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ABSTRACT We present a massive investigation into the genetic basis of human lifespan. Beginning with a
genome-wide association (GWA) study using a de-identified snapshot of the unique AncestryDNA
database – more than 300,000 genotyped individuals linked to pedigrees of over 400,000,000 people – we
mapped six genome-wide significant loci associated with parental lifespan. We compared these results to
a GWA analysis of the traditional lifespan proxy trait, age, and found only one locus, APOE, to be
associated with both age and lifespan. By combining the AncestryDNA results with those of an indepen-
dent UK Biobank dataset, we conducted a meta-analysis of more than 650,000 individuals and identified
fifteen parental lifespan-associated loci. Beyond just those significant loci, our genome-wide set of
polymorphisms accounts for up to 8% of the variance in human lifespan; this value represents a large
fraction of the heritability estimated from phenotypic correlations between relatives.
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A great deal of effort has been exerted to quantify the variation in
human lifespan that is attributable to either genetic (Vijg and Cam-
pisi 2008) or environmental factors (Kitagawa and Hauser 1973;
Crimmins and Saito 2001; Chetty et al. 2016). The magnitude of
the genetic contribution to variation in human lifespan, i.e., its
heritability, can be difficult to measure, and is confounded by phe-
nomena such as assortative mating and sociocultural inheritance;
nonetheless, we have previously estimated it to be under 10% (Ruby
et al. 2018). Beyond genetics, numerous sociological and economic
factors are known to affect life expectancy at both the level of the
individual (e.g., income, education level, employment status, marital
status) and the community (e.g., income inequality, access to health
care) (Braveman et al. 2005; Murray et al. 2006; Jha et al. 2006;
Backlund et al. 2007). Further, race as a social construct affects
many of these socioeconomic factors that influence life expectancy
(C. J. L. Murray et al. 2006; Backlund et al. 2007; Chetty et al. 2016).

Genetic population structure and race are neither equivalent nor
fully-independent of one another, confounding their effects. Sim-
ilarly, the intermingling of genetic with sociocultural inheritance
confounds the isolation of genetic contributions to variance in
lifespan.

Our goal is to extend these efforts to find specific genetic variants
affecting lifespan. The standard tool for elucidating the genetic archi-
tecture of polygenic traits is the genome-wide association (GWA) study.
Usually, GWA studies test whether there exists a correlation between
individuals phenotyped for the trait of interest and genotyped at a panel
of common SNP variants. As a phenotype, lifespan challenges this
approach: genotypesaregenerally gathered from livingpersons,whereas
lifespan (total elapsed time between birth and death) is a property of
deceased persons. Due to this challenge, current age has been used as a
lifespanproxy trait inmany human-agingGWAS (Schächter et al. 1994;
Willcox et al. 2008; Newman et al. 2010; Soerensen et al. 2010; Deelen
et al. 2011; Nebel et al. 2011; Beekman et al. 2013; Soerensen et al. 2013;
Sebastiani et al. 2013; Deelen et al. 2014; Broer et al. 2015; Sebastiani
et al. 2017). Logically, alleles that reduce lifespan should become de-
pleted in older individuals, and vice-versa for alleles that extend lifespan.
However, the retrospective sampling of young and old individuals po-
tentially captures other differences between birth cohorts, and it is un-
clear whether this is an appropriate proxy for lifespan GWA analyses.

An alternative approach to investigate the genetic basis of lifespan is
to prospectively measure the lifespan of deceased parents from specific
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birth cohorts and use the genotypes of their offspring in an association
mapping analysis. The imperfect sharing of genotype between a parent
and child dilutes the strength of statistical associations in such a study,
thereby requiring very large sample sizes to identify high-confidence
variants. This method was used in analyses of the United Kingdom
Biobank (UKB) to identify loci significantly associated with parental
lifespan (Pilling et al. 2016; Joshi et al. 2016; McDaid et al. 2017;
Mostafavi et al. 2017; Pilling et al. 2017; Joshi et al. 2017). These
candidate lifespan loci have yet to be tested in an independent cohort
of significant size.

We investigated genetic factors affecting lifespan in a de-identified
snapshot of more than 300,000 AncestryDNA customers that provided
prior consent to participate in research and were linked to publically
visible family trees. We estimated genetic ethnicity and found it to be
significantly correlated with parental lifespan. To identify genetic var-
iants that affect human longevity, we conducted GWA mapping anal-
yses of parental lifespan and identified five loci significantly associated
with paternal lifespan and one locus associated with maternal lifespan.
We estimated the phenotypic variation in lifespan attributable to a
genome-wide set of variants to be quite low (between 2 and 8% for
different sub-cohorts) and the genetic correlation between maternal
and paternal lifespan to be quite high (at least 68%). We conducted
GWA analyses of the lifespan proxy trait, age, and identified a single
locus, APOE, associated with both traits (age and lifespan). We also
observed strong genetic correlations between the two traits (43–70%).
Finally, we analyzed an independent UKB dataset in a meta-analysis
of more than 650,000 individuals and corroborated the association at
four of the six loci identified in the AncestryDNA analysis. In total, this
meta-analysis identified eleven paternal and four maternal lifespan-
associated loci, two of which have not previously been associated with
parental lifespan.

MATERIALS AND METHODS

Set of aggregated ancestry pedigrees provides
parental lifespan data
Tomeasureparental lifespan,we interrogateda large,non-redundant set
of aggregated and anonymized pedigrees, referred to as SAP. The SAP is
constructed from overlapping Ancestry customer-generated family
trees designated as “public” (Ruby et al. 2018). Aggregation occurred
by identifying and collapsing redundant identical ancestors and stitch-
ing them together across pedigrees. The methods used to assess data
quality, compare nodes between customer-generated pedigrees and
aggregate this information into the SAP used in this study are described
by Ruby et al. (2018). To protect customer privacy, SAP data were
de-identified with randomly generated IDs and presenting birth and
death dates as years, a lower resolution than was available in the source
data.

Lifespan was measured on every record that had a year of birth and
death.Weconsidered lifespanvaluesbetween40and120years to reduce
early-life contributions to environmental variance and remove likely
errors in reporting of birth or death dates. We did not estimate the Cox
proportional hazard of mortality, as in other analyses (Joshi et al. 2016;
Pilling et al. 2017), because of the prevalence of missing year of death
data in the SAP. Approximately 1/3 of individuals starting in 1900 and
going back multiple centuries lack a death date (Ruby et al. 2018,
Figure 1G) even though they are assuredly deceased. Therefore, when
an individual was missing year of death data we could not determine
whether: 1) the individual was still alive and legitimately right-censored,
or 2) the individual was deceased and the death date was never added to
the genealogy.

Although we were unable to determine whether any specific indi-
vidual missing year of death data were alive or dead, we estimated the
fraction of individuals thatwere alive, and assumed tobe right-censored,
in the 1911-1940 birth cohorts using the distribution of lifespans from
the 1886-1910 cohort as a baseline. We used the lifespan distribution
from 1886-1910 birth cohort as our baseline because, in the year 2016, it
contained complete lifespan data for all individuals from the 1910 birth
cohort with a lifespan less than or equal to 106 years, all lifespans from
the 1909birth cohort, equal toor less than107 years, and soon.Thus,we
expect few individuals to be truly censored from this baseline.

IRB statement regarding data use
All data required for this research project was collected previously with
informed consent for purposes consistent with this research and was
used for this research only after removing all personally identifying
information. An IRB reviewed this research project and determined no
further approval was required.

Genotype sample collection
Data utilized for this research project was de-identified prior to its use.
The laboratory extracts DNA from a sample and genotyped it using an
Illumina array (details below). In order to be included in this study,
customers must: 1) activate a DNA test and agree to AncestryDNA’s
terms and conditions, privacy statement, including an explicit consent
to process their DNA, 2) agree to the informed consent to research
agreement, and 3) provide basic personal information - including year
of birth, name, and sex. Next, the customer must have associated their
DNA sample to their own user-generated pedigree and made this
pedigree public to other Ancestry users. This analysis was based on
samples submitted between May 2012 and June 2016. The database
snapshot occurred on June 19, 2016 and contained 698,812 genotyped
individuals linked to the SAP.

Array based genotyping procedure
SNP variants were called by technicians at the Illumina FastTrack
Microarray Services lab using the GenomeStudio platform. Genotype
data were generated using an Illumina genotyping array with approx-
imately 730,000 SNPs. During the four years of sample collection, two
versions of the arraywere used for genotyping. All downstream analyses
used the intersection of SNPs present on both versions of the chip. We
included chip version as a covariate in all association mapping models.

Estimates of genetic ethnicity and test of association
with parental lifespan
We used 112,909 SNPs to estimate the genetic ethnicity of de-identified
genotyped individuals who consented to research and were associ-
ated with public family trees. Genetic ethnicity is the proportion of
their genome that matches a reference panel of 3000 individuals from
26 ancestral populations (described in: Ball et al. 2013; Han et al. 2017).
An individual’s genetic ethnicity proportions reflect ancestral admix-
ture events between these reference populations.

We measured whether ancestral admixture proportions were in-
dependent of each other using the Pearson correlation coefficient, r. We
use multivariate linear regression models to test for a correlation be-
tween percent ancestral admixture and parental lifespan. Lifespan was
calculated from the mothers and fathers of genotyped individuals from
the 1886-1918 birth cohort. In these models, we included all ancestral
populations with a minimum of 1000 individuals which were born
between 1886-1918 and possessed greater than 5% admixture as-
signment. The 14 ancestral populations that met these requirements
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were: Native American, Caucasus, Great Britain, Ireland, Europe
East, Scandinavia, Italy/Greece, Europe West, Iberian Peninsula,
European Jewish, Finland/NW Russia, Near East, Sub-Saharan
Africa and Hispanic/Latino.

Principal component measures of population structure
In addition to genetic ethnicity, wemeasured population structure using a
principal component analysis (PCA) of a genome-wide panel of SNPs.
Given the large size of this snapshot, we estimate the first 10 principal
components using the fastPCA algorithm, method: randomized, imple-
mented in in the R package SNPRelate (Zheng et al. 2012). For this
analysis, we used 50,000 randomly selected SNPs that were in approxi-
mate linkage equilibriumwith each other (LD, 0.2). This procedure was
implemented in PLINK v1.9 (Chang et al. 2015). We included the first
10 principal components as covariates in all associationmappingmodels.

IBD measurement between individuals
Given the nature of the resource, it is not surprising that a significant
number of closely related individuals are represented in the snapshot.
To reduce the effects of shared environmental variation due to local
household environment and more closely meet the assumption of
genotype independence in GWA mapping analyses, we removed indi-
viduals until no pair of samples exhibit more than 300cM identity
by descent (IBD). IBD was measured with a custom algorithm,
J-GERMLINE (Ball et al. 2016) based upon the GERMLINE algorithm
(Gusev et al. 2009). Since shorter IBD segments are difficult to accu-
rately identify and are less informative for estimating familial relation-
ships, we used the ‘Timber’ algorithm to filter uninformative matches
(Ball et al. 2016). This caused a skew in the distribution of IBDmatches
less than 90 cM.

Simulation of GWA analysis of parental traits using
offspring genotypes
Inorder to estimate the statistical powerof ourmappingpopulations,we
simulated a GWA mapping analysis in which the phenotypes and
genotypes were measured in offset generations. Briefly, we modeled a
situation in which a single, additive allele effects our focal trait and
segregates in a large, random mating population at Hardy-Weinberg
equilibrium. We randomly assigned genotypes in the parental gener-
ation. Next, we calculated the parental trait value given their genotype
and environmental variance, modeled with a random-normal distribu-
tion. The offspring genotype was calculated using the genotype of a
parent where the trait value was known and a second parent, randomly
sampled from the population. We assumed perfect Mendelian segre-
gation of alleles between generations. Finally, we regressed the off-
spring’s genotype against a single parental phenotype.

Simulations were run varying the effect allele frequency (from 0.001
to 0.5) and the additive effect size of a single copy of the allele (from 0.06
to 3.8 years). We simulated mapping populations of 80,000 to 480,000
individuals. Fifty replicate simulations were run for each parameter
combination. Power was measured as the number of replicate
simulations which detected a significant effect (P value less than
5.0e-8) of the focal allele vs. the total number of simulations for
each parameter combination. For each simulation we also calcu-
lated the allelic effect inferred from the genotypes of the parents vs.
genotypes from the offspring.

Parental lifespan GWA mapping analyses
Weconducted quantitativeGWAmapping analyses of parental lifespan
using PLINK v1.9 (Chang et al. 2015). We conducted separate analyses

for paternal and maternal lifespans. The majority of genotyped indi-
viduals were linked to two parental lifespans and we did not wish to test
the same genotype against multiple phenotypes in a single GWA anal-
ysis. We further sub-divided our cohort and ran separate GWA anal-
yses on the three broad population groups: European, Sub-Saharan
African, and East Asian/Native American. For each mapping popula-
tion, we identified close genetic relatives (IBD greater than 300 cM) and
randomly removed one of the individuals from the pair. We examined
the genetic basis of lifespan of parents born in both the 1886-1918 and
1886-1940 cohorts.

We applied the following genotype filters: minor allele frequency
(MAF) threshold of 0.5%, variant missingness threshold of 20%, an
individual missingness threshold of 2%, and 1% of SNPs with
strongest deviation from Hardy-Weinberg Equilibrium. Addition-
ally, we used the ‘–indep-pairwise’ function in Plink v1.9 to filter
sites in which linkage disequilibrium with an adjacent site exceeded
0.9. After applying these filters, between 540,852 and 541,614 SNPs
were included in any one GWA mapping analysis. We included the
mitochondria and Y chromosomes in our initial analyses but found no
effect (results not shown) and removed them from all subsequent anal-
yses. The array version and first ten PCs were added as covariates to the
association mapping models.

To identify lifespan-associated variants, we controlled for the geno-
mic variance inflation factor, l, and used a Bonferroni correction to
establish a threshold of statistical significance at P = 9.2e-8. For each
lifespan associated variant, we ensured that missingness was less than
5%. Next, we estimated the phase of each individual genotype for
5.0 megabase (Mb) regions surrounding an associated variant using
the AncestryDNA algorithm, Underdog (Ball et al. 2016). We addition-
ally imputed all cataloged variants from each 5.0 Mb region using the
1000 Genomes (1000G) phase 3 reference panel (The 1000 Genomes
Project Consortium et al. 2015). Imputation was performed using the
default parameters in minimac3 (Das et al. 2016).

Genetic heritability analyses
We used LD Score Regression v1.0.0 (Finucane et al. 2015) to estimate
the heritability, hg2, of lifespan using genotyping array variants that
passed all quality control filters. For all heritability estimates, we used
LD scores measured using the AncestryDNA, European population
group, rather than the 1000G European (1000G,EUR) population LD
score estimates included with the program. For this analysis, we in-
cluded 482,066 male and female individuals; this sample contained no
relatives with pairwise IBD scores greater than 300cM. We estimated
the LD scores of 542,710 variants in 1 cM windows. Our analyses
with the AncestryDNA LD scores produced h2g intercept values close
to 1.0 and ratio values lower than the 1000G,EUR LD scores, which
suggested that these scores adequately captured the LD structure of
the AncestryDNA dataset.

GWA analysis of lifespan proxy trait: age
We conductedGWAanalyses on the age of genotyped individuals from
the European population group. We removed close genetic relatives
(IBD greater than 300 cM) from this mapping population. Age, at a
resolution of years, was calculated by subtracting 2016 from an indi-
vidual’s birth year. We assumed all of these individuals were still alive,
because all individuals recently provided a saliva sample in the four
years since the launch of AncestryDNA (http://www.ancestry.com/
corporate/about-ancestry/company-facts) and the time of this snap-
shot. In contrast to the lifespan phenotype, right-censorship of life-
span is an explicit assumption of the age trait and therefore addressed
a potential confounder.
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We conducted GWA analyses using both the case/control as well as
quantitative trait frameworks. In the case/control analyses, the “cases”
were individuals above a specified age, and the “controls” were indi-
viduals below another specified age, with a gap existing between the two
age thresholds. The age threshold for the control population was set to
the median age: 65 years for men and 64 years for women. We in-
vestigated two thresholds for the case population: 2.5% (male: 91 years,
N = 5,860; female: 92 years, N = 6,803) and 5% (male: 86 years, N =
12,288; female: 87 years, N = 13,265). We reported results from the 5%
case threshold. No additional loci were identified in the 2.5% case
threshold GWA analysis (data not shown). We conducted GWA anal-
yses for each gender separately (male N= 117,396, female N= 140,017)
as well as together (N = 257,413) and included gender as a covariate in
the association mapping model. To increase the mapping population
size, we also conducted a quantitative trait GWAmapping analysis with
all individuals of both genders between the ages of 40 and 120 years into
a single analysis (N= 482,066).

Genetic correlation analyses
We used LD Score regression (Finucane et al. 2015) to estimate the
genetic correlation, rg, between: 1) maternal and paternal lifespan; and 2)
the age of genotyped individuals and parental lifespan. To estimate the
genetic correlation between traits, we constrained the h2g intercept to 1.0
for both traits and the genetic covariance intercept to: rp�N12 / sqrt(N1

�N2)
where rp is the phenotypic correlation, N1 is the number of samples in
study 1, N2 is the number of samples in study 2, and N12 is the sample
overlap (Bulik-Sullivan et al. 2015).

For our estimate of the genetic correlation between age and lifespan,
we required all samples to have both age and parental lifespan mea-
surements within each gender specific comparison. Second, we aimed
to minimize biases associated with younger individuals having a higher
rate of parental lifespan censorship compared to older individuals, by
restricting the birth cohort of genotyped individuals included in the
analysis to be between the years 1916 and 1956. This resulted in an age
distribution of genotyped individuals to be between 60 and 100 years.
Parental lifespan was examined for the 1886-1940 birth cohort, and the
distribution of lifespans examined were between 40 and 120 years.

Cohort specific effects of lifespan associated loci
To investigate variation in the association of SNP variants and lifespan
between birth cohorts, we ran separate associationmapping analyses for
4 – 8 year slices spanning the 1886-1940 cohort. The cohorts interro-
gated were: 1886-1894, 1894-1902, 1902-1908, 1908-1912, 1912-1916,
1916-1920, 1920-1924, 1924-1928, 1928-1932, 1932-1936, 1935-1940.
The number of individuals in the narrowly defined birth cohort slices
range from 10722 – 23211 for paternal lifespan and 6764 – 22469 for
maternal lifespan. We also measured the change in MAF between
cohorts for variants at each lifespan associated locus. For APOE, the
one locus that exhibited a change in MAF between cohorts, we also
measured the allele frequency in samples binned by lifespan value.

Comparison of AncestryDNA and UK Biobank parental
lifespan analyses
We compared the AncestryDNA GWA of parental lifespan from the
broadly defined birth cohort (1886-1940) to the largest UKB associa-
tion analysis of parental lifespan published to date: Pilling et al. (2017).
The focal trait in the UKB analysis was attained parental age, which was
calculated using the Cox proportional hazard model and includes our
focal trait, complete lifespan, as well as the current age of parents which
were not deceased (Pilling et al. 2017). We downloaded GWA sum-
mary statistics from the UKB analysis of attained parents age from:

https://figshare.com/articles/Plling_et_al_2017_UKB_parents_attained_
age_GWAS/5439382/2.

We conducted a meta-analysis of more than 658,000 individuals
using the sample size based approach implemented inMETAL (Willer,
Li, and Abecasis 2010). We included SNP variants that were common
to both studies, possessed a cohort-specific MAF of greater than or
equal to 0.5% and had matching alleles. With these requirements, we
interrogated 458,525 and 458,865 variants in our meta-analyses of
maternal and paternal lifespan. This sub-set of SNPs meant that we
were only able to include variants that were found to be significant in
the UKB analysis at 10 of 14 paternal attained-age loci and four of six
maternal attained-age loci. We controlled for the genomic inflation
factor in each dataset within METAL and established a P value of
5.0e-8 as our significance threshold.

We measured the genetic correlation between AncestryDNA and
UKB GWA analyses using LD Score Regression (Finucane et al.
2015). We ran analyses with LD scores from both the AncestryDNA
European population group and the 1000G,EUR population. We re-
ported results from the AncestryDNA LD scores analysis because the
h2 ratio values were lower and the h2g intercept values were closer to
1.0, suggesting that these LD scores are a better match than the
1000G,EUR to the genetic structure of the UKB mapping population
(Finucane et al. 2015). In contrast to the LD score analyses of solely
the AncestryDNAGWA results, we did not constrain the h2g or genetic
covariance intercepts in these analyses because we could not estimate
the phenotypic correlation and amount of sample overlap between
the two datasets. The GWAmeta-analyses and LD score analyses used
z-score transformed effect sizes from the AncestryDNA and UKB
GWA mapping results. In order to make the effect sizes consistent
with the values reported in the UKB analysis, we used effect sizes from
the AncestryDNA analysis calculated with offspring genotypes -rather
than effects sizes re-scaled to reflect allelic dosage in the parental
generation.

Privacy considerations & data availability
Supplemental Figures and Tables, with their Legends, are provided as
a single PDF document: Supplemental Tables & Figures. In addition,
Supplemental Tables 8 and 9 are provided as Excel documents
and contain SNP-by-SNP summary statistics from each presented
GWAS for representative SNPs with genomic control adjusted
P values less than 3.0e-3 in the AncestryDNA cohorts (Supplemen-
tal Table 8) or 2.5e-3 in the AncestryDNA-UKB meta analyses
(Supplemental Table 9).

The growing literature and commentary on genomic privacy guided
ourdecision toreleasesummarystatistics foronlya subsetofSNPs in this
instance. The power to use an individual’s genome-wide variant data to
infer whether that individual was present in or absent in a GWA cohort
using association mapping summary statistics has not yet been exhaus-
tively explored, but has nonetheless been considered from both theo-
retical (Visscher andHill 2009; Sankararaman et al. 2009) and practical
perspectives (Homer et al. 2008; Im et al. 2012; Gymrek et al. 2013; Cai
et al. 2015). These studies consistently identify the ratio of reported
SNP statistics to cohort size as the key factor governing identifiability.
This relationship is typically described asm independent SNPmarkers,
n individuals, with the power to identify individuals is proportional to
sqrt(m/n) (Equation 1; Sankararaman et al. 2009). As a result, we err on
the side of caution in protecting Ancestry customers’ privacy.

In our Supplemental Tables 8 and 9, we provide abbreviated
summary statistics for seven GWA mapping analyses (for a total of
10,171 unique SNPs). Our basis for this was inclusion of all SNPs with
P values less than 3.0e-3 for the fiveAncestryDNA specific analyses and
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2.5e-3 for the two AncestryDNA-UKB meta analyses. This standard
ensured that all significant and near-significant results were report-
ed, and also that all other SNPs were known by the reader to be non-
significant. For our smallest-cohort analysis (maternal lifespan for
the 1886-1918 birth cohort: 133,203 individuals), we report 1,471
snps, which is an m/n ratio of 0.011, substantially below the ratios
analyzed in the privacy literature noted above and therefore pre-
sumably safe. In contrast, the community standard of GWAS data
disclosure – provision of summary statistics for all 540,852 analyzed
variants –would produce anm/n ratio greater than 4.0. Re-identification
power for such a high ratio is plotted by Sankararaman et al. (2009;
Figure 1; m/n = 1.0, plotted for m = 1,000). While low, the risk of
re-identification in this scenario is not negligible.

Our report of summary statistics across seven GWA analyses
increases the risk of re-identification. The work of Im et al. (2012)
clearly identifies multi-phenotype GWAS as adding tremendous
power to re-identification (presented in their Figure 6). Such added
power derives from the ability to regress the same SNPs across
multiple phenotypes; in contrast, our presentation of summary sta-
tistics for the most-significant SNPs for each analysis resulted in
largely non-overlapping sets of SNPs, thereby negating the addi-
tional re-identification power that multiple GWAS provide. Had
we reported summary statistics across all SNPs, then the SNPs
would have been totally consistent between phenotypes. The addi-
tional power gained from the multiple phenotypes – together with
the added power provided by the larger SNP set – would have pro-
foundly facilitated re-identification, far beyond what the increased
m/n ratio would imply by itself.

The GWAS literature from another commercial entity with legal
obligations to the members of its study population consistently reports
the 10,000 most-significant SNPs (Jansen et al. 2019; Shaffer et al. 2017;
Hu et al. 2016; Jones et al. 2017; Aberg et al. 2018; Huusko et al. 2018;
Lee et al. 2018; Jones et al. 2019). For our complete study, 10,171 unique
SNPs provided a level of disclosure that permits scientific scrutinywhile
comfortably maintaining the anonymity of our users.

Ancestry’s highest priority is protecting our customers’ privacy and
being good stewards of their data; that starts with the basic belief that
customers should always maintain ownership and control over their
own data. We have provided access to the significant findings that

would allow for a level of replication in the supplemental files. We
collaborate with scientific researchers on a case-by-case basis to ad-
vance science in specific areas while using research methodologies that
protect consumers when appropriate. Examples to be considered in
these requests include but are not limited to:

1. Technical and scientific feasibility
2. Level of detail required from the underlying data (including its

sensitivity)
3. Novelty/potential impact of the proposed work
4. Academic institution (in good standing and acting in good faith

while implementing appropriate technical, administrative, and
physical measures to protect the privacy of the participants and
the security of the data)

5. Amount of resource allocation forAncestry required to support the
collaboration

Correspondence and requests should be addressed to Catherine
Ball (cball@ancestry.com). Supplemental material available at Figshare:
https://doi.org/10.25387/g3.8479022.

RESULTS

The Ancestry pedigree facilitated GWA mapping
analysis of human lifespan
Tomeasureparental lifespan,we interrogateda large,non-redundant set
of aggregated and anonymized pedigrees, referred to as SAP, gener-
ated by stitching together overlapping customer-generated family trees
designated as “public” (Ruby et al. 2018). The June 2016 snapshot of
AncestryDNA customers contained more than 680,000 individuals who
provided prior consent to research, were linked to the SAP and had at
least one parent with complete lifespan information, i.e., recorded year
of birth and death. The majority the parents with lifespan information
(76.0% of fathers and 77.7% of mothers) were born in the 1900-1930
cohort. For this cohort, nearly 80% of these individuals were born in the
United States, �10% were born in Europe and the remaining �10%
born outside of the US and Europe (Ruby et al. 2018, Figure 1I). We
considered lifespan values between 40 and 120 years to reduce early-life
contributions to environmental variance and remove potential errors in
the recording of birth or death dates (Figure 1A).

Figure 1 (A) Distribution of parental
lifespan values from the 1886-1918
birth cohort. Median values noted
with colored vertical lines. (B) Cumu-
lative number of genotyped individu-
als with complete lifespan data. Birth
cohort span from 1886 to year on x
axis. Vertical gray line denotes the
1918 cohort. (C) Estimated number of
long-lived individuals assumed to be
censored as fraction of annual cohort
size. (D) Estimated number of long-
lived individuals assumed to be cen-
sored as a fraction of cumulative cohort
size. In all figure panels, paternal indi-
viduals are denoted with blue, maternal
individuals with orange, and overlap-
ping values are dark orange.
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To maximize sample size and power in the association mapping
analysis, we sought to include individuals from a wide range of birth
cohorts (Figure 1B). However, the addition of younger birth cohorts
increased the systematic removal of long-lived, right-censored individ-
uals, because they lack a year of death. We estimated the fraction of
individuals that were assumed to be censored (i.e., were missing a year
of death and were presumably alive in the 1911-1940 birth cohorts)
using the lifespan distribution from 1886-1910 birth cohort as a base-
line (Figure 1C, D). We found the 1886-1918 cohort possessed a large
sample size withminimal assumed censorship: for fathers,N = 208,707,
assumed censorship = 0.3%; for mothers,N= 162,659, assumed censor-
ship = 1.3% (Figure 1B, D). Median paternal lifespan ranged from 75 to
77 years when comparing the 1886-1894 cohort (N = 10,721) to the
1916-1918 cohort (N = 20,858; Figure S1A), whereas maternal lifespan
ranged from 81-83 years across the same timespan (N= 6,764 for 1886-
1894; N = 19,239 for 1916-1918; Figure S1B). A wider range of birth
cohorts, 1886-1940, increased the number of parents with lifespan in-
formation (fathers: 423,817 and mothers: 359,719, Figure 1B) and in-
creased the fraction of missing long-lived individuals, estimated to be
6.8% for fathers and 15.5% for mothers (Figure 1D).

Given the constraint of a single-generation offset between measures
of phenotype and genotype, we estimated our power to detect genetic
associations of various effect sizes in datasets of this scale. The power to
identify an allele with an additive effect size of 0.75 years at 20% minor
allele frequency in the population would be 0.90 in a cohort of 170,000
individuals and nearly 1.0 in cohorts exceeding 230,000 individuals
(Figure S2). We concluded that for our snapshot, there was sufficient
power to identify a genetic variant at moderate allele frequency with an
effect size of 0.75 years or greater.

Genetic measures of ethnicity were significantly
associated with lifespan
A non-random distribution of lifespans with respect to the underlying
genetic structure in the mapping population can cause false positives in
a GWA mapping. Previous research demonstrates the association be-
tween race, defined as a socially constructed categorical variable main-
tained by dominant social groups (Mills 1997; Haslanger 2008), and life
expectancy (C. J. L. Murray et al. 2006; Backlund et al. 2007; Chetty
et al. 2016). We sought to determine whether there was a similar
association in this snapshot, however we have no knowledge of indi-
viduals’ race, thus we instead estimated their genetic ethnicity and
compared this to the lifespan of their parents.

We estimated the genetic ethnicity as the proportion of the genome
that is assigned to a reference panel of 26 ancestral populations for
de-identified genotyped individuals who have previously consented to
research and were associated with public family trees (described in: Ball
et al. 2013; Han et al. 2017). We found that genetic ethnicity propor-
tions, which represent ancestral admixture events between these refer-
ence populations, were generally uncorrelated with each other in this
snapshot (Figure 2A), except in the case of the eight Sub-Saharan
African ethnicities (r . 0.38), which we combined into a single Sub-
Saharan African group; and the Native American and Iberian ancestral
admixture (r = 0.44), which, for individuals exhibiting evidence of
admixture (Han et al. 2017), were combined into a single Latino group.

Usingmultivariate, linear regressionmodels we found that ancestral
admixture proportionswere significantly associated with bothmaternal
and paternal lifespan (P , 2e-16) although the magnitude of the cor-
relations were not large (maternal lifespan r = 0.047, paternal lifespan
r = 0.056). We found significant, positive correlations with maternal
lifespan and genetic ethnicity assignment to the following populations:
Europe West, European Jewish, Scandinavia, Italy/Greece, and Great

Britain (Figure 2B, Table S1). Conversely, there was a negative corre-
lation between maternal lifespan and ancestral admixture with the
Native American population, although this was not significant after
multiple test correction (Table S1). Paternal lifespan was positively
correlated with ancestral admixture with Scandinavian and Italian/
Greek populations, although this was not significant after multiple test
correction (Figure 2B, Table S2). Ancestral admixture with a single
population, Ireland, exhibited a significant, negative correlation with
paternal lifespan (Table S2). Given the relationship between race and
life-expectancy (C. Murray et al. 1998; Backlund et al. 2007; Chetty
et al. 2016), we inferred that non-genetic, social factors contributed to
the correlation between lifespan and genetic ethnicity.

We attempted to control for these factors in our association analyses
bycalculatinggeneticdifferentiationusingprincipal componentanalysis
(PCA) and splitting this snapshot of de-identifiedgenotyped individuals
who provided prior consent to research andwere associated with public
family trees into one of three broad population groups: Sub-Saharan
African, Native American/East Asian or European (Figure 2C). We
applied a conservative minimum threshold of 5% ancestral admix-
ture assignment inclusion in the Sub-Saharan African and Native
American/East Asian groups; these samples comprised a small pro-
portion of the snapshot. All remaining individuals were placed into
the European population group. Next, we re-calculated genetic PCs
for each group and used these as covariates in the association map-
ping analyses. GWA analyses focused on the European population
group (Figure 2D) because it contained the majority of samples.

GWA mapping revealed three loci to be significantly
associated with parental lifespan in the 1886-1918
birth cohort
We first investigated the genetic basis of maternal and paternal lifespan
in the1886-1918birthcohort.Thismappingpopulationwasofprimarily
European descent and contained no close genetic relatives (IBD thresh-
old 300 cM; Figure S3). The number of individuals in maternal and
paternal analyses was 133,203 and 167,179, respectively. After quality
control filtering of array genotyping variants, the minimum number of
variants tested in each analysis was 540,852 (Table S3).

We found genetic variants at two loci associated with paternal
lifespan (Figure 3A) and no variants associated with maternal life-
span (Figure 3B) in the European population group at a Bonferroni-
corrected P value less than 0.05, which corresponded to observed
P value less than 9.24e-8 (Table 1). The genotyping chip version
covariate was not significant in these analyses (Table S4; Figure S4).
These variants remained significant after controlling for the geno-
mic variance inflation factors: lPaternal = 1.084, lMaternal = 1.030
(Table S3). We inferred that most of this inflation was due to poly-
genicity, rather than unaccounted population structure, because the
LD score regression intercepts were nearly 1.0 and the mean LD
score regression (LDSC) x2 estimates were similar to the genomic
variance inflation estimates: 1.085 and 1.033 for paternal and ma-
ternal lifespan, respectively (Table S3; Finucane et al., 2015).

To estimate the additive effect of variants on lifespan, we doubled
the values measured in our association mapping analyses – which
used offspring genotypes – because the observed allelic dose in the
genotyped offspring is half of the expected allelic dose in the par-
ents (Figure S5; Joshi et al., 2016). All effect sizes reported for the
AncestryDNA specific analyses are scaled to the allelic dose in the
parental generation (Table 1).

Weestimated the fractionof phenotypicvariance inparental lifespan
explained by genotyping array variants, hg2, to be 7.38% (SE = 1.02%;
Nsnps = 390,234) and 2.78% (SE = 1.14%; Nsnps = 385,494) for paternal
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and maternal lifespan, respectively, using LD score regression
(Finucane et al. 2015) (Figure 3C). As with our variant effect size
estimates, these hg2 values have been re-scaled to the allelic dose in
the parental generation (Figure S5; Joshi et al., 2016).

Next, we examined whether the non-normal distribution of life-
span values (Figure 1A) contributed to genomic variance inflation
with a permutation analysis of lifespan values from this dataset. We
found that the distribution of l values was centered at 1.00, and did
not overlap the observed l values (Figure S6). We also consid-
ered whether the increase in median lifespan between the years of
1886 and 1918 (Figure S1) may have altered these results.
Re-running these analyses with an additional median lifespan per
cohort covariate did not significantly change the distribution of

P values across the genome (Figure S7), nor at the lifespan associ-
ated variants (Table S5).

To define each region of association more precisely, we imputed
a 5.0 Mb block of sequence using the 1000G, phase 3 reference panel.
The chromosome 9 locus, which exhibited the strongest association
with paternal lifespan, included two annotated protein-coding genes
(CDKN2A/B) and one annotated long non-coding RNA (lncRNA;
ANRIL). Hereafter, we refer to this locus as ANRIL because the lead
variants, defined by the strength of the statistical association, were in
the lncRNA, rather than either of the two protein-coding genes
(Figure 3D). The second locus associated with paternal lifespan in-
cluded a single annotated, protein-coding gene: WAPL (Figure 3E),
and, to our knowledge, has not been previously associated with any

Figure 2 (A) Pairwise correlation between ancestral admixture proportions of genotyped individuals from analysis of paternal lifespan, 1886-1918
birth cohort. (B) Linear regression coefficient (+/2SE) for admixture population and paternal or maternal lifespan. The dashed line at zero
represents the mean lifespan for all individuals in the analysis. (C) Population structure, measured with principal component analysis, of individuals
from analysis of paternal lifespan, 1886-1918 birth cohort. Each circle is a single individual, colored according to percent composition of Sub-
Saharan Africa and Native American / East Asian admixture populations. (D) Population structure within individuals of European descent, after
filtering Sub-Saharan Africa, Native American/East Asian groups. Colors depict individuals with majority ethnicity assignment in one of nine
European populations.
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life-shortening diseases or lifespan. Although no variants achieved ge-
nome-wide significance in our analysis of maternal lifespan significant,
the SNP with the lowest P value was located near APOE, a locus pre-
viously associatedwith survivorship to advanced age (Deelen et al. 2011;
Nebel et al. 2011; Sebastiani et al. 2017) and parental lifespan (Joshi et al.
2016; Pilling et al. 2017).We imputed SNPs at this locus and identified a
single variant which was significantly associated with maternal lifespan
(Table 1; Figure 3F). This association was gender-specific: no imputed
variants at the APOE locus were significantly associated with paternal
lifespan (Figure S8A). In summary, we identified a total of three loci
associated with parental lifespan in this narrowly defined birth cohort.

We found no variants that were significantly associated with ma-
ternal or paternal lifespan in the Sub-Saharan African or Native Amer-
ican/East Asian population groups (Figure S9A-D). With fewer than
10,000 individuals, these analyses were underpowered and this negative
result was expected (Figure S2).

Increased GWA mapping power in an expanded birth
cohort identified one maternal and four paternal
lifespan associated loci
To increase the power of our associationmapping analysis, at the cost of
increased censorship of long-lived individuals, we expanded the analysis

to the1886-1940birthcohort.TheEuropeanpopulationgroupfromthis
birth cohort contained, afterfiltering closely related individuals, 270,548
and 309,383 samples with maternal and paternal lifespans (Table S3).

In the expanded cohort, variants at four loci (ANRIL, LPA,
CHRNA3/5, and SRRM3; Table 1; Figure 4A) were significantly asso-
ciated with paternal lifespan after controlling for genomic variance
inflation (lPaternal =1.182; Table S3). Similar to the narrowly defined
cohort, we interpreted most of this inflation was due to polygenicity,
LDSCx2 = 1.161 (Table S3), and hg2 was 8.08%, SE = 0.60% (Figure 4B).
ANRIL was the one locus significantly associated with lifespan in both
the narrow and expanded birth cohorts (Figure 4C). In contrast,WAPL
did not achieve genome-wide significance in the broader birth cohort
(Figure 4D). We identified significantly associated variants at two loci,
LPA and CHRNA3/5 (Figure 4E,F), that were previously associated
with paternal lifespan (Joshi et al. 2016; Pilling et al. 2017). The fourth
locus, SRRM3 (Figure 4G), was defined by a single imputed SNP (gen-
otyping array variants were near the threshold of significance; Table 1)
which, to our knowledge has not been previously associated with any
life-shortening diseases or lifespan.

As with the narrowly defined birth cohort, our analysis of the
expanded birth cohort identified a single locus, APOE, which was sig-
nificantly associated with maternal lifespan (Table 1). After controlling

Figure 3 Manhattan plot of GWA results of (A) paternal and (B) maternal lifespan, cohort 1886-1918. Each circle is a single genotyped SNP, solid red
circles denote SNPs with Bonferroni corrected P values less than 0.05. Inset: Q-Q plot with expected (x-axis) vs. observed (y-axis) –log10 P values.
Non-gray points denote SNPs with Bonferroni corrected P values less than 0.05. Association analysis of candidate loci with imputed data: (C)
Heritability of lifespan, estimate (+/2SE) with genome-wide panel of SNPs. (D) Chrm9: ANRIL, paternal lifespan (E) Chrm10: WAPL, paternal lifespan
(F) Chrm19: APOE, maternal lifespan. Solid red circle are SNPs with Bonferroni corrected P values less than 0.05. Cyan bars: hg19 gene models.
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for variance inflation, lMaternal = 1.113, none of the genotyped var-
iants were significant (Figure 4H); however, imputed SNPs at APOE
achieved genome-wide significance (Figure 4I). We estimated the
LDSCx2 to be 1.097 (Table S3) and heritability of maternal lifespan
to be 4.62%, SE =0.72% (Figure 4B). Consistent with our findings
from the narrowly defined birth cohort, APOE was not associated
with paternal lifespan in the broadly defined cohort (Figure S8B).

We found no variants that were significantly associated with ma-
ternal or paternal lifespan in the expanded birth cohort analyses of the
Sub-SaharanAfrican orNativeAmerican/EastAsian population groups
(Figure S9E-H).With fewer than 20,000 individuals, these analyseswere
underpowered and this negative result was expected (Figure S2).

Age was strongly associated with the APOE locus
We next sought to compare the lifespan GWA results to the com-
monly used proxy trait: age.We evaluated age in both the quantitative
trait framework, including all individuals in a cohort (Figure S10A),
and in the routinely employed case/control framework (e.g., Deelen
et al. 2011; Deelen et al. 2014; Broer et al. 2015), wherein the ‘cases’
were individuals above a specific age (e.g., 5% tail: 86 years for males
and 87 years for females) and the ‘controls’ were individuals below a
certain age (e.g., median age: 65 years for males and 64 years for
females). The GWA mapping population included the European
population group; individuals with close relatives in this population
(IBD threshold of 300cM) were removed. In agreement with many
previous studies, we identified genome-wide significant SNPs at the
APOE locus in analyses of males, females, and combining samples from
both genders (Table S6; Figure S10B-F). Additionally, we identified a
SNP at the MAP2K6 gene, which narrowly achieved genome wide
significance in the case/control analysis of female age (Figure S10C).

Genetic correlations between paternal lifespan and age
We measured the genetic correlation, rg, between the maternal and
paternal lifespan and between age and lifespan using LD Score regres-
sion (Finucane et al. 2015; Bulik-Sullivan et al. 2015). We estimated
the genetic correlation between maternal and paternal lifespan to be
quite high: rg = 0.65 (SE = 0.09) for the 1886-1918 cohort and rg = 0.94
(SE = 0.04) in the 1886-1940 cohort (Table 2). The high genetic corre-
lations suggest that the majority of significant allelic effects on lifespan
will be similar in magnitude and direction between men and women,
with a minority of alleles effecting lifespan in a gender-specific manner.

Next, we estimated within and between gender genetic correlations
between age and parental lifespan. Similar to the parental lifespan
analysis, thegenetic correlationsbetweenthese traitswerehigh:maternal
lifespan compared to female andmale age was 0.69 (SE = 0.09) and 0.70
(SE = 0.13); paternal lifespan compared tomale and female age was 0.43
(SE = 0.10) and 0.53 (SE = 0.09) (Table 2). In summary: hg2 for each trait
was quite low (between 2 and 8% for different sub-cohorts), but the
variants that underlie maternal vs. paternal lifespan or parental lifespan
vs. age had substantially correlated effects.

Effects of WAPL and APOE on parental lifespan varied
across birth cohorts
We investigated whether lifespan determining variants exhibited
birth-cohort-specific effects because of the inconsistent WAPL re-
sults between the 1886-1918 (Figure 3D) and 1886-1940 (Figure 4D)
cohorts: loss of significance despite increased sample size. We found
that variants at WAPL had a mean effect of 0.70 (SE = 0.07) years in
the 1886-1920 cohorts, and in all later cohorts, save 1928-1932, it was
not significantly different from zero (Figure 5A). For comparison,
ANRIL, CHRNA3/5, and LPA had significantly affected lifespann
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through 1928 (Figure 5B-D), after which we observed a decrease in
mean effect size, likely due to increased censorship in the younger
cohorts (assumed to be 18.5–40.9% for men in 1928-1940 cohorts;
Figure 1D). In contrast, the youngest cohort in which WAPL had no
significant effect, 1920-1924, had an assumed censorship of only 4.1%
(Figure 1D). The shift in effect size could not be attributed to variation
in theMAF – the standard deviation of MAF estimates, normalized to
the mean, was 1.4%.

Next, we examined birth-cohort-specific effects at APOE, which
exhibited significant negative effects on lifespan in the 1894-1920
birth cohorts and consistently positive effects in birth cohorts after
1923 (Figure 5E). Measurement of the frequency of the APOE allele

as a function of both phenotypic class and birth cohort (Figure 5F)
revealed that: 1) the MAF increased from 11.38% in older birth
cohorts to 15.15% in younger cohorts; and 2) the increase was not
consistent across phenotypic classes, but was most pronounced for
intermediate lifespan values (74-86 years). Thus, the APOE allele was
most strongly associated with intermediate lifespans, suggesting it may
be beneficial early in life and detrimental later in life (Figure 5F). The
apparent positive effect of the APOE allele on lifespan in cohorts after
1923 (displayed as an increase in MAF at intermediate lifespan values,
74-86 years, relative to shorter lifespan values, 40-74 years in Figure 5F)
was actually due to systematic censorship of longer lifespans in younger
cohorts (shown as empty squares in top right corner of Figure 5F).

Figure 4 Manhattan plot of association test statistics from analyses of (A) paternal and (H) maternal lifespan, cohort 1886-1940. (B) Heritability of
lifespan, estimate (+/2SE) with genotyped variants. Association analyses with imputed genotypes at candidate loci: (C) ANRIL, (D)WAPL, (E) LPA,
(F) CHRNA3/5, (G) SRRM3, (I) APOE. Annotation details are the same as in Figure 3.
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In summary: the minor-frequency APOE allele was associated with
intermediate lifespan values, and this association was stronger in
younger cohorts.

GWA meta-analysis of parental lifespan with UKB
dataset identified 15 lifespan associated variants
The only GWA studies of parental lifespan comparable to this analysis
are derived from the UKB (Pilling et al. 2016; Joshi et al. 2016; McDaid
et al. 2017; Joshi et al. 2017; Mostafavi et al. 2017; Pilling et al. 2017).
Of these studies, the analysis with the largest sample size, N = 389,166
(Pilling et al. 2017) identified six and fourteen loci associated with
maternal and paternal attained-age, respectively. The trait investigated
in that analysis is hazard of survival, a derived variable that is inclusive
of both lifespan and age. We estimated the same-gender genetic corre-
lation between the lifespan and attained-age across the two analyses
and found that these values were close to 1.0 (paternal rg = 0.98, SE =
0.06; maternal rg = 1.02, SE = 0.11; S Table 7). We then estimated the
across-gender genetic correlations for the two analyses and found that
rg ranged from 0.88 (SE = 0.08) to 0.90 (SE = 0.08); these values were
similar to those observed for the AncestryDNA specific analyses
(Table 2; Table S7). Next, we tested whether the AncestryDNA lifespan
associated loci were also significant in a meta-analysis of results from
the UKB attained-age GWA.

We conducted the AncestryDNA-UKB meta-analysis of more than
658,000 individuals usingMETAL (Willer, Li, and Abecasis 2010). We
included AncestryDNA GWA results from the broadly defined birth
cohort (1886-1940; the larger of the two cohorts we investigated). Only
variants that were common to both studies were included in the anal-
ysis; this requirement removed some variants that were found to be
significant in the UKB study (details provided below).

We found a total of 11 loci significantly associated with paternal
lifespan (P , 5e-8) in the meta-analysis (Figure 6A,B). Of the five
AncestryDNA paternal lifespan associated loci, three (LPA, ANRIL,
and CHRNA3/5) maintained genome-wide significance in the meta-
analysis, while WAPL and SRRM3 failed to do so (Table 3). Of the
14 loci associated with attained-age of fathers in the UKB GWA
(Pilling et al. 2017) genetic variants from ten loci were included in
this meta-analysis (see Methods). Eight of those reached statistical
significance (Table 3). In addition to the previously mentioned LPA,
ANRIL,CHRNA3/5we found variants at:APOE,CLESR2-PSRC1,ATXN2,
SEMA6D, andMICA-MICBwere significant in themeta-analysis (Table 3).

Two attained-age associated loci from the UKB analysis, ZW10 and
C20orf187, had P values greater than 5e-8 in the meta-analysis (Table 3).
Finally, we identified significant associations at three loci, LPL, EPHX2/
CLU, and LDLR (Table 3), which weremarginally associated with paternal
lifespan in the either the AncestryDNA or UKB studies.

We found a total of four loci significantly associatedwithmaternal
lifespan in the meta-analysis, including APOE, the one locus signif-
icantly associated with maternal lifespan in the AncestryDNA data-
set (Table 3; Figure 6C,D). Six loci were associated with maternal
attained-age in the UKB GWA, and three of them, including APOE,
were analyzed in the AncestryDNA-UKB meta-analysis. One locus,
LPA, achieved statistical significance, whereas PSORS1C3 failed to
do so (Table 3). Finally, we identified two loci which, to our knowl-
edge, have not been previously associated with maternal lifespan:
IP6K1 and CHRNA3/5 (Table 3).

DISCUSSION
The AncestryDNA-UKBmeta-analysis interrogated more than 658,000
samples and identified 11 loci significantly associated with paternal
lifespan and four loci significantly associated with maternal lifespan.
This analysis was the first large-scale, independent comparison of UKB
parental lifespan GWA results.

Many lifespan-associated loci were also linked with life-
shortening diseases
We found variants at five loci (ANRIL, LPA, APOE, LDLR, LPL) that
we refer to as candidate lifespan loci to emphasize that we identified a
significant statistical association, while acknowledging that we have no
functional-mechanistic data on how these genetic variants may affect
lifespan. However, we suspect these loci to affect lifespan via increased
risk for cardiovascular disease because they were previously associated
with this disease (Nikpay et al. 2015; van der Harst and Verweij 2018)
and it was the leading cause of death in the United States from 1980 to
2014 (Dwyer-Lindgren et al. 2016). ANRIL, LPA and APOE were sig-
nificantly associated with parental lifespan in both the individualAnces-
tryDNA and UKB analyses as well as the meta-analysis (Table 3). In
contrast, LDLR and LPLwere only significantly associated with lifespan
in the largemeta-analysis andmarginally associated with lifespan in the
individual AncestryDNA and UKB analyses (Table 3).

The CHRN3/5 locus has been linked to smoking behavior and
incidence of chronic obstructive pulmonary disease (Hobbs et al.
2017), another leading life-threatening disease in the United States

n Table 2 Phenotypic and genetic correlations for maternal vs. paternal lifespan and age vs. lifespan.N- Overlap is the number of samples
which have phenotypes measured for both traits. N - SNPs is the number of variants used in LD Score regression analysis. Phenotypic
variance (PVAR), the slope of the correlation (beta), and the Pearson correlation coefficient (rp). Genetic heritability (h2g) and genetic
correlation (rg)

Traits Phenotypic Correlation Genetic Correlation

Lifespan Lifespan N - Overlap
PVAR
Mat. PVAR Pat. rp N - SNPs

%h2g Maternal
(SE) %h2g Paternal (SE) rg (SE)

Maternal_
1918

Paternal_
1918

112498 161.53 166.20 0.068 385494 3.66 (0.64) 7.54 (0.58) 0.651 (0.090)

Maternal_
1940

Paternal_
1940

219514 153.42 160.27 0.095 386724 5.34 (0.36) 7.62 (0.32) 0.937 (0.041)

Age Lifespan N - Overlap PVAR

Age
PVAR

Lifespan
rp N - SNPs %h2g Age (SE) %h2g Lifespan

(SE)
rg (SE)

Male Maternal 90496 62.03 153.94 0.095 385974 3.04 (0.42) 4.78 (0.92) 0.700 (0.127)
Male Paternal 98313 59.88 162.09 0.000 386086 2.68 (0.37) 7.04 (0.86) 0.432 (0.097)
Female Maternal 109571 66.67 153.84 0.098 386209 3.69 (0.44) 4.88 (0.76) 0.693 (0.094)
Female Paternal 115806 59.86 161.66 0.004 386293 2.61 (0.40) 7.54 (0.80) 0.527 (0.094)
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(Dwyer-Lindgren et al. 2016). This locus was significantly associated
with paternal lifespan in both the AncestryDNA and UKB indepen-
dent analyses. In the meta-analysis, the combined power of both
cohorts also revealed this locus to also be significantly associated with
maternal lifespan (Table 3).

We found two lifespan candidate loci which were previously asso-
ciated with Alzheimer’s disease (Lambert et al. 2013): the newly iden-
tified EPHX2/CLU and, perhaps the most widely reported candidate
lifespan locus:APOE (Deelen et al. 2011; Deelen et al. 2014; Broer et al.
2015). Cohort-specific analysis of APOE revealed two curious results:
1) APOE exhibited a negative effect on lifespan in older cohorts and a
positive effect in younger cohorts (Figure 5E) and 2) the minor allele
frequency increased from 11 to 15% between the 1886 and 1940 birth
cohorts (Figure 5G). Theminor allele atAPOEwas at highest frequency
for intermediate lifespan values (74-86 years). This pattern was most
pronounced in the younger birth cohorts, and it suggested that this
allele (or a linked allele or alleles) confers a survival benefit early in life
but a survival detriment later in life.While it may be tempting to invoke
the antagonistic pleiotropy theory of aging to explain such a result
(Williams 1957), two variants in tight linkage disequilibrium, which
could even modify the action of two different genes in this gene-dense
region (S Figure 8), would equally explain this result.

Finally, three loci had no known disease associations. WAPL and
SRRM3, identified in the AncestryDNA analysis (Table 1) and IP6K1,
identified in the meta-analysis (Table 3) have, to our knowledge, not
been associated with any life-shortening diseases.

Heterogeneity of GWA results across analyses
Several loci that were significantly associated with lifespan in either the
AncestryDNA analysis (WAPL and SRRM3) or the UKB analysis (ma-
ternal lifespan: PSORS1C3; paternal lifespan: ZW10 and C20orf187) did

not achieve significance in the meta-analysis. One explanation is
that these loci do not affect parental lifespan. This could be due to
underlying population structure that was not fully accounted for in
the GWAmapping models. If so, the signal of association would not
be replicated in the comparison between the primarily-British vs.
primarily-American cohorts. Alternatively, the candidate loci may di-
rectly affect parental lifespan, but distinct population structure, envi-
ronmental hazards, or phenotypic definitions between the two studies
may have resulted in a failure to replicate across independent cohorts.

A second factor to consider is that the focal trait examined in our
AncestryDNA study was lifespan and only included deceased parents,
whereas the UKB study examined the attained-age of both living and
deceased parents.We reiterate that we did not include parents lacking a
death date in the AncestryDNA analysis because we could not deter-
mine whether any specific individual was in fact alive or deceased and
their date of death was never recorded (Ruby et al. 2018, Figure 1G).
The difference between focal traits implies that the UKB population
included younger individuals frommore recent birth cohorts compared
to AncestryDNA, and differences in the environment or population
sub-structure between historical eras may have contributed to the lack
a replication between studies.

Differences in the genetic architecture of lifespan
vs. age
The difficulty of obtaining genetic information from deceased individ-
uals has motivated investigators to use age as a proxy phenotype for
human lifespan (Schächter et al. 1994; Willcox et al. 2008; Newman
et al. 2010; Soerensen et al. 2010; Deelen et al. 2011; Nebel et al. 2011;
Beekman et al. 2013; Soerensen et al. 2013; Sebastiani et al. 2013;
Deelen et al. 2014; Broer et al. 2015; Sebastiani et al. 2017). We applied
that strategy in this study. However, we also addressed this issue using

n Table 3 AncestryDNA-UKB GWA meta-analysis of parental lifespan. The P value is given of the lead variant at each locus in the test of
association with parental lifespan in the AncestryDNA, UKB and combined cohorts. The z-score transformed variant effect sizes and
standard errors are listed for the AncestryDNA and UKB analyses. Variants which were significantly associated with lifespan in either
the AncestryDNA or UKB cohorts, and were not significant in the meta-analysis, are provided at the bottom of the table

Meta-
Analysis AncestryDNA UKB

Trait Locus rsid chr bp P P
Effect

(z-score) SE P
Effect

(z-score) SE

Paternal CLESR2..PSRC1 rs599839 1 109822166 4.43e-09 1.66e-03 0.010 0.003 4.00e-09 0.015 0.003
Lifespan MICA..MICB rs3131621 6 31425499 8.86e-09 7.72e-04 20.011 0.003 3.60e-08 20.012 0.002

LPA rs140570886 6 161013013 1.13e-24 1.84e-13 20.080 0.011 1.10e-17 20.077 0.009
LPL rs15285 8 19824667 8.46e-10 2.44e-05 0.012 0.003 1.20e-07 0.013 0.002
EPHX2..CLU rs7844965 8 27442064 5.79e-10 9.06e-06 0.013 0.003 2.20e-07 0.013 0.003
ANRIL rs1556516 9 22100176 1.57e-28 2.99e-15 0.020 0.003 1.30e-20 0.020 0.002
ATXN2 rs10774625 12 111910219 1.39e-08 9.97e-02 0.004 0.003 2.80e-12 0.015 0.002
SEMA6D rs4774495 15 47651362 4.92e-08 4.29e-03 20.011 0.004 3.30e-08 20.019 0.003
CHRNA3/5 rs9788721 15 78802869 1.10e-31 8.49e-10 20.016 0.003 1.40e-32 20.027 0.002
LDLR rs6511720 19 11202306 2.73e-09 6.78e-05 0.016 0.004 1.70e-07 0.018 0.003
APOE rs769449 19 45410002 1.86e-20 4.31e-05 20.016 0.004 5.60e-24 20.033 0.003

Maternal IP6K1 rs9872864 3 49792023 6.90e-10 5.61e-05 20.011 0.003 1.30e-07 20.011 0.002
Lifespan LPA rs186696265 6 161111700 8.43e-09 3.33e-03 20.034 0.012 1.60e-08 20.051 0.009

CHRNA3/5 rs4887072 15 78925435 1.92e-09 3.82e-05 0.014 0.003 6.80e-07 0.013 0.003
APOE rs429358 19 45411941 4.37e-57 2.53e-09 20.023 0.004 1.30e-68 20.053 0.003

Not Replicated
Paternal SRMM3 rs28689051 7 75763624 3.41e-03 2.64e-09 0.016 0.003 2.60e-01 20.003 0.002

Lifespan WAPL rs10887623 10 88315181 3.32e-03 3.36e-06 20.020 0.004 9.20e-01 0.000 0.004
ZW10 rs17613838 11 113638177 1.92e-04 8.11e-01 0.001 0.003 6.10e-09 20.016 0.003
C20orf187 rs6077996 20 10972839 2.28e-04 7.21e-01 0.001 0.003 4.60e-09 20.013 0.002

Maternal
Lifespan

PSORS1C3 rs1265159 6 31140047 6.43e-07 3.43e-01 20.004 0.004 3.60e-10 20.016 0.003
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a second strategy: we examined the complete lifespans of parents
and the genotypes of their offspring (similar to the approach for-
malized in Liu et al. (2017)). The genetic correlations between the
outcomes of these two strategies was relatively high, ranging from
0.43 to 0.70 in gender specific comparisons (Table 2). Nonetheless,
of the several loci that were associated with either age or parental
lifespan to a statistically significant degree, only the APOE locus was
associated with both (Figure 4I; Figure S10). These results suggested
that the use age as a proxy for lifespan in a GWA analysis is
informative but not comprehensive.

The differences in GWA mapping results between age and life-
span were likely due, at least in part, to the fundamental nature of the
two traits. Lifespan is a property of deceased individuals and was
measured prospectively on individuals from the same birth cohort.
Age is a property of the living and GWA analyses of this trait are
retrospective comparisons between differentially aged individuals
from distinct birth cohorts. Prospective GWA analysis of lifespan
potentially avoids problems that are specific to retrospective studies:
recruitment bias of long-lived individuals and establishment of an
appropriate youthful control population (Clayton and McKeigue
2001; Manolio, Bailey-Wilson, and Collins 2006). Recruitment
biases may explain why the association between APOE and current
age is much stronger than with lifespan; variants at this locus sig-
nificantly increases the incidence of Alzheimer’s disease in old age,
and may inhibit participation in web-based genealogy services and
in providing informed consent to research.

Little heritability is “missing” from the SAP cohort
We estimated hg2 for paternal and maternal lifespan to be between
2 and 8%, depending on the cohort examined (Figure 3F, 4B). For
many phenotypes, it has been noted that estimated hg2 values, mea-
sured using GWA methods, are generally much less than h2 values
measured based on familial phenotypic correlations; this recur-
ring discrepancy is known as the “missing heritability” problem
(Manolio et al. 2009). While our hg2 values could potentially have
been increased through the evaluation of genome-wide imputed
variants (Yang et al. 2010; Yang et al. 2015), our previously pub-
lished measure of lifespan heritability derived from familial corre-
lations in the same SAP used for this analysis (Ruby et al. 2018)
produced a range of h2 values, all below 10%. While our estimate of
hg2 was slightly lower than our estimate of h2, the values reported in
each study cover the same range, giving the impression that there
was little heritability remaining to be explained.

In comparison to previously published estimates of h2 for human
lifespan, our estimate of hg2 was low, and would have been interpreted
as consistent with the “missing heritability” problem (Manolio et al.
2009). For instance, another large-pedigree study recently estimated h2

to be between 16 and 18% (Kaplanis et al. 2018), and multiple smaller
studies estimated h2 to be in the range of 15–30% (Philippe 1978;Mayer
1991; Herskind et al. 1996; Ljungquist et al. 1998; Gavrilov et al. 1998;
Mitchell et al. 2001; Kerber et al. 2001; Gögele et al. 2011). Had those
estimates of heritability been used, the apparently “missing” compo-
nent following our present analysis would have been quite large.

Figure 5 (A-E) Forest plots of
allelic effect in years (+/2SE) of
lead SNP at each candidate lo-
cus in 1886-1940 birth cohorts.
Alternating red and brown lines
mark successive cohorts. (F)
Heat map of APOE minor allele
frequency in the 1886-1940
birth cohorts, binned into life-
span phenotype classes span-
ning 40 – 120 years. White
squares are missing data- birth
cohort, phenotype combina-
tions less than 500 individuals.
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Importantly, our own estimates of under 10% overall heritability for
lifespan differed from the precedent literature not by the familial
correlations, but rather by our accounting for considerable assorta-
tive mating (Ruby et al. 2018). Therefore, our observation that the
small difference between h2 and hg2 is due to the consideration of
assortative mating is an alternative hypothesis to the often invoked
explanations: rare variants, structural variation, or epistatic inter-
actions (Manolio et al. 2009). The extent of assortative mating,
either by primary or secondary means, has not been thoroughly ex-
plored for many other phenotypes. It is worth considering that the
inflation of h2 estimates due to assortative mating may be more gen-
erally responsible for the recurrence of sizable “missing heritability”
gaps.
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