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ABSTRACT
Multiagent systems is an expanding field that blends classical fields like game theory and
decentralized control with modern fields like computer science and machine learning. This
monograph provides a concise introduction to the subject, covering the theoretical foundations
as well as more recent developments in a coherent and readable manner.

The text is centered on the concept of an agent as decision maker. Chapter 1 is a short
introduction to the field of multiagent systems. Chapter 2 covers the basic theory of single-
agent decision making under uncertainty. Chapter 3 is a brief introduction to game theory,
explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental
problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of
multiagent reasoning and decision making under partial observability. Chapter 6 focuses on
the design of protocols that are stable against manipulations by self-interested agents. Chapter
7 provides a short introduction to the rapidly expanding field of multiagent reinforcement
learning.

The material can be used for teaching a half-semester course on multiagent systems
covering, roughly, one chapter per lecture.

Nikos Vlassis is Assistant Professor at the Department of Production Engineering and
Management at the Technical University of Crete, Greece. His email is vlassis@dpem.tuc.gr
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Multiagent Systems, Distributed Artificial Intelligence, Game Theory, Decision Making under
Uncertainty, Coordination, Knowledge and Information, Mechanism Design, Reinforcement
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Preface
This monograph is based on a graduate course on multiagent systems that I have taught at
the University of Amsterdam, The Netherlands, from 2003 until 2006. This is the revised
version of an originally unpublished manuscript that I wrote in 2003 and used as lecture notes.
Since then the field has grown tremendously, and a large body of new literature has become
available. Encouraged by the positive feedback I have received all these years from students and
colleagues, I decided to compile this new, revised and up-to-date version.

Multiagent systems is a subject that has received much attention lately in science and
engineering. It is a subject that blends classical fields like game theory and decentralized con-
trol with modern fields like computer science and machine learning. In the monograph I
have tried to translate several of the concepts that appear in the above fields into a coherent
and comprehensive framework for multiagent systems, aiming at keeping the text at a rela-
tively introductory level without compromising its consistency or technical rigor. There is no
mathematical prerequisite for the text; the covered material should be self-contained.

The text is centered on the concept of an agent as decision maker. The 1st chapter is an
introductory chapter on multiagent systems. Chapter 2 addresses the problem of single-agent
decision making, introducing the concepts of a Markov state and utility function. Chapter 3
is a brief introduction to game theory, in particular strategic games, describing classical solu-
tion concepts like iterated elimination of dominated actions and Nash equilibrium. Chapter 4
focuses on collaborative multiagent systems, and deals with the problem of multiagent co-
ordination; it includes some standard coordination techniques like social conventions, roles,
and coordination graphs. Chapter 5 examines the case where the perception of the agents
is imperfect, and what consequences this may have in the reasoning and decision making
of the agents; it deals with the concepts of information, knowledge, and common knowl-
edge, and presents the model of a Bayesian game for multiagent decision making under
partial observability. Chapter 6 deals with the problem of how to develop protocols that
are nonmanipulable by a group of self-interested agents, discussing the revelation principle
and the Vickrey-Clarke-Groves (VCG) mechanism. Finally, chapter 7 is a short introduc-
tion to reinforcement learning, that allows the agents to learn how to take good decisions;
it covers the models of Markov decision processes and Markov games, and the problem of
exploration.
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The monograph can be used as teaching material in a half-semester course on multiagent
systems; each chapter corresponds roughly to one lecture. This is how I have used the material
in the past.

I am grateful to Jelle Kok, Frans Oliehoek, and Matthijs Spaan, for their valuable
contributions and feedback. I am also thankful to Taylan Cemgil, Jan Nunnink, Dov Samet,
Yoav Shoham, and Emilios Tigos, and numerous students at the University of Amsterdam for
their comments on earlier versions of this manuscript. Finally I would like to thank Peter Stone
for encouraging me to publish this work.

Nikos Vlassis
Chania, March 2007
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1

C H A P T E R 1

Introduction

In this chapter we give a brief introduction to multiagent systems, discuss their differences with
single-agent systems, and outline possible applications and challenging issues for research.

1.1 MULTIAGENT SYSTEMS AND DISTRIBUTED AI
The modern approach to artificial intelligence (AI) is centered around the concept of a rational
agent. An agent is anything that can perceive its environment through sensors and act upon
that environment through actuators (Russell and Norvig, 2003). An agent that always tries to
optimize an appropriate performance measure is called a ‘rational agent’. Such a definition of a
‘rational agent’ is fairly general and can include human agents (having eyes as sensors, hands as
actuators), robotic agents (having cameras as sensors, wheels as actuators), or software agents
(having a graphical user interface as sensor and as actuator). From this perspective, AI can be
regarded as the study of the principles and design of artificial rational agents.

However, agents are seldom stand-alone systems. In many situations they coexist and
interact with other agents in several different ways. Examples include software agents on the
Internet, soccer playing robots (see Fig. 1.1), and many more. Such a system that consists of
a group of agents that can potentially interact with each other is called a multiagent system
(MAS), and the corresponding subfield of AI that deals with principles and design of multiagent
systems is called distributed AI.

1.2 CHARACTERISTICS OF MULTIAGENT SYSTEMS
What are the fundamental aspects that characterize a MAS and distinguish it from a single-
agent system? One can think along the following dimensions.

1.2.1 Agent Design
It is often the case that the various agents that comprise a MAS are designed in different
ways. The different design may involve the hardware, for example soccer robots based on
different mechanical platforms, or the software, for example software agents (or ‘softbots’)
running different code. Agents that are based on different hardware or implement different
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FIGURE 1.1: A robot soccer team is an example of a multiagent system

behaviors are often called heterogeneous, in contrast to homogeneous agents that are designed
in an identical way and have a priori the same capabilities. Agent heterogeneity can affect all
functional aspects of an agent from perception to decision making.

1.2.2 Environment
Agents have to deal with environments that can be either static or dynamic (change with time).
Most existing AI techniques for single agents have been developed for static environments
because these are easier to handle and allow for a more rigorous mathematical treatment. In
a MAS, the mere presence of multiple agents makes the environment appear dynamic from
the point of view of each agent. This can often be problematic, for instance in the case of
concurrently learning agents where non-stable behavior can be observed. There is also the
issue of which parts of a dynamic environment an agent should treat as other agents and which
not. We will discuss some of these issues in Chapter 7.

1.2.3 Perception
The collective information that reaches the sensors of the agents in a MAS is typically dis-
tributed: the agents may observe data that differ spatially (appear at different locations), tem-
porally (arrive at different times), or semantically (require different interpretations). The fact
that agents may observe different things makes the world partially observable to each agent,
which has various consequences in the decision making of the agents. For instance, optimal
multiagent planning under partial observability can be an intractable problem. An additional
issue is sensor fusion, that is, how the agents can optimally combine their perceptions in order
to increase their collective knowledge about the current state. In Chapter 5 we will discuss some
of the above in more detail.
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1.2.4 Control
Contrary to single-agent systems, the control in a MAS is typically decentralized. This means
that the decision making of each agent lies to a large extent within the agent itself. Decentralized
control is preferred over centralized control (that involves a center) for reasons of robustness
and fault-tolerance. However, not all MAS protocols can be easily distributed, as we will see
in Chapter 6. The general problem of multiagent decision making is the subject of game theory
which we will briefly cover in Chapter 3. In a collaborative or team MAS where the agents
share the same interests, distributed decision making offers asynchronous computation and
speedups, but it also has the downside that appropriate coordination mechanisms need to be
additionally developed. Chapter 4 is devoted to the topic of multiagent coordination.

1.2.5 Knowledge
In single-agent systems we typically assume that the agent knows its own actions but not
necessarily how the world is affected by its actions. In a MAS, the levels of knowledge of
each agent about the current world state can differ substantially. For example, in a team MAS
involving two homogeneous agents, each agent may know the available action set of the other
agent, both agents may know (by communication) their current perceptions, or they can infer
the intentions of each other based on some shared prior knowledge. On the other hand, an
agent that observes an adversarial team of agents will typically be unaware of their action sets
and their current perceptions, and might also be unable to infer their plans. In general, in a
MAS each agent must also consider the knowledge of each other agent in its decision making.
In Chapter 5 we will discuss the concept of common knowledge, according to which every
agent knows a fact, every agent knows that every other agent knows this fact, and so on.

1.2.6 Communication
Interaction is often associated with some form of communication. Typically we view communi-
cation in a MAS as a two-way process, where all agents can potentially be senders and receivers
of messages. Communication can be used in several cases, for instance, for coordination among
cooperative agents or for negotiation among self-interested agents. This additionally raises
the issue of what network protocols to use in order for the exchanged information to arrive
safely and timely, and what language the agents must speak in order to understand each other
(especially, if they are heterogeneous). We will see throughout the book several examples of
multiagent protocols involving communication.

1.3 APPLICATIONS
Just as with single-agent systems in traditional AI, it is difficult to anticipate the full range of
applications where MASs can be used. Some applications have already appeared, for instance
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in software engineering where MAS technology has been recognized as a novel and promising
software building paradigm: a complex software system can be treated as a collection of many
small-size autonomous agents, each with its own local functionality and properties, and where
interaction among agents enforces total system integrity. Some of the benefits of using MAS
technology in large systems are (Sycara, 1998):

� Speedup and efficiency, due to the asynchronous and parallel computation.
� Robustness and reliability, in the sense that the whole system can undergo a ‘graceful

degradation’ when one or more agents fail.
� Scalability and flexibility, since it is easy to add new agents to the system.
� Cost, assuming that an agent is a low-cost unit compared to the whole system.
� Development and reusability, since it is easier to develop and maintain a modular

system than a monolithic one.

A very challenging application domain for MAS technology is the Internet. Today the
Internet has developed into a highly distributed open system where heterogeneous software
agents come and go, there are no well established protocols or languages on the ‘agent level’
(higher than TCP/IP), and the structure of the network itself keeps on changing. In such an
environment, MAS technology can be used to develop agents that act on behalf of a user and
are able to negotiate with other agents in order to achieve their goals. Electronic commerce
and auctions are such examples (Cramton et al., 2006, Noriega and Sierra, 1999). One can also
think of applications where agents can be used for distributed data mining and information
retrieval (Kowalczyk and Vlassis, 2005, Symeonidis and Mitkas, 2006).

Other applications include sensor networks, where the challenge is to efficiently al-
locate resources and compute global quantities in a distributed fashion (Lesser et al., 2003,
Paskin et al., 2005); social sciences, where MAS technology can be used for studying in-
teractivity and other social phenomena (Conte and Dellarocas, 2001, Gilbert and Doran,
1994); robotics, where typical applications include distributed localization and decision mak-
ing (Kok et al., 2005, Roumeliotis and Bekey, 2002); artificial life and computer games, where
the challenge is to build agents that exhibit intelligent behavior (Adamatzky and Komosinski,
2005, Terzopoulos, 1999).

A recent popular application of MASs is robot soccer, where teams of real or simulated
autonomous robots play soccer against each other (Kitano et al., 1997). Robot soccer provides
a testbed where MAS algorithms can be tested, and where many real-world characteristics
are present: the domain is continuous and dynamic, the behavior of the opponents may be
difficult to predict, there is uncertainty in the sensor signals, etc. A related application is robot
rescue, where teams of simulated or real robots must explore an unknown environment in
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order to discover victims, extinguish fires, etc. Both applications are organized by the RoboCup
Federation (www.robocup.org).

1.4 CHALLENGING ISSUES
The transition from single-agent systems to MASs offers many potential advantages but also
raises challenging issues. Some of these are:

� How to decompose a problem, allocate subtasks to agents, and synthesize partial results.
� How to handle the distributed perceptual information. How to enable agents to main-

tain consistent shared models of the world.
� How to implement decentralized control and build efficient coordination mechanisms

among agents.
� How to design efficient multiagent planning and learning algorithms.
� How to represent knowledge. How to enable agents to reason about the actions, plans,

and knowledge of other agents.
� How to enable agents to communicate. What communication languages and protocols

to use. What, when, and with whom should an agent communicate.
� How to enable agents to negotiate and resolve conflicts.
� How to enable agents to form organizational structures like teams or coalitions. How

to assign roles to agents.
� How to ensure coherent and stable system behavior.

Clearly the above problems are interdependent and their solutions may affect each other.
For example, a distributed planning algorithm may require a particular coordination mechanism,
learning can be guided by the organizational structure of the agents, and so on. In the later
following chapters we will try to provide answers to some of the above questions.

1.5 NOTES AND FURTHER READING
The review articles of Sycara (1998) and Stone and Veloso (2000) provide concise
and readable introductions to the field. The books of Huhns (1987), Singh (1994),
O’Hare and Jennings (1996), Ferber (1999), Weiss (1999), Stone (2000), Yokoo (2000),
Conte and Dellarocas (2001), Xiang (2002), Wooldridge (2002), Bordini et al. (2005), Vidal
(2007), and Shoham and Leyton-Brown (2007) offer more extensive treatments, emphasizing
different AI, societal, and computational aspects of multiagent systems.
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C H A P T E R 2

Rational Agents

In this chapter we describe what a rational agent is, we investigate some characteristics of
an agent’s environment like observability and the Markov property, and we examine what is
needed for an agent to behave optimally in an uncertain world where actions do not always
have the desired effects.

2.1 WHAT IS AN AGENT?
Following Russell and Norvig (2003), an agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through actuators.1 Examples
include humans, robots, or software agents. We often use the term autonomous to refer to
an agent whose decision making relies to a larger extent on its own perception than to prior
knowledge given to it at design time.

In this chapter we will study the problem of optimal decision making of an agent. That
is, how an agent can choose the best possible action at each time step, given what it knows
about the world around it. We will say that an agent is rational if it always selects an action
that optimizes an appropriate performance measure, given what the agent knows so far. The
performance measure is typically defined by the user (the designer of the agent) and reflects
what the user expects from the agent in the task at hand. For example, a soccer robot must act
so as to maximize the chance of scoring for its team, a software agent in an electronic auction
must try to minimize expenses for its designer, and so on. A rational agent is also called an
intelligent agent.

In the following we will mainly focus on computational agents, that is, agents that are
explicitly designed for solving a particular task and are implemented on some computing device.

2.2 AGENTS AS RATIONAL DECISION MAKERS
The problem of decision making of an agent is a subject of optimal control (Bellman, 1961,
Bertsekas, 2001). For the purpose of our discussion we will assume a discrete set of time
steps t = 0, 1, 2, . . ., in each of which the agent must choose an action at from a finite set of

1In this chapter we will use ‘it’ to refer to an agent, to emphasize that we are talking about computational entities.



book MOBK077-Vlassis August 3, 2007 7:59

8 INTRODUCTION TO MULTIAGENT SYSTEMS

actions A that it has available. Intuitively, in order to act rationally at time t, an agent should
take both the past and the future into account when choosing an action. The past refers to what
the agent has perceived and what actions it has taken until time t, and the future refers to what
the agent expects to perceive and do after time t.

If we denote by θτ the observation of an agent at time τ , then the above implies that in
order for an agent to optimally choose an action at time t, it must in general use its complete
history of observations θτ and actions aτ for τ ≤ t. The function

π (θ0, a0, θ1, a1, . . . , θt) = at (2.1)

that in principle would require mapping the complete history of observation–action pairs up to
time t to an optimal action at , is called the policy of the agent.

As long as we can find a function π that implements the above mapping, the part of
optimal decision making that refers to the past is solved. However, defining and implementing
such a function is problematic; the complete history can consist of a very large (even infinite)
number of observation–action pairs, which can vary from one task to another. Merely storing all
observations would require very large memory, aside from the computational cost for actually
computing π .

This fact calls for simpler policies. One possibility is for the agent to ignore all its percept
history except for the last observation θt . In this case its policy takes the form

π (θt) = at (2.2)

which is a mapping from the current observation of the agent to an action. An agent that simply
maps its current observation θt to a new action at , thus effectively ignoring the past, is called a
reflex agent, and its policy (2.2) is called reactive or memoryless. A natural question to ask is
how successful a reflex agent can be. As we will see next, for a particular class of environments
a reflex agent can do pretty well.

2.3 OBSERVABLE WORLDS AND THE MARKOV PROPERTY
From the discussion above it is clear that the terms ‘agent’ and ‘environment’ are coupled, so
that one cannot be defined without the other Sutton and Barto (1998, ch. 3) discuss this point).
For our purposes we will assume hereafter the existence of a world in which one or more agents
are embedded, and in which they perceive, think, and act. The collective information that is
contained in the world at any time step t, and that is relevant for the task at hand, will be called
a state of the world and denoted by s t . The set of all states of the world will be denoted by S.
As an example, in a robot soccer game a world state can be characterized by the soccer field
layout, the positions and velocities of all players and the ball, what each agent knows about
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each other, and other parameters that are relevant to the decision making of the agents like the
elapsed time since the game started, etc.

Depending on the nature of the problem, a world can be either discrete or continuous.
A discrete world can be characterized by a finite number of states, like the possible board
configurations in a chess game. A continuous world can have infinitely many states, like the
possible configurations of a point robot that translates freely on the plane in which case S = IR2.
Most of the existing AI techniques have been developed for discrete worlds, and this will be
our main focus as well.

2.3.1 Observability
A fundamental property that characterizes a world from the point of view of an agent is related
to the perception of the agent. We will say that the world is (fully) observable to an agent if
the current observation θt of the agent completely reveals the current state of the world, that is,
s t = θt . On the other hand, in a partially observable world the current observation θt of the
agent provides only partial information about the current state s t in the form of a deterministic
or stochastic observation model, for instance a conditional probability distribution p(s t|θt).
The latter would imply that the current observation θt does not fully reveal the true world
state, but to each state s t the agent assigns probability p(s t|θt) that s t is the true state (with
0 ≤ p(s t|θt) ≤ 1 and

∑
s t∈S p(s t|θt) = 1). Here we treat s t as a random variable that can take

all possible values in S. The stochastic coupling between s t and θt may alternatively be defined
by an observation model in the form p(θt|s t), and a posterior state distribution p(s t|θt) can be
computed from a prior distribution p(s t) using the Bayes rule:

p(s t|θt) = p(θt|s t)p(s t)
p(θt)

. (2.3)

Partial observability can in principle be attributed to two factors. First, it can be the result
of noise in the agent’s sensors. For example, due to sensor malfunction, the same state may
‘generate’ different observations to the agent at different points in time. That is, every time the
agent visits a particular state it may perceive something different. Second, partial observability
can be related to an inherent property of the environment referred to as perceptual aliasing:
different states may produce identical observations to the agent at different time steps. In other
words, two states may ‘look’ the same to an agent, although the states are different from each
other. For example, two identical doors along a corridor will look exactly the same to the eyes
of a human or the camera of a mobile robot, no matter how accurate each sensor system is.

Partial observability is much harder to handle than full observability, and algorithms for
optimal decision making in a partially observable world can often become intractable. As we
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will see in Chapter 5, partial observability may affect not only what each agent knows about
the world state, but also what each agent knows about each other’s knowledge.

2.3.2 The Markov Property
Let us consider again the case of a reflex agent with a reactive policy π (θt) = at in a fully
observable world. The assumption of observability implies s t = θt , and therefore the policy of
the agent reads

π (s t) = at . (2.4)

In other words, in an observable world the policy of a reflex agent is a mapping from world
states to actions. The gain comes from the fact that in many problems the state of the world at
time t provides a complete characterization of the history before time t. Such a world state that
summarizes all relevant information about the past is said to be Markov or to have the Markov
property. As we conclude from the above, in a Markov world an agent can safely use the
memoryless policy (2.4) for its decision making, in place of the memory-expensive policy (2.1).

So far we have discussed how the policy of an agent may depend on its past experience
and the particular characteristics of the environment. However, as we argued at the beginning,
optimal decision making should also take the future into account. This is what we are going to
examine next.

2.4 STOCHASTIC TRANSITIONS AND UTILITIES
As mentioned above, at each time step t the agent chooses an action at from a finite set of actions
A. When the agent takes an action, the world changes as a result of this action. A transition
model (or world model) specifies how the world changes when an action is executed. If the
current world state is s t and the agent takes action at , we can distinguish the following two
cases:

� In a deterministic world, the transition model maps a state–action pair (s t, at) to a
single new state s t+1. In chess, for example, every move changes the configuration on
the board in a deterministic manner.

� In a stochastic world, the transition model maps a state–action pair (s t, at) to a prob-
ability distribution p(s t+1|s t, at) over states. As in the partial observability case above,
s t+1 is a random variable that can take all possible values in S, each with correspond-
ing probability p(s t+1|s t, at). Most real-world applications involve stochastic transition
models; for example, robot motion is inaccurate because of wheel slip and other effects.
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We saw in the previous section that sometimes partial observability can be attributed to
uncertainty in the perception of the agent. Here we see another example where uncertainty plays
a role; namely, in the way the world changes when the agent executes an action. In a stochastic
world, the effects of the actions of the agent are not known a priori. Instead, there is a random
element that decides how the world changes as a result of an action. Clearly, stochasticity in
the state transitions introduces an additional difficulty in the optimal decision making task of
the agent.

2.4.1 From Goals to Utilities
In classical AI, a goal for a particular task is a desired state of the world. Accordingly, planning
is defined as a search through the state space for an optimal path to the goal. When the world is
deterministic, planning comes down to a graph search problem for which a variety of methods
exist (Russell and Norvig, 2003, ch. 3).

In a stochastic world, however, planning cannot be done by simple graph search because
transitions between states are nondeterministic. The agent must now take the uncertainty of
the transitions into account when planning. To see how this can be realized, note that in a
deterministic world an agent prefers by default a goal state to a non-goal state. More generally,
an agent may hold preferences between any world states. For example, a soccer agent will
mostly prefer to score a goal, will prefer less (but still a lot) to stand with the ball in front of an
empty goal, and so on.

A way to formalize the notion of state preferences is by assigning to each state s a real
number U (s ) that is called the utility of state s for that particular agent. Formally, for two states
s and s ′ holds U (s ) > U (s ′) if and only if the agent prefers state s to state s ′, and U (s ) = U (s ′)
if and only if the agent is indifferent between s and s ′. Intuitively, the utility of a state expresses
the ‘desirability’ of that state for the particular agent; the larger the utility of the state, the better
the state is for that agent. In the discrete world of Fig. 2.1, for instance, an agent would prefer
state d3 than state b2 or d2. Note that in a multiagent system, a state may be desirable to a
particular agent and at the same time be undesirable to an another agent; in soccer, for example,
scoring is typically unpleasant to the opponent agents.

4
3 +1
2 −1−1
1 start

a b c d

FIGURE 2.1: A world with one desired (+1) and two undesired (−1) states
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2.4.2 Decision Making in a Stochastic World
Equipped with utilities, the question now is how an agent can effectively use them for its
decision making. Let us assume that there is only one agent in the world, and the world is
stochastic with transition model p(s t+1|s t, at). Suppose that the current state is s t , and the agent
is pondering how to choose its action at . Let U (s ) be the utility function for the particular
agent. Utility-based decision making is based on the premise that the optimal action a∗

t of the
agent at state s t should maximize expected utility, that is,

a∗
t = arg max

at∈A

∑

s t+1

p(s t+1|s t, at)U (s t+1) (2.5)

where we sum over all possible states s t+1 ∈ S the world may transition to, given that the current
state is s t and the agent takes action at . In words, to see how good an action is, the agent has
to multiply the utility of each possible resulting state with the probability of actually reaching
this state, and sum up over all states. Then the agent must choose the action a∗

t that gives the
highest sum.

If each world state possesses a utility value, the agent can do the above calculations and
compute an optimal action for each possible state. This provides the agent with a policy that
maps states to actions in an optimal sense (optimal with respect to the given utilities). In
particular, given a set of optimal (that is, highest attainable) utilities U∗(s ) in a given task, the
greedy policy

π∗(s ) = arg max
a

∑

s ′
p(s ′|s , a)U∗(s ′) (2.6)

is an optimal policy for the agent.
There is an alternative and often useful way to characterize an optimal policy. For each

state s and each possible action a we can define an optimal action value or Q-value Q∗(s , a)
that measures the ‘goodness’ of action a in state s for that agent. For the Q-values holds
U∗(s ) = maxa Q∗(s , a), while an optimal policy can be computed as

π∗(s ) = arg max
a

Q∗(s , a) (2.7)

which is a simpler formula than (2.6) that does not make use of a transition model. In Chapter 7
we will see how we can compute optimal Q-values Q∗(s , a), and hence an optimal policy, in a
given task.

2.4.3 Example: A Toy World
Let us close the chapter with an example, similar to the one used by Russell and Norvig (2003,
ch. 21). Consider the world of Fig. 2.1 where in any state the agent can choose any one of
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4 0.818 (→) 0.865 (→

→

) 0.911 (→) 0.953 (↓)
3 0.782 (↑) 0.827 (↑) 0.907 (→) +1
2 0.547 (↑) −1 −10.492 (↑)
1 0.480 (↑) 0.279 ( ) →( )0.410 (↑) 0.216

a b c d

FIGURE 2.2: Optimal utilities and an optimal policy of the agent

the actions {Up, Down, Left, Right }. We assume that the world is fully observable (the agent
always knows where it is), and stochastic in the following sense: every action of the agent to
an intended direction succeeds with probability 0.8, but with probability 0.2 the agent ends up
perpendicularly to the intended direction. Bumping on the border leaves the position of the
agent unchanged. There are three terminal states, a desired one (the ‘goal’ state) with utility
+1, and two undesired ones with utility −1. The initial position of the agent is a1.

We stress again that although the agent can perceive its own position and thus the state
of the world, it cannot predict the effects of its actions on the world. For example, if the agent
is in state c2, it knows that it is in state c2. However, if it tries to move Up to state c3, it may
reach the intended state c3 (this will happen in 80% of the cases) but it may also reach state b2
(in 10% of the cases) or state d2 (in the rest 10% of the cases).

Assume now that optimal utilities have been computed for all states, as shown in Fig. 2.2.
Applying the principle of maximum expected utility, the agent computes that, for instance, in
state b3 the optimal action is Up. Note that this is the only action that avoids an accidental
transition to state b2. Similarly, by using (2.6) the agent can now compute an optimal action
for every state, which gives the optimal policy shown in parentheses.

Note that, unlike path planning in a deterministic world that can be described as graph
search, decision making in stochastic domains requires computing a complete policy that maps
states to actions. Again, this is a consequence of the fact that the results of the actions of an
agent are unpredictable. Only after the agent has executed its action it can observe the new
state of the world, from which it can select another action based on its precomputed policy.

2.5 NOTES AND FURTHER READING
We have mainly followed Chapters 2, 16, and 17 of the book of Russell and Norvig (2003)
which we strongly recommend for further reading. An illuminating discussion on the agent–
environment interface and the Markov property can be found in Chapter 3 of the book
of Sutton and Barto (1998) which is another excellent text on agents and decision making.
Bertsekas (2001) provides a more technical exposition. Spaan and Vlassis (2005) outline recent
advances in the topic of sequential decision making under partial observability.
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C H A P T E R 3

Strategic Games

In this chapter we study the problem of multiagent decision making where a group of agents
coexist in an environment and take simultaneous decisions. We use game theory to analyze
the problem. In particular, we describe the model of a strategic game and we examine two
fundamental solution concepts, iterated elimination of strictly dominated actions and Nash
equilibrium.

3.1 GAME THEORY
As we saw in Chapter 2, an agent will typically be uncertain about the effects of its actions to
the environment, and it has to take this uncertainty into account in its decision making. In a
multiagent system where many agents take decisions at the same time, an agent will also be
uncertain about the decisions of the other participating agents. Clearly, what an agent should
do depends on what the other agents will do.

Multiagent decision making is the subject of game theory (Osborne and Rubinstein,
1994). Although originally designed for modeling economical interactions, game theory has
developed into an independent field with solid mathematical foundations and many applica-
tions. The theory tries to understand the behavior of interacting agents under conditions of
uncertainty, and is based on two premises. First, that the participating agents are rational.
Second, that they reason strategically, that is, they take into account the other agents’ decisions
in their decision making.

Depending on the way the agents choose their actions, there are different types of games.
In a strategic game each agent chooses his1 strategy only once at the beginning of the game,
and then all agents take their actions simultaneously. In an extensive game the agents are
allowed to reconsider their plans during the game, and they may be imperfectly informed
about the actions played by the other agents. In this chapter we will only consider strategic
games.

1In this chapter we will use ‘he’ or ‘she’ to refer to an agent, following the convention in the literature
(Osborne and Rubinstein, 1994, p. xiii).
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3.2 STRATEGIC GAMES
A strategic game, or game in normal form, is the simplest game-theoretic model of agents’
interaction. It can be viewed as a multiagent extension of the decision-theoretic model of Chap-
ter 2, and is characterized by the following elements:

� There are n > 1 agents in the world.
� Each agent i can choose an action, or strategy, ai from his own action set Ai . The

tuple (a1, . . . , an) of individual actions is called a joint action or an action profile,
and is denoted by a or (ai ). We will use the notation a−i to refer the actions of all
agents except i , and (ai , a−i ) or [ai , a−i ] to refer to a joint action where agent i takes a
particular action ai .

� The game is ‘played’ on a fixed world state s (we are not concerned with state transitions
here). The state can be defined as consisting of the n agents, their action sets Ai , and
their payoffs, as we explain next.

� Each agent i has his own action value function Q∗
i (s , a) that measures the goodness of

the joint action a for the agent i . Note that each agent may assign different preferences
to different joint actions. Since s is fixed, we drop the symbol s and instead use
ui (a) ≡ Q∗

i (s , a), which is called the payoff function of agent i . We assume that the
payoff functions are predefined and fixed. (We will deal with the case of learning the
payoff functions in Chapter 7.)

� The state is fully observable to all agents. That is, all agents know (i) each other, (ii) the
action sets of each other, and (iii) the payoffs of each other. More strictly, the primitives
(i)-(iii) of the game are common knowledge among agents. That is, all agents know
(i)–(iii), they all know that they all know (i)–(iii), and so on to any depth. (We will
discuss common knowledge in detail in Chapter 5.)

� Each agent chooses a single action; it is a single-shot game. Moreover, all agents choose
their actions simultaneously and independently; no agent is informed of the decision
of any other agent prior to making his own decision.

In summary, in a strategic game each agent chooses a single action, and then he receives
a payoff that depends on the selected joint action. This joint action is called the outcome of
the game. Although the payoff functions of the agents are common knowledge, an agent does
not know in advance the action choices of the other agents. The best he can do is to try to
predict the actions of the other agents. A solution to a game is a prediction of the outcome of
the game using the assumption that all agents are rational and strategic.
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Not confess Confess
Not confess 3, 3 0, 4

Confess 4, 0 1, 1

FIGURE 3.1: The prisoner’s dilemma

In the special case of two agents, a strategic game can be graphically represented by
a payoff matrix, where the rows correspond to the actions of agent 1, the columns to the
actions of agent 2, and each entry of the matrix contains the payoffs of the two agents for
the corresponding joint action. In Fig. 3.1 we show the payoff matrix of a classical game, the
prisoner’s dilemma, whose story goes as follows:

Two suspects in a crime are independently interrogated. If they both confess, each will
spend three years in prison. If only one confesses, he will run free while the other will spend
four years in prison. If neither confesses, each will spend one year in prison.

In this example each agent has two available actions, Not confess or Confess. Translating
the above story into appropriate payoffs for the agents, we get in each entry of the matrix the
pairs of numbers that are shown in Fig. 3.1 (note that a payoff is by definition a ‘reward’,
whereas spending three years in prison is a ‘penalty’). For example, the entry (4, 0) indicates
that if the first agent confesses and the second agent does not, then the first agent will get
payoff 4 and the second agent will get payoff 0.

In Fig. 3.2 we see two more examples of strategic games. The game in Fig. 3.2(a) is
known as ‘matching pennies’; each of two agents chooses either Head or Tail. If the choices
differ, agent 1 pays agent 2 a cent; if they are the same, agent 2 pays agent 1 a cent. Such a
game is called strictly competitive or zero-sum because u1(a) + u2(a) = 0 for all a . The game
in Fig. 3.2(b) is played between two car drivers at a crossroad; each agent wants to cross first
(and he will get payoff 1), but if they both cross they will crash (and get payoff −1). Such a
game is called a coordination game (we will study coordination games in Chapter 4).

What does game theory predict that a rational agent will do in the above examples? In
the next sections we will describe two fundamental solution concepts for strategic games.

Head Tail
Head 1,−1

1,−1Tail −1, 1
−1, 1 −1, 1

Cross Stop
Cross 1, 0
Stop 0, 1 0, 0

(a) (b)

FIGURE 3.2: A strictly competitive game (a), and a coordination game (b)
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3.3 ITERATED ELIMINATION OF DOMINATED ACTIONS
The first solution concept is based on the assumption that a rational agent will never choose a
suboptimal action. With suboptimal we mean an action that, no matter what the other agents
do, will always result in lower payoff for the agent than some other action. We formalize this
as follows:

Definition 3.1. We will say that an action ai of agent i is strictly dominated by another action a ′
i

of agent i if

ui (a ′
i , a−i ) > ui (ai , a−i ) (3.1)

for all actions a−i of the other agents.

In the above definition, ui (ai , a−i ) is the payoff the agent i receives if he takes action ai

while the other agents take a−i . In the prisoner’s dilemma, for example, Not confess is a strictly
dominated action for agent 1; no matter what agent 2 does, the action Confess always gives
agent 1 higher payoff than the action Not confess (4 as opposed to 3 if agent 2 does not confess,
and 1 as opposed to 0 if agent 2 confesses). Similarly, Not confess is a strictly dominated action
for agent 2.

Iterated elimination of strictly dominated actions (IESDA) is a solution technique
that iteratively eliminates strictly dominated actions from all agents, until no more actions are
strictly dominated. It is solely based on the following two assumptions:

� A rational agent would never take a strictly dominated action.
� It is common knowledge that all agents are rational.

As an example, we will apply IESDA to the prisoner’s dilemma. As we explained above,
the action Not confess is strictly dominated by the action Confess for both agents. Let us start
from agent 1 by eliminating the action Not confess from his action set. Then the game reduces to
a single-row payoff matrix where the action of agent 1 is fixed (Confess ) and agent 2 can choose
between Not confess and Confess. Since the latter gives higher payoff to agent 2 (4 as opposed
to 3), agent 2 will prefer Confess to Not confess. Thus IESDA predicts that the outcome of the
prisoner’s dilemma will be (Confess, Confess ).

As another example consider the game of Fig. 3.3(a) where agent 1 has two actions U
and D and agent 2 has three actions L, M, and R. It is easy to verify that in this game IESDA
will predict the outcome (U , M) by first eliminating R (strictly dominated by M), then D, and
finally L. However, IESDA may sometimes produce very inaccurate predictions for a game,
as in the two games of Fig. 3.2 and also in the game of Fig. 3.3(b) where no actions can be
eliminated. In these games IESDA essentially predicts that any outcome is possible.
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L M R

U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 0

L M R

U 1, 0 1, 2 0, 1
D 0, 3 0, 1 2, 2

(a) (b)

FIGURE 3.3: Examples where IESDA predicts a single outcome (a), or predicts that any outcome is
possible (b).

A characteristic of IESDA is that the agents do not need to maintain beliefs about
the other agents’ strategies in order to compute their optimal actions. The only thing that is
required is the common knowledge assumption that each agent is rational. Moreover, it can be
shown that the algorithm is insensitive to the speed and the elimination order; it will always
produce the same result no matter how many actions are eliminated in each step and in which
order. However, as we saw in the examples above, IESDA can sometimes fail to make useful
predictions for the outcome of a game.

3.4 NASH EQUILIBRIUM
A Nash equilibrium (NE) is a stronger solution concept than IESDA, in the sense that it
produces more accurate predictions in a wider class of games. It can be formally defined as
follows:

Definition 3.2. A Nash equilibrium is a joint action a∗ with the property that for every agent i
holds

ui (a∗
i , a∗

−i ) ≥ ui (ai , a∗
−i ) (3.2)

for all actions ai ∈ Ai .

In other words, a NE is a joint action from where no agent can unilaterally improve his
payoff, and therefore no agent has any incentive to deviate. Note that, contrary to IESDA that
describes a solution of a game by means of an algorithm, a NE describes a solution in terms of
the conditions that hold at that solution.

There is an alternative definition of a NE that makes use of the so-called best-response
function. For agent i , this function is defined as

Bi (a−i ) = {ai ∈ Ai : ui (ai , a−i ) ≥ ui (a ′
i , a−i ) for all a ′

i ∈ Ai}, (3.3)

and Bi (a−i ) can be a set containing many actions. In the prisoner’s dilemma, for example, when
agent 2 takes the action Not confess, the best-response of agent 1 is the action Confess (because
4 > 3). Similarly, we can compute the best-response function of each agent:
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B1(Not confess ) = Confess,

B1(Confess ) = Confess,

B2(Not confess ) = Confess,

B2(Confess ) = Confess.

In this case, the best-response functions are singleton-valued. Using the definition of a best-
response function we can now formulate the following:

Definition 3.3. A Nash equilibrium is a joint action a∗ with the property that for every agent i
holds

a∗
i ∈ Bi (a∗

−i ). (3.4)

That is, at a NE, each agent’s action is an optimal response to the other agents’ ac-
tions. In the prisoner’s dilemma, for instance, given that B1(Confess ) = Confess, and B2

(Confess ) = Confess, we conclude that (Confess, Confess ) is a NE. Moreover, we can easily
show the following:

Proposition 3.1. The two definitions 3.2 and 3.3 of a NE are equivalent.

Proof. Suppose that (3.4) holds. Then, using (3.3) we see that for each agent i , the action a∗
i

must satisfy ui (a∗
i , a∗

−i ) ≥ ui (a ′
i , a∗

−i ) for all a ′
i ∈ Ai . The latter is precisely the definition of a

NE according to (3.2). Similarly for the converse. �

The definitions 3.2 and 3.3 suggest a brute-force method for finding the Nash equilibria
of a game: enumerate all possible joint actions and then verify which ones satisfy (3.2) or (3.4).
Note that the cost of such an algorithm is exponential in the number of agents.

It turns out that a strategic game can have zero, one, or more than one Nash equilibria.
For example, (Confess, Confess ) is the only NE in the prisoner’s dilemma. We also find that the
zero-sum game in Fig. 3.2(a) does not have a NE, while the coordination game in Fig. 3.2(b)
has two Nash equilibria (Cross, Stop ) and (Stop, Cross ). Similarly, (U , M) is the only NE in
both games of Fig. 3.3.

We argued above that a NE is a stronger solution concept than IESDA in the sense
that it produces more accurate predictions of a game. For instance, the game of Fig. 3.3(b) has
only one NE, but IESDA predicts that any outcome is possible. In general, we can show the
following two propositions (the proof of the second is left as an exercise):

Proposition 3.2. A NE always survives IESDA.
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Proof. Let a∗ be a NE, and let us assume that a∗ does not survive IESDA. This means that
for some agent i the component a∗

i of the action profile a∗ is strictly dominated by another
action ai of agent i . But then (3.1) implies that ui (ai , a∗

−i ) > ui (a∗
i , a∗

−i ) which contradicts the
Definition 3.2 of a NE. �

Proposition 3.3. If IESDA eliminates all but a single joint action a , then a is the unique NE
of the game.

Note also that in the prisoner’s dilemma, the joint action (Not confess, Not confess ) gives
both agents payoff 3, and thus it should have been the preferable choice. However, from this
joint action each agent has an incentive to deviate, to be a ‘free rider’. Only if the agents had
made an agreement in advance, and only if trust between them was common knowledge, would
they have opted for this non-equilibrium joint action which is optimal in the following sense:

Definition 3.4. A joint action a is Pareto optimal if there is no other joint action a ′ for which
ui (a ′) ≥ ui (a) for each i and u j (a ′) > u j (a) for some j .

So far we have implicitly assumed that when the game is actually played, each agent i
will choose his action deterministically from his action set Ai . This is however not always true.
In many cases there are good reasons for an agent to introduce randomness in his behavior; for
instance, to avoid being predictable when he repeatedly plays a zero-sum game. In these cases
an agent i can choose actions ai according to some probability distribution:

Definition 3.5. A mixed strategy for an agent i is a probability distribution over his actions
ai ∈ Ai .

In his celebrated theorem, Nash (1950) showed that a strategic game with a finite num-
ber of agents and a finite number of actions always has an equilibrium in mixed strategies.
Osborne and Rubinstein (1994, sec. 3.2) give several interpretations of such a mixed strat-
egy Nash equilibrium. Porter et al. (2004) and von Stengel (2007) describe several algorithms
for computing Nash equilibria, a problem whose complexity has been a long-standing is-
sue (Papadimitriou, 2001).

3.5 NOTES AND FURTHER READING
The book of von Neumann and Morgenstern (1944) and the half-page long article of Nash
(1950) are classics in game theory. The book of Osborne and Rubinstein (1994) is the standard
textbook on game theory, and it is highly recommended. The book of Gibbons (1992) and the
book of Osborne (2003) offer a readable introduction to the field, with several applications.
Russell and Norvig (2003, ch. 17) also include an introductory section on game theory. The
book of Nisan et al. (2007) focuses on computational aspects of game theory.



book MOBK077-Vlassis August 3, 2007 7:59

22



book MOBK077-Vlassis August 3, 2007 7:59

23

C H A P T E R 4

Coordination

In this chapter we address the problem of multiagent coordination. We analyze the problem
using the framework of strategic games that we studied in Chapter 3, and we describe several
practical techniques like social conventions, roles, and coordination graphs.

4.1 COORDINATION GAMES
As we argued in Chapter 1, decision making in a multiagent system should preferably be carried
out in a decentralized manner for reasons of efficiency and robustness. This additionally requires
developing a coordination mechanism. In the case of collaborative agents, coordination ensures
that the agents do not obstruct each other when taking actions, and that these actions serve
the common goal of the team (for example, two teammate soccer robots must coordinate their
actions when deciding who should go for the ball). Informally, coordination can be regarded
as the process by which the individual decisions of the agents result in good joint decisions for
the group.

Formally, we can model a coordination problem as a coordination game using the tools
of game theory, and solve it according to some solution concept, for instance Nash equilibrium.
We have already seen an example in Fig. 3.2(b) of Chapter 3 of a strategic game where two
cars meet at a crossroad and one driver should cross and the other one should stop. That
game has two Nash equilibria, (Cross, Stop) and (Stop, Cross). In the case of n collaborative
agents, all agents in the team share the same payoff function u1(a) = . . . = un(a) ≡ u(a) in
the corresponding coordination game. Figure 4.1 shows an example of a coordination game
(played between two agents who want to go to the movies together) that also has two Nash
equilibria. Generalizing from these two examples, we can formally define coordination as the
process in which a group of agents choose a single Pareto optimal Nash equilibrium in a game.

Thriller Comedy
Thriller 1, 1 0, 0
Comedy 0, 0 1, 1

FIGURE 4.1: A coordination game
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In Chapter 3 we described a Nash equilibrium in terms of the conditions that hold at the
equilibrium point, and disregarded the issue of how the agents can actually reach this point.
Coordination is a more earthy concept, as it asks how the agents can actually agree on a single
equilibrium in a game that involves more than one equilibria. Reducing coordination to the
problem of equilibrium selection in a game allows for the application of existing techniques
from game theory (Harsanyi and Selten, 1988). In the rest of this chapter we will focus on
some simple coordination techniques that can be readily implemented in practical systems. We
will throughout assume that the agents are collaborative (they share the same payoff function),
and that they have perfect information about the game primitives (see Section 3.2). Also by
‘equilibrium’ we will mean here ‘Pareto optimal Nash equilibrium’, unless otherwise stated.

4.2 SOCIAL CONVENTIONS
As we saw above, in order to solve a coordination problem, a group of agents are faced with
the problem of how to choose their actions in order to select the same equilibrium in a game.
Clearly, there can be no recipe to tell the agents which equilibrium to choose in every possible
game they may play in the future. Nevertheless, we can devise recipes that will instruct the
agents on how to choose a single equilibrium in any game. Such a recipe will be able to guide
the agents in their action selection procedure.

A social convention (or social law) is such a recipe that places constraints on the possible
action choices of the agents. It can be regarded as a rule that dictates how the agents should
choose their actions in a coordination game in order to reach an equilibrium. Moreover, given
that the convention has been established and is common knowledge among agents, no agent
can benefit from not abiding by it.

Boutilier (1996) has proposed a general convention that achieves coordination in a large
class of systems and is very easy to implement. The convention assumes a unique ordering
scheme of joint actions that is common knowledge among agents. In a particular game, each
agent first computes all equilibria of the game, and then selects the first equilibrium according
to this ordering scheme. For instance, a lexicographic ordering scheme can be used in which
the agents are ordered first, and then the actions of each agent are ordered. In the coordination
game of Fig. 4.1, for example, we can order the agents lexicographically by 1 � 2 (meaning that
agent 1 has ‘priority’ over agent 2), and the actions by Thriller � Comedy. The first equilibrium
in the resulting ordering of joint actions is (Thriller, Thriller) and this will be the unanimous
choice of the agents. Given that a single equilibrium has been selected, each agent can then
choose his individual action as the corresponding component of the selected equilibrium.

When the agents can perceive more aspects of the world state than just the primitives
of the game (actions and payoffs), one can think of more elaborate ordering schemes for
coordination. Consider the traffic game of Fig. 3.2(b), for example, as it is ‘played’ in the real
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world. Besides the game primitives, the state now also contains the relative orientation of the
cars in the physical environment. If the state is fully observable by both agents (and this fact is
common knowledge), then a simple convention is that the driver coming from the right will
always have priority over the other driver in the lexicographic ordering. If we also order the
actions by Cross � Stop, then coordination by social conventions implies that the driver from the
right will cross the road first. Similarly, if traffic lights are available, the established convention
is that the driver who sees the red light must stop.

When communication is available, we only need to impose an ordering i = 1, . . . , n of
the agents that is common knowledge. Coordination can now be achieved by the following
algorithm: Each agent i (except agent 1) waits until all previous agents 1, . . . , i − 1 in the
ordering have broadcast their chosen actions, and then agent i computes its component a∗

i of
an equilibrium that is consistent with the choices of the previous agents and broadcasts a∗

i to
all agents that have not chosen an action yet. Note that here the fixed ordering of the agents
together with the wait/send primitives result in a synchronized sequential execution order of
the coordination algorithm.

4.3 ROLES
Coordination by social conventions relies on the assumption that an agent can compute all
equilibria in a game before choosing a single one. However, computing equilibria can be
expensive when the action sets of the agents are large, so it makes sense to try to reduce the size
of the action sets first. Such a reduction can have computational advantages in terms of speed,
but it can also simplify the equilibrium selection problem; in some cases the resulting subgame
contains only one equilibrium which is trivial to find.

A natural way to reduce the action sets of the agents is by assigning roles to the agents.
Formally, a role can be regarded as a masking operator on the action set of an agent given
a particular state. In practical terms, if an agent is assigned a role at a particular state, then
some of the agent’s actions are deactivated at this state. In soccer for example, an agent that is
currently in the role of defender cannot attempt to Score.

A role can facilitate the solution of a coordination game by reducing it to a subgame
where the equilibria are easier to find. For example, in Fig. 4.1, if agent 2 is assigned a role that
forbids him to select the action Thriller (say, he is under 12), then agent 1, assuming he knows
the role of agent 2, can safely choose Comedy resulting in coordination. Note that there is only
one equilibrium left in the subgame formed after removing the action Thriller from the action
set of agent 2.

In general, suppose that there are n available roles (not necessarily distinct), that the state
is fully observable to the agents, and that the following facts are common knowledge among
agents:
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For each agent i in parallel
I = {}.
For each role j = 1, . . . , n

Compute the potential rij of agent i for role j.
Broadcast rij to all agents.

End
Wait until all ri′j , for j = 1, . . . , n, are received.
For each role j = 1, . . . , n

Assign role j to agent i∗ = arg maxi′ /∈I{ri′j }.
Add i∗ to I.

End
End

FIGURE 4.2: Communication-based greedy role assignment

� There is a fixed ordering {1, 2, . . . , n} of the roles. Role 1 must be assigned first,
followed by role 2, etc.

� For each role there is a function that assigns to each agent a ‘potential’ that reflects how
appropriate that agent is for the specific role, given the current state. For example, the
potential of a soccer robot for the role attacker can be given by its negative Euclidean
distance to the ball.

� Each agent can be assigned only one role.

Then role assignment can be carried out, for instance, by a greedy algorithm in which
each role (starting from role 1) is assigned to the agent that has the highest potential for
that role, and so on until all agents have been assigned a role. When communication is not
available, each agent can run this algorithm identically and in parallel, assuming that each agent
can compute the potential of each other agent. When communication is available, an agent
only needs to compute its own potentials for the set of roles, and then broadcast them to the
rest of the agents. Next it can wait for all other potentials to arrive in order to compute the
assignment of roles to agents as above. In the communication-based case, each agent needs to
compute O(n) (its own) potentials instead of O(n2) in the communication-free case, but this is
compensated by the total number O(n2) of potentials that need to be broadcast and processed
by the agents. Figure 4.2 shows the greedy role assignment algorithm when communication is
available.

4.4 COORDINATION GRAPHS
As mentioned above, roles can facilitate the solution of a coordination game by reducing the
action sets of the agents prior to computing the equilibria. However, computing equilibria in a
subgame can still be a difficult task when the number of involved agents is large; recall that the
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joint action space is exponentially large in the number of agents. As roles reduce the size of the
action sets, we also need a method that reduces the number of agents involved in a coordination
game.

Guestrin et al. (2002a) introduced the coordination graph as a framework for solving
large-scale coordination problems. A coordination graph allows for the decomposition of a
coordination game into several smaller subgames that are easier to solve. Unlike roles where a
single subgame is formed by the reduced action sets of the agents, in this framework various
subgames are formed, each typically involving a small number of agents.

In order for such a decomposition to apply, the main assumption is that the global
payoff function u(a) can be written as a linear combination of k local payoff functions f j , for
j = 1, . . . , k, each involving fewer agents. For example, suppose that there are n = 4 agents,
and k = 3 local payoff functions, each involving two agents:

u(a) = f1(a1, a2) + f2(a1, a3) + f3(a3, a4). (4.1)

Here, for instance f2(a1, a3) involves only agents 1 and 3, with their actions a1 and a3. Such a
decomposition can be graphically represented by a graph (hence the name), where each node
represents an agent and each edge corresponds to a local payoff function. For example, the
decomposition (4.1) can be represented by the graph of Fig. 4.3.

Many practical problems can be modeled by such additively decomposable payoff func-
tions. For example, in a computer network nearby servers may need to coordinate their actions
in order to optimize overall network traffic; in a firm with offices in different cities, geograph-
ically nearby offices may need to coordinate their actions in order to maximize global sales; in
a soccer team, nearby players may need to coordinate their actions in order to improve team
performance; and so on.

Let us now see how this framework can be used for coordination. A solution to the
coordination problem is by definition a Pareto optimal Nash equilibrium in the corresponding
strategic game, that is, a joint action a∗ that maximizes u(a). We will describe two solution

2

1

3

4

f1 f2

f3

FIGURE 4.3: A coordination graph for a four-agent problem
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methods: an exact one that is based on variable elimination, and an approximate one that is
based on message passing.

4.4.1 Coordination by Variable Elimination
The linear decomposition of u(a) in a coordination graph allows for the computation of a∗ by a
sequential maximization procedure, called variable elimination, in which agents are eliminated
one after the other. We will illustrate this method on the above example. We start by eliminating
agent 1 in (4.1). We collect all local payoff functions that involve agent 1; these are f1 and f2.
The maximum of u(a) can then be written

max
a

u(a) = max
a2,a3,a4

{
f3(a3, a4) + max

a1

[
f1(a1, a2) + f2(a1, a3)

]}
. (4.2)

Next we perform the inner maximization over the actions of agent 1. For each combination of
actions of agents 2 and 3, agent 1 must choose an action that maximizes f1 + f2. This essentially
involves computing the best-response function B1(a2, a3) of agent 1 (see Section 3.4) in the
subgame formed by agents 1, 2, and 3, and the sum of payoffs f1 + f2. The function B1(a2, a3)
can be thought of as a conditional strategy for agent 1, given the actions of agents 2 and 3.

The above maximization and the computation of the best-response function of agent 1
define a new payoff function f4(a2, a3) = maxa1 [ f1(a1, a2) + f2(a1, a3)] that is independent of
a1. Agent 1 has now been eliminated. The maximum (4.2) becomes

max
a

u(a) = max
a2,a3,a4

[
f3(a3, a4) + f4(a2, a3)

]
. (4.3)

We can now eliminate agent 2 as we did with agent 1. In (4.3), only f4 involves a2, and
maximization of f4 over a2 gives the best-response function B2(a3) of agent 2 which is a
function of a3 only. This in turn defines a new payoff function f5(a3), and agent 2 is eliminated.
Now we can write

max
a

u(a) = max
a3,a4

[
f3(a3, a4) + f5(a3)

]
. (4.4)

Agent 3 is eliminated next, resulting in B3(a4) and a new payoff function f6(a4). Finally,
maxa u(a) = maxa4 f6(a4), and since all other agents have been eliminated, agent 4 can simply
choose an action a∗

4 that maximizes f6.
The above procedure computes an optimal action only for the last eliminated agent

(assuming that the graph is connected). For the other agents it computes only conditional
strategies. A second pass in the reverse elimination order is needed so that all agents compute
their optimal (unconditional) actions from their best-response functions. In the above example,
plugging a∗

4 into B3(a4) gives the optimal action a∗
3 of agent 3. Similarly, we get a∗

2 from B2(a∗
3 )

and a∗
1 from B1(a∗

2 , a∗
3 ), which gives us the optimal joint action a∗ = (a∗

1 , a∗
2 , a∗

3 , a∗
4 ). Note that
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For each agent in parallel
F = {f1, . . . , fk}.
For each agent i = 1, 2, . . . , n

Find all fj(ai, a− i) ∈ F that involve ai.
Compute Bi(a− i) = arg maxai

∑
j fj(ai, a− i).

Compute fk+i(a− i) = maxai
∑

j fj(ai, a− i).
Remove all fj(ai, a− i a− i) from F and add fk+i( ) in F .

End
For each agent i = n, n−  1,...,1

Choose a∗i ∈ Bi(a∗− i) based on a fixed ordering of actions.
End

End

FIGURE 4.4: Communication-free variable elimination

one agent may have more than one best-response actions, in which case the first action can be
chosen according to an a priori ordering of the actions of each agent that must be common
knowledge.

The complete algorithm, which we will refer to as coordination by variable elimina-
tion, is shown in Fig. 4.4. Note that the notation −i that appears in f j (ai , a−i ) refers to
all agents other than agent i that are involved in f j , and it does not necessarily include all
n − 1 agents. Similarly, in the best-response functions Bi (a−i ) the action set a−i may involve
less than n − 1 agents. The algorithm runs identically for each agent in parallel. For that
we require that all local payoff functions are common knowledge among agents, and that
there is an a priori ordering of the action sets of the agents that is also common knowledge.
The latter assumption is needed so that each agent will finally compute the same joint ac-
tion. The main advantage of this algorithm compared to coordination by social conventions
is that here we need to compute best-response functions in subgames involving only few
agents, as opposed to computing best-response functions in the complete game involving all n
agents.

For simplicity, in the above algorithm we have fixed the elimination order of the agents
as 1, 2, . . . , n. However, this is not necessary; each agent running the algorithm can choose a
different elimination order, and the resulting joint action a∗ will always be the same. The total
runtime of the algorithm, however, will not be the same; different elimination orders produce
different intermediate payoff functions, and thus subgames of different size. It turns out that
computing the elimination order that minimizes the execution time of the algorithm is a hard
(NP-complete) problem (Arnborg et al., 1987). A good heuristic is to eliminate agents that
have the fewest neighbors.

When communication is available, we do not need to assume that all local payoff functions
f j are common knowledge and that the actions are ordered. In the forward pass, each agent
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can maintain in its local memory the payoff functions that involve only this agent. The initial
distribution of payoff functions to the agents can be done as follows: agent 1 in the elimination
order takes all payoff functions that involve this agent, agent 2 takes all functions that involve
this agent and are not distributed to agent 1, and so on, until no more payoff functions are left.
When an agent computes its best-response function and generates a new payoff function, the
agent can broadcast this function to the other agents involved in it. In fact, the agent needs
to send the payoff function only to the first non-eliminated agent whose action appears in the
domain of this function. Similarly, in the backward pass an agent can wait for the optimal
actions of the other agents (unless it is the last eliminated agent), then choose any action
from its best-response action set, and finally broadcast this action to all agents that need it in
their best-response functions. Figure 4.5 shows the communication-based version of variable
elimination.

A crucial difference between the algorithms of Figs. 4.4 and 4.5 is that in the
communication-based case the elimination order of the agents must be fixed a priori and
it must be common knowledge among the agents. In terms of complexity, the forward pass
is slightly slower than in the communication-free case, because here the generated payoffs
need to be communicated to the other involved agents. On the other hand, when communi-
cation is available, the backward pass can be fully asynchronous. One can also think of asyn-
chronous versions of the forward pass in which many agents are simultaneously eliminated. This
would require some additional book-keeping for storing the pairwise dependencies between
agents.

For each agent i in parallel
If i �= 1

Wait until agent i − 1 sends OK.
End
Let fj(ai, ) be all local payoff functions (initial and communicated) that
involve agent i.
Compute Bi( ) = arg maxai

∑
j fj(ai, ).

Compute f∗( ) = maxai
∑

j fj(ai, ).
Send f∗(a− i

a− i

a− i

a− i

a− i

a− i

) to agent j = min{i + 1, . . . , n}, j ∈ − i.
If i �= n

Send OK to agent i + 1.
Wait until all a∗− i are received.

End
Choose any a∗i ∈ Bi(a∗− i).
Broadcast a∗i to all agents j such that ai ∈ domain(Bj).

End

FIGURE 4.5: Communication-based variable elimination
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4.4.2 Coordination by Message Passing
Variable elimination is an exact method (it always computes an optimal joint action), but it
suffers from two limitations. First, for densely connected graphs the runtime of the method can
be exponential in the number of agents (for example, a particular elimination order may cause
the graph to become fully connected). Second, variable elimination can only produce a solution
after the end of its backward pass, which can be unacceptable when real-time behavior is in
order: often, decision making is done under time constraints, and there is a deadline after which
the payoff of the team becomes zero (think of a research team that try to a submit a proposal
before a deadline). In such cases we would like to have an anytime algorithm that improves the
quality of the solution over time and (if possible) eventually computes the optimal solution.

Such anytime behavior can be achieved by distributed algorithms that are based on
message passing. Here we will describe one such algorithm, called max-plus, that was originally
developed for computing maximum a posteriori (MAP) solutions in Bayesian networks (Pearl,
1988). In this algorithm, neighboring agents in the graph repeatedly send messages to each
other, where a message is a local payoff function for the receiving agent. Suppose that we have a
coordination graph that defines a payoff function as a sum of two-agent local payoff functions:

u(a) =
∑

(i, j )

fi j (ai , a j ) (4.5)

where the summation is over all (i, j ) pairs of neighboring agents in the graph. In each time
step, each agent i sends a message µi j to a (randomly picked) neighbor j , where µi j is a local
payoff function for the receiving agent j defined as

µi j (a j ) = max
ai

{
fi j (ai , a j ) +

∑

k∈�(i)\ j

µki (ai )
}

(4.6)

where �(i) \ j denotes all neighbors of agent i except agent j . Messages are exchanged until
they converge to a fixed point, or until some external signal stops the process. The two operators
involved in (4.6), a maximization and a summation, give the name max-plus to the algorithm.

When the graph is cycle-free (tree), max-plus always converges after a finite num-
ber of steps to a fixed point in which the messages do not change anymore (Pearl, 1988,
Wainwright et al., 2004). If we define local functions gi , one for each agent i , as

gi (ai ) =
∑

j∈�(i)

µ j i (ai ) (4.7)

then we can show that at convergence holds

gi (ai ) = max
{a ′|a ′

i =ai }
u(a ′). (4.8)
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If each agent locally computes

a∗
i = arg max

ai

gi (ai ) (4.9)

and each optimal action a∗
i is unique (for all i), then at convergence the globally optimal

action a∗ = arg maxa u(a) is also unique and has elements a∗ = (a∗
i ) computed by only local

optimizations (each agent maximizes gi (ai ) separately). If the local a∗
i are not unique, an

optimal joint action can still be computed by dynamic programming (Wainwright et al., 2004,
sec. 3.1). Hence, max-plus allows the decomposition of a difficult global optimization problem
(a∗ = arg maxa u(a)) into a set of local optimization problems (4.9) that are much easier to
solve.

When the graph contains cycles, there are no guarantees that max-plus will converge,
nor that the local maximizers a∗

i from (4.9) will comprise a global maximum at any time step.
However, max-plus can still be used as an approximate coordination algorithm, that produces
very good results in practice, much faster than variable elimination (Kok and Vlassis, 2006).

Max-plus is effective and simple to implement, but it comes with few performance
guarantees in general graphs. Other algorithms exist, based on branch and bound or hill
climbing, that can provably converge to the optimal solution (Modi et al., 2005), or to a
k-optimal solution in which no subset of k or fewer agents can jointly improve the global
payoff (Pearce and Tambe, 2007, Zhang et al., 2005).

4.5 NOTES AND FURTHER READING
Multiagent coordination has its roots in decentralized optimal control methods (Sandell et al.,
1978). Early AI approaches to multiagent coordination are the ‘contract net protocol’ of Smith
(1980) where tasks are dynamically distributed among agents using a bidding mechanism
(see also Chapter 6), and the ‘partial global planning’ algorithm of Durfee and Lesser (1987)
and Decker and Lesser (1995) in which agents exchange and refine local plans in order to
reach a common goal. Jennings (1996) gives an overview of early coordination techniques in
distributed AI. The framework of ‘joint intentions’ of Cohen and Levesque (1991) provides a
formal characterization of multiagent coordination through a model of joint beliefs and inten-
tions of the agents. Social conventions were introduced by Shoham and Tennenholtz (1992),
as constraints on the set of allowed actions of a single agent at a given state (similar to the
definition of roles in Section 4.3). Boutilier (1996) extended the definition to include also
constraints on the joint action choices of a group of agents, and proposed the idea of coor-
dination by lexicographic ordering. The greedy algorithm for role assignment was proposed
by Castelpietra et al. (2000). Gmytrasiewicz and Durfee (2001) analyze coordination and com-
munication in a setting where the agents model the knowledge of each other recursively (see
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also Chapter 5). Coordination graphs are due to Guestrin et al. (2002a) who suggested the use
of variable elimination for coordination. The max-plus algorithm on coordination graphs was
suggested by Vlassis et al. (2004). Coordination on a coordination graph is essentially identical
to a distributed constraint optimization problem (DCOP) (Modi et al., 2005, Yokoo, 2000), a
particular version of constraint processing (Dechter, 2003).
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C H A P T E R 5

Partial Observability

In the previous chapters we assumed that the world state is fully observable to the agents. Here
we relax this assumption and examine the case where parts of the state are hidden to the agents.
In such a partially observable world an agent must always reason about his knowledge, and the
knowledge of the others, prior to making decisions. We formalize the notions of knowledge
and common knowledge in such domains, and describe the model of a Bayesian game for
multiagent decision making under partial observability.

5.1 THINKING INTERACTIVELY
In order to act rationally, an agent must always reflect on what he knows about the current
world state. As we saw in Chapter 2, if the state is fully observable, an agent can do pretty
well without extensive deliberation. If the state is partially observable, however, the agent
must first consider carefully what he knows and what he does not know before choosing an
action.

In a multiagent system, partial observability forces a rational agent to think interactively,
that is, to take into account the knowledge of the other agents in his decision making. In
addition, an agent must consider what the other agents know about him, and also what they
know about his knowledge. In the previous chapters we have often used the term common
knowledge to refer to something that every agent knows, that every agent knows that every
other agent knows, and so on. In this chapter we will define knowledge and common knowledge
more formally, and illustrate some of their implications through examples.

Partial observability may have various consequences to the decision making of the agents.
For instance, optimal planning under partial observability can be a hard problem even in the
single-agent case (Papadimitriou and Tsitsiklis, 1987). In the multiagent case, optimal planning
under partial observability is provably intractable (Bernstein et al., 2002). The latter is due to
the fact that, as stated above, each agent must take into account the knowledge of each other
agent in its decision making, which can significantly increase the complexity of the problem.
Later in this chapter we will see how the model of a Bayesian game can be used for multiagent
decision making under partial observability.
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5.2 INFORMATION AND KNOWLEDGE
In this section we will illustrate the concepts of information and common knowledge by means
of a classical puzzle, the puzzle of the hats:

Three agents (say, girls) are sitting around a table, each wearing a hat. A hat can be either
red or white, but suppose that all agents are wearing red hats. Each agent can see the hat
of the other two agents, but she does not know the color of her own hat. A person who
observes all three agents asks them in turn whether they know the color of their hats. Each
agent replies negatively. Then the person announces ‘At least one of you is wearing a red
hat’, and then asks them again in turn. Agent 1 says No. Agent 2 also says No. But when he
asks agent 3, she says Yes.

How is it possible that agent 3 can finally figure out the color of her hat? Before the
announcement that at least one of them is wearing a red hat, no agent is able to tell her hat
color. What changes then after the announcement? Seemingly the announcement does not
reveal anything new; each agent already knows that there is at least one red hat because she can
see the red hats of the other two agents.

Given that everyone has heard that there is at least one red hat, agent 3 can tell her hat
color by reasoning as follows: ‘Agent’s 1 No implies that either me or agent 2 is wearing a red
hat. Agent 2 knows this, so if my hat had been white, agent 2 would have said Yes. But agent 2
said No, so my hat must be red.’

Although each agent already knows (by perception) the fact that at least one agent is
wearing a red hat, the key point is that the public announcement of the person makes this
fact common knowledge among the agents. (Implicitly we have also assumed that it is common
knowledge that each agent can see and hear well, and that she can reason rationally.) The puzzle
is instructive as it demonstrates the implications of interactive reasoning and the strength of
the common knowledge assumption.

Let us now try to formalize some of the concepts that appear in the puzzle. The starting
point is that the world state is partially observable to the agents. Recall that in a partially
observable world the perception of an agent provides only partial information about the true
state by means of a deterministic or stochastic observation model (see Section 2.3). In the puzzle
of the hats this model is a set-partition deterministic model, as we will see next.

Let S be the set of all states and s ∈ S be the current (true) state of the world. We assume
that the perception of an agent i provides information about the state s through an information
function Pi : S �→ 2S that maps s to Pi (s ), a nonempty subset of S called the information
set of agent i in state s . The interpretation of the information set is that when the true state
is s , agent i thinks that any state in Pi (s ) can be the true state. The set Pi (s ) will always
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World states
a b c d e f g h

1 R R R R W W W W
Agents 2 R R W W R R W W

3 R W R W R W R W

FIGURE 5.1: The eight world states in the puzzle of the hats

contain s , but essentially this is the only thing that agent i knows about the true state. In the
case of multiple agents, each agent can have a different information function.

In the puzzle of the hats, a state is a three-component vector containing the col-
ors of the hats. Let R and W denote red and white. There are in total eight states S =
{a, b, c , d , e , f, g , h}, as shown in Fig. 5.1. By assumption, the true state is s = a . From the
setup of the puzzle we know that the state is partially observable to each agent; only two of
the three hat colors are directly perceivable by each agent. In other words, in any state s the
information set of each agent contains two equiprobable states, those in which the only dif-
ference is in her own hat color. For instance, in state s = a the information set of agent 2 is
P2(s ) = {a, c }, a two-state subset of S.

As we mentioned above, the information set Pi (s ) of an agent i contains those states in S
that agent i considers possible if the true state is s . In general, we assume that the information
function of an agent divides the state space into a collection of mutually disjoint subsets, called
cells, that together form a partition Pi of S. The information set Pi (s ) for agent i in true
state s is exactly that cell of Pi that contains s , while the union of all cells in Pi is S.

Based on the information functions, we can compute the partitions of the agents in the
puzzle of the hats:

P t
1 = {{a, e }, {b, f }, {c , g}, {d , h}} (5.1)

P t
2 = {{a, c }, {b, d}, {e , g}, { f, h}} (5.2)

P t
3 = {{a, b}, {c , d}, {e , f }, {g , h}} (5.3)

where t refers to the time step before any announcement took place. Clearly, in the true state
s = a = RRR no agent knows her hat color, since the corresponding cell of each partition
contains two equiprobable states. Thus, agent 1 considers a and e possible, agent 2 considers a
and c possible, and agent 3 considers a and b possible. (Note again that we know that the true
state is a but the agents in our puzzle do not.)

Now we make the additional assumption that all partitions are common knowledge
among the agents. In the case of homogeneous agents, for instance, this is not an unrealistic
assumption; typically each agent will be aware of the perception capabilities of each other. In
the puzzle of the hats, for example, it is reasonable to assume that all agents can see and hear
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well and that they are all rational. Then, simply the positioning of the agents around the table
makes the above partitions common knowledge.

If the partitions are common knowledge, then in state a agent 1 thinks that agent 2 may
think that agent 3 might think that h = WWW is possible! Why is that? Note from (5.1) that
in state a agent 1 thinks that either a or e could be the true state. But if e is the true state, then
from (5.2) we see that agent 2 may consider g to be the true state. But then we see from (5.3)
that agent 3 may consider h to be the true state. Note how the above analytical framework
allows for a fairly straightforward formulation of otherwise complicated statements.

Now the announcement of the person reveals that the true state is not h . This automati-
cally changes the partitions of the agents:

P t+1
1 = {{a, e }, {b, f }, {c , g}, {d}, {h}}

P t+1
2 = {{a, c }, {b, d}, {e , g}, { f }, {h}}

P t+1
3 = {{a, b}, {c , d}, {e , f }, {g}, {h}}.

(5.4)

Note that h has been disambiguated from d , f , and g , in the three partitions. The person then
asks each agent in turn whether she knows the color of her hat. Agent 1 says No. In which case
would agent 1 have said Yes? As we see from the above partitions, only in state d would agent 1
have known her hat color. But the true state is a , and in this state agent 1 still considers e
possible.

The reply of agent 1 eliminates state d from the set of candidate states. This results in a
refinement of the partitions of agents 2 and 3:

P t+2
1 = {{a, e }, {b, f }, {c , g}, {d}, {h}}

P t+2
2 = {{a, c }, {b}, {d}, {e , g}, { f }, {h}}

P t+2
3 = {{a, b}, {c }, {d}, {e , f }, {g}, {h}}.

(5.5)

Next agent 2 is asked. From her partition P t+2
2 we see that she would have known her

hat color only in state b or f (d and h are already ruled out by the previous announcements).
However, in the true state a agent 2 still considers c possible, therefore she replies negatively.
Her reply excludes b and f from the set of candidate states, resulting in a further refinement
of the partitions of agent 1 and 3:

P t+3
1 = {{a, e }, {b}, { f }, {c , g}, {d}, {h}}

P t+3
2 = {{a, c }, {b}, {d}, {e , g}, { f }, {h}}

P t+3
3 = {{a}, {b}, {c }, {d}, {e }, { f }, {g}, {h}}.

(5.6)

The partition of agent 3 now contains only singleton cells, thus agent 3 can now tell her hat
color. Note that agents 1 and 2 still cannot tell their hat colors. In fact, they will be unable to tell
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their hat colors no matter how many more announcements will take place; the partitions (5.6)
cannot be further refined. Interestingly, the above analysis would have been exactly the same if
the true state had been any one in the set {a, c , e , g}. (Try to verify this with logical reasoning.)

5.3 COMMON KNOWLEDGE
Any subset E of S is called an event. If for an agent i holds Pi (s ) ⊆ E in true state s , then we
say that agent i knows1 E. Generalizing, the knowledge function of an agent i is defined as

Ki (E) = {s ∈ S : Pi (s ) ⊆ E}. (5.7)

That is, for any event E, the set Ki (E) contains all states in which agent i knows E. It is
not difficult to see that Ki (E) can be written as the union of all cells of Pi that are fully
contained in E. In the puzzle of the hats, for example, in the final partitions (5.6) holds
K1({a, e , c }) = {a, e }, while for the event E = {a, c , e , g} holds Ki (E) = E for all i = 1, 2, 3.

An event E ⊆ S is called self-evident to agent i if E can be written as a union of cells
of Pi . For example, in (5.6) the event E = {a, c , e , g} is self-evident to all three agents. As
another example, suppose that the state space consists of the integer numbers from 1 to 8, the
true state is s = 1, and two agents have the following partitions:

P1 = {{1, 2}, {3, 4, 5}, {6}, {7, 8}}
P2 = {{1, 2, 3}, {4}, {5}, {6, 7, 8}}. (5.8)

In s = 1 agent 1 thinks that {1, 2} are possible. Agent 1 also thinks that agent 2 may think that
{1, 2, 3} are possible. Furthermore, agent 1 thinks that agent 2 may think that agent 1 might
think that {1, 2} or {3, 4, 5} are possible. But nobody needs to think beyond 5. In this example,
the event {1, 2, 3, 4} is self-evident to agent 2, while the event {1, 2, 3, 4, 5} is self-evident to
both agents.

We can now formalize the notion of common knowledge. For simplicity, the first defi-
nition is formulated for only two agents.

Definition 5.1. An event E ⊆ S is common knowledge between agents 1 and 2 in true state s ∈ S,
if s is a member of every set in the infinite sequence K1(E), K2(E), K1(K2(E)), K2(K1(E)), . . ..

Definition 5.2. An event E ⊆ S is common knowledge among a group of agents in true state s ∈ S,
if s is a member of some set F ⊆ E that is self-evident to all agents.

1This definition of knowledge is related to the one used in epistemic logic. There an agent is said to know a fact φ

if φ is true in all states the agent considers possible. In the event-based framework, an agent knows an event E
if all the states the agent considers possible are contained in E. Fagin et al. (1995, sec. 2.5) show that the two
approaches, logic-based and event-based, are equivalent.
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It turns out that the two definitions are equivalent (Osborne and Rubinstein, 1994,
prop. 74.2). However, the second definition is much easier to apply; it only requires computing
self-evident sets that are unions of partition cells and thus easy to find. For instance, in the above
example the event E = {1, 2, 3, 4, 5} is common knowledge between the two agents because E
is self-evident to both of them and the true state s = 1 belongs to E. Similarly, in the puzzle
of the hats, in the final partitions (5.6), and with true state s = a , the event E = {a, c , e , g} is
common knowledge among all three agents.

5.4 PARTIAL OBSERVABILITY AND ACTIONS
So far we have discussed how the observations of the agents are related to the world states
through the information functions, and what it means to say that an event is common knowledge
among a group of agents. In this section we describe a framework that allows the agents to take
rational decisions under partial observability.

Let us consider the puzzle of the hats again, and in particular the time step after the public
announcement of the person. Below we identify the primitives of the multiagent interaction at
that step that are relevant for the decision making of the agents.

5.4.1 States and Observations
The true state is s = a = RRR and it is partially observable to the agents: each agent i receives
an observation θi ∈ �i that provides information about s via the information function Pi .
(In the previous sections of this chapter the observations θi were not explicit; here we make
them explicit by associating each information set Pi (s ) with a corresponding observation θi .)
For example, at s = RRR agent 1 observes θ1 = RR, meaning that she sees the two red hats
of agents 2 and 3, where θ1 is a member of the set �1 = {RR, RW, WR, WW} (all possible
observations of agent 1). The profile of the individual observations of all agents (θi ) defines the
joint observation θ .

5.4.2 Observation Model
The partition model associates with each observation θi of agent i a single information set Pi (s )
that is a subset of the state space. For instance, θ1 = RR is associated with the information set
P1(s ) = {a, e }. In this problem each observation is a deterministic function of the state: the
observation of each agent at each state is fully determined by the setup of the problem (the
position of a girl around the table). As we mentioned in Section 2.3, more general observation
models can be defined in which the coupling between states and observations is stochastic.
For instance, an observation model could define a joint probability distribution p(s , θ ) over
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states and joint observations, from which various other quantities can be computed, like p(θ )
or p(θ |s ), by using the laws of probability theory.2

5.4.3 Actions and Policies
In the puzzle of the hats each agent replies Yes or No to the question of the person ‘Do you
know your hat color?’. Such a reply can be regarded as an action taken by the agent given her
current information. For example, in the final partitions of (5.6), agent 1 will reply No given
her information set {a, e } and agent 3 will reply Yes given her information set {a}. In general, in
multiagent decision making under partial observability, the policy of each agent i is a mapping
πi : �i �→ Ai from individual observations θi to individual actions ai = πi (θi ). (Recall that
this was the definition of a memoryless policy of a reflex agent in Section 2.2.) The profile of
individual policies (πi ) defines the joint policy π .

5.4.4 Payoffs
In the puzzle of the hats the agents reply truthfully to the questions of the person. Although we
have not explicitly defined a payoff function in this problem, we can think of an implicit payoff
function that the agents maximize, in which, say, truthfulness is highly valued. In general,
multiagent decision making requires defining an explicit payoff function Qi for each agent.
This function can take several forms; for instance, it can be a function Qi (s , a) over states
and joint actions; or a function Qi (θ, a) over joint observations and joint actions; or a function
Qi (θi , a) over individual observations and joint actions (we will see an example of such a function
in Chapter 6). Note that often one form can be derived from the other; for instance, when an
inverse observation model p(s |θ ) is available, we can write Qi (θ, a) = ∑

s ∈S p(s |θ )Qi (s , a).
When the above primitives are defined, multiagent decision making under partial ob-

servability can be modeled by a Bayesian game, also known as strategic game with imperfect
information. This is a combination of the strategic game model of Section 3.2 with the concepts
of knowledge and partial observability defined in this chapter. In particular, a Bayesian game
assumes that there is a set of states S, from which one state (the true state) is realized at the
start of the game. The true state is only partially observable by the agents; each agent i receives
an observation θi , also called the type of agent i , that is hidden to the other agents, and that is
related to the state via a deterministic or stochastic observation model. Each agent additionally
possesses a payoff function Qi as described above. The solution of the game is a profile of
individual policies πi (θi ) that are optimal according to some solution concept, for instance,
Nash equilibrium (defined below). Note that each individual policy πi (θi ) specifies an action
to take by agent i for each of his observations, and not only for the observation that the agent

2 p(A) = ∑
B p(A, B), and p(A|B) = p(A, B)/p(B).
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actually receives after the game has started. Such an ex ante solution to the game is necessary,
as it encompasses the interactive-thinking idea that an agent i may be uncertain about what
another agent j believes that i will play after observing some θi .

Depending on the type of observation model and payoff functions, different models of a
Bayesian game exist. We will describe two such models. The first one assumes payoff functions
defined over states and joint actions, in the form Qi (s , a), and additionally that each agent i
has access to an inverse observation model that is conditional on individual observations, in the
form p(s |θi ). In this model, a Nash equilibrium is defined as follows:

Definition 5.3. A Nash equilibrium of a Bayesian game is a Nash equilibrium of a new strategic
game in which each player is a pair (agent i , observation θi ) and has payoff function

ui (πi (θi )) =
∑

s

p(s |θi )Qi (s , [πi (θi ), a−i (s )]) (5.9)

where a−i (s ) is the profile of actions taken by all other players except player (i, θi ) at state s .

Clearly, in order for this definition to be applicable, each agent must be able to infer the
action of each other agent at each state. This requires that the observation model is common
knowledge, and that it is a deterministic model where, for each i , the observation θi is a
deterministic function of s (for instance a partitional model as in the puzzle of the hats). In this
case, the policy π j (θ j ) of an agent j uniquely identifies his action at s through a j (s ) = π j (θ j (s )).

The second model of a Bayesian game is not making use of states. Instead it assumes
that payoffs are defined over joint observations and actions, in the form Qi (θ, a), and that a
marginal observation model p(θ ) is available. In this case, a Nash equilibrium is defined as in
Definition 5.3 with (5.9) replaced by

ui (πi (θi )) =
∑

θ−i

p(θ−i |θi )Qi (θ, [πi (θi ), π−i (θ−i )]) (5.10)

where now the quantities π−i (θ−i ) are directly available, and p(θ−i |θi ) can be computed from
p(θ ). This second model of a Bayesian game is easier to work with, and it is often preferred
over the first one in practical problems.

In the special case of n collaborative agents with common payoff functions Q1 = . . . =
Qn ≡ Q, coordination requires computing a Pareto optimal Nash equilibrium (see Chapter 4).
In the second model of a Bayesian game described above, such an equilibrium can be computed
by the following:
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θ2
−
θ2

a2  a2 a2  a2

θ1
a1 +0.1 +2.2 +0.4 − 0.2
 a1  − 0.5 +2.0 +1.0 +2.0

−

−

−

− −

θ1
a1 +0.4  − 0.2 +0.7  − 2.6
a1 +1.0 +2.0 +2.5 +2.0

FIGURE 5.2: A Bayesian game with common payoffs involving two agents and binary actions and
observations. The shaded entries indicate the Pareto optimal Nash equilibrium of this game.

Proposition 5.1. A Pareto optimal Nash equilibrium for a Bayesian game with a common
payoff function Q(θ, a) is a joint policy π∗ = (π∗

i ) that satisfies

π∗ = arg max
π

∑

θ

p(θ )Q(θ, π (θ )). (5.11)

Proof. From the perspective of some agent i , the above formula reads

π∗
i = arg max

πi

∑

θi

p(θi )
∑

θ−i

p(θ−i |θi )Qi (θ, [πi (θi ), π∗
−i (θ−i )]). (5.12)

A sum of terms is maximized when each of the terms is maximized, so there must hold

π∗
i (θi ) = arg max

πi (θi )

∑

θ−i

p(θ−i |θi )Qi (θ, [πi (θi ), π∗
−i (θ−i )]) (5.13)

which is the definition of a Nash equilibrium from (5.10). This shows that π∗ is a Nash
equilibrium. The proof that π∗ is also Pareto optimal is left as an exercise. �

Figure 5.2 shows an example of a two-agent Bayesian game with common payoffs,
where each agent i has two available actions, Ai = {ai , āi}, and two available observations,
�i = {θi , θ̄i}. Assuming uniform p(θ ), we can compute from (5.11) the Pareto optimal Nash
equilibrium π∗ = (π∗

1 , π∗
2 ) of the game, which is

π∗
1 : π∗

1 (θ1) = ā1, π∗
1 (θ̄1) = ā1 (5.14)

π∗
2 : π∗

2 (θ2) = ā2, π∗
2 (θ̄2) = ā2. (5.15)

This solution gives to each agent expected payoff ui = 2.

5.5 NOTES AND FURTHER READING
The concept of common knowledge was introduced by Lewis (1969). Osborne and Rubinstein
(1994, ch. 5) and Geanakoplos (1992) give good accounts on the topic, with several examples.
The Definition 5.2 of common knowledge is due to Aumann (1976). Fagin et al. (1995)
provide an epistemic-logic treatment of knowledge and common knowledge, and give several
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impossibility results in the case of unreliable communication between agents. One can also
define common knowledge of actions, giving rise to a family of ‘agreement’ theorems (the
validity of which has often been criticized); Samet (2006) provides a thoughtful approach to the
problem. The model of a Bayesian game was introduced by Harsanyi (1967). Osborne (2003,
ch. 9) provides a detailed exposition of Bayesian games with many examples. Among several
applications, Bayesian games have been used as models for multiagent planning under partial
observability (Hansen et al., 2004, Emery-Montemerlo et al., 2005, Oliehoek and Vlassis,
2007).
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C H A P T E R 6

Mechanism Design

In this chapter we study the problem of mechanism design, which is the development of
agent interaction protocols that explicitly take into account the fact that the agents may be
self-interested. We discuss the revelation principle and the Vickrey–Clarke–Groves (VCG)
mechanism that allows us to build successful protocols in a variety of cases.

6.1 SELF-INTERESTED AGENTS
In the previous chapters we saw several examples of multiagent systems that consist of collab-
orative agents. The fact that the agents in such systems must collaborate for a common goal
allows the development of algorithms, like the coordination algorithms of Chapter 4, in which
the agents are assumed to be truthful to each other and behave as instructed. A soccer robot, for
instance, would never violate a role assignment protocol like the one in Fig. 4.2, as this could
potentially harm the performance of its team.

In many practical applications, however, we have to deal with self-interested agents, for
instance agents that act on behalf of some owner who wants to maximize his or her own profit.
A typical case is a software agent that participates in an electronic auction on the Internet.
Developing an algorithm or protocol for such a system is a much more challenging task than in
the collaborative case. First, we have to motivate an agent to participate in the protocol, which
is not a priori the case. Second, we have to take into account the fact that an agent may try to
manipulate the protocol for his own interest, leading to suboptimal results. The latter includes
the possibility that the agent may lie, if needed.

The development of protocols that are stable (non-manipulable) and individually rational
for the agents (no agent is worse off by participating) is the subject of mechanism design or
implementation theory. As we will see next, a standard way to deal with the above two problems
is to provide payments to the agents in exchange for their services.

6.2 THE MECHANISM DESIGN PROBLEM
In Chapter 3 we used the model of a strategic game to describe a situation in which a group
of agents interact with each other. The primitives of such a game are the action sets Ai and
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the payoff functions ui (a) of the agents, for i = 1, . . . , n, where ui (a) reflects the preference of
agent i for the joint action a . Moreover, for any profile of payoff functions, a solution concept
(for instance Nash equilibrium) allows us to make predictions over the set of outcomes that
may result when the game is played. Similarly, in Chapter 5 we used the model of a Bayesian
game to describe a situation where some primitives of the game are hidden to the agents. Our
standpoint in Chapters 3 and 5 was that of an external observer who wants to know the outcome
of a game, but cannot affect this outcome in any way.

In mechanism design we take a different stance. Here we assume a set O of possible
outcomes over which a number of agents form preferences. Our task is to design a game that,
when played by the agents, brings about a desired outcome from O, for instance an outcome
that is socially favorable by the agents. An outcome can be practically anything, for instance
the assignment of an auction item or a network resource to an agent (see examples below). In
this framework we1 therefore use a game as a tool for achieving our design goals. The main
difficulty, however, is that we often do not know the preferences of the agents in advance.

To model the individual preferences of the agents we use a Bayesian game formulation
(see Section 5.4). We assume that each agent i = 1, . . . , n has some private information
θi ∈ �i , which defines the type of the agent, and which is not revealed to the other agents
or to us. Moreover, we assume that the type of an agent fully specifies the preferences of this
agent over the set of outcomes o ∈ O. In particular, each agent i has a valuation function
νi (θi , o ) that is parametrized on θi , such that agent i in type θi prefers outcome o to o ′ if and
only if νi (θi , o ) > νi (θi , o ′). We assume that the valuation functions of all agents are common
knowledge, but each individual type θi is only privately known to agent i .

In mechanism design we additionally assume the existence of a social choice function
f : � �→ O that maps any profile θ = (θi ) of agent types to a desired outcome o = f (θ ).
We can think of f as an algorithm that solves an optimization problem: given n inputs
θi , the function f computes an outcome o that maximizes a functional over the set of agents,
valuations. For instance, an allocatively efficient social choice function will choose the outcome
that maximizes the sum of the agents’ valuations:

f (θ ) = arg max
o∈O

n∑

i=1

νi (θi , o ). (6.1)

The function f is assumed to be common knowledge among the agents.
If we had access to all agents’ types θi , then we could compute the desired optimal

outcome simply by inserting θ = (θi ) in f in (6.1) (assuming of course that we have a tractable
algorithm for doing this). However, as we saw above, θi is revealed only to agent i . One option

1In this chapter we will use ‘he’ to refer to an agent, and ‘we’ to refer to the mechanism designer.
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is to ask each agent to tell us his type, but there is no guarantee that an agent will report his true
type! Recall that each agent i forms his own preferences over outcomes, given by his valuation
function νi (θi , o ) that is parametrized by his true type θi . If by reporting a false type θ̃i �= θi an
agent i expects to receive higher payoff than by reporting his true type θi , then this agent may
certainly consider lying. For instance, if a social choice function chooses the outcome that is
last in the preferences of agent 1, that is, f (θ ) = arg mino ν1(θ1, o ), then agent 1 will report a
false type θ̃i for which arg mino ν1(θ̃1, o ) = arg maxo ν1(θ1, o ).

The challenge therefore is to design non-manipulable mechanisms in which no agent
can benefit from not abiding by the rules of the mechanism. For instance, if a mechanism
requires from each agent to report his true type, then we would like truth-telling to be indeed in
the best interests of each agent. Viewed from a computational perspective, we can characterize
mechanism design as the development of efficient and robust algorithms for optimization
problems with distributed parameters, where these parameters are controlled by agents that
have different preferences for different solutions.

We focus here on simple mechanisms in the form of a Bayesian game with the following
primitives:

� Ai is the set of available actions of agent i .
� �i is the set of types of agent i .
� g : A �→ O is an outcome function that maps a joint action a = (ai ) to an outcome

o = g (a).
� Qi (θi , a) is the payoff function of agent i that is defined as

Qi (θi , a) = νi (θi , g (a)) + ξi (g (a)) (6.2)

where ξi : O �→ IR are payment functions, so that agent i receives payment ξi (o ) when
outcome o is selected.

Including payment functions ξi is essential because we need to motivate the agents to
participate in the mechanism; as we mentioned above, participation for an agent is not a priori
the case. A mechanism in which no agent is worse off by participating, that is, Qi (θi , a) ≥ 0
for all i , θi , and a , is called individually rational.

When we fix the action sets Ai , the outcome function g , and the payment functions
ξi , the above mechanism becomes a standard Bayesian game which we will denote by M =
(Ai , g , ξi ). When the agents are confronted with this game, they are expected to choose a
profile of conditional policies π∗ = (π∗

i ) according to some solution concept, as we explained
in Section 5.4. When the true private types θi are realized to the agents, each agent i will take
action π∗

i (θi ) according to his true type θi . The resulting joint action π∗(θ ) = (π∗
i (θi )) is then
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mapped through g to an outcome g (π∗(θ )). Our task as mechanism designer is to ensure that
the selected joint action brings about the desired outcome, that is, g (π∗(θ )) = f (θ ).

As solution concept we may consider a Nash equilibrium, as in Section 5.4. Alternatively
we may consider the following:

Definition 6.1. A joint policy π∗ = (π∗
i ) in a Bayesian game is an equilibrium in dominant

strategies if for every agent i and every type θi of agent i holds

Qi (θi , [π∗
i (θi ), a−i ]) ≥ Qi (θi , [ai , a−i ]) (6.3)

for all joint actions (ai , a−i ).

That is, each agent i chooses for each of his types θi the action π∗
i (θi ) with the highest

payoff. In particular, note that an agent i does not consider in the above equilibrium the types
θ−i and the policies π∗

−i (θ−i ) of the other agents. This is in contrast to the solution concept of
a Nash equilibrium (5.10) where each agent i is assumed to possess a conditional distribution
p(θ−i |θi ) over the types of the other agents, and must know the policies of the other agents at
the equilibrium.

Our choice of such a solution concept is motivated by the fact that we would like to design
mechanisms in which each agent can compute his optimal action without having to worry about
the actions of the other agents. In terms of predictive power for the solutions of a game, an
equilibrium in dominant actions is weaker than both a Nash equilibrium and an equilibrium
computed by iterated elimination of strictly dominated actions (see Chapter 3). However, in
the context of mechanism design, the existence of such an equilibrium guarantees that every
(rational) agent will adhere to it, even if he has no information about the preferences of the
other agents. Such an equilibrium solution is also very attractive computationally, because an
agent does not need to consider the types or the policies of the other agents.

Summarizing, the mechanism design problem can be defined as follows:

Definition 6.2 (The mechanism design problem). Given a set of outcomes o ∈ O, a profile of
valuation functions νi (θi , o ) parametrized by θi , and a social choice function f (θ ), find appropriate
action sets Ai , an outcome function g (a), and payment functions ξi (o ), such that for any profile of true
types θ = (θi ) and for payoff functions Qi (θi , a) defined via (6.2) holds g (π∗(θ )) = f (θ ), where π∗

is an equilibrium in dominant strategies of the Bayesian game M = (Ai , g , ξi ). In this case we say
that the mechanism M implements the social choice function f in dominant strategies.

6.2.1 Example: An Auction
Consider the following mechanism design problem (an auction). We have n agents and an item
(for example, a resource in a computer network). We want to assign the item to the agent that
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values it most, but we do not know the true valuations (types) of the agents. In this example,
an outcome o ∈ {1, . . . , n} is the index of the agent to whom the item is assigned, while the
valuation function of an agent i with type θi ∈ IR+ is νi (θi , o ) = θi if o = i and zero otherwise.
The social choice function is f (θ1, . . . , θn) = arg maxi{θi} which is a special case of (6.1). If we
do not include a payment function, that is ξi = 0 for all i , then a mechanism M1 = (Ai , g , ξi )
that implements f is always individually rational because for an agent i holds Qi (θi , ·) = νi (θi , ·)
which is either θi > 0 or zero.

6.3 THE REVELATION PRINCIPLE
Looking at Definition 6.2, mechanism design seems a formidable task. Our design options
can in principle involve all possible action sets Ai , all possible outcome functions g , and all
possible payment functions ξi that we could provide to the agents. Searching in the space of all
M = (Ai , g , ξi ) for a mechanism that implements f would be infeasible. Fortunately, there is
a theorem that tells us that we do not need to search in the space of all possible mechanisms.

Proposition 6.1 (Revelation principle). If a social choice function f is implementable in
dominant strategies by a mechanismM = (Ai , g , ξi ), then f is also implementable in dominant
strategies by a mechanism M′ = (�i , f, ξi ) in which each agent is simply asked to report his
type. Moreover, the dominant strategy of each agent i in M′ is to report his true type θi .

Proof. If f is implementable by M in dominant strategies, then f (θ ) = g (π∗(θ )) for all θ ,
where π∗ = (π∗

i ) is an equilibrium in dominant strategies in M. The latter implies that for
each agent i , each type θi of agent i , and each joint type (θ̃i , θ̃−i ) holds

QM
i (θi , [π∗

i (θi ), π∗
−i (θ̃−i )]) ≥ QM

i (θi , [π∗
i (θ̃i ), π∗

−i (θ̃−i )]). (6.4)

Since the ξi are identical in M and M′, using (6.2) we can rewrite (6.4) as

QM′
i (θi , [θi , θ̃−i ]) ≥ QM′

i (θi , [θ̃i , θ̃−i ]) (6.5)

which proves that truth-telling is a dominant strategy in M′, and hence f is implementable in
dominant strategies by M′. �

A mechanism in the form M = (�i , f, ξi ) in which each agent is asked to report his type
is called a direct-revelation mechanism. A direct-revelation mechanism in which truth-telling
is a dominant strategy for every agent is called strategy-proof. The revelation principle is re-
markable because it allows us to restrict our attention to strategy-proof mechanisms only. One
of its consequences, for example, is that if we cannot implement a social choice function by a
strategy-proof mechanism, then there is no way to implement this function in dominant strate-
gies by any other general mechanism. The revelation principle has been a powerful theoretical
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tool for establishing several possibility and impossibility results in mechanism design; Parkes
(2001) provides more details and references.

6.3.1 Example: Second-price Sealed-bid (Vickrey) Auction
Let us return to the auction example, and consider a direct-revelation mechanismM2(�i , f, ξi )
in which each agent i is asked to bid a price θ̃i , and the item is allocated to the agent with
the highest bid. The winning agent must then pay tax (negative payment) equal to the second
highest bid, that is ξi = −max j �=i{θ̃ j }, whereas the other agents do not have to pay anything.
In this case, the payoff function of an agent i with true valuation θi equals Qi (θi , θ̃ ) = θi + ξi if
f (θ̃ ) = i and zero otherwise. Mechanism M2 is individually rational because for the winning
agent k holds Qk(θk, ·) = θk + ξk ≥ 0, while for the other agents j �= k holds Q j (θ j , ·) = 0.

We will now show that in mechanism M2 truth-telling is a dominant strategy for each
agent, that is, each agent must bid his true valuation. The payoff of agent i when reporting θ̃i

is Qi (θi , [θ̃i , θ̃−i ]) = θi + ξi if θ̃i > −ξi and zero otherwise. Ignoring ties, if θi > −ξi then any
bid θ̃i > −ξi is optimal (results in positive payoff Qi (θi , [θ̃i , θ̃−i ]) = θi + ξi > 0). If θi < −ξi

then any bid θ̃i < −ξi is optimal (results in zero payoff). Truth-telling bid θ̃i = θi is optimal
in both cases, and thus it is a dominant strategy in M2.

6.4 THE VICKREY–CLARKE–GROVES MECHANISM
The mechanism M2 in the auction example above is a strategy–proof mechanism that im-
plements the social choice function f (θ1, . . . , θn) = arg maxi{θi} which is a special case of an
allocatively efficient social choice function (6.1). We return now to the more general case. We
assume a direct-revelation mechanism in which the agents are asked to report their types, and
based on their reports θ̃ = (θ̃i ) the mechanism computes an optimal outcome f (θ̃ ) that solves

f (θ̃ ) = arg max
o∈O

n∑

i=1

νi (θ̃i , o ). (6.6)

In a Groves mechanism, the payment function that is associated with a profile of reported
types θ̃ is defined for each agent as

ξi ( f (θ̃ )) =
∑

j �=i

ν j (θ̃ j , f (θ̃ )) − hi (θ̃−i ) (6.7)

for arbitrary function hi (θ̃−i ) that does not depend on the report of agent i . In this case, and
for payoffs given by (6.2), we can show the following (the proof is left as an exercise):

Proposition 6.2. A Groves mechanism is a strategy–proof mechanism.
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Having the freedom to choose any function hi (θ̃−i ), the Clarke mechanism, also known
as Vickrey–Clarke–Groves (VCG) mechanism, uses

hi (θ̃−i ) =
∑

j �=i

ν j (θ̃ j , f ′(θ̃−i )) (6.8)

where f ′(θ̃−i ) is an allocatively efficient social choice function with agent i excluded:

f ′(θ̃−i ) = arg max
o∈O

∑

j �=i

ν j (θ̃ j , o ). (6.9)

Under quite general conditions, the VCG mechanism can be shown to be individually rational.
Moreover, in some applications the payments ξi to the agents are negative, so the mechanism
does not need to be externally subsidized (however, the collected tax must be burnt).

6.4.1 Example: Shortest Path
This is classical example with many applications, that is based on the VCG mechanism. We
want to compute the shortest path between two fixed nodes in a graph. Each edge i in the
graph has cost (length) θi ≥ 0, and is operated by an agent (say, a transportation company) who
would preferably stay out of the path. We do not know the cost of each edge in advance, and
we want to design a mechanism in which each agent reports his true cost.

Translated in the language of mechanism design, an outcome o is an ordered list of
agents, indices (the edges that are included in the shortest path); agent i has type θi (the cost
of his edge), and valuation function νi (θi , o ) = −θi if i ∈ o and zero otherwise; and the social
choice function f is an algorithm (for instance Dijkstra’s shortest path algorithm) that solves
(6.6), that is, computes the shortest path given the reported costs.

A VCG mechanism solves the above problem by providing nonzero payments to all
agents i that are included in a shortest path solution. These payments are computed from (6.7)
and (6.8) as:

ξi ( f (θ̃ )) =
∑

j �=i

ν j (θ̃ j , f (θ̃ )) −
∑

j �=i

ν j (θ̃ j , f ′(θ̃−i )) = θ̃i − C + C ′ (6.10)

where C is the additive cost (length) of the shortest path solution, and C ′ is the length of
the shortest path solution after edge i is removed from the graph. From (6.2) and (6.10), the
payoff of agent i under truth-telling is Qi (θi , [θi , θ̃−i ]) = −θi + θi − C + C ′, which is always
nonnegative since removing an edge from a graph can never generate a shorter path. It is
therefore individually rational for an agent to participate in this mechanism, and because VCG
mechanisms are strategy-proof, each agent will report his true cost.
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6.5 NOTES AND FURTHER READING
More detailed expositions on the topic of mechanism design are provided by
Osborne and Rubinstein (1994, ch. 10), Sandholm (1999), Parkes (2001), and Conitzer (2006).
The papers of Vickrey (1961), Clarke (1971), and Groves (1973) are seminal. The revelation
principle is due to Gibbard (1973). Computational issues in mechanism design are discussed
among others by Nisan (1999), Parkes (2001), Conitzer (2006), and Papadimitriou (2001).
The latter writes: ‘All design problems [in computer science] are now mechanism design
problems’. Parkes and Shneidman (2004) discuss distributed implementations of the VCG
mechanism in which the optimization load is distributed over the agents. Conitzer (2006) and
Conitzer and Sandholm (2007) describe alternative approaches to mechanism design in which
a mechanism is automatically built for a given problem instance.
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C H A P T E R 7

Learning

In this chapter we briefly address the issue of learning, in particular reinforcement learning
which allows agents to learn from delayed rewards. We outline existing techniques for single-
agent systems, and show how they can be extended in the multiagent case.

7.1 REINFORCEMENT LEARNING
Reinforcement learning is a generic name given to a family of techniques in which an agent
tries to learn a task by directly interacting with the environment. The method has its roots in the
study of animal behavior under the influence of external stimuli (Thorndike, 1898). In the last
two decades, reinforcement learning has been extensively studied in artificial intelligence, where
the emphasis is on how agents can improve their performance in a given task by perception
and trial-and-error. The field of single-agent reinforcement learning is mature, with well-
understood theoretical results and many practical techniques (Bertsekas and Tsitsiklis, 1996,
Sutton and Barto, 1998).

On the other hand, multiagent reinforcement learning, where several agents are simul-
taneously learning by interacting with the environment and with each other, is still an active
area of research, with a mix of positive and negative results. The main difficulty in extending
reinforcement learning to multiagent systems is that the dynamics of concurrently learning
systems can be very complicated, which calls for different approaches to modeling and analysis
than those used in single-agent systems.

In this chapter we will outline the theory and some standard algorithms for single-
agent reinforcement learning, and then briefly discuss their multiagent extensions. We must
unavoidably be laconic as the literature on the topic has grown large; the reader is referred to
the book of Greenwald (2007) for a more detailed treatment.

7.2 MARKOV DECISION PROCESSES
In Chapter 2 we described a generic utility-based framework that allows an agent to behave
optimally under conditions of uncertainty. In this section we describe a framework that allows
an agent to learn optimal policies in a variety of tasks.
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The sequential decision making of a single agent in an observable stochastic world with
Markovian transition model is called a Markov decision process (MDP). A (finite) MDP is
formally defined by the following elements:

� Discrete time t = 0, 1, 2, . . ..
� A discrete set of states s ∈ S.
� A discrete set of actions a ∈ A.
� A stochastic transition model p(s ′|s , a), so that the world transitions stochastically to

state s ′ when the agent takes action a at state s .
� A reward function R : S × A �→ IR, so that the agent receives reward R(s , a) when it

takes action a at state s .
� A planning horizon, which can be infinite.

The task of the agent is to maximize a function of accumulated reward over its planning
horizon. A standard such function is the discounted future reward R(s t, at) + γ R(s t+1, at+1) +
γ 2 R(s t+2, at+1) + · · · , where γ ∈ [0, 1) is a discount rate that ensures that the sum remains
finite for infinite horizon.

A stationary policy of the agent in an MDP is a mapping π (s ) from states to actions, as
in Section 2.4. Clearly, different policies will produce different discounted future rewards, since
each policy will take the agent through different trajectories in the state space. The optimal
value of a state s for the particular agent is defined as the maximum discounted future reward
the agent can receive in state s by following some policy:

V ∗(s ) = max
π

E
[ ∞∑

t=0

γ t R(s t, at)|s0 = s , at = π (s t)
]

(7.1)

where the expectation operator E[·] averages over the stochastic transitions. Similarly, the
optimal Q-value of a state s and action a of the agent is the maximum discounted future
reward the agent can receive after taking action a in state s :

Q∗(s , a) = max
π

E
[ ∞∑

t=0

γ t R(s t, at)|s0 = s , a0 = a, at>0 = π (s t)
]
. (7.2)

A policy π∗(s ) that achieves the maximum in (7.1) or (7.2) is an optimal policy for the agent. For
an MDP there is always an optimal policy that is deterministic and stationary. Deterministic
means that π∗(s ) specifies a single action per state. Stationary means that every time the agent
visits a state s , the optimal action to take at s is always π∗(s ). An optimal policy is greedy with



book MOBK077-Vlassis August 3, 2007 7:59

LEARNING 55

respect to V ∗ or Q∗, as we have seen in Section 2.4:

π∗(s ) ∈ arg max
a

Q∗(s , a). (7.3)

Note that there can be many optimal policies in a given task, but they all share a unique V ∗

and Q∗.
The definition of V ∗ in (7.1) can be rewritten recursively by making use of the transition

model, to get the so-called Bellman equation:

V ∗(s ) = max
a

[
R(s , a) + γ

∑

s ′
p(s ′|s , a)V ∗(s ′)

]
. (7.4)

This is a set of nonlinear equations, one for each state, the solution of which defines the optimal
V ∗. A similar recursive definition holds for Q-values:

Q∗(s , a) = R(s , a) + γ
∑

s ′
p(s ′|s , a) max

a ′
Q∗(s ′, a ′). (7.5)

7.2.1 Value Iteration
A simple and efficient method for computing optimal values in an MDP when the transition
model is available is value iteration. In this method we initialize arbitrarily a Q-function (say,
with all entries zero), and then we iteratively apply the Bellman equation (7.5) turned into an
assignment operation:

V (s ) := max
a

Q(s , a), ∀s , (7.6)

Q(s , a) := R(s , a) + γ
∑

s ′
p(s ′|s , a)V (s ′), ∀s , ∀a . (7.7)

We repeat the above two equations until V does not change significantly between two con-
secutive steps. Value iteration converges to the optimal Q∗ (and thus to V ∗ and π∗) for any
initialization (Bertsekas, 2001). After we have computed Q∗ we can extract an optimal policy
π∗ using (7.3). As an example, using value iteration in the world of Fig. 2.1 of Chapter 2,
with fixed reward R(s , a) = −1/30 for each nonterminal state s and action a , and with no
discounting, we get the optimal values (utilities) and the optimal policy shown in Fig. 2.2. The
reader is encouraged to verify this by implementing the method.

7.2.2 Q-learning
In order to apply the value iteration updates (7.6) and (7.7) we need to know the transition model
p(s ′|s , a), but in many applications the transition model is unavailable. Q-learning is a method
for estimating the optimal Q∗ (and from that an optimal policy) that does not require knowledge
of the transition model. In Q-learning the agent repeatedly interacts with the environment and
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tries to estimate Q∗ by trial-and-error. As in value iteration, the agent initializes a function
Q(s , a) for each state–action pair, and then it begins exploring the environment. The exploration
generates tuples (s , a, r, s ′) where s is a state, a is an action taken at state s , r = R(s , a) is a
received reward, and s ′ is a resulting state after executing a . From each such tuple the agent
updates its Q-value estimates as

V (s ′) := max
a ′

Q(s ′, a ′) (7.8)

Q(s , a) := (1 − λ)Q(s , a) + λ
[
r + γ V (s ′)

]
(7.9)

where λ ∈ (0, 1) is a learning rate that regulates convergence.
If all state–action pairs are visited infinitely often and λ decreases slowly with time,

Q-learning converges to the optimal Q∗ (Watkins and Dayan, 1992). Moreover, this holds
irrespectively of the particular exploration policy of the agent. A common exploration policy
is the so-called ε-greedy policy by which in state s the agent selects a random action with
probability ε, and action a = arg maxa ′ Q(s , a ′) with probability 1 − ε, where ε < 1 is a small
number. Alternatively, the agent can choose exploration action a in state s according to a
Boltzmann distribution

p(a |s ) = exp(Q(s , a)/τ )
∑

a ′ exp(Q(s , a ′)/τ )
(7.10)

where τ controls the smoothness of the distribution (and thus the randomness of the choice),
and is decreasing with time.

7.3 MARKOV GAMES
In this section we will describe a model for the simultaneous sequential decision making of
multiple agents, and describe how reinforcement learning techniques can be extended to cover
the case of concurrently learning agents. We will throughout assume that every agent fully
observes the current state, as in Chapter 4.

A Markov game, also known as stochastic game, can be regarded as the multiagent
extension of a Markov decision process. It can also be viewed as a collection of coupled strategic
games, one per state. Formally, a Markov game is defined by the following primitives:

� Discrete time t = 0, 1, 2, . . ..
� A set of n > 1 agents.
� A discrete set of states s ∈ S.
� For each agent i , a discrete set of actions ai ∈ Ai .
� A stochastic transition model p(s ′|s , a) that is conditioned on the joint action a = (ai )

at state s .
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� For each agent i , a reward function Ri : S × A �→ IR, that gives agent i reward Ri (s , a)
when joint action a is taken at state s .

� A planning horizon, which can be infinite.

Note that the individual reward functions Ri (s , a) define a set of strategic games, one for
each state s . A Markov game differs to an MDP in that a transition depends on the joint action
of the agents, and that each agent may receive different reward as a result of a joint action. As
in MDPs, a policy of an agent i is a mapping πi (s ) from states to individual actions. As in
strategic games, a joint policy π∗ = (π∗

i ) is a Nash equilibrium if no agent has an incentive to
unilaterally change its policy; that is, no agent i would like to take at state s an action ai �= π∗

i (s )
assuming that all other agents stick with their equilibrium policies π∗

−i (s ). Contrary to MDPs,
in a Markov game an optimal policy of an agent need not be deterministic; we can see this
by noticing that a single-state Markov game is just a strategic game, for which we know that
deterministic equilibria may not always exist (see Fig. 3.2(a)).

7.3.1 Independent Learning
Learning in a Markov game can be done by each agent separately, ignoring the presence of
the other agents in the system. That is, each agent can treat the other agents as part of its
environment, without trying to model them or predict their actions. For instance, an agent can
use Q-learning to learn its policy, as in standard MDPs, hoping that the resulting policy will
perform well. However this approach is inherently flawed: the convergence of Q-learning relies
on an underlying transition model that is stationary (does not change with time). This may
not be the case with concurrently learning agents, because the (hypothetical) transition model
p(s ′|s , ai ) of agent i may be changing continuously by the policy of the other agents who are
also learning.

Although independent Q-learning cannot be justified theoretically, the method has
been employed in practice with reported success (Matarić, 1994, Sen et al., 1994, Tan, 1993).
Claus and Boutilier (1998) examine the conditions under which independent Q-learning leads
to individual policies that form a Nash equilibrium in a single state coordination problem, ar-
guing that under general conditions the method converges. However, the resulting equilibrium
may not be Pareto optimal. Similarly, Wolpert et al. (1999) show that for a constrained class
of problems independent Q-learning may converge to a Nash equilibrium.

7.3.2 Coupled Learning
Better results can be obtained if the agents attempt to model each other, in which case their
learning algorithms are coupled. A standard approach is to have each agent i maintain an
individual value function Vi (s ) and an individual Q-function Qi (s , a), where the latter is



book MOBK077-Vlassis August 3, 2007 7:59

58 INTRODUCTION TO MULTIAGENT SYSTEMS

defined over joint actions a . In this case, standard value iteration generalizes to Markov games
as follows:

Vi (s ) := C(Q1(s , a), . . . , Qn(s , a)), ∀s (7.11)

Qi (s , a) := Ri (s , a) + γ
∑

s ′
p(s ′|s , a)Vi (s ′), ∀s , ∀a (7.12)

where C is a function that applies some solution concept to the strategic game formed by the
Q1, . . . , Qn. When the transition model is not available, a corresponding coupled Q-learning
update scheme can be derived in which (7.12) is replaced by (7.9), one per agent. Note that
such a multiagent Q-learning scheme requires that each agent observes the selected joint action
in each step.

Depending on the type of game (zero-sum, general-sum, or coordination game),
the function C may compute a Nash equilibrium (Hu and Wellman, 2004, Littman, 1994,
2001), a correlated equilibrium1 (Greenwald and Hall, 2003), or a coordinated joint ac-
tion (Kok and Vlassis, 2006). Although successful in practice, the method may not always
be able to compute an optimal equilibrium policy (Zinkevich et al., 2006).

7.3.3 Sparse Cooperative Q-learning
Here we address the special case of collaborative agents. When all agents in a team share
the same reward function, that is, Ri (s , a) = R(s , a) for each i , the multiagent system can
be transformed into one ‘big’ agent and solved with standard MDP techniques (Lauer and
Riedmiller, 2000, Brafman and Tennenholtz, 2003). However, such an approach does not scale
very well when the number of agents is large, since the joint action space scales exponentially
in the number of agents.

A more general case involves collaborative agents with different individual reward func-
tions. A collaborative multiagent Markov decision process (CM-MDP) (Guestrin, 2003) is
a Markov game model where each agent cares about maximizing the discounted future global
reward, where the latter is defined as

R(s , a) =
n∑

i=1

Ri (s , a). (7.13)

Such a model allows for a decentralized learning algorithm where all update steps are local, and
intermediate results are communicated by solving a global coordination game. In particular,
following the general multiagent learning approach of Section 7.3.2, we can derive a multiagent

1A correlated equilibrium is a generalization of a mixed-strategy Nash equilibrium where the mixed strategies of the
agents can be correlated.
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Q-learning algorithm for a CM-MDP. Assuming that each agent i observes tuple (s , a, ri , s ′)
with ri = Ri (s , a), we obtain:

Vi (s ′) := Qi (s ′, a∗), where a∗ ∈ arg max
a ′

n∑

i=1

Qi (s ′, a ′), (7.14)

Qi (s , a) := (1 − λ)Qi (s , a) + λ
[
ri + γ Vi (s ′)

]
. (7.15)

Note that the Q-learning update rule (7.15) is fully decentralized (each agent applies a
local update step separately), while (7.14) involves computing a coordinated joint action
(a Pareto optimal Nash equilibrium) in a global coordination game with common payoffs
Q(s , a) = ∑n

i=1 Qi (s , a). The latter can be carried out with a coordination algorithm as in
Chapter 4.

When the optimal global Q-function of the task is decomposable as Q∗(s , a) =
∑n

i=1 Q∗
i (s , a), we can easily show (by summing (7.15) over n) that the above Q-learning

algorithm converges to an optimal joint policy. Such a decomposition of Q∗ does not hold in
general, but there are cases where Q∗ may indeed by decomposable (Wiegerinck et al., 2006). In
these cases, and assuming a properly decreasing learning rate λ, the above Q-learning algorithm
will be optimal.

If each local Q-function Qi (s , a) is stored as a table (one entry for each state and joint
action), the above approach will not scale to many agents. Alternatively we can use a coordina-
tion graph approach to represent the global Q-function (see Section 4.4). For instance, we can
assume a decomposition Q(s , a) = ∑n

i=1 Qi (s , a), where now each local term Qi may depend
on few actions (say, of the neighbors of i in the graph). When such a sparse decomposition of
the Q-function is assumed, the coordination step in (7.14) can be carried out (exactly or approx-
imately) by the techniques presented in Section 4.4. In this case, the multiagent Q-learning al-
gorithm (7.14)–(7.15) has been dubbed Sparse Cooperative Q-learning (Kok and Vlassis, 2006).
Various representations of the local Q-functions can be used, for instance a representation using
a functions approximator (Guestrin et al., 2002b). A related approach that uses different local
update rules has been proposed by Schneider et al. (1999).

7.4 THE PROBLEM OF EXPLORATION
A critical issue in reinforcement learning is how the agent(s) should explore an unknown
environment. An optimal exploration policy would be one that accumulates much reward as
fast as possible, while at the same time explores the environment as thoroughly as possible.
This is known to be a difficult problem (Kakade, 2003). One approach that is becoming
popular recently, termed Bayesian reinforcement learning, is based on the idea that optimal
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exploration can be cast as optimal planning in the space of beliefs over the unknown model
parameters, assuming a prior belief over those parameters. Planning in such a space is however
intractable, and except for the simplest cases, approximations are needed. Poupart et al. (2006)
derive the optimal exploration policy for the standard case of discrete MDPs, but the approach
may not scale in large problems (we refer to that paper for more details and references).
Chalkiadakis and Boutilier (2003) describe a Bayesian reinforcement learning approach in a
problem involving a team of collaborative agents.

In a multiagent system, if we abandon the idea of collecting reward fast, and only care
about asymptotic guarantees (like convergence of Q-learning in the limit), we can often simulate
in the multiagent system the conditions that ensure asymptotic convergence of single-agent
learning algorithms. For instance, in Sparse Cooperative Q-learning, the team can choose a
joint action at state s by sampling from a Boltzmann distribution over joint actions using the
current Q(s , a). When communication is not available, this can be achieved by having all agents
use the same random number generator (and same seed).

Alternatively, the following exploration strategy can be used. At time t and state s ,
agent i chooses at random k joint actions from the last m (m > k) observed joint actions
{at−m, . . . , at−1} taken by the agents in state s . Then each agent i computes the relative
frequency of each a−i , that is, how many times out of k each a−i was taken by the other agents
at state s . This results in an empirical distribution µi (s , a−i ) that reflects the belief of agent i
over the joint action a−i of all other agents at state s . Using such an empirical belief, agent i
can now compute an expected payoff ui (s , ai ) for action ai at state s as

ui (s , ai ) =
∑

a−i

µi (s , a−i )Q(s , [ai , a−i ]) (7.16)

and then randomly choose a best-response action a∗
i ∈ arg maxai ui (s , ai ).

Variations of this approach have been used by Peyton Young (1993), Claus and Boutilier
(1998), and Wang and Sandholm (2003). The approach bears resemblance to fictitious play,
a learning method in games in which a number of agents interact repeatedly with each other,
aiming at reaching an equilibrium (Fudenberg and Levine, 1998).

7.5 NOTES AND FURTHER READING
Single-agent reinforcement learning is treated in the books of Bertsekas and Tsitsiklis
(1996) and Sutton and Barto (1998). Fudenberg and Levine (1998), Young (2004), and
Greenwald (2007) cover the subject of (reinforcement) learning in games. In the last cou-
ple of years several multiagent learning algorithms have appeared in the literature. Be-
sides the works cited in this chapter, notable recent works include those by Bagnell and Ng
(2006), Bowling (2005), Brafman and Tennenholtz (2004), Conitzer and Sandholm (2003),
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Lagoudakis and Parr (2003), Moallemi and Van Roy (2004), Peshkin et al. (2000), Singh et al.
(2000), Tesauro (2004), Zinkevich et al. (2006). Multiagent reinforcement learning is still a
young field; Shoham et al. (2007) and Gordon (2007) identify several research agendas that
can be used for guiding research and evaluating progress.
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