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PREFACE 

This volume concerns spectra with enriched multiplicative structure. It is a 

truism that interesting cohomology theories are represented by ring spectra, the 

product on the spectrum giving rise to the cup products in the theory. Ordinary 

cohomology with mod p coefficients has Steenrod operations as well as cup products. 

These correspond to an enriched multlplicative structure on the Eilenberg-MacLane 

spectrum HZp. Atiyah has shown that the Adams operations in KU-theory are related 

to similar structure on its representing spectrum and tom Dieck and Quillen have 

considered Steenrod operations in cobordism coming from similar structure on Thom 

spectra. Kahn, Toda, Milgram, and others have exploited the same kind of structure 

on the sphere spectrum to construct and study homotopy operations, and Nishida's 

proof of the nilpotency of the stable stems is also based on this structure on the 

sphere spectrum. 

In all of this work, the spectrum level structure is either implicit or treated 

in an ad hoc way, although Tsuchiya gave an early formulation of the appropriate 

notions. Our purpose is to give a thorough study of such structure and its applica- 

tions. While there is much that is new here, we are also very interested in 

explaining how the material mentioned above, and other known results, can be 

rederived and, in many cases, sharpened and generalized in our context. 

The starting point of our work is the existence of extended powers of spectra 

generalizing the extended powers 

DjX = E~j ~j X (j) = E~j x .j x(J)/EZj ×Zj {*} 

of based spaces X. Here Zj is the syn~netric group on j letters, EZj is a contract- 

ible space on which Zj acts freely, the symbol ~ denotes the "half smash product", 

and X (j) denotes the j-fold smash power of X. This construction and its variants 

play a fundamental role in homotopy theory. They appear ubiquitously in the study 

of torsion phenomena. 

It will come as no surprise to anyone that extended powers of spectra can be 

constructed and shown to have all of the good properties present on the space level. 

However, those familiar with the details of the analysis of smash products of spec- 

tra will also not be surprised that there are onerous technical details involved. 

In working with spectra, the precise construction of smash products is seldom rele- 

vant, and I think most workers in the field are perfectly willing to use them with- 

out bothering to learn such details. The same attitude should be taken towards 

extended powers. 
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With this in mind, we have divided our work into two parts, of which this 

volume is the first. We here assume given extended powers and structured spectra 

and show how to exploit them. This part is meant to be accessible to anyone with a 

standard background in algebraic topology and some vague idea of what the stable 

category is. (However, we should perhaps insist right at the outset that, in stable 

homotopy theory, it really is essential to work in a good stable category and not 

merely to think in terms of cohomology theories on spaces; only in the former do we 

have such basic tools as eofibration sequences.) All of the technical work, or 

rather all of it which involves non-standard techniques, is deferred until the 

second volume. 

We begin by summarizing the properties of extended powers of spectra and intro- 

ducing the kinds of structured ring spectra we shall be studying. An H ring spec- 

trum is a spectrum E together with suitably related maps DjE ÷ E for j > O. The 

notion is analogous to that of an E space which I took as the starting point of my 

earlier work in infinite loop space theory. Indeed, H ring spectra may be viewed 

as analogs of infinite loop spaces, and we shall also give a notion of H n ring spec- 

trum such that H n ring spectra are analogs of n-fold loop spaces. However, it is to 

be emphasized that this is only an analogy: the present theory is essentially inde- 

pendent of infinite loop space theory. The structure maps of H ring spectra give 

rise to homology, homotopy, and cohomology operations. However, for a complete 

theory of cohomology operations, we shall need the notion of an H d ring spectrum. 
oo 

These have structural maps D. ~diE ÷ Z djiE for j > 0 aud all integers i. 
J 

While chapter I is prerequisite to everything else, the blocks II, III, IV-VI, 

and VII-IX are essentially independent of one another and can be read in any order. 

In chapter II, which is primarily expository and makes no claim to originality, 

I give a number of rather direct applications of the elementary properties of 

extended powers of spectra. In particular, I reprove Nishida's nilpotency theorems, 

explain Jones' recent proof of the Kahn-Priddy theorem, and describe the relation- 

ship of extended powers to the Singer construction and to theorems of Lin and 

Gunawardena. 

In chapter III, Mark Steinberger introduces homology operations for H (and for 

H n) ring spectra. These are analogs of the by now familiar (Araki-Kudo, Dyer- 

Lashof) homology operations for iterated loop spaces. He also carries out extensive 

calculations of these operations in the standard examples. In particular, it turns 

out that the homology of HZp is monogenic with respect to homology operations, a 

fact which neatly explains mar~ of the familiar splittings of spectra into wedges of 

Eilenberg-MacLane and Brown-Peterson spectra. 

In chapters IV-VI, Bob Brunet introduces homotopy operations for H ring spec- 

tra and gives a thorough analysis of the behavior of the H a ring structure with 

respect to the Adams spectral sequence and its differentials. As very special 
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cases, he uses this theory to rederive the Hopf invariant one differentials and 

certain key odd primary differentials due to Toda. The essential point is the rela- 

tionship between the structure maps DpE + E and Steenrod operations in the E 2 term 

of the Adams spectral sequence. Only a few of the Steenrod operations survive to 

homotopy operations, and the attaching maps of the spectra DpS q naturally give rise 

to higher differentials on the remaining Steenrod operations. An attractive feature 

of Bruner's work is his systematic exploitation of a "delayed" Adams spectral 

sequence originally due to Milgram to keep track of these complex phenomena. 

In chapters VII-IX, Jim McClure relates the notion of an H d ring spectrum to 

structure on the familiar kinds of spectra used to represent cohomology theories on 

spaces. For example, he shows that the representing spectrum KU for complex 

periodic K-theory is an H~ ring spectrum, that the Atiyah-Bott-Shapiro orientations 

give rise to an ~ ring map MSpin c + KU, and that similar conclusions hold with 

d = 8 in the real case. He then describes a general theory of cohomology operations 

and discusses its specialization to ordinary theory, K-theory, and cobordism. 

Finally, he gives a general theory of homology operations and uses the resulting new 

operations in complex K-theory to compute the K-theory of QX = colim ~nznx as a 

functor of X. This is a striking generalization of work of Hodgkin and of Miller 

and Snaith, who treated the cases X = S O and X = RP n by different methods. 

Our applications - and I have only mentioned some of the highlights - are by no 

means exhaustive. Indeed~ our examples show that this is necessarily the case. Far 

from being esoteric objects, the kindSof spectra we study here abound in nature and 

include most of the familiar examples of ring spectra. Their internal structure is 

an essential part of the foundations of stable homotopy theory and should be part of 

the tool kit of anybody working in this area of topology. 

There is a single table of contents, bibliography, and index for the volume as 

a whole, but each chapter has its own introduction; a reading of these will give a 

much better idea of what the volume really contains. References are generally by 

name (Lemma 3.1) within chapters and by number (II.3.1) when to results in other 

chapters. References to "the sequel" or to [Equiv] refer to "Equlvariant stable 

homotopy theory", which will appear shortly in this series; it contains the con- 

struction and analysis of extended powers of spectra. 

J. Peter May 

Feb. 29, 1984 
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