of things under con-
sideration. It is sometimes claimed that localist representations
extend to all sorts of familiar things, from letters to propositions
(e.g., Plaut, 2000). But this is not required by advocates of localist
coding. Although there must be a local representation for the
concept grandmother, there is no commitment to the claim that a
single cell codes for the familiar proposition “Have a nice day.”

Indeed, advocates of localist coding schemes are quite explicit
in restricting the level to which knowledge is coded locally. For
example, within traditional psychological (and linguistic) models
of language, word knowledge is coded in a localist format up to
(but not beyond) the morphological and lexical levels (but see
MacKay, 1987, for an exception). A proposition (or complex
thought) is only conceived when a collection of localist represen-
tations are entered into some syntactic relation to one another. That
is what syntax is for—to allow “the infinite use of finite media”
(von Humboldt, quoted by Pinker, 1998, p. 118). Accordingly,
there is no combinatorial explosion in which infinity of possible
thoughts requires infinity of neurons, one for each thought.

A similar point was made by Barlow (1972) with respect to
vision. He argued that cardinal cells code for elements of percep-
tion, and the whole of perceptual experience would be coded by
some combination of active cardinal cells (much like a sentence is
composed of a collection of words). For present purposes, there is
no distinction between Barlow’s (1972) cardinal cells and grand-
mother cells as long as elements of perception extend to single
objects or faces. To summarize then, advocates of grandmother
(and cardinal) cells never claimed that a proposition (complex
thought) or unique perceptual event is coded by a single neuron,
and accordingly, the objection of Hubel (1995) is misguided.

A second possible point of confusion is that it might appear that
localist theories are committed to the claim that one and only one
unit is devoted to coding each thing. This assumption sometimes
leads to a quick dismissal of localist coding schemes, as indeed it
is implausible to suggest that the concept “grandmother” could be
lost if the one corresponding neuron was damaged (e.g., Eichen-
baum, 2001). Although a strict one-to-one correspondence be-
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tween neuron and knowledge constitutes an example of grand-
mother theory, the hypothesis also admits the possibility that
multiple neurons represent the same thing. Indeed, Konorsky
(1967) suggested that the number of grandmother cells (gnostic
units) devoted to a stimulus might be proportional to the impor-
tance of the stimulus to the individual. Similarly, Barlow (1985),
Gross (2002), Page (2000), and Perrett et al. (1989), among others,
are all clear that redundant coding would be required on any
feasible grandmother coding scheme. Throughout the article, I
employ the term grandmother neuron or grandmother cell for the
sake of convenience, but this should not be taken as a commitment
to the claim that one and only one neuron codes for a given item.
As discussed in Part 3, there may be massive redundancy.

In sum, the key claim of localist coding schemes is that a given
unit (neuron) codes for one familiar thing (and does not directly
contribute to the representation of anything else), and that it is
possible to interpret the output of a single unit in a neural network.
Grandmother cell theories are committed to the claim that there are
localist representations for words, objects, and faces, but there is
no corresponding claim that localist codes extend to propositions
or complex visual scenes. I expect (hope) most researchers would
be willing to accept these points, but there are a number of more
subtle issues that need to be considered in order to avoid some
common misunderstandings.

Do Localist and Distributed Representations Always
Co-Occur?

It is sometimes claimed that all models that include localist
representations at one level of a network (e.g., Layer n) include
distributed representations of the same items at lower levels as
well (Layers n — 1, n — 2, etc.). For example, Page (2000)
considered the interactive activation (IA) model of visual word
recognition (McClelland & Rumelhart, 1981; Rumelhart &
McClelland, 1982), the archetypal localist model in psychology.
The model includes three levels: An input layer composed of a set
of visual-feature detectors that respond selectively to line segments
in various orientations; a second layer composed of nodes that
respond selectively to letters in specific positions within a word;
and a third layer composed of nodes that respond maximally to
individual familiar words. According to Page, words are coded
locally in Layer 3 of the IA model and in a distributed format at
Layers 1-2. For example, time is coded locally (by a single unit)
in Layer 3 and as a pattern of activation over four letter units
(t-i-m-e) at Layer 2. On this view, all models include distributed
representations, and the relevant question for distinguishing local-
ist versus distributed models is whether there are localist repre-
sentations of the relevant entities at a given level of the network.
The same point has been made by Hummel (2000), Thorpe (2002),
Seidenberg and Plaut (2006), and others.

However, it is a conceptual mistake to assume that a model (or
neural system) that codes for an item locally at Layer n must
represent the same item in a distributed manner at Layer n — 1.
Consider what this hypothesis entails. It must be assumed that
there are redundant representations of words, objects, faces, and
the like, with localist representations at the top of a hierarchy and
with distributed representations of the same items at a lower stage.
In the case of the IA model, the claim must be that there are lexical
representations of words at Layer n and distributed representations

of the same words at the letter level at Layer n — 1. This claim has
a straightforward implication: The pattern of activation across a set
of letters at Layer n — 1 should support the same (or at least
similar) functions as the corresponding localist representations at
Layer n. For example, the distributed representations at Layer n —
1 should support a “yes” response in a lexical decision task,
support all the various forms of the word superiority effect, interact
with phonology to support the naming of both regular and irregular
words, and support access to meaning, and the like. Indeed, dis-
tributed representations of words in PDP models can support most
of these functions.

However, none of these functions can be performed by a col-
lection of activated letter detectors in the IA model. Consider
Figure 1. According to Page (2000), the word time is coded locally
at the word level but in a distributed format at the letter level.
However, if the time unit is removed, the word time is now
unfamiliar to the model, similar to countless other unfamiliar letter
strings (e.g., the pseudowords blap, slad, etc.). When the lesioned
model is presented with fime, the coactivate letter units r-i-m-e
cannot support the word superiority effect, in which words are
better identified than pseudowords (a key experimental phenom-
enon that the IA model was designed to explain), nor can the letter
units support lexical decisions, among many other lexical effects.
In short, a collection of localist letters does not constitute a
representation of a familiar word (distributed or otherwise). In the
same way, if a Chinese character was presented to the IA model,
a collection of local feature detectors at Layer n — 2 would
become activated, but the IA model does not code for Chinese
words in a distributed manner at Layer n — 2 (even assuming all

Figure 1. Adapted from Figure 2 in “An Interactive Activation Model of
Context Effects in Letter Perception: 1. An Account of Basic Findings,” by
J. L. McClelland and D. E. Rumelhart, 1981, Psychological Review, 88, p.
380. Copyright 1981 by American Psychological Association. Schematic
diagram of a small subcomponent of the interactive activation model.
Bottom layer codes are for letter features, second layer codes are for letters,
and top layer codes are for complete words, all in a localist manner. Arrows
depict excitatory connections between units; circles depict inhibitory con-
nections.
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the relevant features were present at Layer n — 2). The reason why
it is tempting to claim that the IA model codes for words in a
distributed manner at the letter level (but not Chinese words at
Layer n — 2) is that we know that time is a word—the model does
not.

This raises a related issue. If there are no distributed represen-
tations of words in the IA model, how should one characterize the
representations of unfamiliar words? Again it might be tempting to
argue that the IA model includes distributed representations for
this purpose. For example, the pseudoword pime will activate a
collection of localist word representations that share a number of
letters (e.g., time, lime, pine, dime, etc), and the pattern of activa-
tion over these words might constitute its distributed representa-
tion. Indeed, pseudowords like pime are better identified than are
random letter strings (e.g., xyfk) in the IA model because nonwords
activate more word representations (the so-called pseudoword
superiority effect; McClelland & Rumelhart, 1981). Similarly,
some models of word processing support pseudoword naming
through lexical analogy, in which coactive local word representa-
tions specify the pronunciation of a pseudoword (Humphreys &
Evett, 1985; Kello, Sibley, & Plaut, 2005). For example, the
coactivation of time, lime, pine, and dime might code for the
pronunciation of pime. Similar accounts have been applied to
faces, with unfamiliar faces identified through the coactivation of
familiar ones (e.g., Jiang et al., 2006). In addition, pime activates
the letters p-i-m-e, and this pattern of activation over the letter
units might also constitute its distributed representation.

However, the suggestion that coactive letter or word units con-
stitute a distributed representation of a pseudoword is not correct
either. The core claim regarding distributed representations is that
individual units are involved in coding multiple familiar things.
The localist letter and word units in the IA model are at odds with
this assumption, and thus, to call a pattern of activation over these
local units distributed is misleading. In any case, the grandmother
cell theory is concerned with how familiar knowledge is coded.
The hypothesis that unfamiliar knowledge is coded through the
coactivation of multiple localist representations does not bear on
the issue.

The (mis)use of the term distributed occurs in a related context.
As discussed above, localist coding schemes assume a hierarchy of
progressively more complex representations, at the top of which
are single units (neurons) that code for complex stimuli, including
individual persons, objects, and words. An obvious question then
arises; namely, how should one characterize the representations
that underlie more complex thoughts and perceptions? For in-
stance, in order to code for the proposition the dog chased the cat,
the local representations of dog, chased, and cat need to be
coactivated, and further, they need to be activated in such a way as
to distinguish this from the related proposition the cat chased the
dog. One possible solution was proposed by Hummel and Holyoak
(1997), who developed a neural network model that includes
localist representations for nouns (e.g., unique nodes for dog, cat,
etc.) and predicates (e.g., a node that codes for x chased y—with
x and y unspecified) and a mechanisms to bind (transiently) nouns
to predicates, such that x = dog, y = cat when representing the
proposition the dog chased the cat, and x = cat, y = dog when
coding the cat chased the dog.

For present purpose, the key question is whether their model
includes distributed representations, given that the dog chased the

cat is coded as a pattern of activation over a collection of localist
units, and furthermore, each unit is involved in representing many
different propositions (e.g., the same dog unit is involved in coding
the related proposition my dog likes ice cream). Hummel and
Holyoak (1997) adopted this term and titled the article that intro-
duced their model, “Distributed Representations of Structure: A
Theory of Analogical Access and Mapping.”

But again, the use of the term distributed in this context risks
confusion, given that Hummel and Holyoak (1997) meant some-
thing quite different from the distributed representations proposed
by PDP modelers. Indeed, their model is fundamentally inconsis-
tent with the PDP approach. That is, their model not only includes
local coding at the lexical level but also implements symbolic
processing: Computations are performed over context independent
representations in order to ensure that complex thoughts are com-
positional and systematic. By contrast, a key claim of the PDP
approach is that cognition (and the brain) computes without re-
course to context independent representations and, more generally,
that cognition does not rely on symbolic processing (for detailed
discussion of the contrast between symbolic and PDP approaches,
see Bowers, 2002; Fodor & Pylyshyn, 1988; Marcus, Vijayan,
Rao, & Vishton, 1999; Prasada & Pinker, 1993). It can only
confuse matters to use the term distributed to describe the quali-
tatively different representations in these alternative (indeed, the-
oretically opposite) approaches to understanding how the brain
implements perception and thought.

To summarize, the grandmother cell hypothesis is concerned
with how familiar knowledge is coded, and there is no logical
reason that localist and distributed representations must co-occur
in a hierarchy of processing steps. A localist model must account
for how novel information is coded, but this can be accomplished
through the coactivation of multiple localist codes. Of course, the
brain may implement localist and distributed coding schemes at
different stages of processing, but it is also possible to envisage a
strong version of a grandmother theory in which our brain is
localist throughout, from photoreceptors to grandmother cells (for
more discussion of the possibility that local and distributed coding
co-occur, see discussion below). Whatever the connection between
local and distributed coding, a grandmother theory must predict
that the cells at the top of a visual hierarchy code for words,
objects, and faces in a localist manner.

How Do Localist Models Behave?

There is also a common misunderstanding in the neuroscience
literature about how localist models behave. In particular, it is
often assumed that localist representations are activated by a
specific object or face and are entirely unaffected by similar inputs
(Foldidk, 2002; Gross, 2002; Poggio & Bizzi, 2004). This concep-
tualization of grandmother cells appears widespread and leads to
some unwarranted conclusions. For example, Young and Yamane
(1992) presented macaque monkeys images of human faces while
recording from 850 temporal lobe neurons. Figure 2 shows the set
of 27 test faces, and Figure 3 shows the firing pattern of the most
selective cell in response to these faces. The letters and numbers in
the two figures correspond to the faces depicted in Figure 2. As can
be seen in Figure 3, this neuron fires robustly to 1 face (face E),
minimally to 1 other (face R), and not at all to the remaining faces.
Despite the striking selectivity of this cell, Young and Yamane
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Figure 2. Adapted from Figure 4-2 in “An Analysis at the Population Level of the Processing of Faces in the
Inferotemporal Cortex,” by M. P. Young and S. Yemane, from Brain Mechanisms of Perception and Memory:
From Neuron to Behavior (p. 50-51), edited by T. Ono, L. R. Squire, M. E. Ratchle, D. I. Perrett, and M.
Fukuda, 1993. Copyright 1993 by Oxford University Press. Reprinted by permission of Oxford University Press.
The set of 27 face images that were presented to the macaque monkeys while recording from 850 temporal lobe
neurons. Each face was assigned a unique letter or number, as indicated in the figure.

(1992) focused on the fact that most neurons did respond to more
than 1 face and concluded that this provides evidence for a dis-
tributed code. In order to reconcile the selectivity of this one
neuron to the above claim, the logic must be that a grandmother
cell should only respond to a single stimulus, and the partial
(minimal) activation of this neuron to a second face (and, presum-
ably, other untested faces) falsifies the hypothesis. The problem
with this analysis, however, is that the premise is false; in standard
localist models, multiple face or word representations are coacti-
vated during the encoding of a stimulus.

To illustrate this, consider Figure 4. The figure shows the
relative amount of activation of localist word nodes blue and blur
in the IA model, in response to the familiar word blur. The key
point to note is that although the word unit blur receives the most
activation in response to the input blur, visually similar words (in
this case blue) receive activation as well. As can also be inferred
from this figure, the localist word unit blue is activated by both
blur and blue. So a single input (in this case a word) activates a
pattern of activation across a (limited) collection of localist word
representations, and a given localist word unit is activated by a
(limited) range of inputs (cf., Jacobs, Rey, Ziegler, & Grainger,
1998). It is important to note that activation based on similarity is
not some idiosyncratic property of the IA model. It applies to all
localist models and, likely, to any networks in the brain.

Two points should be emphasized here. First, if a neuron re-
sponds to more than one stimulus, as in the Young and Yamane
(1992) study, this does not show that the brain coded for the
stimulus in a distributed way. Similarly, if a single stimulus
produces a pattern of activation across a set of neurons, this does
not, by itself, show that the brain coded the item in a distributed
format. The critical question is not whether a given neuron re-
sponds to more than one object, person, or word but rather whether

the neuron codes for more than one thing. Localist coding is
implemented if a stimulus is encoded by a single node (neuron)
that passes some threshold of activity, with the activation of other
nodes (neurons) contributing nothing to the interpretation of the
stimulus. For example, the coactive blue unit does not play a role
in representing blur in Figure 4. Young and Yamane (1992) did not
provide any evidence that the second most active neuron contrib-
uted to the coding of the face, and accordingly, their conclusion is
unfounded. Barlow (1995) made a similar point when he intro-
duced the term the lower-envelope principle to describe coding in
sensory systems. On this view, sensory thresholds are determined
by the neurons that have the lowest threshold for a given stimulus
and are not influenced by the responses of less sensitive neurons.

The second point is that the coactivation of knowledge in
localist models complicates the task of distinguishing between
localist and distributed coding schemes in the brain. But the
conceptual distinction is unaffected by these empirical challenges,
and the distinction is fundamental to understanding how the brain
works.

What Is a Distributed Code?

The fundamental point about all distributed coding schemes is
that each unit in a network is involved in coding more than one
familiar thing, and as a consequence, the identity of a stimulus
cannot be determined by considering the activation of a single unit
(neuron). More precisely, a single unit within a distributed system
codes for a relation between itself and a set of entities in the world,
but unlike localist representations, the entities do not constitute a
meaningful equivalence class (Hummel, 2000). For instance, a
given unit might contribute to the coding of the words blue and
blur.
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Figure 3. Adapted from Figure 4-4 in “An Analysis at the Population
Level of the Processing of Faces in the Inferotemporal Cortex,” by M. P.
Young and S. Yemane, from Brain Mechanisms of Perception and Mem-
ory: From Neuron to Behavior (p. 50-51), edited by T. Ono, L. R. Squire,
M. E. Ratchle, D. I. Perrett, and M. Fukuda, 1993. Copyright 1993 by
Oxford University Press. Reprinted with permission of Oxford University
Press. The activation of one inferior temporal cell in a macaque monkey in
response to the 27 faces from Figure 2. The cell was inactive (or below
baseline) for all but face E and, to a small extent, face R.

When distinguishing between distributed and localist coding
schemes, it is important to also distinguish between the represen-
tations and the processes within a model. In the localist IA model,
the input blur will coactivate the localist blur and blue word
representations (as discussed above). Furthermore, coactive repre-
sentations may impact the identification of the target. For instance,
blur and blue might compete for identification through lateral
inhibition, such that the identification of blur is delayed by virtue
of blue being active (cf. Bowers, Davis, & Hanley, 2005). Never-
theless, the key point remains that each unit in a localist system
codes for one thing, and each unit in a distributed system is

involved in coding multiple things. The fact that the blue unit is
partially active in response to the input blur in a localist system
does not compromise the conceptual distinction between local and
distributed coding because blue does not contribute to the repre-
sentation of blur. However, as noted above, it does make the task
of distinguishing between these theories more difficult.

Another challenge in distinguishing between local and distrib-
uted coding schemes is that distributed representations come in at
least three different forms: what I call dense, coarse, and sparse
distributed coding. The coding schemes differ (in part) with re-
gards to how much information can be derived from the activation
of a single unit, and they make different predictions concerning the
outcomes of single-cell recording studies. Accordingly, when as-
sessing the relative biological plausibility of local versus distrib-
uted coding schemes, the contrast is not between local and distrib-
uted but between local and dense distributed, local and coarse
coding, and local and sparse coding. These three coding schemes
are described next.

Dense Distributed Representations

Dense distributed representations contrast most sharply with
localist ones. In dense distributed coding schemes, each unit or
neuron is involved in coding many different things, and as a
consequence, little information can be inferred from the activation
of a single neuron. This hypothesis is commonly associated with
PDP theories. For example, when discussing this approach, Thorpe
(1995) wrote, “with distributed coding individual units cannot be
interpreted without knowing the state of other units in the net-
work” (p. 550). Elman (1995) endorsed this view when he wrote,
“These representations are distributed, which typically has the
consequence that interpretable information cannot be obtained by
examining activity of single hidden units” (p. 210). More gener-
ally, Smolensky (1988) introduced the term subsymbolic to de-
scribe the function of individual units in a PDP network and the
term subconceptual to describe their meaning.

Because of the widespread assumption that individual hidden
units in PDP models convey little information, little effort has been
devoted to studying hidden units one at a time. Nevertheless there
is some evidence consistent with this claim, at least under some
conditions. For example, consider the classic Seidenberg and
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Figure 4. The activation of blur and blue units within the interactive
activation model in response to blur. Although only blur is activated
beyond threshold, blue is activated to some extent as well.
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McClelland (1989) PDP model of word naming (which was de-
veloped as an alternative to the IA model). The model includes 200
hidden units that map between orthographic and phonological
representations. After training, the model correctly pronounced
97.3% of the 2,897 words it was trained on, as well as many novel
items. In an attempt to gain some understanding of how the hidden
units contributed to performance, Seidenberg and McClelland
(1989) recorded the activation values of the hidden units in re-
sponse to the words pint, mint, and said. Because pint is an
irregular word, in that its pronunciation is not predictable from its
spelling, a lexical (localist) representation is required to support its
pronunciation on some theories (e.g., Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001). In response to pint, 22 hidden units
were highly active (>.8 of maximum activation), constituting
~10% of all hidden units. The orthographically related word mint
activated 11 of the same units, which highlights the fact that
similar words are coded by similar patterns of activation (50%
overlap in this case). It is interesting to note that the dissimilar
word said activated 4 overlapping units (18% overlap).

The critical point to take from this is that it is not possible to
infer much of anything on the basis of the activation of a given
unit. For the sake of argument, imagine that unit 100 is highly
active in response to pint. If one assumes that the 18% overlap
between pint and said is typical for 2 dissimilar words, then there
is also an 18% chance that unit 100 will be activated by another
dissimilar word (the 18% chance overlap for unit 100 applies to all
other units as well, producing 18% overlap overall). If one further
assumes that there are approximately 2,000 words in the trained
vocabulary set that were dissimilar to pint (there were 2,897 words
in the training set in all, but some will share some orthographic
overlap), then 18% of these words should also activate unit 100.
That is, on the basis of the activation of this single unit it is only
possible to infer that 1 of approximately 360 dissimilar words
(.18 X 2,000 = ~360) was presented to the network. The same
would hold if the overlap between dissimilar items was much
smaller. For instance, if dissimilar words produced orthogonal
activation patterns, and each pattern activated 10% of the hidden
units, then the probability of the same hidden unit being active for
2 dissimilar words would be .01 (rather than .18). Still, if the
network codes for 2,000 dissimilar words, each unit will be acti-
vated by ~20 dissimilar words (.01 X 2,000). So again, little
meaning can be attached to the activation of a given unit. The
ambiguity is only enhanced by the fact that each unit is activated
by orthographically similar words as well.

A more direct demonstration that PDP models often learn dense
distributed representations has been provided by Berkeley, Daw-
son, Medler, Schopflocher, and Hornsby (1995). They developed
an analytical technique in which the activity of each hidden unit
was recorded in response to a range of inputs by means of a
separate scatter plot for each unit. The unit’s response to an input
is coded along the x-axis, with values on the y-axis kept random (in
order to prevent points from overlapping). These so-called jittered
density plots effectively provide single-cell (or in this case, single-
unit) recordings for each hidden unit in response to a large number
of inputs.

Berkeley et al. (1995) carried out this analysis on a series of
three-layed networks trained by back-propagation to categorize
logical inference problems. One of the models included 14 input
units (a pattern of activation across these units defined the input

problem), 3 output units (a pattern of activation across these units
categorized the input problem into one of four different argument
types and indicated whether or not the argument was valid), and 15
hidden units. The key point for present purposes is that after
training, the model was able to correctly categorize 576 input
patterns into six categories. Furthermore, the jittered density plots
confirmed the model categorized the inputs based on dense dis-
tributed representations. That is, each unit responded to most of the
576 inputs (to varying degrees), so that there is little information
about the identity of the input recoverable from the activation of a
single hidden unit. Indeed, the plots looked quite similar to those
displayed in Figure 5B, as described below.

To further explore the nature of the distributed representations
learned in PDP models, Bowers, Damian, and Davis (2008) re-
cently carried out a set of these analyses on a PDP model of
short-term memory (STM) and word naming. The simulations
were based on Botvinick and Plaut’s (2006) model of STM that
includes a localist input and output unit for each letter and 200
hidden units. After training, the model could reproduce a series of
6 random letters at ~50% accuracy, which roughly matches hu-
man performance in an immediate serial recall task. In one anal-
ysis, we successfully trained their model to this criterion and then
computed jittered density plots for all the hidden units in response
to all 26 letters (the scatter plots were constructed in response to
single letters rather than lists of letters). The plots of the first 24
(out of 200) hidden units are presented in Figure SA. As is clear
from these plots (and equally true of the remaining plots), it is not
possible to interpret the output of any given hidden unit, as each
unit responds to many different letters. For the model to correctly
retrieve a single letter (let alone a list of 6 letters in STM), the
model must rely on a pattern of activation across a set of units.
That is, the model has learned to support STM on the basis of
dense distributed representations.

In another analysis, I trained the same network to name a set of
275 monosyllable words presented one at a time. That is, rather
than supporting STM, the model learned to name single words.
Each input and output was a pattern of activation over three letter
units, and the model was trained to reproduce the input pattern at
the output layer. After training, it succeeded (~100%) on both
trained words and 275 unfamiliar words. Figure 5B presents the
jittered density plots of the first 24 hidden units in response to the
275 familiar words. Once again, the model succeeded on the basis
of dense distributed representations. These analyses support Sei-
denberg and McClelland’s (1989) earlier conclusion.

In sum, each hidden unit in the above PDP models contributes
to the coding of many different things and, as a consequence, each
unit conveys little information. That is, these models learn dense
distributed representations. I would suggest that many researchers
consider this as a core theoretical claim of the PDP approach.
Consistent with this view, some PDP models do indeed learn dense
distributed representations.

Coarse Coding

In the neurosciences, the term distributed (sometimes called
population, or ensemble coding) tends to mean something differ-
ent. The claim is not that individual neurons code for many
different things (and that little meaning can be attached to the
activation of a given unit) but rather that neurons have broad
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Figure 5. A: Presents 24 jitter density plots depicting the activation values of first 24 hidden units (from a total
of 200 units) from Botvinick and Plaut’s (2006) model of short-term memory. Each point indicates the activation
value for a given hidden unit (ranging from O to 1.0) in response to a single letter after the model was trained
to code for lists of letters. As is clear from the plots, little meaning can give given to the output of a single hidden
unit. The same is true for the remainder of the hidden units. B: Depicts the activation values of the first 24 hidden
units in response to 275 trained words. Here the model was trained on words, one at a time, and was effectively
a model of word naming. Again, little meaning can be attached to the activation of any given hidden unit.

tuning curves, such that a given neuron plays a role in coding for
a range of similar things. Although these neurons may respond
most strongly to a preferred stimulus (on average), the noise in the
system makes it impossible to reliably identify an object on the
basis of the response of a single cell. Accordingly, the core claim
is that the unique identification of a given object, word, and the
like relies on pooling across a collection of noisy units in order to
get a stable and exact measure of an input. Pooling is generally
thought to occur across multiple levels of the visual system, with
simple cells pooling to complex cells, complex cells pooling to
hypercomplex cells, and the like, until pooling converges on cells
at the top of a hierarchy that code for complete objects or faces in
a coarse manner (e.g., Riesenhuber & Poggio, 1999).

As an illustration, consider Figure 6, which depicts a coarse
coding strategy for encoding spatial location. Each cell has a
relatively large receptive field (as indicated by the size of each
circle) and will fire in response to an object anywhere within its
receptive field. Although these cells will tend to fire most strongly
to stimuli located in the center of their receptive field, the noise in
the system makes it impossible to read off the exact position of an
object on the basis of the exact level of activation of any one

neuron. Nevertheless, a relatively precise specification of location
can be coded by coactivating a set of these noisy neurons. For
instance, if Neurons 1-4 in Figure 6 are all coactivated, then the
object must be located at the intersection of their receptive fields,
and this specifies a small region of space in a reliable way (cf.,
Hinton, McClelland, & Rumelhart, 1986).

A common feature of coarse coding schemes is that they are
implemented in topographic maps; that is, neurons that code for
similar things are located in similar areas of the cortex. In the
present example, nearby neurons code for similar (overlapping)
spatial locations (a so-called retinotopic map). But the same logic
applies across dimensions. For instance, similar tones in auditory
cortex are coded by spatially proximate neurons (e.g., Formisano
et al., 2003; a so-called tonotopic map). In this way, a given unit
responds to a limited set of similar inputs, and a given input
activates a limited set of units that extend over a small area of
cortex.

To give an example from neuroscience, Georgopoulos,
Schwartz, and Kettner (1986) studied how neurons in the primary
motor cortex of rhesus monkeys encode arm movements. As in the
example above, there is a spatial organization to motor neurons,
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Figure 6. A coarse coding scheme for coding the position of the object X.
Each neuron fires in response to an object its receptive field. Given the
large size of the receptive fields (as indicated by each circle), the precise
location of an object cannot be determined by the activation of a single
neuron. However, a more precise estimate of location can be computed
through the coactivation of Neurons 1-4, which indicates that the object is
located in the small area that intersects all three receptive fields (as marked
by dark shading).

with nearby neurons coding for similar directions of motion. The
researchers observed that single cortical neurons are broadly tuned
to direction of movement, such that they fire robustly to arm
movements in one direction but respond (to a lesser extent) to
related directions as well. Because of noise in the system, the firing
of a single neuron does not encode sufficient information to
reliably support precise behavior. Georgopoulos et al. concluded
that direction is coded by a pattern of activation across a set of
similarly tuned neurons located in close spatial proximity. In their
population vector model, each neuron “votes” for their preferred
direction, weighted by its firing rate. This vectorial summation of
all the votes provided a better measure of the direction of arm
movement than did the response of any single neuron. Note, the
vector averaging account of Georgopoulos et al. is just one of
various proposed algorithms designed to integrate (pool) a pattern
of neural activity into a meaningful code for motor control (or
perception; for review see Pouget, Dayan, & Zemel, 2000).

With regards to the debate about localist versus distributed
coding, the critical issue is how the pooling algorithm is imple-
mented in the brain. Zhang, Ginzburg, McNaughton, and
Sejnowski (1998) made the important point that a range of pooling
algorithms, including Bayesian methods, can be implemented in
winner-take-all networks, that is, networks that implement grand-
mother coding schemes. Thus, the (often implicit) claim of advo-
cates of distributed coarse coding is that the neural mechanisms
that interpret a pattern of activation across a set of neurons do so

without pooling to winner-take-all neurons at the top of a hierarchy
(otherwise it is a grandmother coding scheme). Similarly, it must
be claimed that the brain does not simply code for information on
the basis of the most active neuron across a set of coactive and
coarsely tuned neurons (otherwise it is operating according to the
lower-envelope principle, another version of grandmother coding).
Rather, the critical claim must be that a pattern of activation is the
final step in the hierarchy of processing steps.

Sparse Distributed Coding

Yet another type of distributed coding that should be distin-
guished from above is sparse distributed coding as conceptualized
in the PDP approach. On this coding scheme, a complex stimulus
is coded by the activation of a small number of units, and each
individual unit contributes to representation of just a few stimuli.

The obvious contrast between dense and sparse coding schemes
is the number of units (neurons) involved in coding a given
stimulus, with far fewer in the latter case. But it is also important
to distinguish their functions. According to McClelland,
McNaughton, and O’Reilly (1995), sparse representations are well
suited to support rapid learning without erasing previously stored
knowledge, but they are poor at generalization. By contrast, dense
distributed representations are better at generalization but suffer
from catastrophic interference, in which rapid new learning erases
previous knowledge. On the basis of this analysis, it is argued that
sparse coding is employed in the hippocampus in order to store
new episodic memories following single learning trials, whereas
dense distributed representations are learned slowly and reside in
cortex in order to support word, object, and face identification
(among other functions), all of which require generalization (e.g.,
to identify an object from a novel orientation).

The contrast between coarse and sparse coding is not as clear
with regard to the number of units involved in coding a given
stimulus. Presumably, coarse coding requires a greater number of
units to be activated in order to represent something, but in
practice, it may be difficult to distinguish between the two hypoth-
eses on the basis of this criterion. Nevertheless, the two approaches
can be distinguished. For example, unlike sparse representations,
coarse codes are thought to support generalization; indeed, this is
often described as one of the strengths of this coding scheme (e.g.,
Poggio and Bizzi, 2004). In addition, coarse coding is assumed to
be employed in the cortex in the service of generalization, whereas
sparse PDP coding is assumed to be restricted, in large part, to the
hippocampus (and, perhaps, other brain areas that support fast
learning but that are not involved in generalization). Furthermore,
the two coding schemes tend to be embedded in networks with
different structures. That is, coarse codes are typically embedded
within hierarchical networks, with neurons at each level pooling to
progressively more complex perceptual representations. Sparse
codes within PDP networks are not generally organized along
these lines.

Summary of the Key Features of Local and Distributed
Coding Schemes

A grandmother cell is a localist representation at the top of a
hierarchy of neural processing steps that codes for individual
words, objects, faces, and the like. Although grandmother neurons
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sit on the top of a hierarchy, localist-coding schemes may operate
across all the earlier levels as well. It is not claimed that familiar
propositions (e.g., “Have a nice day”), novel propositions (e.g.,
“My grandmother is a nice Republican”), or complex visual scenes
(a weeping grandmother) are coded by a single unit or neuron.
Similarly, it is not claimed that novel words or novel objects are
coded by a single unit or neuron. Rather, it is claimed that single
neurons code familiar words, objects, faces, and the like. Given the
confusions that have surrounded the concept of localist coding (cf.
Page, 2000, and the corresponding commentaries), it is perhaps
worth emphasizing that this description of localist coding is en-
tirely consistent with an archetypal localist model of cognition,
namely, the IA model of word identification.

Localist representations can be distinguished from three types of
distributed coding schemes described in the literature. In the case
of dense distributed representations, there is little meaning that can
be assigned to a given unit, as the unit will respond to many
different inputs. In the case of coarse coding, each unit responds to
multiple similar inputs and is involved in coding multiple similar
things. Because of this similarity constraint, it is possible to assign
meaning to the firing of a single neuron, but only to a rough
approximation. The outputs of multiple neurons need to be con-
sidered to get an exact measure of an input. Both of the above
codes are assumed to support word, object, and face processing in
the cortex. Finally, in the case of sparse distributed codes (as
conceptualized by the PDP approach), each neuron contributes to
the identification of a few things (more than one), and a given
stimulus is defined by the activation of a few neurons. These
representations support episodic memory in the hippocampus, but
not object, word, and face identification in cortex.

Before reviewing the relevant data, it is perhaps worth empha-
sizing that the local-distributed distinction is just one of many
issues concerning how the brain codes for information. In addition,
there are questions about whether neural synchrony plays a role in
coding information (e.g., Singer & Gray, 1995), whether informa-
tion is communicated by the rate of firing or, alternatively, by the
timing of the first neural spike (e.g., Thorpe, Delorme, & Van
Rullen, 2001), whether information is coded by pooling indepen-
dent signals, as in an election, or through the coordination (inter-
action) of signals, as in a symphony (e.g., deCharms, 1998), and
the like. These issues are to some extent orthogonal to the question
at hand; for instance, synchronous firing may well be implemented
in brains that code for information in a localist or distributed
manner. But the answer to one question presumably provides
constraints to the others, and a full understanding of how the brain
computes requires an answer to all the questions, among many
others.

Part 2: Review of the Data

In this section, I review key findings from neurophysiology, a
subfield of neuroscience that involves recording (or eliciting) the
activity of a small number of neurons while an animal performs
some task or is exposed to some stimulus. According to the
grandmother neuron hypothesis, there should be strong associa-
tions between the behavior of single neurons and the ability of an
animal to identify a stimulus or perform a task. For example, it
should be possible to determine the identity of a face on the basis
of the activation of a single neuron.

Distributed theories make different predictions. According to
dense distributed coding schemes, there should be little informa-
tion associated with the activation of single neurons. For example,
all neurons involved in coding faces should respond to a wide
variety of faces, including some dissimilar ones. That is, just as it
is difficult to attach much meaning to the activity of any single
hidden unit in a PDP network, it should be difficult to attach
meaning to the activity of single neuron in the brain.

According to the coarse coding hypothesis, a given neuron
should respond to a restricted set of similar stimuli. For instance,
it should be possible to identify single neurons that respond to a set
of similar faces and that fail to respond to dissimilar faces. The
challenge in distinguishing coarse coding from local coding is that
local units also respond to a range of similar things. The difference
is that each unit in a coarse coding scheme is involved in repre-
senting multiple (related) things, whereas on local coding, each
unit represents one thing and is only incidentally activated by
similar things (e.g., the dog unit in the IA model represents dog,
and its activation in response to hog is incidental). So, to provide
direct evidence for coarse coding and to reject grandmother cell
coding, it needs to be shown that a collection of broadly tuned
neurons (with different response profiles) all play a role in coding
a given input.

Finally, on sparse distributed coding, the activation of single
neurons should be tightly coupled with a given stimulus or behav-
ior, and accordingly, it might appear difficult to distinguish this
from grandmother coding schemes. But, as noted above, the PDP
approach makes the prediction that sparse distributed coding is
employed in the hippocampus, whereas dense distributed repre-
sentations are in the cortex. Accordingly, the response profiles of
neurons in the two brain areas can provide a test of this claim.

The review starts with an analysis of how a variety of low-level
perceptual and motor knowledge is coded in the brains of a variety
of simple organisms and concludes with an analysis of how high-
level knowledge is coded in complex organisms, including the
representations of words, objects, and faces in humans. As noted
above, models that include localist units (grandmother cells) at the
top of a hierarchy may include localist representations at all levels.

Grandmother Cells in Simple Organisms

Motion perception in flies. Single-cell recordings from the
movement-sensitive H1 neuron in the visual system of the blowfly
(Calliphora erythrocephela) highlight the amount of information
encoded in a single neuron. The HI neuron encodes horizontal
movements over the entire visual field, and van Steveninck and
Bialek (1995) argued that behavioral decisions are based on just a
few spikes from this one neuron. This neuron appears to be an
extreme grandmother cell in the sense that there is one and only
one H1 neuron, with no others performing a similar function (that
is, there may be no redundancy). The reason, according to van
Steveninck and Bialek (1995), is that this one neuron performs its
task optimally, and there is no functional role for more neurons.

Smell in locusts. In the insect olfactory system, odor is pro-
cessed in the antennal lobe, the analogue of the vertebrate olfactory
bulb. Perez-Orive et al. (2002) observed that the firing of the
Kenyon cells within the olfactory system of locust was highly
selective to odors, with some neurons responding specifically to 1
out of 16 odorants by firing only one or two spikes. They never-
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theless reject a grandmother cell coding scheme because they
assume that the system would be too sensitive to damage, a claim
I return to later. Nevertheless, the data are consistent with grand-
mother coding, and indeed, Heisenberg (2003) reviewed the Perez-
Orive et al. (2002) study and other studies, reached the opposite
conclusion, and suggested that a single synapse might represent the
memory trace of an odor (for a related finding, see Keller, Zhuang,
Chi, Vosshall, & Matsunami, 2007).

Looming perception in locust. The LGMD neuron is located in
the third visual neuropile of the locust optic lobe. The neuron
responds to objects approaching on a collision course with the
animal (looming), and it is thought to be involved in the generation
of escape behaviors. Gabbiani, Krapp, Koch, and Laurent (2002)
reported evidence that this single neuron integrates information
about angular velocity and object size in order to compute loom-
ing.

Feeding in sea slugs. Elliott and Susswein (2002) described
how single cells support specific feeding behaviors in gastropods,
including Aplysia (a sea slug). For example, they point out that the
properties of single cells are generally consistent with them being
designed for a specific function that is easily described in a few
words. They go on to highlight the relevance of single-cell record-
ing studies carried out on simple organisms to grandmother theo-
ries in general. That is, if the distributed coding schemes advanced
by PDP theorists are correct, this would suggest that there are
fundamentally different mechanisms of information processing in
vertebrates and invertebrates.

Sensory Thresholds in More Complex Organisms

A detailed review and discussion of the link between sensory
thresholds and neural signaling was reported by Parker and New-
some (1998). I have summarized some of the key findings reported
in this article, as well as some more recent work.

Somatosensory perception in humans. Mountcastle and col-
leagues (Mountcastle, Carli, & Lamotte, 1972; Talbot, Darian-
Smith, Kornhuber, & Mountcastle, 1976) compared monkey and
human ability to detect a vibrating stimulus applied to the skin
with the neural signaling of single mechanoreceptive neurons. In
both cases, the most sensitive neurons account for the psychophys-
ical performance of the organisms across a range of stimuli. It was
these early findings that led to the hypothesis of the lower-
envelope principle, according to which psychophysical perfor-
mance is set by the most sensitive individual neurons, with other
active neurons irrelevant.

In subsequent work, Mountcastle and colleagues (Lamotte &
Mountcastle, 1975; Mountcastle, Steinmetz, & Romo, 1990) as-
sessed the neural coding at the level of primary somatosensory
cortex. They compared psychophysical and neural responses in a
discrimination task in which observers compared the frequency of
two vibrating stimuli. Once again, the behavior of the most sen-
sitive neurons matched the performance of the organism.

In the above studies, the behavioral and neural recording were
carried out in different testing conditions (e.g., recordings are often
carried out in anesthetized animals), and accordingly, it is always
possible that the similar thresholds were a by-product of this
confound. Although this seems unlikely, it is interesting to note
that a number of studies have compared behavioral and neural
measures simultaneously, which not only eliminates any possible

confounds between testing conditions but also allows a trial-by-
trial comparison of neural responses of single neurons and psy-
chophysical judgments.

In perhaps the first study of this sort, Vallbo and Hagbarth
(1968) compared neural and behavioral sensitivity to indentations
of glabrous (smooth) skin of the hand of human participants.
Microelectrodes were inserted into the median nerve of a volunteer
participant, and the neural response of single, peripheral neural
fibers were measured in response to skin indentations that varied in
their intensity. These peripheral fibers have extremely low spon-
taneous firing rates, and a neural response was defined as a single
action potential in response to a tactile stimulus on a given trial.
The probability of an action potential was 0% in response to an
indentation of 5 wm or less, was 100% to indentations of 20 wm
or more, and fired approximately 50% in response to indentations
of 13 wm (the neural threshold). Vallbo and Hagbarth then as-
sessed the psychophysical function for stimulus detection using the
same stimuli and the same skin surface. The participants’ task was
simply to report whether a stimulus had been presented within a
brief interval. The psychophysical function overlapped very
closely with the response of the single peripheral neuron.

More impressive is the trial-by-trial correspondence between
neural signal and behavioral report. Vallbo and Hagbarth (1968)
repeatedly presented a near threshold 10 pwm stimulus to the
participant. In 30 trials, the participant detected the stimulus 16
times, and the neuron fired 17 times (again showing the similar
sensitivity of the neuron and the organism). But the remarkable
finding is that the neural response (a single action potential) almost
perfectly predicted the behavioral response. This finding highlights
the extent to which single action potentials can be highly reliable.

Low-level vision in humans and other animals. The close
correspondence between single-cell and psychophysical thresholds
has been replicated in the domain of vision. For example, in a
spatial discrimination task, Parker and Hawken (1985) found the
sensitivity of single neurons in V1 to distinguish different posi-
tions of a line was similar to the ability of humans and monkeys to
report the direction of a displacement of a line in a binary decision
task. Indeed, single V1 neurons could respond within the hypera-
cuity range, meaning that they could detect displacements smaller
than the intercone spacing at the level of the retina. Similarly,
Bradley, Skottun, Ohzawa, Sclar, and Freeman (1987) found that
best discrimination thresholds of single neurons in V1 for orien-
tation were comparable to the psychophysical performance of cats.
The same has been reported with rhesus monkeys (Vogels &
Orban, 1990). Single neurons in V1 also match psychophysical
performance in stereoscopic depth judgments (e.g., Prince, Poin-
ton, Cumming, & Parker, 2000).

The same close correlation between single neurons and psycho-
physics extends beyond V1. For example, Newsome, Britten, and
Movshon (1989) trained rhesus monkeys to perform a forced-
choice direction of motion discrimination task in which a dynamic
random dot display was presented and in which a fraction of the
dots moved in a coherent single direction. On each trial, the
monkey reported whether the coherent dots moved in one direction
or another. The difficulty of the task was varied by varying the
proportion of dots that moved coherently, and performance was
assessed across a range of difficulty levels. Threshold was defined
as the level of coherent motion in which performance reached
50%. Motion selective single cells in brain area V5 were identified
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and recordings were taken simultaneously with the behavioral
trials. Figure 7 shows the relative sensitivity of single neurons to
behavior for 218 V5 neurons across three monkeys. Ratios less
than one indicate that the single neuron outperformed the monkey,
and ratios larger than one reflected the opposite. As is clear from
this graph, the majority of neurons performed the task at a level
similar to that of the monkey, with a similar number of neurons
outperforming and underperforming the animal. In a review of
this article, Morgan (1989) summarized the Newsome et al.
findings as showing that “perceptual decisions may be corre-
lated with the activity of a small number of neurons, perhaps as
few as one” (p. 20).

In a subsequent study, Britten, Newsome, Shadlen, Celebrini,
and Movshon (1996) assessed the trial-by-trial covariation of
neural and behavioral responses for near threshold stimuli, condi-
tions in which the monkeys made an error on a substantial pro-
portion of the trials. They reported a small but significant associ-
ation between these measures. That is, the monkeys tended to
choose the preferred direction of a neuron when it fired at an above
average rate. The most sensitive neurons could predict behavior on
a trial-by-trial basis at approximately 70%. Similar results have
been obtained in the medial superior temporal cortex (Celebrini &
Newsome, 1994). Although the psychophysical-neural trial-by-
trial covariation in V5 and medial superior temporal cortex is
substantially weaker than the correlation between peripheral nerve
responses and psychophysical responses reported above (e.g.,
Vallbo and Hagbarth, 1968), it nevertheless highlights the fact that
single neurons carry a high degree of information in cortex. Given
that Newsome et al. only recorded from a tiny fraction of the
relevant neurons, it is not implausible to suggest that other neurons
would show much stronger associations.
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Figure 7. From Figure 2 in “Neuronal Correlates of a Perceptual Deci-
sion,” by W. T. Newsome, K. H. Britten, and J. A. Movshon, 1989, Nature,
341, p. 54. Copyright 2009 by Macmillan Publishers. Reprinted with
permission from Macmillan Publishers. A comparison of the relative
sensitivity of 216 neurons in the middle temporal area (MT) and the
psychophysical performance of rhesus monkey observers in a direction of
motion discrimination task. Ratios less than 1 indicate that the single
neuron outperformed the monkey, and ratios larger than 1 reflect the
opposite. As is clear from this graph, the majority of neurons performed the
task at a similar level to the monkeys, with a similar number of neurons
outperforming and under performing the animals.

On the other hand, Purushothaman and Bradley (2005) found
that when rhesus monkeys discriminated more closely related
directions of motion, the sensitivity of single neurons in V5 fell
below psychophysical judgments by a factor of 2 to 3. They found
that neuron sensitivity levels only matched psychophysical perfor-
mance when the activity of the most accurate neurons were pooled.
One possible interpretation of this finding is to conclude that
grandmother cell coding breaks down when fine direction process-
ing is involved and that under these conditions, the activity of
multiple neurons needs to be consulted in performing the task.
Another possibility, however, is that these V5 neurons pool their
outputs onto even more directionally precise neurons in other brain
areas, or that the critical neurons in V5 were missed. Indeed,
Purushothaman and Bradley (2005) themselves noted that they
only recorded from a small subset of the relevant neurons and
concluded that they cannot rule out the presence of neurons with
even greater precision.

Some More Striking Findings

The observation that the firing of single neurons is correlated
with perception and action is widespread. Before considering the
association of single neurons with high-level perception, I review
a number of additional striking findings.

Escape response in zebra fish. In the domain of motor control
there has been much consideration of so-called command neurons,
in which the discharge of a single neuron is associated with the
execution of a particular behavior. The best-studied example of
command cells in vertebrates is the Mauther cell in teleost fish.
These neurons are located hindbrain and project down the spinal
cord, where they synapse with motor neurons. Gahtan and Baier
(2004) reviewed evidence that a single action potential in the
Mauther cell leads to a C-shaped bending of the entire body, part
of the process of an escape response. Kupfermann and Weiss
(1978) rejected the claim that Mauther cells constitute command
neurons, as the relevant escape behavior is not eliminated when
individual or small groups of Mauther neurons (but not all) were
ablated. But the critical point for our purposes is that a single
action potential in a single neuron produces a functional behavior.
This does provide evidence for grandmother cells by the standard
definition of the term that admits redundancy (e.g., Barlow, 1995;
Gross, 2002).

Communication in electric fish. Fish from the species eigen-
mannia generate stable sinusoidal electrical discharges that play a
role in social communication and in their ability to locate objects
through electrolocation. Different electric fish produce slightly
different frequencies of electric discharges. When one fish is
exposed to an interfering signal of another, it will lower its
frequency in response to a slightly higher interfering frequency,
and it will raise its frequency in response to a slightly lower
frequency—the so-called jamming avoidance response. Heiligen-
berg (1990) reviewed studies that showed that the performance of
the organism could be captured by the behavior of single neurons.

Sound localization in humans and guinea pigs. Humans locate
sounds below 1,500 Hz primarily on the basis of small difference
in arrive time of sounds in the two ears, so called interaural time
difference or (ITD). According to the classic model of sound
localization (Jeffress, 1948), ITDs are coded by coincidence de-
tectors that fire maximally when spikes from the two ears arrive at
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the same time. The way coincident detectors measure a given ITD
is that the afferent neurons from the two ears have different
propagation delays, and accordingly, simultaneous input to a given
detector requires that one ear receives the sound signal slightly
before the other (thus, the ITD that a given neuron codes is a
function of the difference in the propagation delays from the two
ears). A critical finding is that humans can detect ITD as brief as
10-20 ps, and this has been assumed to be too brief a disparity for
single-cell coincident detectors to function, given the variability of
single neural events. As a consequence, it has been commonly
claimed that spatial location was based on a collection of detectors,
with responses from many neurons combined. However, Shackle-
ton, Skottun, Arnott, and Palmer (2003) recorded from single
neurons in the inferior colliculus of 15 guinea pigs, neurons that
are involved in sound localization and that are sensitive to ITD.
Shackleton et al. found that there was sufficient information in the
firing rates of individual inferior colliculus neurons to match
psychophysical performance in humans.

Whisker movements in rats. In the domain of motor control,
Brecht, Schneider, Sakmann, and Margrie (2004) reported that a
train of action potentials in a single pyramidal cell of rat primary
motor cortex can cause whisker movement, demonstrating that the
activity of single neurons in cortex can have measurable and
adaptive significance. It is critical to note that the whisker re-
sponses to the stimulation were prolonged and complex, suggest-
ing that these stimulated neurons coded for motor plans rather than
single muscle contractions. As few as 10 action potentials in a
single neuron produced robust movement, and fewer still may be
sufficient.

Related to this work, Houweling and Brecht (2007) trained rats
to respond to microstimulation of somatosensory (barrel) cortex.
Microstimulation of somatosensory cortex produces a tactile sen-
sation in humans and animals, but the procedure generally acti-
vates multiple neurons. After training with a standard microstimu-
lation procedure that activated multiple neurons, they produced a
train of action potentials in a single neuron. The rats continued to
show sensitivity to the stimulus. That is, the activity of a single
neuron is perceptible, and Houweling and Brecht (2007) took this
as evidence for highly sparse cortical coding for sensation.

Birdsong in zebra finch. Hahnloser, Kozhevnikov, and Fee
(2002) recorded from single neurons involved in the generation of
the vocalizations (song) of the zebra finch. The vocalizations are
complex, and are organized into units called song syllables that
themselves are broken down into complex sequences of sounds
that vary on a 10-ms timescale. They recorded from single neurons
in one of the nuclei important in producing songs (the so-called
HVC nucleus) and found a short burst of spikes at specific time
periods with respect to certain syllables of the song. The associa-
tion between single neuron activation and song was striking,
leading Hahnloser et al. to conclude that neurons within the HCV
nucleus may constitute a grandmother cell representation of time
in the sequence.

Related to this work, Wang, Narayan, Grana, Shamir, and Sen
(2007) recorded from neurons involved in discriminating songs of
conspecifics in the primary auditory cortex (field L) of zebra finch.
Behaviorally, songbirds can accurately discriminate between songs
based on a single presentation. Wang et al. set out to ask the
question of whether the activation of a single neuron in L1 could
match the behavior of the animal, which is what they found. They

took their findings to be consistent with the lower-envelope prin-
ciple, in which a single neuron was able to distinguish between
songs.

Abstract concepts in mice. Lin, Chen, Kuang, Wang, and
Tsien (2007) recorded from single neurons in the CA1l region of
the hippocampus that responded to the concept of “nest.” They
recorded from seven mice and identified eight neurons that re-
sponded to a wide range different nests. For example, the neurons
responded to nests in a variety of locations, independently of
physical shape and appearance (e.g., the cells responded to nests of
several different geometric shapes, including circular and triangu-
lar nests, as well as nests above and below ground), and construc-
tion (e.g., nests built of tin caps, plastic bottle caps, and cotton). At
the same time, they did not respond to similar shaped objects. This
combination of generalization across visual forms but selectivity to
nests suggests that these neurons code for the concept nest, rather
than some specific visual feature. Lin et al. concluded that these
cells constitute grandmother cells for nests.

Single Cell Recording Studies of Objects, Hands, Faces,
and Words in Monkey and Man

The review above provides clear-cut evidence that neurons
respond in highly selective ways to a variety of stimuli, including
visual processing stages beyond V1. But what about neural re-
sponses to highly complex visual stimuli? A wide range of neu-
rophysiological research provides evidence that the visual coding
of objects and faces is hierarchically organized within the inferior
temporal lobes (the so-called ventral visual stream), with down-
stream neurons responding to progressively more complex visual
stimuli. From V1, neurons project to area V2, then V4, and then
inferotemporal (IT), with the most anterior section (TE) respond-
ing to complex stimuli (and rarely responding to simple ones). For
example, IT neurons appear to code object parts in a highly
specific manner (e.g, Brincat & Connor, 2004). Furthermore, the
general organization of cells in higher visual levels appear to
respect the topographic organization of V1, with cells in a given
cortical area responding to one complex form and nearby neurons
coding for related shapes (e.g., Fujita, 2002; Fujita, Tanaka, Ito, &
Cheng, 1992).

The first report that single cells respond selectively to familiar
objects was reported by Gross, Bender, and Rocha-Miranda (1969)
who identified neurons in the IT cortex of macaque monkey that
responded to hands. Gross (1994) reminisced that he was reluctant
to use the term hand cell for fear of ridicule and noted that there
were no attempts to support or deny these general finding for about
a decade (when Perrett, Rolls and, Caan, 1979, reported face cells).
These observations highlight an intuition that many people share;
namely, the brain does not work with localist representations.
Indeed, Gross (1994) himself did not interpret his initial or sub-
sequent findings as providing evidence for grandmother cells,
noting that even the most selective hand or face selective cells
responded to more the than one hand or face. Furthermore, he
suggested that this level of selectivity might not extend to all
categories of knowledge, noting that selectivity was largely re-
stricted to face and hand stimuli. Gross (1994, 2002) took his
findings to support coarse coding.

However, there are reasons to question this conclusion on both
conceptual and empirical grounds. The first point to (re)emphasize
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is that the critical question is not whether a given neuron responds
to more than one face but rather whether the neuron contributes to
the coding of more than one face. The significance of this distinc-
tion was recognized by Perrett et al. (1985). They recorded from
cells in the temporal lobe of macaque monkey (superior temporal
sulcus) and identified some cells that responded to one person
more than others. For instance, one cell responded more to a wide
range of views of one familiar person (Paul Smith, one of the
experimenters), compared to another (David Perrett, another ex-
perimenter), such that the identity of the person could be deter-
mined by the activation of this one neuron. Perrett, Mistlin, and
Chitty (1987) took these findings to be problematic for population
encoding models despite the fact that each neuron responded to
both Smith and Perrett.

The second point to note is that some neurons appear to respond
to only one (or very few) faces (and objects). For example, as
discussed above, Young and Yamane (1992) identified 1 neuron
among the 850 temporal lobe neurons that was highly selective to
1 of 27 human faces (see Figure 3). This finding strains Gross’s
claim that face selective neurons always respond to a range of
faces. Similar results have been reported a number of times since.
For instance, Tamura and Tanaka (2001) recorded from IT neurons
while the monkey was presented with 100 photographs of different
objects, animals, and faces, and found that half the neurons re-
sponded to 7 or fewer pictures, with the most specific responding
5 times more often to the best, compared to second best, picture
and only providing a significant response to 3 photographs.

There is also evidence that neural responses to objects can be
highly selective (contrary to what Gross, 1994, claimed, above).
For example, Logothetis, Pauls, and Poggio (1995) trained two
rhesus monkeys to identify a large set of novel computer-generated
objects. The novel objects came in two classes—wire-like and
amoeboid objects—and varied in similarity within each class.
After learning the stimuli, the monkeys performed a visual match-
ing task in which they first fixated at a target from one viewpoint
for 2—4 s and then saw a series of test stimuli from the same object
class. The monkeys categorized the objects as matching or mis-
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matching, and Logothetis et al. recorded from neurons in the upper
bank of the anterior medial temporal sulcus.

The neurons showed a range of selectivity. Some neurons re-
sponded more to the wire objects, others responded only to the
amoeboid objects. But critical for present purposes, a few (3/796;
0.37 %) responded selectively to one object presented from any
viewpoint. Furthermore, some neurons (93/796; 11.6 %) re-
sponded selectively to a subset of views of one of the known target
objects but less frequently (or not at all) to highly similar objects.
See Figure 8 for an example of the types of images and the
response of one selective neuron.

In addition, a number of studies have demonstrated the speed at
which selective cells are activated. For example, Keysers, Xiao,
Foldidk, and Perrett (2001) compared the ability of humans to
identify naturalistic scenes displayed briefly in rapid sequence
with responsiveness of single-cells in the anterior superior tempo-
ral sulcus of the macaque. They presented color photographs of
faces, familiar and unfamiliar objects, and other naturalistic
scenes, using a rapid serial visual presentation procedures, with
each picture displayed for the same duration (ranging from 14
ms/image to 111 ms/image) and zero interstimulus interval. In the
psychophysical task, human participants were presented the target
prior to the sequence and had to indicate whether the target
appeared in the subsequent sequence (a detection task where
subjects could selectively attend for the target, providing an upper
limit of perception in rapid serial visual presentation [RSVP]
sequence), and in another version, the sequence was presented
first, and then the target was presented. Again, the task was to
indicate whether the target was in the sequence (a memory task, in
which participants had to identify and remember all the items in
the sequence before the target was presented, providing a lower
bound of perception in this task).

In the physiological study Keysers et al. (2001) identified 37
neurons that showed selectivity to some of the pictures, responding
best to some stimuli and less well to others. The range of the
selectivity of the neurons varied, but the most selective neuron
fired actively to one stimulus, with its response to the second best
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Figure 8. From Figure 2 in “Shape Representation in the Inferior Temporal Cortex of Monkeys,” by N. K.
Logothetis, J. Pauls, and T. Poggio, 1995, Current Biology, 5, p. 55. Copyright 2006 by Elsevier Limited.
Monkeys were trained over 3 months to identify images of wirelike images (among other object types). The
image depicts the response of one inferotemporal cell (cell 202) in response to one image (wire 526) when
depicted in a variety of orientations (A) as well as in response to a variety of other wire objects (B). The neuron
responds to a subset of views to wire 256 and very little to other images of trained wires, despite the high

similarity between some images.
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stimulus barely detectable. Even more striking, neurons showed
selectivity when the pictures were presented in RSVP sequence,
with 65% of the neurons showing selectivity at the briefest (14 ms)
durations. But perhaps most strikingly, performance of individual
neurons was comparable to human performance on the task. That
is, single neuron performance fell between the detection and the
memory conditions. This was the case when neural responses were
only considered for 71 ms after the onset of their firing or when the
full response of the neurons was considered. Keysers et al. con-
cluded that a very small number of cells in the superior temporal
sulcus may support the identification of briefly flashed stimuli.

A few studies have also been carried out on humans (e.g., Fried,
Cameron, Yashar, Fong, & Morrow, 2002; Fried, MacDonald, &
Wilson, 1997; Kreiman, Koch, & Fried, 2000), and high levels of
specificity have been reported here as well. Perhaps the most
striking of these finding was reported by Quiroga, Reddy,
Kreiman, Koch, and Fried (2005). They studied eight individuals
with pharmacologically intractable epilepsy who had depth elec-
trodes implanted in order to localize the source of the seizure
onsets. The patients were presented with a range of images on a
laptop while recordings were taken from a large number of neu-
rons from the hippocampus, amygdala, entorhinal cortex, and
parahippocampual gyrus.

In an initial recording session Quiroga et al. (2005) presented
each patient with approximately 100 images of famous persons,
landmark buildings, animals, and the like, in search of neurons
that responded to a picture. In each patient they identified a
number of neurons that responded selectively to one of the
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images. In order to determine whether the neuron selectively
responded to the famous person, object, and the like depicted in
the photograph as opposed to some idiosyncratic feature of that
specific image, Quiroga et al. (2005) presented the patient with
between three and eight distinct photographs of these items in
additional sessions on subsequent days. On average, approxi-
mately 90 photos were presented in each of these sessions, with
a total of 21 sessions across patients. To ensure that participants
attended to the photos, participants categorized each picture as
a human face or not.

In total, Quiroga et al. (2005) recorded from 343 single
neurons, of which 64 responded to at least one of the pictures.
The responsive units were all highly selective, responding to
~3% of the pictures. Most of these cells only fired in response to
a given person, object, animal, or scene, with 30 of them showing
invariance to a particular individual, object, and the like. That is,
very different images of the same person or object evoked a strong
response. Figures 9-10 show the responses of two highly selective
neurons, one that only responded to seven different pictures of the
TV star Jennifer Aniston and the other that responded selectively
to eight images of the actress Halle Barry. Strikingly, in the case
of the Halle Barry cell, the neuron responded not only to a range
of quite different images of her face but also to her written name.
This highlights the fact that this cell does not code high-level
perceptual information, but rather, a memory (or conceptual infor-
mation) about the person. This is consistent with the finding that
the cell was located in the hippocampus, an area of the brain that
supports episodic memory, not face perception.
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Figure 9. From Figure 1 in “Invariant Visual Representation by Single Neurons in the Human Brain,” by R. Q.
Quiroga, L. Reddy, G. Kreiman, C. Koch, and 1. Fried, 2005, Nature, 435, p. 1103. Copyright 2009 by the
Macmillan Publishers. Reprinted with permission from Macmillan Publishers. The activation of a single
hippocampal neuron in a human in response to a selection of 30 out of the 87 pictures presented. The vertical
dashed lines depict the onset and the offset of the image. The cell is highly selective to pictures of the TV star

Jennifer Aniston.
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Figure 10. From Figure 2 in “Invariant Visual Representation by Single Neurons in the Human Brain,” by
R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried, 2005, Nature, 435, p. 1104. Copyright 2009 by the
Macmillan Publishers. Reprinted with permission from Macmillan Publishers. The activation of a single
hippocampal neuron in a human in response to 30 out of 99 images. Again, the vertical dashed lines depict the
onset and the offset of the image. The cell is highly selective to pictures of the movie star Halle Berry, as well

as her written name.

It is interesting to note that these reports of selective respond-
ing are most frequent for highly trained (or familiar) objects and
faces. For example, in the Logothetis et al. (1995) study, the
monkeys were trained on a large set of objects for months, and
selective responses were only observed for the trained images
(novel objects failed to support these effects). Various studies
have observed increased neural selectivity as a function of
amount of training (e.g., Erickson, Jagadeesh, & Desimone,
2000; Kobatake, Wang, & Tanaka, 1998). Furthermore, Freed-
man, Riesenhuber, Poggio, and Miller (2006) reported a corre-
spondence between the selectivity of single neurons and the
ability of rhesus monkeys to categorize stimuli. Two monkeys
were trained to categorize images morphed between a proto-
typical cat and dog. These images were presented in one ori-
entation (with cats and dogs presented in 0° of rotation in the
picture plane), and after training, the monkeys could categorize
the images appropriately, including the morphed images that
fell near the category boundary. At the same time, some neu-
rons in IT and prefrontal cortex responded selectively to these
images (with neurons in IT more sensitive to variations in the
shape and neurons in prefrontal cortex more sensitive to the
category boundary). However, when the monkeys were tested

on the same photographs rotated away from the trained orien-
tations, their categorization performance became progressively
worse. In the same way, the selectivity of neural responding in
IT was also reduced as a function of rotation (prefrontal neurons
were not tested in this condition).

The link between training and response selectivity also lends
some support to grandmother coding schemes. If distributed rep-
resentations mediate the identification of objects and faces as
commonly claimed, then there is no obvious reason why selectivity
should increase with training. By contrast, on grandmother coding
schemes, single neurons are only hypothesized to support the
identification of familiar things. Accordingly this association be-
tween neural selectivity and object familiarity should be expected.

Conscious Perception and Single Cells

Finally, it is worth mentioning that a number of studies have
also provided compelling evidence that the activation of single IT
neurons is associated with the conscious experience of identifying
high-level visual information. Logothetis and Sheinberg (1996)
recorded from IT neurons when presenting monkeys with visual
stimuli that produce multistable percepts—that is, the same stim-
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ulus is alternatively perceived as one stimulus or another, much
like a necker cube. These researchers exploited a phenomenon
called binocular rivalry, in which the two eyes receive dissimilar
images that cannot be fused into a single percept. Under these
conditions humans (and monkeys) alternatively perceive one im-
age or another, with the visual image suppressing the percept of the
other. In one series of experiments, Logothetis and Sheinberg
(1996) presented a sunburst-like pattern to one eye of a monkey,
and a range of other images to the other, including pictures of
humans, monkeys, and various artifacts. The monkeys were
trained to pull and hold one lever whenever they perceived the
sunburst-like pattern, and press and hold onto another whenever
another image was perceived. Monkeys alternatively pulled one
lever or the other despite a constant visual input, in very much the
same way that humans perform the task, reflecting the standard
binocular rivalry experience of alternatively perceiving one stim-
ulus or the other.

The critical feature of this study is that Logothetis and Shein-
berg (1996) recorded from IT neurons that were visually selective
to various images including faces but that responded little if at all
to the sunburst pattern. During dichoptic viewing, the stimulus
selective neurons fired when the monkey indicated awareness of
the stimuli (by pulling the lever) but not otherwise. That is, the
neuron firing was correlated with the conscious state of the mon-
key, not the image that was projected onto the retina. Indeed, for
90% of the stimulus specific cells in superior temporal sulcus and
TE areas, neural response was contingent on the monkey reporting
the perception of the stimulus. (For a similar result in the context
of change blindness in humans, see Reddy, Quiroga, Wilken,
Koch, & Fried, 2006).

Part 3: How Well Do Localist and Distributed Coding
Schemes Account for the Data?

Despite the numerous reports that single neurons respond selec-
tively to both low and high-level perceptual knowledge in all
variety of species, the vast majority of cognitive psychologists and
neuroscientists still reject the grandmother cell hypothesis. Instead,
various versions of distributed coding schemes are endorsed. In the
final section, I compare the relative merits of grandmother and
various distributed coding schemes in light of the above data. I also
consider a number of general objections to grandmother coding
schemes that are often used to dismiss this approach. I show that
these objections are unfounded.

Grandmother Cells Versus Dense Distributed
Representations

On a dense distributed coding scheme, it is difficult to infer
much about the identity of a word, object, or face on the basis of
the activation of a single unit, as each unit is involved in coding
many different things. This coding scheme is often described as a
core claim of the PDP approach, and it is widely assumed that
these representations are broadly consistent with biology.

Despite this common assumption, there is little evidence for it.
Indeed, the assumption appears completely wrong; if it were true,
the field of neurophysiology would not have gotten started. The
basic insight from single-cell recording studies is that individual
neurons code for low- and high-level knowledge in remarkably

selective ways. It is striking (and perhaps telling) that the tech-
niques from neurophysiology that are used to characterize the
internal representations of the brain are rarely applied to PDP
models of cognition.

The speed with which single neurons respond selectively to
high-level visual knowledge also challenges the coding schemes
used in some PDP models. For example, Plaut, McClelland, Sei-
denbert, and Patterson (1996) developed a model of single word
naming in which units settle into an attractor pattern. The settling
times were thought to correspond to the readers’ naming latencies.
More generally, attractor dynamics were described as a computa-
tional principle employed in a wide range of cognitive phenomena.
However, Thorpe and Imbert (1989) challenged this claim. They
reviewed evidence that IT neurons respond selectively to an image
approximately 100 ms poststimulus and that there at minimum 10
synapses separating retina from object and face selective cells in
IT. Given that neurons at each stage cannot generate more than 1
or 2 spikes in 10 ms, Thorpe and Imbert argued that neurons at
each stage of processing must respond on the basis of one or two
spikes from neurons in the previous stage. This in turn limits the
amount of feedback that can be involved in identifying an object.
They conclude that face identification (and identification in gen-
eral) cannot be mediated by a process of settling into an attractor
pattern (also see Oram & Perrett, 1992).

Although the results from neuroscience appear to rule out dense
distributed representations, PDP models are not restricted to learn-
ing these codes (nor identifying objects by relaxing into attractors).
Indeed, these models can learn to represent knowledge with coarse
distributed (e.g., Dawson, Boechler, & Valsangkar-Smyth, 2000),
sparse distributed (e.g., McClelland et al., 1995), and perhaps even
localist (Berkeley, 2000) representations. For example, consider
again the three layered network of Berkeley et al. (1995) that
learned to solve a set of logical inference problems through back-
propagation. As discussed above, when the model included 15
hidden units, it learned a set of dense distributed representations
(similar to Figure 5B). However, when the model included fewer
hidden units, most of the jittered density plots developed what
Berkeley, Dawson, Medler, Schopflocher, and Hornsby (1995)
called banding patterns. That is, each unit responded to a subset of
inputs at a similar level of activation (for an illustration of a
banding pattern see Figure 11). It is critical to note that all the input
patterns that contribute to a band share a common feature. For
example, in the Berkeley et al. (1995) model, the sixth hidden unit
only responded to input patterns that included the input feature
corresponding to the logical operation “OR.” In response to these
inputs, the unit was maximally active, much like the illustration in
Figure 11. Berkeley (2000) called hidden Unit 6 an “OR detector.”
That is, Unit 6 appears to be a grandmother unit (for a debate
regarding the interpretation of this unit see Berkeley, 2006; Daw-
son, & Piercey, 2001).

What is to be made of the fact that PDP models can learn
various forms of internal representations, ranging from dense
distributed to localist? The first point to note is that the above
analyses show that some (perhaps many) existing PDP models of
word naming and memory do learn dense distributed representa-
tions. Although these models are generally considered more bio-
logically plausible than are their localist counterparts (e.g., Sei-
denberg & McClelland, 1989; Botvinick & Plaut, 2006), this claim
appears to be unjustified. In future work it will be interesting to
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Figure 11. Jittered density plot that displays a banding pattern. In this
example, the unit is unresponsive to most items but responds to a subset of
items maximally. It is critical to note that inputs that fall within a band
often share a common feature. In the case of Berkeley et al.’s (1995)
model, which learned to solve logical inference problems with 10 hidden
units, hidden Unit 6 of the model responded maximally whenever the input
included the OR operation and was off otherwise. That is, the model
appeared to learn a grandmother OR unit.

characterize the internal representation in a wider range of PDP
models to better specify the conditions in which the various forms
of internal representations are acquired.

Second, one of the key theoretical claims of the PDP approach
is that the brain does not compute with local representations (there
are no grandmother cells). This assumption is challenged by the
finding that localist representations can be learned in PDP models
through back-propagation and related algorithms. Indeed, the fact
that PDP models develop localist representations under some
conditions suggests that there are computational advantages to
localist coding schemes (otherwise they would not be learned).
The obvious implication is that the brain might also use grand-
mother cells for at least some purposes (cf., Bowers, 2002; Bow-
ers, Damian, & Davis, 2008; Gardner-Medwin & Barlow, 2001;
Page, 2000, for some computational reasons why a PDP model
might learn localist representations).

However, the most important point is that many researchers
consider dense distributed representations a core theoretical claim
of the PDP approach (e.g., Bowers, 2002; Elman, 1995; Hummel,
2000; Page, 2000; Smolensky, 1988; Thorpe, 1989). If it turns out
that many current PDP models of memory, language, and percep-
tion do learn sparse, coarse, or local codes (contrary to the wide-
spread assumption), or if these models are modified so that they
learn these types of representations (in order to be consistent with
biology), it would amount to a falsification of this theoretical
assumption. At minimum, the neuroscience makes it necessary to
think about the PDP approach in a fundamentally different way.
On the modified approach, the key claim must be that each unit in
a biological plausible PDP model should codes for a small number
of related and interpretable things.

By contrast, these results are easily reconciled with localist
coding schemes. Indeed, single-unit recording studies carried out
on localist models mirror the neurophysiological results, with

individual units responding in a highly selective manner to stimuli
(see Figure 4). Furthermore, the speed of responding to complex
images has also inspired localist models in which there is no room
for feedback for the sake of identification (e.g., Thorpe, Delorme,
& Van Rullen, 2001).!

It is also worth emphasizing that the topographic organization of
knowledge in the cortex, with spatially proximate neurons coding
for related things (tones, arm movements, objects, etc.), is com-
patible with localist coding. Networks that learn localist represen-
tations often rely on lateral inhibition to activate one node in a
winner-take-all process, and by representing similar things with
nearby units, inhibition can be mediated by short-range lateral
connections. Indeed, various competitive neural networks that
include winner-take-all units were developed in an attempt to
explain the development of the topographic organization of simple
cells in V1 (e.g., Kohonen, 1982; Lee & Verleysen, 2002;
Williamson, 2001). If biological plausibility is used as a criterion
for comparing the coding schemes of current cognitive theories,
localist models currently fare better than do PDP models.

Grandmother Cells Versus Sparse Coding

In some respects, sparse coding is similar to grandmother coding
schemes; in the limit of sparse coding, an individual neuron is
involved in coding two things, and two neurons code for a specific
stimulus. Accordingly, it should be possible to infer a great deal
about a stimulus by recording from a single neuron, and it is
presumably difficult (in practice) to distinguish between sparse
and grandmother coding schemes on the basis of assessments of
how many neurons are activated by a given stimulus. Nevertheless,
there are grounds to contrast these hypotheses.

As noted in Part 1, the sparse representations associated with
PDP networks are well suited to support rapid learning, but they
are poor at generalization. This computational constraint has led to
the complementary learning systems framework, according to
which sparse coding is employed in the hippocampus in the service
of episodic memory, whereas dense distributed representation are
employed in the neocortex to support word, object, and face
identification (among other functions).

In a number of places, PDP modelers argue that neuroscience
lends support to the hypothesis that coding is sparser in the
hippocampus, compared to the neocortex, but there are reasons to

! The speed with which single cells respond to faces and objects might
appear to be inconsistent with one of the localist models discussed above,
namely, the adaptive resonance theory. In this theory, object identification
is achieved when localist representations in Layers n and n — 1 settle into
a stable attractor pattern (a resonance; Grossberg, 1980). However, local
representations of familiar stimuli in Layer n are activated in a bottom-up
fashion. The resonance was introduced for the sake of learning (to solve the
stability—plasticity dilemma in which new learning can erase old memories;
Grossberg, 1976), and Grossberg (1980) claimed that resonance is required
for the conscious experience of a stimulus but not for its unconscious
detection. This leads to the prediction that the selective responding of a
face cell (or an object cell) in inferotemporal at ~100 ms poststimulus
precedes the conscious identification of the stimulus. At present, there is good
evidence that the unconscious detection of a stimulus requires less time than
forming a memory trace of a stimulus, with the latter requiring more attention
and, perhaps, consciousness (e.g., Subramaniam, Biederman, & Madigan,
2000).
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question this claim. For instance, O’Reilly and Norman (2002)
cited Boss, Turlejski, Stanfield, and Cowan (1987) as providing
evidence for this view. However, Boss et al. did not record from
cells in the hippocampus or cortex but rather counted the number
of neurons in areas CA1 and CA3 cells in the hippocampus of two
species of rats. They did report that the dentate gyrus (not part of
neocortex) that feeds into area CA3 includes a higher density of
neurons, suggesting a convergence of information, but this does
not provide any evidence that neurons have sparser levels of firing
in the hippocampus, compared to neocortex. The only other
empirical study cited by O’Reilly and Norman (2002) was by
Barnes, McNaughton, Mizumori, Leonard, and Lin (1990) who
recorded from place cells in regions CAl and CA3 of the
hippocampus in rats, as well as from cells in the entorhinal
cortex (not part of the neocortex) and subiculum (again not part
of neocortex). The cells in CA1 and CA2 did respond in a more
selective (sparse) manner in response to the rat’s location in a
spatially extended environment, but given that Barnes et al. did
not record from the neocortex, the relevance to the complemen-
tary learning systems hypothesis is unclear. Similarly, the stud-
ies cited in the original McClelland et al. (1995) article do not
speak to this issue. They also cited the (irrelevant) Barnes et al.
(1990) study, as well as a study by Quirk, Muller, & Kubie
(1990). However, this study only recorded from the hippocam-
pus; so again, it does not speak to the relative sparseness of
firing in the hippocampus and neocortex.

To provide some evidence for the complementary learning
systems hypothesis, it would have to be shown that there is a
higher level of sparseness in the hippocampus, compared to the
neocortex. Furthermore, the relevant question should be whether
the hippocampus codes for information in its domain (e.g., space,
or an episodic memory) more sparsely than the neocortex codes for
information in its domain (e.g., a perceptual representation of a
face, word, or object). This sort of evidence is not currently
available.

Indeed, the data reviewed in Part 2 highlight the extent to
which sparse coding is used in both the hippocampus and
neocortex (cf., Olshausen & Field, 2004; Shoham, O’Connor, &
Segev, 2006). There is a good reason that the brain avoids dense
distributed representations; namely, the metabolic cost of firing
neurons is high. Lennie (2003) estimated that these costs re-
strict the brain to activate about 1% of neurons concurrently,
and he takes these findings as consistent with localist coding.
These metabolic costs also undermine a common argument that
PDP models are more efficient than localist ones, in that they
require fewer units to code a given amount of information (e.g.,
Hinton et al., 1986). Instead, the opposite is true, with distrib-
uted representational schemes maximally inefficient in biolog-
ical terms.

Could the sparse distributed coding scheme employed in the
hippocampus be employed in the cortex as well? Given the
review above, it is clear that the cortex does use some form of
sparse coding, but there are computational reasons to assume
that the cortex does not use the sparse codes learned in PDP
networks. These codes do not support generalization, and gen-
eralization is a core capacity of the cortex that supports lan-
guage and perception. What is needed is a form of sparse coding
that supports fast learning in the hippocampus and that supports
generalization in the cortex. One candidate is localist coding.

Indeed, as discussed below, one of the virtues of localist coding
schemes is their ability to support widespread generalization.
To summarize, the PDP approach is again challenged by biol-
ogy. It appears that both the hippocampus and the cortex
employ highly sparse coding (perhaps grandmother cells), con-
trary to the complementary learning systems approach.

Grandmother Cells and Coarse Coding

It is commonly assumed within the neuroscience literature that
the brain uses some form of coarse coding. On this view, percep-
tion (and behavior) involves a hierarchy of processing steps in
which individual neurons code for a range of similar things, but
without much precision. The core claim of this approach is that the
unique identification of a given object, word, and the like, cannot
be determined by the activation of one neuron and that it is
necessary to pool across a collection of noisy units in order to get
a stable and exact measure of an input.

This version of distributed coding does not have the difficulties
highlighted above. Unlike dense distributed representations, indi-
vidual neurons do convey meaningful (interpretable) information,
and accordingly, this approach might be reconciled with the neu-
rophysiological evidence reviewed above. And unlike sparse cod-
ing, coarse codes are designed to support generalization (as dis-
cussed below). Furthermore, coarse coding is often implemented
in networks that respect the topographic organization of knowl-
edge. The key question for present concerns, then, is whether
coarse coding provides a better account of the data than do grand-
mother neurons.

The most common argument put forward in support of coarse
coding is that single neurons always respond to more than one
object or face (e.g., Rolls, Treves, & Tovee, 1997), but as dis-
cussed in Part 1, the logic is flawed. Single units in localist models
also respond to more than one input (e.g., within the IA model, the
dog unit responds to the inputs dog and hog, but it does not
contribute to the coding of hog). Furthermore, as shown in Part 2,
the common claim that single neurons always respond to many
different objects or faces is not always borne out; in a number of
studies, a single neuron responded to one face or object among
many.

Another common way to compare the two approaches has been
to determine whether the response of a single neuron can encode
enough information to account for high-level vision (e.g., face
recognition) or whether it is always necessary to consider the
coactivation of multiple neurons. In a series of studies, Rolls and
colleagues (Rolls et al., 1997) provide evidence for the latter, and
they take this as support for distributed coding. For instance, Rolls
et al. (1997) identified a set of 14 face selective neurons in the
temporal cortex of the macaque on the basis of the criterion that
they responded at least twice as much to an optimal face stimulus,
compared to an optimal nonface stimulus (out of a set of 68
images). In the critical analysis, they recorded the responses of
these 14 neurons in response to 20 faces. They observed that the
response of one neuron was not strongly associated with a given
face, but various algorithms that considered the population of
neural activity in order to estimate the likelihood that a given face
was presented on a given trial did much better. A Bayesian
analysis indicated that the percentage correct prediction increased
from 14% correct, when one neuron was considered, to 67%
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correct, when on all 14 neurons (with 5% being chance) were
considered. Furthermore, they estimated that the number of stimuli
that could be coded by this population increased approximately
exponentially with the number of cells sampled. Rolls et al. took
this finding as inconsistent with grandmother cell coding schemes,
which the number of stimuli encoded increases linearly with the
number of cells.

But there is a problem with this experiment and with the
approach in general. First, the study was carried out on a set of face
cells that were not highly selective. Indeed, most of the neurons
responded to most of the faces presented. If the same analysis were
carried out on the set of face cells described by Quiroga et al.
(2005), a different conclusion would presumably follow. Second,
Rolls et al. (1997)’s conclusion rests on the assumption that they
have recorded from the critical face neurons at the highest level of
the face identification system. However, if they recorded from
neurons earlier in the processing hierarchy (or from neurons that
coded for different faces), their results can easily be explained
within a localist coding scheme.

To illustrate this point, consider again the IA model of visual
word identification. The model includes a set of letter detectors at
Layer n — 1 that feed into local word representations at Layer n.
In this model, the number of words the model can identify is
linearly related to the number of word units (one word per unit).
But the number of words that the experimenter can infer from the
letter level increases much more rapidly. Indeed, the identity of all
4-letter English words (indeed, all four letter words in any lan-
guage that includes the Roman alphabet) can be determined with
reference to only 104 letter units (26 X 4, with each letter coded
by position; that is, in the model, the letter A-in-position-1 and
A-in-position-2 are coded separately). But the ability of the exper-
imenter to infer the identity of words based on a pattern of
activation across the letter level does not provide any evidence that
the model does the same; indeed, for the model to succeed, a local
(grandmother) word unit needs to be activated beyond some
threshold. In the same way, little follows from the observation that
Rolls et al. (1997) can infer the identity of faces by pooling across
a set of face cell. The critical question is not whether the experi-
menter can derive information from a pattern of activation, but
how the brain does it.

In fact, Rolls (2007) acknowledged that his results can be
reconciled with a local coding scheme if cells downstream respond
more selectively. However, he dismisses this possibility, noting
examples of studies that failed to observe highly selective respond-
ing in the amygdala and the orbitofrontal cortex. But this argument
is not secure. It rests on further demonstrations that single cells do
not encode faces accurately. But it is presumably quite easy not to
find grandmother cells. The more impressive (and telling) finding
is that a number of labs have identified single neurons that do
respond highly selectively to single faces in IT, as reviewed in Part
2. Furthermore, highly selective responding to faces and objects
has also been reported in downstream areas, including the prefron-
tal cortex (e.g., Freedman, Riesenhuber, Poggio, & Miller, 2001,
2003). Indeed, Freedman et al. (2003) described a localist model of
object identification that could account for the selective neural
firing in both IT and prefrontal cortex. Freedman et al. (2003)
themselves rejected grandmother cell theories, but it is not clear
why; each unit in their model codes for one specific thing.

A striking example of a confusion relating population and
grandmother cells can be found in Hung, Kreiman, Poggio, and
DiCarlo (2005). They studied the neural coding scheme of objects
in IT by recording from over 300 neurons while monkeys catego-
rized photos of black and white objects. The firing pattern of the
neurons was input to a network classifier that pooled all the input
signals onto two output units where images were categorized based
on which output unit was more active (a winner-take all decision
unit).

Hung et al. (2005) noted that the performance of the winner-
take-all decision units was highly accurate, with the 94 +/—4%
accuracy in categorizing the objects when the recordings from a
random set of 256 neurons are considered. This indicates that most
of the information required to categorize the objects can be re-
trieved from these IT neurons. But they conclude that the brain
employs population coding based on the finding that performance
in their model increased as a function of the logarithm of the
number of units that contributed to the winner-take-all decision.
Indeed, this logarithmic, as opposed to linear, function is taken to
rule out grandmother coding schemes.

However, this is a surprising conclusion given that Hung et al.
(2005) have explicitly developed winner-take-all output units that
read out this pattern of activation. It is not clear what else a
grandmother unit could be but a cell that pools together patterns of
activity from a lower level. The fact that performance was a
logarithmic function of the number of units provides no evidence
that the brain uses a distributed coding scheme, just as their model
attests.

The Rolls et al. (1997) and Hung et al. (2005) studies relate to
a number of articles in which the optimal methods of decoding the
information in populations of coarse coded neurons are considered
(e.g., Jazayeri & Movshon, 2006; Oram, 1998). In most cases, it is
assumed that the brain computes with population cells rather than
grandmother cells. But what is rarely considered in the analysis is
how the brain implements these algorithms. The important point to
emphasize (again) is that a range of pooling algorithms, including
Bayesian methods, can be implemented in winner-take-all net-
works; that is, networks that implement grandmother coding
schemes (Zhang, Ginzburg, McNaughton, & Sejnowski, 1998).
Thus, critics of grandmother cell coding need to do more than
show how well distributed coding schemes can encode informa-
tion. They also have to provide evidence that the brain does not
implement their theories with winner-take-all neurons. It is striking
how authors sometimes argue for some sort of distributed coding
schemes but explicitly include winner-take-all units in their mod-
els (e.g., Hung et al., 2005; Pouget, Dayan and Zemel, 2000).

A different approach to assessing the relative merits of popula-
tion and grandmother coding schemes was carried out by New-
some and colleagues (Groh, Born, & Newsome, 1997; Nichols &
Newsome, 2002; Salzman & Newsome, 1994). They assessed the
impact of artificial microstimulation of motion sensitive neu-
rons in V5 when monkeys viewed coherent motion in dot
displays. They presented monkeys with a motion signal while
neurons coding for different direction of motion were stimulated,
as depicted in Figure 12. The logic of the studies is that on a
winner-take-all account, the perceived motion should be deter-
mined by the most active motion sensitive neurons, which should
either be the neurons stimulated by the motion signal itself or by
the microelectrode. On a population account, by contrast, percep-
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Figure 12. Adapted from Figure 1 in “Middle Temporal Visual Area
Microstimulation Influences Veridical Judgments of Motion Direction,” by
M. J. Nicholas and W. T. Newsome, 2002, Journal of Neuroscience, 22, p.
9531. Copyright 2002 by Journal of Neuroscience. Reprinted with permis-
sion from Journal of Neuroscience. In Figure 12A, direction sensitive
neurons in inferotemporal are selectively activated in response to a motion
signal, and in 12B, another set of directionally sensitive neurons are
artificially activated. On a winner-take-all account, the perceived motion
should be determined by the most active motion sensitive neurons, which
should either be the neurons stimulated by the motion signal itself or by the
microelectrode—in this example, perception should be entirely determined
by the direction of motion evoked by the electrode. On a population
account, by contrast, perception of direction should be some sort of
integration of all the active motion signals.

tion of direction should be some sort of integration of all the active
motion sensitive neurons, with the perceived motion some sort of
compromise between the two distinct signals.

The results of the studies have been somewhat mixed. In the
initial studies adopting this logic Salzman and Newsome (1994)
provided evidence for a winner-take-all algorithm for computing
perceived direction, whereas Groh et al. (1997) provided evidence
for a distributed coding scheme. More recently, Nicholas and
Newsome (2002) provided evidence for both mechanisms operat-
ing, with vector averaging providing a better account of perfor-
mance when the direction sensitive neurons activated by the mo-
tion signal and microelectrode differed by less than 140°. When
the visual and microstimulated directions were more disparate
(~150°), a winner-take-all algorithm provided a better account of
monkeys’ behavioral responses (angles smaller than this was could
not provide unambiguous evidence for one account or another for
various reasons). They conclude that the visual system may use
both local and distributed mechanism to code for motion detection.

The finding that the motion system employs winner-take-all
responses (under some conditions) provides strong evidence in
support of localist coding schemes beyond V1, but is it the case
that these findings also highlight the extent to which distributed
coding schemes contribute to perception? Perhaps, but there is
another straightforward interpretation. The finding that monkeys
sometimes perceived a direction of motion between the coactive
directions does indeed show that a collection of these neurons was
involved in computing perceived direction, but the manner in
which the brain decodes this information is left unspecified. It is
possible the pattern of activation across these neurons is pooled at

a higher level in a hierarchy, with a winner-take-all process at this
level determining perceived direction. Again, the fact that the
Nicholas and Newsome (2002) did not identify the winner-take-all
neurons under some conditions does not mean that they do not
exist.

To summarize it seems clear that the cortex does not code for
information with dense distributed representations as often as-
sumed by advocates of the PDP approach. Furthermore, the sparse
codes learned in PDP models do not provide a plausible model of
processing in cortex, as these representations do not support the
forms of generalization necessary for object recognition, among
other functions. However, it seems fair to conclude that coarse
coding provides a reasonable account of the data reviewed above.
Coarse coding can accommodate the single cell recording findings
reviewed in Part 2 and can support object recognition. The main
point to emphasize, however, is that localist coding schemes also
provide a reasonable account for the data. There is no reason to
reject grandmother cells in favor of coarse coding based on the
above neuroscience.

Might the Brain Exploit Both Distributed and
Localist Coding?

On a strong version of the grandmother cell hypothesis, the
brain relies on localist coding throughout a hierarchy of visual
processing stages, with photoreceptors as the first step and grand-
mother cells as the last. Similar hierarchies might apply to behav-
ior, with grandmother cells (or command neurons) as the first step
specifying a general motor program, and collection of specific (and
discrete) motor commands as the final step. Indeed, on an extreme
version of this hypothesis, every neuron involved in coding some-
thing has a single and precise interpretation.

A weaker version of the grandmother cell hypothesis can ac-
commodate some degree of distributed coding as well. For exam-
ple, distributed coding might be implemented in a subset of the
visual processing steps involved in identifying objects or, alterna-
tively, support visual processes for other functions, such as deter-
mining the location of objects. Similarly, distributed coding may
play a central role in some (or indeed all) processing steps in-
volved in generating behavior. All that is strictly required for a
grandmother cell theory is that the cells at the top of the visual
hierarchy code for complete words, objects, and faces in a localist
manner.

There is no logical reason as to why the brain is restricted to
employing one coding scheme, and indeed Thorpe (1989) argued
that low- and high-level vision rely on coarse and localist coding,
respectively. On this hypothesis, the simple cells in V1 that com-
pute line orientations exploit coarse coding, and cells in IT in-
volved in identifying objects and faces exploit localist (grand-
mother) coding. It is interesting to note that this hypothesis turns
a classic theory of vision on its head. On a more traditional view,
perception of orientation is determined by the most active simple
cell in V1 (e.g., Hubel, 1995; Knudsen, du Lac, & Esterly, 1987),
whereas high-level vision is supported by some sort of population
code. According to Thorpe (1989), however, the opposite might be
the case.

Thorpe (1989) outlined both computational and empirical evi-
dence in support of this position. He made the observation that
knowledge is structured differently in the two domains. Low-level
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knowledge must code for continuous variables; for instance, line
orientations vary in degree; disparity, by visual angle; movements,
by direction in three-dimensional space, and so on. In these cases,
specific values along a given dimension (e.g., a given line orien-
tation) might be more effectively coded through a collection of
broadly tuned receptors. In this way, there is no need to include a
separate detector for each detectible orientation or disparity, and so
on. By contrast, high-level knowledge (e.g., faces, objects, letters,
words, etc.) is organized into discrete categories (that are limited in
number), making local coding schemes more tractable in this
context.

The key empirical observation that Thorpe (1989) made in
support of this hypothesis is that humans can discriminate line
orientations that differ by as little as .5°, whereas the preferred
orientation of simple cells differ by ~10°. Clearly, these fine
discriminations cannot rely on a comparison of two simple cells
that maximally respond to the different orientations. At the same
time, there is no evidence that cells higher in the hierarchy of
visual processing steps code for orientation more precisely. Some-
how, the simple cells in V1 appear to code orientation.

How is it done? According to Thorpe (1989), orientation is
coded through the activation of multiple simple cells. However,
the distributed coding scheme in V1 appears to be quite different
from vector averaging in which neurons vote as a function of their
activation level (cf. Georgopoulos et al., 1986). A key observation
is that orientation discrimination of single simple cells can ap-
proach psychophysical performance (e.g., Bradley et al., 1987).
Although this might seem inconsistent with the discussion above,
the trick is that orientation discrimination is best performed by
cells that only respond weakly to the two contrasting orientations.
The excellent discrimination of these cells is due to the fact that
generalization in simple cells is Gaussian in form, with a drop off
in firing steepest ~10° to either side of the maximal response (the
steep slope supports the best discrimination). In other words,
discrimination is best performed by weakly active cells that pref-
erentially respond to orientations ~10° to either side (e.g., Parker
& Hawken, 1985). Thorpe (1989) reviewed human psychophysical
and modeling data (from a PDP model) consistent with the claim
that fine discriminations of orientation are supported by partially
active simple cells rather by the most active ones.

Critical for present concerns, to read off a specific line orienta-
tion from these weak responses, at least two neurons need to be
considered. For example, a precise representation of a line oriented
just off vertical can be obtained through the relative (and moder-
ate) response of one simple cell that fires maximally to a line
oriented 10° to the right of vertical (call this Neuron 1) and another
simple cell that fires maximally to a line oriented 10° to the left
(call this Neuron 2). A line oriented 1° right of vertical would then
be coded by Neuron 1 firing at a slightly higher rate than Neuron
2, whereas a line oriented 1° to the left of vertical would be coded
by the Neuron 2 firing at a slightly higher rate (and a vertical line
by the two neurons firing at the same rate). This pattern of
activation across partially active simple cells provides a more
precise measure of orientation than the most active simple cell, and
this is required to account for the fine discrimination that can be
performed.

Two points need to be emphasized here. First, even if the early
visual stages of object identification are implemented in a coarse
coding scheme, this only rules out the strong version of the

grandmother cell hypothesis, according to which every stage of the
hierarchy of visual processing steps is localist. The key claim is not
challenged by these observations; that is, the visual representations
for words, objects, and faces may still be coded locally.

Second, the finding that the visual system uses coarse coding to
support fine orientation discriminations does not rule out a localist
coding scheme in V1 for the sake of object identification. That is,
the most active simple cells may provide the input to complex
cells, which in turn activate more complex localist representations
in a hierarchy of processing steps along the ventral visual stream,
with grandmother cells in the inferior temporal cortex as the final
step. The distributed representations in V1 required for the detailed
discrimination of orientations might instead serve as the input to a
dorsal visual system that mediates sensorimotor transformations
required for visually guided actions directed at objects (Milner &
Goodale, 2006). Here, fine spatial and metric knowledge (rather
than discrete category knowledge) is critical for skilled perfor-
mance. By contrast, object identification tends not to rely on fine
orientation discrimination (Biederman, 1987).

It is interesting to note that Zipser and Anderson (1988) and
Pouget and Sejnowsky (1997) developed PDP models that took, as
input, information about the location of an image on the retina as
well as the eye position and transformed this information to spatial
coordinates that could guide behavior. This is a core function of
the dorsal visual stream. The models differed in some important
respects, but critical for present purposes, they compared the
response profiles of the learned hidden units to the activation of
single neurons in the parietal cortex. In both cases, the hidden units
developed complex receptive fields that matched quite well with
the receptive fields of the neurons.

One possible interpretation of these findings is that the distrib-
uted representations learned in PDP models provide a more prom-
ising account of the neural coding schemes employed in the dorsal
visual stream. Although there are relatively few single-cell record-
ing studies of the dorsal visual stream, and even fewer studies
comparing the responses on these neurons to PDP networks, the
computational tasks of the ventral and dorsal visual streams make
it at least plausible that they code information in qualitatively
different ways. For example, the ventral stream needs to address
the stability—plasticity dilemma, given that new object representa-
tions can be learned without catastrophic loss of prior knowledge.
By contrast, the dorsal system only needs to learn sensorimotor
mappings for an organism’s current body. Indeed, it would be
maladaptive to preserve the spatial and motor representations that
support behavior across a lifetime, given that our bodies grow.
These considerations led Grossberg (2000) to develop qualitatively
different theories of learning and processing in these two domains.
Relevant for present purposes, these considerations are consistent
with the hypothesis that localist coding is more adaptive in the
ventral system, given that sparse (or local) representations are
more immune to catastrophic interference (e.g., McClelland et al.,
1995). In addition, localist representations are well suited for
supporting symbolic models of cognition (Bowers, 2002; Hummel,
2000). On symbolic theories, language and perception depend on
componential representations, with sentences composed of words
(combined by syntax), words composed of letters (combined by
rules of morphology and orthotactics), objects composed of object
parts (geons), and so on. To the extent that componential repre-
sentations are a property of the what ventral visual system, and not
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the where dorsal system, local representations may be more char-
acteristic of the ventral system. Whether or not these specific
arguments hold up, the critical point is that different brain systems
engage in different computational tasks, and accordingly, there is
no need to assume that all system employ the same coding
schemes.

In sum, a grandmother cell theory is committed to the claim that the
visual representations of faces, objects and words are coded in a
localist format. On a strong version of the hypothesis, the repre-
sentations at all levels of the visual hierarchy involved in identi-
fying objects are localist, but in principle, earlier visual stages
could be distributed (e.g., simple cells; Thorpe, 1989). Similarly,
representations in other brain systems, including visual systems
not involved in identifying objects (the dorsal visual system) may
include some form of distributed coding. In fact, the different
computational requirements of different brain systems may favor
different representational schemes. Still, it is striking how many
systems do code information in a highly sparse manner, from
looming detection in locusts, to song production in the zebra finch,
to face detection in humans (as reviewed in Part 2). It is obviously
critical to characterize the coding schemes in all variety of sys-
tems, but in order to falsify a grandmother cell coding theory, it
needs to be shown that the visual representations for words,
objects, and faces are coded in a distributed format.

Some Objections to Grandmother Coding Schemes

Despite the observation that local and coarse coding are both
consistent with neurophysiology, the general consensus in neuro-
science and cognitive psychology is that grandmother cells cannot
be right. Below, I consider some of the general objections to
grandmother cells that motivate this conclusion.

Standard objections that can be quickly discarded. Grand-
mother coding schemes are often dismissed on the basis of one or
more of the following standard claims: They do not degrade
gracefully; there are not enough neurons to code all that is known,
and they are not efficient. But as already shown, these objections
are without merit. Concerns about graceful degradation are easily
addressed by devoting multiple grandmother cells to a given
stimulus. In this way, a lesion to one neuron does not result in the
catastrophic loss of the corresponding concept (e.g., Barlow, 1995;
Feldman, 1988; Gross, 2002). Concerns about running out of
neurons reflects a basic misunderstanding; advocates of localist
models never claimed (nor assumed) that single neurons code for
propositions (e.g., “have a nice day”) or complex scenes (a weep-
ing grandmother). Rather, the hypothesis is that individual neurons
are devoted to individual objects, faces, words, and so on. Given
estimates of 10'° neurons in our brain (e.g., Abeles, 1991), there
seems little danger of running out of neurons on this hypothesis
(even granting that only a small fraction of the 10'° neurons are
located in the cortical areas responsible for object, face, and word
identification). Concerns with regard to efficiency have it exactly
backward. Our capacity to express an infinite number of thoughts
may be the product of combining localist representations in gen-
erative ways. Not only is this efficient in computational terms, it is
the most efficient coding scheme from a biological perspective: It
is metabolically expensive to fire neurons. Indeed, it is argued that

metabolic efficiency constraints alone rule out dense distributed
coding schemes (Lennie, 2003).

Single neurons are too noisy and unreliable to support high-
level perception.  Another common criticism of localist coding
schemes is that single neurons are noisy and unreliable, with the
same input stimulus evoking a variable number of action potentials
on different trials. The implication that is often drawn is that some
form of population code is required in order to average out the
noise (e.g., Averbek et al., 2006; Jazayeri & Movshon, 2006). But
there are both empirical and theoretical problems with this con-
clusion. First, human performance is also variable, with inconsis-
tent performance in detecting a stimuli presented at threshold and
variable latencies to respond to salient stimuli. Furthermore, the
reliability of neurons can be surprisingly high. For example, De
Weese, Wehr, and Zador (2003) assessed the trial-by-trial response
variability of auditory neurons in the cortex of rats in response to
tones. They used a cell-attached recording procedure to ensure
they were recording from a single neuron. Remarkably, reliability
was almost perfect. Although similar reliability has not been
observed in visual cortex, demonstrations that the psychophysics
of single neurons can sometimes match the behavior of organisms
rely on single neurons coping with noise.

But more important, even if it is granted that individual neurons
are not sufficiently reliable to code for high-level perceptual tasks,
it does not follow that some form of population code is required.
Instead, all that is required is (again) redundant grandmother cells
that code for the same stimulus. If one neuron fails to respond to
the stimulus on a given trial due to noise, another one (or many)
equivalent ones will, in what Barlow (1995) called “probability
summation.” For example, as discussed above, Georgopoulos et al.
(1986) reported evidence that neurons in primary motor cortex of
rhesus monkeys encode arm movements through coarse coding.
Their key argument was that the responses of single neurons are
insufficient to account for precise motor control, given the noise in
the system. Thus, in order to code for arm movements reliably and
accurately, Georgopoulos et al. proposed a population vector
model, where each neuron votes for their preferred direction,
weighted by its firing rate. In this way, noise in the system can be
averaged out. However, a localist coding scheme might equally
account for these data. That is, the noise in the system can also be
removed by considering the activation of multiple (redundant)
motor neurons all tuned to the same direction. Although any given
motor neuron tuned to the correct direction might not respond on
a given trial (due to noise), redundant coding would ensure that
multiple neurons coding the correct direction were activated. On a
redundant grandmother coding scheme, each neuron codes for one
thing, and noise is not a problem.

Grandmother cells cannot support the exquisite detail of our
perceptual experiences. Localist coding schemes are typically
associated with abstract representations, and they provide a natural
format for supporting symbolic theories (e.g., Bowers, 2002;
Fodor & Pylyshyn, 1988; Holyoak & Hummel, 2000; Pinker &
Prince, 1988). For example, in a symbolic model of visual word
identification, letter and word representations are coded indepen-
dently of letter case (e.g., A/a, READ/read) and independently of
their context (e.g., the same a detector is activated by cat and act;
the same cow detector is activated by both cow and brown cow;
Davis, 1999). These abstract letter representations are thought to
support more widespread generalization than do models that in-
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clude context dependent letter representations (e.g., models that
code for the a in car and act as different distributed patterns of
activation; e.g., Seidenberg & McClelland, 1989).

The claim that the brain relies on local and abstract representa-
tions might appear to be challenged by the sheer vividness of our
visual experience. That is, these representations might not have the
fidelity to discriminate among all the relevant states of our con-
sciousness. For example, according to Edelman (2002), local rep-
resentations may well serve language but not vision, as he calls
images ineffable. That is, verbal descriptions will generally fail to
convey all the information in an image.

However, not all localist representations are this abstract. For
example, on view-based theories of face and object identification,
one local representation might represent a given individual from a
given orientation, and another would be devoted to coding the
same individual from another orientation. A view independent
representation of the face is the product of pooling a collection of
view specific representations onto a common face unit at the next
stage of a visual hierarchy (e.g., Jiang et al., 2006). A similar
pooling process is well documented at the earliest stages of vision,
where a collection of simple cells that code for a given line
orientation in different spatial locations all converge onto a com-
plex cell that codes for the same line orientation across a range of
locations. Riesenhuber and Poggio (1999) suggest a MAX com-
putation, in which pooling is achieved by activating the unit in
Layer n, based on the single most active unit Layer n — 1 (e.g., a
given complex cell is activated as a function of the most active
simple cell). In principle, this or a similar pooling process may
occur across all levels of a visual hierarchy in which all units are
localist.

Critical for present purposes, the inclusion of a range of abstract
and specific local representations across a hierarchy of visual
processing steps may help explain our almost limitless capacity to
see variation in the visual world. For example, in the adaptive
resonance theory, the identification of an object (either at a basic
or a subordinate level) reflects the activation of a single localist
unit at Layer n, and active units in Layer n — 1 (and perhaps at
Layers n — 2, n — 3, etc.) code for the visual features of the object.
The features are bound to the object through a feedback loop, or
resonance, in which active units at different levels reinforce one
another. On this theory, consciousness is a by-product of a reso-
nance across multiple levels of a visual hierarchy, and our ability
to categorize objects is mediated by active local units at Layer n,
and our ability to perceive subtle variations in the world is medi-
ated by active local units at lower layers of the network (Gross-
berg, 2003).

Consistent with this analysis, neurons in inferotemporal cortex
respond to faces or objects at various degrees of perceptual spec-
ificity. At one extreme, Perrett et al. (1991) identified a cell that
responds to a given familiar person from a wide range of view-
points. Similarly, there are reports of single cells responding to the
identity of a face independent of emotional expression (e.g., Goth-
ard, Battaglia, Erickson, Spitler, & Amaral, 2007; Perrett, Smith,
Potter, Mistlin, Head, Milner, & Jeeves, 1984), and following
dramatic manipulations in lightness, such as contrast reversal (e.g.,
Sheinberg & Logothetis, 2002). Similarly, as noted above, there
are reports of single cells responding to a specific three-
dimensional object regardless of its orientation (Logothetis and
Pauls, 1995; again, see Figure 8).

In other cases, a given cell only responds to a combination of
visual features; for example, the identity and the emotion of a face
(Gothard et al., 1984), or the identity and orientation of a given
face (e.g., Perrett et al., 1991). In the same way, single neurons
sometimes respond to specific 3D objects from a restricted range
of orientations (Logothetis & Pauls, 1995). Indeed, on the basis of
a greater number of orientation-dependent, compared to indepen-
dent, object and face representations, Perrett et al. (1991) and
Logothetis and Pauls (1995) argued for a view-dependent theories
of vision, in which the outputs of many view-specific neurons are
combined to support view-independent (object-centered) recogni-
tion.

In sum, local representations can code for information at various
levels of abstraction, from highly specific perceptual information
(e.g., a line of a specific orientation projected on a given location
of the retina, or a specific face from a given orientation), to a
highly abstract category (e.g., an abstract word embedded in any
position within a sentence). This range of representations provides
the basis by which detailed visual information can be discrimi-
nated.

Grandmother cells cannot generalize. The claim that local
coding schemes cannot discriminate between all the relevant states
of the visual world is complemented with the opposite criticism,
namely, that local coding schemes cannot generalize (e.g., Ander-
son, 1995; Arbib, 2002; Foldidk, 2002; Poggio & Bizzi, 2004;
Rolls et al., 1997). But the claim that grandmother cells cannot
generalize is false; indeed, as discussed above, localist represen-
tations are often included in symbolic systems, and symbolic
systems are designed to support widespread generalization (e.g.,
Hummel & Holyoak, 1997).

The reason that authors often claim that grandmother cell the-
ories cannot generalize is that authors assume a specific version of
localist coding; namely, that each unit or neuron should have such
a precise tuning curve that it responds only to one item and not at
all to related things (e.g., Foldidk, 2002). For example, as demon-
strated by Jiang et al. (2006), a localist model of face recognition
that includes this version of grandmother cell coding does perform
poorly in generalizing, as reflected in poor judgments to unfamiliar
faces. To make the model succeed with novel faces, they included
a set of 180 face units, each tuned to a different (unique) face, but
it is critical to note that they designed the network so that a specific
input face activated a small number of visually similar face units
as well (less than 10). Under these conditions, judgments about
unfamiliar faces could be based on the pattern of activation across
the familiar face units. Jiang et al. consider this latter version of the
model a distributed, rather than a localist (grandmother), theory.

However, there are a number of problems with this conclusion.
First, the fact that a model was designed to activate a small number
of familiar face units in response to a single input does not make
the model distributed. As noted in Part 1, most (if not all) localist
models in psychology are designed such that a given input coac-
tivates a collection of localist units. Indeed, as discussed above, the
coactive localist units play a role in processing familiar and novel
items. Second, when the Jiang et al. (2006) model identifies a
familiar face, the other active face units play no role in coding for
the face. That is, the only relevant unit for coding a familiar face
is the most active one; indeed, this unit was hand-wired to code for
this familiar face. As noted in Part 1, the grandmother cell theory
is a theory about how familiar items are coded (no one ever
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claimed there were individual neurons for unfamiliar words, novel
faces, or novel thoughts). A localist theory must support general-
ization to novel forms, but this is achievable by coactivating
localist representations of familiar items, as this model nicely
demonstrates.

Third, it is important to emphasize that I am not simply making
a terminological point, extending the definition of grandmother
cell theories to the present case. One of the exciting findings that
initially inspired interest (and ridicule) of the grandmother cell
hypothesis was the identification of simple and complex cells in
V1 that preferentially responded to lines with specific properties,
and that were organized into a hierarchy (Hubel & Wiesel, 1962,
1968). The question was whether the hierarchy of selective cells
extended beyond V1, and included single neurons that selectively
responded to familiar faces (e.g., a grandmother). This is the
hypothesis that has been soundly rejected by most theorists (in-
cluding Hubel, 1995). But this is exactly what Jiang et al. (2006)
have implemented. Indeed, Riesenhuber (2005) endorsed what he
calls the “standard model” that is an explicit extension of the
original Hubel and Wiesel model. That is, Riesenhuber and col-
leagues (e.g., Jiang et al. 2006; Poggio & Bizzi, 2004) assumed
that the ventral visual system is hierarchically organized, with
simple and complex cells in the first stages of visual processing,
and cells at the final stage (in anterior inferotemporal cortex) tuned
to specific familiar faces.

Another point to make about generalization is that these
authors are concerned with one specific type of generalization;
namely, interpolation, in which a new stimulus is some blend of
preexisting familiar representations (localist or otherwise). But
blending systems only support interpolation, and other forms of
generalization are required as well; that is, when generalizing
from novel inputs that are highly dissimilar from past trained
items. For instance, speakers can produce the past tense of an
unfamiliar verb stem even when the stem is dissimilar to all
stored memories (e.g., Prasada & Pinker, 1993). Similarly,
babies can learn a new grammar based on one set of words that
generalizes to a completely dissimilar set of words (Marcus et
al., 1999). Hummel and Holyoak (2003) called this relational
generalization, and it is often claimed to require discrete com-
binatorial systems; that is a system that includes a set of local
representations and a syntax for combining these representa-
tions in generative ways. Of course there is an active debate as
to whether discrete combinatorial systems are necessary to
explain human language (and generalization more broadly; e.g.,
see McClelland & Patterson, 2002; McClelland & Plaut, 1999),
but the relevant point for present purposes is that localist
systems manifestly do support widespread generalization, con-
trary to the common claim.

If grandmother cells existed, they could not be found. Critics
of grandmother cells often argue that the neurons should be im-
possible to find in a brain composed of 10'° neurons. On this line
of reasoning, the frequent identification of neurons that respond to
specific stimuli actually challenges the grandmother cell theory. If
the identification of neurons that act like grandmother cells actu-
ally provided evidence against the hypothesis, then the theory is in
trouble.

This argument is commonly advanced. For example, as dis-
cussed above, Quiroga et al. (2005) identified neurons in the
hippocampus of humans that responded robustly to different pho-

tographs of a given person but not to photographs of other (some-
times similar looking) persons. Despite these findings, Quiroga et
al. (2005) explicitly rejected the grandmother cell hypothesis and
concluded that each cell must represent more than one class of
image (otherwise the cells would not be found in the first place).

More recently, Waydo, Kraskov, Quiroga, Fried, and Koch
(2006) reanalyzed the Quiroga et al. (2005) data, in an attempt to
provide a more precise measure of the number of different things
a given neuron codes for. They arrived at this estimate though a
Bayesian analysis in which the number of images presented to the
participants and the number of neurons recorded from were con-
sidered. They concluded “that highly sparse (although not grand-
mother) coding is present in this brain region” (pp. 10233-10234).
Given the number of neurons in the relevant area of the brain, they
further speculated that each neuron fires in response to 50—150
different basic level images. Applied to the case of faces, the
prediction is that although the Jennifer Aniston cell only responded
to images of Jennifer Anniston in the study, there were likely
50-150 other faces that it codes for and responds to (also see
Quiroga, Kreiman, Koch, & Fried, 2008; for a similar logic but
somewhat different analysis see Valiant, 2006).

But the argument is flawed. It is true that many neurons must
respond to a given stimulus; otherwise the neurons would never be
found. But multiple neurons could all respond to the same image.
Waydo et al.’s (2006) calculations are just as consistent with the
conclusion that there are roughly 50—150 redundant Jennifer Anis-
ton cells in the hippocampus. This same point was made earlier by
Perrett et al. (1989), who noted that there must be massive redun-
dancy of highly selective cells, given that so many are found with
only a limited opportunity to sample cells. Consistent with this
general analysis, highly specific neural responses are generally
observed for highly trained and well-recognized stimuli (stimuli
that are most likely to be redundantly coded).

Indeed, some existing models predict redundant localist coding.
For instance, in the adaptive resonance theory of Grossberg
(1980), localist units in Layer n of the network code for words,
objects, and the like, and localist units in Layer n — 1 code for
features of objects. Learning in the model consists in modifying
the connections between multiple (localist) units in Layer n — 1
and a single unit in Layer n. It is critical to note that to overcome
catastrophic interference (what Grossberg, 1976, previously called
the stability—plasticity dilemma), the model includes a vigilance
parameter that prevents new learning from modifying old knowl-
edge whenever the pattern of activation across Layer n — 1 does
not match a unit in Layer n sufficiently well. In this situation, the
model forms a new localist representation of the input in Layer n
(rather than modifying preexisting representations). In this way,
multiple localist representations develop that all code for similar
inputs. If the vigilance parameter is extremely high, the model is
effectively an instance theory, with a new dedicated localist rep-
resentation encoded each time a new stimulus is encoded. The
details are beyond this article, but the important point to note is
that some degree of redundancy of grandmother cells is predicted
by this theory. This redundancy was not proposed post hoc to
account for the paradox of identifying grandmother cells, but as a
solution to the stability—plasticity dilemma. It is interesting to note
that massive replication of grandmother cells may help explain
why identification improves with practice according to a power-
law function (Page, 2000).
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However there is another and more fundamental flaw in Waydo
et al.’s (2006) reasoning. Their calculations follow from the as-
sumption that a grandmother cell should only respond to one face
or object. However, as discussed above, that is not how localist
models work. Consider again the IA model of word identification.
If the input dog is presented to the model, a subset of form similar
words will be coactivated (hog, fog, log, etc.). If a single-unit
recording study was carried out on the model and only a small
fraction of the word units were sampled, then there would be a
greater probability of recording from one of the form similar word
units than the target unit itself (there are more of the former). That
is, the experimenter is more likely to find a unit that selectively
responds to dog when recording from a fog, hog, or log unit.
Although a critic of grandmother cell coding schemes might point
out that the unit that responds to dog might in fact respond to
another stimulus better (and be correct), this would not provide
evidence against a grandmother cell coding scheme. Indeed, that is
exactly what the IA model would predict.

The key point for present purposes is that this undermines
Waydo et al.’s (2006) conclusion. It may well be necessary to
assume that each neuron responds to multiple different (but sim-
ilar) things, given the sheer improbability of finding a neuron that
responds to one and only one person or object (even allowing for
massive redundancy). However, given that this is a property of
both localist and sparse coding schemes, their rejection of grand-
mother cells on the basis of observing grandmother-like neurons is
unwarranted. To distinguish between coarse and localist represen-
tations, one needs to determined whether neurons that respond to
different things are involved in representing multiple things
(coarse coding) or whether these neuron code for one thing and are
just incidentally activated by form similar things (as when the hog
unit fires in response to dog in the IA model). This is admittedly
difficult to determine, but short of this, both hypotheses remain
equally viable.

In sum, the multiple reports of grandmother-like neurons may
reflect the fact that brains include redundant grandmother cells
(perhaps massive redundancy), and these cells become partially
active in response to form similar inputs. Of course, the data are
also consistent with coarse coding schemes, as argued by Quiroga
et al. (2005) and Waydo et al. (2006). However, there is no
justification for rejecting grandmother cells on the basis of their
findings and analyses.

The current version of grandmother cells is unfalsifiable. A
final objection I would like to consider is whether I have rendered
the grandmother cell hypothesis unfalsifiable by developing im-
plausible and post hoc assumptions to reconcile any inconvenient
data with this hypothesis. I consider two possible examples of this
in turn.

First, when researchers fail to identify single neurons that ac-
count for behavior as well as a population of recorded neurons
(e.g., Rolls et al., 1997), I suggest that the relevant grandmother
neuron(s) were missed in the study rather than take the data as
evidence for distributed coding. This would indeed render the
hypothesis unfalsifiable if it were the case that experimenters
always failed to report highly selective neurons. But what is to be
made of studies that have identified highly selective neurons?
When considering the relative plausibility of coarse coding and
grandmother cells, the relevant question should be the following:
What pattern of neural responding (highly selective versus less

selective) poses a stronger constraint on theories of neural coding?
Given that it is presumably easy not to find a grandmother cell,
something analogous to a needle in a haystack, I would argue that
the reports of highly selective responding should be given more
weight.

Second, when researchers identify neurons that selectively re-
spond to a given stimulus, I assume that the neuron codes for this
stimulus, as opposed to the countless other stimuli that went
untested in the experiment. A critic might find this interpretation of
the data unmotivated (and perhaps even implausible). Neverthe-
less, there are good reasons to take this hypothesis seriously. As a
general point, a fundamental feature of coarse coding is that a
given neuron codes for a set of similar things. Thus, a neuron that
responds to one stimulus in a highly selective way is unlikely to
respond to a wide range of dissimilar stimuli (this should only
occur in a dense distributed coding scheme). That is, the only
untested stimuli likely to drive a selective cell will be similar to the
identified stimulus. Given this, it is interesting to note that selec-
tive responding has been reported even in the context of highly
similar foils (e.g., see Figure 8).

Sakai et al. (1994) attempted to directly address the concern that
the selective responding of neurons in an experiment is in fact
illusory and that these neurons would inevitably respond to a range
of different but untested objects or faces. Sakai et al. (1994) trained
monkeys to recognize 12 pairs of computer-generated Fourier
patterns and then tested neurons that showed selectivity to these
pairs. Sakai et al. identified neurons in IT that responded strongly
to one or the other of the newly learned patterns in an associated
pair but weakly to the other 22 patterns, despite the high similarity
among the patterns. Sakai et al. then compared the responses of
neurons that were sensitive to trained Fourier patterns when the
neuron was presented with the trained stimulus and a variety of
highly similar patterns (by manipulating the parameter set that
generated the trained visual patterns in the first place). In the
majority of cases, the neurons responded more strongly to the
trained pattern compared to the transformed ones, and in no case
did the neuron respond more strongly to the transformed pattern.
This suggests that the neurons were tuned to the trained visual
patterns; that is, the cells were grandmother cells for these patterns.
Similar results and conclusions were reached by Logothetis and
Pauls (1995).

There is other evidence suggesting that experimenters have, on
occasion, identified the object or face that best drives a given
neuron. For instance, as described above, Quiroga et al. (2005)
reported a neuron that selectively responded to photographs of
Halle Barry as well as the name Halle Barry. If the face was coding
for someone else (or a collection of other people) and was just
incidentally firing because the photographs of Halle Barry shared
some feature with the untested target person then it seems unlikely
that the neuron would also respond to the name Halle Barry. The
same argument applies to an early study by Thorpe, Rolls, and
Maddison (1983), who recorded from neurons in the orbitofrontal
cortex of alert thesus monkeys. They reported several neurons that
were highly selective to visual stimuli. Out of 494 neurons ana-
lyzed, 26 were selective to foodstuff, and 11 of these were selec-
tive to one type of food: Four neurons selectively responded to
oranges, 4 responded to peanuts, 2 responded to banana, and 1
responded raisins. Critical for present purposes, 5 of these 11
neurons also selectively responded to the taste of the correspond-
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ing food. For example, 1 neuron responded to the visual form as
well as to the taste of bananas. Again, the cross modal abstraction
suggests that the neuron is coding for a given type of food and is
not just incidentally activated by something else.

Of course, the above points do not rule out the possibility that
neurons are often (or always) mischaracterized, such that a neuron
that responds to one object out of many within the context of a
study would in fact respond better to another (untested) object as
well. But as discussed above, this possibility can be reconciled
with both sparse and grandmother coding schemes. Although a
critic might conclude that it is difficult to falsify a grandmother
cell coding scheme, the criticism applies equally well to sparse
coding.

If anything, the unfalsifiable objection applies more strongly to
distributed theories. For example, as noted above, Quiroga et al.
(2005) rejected grandmother cells after observing cells that re-
spond to one person, object, or face out of many. In the same way,
Churchland and Sejnowski (1992) considered the scenario in
which a single cell in temporal cortex responds to the face of
Grandma Edna among a large set of faces tested. They ask whether
this would constitute evidence for a local, as opposed to distrib-
uted, coding scheme. They suggest not, noting that there might be
some other untested object or person that would also drive the cell
to some degree, and even the partial activation of the cell may
reflect a functional role in representing another image. That is, it
appears that Churchland and Sejnowski would reject grandmother
cells even if presented with evidence that a single neuron does in
fact respond reliability and selectively to one image out of thou-
sands of related ones. It is hoped that some of the analysis
presented above would blunt this skepticism, but if not, it is not
clear what sort of evidence is required.

Given the current neuroscience, the only reasonable conclusion
is that neither coarse coding nor grandmother cell theories have
been falsified and that both provide a viable account of the data.
Still, there are fundamental differences between these theories, and
accordingly, there is no reason in principle that the theories cannot
be distinguished on empirical (or perhaps computational) grounds.
But clearly, future work is needed.

Conclusions

It is widely assumed that localist models with grandmother units
are biologically implausible. Indeed, this assumption contributes to
the widespread popularity of PDP models within psychology. But
as reviewed above, neurophysiological recordings from single
neurons straightforwardly falsify the distributed coding schemes
often learned with PDP models. Furthermore, despite widespread
dismissal of grandmother cells in neuroscience, the data are en-
tirely consistent with the hypothesis. The disconnect between data
and theory in neuroscience is due, at least in part, to a failure to
appreciate how localist (grandmother) models work.

I do not mean to suggest that the evidence provides unambig-
uous support for grandmother coding schemes, and some versions
of distributed coding (that is, coarse coding) might well prove
correct. Future empirical and computational work is required to
distinguish between these theories. But researchers in both cogni-
tive psychology and neuroscience should think twice before dis-
missing localist coding schemes. There should be nothing pejora-
tive about grandmothers.

One thing is clear.

Over the past 50 years, there has been an astonishing change in how
we regard cells in the CNS, and especially, in the cortex. At the
beginning of this period, it was believed that there was such an
incredibly large number of such cells (10/mm? of cortex, and more
than 10'C altogether) that it would be absurd and meaningless to
consider the role of a single one, and therefore averaging the activity
of large numbers of them was the only sensible approach. Now it is
possible to record from a singe neuron in the cortex of an awake,
behaving monkey, determine how well it performs in its task of
pattern recognition, and compare this performance to that revealed by
the behavioral responses of the same animal. The fact that thresholds
are comparable (Britten et al., 1992) would have astounded the
cortical neurophysiologist of 50 years ago. (Barlow, 1995, p. 417)

I expect it will astound most cognitive psychologists today.
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