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ABSTRACT

This thesis presents a plantwide model predictive control strategy in which subsystems pro-

vide feedback by solving a local optimization and exchanging information across the plant.

The plant model is required to satisfy a stabilizability condition that does not depend upon the

strength of the open-loop, inter-subsystem interactions. This control strategy has the following

features: hard input constraints are satisfied; terminating the distributed optimization iteration

prior to convergence does not affect nominal stability; the distributed optimization converges

to the Pareto optimal (centralized) solution; no coordinating optimization is employed. Expo-

nential stability of the closed-loop plantwide system is proven for the state and output feedback

cases. A modification is presented in which constraints sparsely coupled between subsystems

can be handled without loss of stability or optimality.

An extension to the cooperative controller is provided in which communication between sub-

systems occurs at multiple time schedules, as in traditional hierarchical control. The hierar-

chical control scheme is shown to provide exponentially stable performance under state and

output feedback. This extension uses a modification of the distributed optimization. The op-

timization is shown to converge to the Pareto optimum and can be terminated early without

affecting nominal stability.

To demonstrate the flexibility of cooperative control, a series of examples are presented. These

examples show that cooperative control can nominally stabilize subsystems optimizing, com-

municating, and sampling on any time scale. Further examples are provided to illustrate that



xvi

the modeling required for cooperative control can be identified over time and that the models

can be generated from a centralized first-principles model.

Finally, a novel distributed optimization for nonconvex problems is presented that provides

convergence to stationary points. This optimization is combined with a new result in subop-

timal MPC to develop a plantwide distributed nonlinear controller. This controller provides

asymptotically stablizing feedback and an example is used to illustrate performance.
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Chapter 1

Introduction

Model predictive control (MPC) has become a popular control strategy in the petrochemical

industry. Large chemical plants and refineries benefit from several properties of MPC: its ability

to account for hard process constraints, the ease of tuning MPC for processes with many vari-

ables, and the robustness of MPC to modeling error. Moreover, MPC is adaptable to a variety of

systems and operating objectives. Multiple vendors and industrial plants have successfully de-

signed and implemented MPC (Qin and Badgwell, 2003; Young, Bartusiak, and Fontaine, 2001).

In an MPC strategy, inputs are chosen by solving an optimization for each time instant feed-

back is requested by the plant. This optimization is usually solved online, accounting for the

current conditions of the plant, any process or safety constraints, and disturbances affecting

the system. Using a model, a forecast of output dynamics is constructed for each feasible in-

put sequence, and the optimization chooses the input sequence that best achieves a design

← Past

Inputs

Setpoint

Future →

u

k = 0

y
Outputs

Figure 1.1: The optimization horizon in MPC.
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Figure 1.2: Interacting subsystems in a plant.

goal (see Figure 1.1). The first move of the chosen input sequence is injected into the plant

and measurements are received from sensors. These measurements are used to obtain better

parameters for the model and a more accurate estimate of current state of the plant. A new

optimization is formed and the process is repeated (Mayne, Rawlings, Rao, and Scokaert, 2000).

Distributed control

An industrial plant is usually composed of a number of interacting subsystems (see Fig-

ure 1.2). An example is an oil refinery, in which a catalytic cracker is used to break crude oil

into lighter hydrocarbons which are separated in a network of distillation columns. Often some

heavier products are recycled back into the crackers to be broken into lighter products. Hence,

the cracker and distillation columns form two interconnected subsystems within the refinery.

In distributed control, the subsystems are controlled independently and the plantwide open-

loop interactions are modeled explicitly. Subsystem data, usually open-loop input trajectories,

are exchanged between the controllers and a distributed optimization iterate is taken. This

information allows each controller to anticipate the future behavior of the plant and take ap-

propriate action to maintain stability and improve performance (Scattolini, 2009).
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Other plantwide control strategies are decentralized and centralized control. In a decen-

tralized strategy, no information is exchanged between the subsystems (Sandell Jr., Varaiya,

Athans, and Safonov, 1978). Although decentralized control does not have this communication

requirement, it is well known that strongly interacting subsystems are difficult to stabilize with

decentralized control. Alternatively in centralized control, the plantwide feedback decisions

are made by a single controller. Increased computational power, faster optimization software,

and algorithms designed specifically for large-scale plantwide control have made centralized

control more viable (Bartlett, Biegler, Backstrom, and Gopal, 2002; Pannocchia, Rawlings, and

Wright, 2007). Centralized controllers are difficult to implement, however. Organizing subsys-

tems into a centralized control optimization is often impractical or impossible for large-scale

plants, and during maintenance of the controller the entire plantwide MPC must be offline.

Plantwide coordinating optimizations have also been proposed to increase plantwide perfor-

mance (Mesarović, Macko, and Takahara, 1970; Scattolini, 2009). Coordinators suffer from the

same disadvantages as centralized control, however, because the plantwide control depends

upon the reliability of the central optimization layer.

Distributed control offers a middle ground between decentralized and centralized control:

the subsystems are independent yet practical performance properties exist. Distributed con-

trol can be split into noncooperative and cooperative strategies. In noncooperative control,

the exchanged information is used to predict local performance, and each subsystem chooses

feedback that improves a local objective. Nominal stability can be shown only for weakly in-

teracting subsystems (Rawlings and Stewart, 2007). Alternatively, for cooperative control each

of the subsystem controllers seek to improve a shared plantwide objective. Nominal stability

holds for even strongly interacting subsystems and for any finite number of optimization iter-

ates. Under sufficient optimization iteration, the controllers converge to the Pareto optimal, or

centralized, plantwide feedback. The extra requirement for a cooperative control implementa-

tion is that the subsystem models and objective functions are shared within the plant as they

are updated.
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Academic impact of cooperative control

Although cooperative control is motivated above in the context of distributed control, it

may also be viewed as a class of suboptimal control. A suboptimal controller requires its online

optimization to satisfy two criteria: candidate solutions are feasible and the objective function

improves at each optimization iterate. Any optimization of this class, coupled with suboptimal

control theory, is able to be terminated before convergence and provide stabilizing feedback.

If this optimization is distributed then the suboptimal controller is a cooperative distributed

controller. It is this combination of distributed optimization theory with suboptimal control

theory that gives cooperative control its properties.

In this thesis we show the flexibility of this approach to distributed control. In general, the

stability of cooperative distributed MPC is shown as a specific case of suboptimal MPC. We

provide distributed optimizations, both in the linear and nonlinear case, that satisfy the criteria

for a suboptimal controller.

Industrial impact of cooperative control

In a traditional multivariable PID control framework, it is necessary to find input and output

pairings that best control the system. Tools such as RGA analysis aid the practitioner to select

these pairings, but for strongly interacting systems, it is a nontrivial task to find the best input

and output pairs (Larsson and Skogestad, 2000). It is not necessary to pair inputs and outputs

in an MPC, however, because the optimization accounts for all the interactions simultaneously

and selects stabilizing inputs for each time step. Tuning an MPC is more natural because the

pairing question is unnecessary and nominal stability is guaranteed for a wide choice of tuning

parameters.

Similarly in plantwide MPC, decentralized control theory guides the practitioner to select

plant subsystem decompositions based on the open-loop interaction strength of the subsys-

tems and offers tuning strategies for reducing the closed-loop effects of subsystem interactions.

In cooperative MPC, the choice of plant decomposition is widened because the magnitude of

the open-loop interactions does not affect stability. Tuning in cooperative MPC is more natural
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because nominal closed-loop stability is guaranteed without needing to detune the subsystem

controllers. Cooperative control has the potential to be a successful alternative to traditional

decentralized control.
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Overview of Thesis

Chapter 2 – Literature Review: In the following chapter, we summarize the foundational lit-

erature used in this thesis and give an overview of recent developments in distributed MPC.

Chapter 3 – Cooperative Control for Linear Systems: This chapter provides the fundamen-

tal theory of linear cooperative MPC. Nominal stability is established for both the state and

output feedback cases. An extension to the method is given for plants with sparsely coupled

constraints.

Chapter 4 – Hierarchical Cooperative Control: Drawing upon the framework of Chapter 3, an

extension to linear cooperative MPC is given in which the subsystems are divided into neighbor-

hoods. Communication is delayed between the neighborhoods, achieving properties similar to

hierarchical control. Stability is shown for both the state and output feedback cases.

Chapter 5 – Implementing Plantwide Cooperative Control: We show the flexibility of coop-

erative MPC as a plantwide control method. Several examples are given that show time scale

separation in the sampling, optimization, and communication of the subsystem controllers. We

also show how to move to cooperative control from a pre-existing decentralized and centralized

control strategy.

Chapter 6 – Cooperative Control for Nonlinear Systems: In this chapter, we relax the linear

modeling assumption. The nonlinearity of the models leads to a nonconvex objective function,

and therefore we give a novel nonconvex distributed optimization. Stability is established for

the state feedback case.

Chapter 7 – Conclusions and Future Work: We end with a summary of the contributions of

this thesis and give recommendations for further work in cooperative control.
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Chapter 2

Literature Review

2.1 Previous Work

The controllers proposed in this thesis are model predictive controllers. The theory of cen-

tralized model predictive control (MPC) has reached a mature stage. Several texts on MPC are

available (Maciejowski, 2002; Camacho and Bordons, 2004; Rossiter, 2004; Wang, 2009). In par-

ticular, this thesis makes use of the monograph by Rawlings and Mayne (2009). Rawlings and

Mayne (2009, pp.409–482) present an extensive study of distributed control, including a discus-

sion of the differences between noncooperative and cooperative control. Additionally, Rawlings

and Mayne (2009, pp.89–186) investigate the MPC regulation problem for the general nonlinear

case. This study provides key control principles, such as terminal control and suboptimal MPC,

used in this thesis.

In addition to control theory, cooperative MPC relies upon distributed optimization the-

ory. An encyclopedic study of distributed and parallel optimization algorithms is presented by

Bertsekas and Tsitsiklis (1997). Convergence results are provided for convex Jacobi distributed

optimization algorithms (Bertsekas and Tsitsiklis, 1997, pp.219–223), the class of algorithms we

propose for linear cooperative control. For nonlinear cooperative control, we utilize gradient

projection algorithms, which converge to stationary points of the nonconvex objective func-

tion. This optimization method is investigated by Nocedal and Wright (2006, pp.485–490) and

Bertsekas (2008, pp.228–249).
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The first comprehensive analysis of cooperative MPC was given by Venkat (2006). A number

of results are provided, including exponential closed-loop stability for state and output feed-

back and an extension for asynchronous feedback and optimization. The particular applica-

tions of interest are power distribution networks and chemical processes, which are illustrated

in several examples.

This thesis uses the results of Venkat as a foundation, but we seek to clarify the presentation

and notation of cooperative control while expanding and generalizing the results. In Chapter 3,

we extend the stability of cooperative control to a broader class of plants. Venkat assumes that

the inter-subsystem open-loop dynamics are stable. We weaken this requirement to a stabi-

lizability assumption. Moreover, Venkat does not show optimal convergence of the distributed

optimization with coupled constraints in the control problem. We provide an extension to co-

operative control for sparsely coupled constraints. Chapter 4 builds upon the asynchronous

feedback scheme of Venkat and presents a general theory of cooperative control with asyn-

chronous communication and reduced plantwide data exchange. For all of the above exten-

sions, we maintain the exponential stability result.

2.2 Review of Distributed Control Literature

Scattolini (2009) has published a review of large scale, plantwide MPC strategies. This paper

contains over 100 references and examines decentralized, distributed, and hierarchical control

architectures. The distributed control methods are separated into noniterating and iterating

categories. The papers (Venkat, Rawlings, and Wright, 2005, 2006) are offered as examples of

cooperative control. In the review these papers are classed as iterative methods because nego-

tiation is required between the subsystem controllers. It is shown in Chapter 3, however, that

cooperative control is both iterative and noniterative. Although the subsystems negotiate to

find the plantwide feedback, the negotiation step takes place offline by exchanging modeling

and objective information. For the online controller, one iterate of the distributed optimization

is sufficient for stability. If time allows, more optimization iterates may be taken.
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In the following sections, we provide further comments on some of the literature covered by

Scattolini (2009) and additional background on recently published work.

2.2.1 Linear Distributed Control

2.2.1.1 Noncooperative Control

A noncooperative distributed control architecture for transportation networks is investi-

gated in (Negenborn, De Schutter, and Hellendoorn, 2008). Gauss-Seidel and Jacobi, also of-

ten referred to as serial and parallel, optimization algorithms are proposed for the coordination

of the controllers through an augmented Lagrangian method.1 Mercangöz and Doyle (2007)

develop a noncooperative controller for an experimental four-tank system. The experimental

model is plantwide stable. Closed-loop stability is shown for a simulation and through a dis-

turbance rejection experiment. For the experimental system, the proposed controller is shown

to improve performance over decentralized control. Al-Ghewi, Budman, and Elkamel (2010)

compare different plant subsystem decompositions for centralized, noncooperative, and de-

centralized control. They develop a mixed-integer nonlinear optimization that optimizes the

plant performance based on a performance metric. The metric can be tuned to trade-off be-

tween controller performance and subsystem structure simplicity.

2.2.1.2 Cooperative Control

An article length presentation of cooperative control is given in (Venkat, Rawlings, and Wright,

2007). Exponential stability is proven for the state feedback case and for output feedback with

decentralized Kalman filtering. Additionally, the paper includes a discussion of partial cooper-

ation, in which some inter-subsystem models are removed from the distributed controller. The

proposed controller is evaluated for chemical plant examples. Cooperative control is also ap-

plied to power distribution systems in (Venkat, Hiskens, Rawlings, and Wright, 2008). Necoara,

Doan, and Suykens (2008) propose a novel distributed optimization algorithm using proximal

1See (Nocedal and Wright, 2006, pp.514–526) for a discussion of augmented Lagrangian methods.
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center decomposition in order to speed up the optimization performance of cooperative con-

trol. Although the algorithm converges more quickly, it requires a coordinating dual optimiza-

tion to be solved for the plantwide MPC problem. Another optimization speed up for the co-

operative distributed optimization is presented in (Pannocchia, Wright, Stewart, and Rawlings,

2009). The proposed algorithm uses partial enumeration, in which a subset of the solutions to

the subsystem control optimizations are stored for fast retrieval. An alternative to the work of

Venkat et al. is the game theory approach of Maestre, Muñoz de la Peña, and Camacho (2010),

in which two subsystems optimize a local objective function independently and the feedback

is chosen by a cooperative game. The solutions are traded between the subsystems and the

plantwide cost is evaluated for each solution. The subsystems then choose the control feed-

back that provides the largest decrease of the objective function from a table of the possible

feedback choices. Camponogara and de Oliveira (2009) develop a decomposition method for

the plantwide control problem. Feedback is determined using a Gauss-Seidel version of gradi-

ent projection.

2.2.2 Nonlinear Distributed Control

2.2.2.1 Noncooperative Control

The book by Başar and Olsder (1999) provides a fundamental analysis of the challenges

present in noncooperative control for nonlinear systems. Popular references for nonlinear non-

cooperative control are (Camponogara, Jia, Krogh, and Talukdar, 2002) and (Jia and Krogh,

2002). In these articles stability is shown for weakly interacting, unconstrained systems. The

authors provide a summary of Gauss-Seidel and Jacobi optimization algorithms for distributed

control, but do not give convergence results for the control algorithm. Camponogara and Taluk-

dar (2007) explicitly discuss the algorithm properties, proving the convergence of the Gauss-

Seidel algorithm. They also provide heuristics to promote convergence of the Jacobi algorithm

iterates to the Pareto set of plantwide feedback strategies.
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Many of the results in noncooperative control have been presented for multi-vehicle appli-

cations, such as coordinating robots and unmanned aeronautical vehicles (UAVs). Noncooper-

ative control often performs well for these applications because the vehicles do not dynamically

interact. In several articles (Keviczky, Borrelli, and Balas, 2006, 2007; Keviczky, Borrelli, Fregene,

Godbole, and Balas, 2008), a distributed control strategy for dynamically decoupled subsys-

tems is presented. The subsystems are coupled through the objective function and exchange

information with their neighbors. Each subsystem solves for the local feedback and also the

feedback of its neighbors. Keviczky et al. prove asymptotic stability at the origin. Another ap-

proach is by Dunbar and Murray (2006), in which the subsystems optimization problems are

augmented with a compatibility constraint that requires the actual feedback and the assumed

feedback of the neighboring subsystems to stay within a bound. In (Dunbar, 2007), this method

is extended to weakly coupled interacting subsystems. Franco, Magni, Parisini, Polycarpou, and

Raimondo (2008) show stability for dynamically uncoupled agents that exchange information

with each other and optimize a local objective. The coupling of the control problem is through

the objective function, which is constructed so that the agents move toward a common ob-

jective. Stability is ensured if the coupling in the objective function is sufficiently small in the

terminal region.

2.2.2.2 Cooperative Control

In a series of papers, Liu, Muñoz de la Peña, and Christofides develop a nonlinear dis-

tributed controller using Lyapunov-based control theory. The original idea for the controller

is provided in (Liu, Muñoz de la Peña, Ohran, Christofides, and Davis, 2008) in which control

of nonlinear systems is split between two tiers of controllers. The lower tier uses a Lyapunov-

based controller to stabilize the plant, and an upper tier controller augments the plantwide con-

trol by providing additional feedback. A stability constraint is added to the upper tier to keep it

from destabilizing the feedback from the lower tier. The plantwide control feedback is shown

to be practically stable2, which establishes that the plant stays in an invariant set containing

2For a definition of practical stability see (Lakshmikantham, Leela, and Martynyuk, 1990, pp.9-10)
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the origin. In the paper (Liu, Muñoz de la Peña, and Christofides, 2009) the idea is expanded

so that the lower tier is an MPC. The Lyapunov-based controller is used by the lower tier as an

initial condition for the MPC, which tries to improve performance while meeting the stability

constraint. After computing its feedback, the lower tier MPC sends its solution to the upper

tier. As before, the upper tier MPC provides additional feedback. In both approaches, the lower

tier controller is assumed to stabilize the entire plant without the upper tier controller. In (Liu,

Chen, Muñoz de la Peña, and Christofides, 2010a), the authors expand the theory to account for

asynchronous and delayed sampling. The estimates are not filtered, hence to maintain stabil-

ity, the stabilizable set is shrunken to provide enough back-off for the error associated with the

delay. In the paper (Chilin, Liu, Muñoz de la Peña, Christofides, and Davis, 2010), the two tier

controller method is expanded to be stable during actuator faults. A backup controller, using a

predefined Lyapunov-based controller, is designed and turned on during these faults.

A further expansion of the method is given in (Liu et al., 2010b) in which the number of sub-

systems is increased to any finite number of controllers and the assumption that one controller

can stabilize the plant is removed. Two distributed optimization algorithms are proposed. The

first algorithm is a Gauss-Seidel optimization strategy, in which each of the subsystem con-

trollers solves for feedback one-at-a-time. The other algorithm is of the Jacobi class and allows

the controllers to solve for feedback simultaneously. In both cases, the controllers are initial-

ized with the feedback law from a pre-defined, stabilizing Lyapunov-based controller. Each

controller tries to improve performance and then sends the solution of its local optimization

to the other subsystems. It is not shown, however, that the optimization schemes improve the

plantwide Lyapunov function. Therefore, to prove stability, the stabilizable set contains only

those states in which the subsystems do not significantly interact.

Another Lyapunov-based approach is provided by Hermans, Lazar, and Jokić (2010a). Each

subsystem is required to satisfy a Lyapunov stability constraint that involves only neighboring

subsystems, leading to low communication. The distributed controller is applied to power net-

works in (Hermans, Lazar, Jokić, and van den Bosch, 2010b).
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A weakness of this approach is that there does not exist a general method in the literature

to find Lyapunov-based controllers. The Lyapunov-based controller is critical for the stability

of the plant under feedback from the distributed MPC, because it is used to define the subsys-

tem stability constraint. Moreover, it is assumed that the Lyapunov-based controller is defined

for every state of interest. Developing a priori control laws is an active area of research and

includes methods such as explicit MPC (Rawlings and Mayne, 2009, pp.483–519). Once a sta-

bilizing plantwide control law is defined, however, the need for distributed control is weakly

motivated. In contrast to this approach, we propose a nonlinear distributed controller in Chap-

ter 6 that, given a feasible input sequence at initialization, generates a stabilizing warm start

online. A pre-defined stabilizing control law is assumed to exist only in the terminal region.

2.2.3 Hierarchical and Coordinated Control

A classic reference for hierarchical control architectures is (Mesarović et al., 1970). Hierar-

chical and coordinating MPC is an active area of research. Aske, Strand, and Skogestad (2008)

propose a coordinating controller for maximizing the economic plant profit, which is assumed

to be achieved for the highest plant throughput. The coordinating controller tries to increase

flow through the bottleneck by moving the plant steady state. Cheng, Forbes, and Yip (2007)

develop a coordinated distributed optimization to solve for plantwide optimal steady states.

The optimization is based on augmented Lagrangian algorithms. In (Marcos, Forbes, and Guay,

2009) the coordinated distributed optimization is extended to provide plantwide dynamic feed-

back. Negenborn, Leirens, De Schutter, and Hellendoorn (2009) propose a hierarchical MPC

design for voltage control in a power network. The supervisory controller uses a pattern search

algorithm to determine setpoints of the lower level controllers.



14

Chapter 3

Cooperative Control for Linear Systems

Note: Excluding Section 3.7, the text of this chapter appears in (Stewart, Venkat, Rawlings,

Wright, and Pannocchia, 2010b).

3.1 Introduction

In this chapter, we state and prove the stability properties for cooperative distributed con-

trol under state and output feedback. In Section 3.2, we provide relevant theory for suboptimal

control. Section 3.3 provides stability theory for cooperative control under state feedback. For

ease of exposition, we introduce the theorems for the case of two controllers only. Section 3.4

extends these results to the output feedback case. The results are modified to handle coupled

input constraints in Section 3.5. We then show how the theory extends to cover any finite num-

ber of controllers. We conclude with an example comparing the performance of cooperative

control with other plantwide control strategies.

3.2 Suboptimal Model Predictive Control

Requiring distributed MPC strategies to converge is equivalent to implementing centralized

MPC with the optimization distributed over many processors. Alternatively, we allow the sub-

systems to inject suboptimal inputs. This property increases the flexibility of distributed MPC,

and the plantwide control strategy can be treated as a suboptimal MPC. In this section, we pro-

vide the definitions and theory of suboptimal MPC and draw upon these results in the sequel

to establish stability of cooperative MPC.
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We define the current state of the system as x ∈Rn , the trajectory of inputs

u = {u(0),u(1), . . . ,u(N −1)} ∈RN m

and the state and input at time k as (x(k),u(k)). For the latter, we often abbreviate the notation

as (x,u). Denote the input constraints as u ∈UN in which U is compact, convex, and contains

the origin in its interior. Denote XN as the set of all x for which there exists a feasible u. Ini-

tialized with a feasible input trajectory ũ, the controller performs p iterations of a feasible path

algorithm and computes u such that some performance metric is improved. At each sample

time, the first input in the (suboptimal) trajectory is applied, u = u(0). The state is updated by

the state evolution equation x+ = f (x,u), in which x+ is the state at the next iterate.

For any initial state x(0), we initialize the suboptimal MPC with a feasible input sequence

ũ(0) = h(x(0)) with h(·) continuous. For subsequent decision times, we denote ũ+ as the warm

start, a feasible input sequence for x+ used to initialize the suboptimal MPC algorithm. Here, we

set ũ+ = {u(1), . . . ,u(N −1),0}. This sequence is obtained by discarding the first input, shifting

the rest of the sequence forward one step and setting the last input to zero.

We observe that the input sequence at termination u+ is a function of the state initial con-

dition x+ and of the warm start ũ+. Noting that x+ and ũ+ are both functions of x and u, the

input sequence u+ can be expressed as a function of only (x,u) by u+ = g (x,u). We refer to the

function g as the iterate update.

Given a system x+ = f (x), with equilibrium point at the origin 0 = f (0), denote φ(k, x(0)) as

the solution x(k) given the initial state x(0). We consider the following definition.

Definition 3.1 (Exponential stability on a set X). The origin is exponentially stable on the set X

if for all x(0) ∈X, the solution φ(k, x(0)) ∈X and there exists α> 0 and 0 < γ< 1 such that

∣∣φ(k, x(0))
∣∣≤α |x(0)|γk

for all k ≥ 0.

The following lemma is an extension of (Scokaert, Mayne, and Rawlings, 1999, Theorem 1)

for exponential stability.
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Lemma 3.2 (Exponential stability of suboptimal MPC). Consider a systemx+

u+

=
F (x,u)

g (x,u)

=
 f (x,u)

g (x,u)

 (x(0),u(0)) given (3.2.1)

with a steady-state solution (0,0) = ( f (0,0), g (0,0)). Assume that the function V (·) : Rn ×RN m →
R+ and input trajectory u satisfy

a |(x,u)|2 ≤V (x,u) ≤ b |(x,u)|2 (3.2.2a)

V (x+,u+)−V (x,u) ≤−c |(x,u(0))|2 (3.2.2b)

|u| ≤ d |x| x ∈Br (3.2.2c)

in which a,b,c,d ,r > 0. If XN is forward invariant for the system x+ = f (x,u), the origin is

exponentially stable for all x(0) ∈XN .

Notice in the second inequality (3.2.2b), only the first input appears in the norm |(x,u(0))|2.

Note also that the last inequality applies only for x in a ball of radius r , which may be chosen

arbitrarily small.

Proof of Lemma 3.2. First we establish that the origin of the extended system (3.2.1) is exponen-

tially stable for all (x(0),u(0)) ∈XN ×UN . For x ∈Br , we have |u| ≤ d |x|. Consider the optimiza-

tion

s = max
u∈UN

|u|

The solution exists by the Weierstrass theorem since UN is compact and by definition we have

that s > 0. Then we have |u| ≤ (s/r ) |x| for x ∉Br . Therefore, for all x ∈XN , we have |u| ≤ d̄ |x| in

which d̄ = max(d , s/r ), and

|(x,u)| ≤ |x|+ |u| ≤ (1+ d̄) |x| ≤ (1+ d̄) |(x,u(0))|

which gives |(x,u(0))| ≥ c̄ |(x,u)| with c̄ = 1/(1+ d̄) > 0. Therefore the extended state (x,u) satis-

fies

V (x+,u+)−V (x,u) ≤−c̃ |(x,u)|2 (x,u) ∈XN ×UN (3.2.3)
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in which c̃ = c(c̄)2. Together with (3.2.2), (3.2.3) establishes that V (·) is a Lyapunov function of

the extended state (x,u) for all x ∈XN and u ∈UN . Hence for all (x(0),u(0)) ∈XN ×UN and k ≥ 0,

we have

|(x(k),u(k))| ≤α |(x(0),u(0))|γk

in which α> 0 and 0 < γ< 1. Notice that XN ×UN is forward invariant for the extended system

(3.2.1).

Finally, we remove the input sequence and establish that the origin is exponentially stable

for the closed-loop system. We have for all x(0) ∈XN and k ≥ 0

∣∣φ(k, x(0))
∣∣=|x(k)| ≤ |(x(k),u(k))| ≤α |(x(0),u(0))|γk

≤α(|x(0)|+ |u(0)|)γk ≤α(1+ d̄) |x(0)|γk

≤ᾱ |x(0)|γk

in which ᾱ=α(1+ d̄) > 0, and we have established exponential stability of the origin by observ-

ing that XN is forward invariant for the closed-loop system φ(k, x(0)).

Remark 3.3. For Lemma 3.2, we use the fact that U is compact. For unbounded U exponential

stability may instead be established by compactness of XN .

3.3 Cooperative Model Predictive Control

We now show that cooperative MPC is a form of suboptimal MPC and establish stability. To

simplify the exposition and proofs, in Sections 3.3–3.5 we assume that the plant consists of only

two subsystems. We then establish in Section 3.6 that the results extend to any finite number of

subsystems.
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3.3.1 Definitions

3.3.1.1 Models

We assume for each subsystem i that there exist a collection of linear models denoting the

effects of inputs of subsystem j on the states of subsystem i for all (i , j ) ∈ I1:2 × I1:2

x+
i j = Ai j xi j +Bi j u j

in which xi j ∈Rni j , u j ∈Rm j , Ai j ∈Rni j×ni j , and Bi j ∈Rni j×m j . For a discussion of identification

of this model choice, see (Gudi and Rawlings, 2006). In Section 5.2.2, we show how these sub-

system models are related to the centralized model. Considering subsystem 1, we collect the

states to form x11

x12

+

=
A11

A12

x11

x12

+
B11

0

u1 +
 0

B12

u2

which denotes the model for subsystem 1. To simplify the notation, we define the equivalent

model

x+
1 = A1x1 + B̄11u1 + B̄12u2

for which

x1 =
x11

x12

 A1 =
A11

A12

 B̄11 =
B11

0

 B̄12 =
 0

B12


in which x1 ∈ Rn1 , A1 ∈ Rn1×n1 , and B̄1 j ∈ Rn1×m j with n1 = n11 +n12. Forming a similar model

for subsystem 2, the plantwide model isx1

x2

+

=
A1

A2

x1

x2

+
B̄11

B̄21

u1 +
B̄12

B̄22

u2

We further simplify the plantwide model notation to

x+ = Ax +B1u1 +B2u2

for which

x =
x1

x2

 A =
A1

A2

 B1 =
B̄11

B̄21

 B2 =
B̄12

B̄22


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3.3.1.2 Objective Functions

Consider subsystem 1, for which we define the quadratic stage cost and terminal penalty,

respectively

`1(x1,u1) = 1

2
(x ′

1Q1x1 +u′
1R1u1) (3.3.1a)

V1 f (x1) = 1

2
x ′

1P1 f x1 (3.3.1b)

in which Q1 ∈ Rn1×n1 , R1 ∈ Rm1×m1 , and P1 f ∈ Rn1×n1 . We define the objective function for sub-

system 1

V1
(
x1(0),u1,u2

)= N−1∑
k=0

`1
(
x1(k),u1(k)

)+V1 f
(
x1(N )

)
Notice V1 is implicitly a function of both u1 and u2 because x1 is a function of both u1 and u2.

For subsystem 2, we similarly define an objective function V2. We define the plantwide objective

function

V
(
x1(0), x2(0),u1,u2

)= ρ1V1
(
x1(0),u1,u2

)+ρ2V2
(
x2(0),u1,u2

)
in which ρ1,ρ2 > 0 are relative weights. For notational simplicity, we write V (x,u) for the plant

objective.

3.3.1.3 Constraints

We require that the inputs satisfy

u1(k) ∈U1 u2(k) ∈U2 k ∈ I0:N−1

in which U1 and U2 are compact and convex such that 0 is in the interior of Ui ∀i ∈ I1:2.

Remark 3.4. The constraints are termed uncoupled because the feasible region of u1 is not af-

fected by u2, and vice-versa.
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3.3.1.4 Assumptions

For every i ∈ I1:2, let Ai = diag(A1i , A2i ) and Bi =
[B1i

B2i

]
. The following assumptions are used

to establish stability.

Assumption 3.5. For all i ∈ I1:2

(a) The systems (Ai ,Bi ) are stabilizable.

(b) The input penalties Ri > 0.

(c) The state penalties Qi ≥ 0.

(d) The systems (Ai ,Qi ) are detectable.

(e) N ≥ maxi∈I1:2 (nu
i ), in which nu

i is the number of unstable modes of Ai , i.e., the number of

λ ∈ eig(Ai ) such that |λ| ≥ 1.

The assumption 3.5(e) is required so that the horizon N is sufficiently large to zero the un-

stable modes.

3.3.1.5 Unstable Modes

For an unstable plant, we constrain the unstable modes to be zero at the end of the horizon

to maintain closed-loop stability. To construct this constraint, consider the real Schur decom-

position of Ai j for each (i , j ) ∈ I1:2 × I1:2

Ai j =
[

Ss
i j Su

i j

]As
i j −

Au
i j

Ss
i j

′

Su
i j

′

 (3.3.2)

in which As
i j is stable and Au

i j has all unstable eigenvalues.

3.3.1.6 Terminal Penalty

Given the definition of the Schur decomposition (3.3.2), we define the matrices

Ss
i = diag(Ss

i 1,Ss
i 2) As

i = diag(As
i 1, As

i 2) ∀i ∈ I1:2 (3.3.3a)

Su
i = diag(Su

i 1,Su
i 2) Au

i = diag(Au
i 1, Au

i 2) ∀i ∈ I1:2 (3.3.3b)
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Lemma 3.6. The matrices (3.3.3) satisfy the Schur decompositions

Ai =
[

Ss
i Su

i

]As
i −

Au
i

Ss
i
′

Su
i
′

 ∀i ∈ I1:2

Let Σ1 and Σ2 denote the solution of the Lyapunov equations

As
1
′
Σ1 As

1 −Σ1 =−Ss
1
′Q1Ss

1 As
2
′
Σ2 As

2 −Σ2 =−Ss
2
′Q2Ss

2 (3.3.4)

We then choose the terminal penalty for each subsystem to be the cost to go under zero control,

such that

P1 f = Ss
1Σ1Ss

1
′ P2 f = Ss

2Σ2Ss
2
′ (3.3.5)

3.3.1.7 Cooperative Model Predictive Control Algorithm

Let υ0 be the initial condition for the cooperative MPC algorithm (see Section 3.3.2 for the

discussion of initialization). At each iterate p ≥ 0, the following optimization problem is solved

for subsystem i , i ∈ I1:2

min
υi

V (x1(0), x2(0),υ1,υ2) (3.3.6a)

subject to x1

x2

+

=
A1

A2

x1

x2

+
B̄11

B̄21

υ1 +
B̄12

B̄22

υ2 (3.3.6b)

υi ∈UN
i (3.3.6c)

Su
j i
′x j i (N ) = 0 j ∈ I1:2 (3.3.6d)

|υi | ≤ di
∑

j∈I1:2

∣∣x j i (0)
∣∣ if x j i (0) ∈Br ∀ j ∈ I1:2 (3.3.6e)

υ j =υp
j j ∈ I1:2 \ i (3.3.6f)

in which we include the hard input constraints, the stabilizing constraint on the unstable modes,

and the Lyapunov stability constraint. We denote the solutions to these problems as

υ∗1 (x1(0), x2(0),υp
2 ), υ∗2 (x1(0), x2(0),υp

1 )
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u2

u1

V (u1,u2)

u1

u0

υ∗2

υ∗1

Figure 3.1: An iterate of the distributed optimization.

Given the prior, feasible iterate (υp
1 ,υp

2 ), the next iterate is defined to be

(υp+1
1 ,υp+1

2 ) = w1

(
υ∗1 (υp

2 ),υp
2

)
+w2

(
υ

p
1 ,υ∗2 (υp

1 )
)

(3.3.7)

w1 +w2 = 1, w1, w2 > 0

for which we omit the state dependence of υ∗1 and υ∗2 to reduce notation. This distributed opti-

mization is of the Gauss-Jacobi type (see Bertsekas and Tsitsiklis, 1997, pp.219–223). A graphical

representation of the algorithm is shown in Figure 3.1. At the last iterate p̄, we set u ← (υp̄
1 ,υp̄

2 )

and inject u(0) into the plant.

The following properties follow immediately.

Lemma 3.7 (Feasibility). Given a feasible initial guess, the iterates satisfy

(υp
1 ,υp

2 ) ∈UN
1 ×UN

2

for all p ≥ 1.

Proof. By assumption, the initial guess is feasible. Because U1 and U2 are convex, the convex

combination (3.3.7) with p = 0 implies (υ1
1,υ1

2) is feasible. Feasibility for p > 1 follows by induc-

tion.
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Lemma 3.8 (Convergence). The cost V (x(0),υp ) is nonincreasing for each iterate p and converges

as p →∞.

Proof. For every p ≥ 0, the cost function satisfies the following

V (x(0),υp+1) =V (x(0), w1(υ∗1 ,υp
2 )+w2(υp

1 ,υ∗
2 ))

≤ w1V (x(0), (υ∗1 ,υp
2 ))+w2V (x(0), (υp

1 ,υ∗2 )) (3.3.8a)

≤ w1V (x(0), (υp
1 ,υp

2 ))+w2V (x(0), (υp
1 ,υp

2 )) (3.3.8b)

≤V (x(0),υp )

The first equality follows from (3.3.7). The inequality (3.3.8a) follows from convexity of V (·). The

next inequality (3.3.8b) follows from the optimality of υ∗i ∀i ∈ I1:2, and the final line follows from

w1 +w2 = 1. Because the cost is bounded below, it converges.

Lemma 3.9 (Optimality). As p →∞ the cost V (x(0),υp ) converges to the optimal value V 0(x(0)),

and the iterates (υp
1 ,υp

2 ) converge to (u0
1,u0

2) in which u0 = (u0
1,u0

2) is the Pareto (centralized) op-

timal solution.

Proof. We give a proof that requires only closedness (not compactness) of Ui , i ∈ I1:2. From

Lemma 3.8, the cost converges, say to V. Since V is quadratic and strongly convex, its sublevel

sets lev≤a(V ) are compact and bounded for all a. Hence, all iterates belong to the compact set

lev≤V (υ0)(V )∩U, so there is at least one accumulation point. Let ῡ be any such accumulation

point, and choose a subsequence P ⊂ {1,2,3, . . . } such that {υp }p∈P converges to ῡ. We obvi-

ously have that V (x(0), ῡ) = V, and moreover that

lim
p∈P , p→∞

V (x(0),υp ) = lim
p∈P , p→∞

V (x(0),υp+1) = V (3.3.9)

By strict convexity of V and compactness of Ui , i ∈ I1:2, the minimizer of V (x(0), ·) is attained at

a unique point u0 = (u0
1,u0

2). By taking limits in (3.3.8) as p →∞ for p ∈ P , and using w1 > 0,

w2 > 0, we deduce directly that

lim
p∈P , p→∞

V (x(0), (υ∗1 (υp
2 ),υp

2 )) = V (3.3.10a)

lim
p∈P , p→∞

V (x(0), (υp
1 ,υ∗2 (υp

1 ))) = V (3.3.10b)
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We suppose for contradiction that V 6= V (x(0),u0) and thus ῡ 6= u0. Because V (x(0), ·) is

convex, we have

∇V (x(0), ῡ)′(u0 − ῡ) ≤∆V :=V (x(0),u0)−V (x(0), ῡ) < 0

where ∇V (x(0), ·) denotes the gradient of V (x(0), ·). It follows immediately that either

∇V (x(0), ῡ)′
u0

1 − ῡ1

0

≤ (1/2)∆V or (3.3.11a)

∇V (x(0), ῡ)′
 0

u0
2 − ῡ2

≤ (1/2)∆V (3.3.11b)

Suppose first that (3.3.11a) holds. Applying Taylor’s theorem to V

V (x(0), (υp
1 +ε(u0

1 −υp
1 ),υp

2 ))

=V (x(0),υp )+ε∇V (x(0),υp )′
u0

1 −υ
p
1

0


+ 1

2
ε2

u0
1 −υ

p
1

0

′

∇2V (x(0),υp
1 +γε(u0

1 −υp
1 ),υp

2 )

u0
1 −υ

p
1

0


≤V+ (1/4)ε∆V +βε2 (3.3.12)

in which γ ∈ (0,ε). (3.3.12) applies for all p ∈ P sufficiently large, for some β independent of ε

and p. By fixing ε to a suitably small value (certainly less than 1), we have both that the right-

hand side of (3.3.12) is strictly less than V and thatυp
1 +ε(u0

1−υ
p
1 ) ∈U1. By taking limits in (3.3.12)

and using (3.3.10) and the fact that υ∗
1 (υp

2 ) is optimal for V (x(0), (·,υp
2 )) in U1, we have

V = lim
p∈P , p→∞

V (x(0), (υ∗
1 (υp

2 ),υp
2 ))

≤ lim
p∈P , p→∞

V (x(0), (υp
1 +ε(u0

1 −υp
1 ),υp

2 ))

<V

giving a contradiction. By identical logic, we obtain the same contradiction from (3.3.11b). We

conclude that V = V (x(0),u0) and thus ῡ = u0. Since ῡ was an arbitrary accumulation point of
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the sequence {υp }, and since this sequence is confined to a compact set, we conclude that the

whole sequence converges to u0.

Remark 3.10. We present the distributed optimization algorithm with subproblem (3.3.6) and

iterate update (3.3.7) so that the Lemmas 3.7–3.9 are satisfied. This choice is nonunique and

other optimization methods may exist satisfying these properties.

3.3.2 Stability of Cooperative Model Predictive Control

We define the steerable set XN as the set of all x such that there exists a u ∈ UN satisfying

(3.3.6d).

Assumption 3.11. Given r > 0, for all i ∈ I1:2, di is chosen large enough such that there exists a

ui ∈UN satisfying |ui | ≤ di
∑

j∈I1:2

∣∣xi j
∣∣ and (3.3.6d) for all xi j ∈Br ∀ j ∈ I1:2.

Remark 3.12. Given Assumption 3.11, XN is forward invariant.

We now establish stability of the closed-loop system by treating cooperative MPC as a form

of suboptimal MPC. We define the warm start for each subsystem as

ũ+
1 = {u1(1),u1(2), . . . ,u1(N −1),0}

ũ+
2 = {u2(1),u2(2), . . . ,u2(N −1),0}

The warm start ũ+
i is used as the initial condition for the cooperative MPC problem in each

subsystem i . We define the functions g p
1 and g p

2 as the outcome of applying the cooperative

control iteration (3.3.7) p times

u+
1 = g p

1 (x1, x2,u1,u2) u+
2 = g p

2 (x1, x2,u1,u2)

The system evolution is then given by

x+
1

x+
2

u+
1

u+
2

=



A1x1 + B̄11u1 + B̄12u2

A2x2 + B̄21u1 + B̄22u2

g p
1 (x1, x2,u1,u2)

g p
2 (x1, x2,u1,u2)


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which we simplify to x+

u+

=
Ax +B1u1 +B2u2

g p (x,u)


Theorem 3.13 (Exponential stability). Given Assumptions 3.5 and 3.11, the origin (x = 0) of the

closed-loop system x+ = Ax +B1u1 +B2u2 is exponentially stable on the set XN .

Proof. By eliminating the states in `i (·), we can write V in the form V (x,u) = 1
2 x ′Qx + 1

2 u′Ru+
x ′S u. Defining H = [ Q S

S ′ R
] > 0, V (·) satisfies (3.2.2a) by choosing a = 1

2 mini (λi (H )) and

b = 1
2 maxi (λi (H )). Next we show that V (·) satisfies (3.2.2b). Using the warm start at the next

sample time, we have the following cost

V (x+, ũ+) =V (x,u)− 1

2
ρ1`1(x1,u1)− 1

2
ρ2`2(x2,u2)

+1

2
ρ1x1(N )′

(
A′

1P1 f A1 −P1 f +Q1

)
x1(N ) (3.3.13)

+1

2
ρ2x2(N )′

(
A′

2P2 f A2 −P2 f +Q2

)
x2(N )

Using the Schur decomposition defined in Lemma 3.6, and the constraints (3.3.6d) and (3.3.5),

the last two terms of (3.3.13) can be written as

1

2
ρ1x1(N )′Ss

1

(
As

1
′
Σ1 As

1 −Σ1 +Ss
1
′Q1Ss

1

)
Ss

1
′x1(N )

+1

2
ρ2x2(N )′Ss

2

(
As

2
′
Σ2 As

2 −Σ2 +Ss
2
′Q2Ss

2

)
Ss

2
′x2(N ) = 0

These terms are zero because of (3.3.4). Using this result and applying the iteration of the con-

trollers gives

V (x+,u+) ≤V (x,u)− 1

2
ρ1`1(x1,u1)− 1

2
ρ2`2(x2,u2)

Because `i is quadratic in both arguments, there exists a c > 0 such that

V (x+,u+)−V (x,u) ≤−c |(x,u)|2

The Lyapunov stability constraint (3.3.6e) for x11, x12, x21, x22 ∈Br implies for (x1, x2) ∈ Br that

|(u1,u2)| ≤ 2d̂ |(x1, x2)| in which d̂ = max(d1,d2), satisfying (3.2.2c). Therefore the closed-loop

system satisfies Lemma 3.2. Hence the closed-loop system is exponentially stable.
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3.4 Output Feedback

We now consider the stability of the closed-loop system with estimator error.

3.4.1 Models

For all (i , j ) ∈ I1:2 × I1:2

x+
i j = Ai j xi j +Bi j u j (3.4.1a)

yi =
∑

j∈I1:2

Ci j xi j (3.4.1b)

in which yi ∈ Rpi is the output of subsystem i and Ci j ∈ Rpi×ni j ). Consider subsystem 1. As

above, we collect the states to form y1 = [C11 C12]
[ x11

x12

]
and use the simplified notation y1 =C1x1

to form the output model for subsystem 1.

Assumption 3.14. For all i ∈ I1:2, (Ai ,Ci ) is detectable.

3.4.2 Estimator

We construct a decentralized estimator. Consider subsystem 1, for which the local mea-

surement y1 and both inputs u1 and u2 are available, but x1 must be estimated. The estimate

satisfies

x̂+
1 = A1x̂1 + B̄11u1 + B̄12u2 +L1(y1 −C1x̂1)

in which x̂1 is the estimate of x1 and L1 is the Kalman filter gain. Defining the estimate error as

e1 = x1−x̂1 we have e+
1 = (A1 −L1C1)e1. By Assumptions 3.5 and 3.14 there exists an L1 such that

(A1 −L1C1) is stable and therefore the estimator for subsystem 1 is stable. Defining e2 similarly,

the estimate error for the plant evolvese1

e2

+

=
AL1

AL2

e1

e2


in which ALi = Ai −Li Ci . We collect the estimate error of each subsystem together and write

e+ = ALe.
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3.4.3 Reinitialization

We define the reinitialization step required to recover feasibility of the warm start for the

perturbed state terminal constraint. For each i ∈ I1:2, define

h+
i (e) = arg min

ui

{∣∣ui − ũ+
i

∣∣2
Ri

∣∣∣F j i (ui − ũ+
i ) = f j i e j ∀ j ∈ I1:2

ui ∈UN

}

in which Ri = diag(Ri ), F j i = Su
j i
′C j i , f j i = −Su

j i
′AN

j i L j i , and C j i = [B j i A j i B j i · · · AN−1
j i B j i ]

for all i , j ∈ I1:2. We use h+
i (e) as the initial condition for the control optimization (3.3.6) for all

i ∈ I1:2.

Proposition 3.15. The reinitialization h+(·) = (h+
1 (·),h+

2 (·)) is Lipschitz continuous on bounded

sets.

Proof. The proof follows from Prop. 7.13 (Rawlings and Mayne, 2009, p.499).

3.4.4 Stability with Estimate Error

We consider the stability properties of the extended closed-loop system
x̂

u

e


+

=


F (x̂,u)+Le

g p (x̂,u,e)

ALe

 (3.4.2)

in which F (x̂,u) = Ax̂ +B1u1 +B2u2 and L = diag(L1C1,L2C2). The function g p includes the

reinitialization step. Because AL is stable there exists a Lyapunov function J (·) with the following

properties

ā |e|σ ≤J (e) ≤ b̄ |e|σ

J (e+)−J (e) ≤−c̄ |e|σ

in which σ> 0, ā, b̄ > 0, and the constant c̄ > 0 can be chosen as large as desired by scaling J (·).

For the remainder of this section, we choose σ = 1 in order to match the Lipschitz continuity

of the plantwide objective function V (·). From the nominal properties of cooperative MPC, the



29

origin of the nominal closed-loop system x+ = Ax +B1u1 +B2u2 is exponentially stable on XN

if the suboptimal input trajectory u = (u1,u2) is computed using the actual state x, and the cost

function V (x,u) satisfies (3.2.2). We require the following feasibility assumption.

Assumption 3.16. The set XN is compact, and there exist two sets X̂N and E both containing the

origin such that the following conditions hold: (i) X̂N ⊕E ⊆XN , where ⊕ indicates the Minkowski

sum; (ii) for each x̂(0) ∈ X̂N and ê(0) ∈ E , the solution of the extended closed-loop system (3.4.2)

satisfies x̂(k) ∈XN for all k ≥ 0.

Consider the sum of the two Lyapunov functions

W (x̂,u,e) =V (x̂,u)+ J (e)

We next show that W (·) is a Lyapunov function for the perturbed system and establish expo-

nential stability of the extended state origin (x̂,e) = (0,0). From the definition of W (·) we have

a |(x̂,u)|2 + ā |e| ≤W (x̂,u,e) ≤ b |(x̂,u)|2 + b̄ |e| =⇒
ã(|(x̂,u)|2 +|e|) ≤W (x̂,u,e) ≤ b̃(|(x̂,u)|2 +|e|) (3.4.3)

in which ã = min(a, ā) > 0 and b̃ = max(b, b̄) > 0. Next we compute the cost change

W (x̂+,u+,e+)−W (x̂,u,e) =V (x̂+,u+)−V (x̂,u)+ J (e+)− J (e)

The Lyapunov function V is quadratic in (x̂,u) and, hence, Lipschitz continuous on bounded

sets. By Proposition 3.15

∣∣V (F (x̂,u)+Le,h+(e))−V (F (x̂,u)+Le, ũ+)
∣∣≤ LhLVu |e|∣∣V (F (x̂,u)+Le, ũ+)−V (F (x̂,u), ũ+)
∣∣≤ LVx |Le|

in which Lh , LVu , and LVx are Lipschitz constants for h+ and the first and second arguments of

V , respectively. Combining the above inequalities

∣∣V (F (x̂,u)+Le,h+(e))−V (F (x̂,u), ũ+)
∣∣≤ L̄V |e|
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in which L̄V = LhLVu +LVx |L|. Using the system evolution we have

V (x̂+,h+(e)) ≤V (F (x̂,u), ũ+)+ L̄V |e|

and by Lemma 3.8

V (x̂+,u+) ≤V (F (x̂,u), ũ+)+ L̄V |e|

Subtracting V (x̂,u) from both sides and noting that ũ+ is a stabilizing input sequence for e = 0

gives

V (x̂+,u+)−V (x̂,u) ≤−c |(x̂,u(0))|2 + L̄V |e|
W (x̂+,u+,e+)−W (x̂,u,e) ≤−c |(x̂,u(0))|2 + L̄V |e|− c̄ |e|

≤ −c |(x̂,u(0))|2 − (c̄ − L̄V ) |e|
W (x̂+,u+,e+)−W (x̂,u,e) ≤−c̃(|(x̂,u(0))|2 +|e|) (3.4.4)

in which we choose c̄ > L̄V and c̃ = min(c, c̄ − L̄V ) > 0. This choice is possible because c̄ can

be chosen arbitrarily large. Notice this step is what motivated the choice of σ = 1. Lastly, we

require the constraint

|u| ≤ d |x̂| , x̂ ∈Br (3.4.5)

Theorem 3.17 (Exponential stability of perturbed system). Given Assumptions 3.5, 3.14, 3.16,

for each x̂(0) ∈ X̂N and e(0) ∈ E , there exist constants α> 0 and 0 < γ< 1, such that the solution

of the perturbed system (3.4.2) satisfies, for all k ≥ 0

|(x̂(k),e(k)| ≤α|(x̂(0),e(0)|γk (3.4.6)

Proof. Using the same arguments as for Lemma 3.2, we write:

W (x̂+,u+,e+)−W (x̂,u,e) ≤−ĉ(|(x̂,u)|2 +|e|) (3.4.7)

in which ĉ ≥ c̃ > 0. Therefore W (·) is a Lyapunov function for the extended state (x̂,u,e) with

mixed norm powers. The standard exponential stability argument can be extended for the
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mixed norm power case to show that the origin of the extended closed-loop system (3.4.2) is

exponentially stable (Rawlings and Mayne, 2009, p.420). Hence, for all k ≥ 0

|(x̂(k),u(k),e(k))| ≤ α̃ |(x̂(0),u(0),e(0))|γk

in which α̃ > 0 and 0 < γ < 1. Notice that Assumption 3.16 implies that u(k) exists for all k ≥ 0

because x̂(k) ∈XN .

We have, using the same arguments used in Lemma 3.2

|(x̂(k),e(k))| ≤ |(x̂(k),u(k),e(k))| ≤ α̃ |(x̂(0),u(0),e(0))|γk

≤α |(x̂(0),e(0))|γk

in which α= α̃(1+ d̄) > 0.

Corollary 3.18. Under the assumptions of Theorem 3.17, for each x(0) and x̂(0) such that e(0) =
x(0)− x̂(0) ∈ E and x̂(0) ∈ X̂N , the solution of the closed-loop state x(k) = x̂(k)+e(k) satisfies:

|x(k)| ≤ ᾱ|x(0)|γk (3.4.8)

for some ᾱ> 0 and 0 < γ< 1.

Proof. We first note that: |x(k)| ≤ |x̂(k)| + |e(k)| ≤ p
2|(x̂(k),e(k))|. From Theorem 3.17 we can

write:

|x(k)| ≤p
2α |(x̂(0),e(0))|γk ≤ ᾱ |x̂(0)+e(0)|γk

with ᾱ=p
2α, which concludes the proof by noticing that x(0) = x̂(0)+e(0).

3.5 Coupled Constraints

In Remark 3.4, we commented that the constraint assumptions imply uncoupled constraints,

because each input is constrained by a separate feasible region so that the full feasible space is

defined (u1,u2) ∈ UN = UN
1 ×UN

2 . This assumption, however, is not always practical. Consider

two subsystems sharing a scarce resource for which we control the distribution. There then ex-

ists an availability constraint spanning the subsystems. This constraint is coupled because each

local resource constraint depends upon the amount requested by the other subsystem.
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Remark 3.19. For plants with coupled constraints, implementing MPC problem (3.3.6) gives ex-

ponentially stable, yet suboptimal, feedback.

In this section, we relax the assumption so that (u1,u2) ∈UN for anyU compact, convex and

containing the origin in its interior. Consider the decomposition of the inputs u = (uU 1,uU 2,uC )

such that there exists a UU 1,UU 2, and UC for which

U=UU 1 ×UU 2 ×UC

and

uU 1 ∈UN
U 1, uU 2 ∈UN

U 2, uC ∈UN
C

for which UU 1, UU 2, and UC are compact and convex. We denote uUi the uncoupled inputs for

subsystem i , i ∈ I1:2, and uC the coupled inputs.

Remark 3.20. UU 1,UU 2, or UC may be empty, and therefore such a decomposition always exists.

We modify the cooperative MPC problem (3.3.6) for the above decomposition. Define the

augmented inputs (û1, û2)

û1 =
uU 1

uC

 û2 =
uU 2

uC


The implemented inputs are

u1 = Ê1û1 u2 = Ê2û2, Ê1 =
I

I1

 Ê2 =
I

I2


in which (I1, I2) are diagonal matrices with either 0 or 1 diagonal entries and satisfy I1 + I2 =
I . For simplicity, we summarize the previous relations as u = Ê û with Ê = diag(Ê1, Ê2). The

objective function is

V̂ (x1(0), x2(0), û1, û2) =V (x1(0), x2(0), Ê1û1, Ê2û2) (3.5.1)
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We solve the augmented cooperative MPC problem for i ∈ I1:2

min
υ̂i

V̂ (x1(0), x2(0), υ̂1, υ̂2) (3.5.2a)

subject to

x1

x2

+

=
A1

A2

x1

x2

+
B̄11

B̄21

 Ê1υ̂1 +
B̄12

B̄22

 Ê2υ̂2 (3.5.2b)

υ̂i ∈UN
Ui ×UN

C (3.5.2c)

Su
j i
′x j i (N ) = 0 j ∈ I1:2 (3.5.2d)

|υ̂i | ≤ di |xi (0)| if xi (0) ∈Br (3.5.2e)

υ̂ j = υ̂p
j j ∈ I1:2 \ i (3.5.2f)

The update (3.3.7) is used to determine the next iterate.

Lemma 3.21. As p → ∞ the cost V̂ (x(0), υ̂p ) converges to the optimal value V 0(x(0)), and the

iterates (Ê1υ̂
p
1 , Ê2υ̂

p
2 ) converge to the Pareto optimal centralized solution u0 = (u0

1,u0
2).

Proof. Because V̂ (·) is convex and bounded below, the proof follows from Lemma 3.9 and from

noticing that the point u0 = (Ê1û0
1, Ê2û0

2), with û0
i = limp→∞ υ̂i , i ∈ I1:2, is Pareto optimal.

Therefore, problem (3.5.2) gives optimal feedback and may be used for plants with coupled

constraints.
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3.6 M Subsystems

In this section, we show that the stability theory of cooperative control extends to any finite

number of subsystems. For M > 0 subsystems, the plantwide variables are defined

x =



x1

x2

...

xM

 u =



u1

u2

...

uM

 Bi =



B̄1i

B̄2i

...

B̄Mi

 ∀i ∈ I1:M

V (x,u) = ∑
i∈I1:M

ρi Vi (xi ,ui ) A = diag(A1, . . . , AM )

Each subsystem solves the optimization

min
υi

V (x(0),υ)

subject to

x+ = Ax + ∑
i∈I1:M

Biυi

υi ∈UN
i

Su
j i
′x j i (N ) = 0 j ∈ I1:M

|υi | ≤ di
∑

j∈I1:M

∣∣x j i (0)
∣∣ if x j i (0) ∈Br j ∈ I1:M

υ j =υp
j j ∈ I1:M \ i

The controller iteration is given by

υp+1 = ∑
i∈I1:M

wi (υp
1 , . . . ,υ∗i , . . . ,υp

M )

in which υ∗i = υ∗i
(
x(0);υp

j , j ∈ I1:M \ i
)
. After p̄ iterates, we set u ← υp̄ and inject u(0) into the

plant.

The warm start is generated by purely local information

ũ+
i = {ui (1),ui (2), . . . ,ui (N −1),0} ∀i ∈ I1:M
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The plantwide cost function then satisfies for any p̄ ≥ 0

V (x+,u+) ≤V (x,u)− ∑
i∈I1:M

ρi`i (xi ,ui )

|u| ≤d |x| x ∈Br

Generalizing Assumption 3.5 to all i ∈ I1:M , we find that Theorem 3.13 applies and cooperative

MPC of M subsystems is exponentially stable.

Moreover, expressing the M subsystem outputs as

yi =
∑

j∈I1:M

Ci j xi j i ∈ I1:M

and generalizing Assumption 3.14 for i ∈ I1:M , cooperative MPC for M subsystems satisfies The-

orem 3.17. Finally, for systems with coupled constraints, we can decompose the feasible space

such thatU= (
∏

i∈I1:M UUi )×UC . Hence, the input augmentation scheme of Section 3.5 is appli-

cable to plants of M subsystems. Notice that, in general, this approach may lead to augmented

inputs for each subsystem that are larger than strictly necessary to achieve optimal control. The

most parsimonious augmentation scheme is described elsewhere (Pannocchia et al., 2009).

3.7 Distributed Control Example

In this example, we compare the distributed control strategies of noncooperative and coop-

erative control with decentralized and centralized control. Consider a distillation column for

separating methanol from water. A two input/two output model for LV control of the column

was proposed by Wood and Berry (1973). The reported transfer function matrix for the process

is

xD (s)

xB (s)

=


12.8e−s

16.7s+1
−18.9e−3s

21.0s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


R(s)

S(s)


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MPC 1MPC 2

S

xDR

xB

Figure 3.2: LV control of distillation column with bad pairing.

in which

xD −overhead mole fraction methanol

xB −bottoms mole fraction methanol

R −overhead reflux flow rate

S −bottoms steam flow rate

Using RGA, the recommended pairing is to control xD with R and xB with S. As in Figure 3.2,

however, we intentionally choose the poor pairing and use the subsystems

y1 = xD y2 = xB

u1 = S u2 = R

We use the sampling time of 1 minute, and the controllers are tuned with the following param-

eters

Qy1 = 10 Qy2 = 100 Qi =C ′
i Qyi Ci +0.001I ∀i ∈ I1:2 R1 = 0.1 R2 = 0.1 N = 10
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Table 3.1: Performance comparison. Noncooperative and decentralized control are not able to

reject the disturbance.

Cost Performance loss (%)
Centralized MPC 75.8 0
Cooperative MPC (10 iterates) 76.1 0.388
Cooperative MPC (1 iterate) 87.5 15.4
Noncooperative MPC 382 404
Decentralized MPC 364 380

The reflux flow is constrained such that 0 ≤ R ≤ 0.15.

We simulate the response of the plant to an output disturbance. At 5 minutes a disturbance

of 0.5 enters the bottoms mole fraction. As shown in Figure 3.3, noncooperative and decentral-

ized control are not able to reject the disturbance, and, in this example, noncooperative control

performs worse than decentralized control. Even given the poor pairing, cooperative control

is robust the poor pairing and is able to successfully reject the disturbance. Performance im-

proves as the number of optimization iterates increases (see Table 3.1).
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Figure 3.3: Disturbance rejection example.
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Chapter 4

Hierarchical Cooperative Control

Note: With the exception of Sections 4.6 and 4.7, the text of this chapter appears in (Stewart,

Rawlings, and Wright, 2010a).

4.1 Introduction

Chemical plants comprise many interacting subsystems connected through a network of

material, energy, and information streams. Interactions propagate through the network and all

subsystems affect each other. One useful characterization of this network is the density of the

inter-subsystem connections. Densely interconnected plants are complex and the interactions

quickly spread throughout the network. Commonly, however, there exists some sparsity in the

plant interconnections. In sparsely connected plants, local interactions propagate quickly in

groups of subsystems and affect the rest of the plant only on a longer time scale. For these

plants, a network topology naturally arises in which subsystems are grouped into neighbor-

hoods. Neighborhoods usually correspond to processing areas, in which several processes cre-

ate raw materials for another set of subsystems. Performance in these plants is often improved

using a hierarchy of controllers. Each neighborhood has a coordinating controller, which is

itself coordinated with the other neighborhoods by a central plantwide controller (Scattolini,

2009). Hierarchical control has the advantage of maintaining independence of the subsystems

and neighborhoods, yet designing the hierarchical control scheme is often difficult. Model and

objective mismatch occurs because the control is separated into layers.
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We have shown previously in Chapter 3 that cooperative control provides plantwide sta-

bility without a coordinator, but did not consider the underlying topology of the plant. The

control scheme requires all subsystems to be synchronous and to communicate with all other

subsystems at every optimization iterate. These requirements limit the application of coop-

erative control to plants in which information can be reliably exchanged plantwide, and they

do not allow integration of subsystems with multiple time scales. In this chapter, we weaken

these requirements by grouping the subsystems into hierarchies and allowing the subsystems

to optimize and exchange information on any time scale. Our main contribution is to achieve

the advantages of hierarchical control schemes without requiring additional coordinating con-

trollers.

We begin in the next section with an introduction to the distributed optimization used for

hierarchical cooperative control. In Section 4.3, we provide definitions, then show the control

algorithm properties in Section 4.4. To simplify the exposition, we introduce these concepts

with only four subsystems, but point out that these results extend to any number of subsystems.

In Section 4.5 we provide a physical definition of neighborhoods, which is utilized to reduce

communication in the plant. We conclude with an example showing performance of a chemical

plant under multiple communication schedules.

4.2 Hierarchical Optimization

Consider the optimization

min
u

V (u1,u2,u3,u4) (4.2.1)

in which ui ∈ R and V : R4 → R+ is strictly convex. The optimization is performed as a Ja-

cobi iteration (Bertsekas and Tsitsiklis, 1997, pp.219-223), in which there is a suboptimization

performed for each variable and the solutions are traded between optimizers. We create a two-

level hierarchy and define the neighborhoods N1 = {1,2} and N3 = {3,4} (see Fig. 4.1). At inner

iterates, the suboptimizations utilize the latest iterates from variables within their own neigh-

borhood, while the other variables are updated at outer iterates. Consider the optimization
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3

4

2

N3

N1 1

I1:4

Figure 4.1: Two level hierarchy: two neighborhoods, each with two subsystems such that N1 =
{1,2} andN3 = {3,4}. The set of leaders L= {1,3}.

between outer iterates t and t +1. Initializing υ0 ← ut = (ut
1,ut

2,ut
3,ut

4), at iterate p ∈ I0:p̄−1

υ∗1 = argmin
υ1

V (υ1,υp
2 ,ut

3,ut
4) υ∗3 = argmin

υ3
V (ut

1,ut
2,υ3,υp

4 )

υ∗2 = argmin
υ2

V (υp
1 ,υ2,ut

3,ut
4) υ∗4 = argmin

υ4
V (ut

1,ut
2,υp

3 ,υ4)

Inner iterates are generated by the convex step

υ
p+1
i = wiυ

∗
i + (1−wi )υp

i ∀i ∈ I1:4

in which for l ∈ L= {1,3},
∑

j∈Nl
w j = 1, wi > 0 ∀i ∈ I1:4. We clarify the definition the leader set L

in the sequel. After p̄ iterates, the outer iterate is performed

ut+1
i =λiυ

p̄
i + (1−λi )ut

i ∀i ∈ I1:4

in which the weighting λi is defined for each neighborhood
∑

l∈Lλl = 1, λi =λ j ∀i , j ∈Nl , ∀l ∈
L.

Lemma 4.1 (Convergence). The cost V (ut
1,ut

2,ut
3,ut

4) is nonincreasing at each outer iterate t and

converges as t →∞.

Proof of Lemma 4.1.

V (ut+1
1 ,ut+1

2 ,ut+1
3 ,ut+1

4 ) =
V

(
λ1υ

p̄
1 + (1−λ1)ut

1,λ2υ
p̄
2 + (1−λ2)ut

2,λ3υ
p̄
3 + (1−λ3)ut

3,λ4υ
p̄
4 + (1−λ4)ut

4

)
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Noticing λ1 =λ2, λ3 =λ4, and λ1 +λ3 = 1

=V
(
λ1υ

p̄
1 + (1−λ1)ut

1,λ1υ
p̄
2 + (1−λ1)ut

2,λ3υ
p̄
3 + (1−λ3)ut

3,λ3υ
p̄
4 + (1−λ3)ut

4

)
≤λ1V

(
υ

p̄
1 ,υp̄

2 ,ut
3,ut

4

)+ (1−λ1)V (ut
1,ut

2,υp̄
3 ,υp̄

4

)
≤λ1V

(
w1υ

∗
1 + (1−w1)υp̄−1

1 , w2υ
∗
2 + (1−w2)υp̄−1

2 ,ut
3,ut

4

)+
(1−λ1)V (ut

1,ut
2, w3υ

∗
3 + (1−w3)υp̄−1

3 , w4υ
∗
4 + (1−w4)υp̄−1

4

)
Noticing w1 = 1−w2 and w3 = 1−w4

≤λ1V
(
w1υ

∗
1 + (1−w1)υp̄−1

1 , (1−w1)υ∗2 +w1υ
p̄−1
2 ,ut

3,ut
4

)+
(1−λ1)V (ut

1,ut
2, w3υ

∗
3 + (1−w3)υp̄−1

3 , (1−w3)υ∗4 +w3υ
p̄−1
4

)
≤λ1

(
w1V (υ∗1 ,υp̄−1

2 ,ut
3,ut

4)+ (1−w1)V (υp̄−1
1 ,υ∗2 ,ut

3,ut
4)

)
+

(1−λ1)
(
w3V (ut

1,ut
2,υ∗3 ,υp̄−1

4 )+ (1−w3)V (ut
1,ut

2,υp̄−1
3 ,υ∗4 )

)
≤λ1

(
w1V (υp̄−1

1 ,υp̄−1
2 ,ut

3,ut
4)+ (1−w1)V (υp̄−1

1 ,υp̄−1
2 ,ut

3,ut
4)

)
+

(1−λ1)
(
w3V (ut

1,ut
2,υp̄−1

3 ,υp̄−1
4 )+ (1−w3)V (ut

1,ut
2,υp̄−1

3 ,υp̄−1
4 )

)
≤λ1

(
V (υp̄−1

1 ,υp̄−1
2 ,ut

3,ut
4)

)
+ (1−λ1)

(
V (ut

1,ut
2,υp̄−1

3 ,υp̄−1
4 )

)
Continuing by induction

≤λ1V
(
υ0

1,υ0
2,ut

3,ut
4

)+ (1−λ1)V (ut
1,ut

2,υ0
3,υ0

4

)
Because υ0

i = ut
i ,∀i ∈ I1:4

=V
(
ut

1,ut
2,ut

3,ut
4

)
Consolidating, this gives the relationship

V (ut+1
1 ,ut+1

2 ,ut+1
3 ,ut+1

4 ) ≤V
(
ut

1,ut
2,ut

3,ut
4

)
(4.2.2)

Lemma 4.2 (Optimality). The cost V (ut
1,ut

2,ut
3,ut

4) converges to the optimal value V (u∗
1 ,u∗

2 ,u∗
3 ,u∗

4 ),

and the iterates (ut
1,ut

2,ut
3,ut

4) converge to the optimizer (u∗
1 ,u∗

2 ,u∗
3 ,u∗

4 ) as t →∞.

The proof of Lemma 4.2 is equivalent to Lemma 3.9 and is omitted here.
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4.2.1 Example

To illustrate the cost decrease at each outer iterate, consider Fig. 4.2. In Fig. 4.2a, the opti-

mizers in neighborhood 1 seek a solution to the optimization problem minυ1,υ2 V (υ1,υ2,u0
3,u0

4)

and after taking p̄ = 2 steps, arrive at the suboptimal point ῡ2
1 = (υ2

1,υ2
2). Similarly in neighbor-

hood 3, the suboptimal point ῡ2
3 = (υ2

3,υ2
4) is found (see Fig. 4.2b). These two points are used to

generate the next outer iterate u1. We show this convex step in Fig. 4.2c, for which the x-axis

and y-axis are, respectively, a representation of (u1,u2) and (u3,u4). Notice that V (u1) ≤V (u0).

4.3 Preliminaries

We now provide definitions required to show properties of the control algorithm in the next

section. For simplicity, we assume a plant composed of only four subsystems and relax this

assumption in the sequel.

4.3.1 Models

Consider the decentralized linear model

x+
i j = Ai j xi j +Bi j u j ∀(i , j ) ∈ I1:4 × I1:4 (4.3.1)

in which xi j ∈ Rni j , u j ∈ Rm j , Ai j ∈ Rni j×ni j , and Bi j ∈ Rni j×m j . This model captures the effect

from the inputs of subsystem j ∈ I1:4 on the states of subsystem i ∈ I1:4. For notational simplicity,

we collect the states to form the subsystem model for each i ∈ I1:4

x+
i = Ai xi +

∑
j∈I1:4

B̄i j u j

in which xi = [x ′
i 1 · · ·x ′

i 4]′ ∈Rni , ni =∑
j∈I1:4 ni j , Ai = diag(Ai 1, . . . , Ai 4) ∈Rni×ni and

B̄i j = [0 · · · B ′
i j︸︷︷︸

j th position

· · · 0]′ ∈Rni×m j
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u1

u2

u0

ῡ1
1

ῡ2
1

V (u1,u2,u0
3,u0

4)

(a) Neighborhood 1

u4

u3

u0

V (u0
1,u0

2,u3,u4)

ῡ2
3

ῡ3
1

(b) Neighborhood 3

u0

u1ῡ1
3

ῡ2
3

ῡ2
1

ῡ1
1

u∗

(u3,u4)

(u1,u2)
V (u1,u2,u3,u4)

(c) Overall

Figure 4.2: Hierarchical optimization. Figures (a) and (b) show each neighborhood’s 2-

dimensional optimization. Figure (c) is a representation of the overall 4-dimensional optimiza-

tion.



45

4.3.2 Objective Functions

For each i ∈ I1:4 define the quadratic stage cost and terminal penalty, respectively, as`i (xi ,ui ) =
1
2 (x ′

i Qi xi +u′
i Ri ui ) and Vi f (xi ) = 1

2 x ′
i Pi f xi in which Qi ∈ Rni×ni , Ri ∈ Rmi×mi , and Pi f ∈ Rni×ni .

For subsystem i ∈ I1:4, the objective function is

Vi (xi (0),u1,u2,u3,u4) =
N−1∑
k=0

`i (xi (k),ui (k))+Vi f (xi (N ))

in which ui = [ui (0)′, . . . ,ui (N − 1)′]′ ∈ RN mi and N > 0 is the control horizon. We define the

plantwide objective function

V (x(0),u1,u2,u3,u4) = ∑
i∈I1:4

ρi Vi (xi (0),u1,u2,u3,u4)

in which x = [x ′
1, . . . , x ′

4]′ and ρi > 0 for all i ∈ I1:4.

4.3.3 Constraints

At each time step, the inputs satisfy the constraints ui (k) ∈Ui ,∀k ∈ I0:N−1,∀i ∈ I1:4 in which

Ui is compact, convex, and contains the origin in its interior.

4.3.4 Terminal Penalties and Terminal Constraints

Consider the real Schur decomposition

Ai j =
[

Ss
i j Su

i j

]As
i j −

Au
i j

Ss
i j

′

Su
i j

′


in which As

i j and Au
i j are composed of the stable and unstable blocks of Ai j , respectively. Defin-

ing Ss
i = diag(Ss

i 1, . . . ,Ss
i 4) and As

i = diag(As
i 1, . . . , As

i 4) for each i ∈ I1:4, define

Pi f = Ss
iΣi Ss

i
′ (4.3.2)

in whichΣi satisfies the Lyapunov equation As
i
′Σi As

i −Σi =−Ss
i
′Qi Ss

i . We set the unstable modes

of Ai j to zero at the end of the horizon with the constraint Su
i j

′xi j (N ) = 0.
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4.4 Control Algorithm

We now apply the optimization presented in Section 4.2 to distributed MPC. Consider the

case of two neighborhoods, each with two subsystems, i.e.,N1 = {1,2} andN3 = {3,4} (see Fig. 4.1).

With a slight abuse of notation we refer to N2 ←N1 and N4 ←N3. We define a two-level hierar-

chy in which the subsystems in neighborhood N1 communicate with each other at every time

step, but for which they communicate with the subsystems in neighborhood N3 only after Ns

steps. For example, if all subsystems perform an outer iterate after every time step, then Ns = 0.

As in Section 4.2, we re-optimize this trajectory multiple times between outer iterates, but here

only No input steps are optimized at a time.

4.4.1 Initialization

For plant initialization, we require an initial condition ũi for each subsystem i ∈ I1:4

ũi = [ũi (0)′, ũi (1)′, . . . , ũi (No −1)′︸ ︷︷ ︸
No

,0, . . . ,0︸ ︷︷ ︸
Ns

]′ (4.4.1)

for which ũi ∈ UN
i and the first No inputs satisfy the terminal constraint Su

j i
′x j i (No) = 0 for all

j ∈ I1:4.

4.4.2 Control Problem

Without loss of generality, let the outer iterate t = 0. We initialize υ0
i ← u0

i ← ũi . Between

outer iterates, for k ∈ I0:Ns , subsystem i for every i ∈ I1:4 solves the following optimization at

inner iterate p ∈ Ikp̄:(k+1)p̄−1

min
υi

V (x(0),υ1,υ2,υ3,υ4) (4.4.2a)
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subject to

x+
i = Ai xi +

∑
j∈I1:4

B̄i jυ j (4.4.2b)

υi ∈UN
i (4.4.2c)

Su
j i
′x j i (k +No) = 0 j ∈ I1:4 (4.4.2d)

|υi | ≤ di
∑

j∈I1:4

∣∣x j i (0)
∣∣ if x j i (0) ∈Br j ∈ I1:4 (4.4.2e)

υ j =υp
j j ∈Ni \ i (4.4.2f)

υl =υ0
l l ∈ I1:4 \Ni (4.4.2g)

υi (τ) = υp
i (τ) ∀τ ∈ I0:k−1 ∪ Ik+No :N−1 (4.4.2h)

in which the radius r > 0 ofBr is chosen as small as desired.1 Notice that although the horizon of

inputs is N , only No of the inputs are decision variables at any time k due to constraint (4.4.2h).

We denote the solution to these optimizations as υ∗i = υ∗i (x(0);υp
j ;υ0

l ) ∀ j ∈ Ni \ i ,∀l ∈ I1:4 \Ni .

The next inner iterate is defined by

υ
p+1
i = wiυ

∗
i + (1−wi )υp

i (4.4.3)

in which
∑

j∈Ni
w j = 1 and wi > 0.

At time k ∈ I0:Ns each subsystem i ∈ I1:4 takes p̄ > 0 inner iterates and arrives at the point

υ
(k+1)p̄
i . Each subsystem i ∈ I1:4 computes

uk
i =λiυ

(k+1)p̄
i + (1−λi )ũi

in which
∑

j∈Lλ j = 1,λi =λ j ∀ j ∈Ni , and L is the set of all leaders, i.e., L= {1,3}. Each subsystem

injects the input

ui (k) = uk
i (k) =λiυ

(k+1)p̄
i (k)+ (1−λi )υ0

i (k) (4.4.4)

in which uk
i (k) is the kth component of uk

i .

1A detailed discussion of this constraint is provided in Section 3.2.
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Remark 4.3 (Weighting). Whereas wi measures the relative weight of a subsystem inNi , λi mea-

sures the relative importance of neighborhoodNi in the plantwide topology.

Remark 4.4. Between outer iterates, each subsystem input is re-optimized (Ns +1)p̄ times.

Lemma 4.5 (Feasibility). The input trajectories satisfy (uk
1 ,uk

2 ,uk
3 ,uk

4 ) ∈UN
1 ×UN

2 ×UN
3 ×UN

4 for

all k ≥ 0.

Proposition 4.6 (Terminal constraint feasibility). Given an input trajectory

ui = [ui (0)′, . . . ,ui (k +No −1)′,0, . . . ,0]′

satisfying the constraint Su
j i
′x j i (τ+ No) = 0 ∀ j ∈ I1:4 for τ = k, the constraint is satisfied for all

τ ∈ Ik:Ns .

The plant moves to the next time step, using υ(k+1)p̄
i as the initial condition for control prob-

lem (4.4.2) at time k +1. The point υ(k+1)p̄
i is feasible by Lemma 4.5 and Proposition 4.6.

Let ũNs+ = (ũNs+
1 , ũNs+

2 , ũNs+
3 , ũNs+

4 ) denote the warm start, in which for i ∈ I1:4

ũNs+
i = [ui (Ns +1)′, . . . ,ui (N −1)′︸ ︷︷ ︸

No−1

,0, . . . ,0︸ ︷︷ ︸
Ns+1

]′ (4.4.5)

At k = Ns , the neighborhoods exchange ũNs+
i and initialize υNs+1

i ← ũNs+
i for all i ∈ I1:4.

Remark 4.7. For Ns = 0, the controller performs as a standard cooperative controller with only

one optimization step taken between iterates.

4.4.3 Input iteration

Here we show how the input trajectory is re-optimized by the controller at each time step.

Consider the initial condition for each subsystem i ∈ I1:4 defined by (4.4.1)

u0
i = {u0

i (0),u0
i (1), . . . ,u0

i (N −1),0, . . . ,0}

We assume the initial condition is feasible and hence the first N steps satisfy the constraint (4.4.2d)

with k = 0.
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After p̄ ≥ 0 steps of the iterate update (4.4.3), the controllers arrive at the following subopti-

mal point

υ
p̄
i = {υp̄

i (0),υp̄
i (1), . . . ,υp̄

i (N −1),0, . . . ,0}

Only the first N steps are optimized, due to constraint (4.4.2h), leaving Ns trailing zeros. By

(4.4.4), the input

ui (0) =λiυ
p̄
i (0)+ (1−λi )υ0

i (0)

is injected into the plant.

Moving to the next time step, the control algorithm (4.4.2) is initialized with υp̄
i . By Proposi-

tion 4.6, υp̄
i is feasible for k = 1. After p̄ ≥ 0 further iterates, the controller arrives at the point

υ
2p̄
i = {υp̄

i (0),υ2p̄
i (1), . . . ,υ2p̄

i (N ),0, . . . ,0}

Notice that the first input υ2p̄
i (0) ← υ

p̄
i (0) and that υ2p̄

i (N ) has been optimized so that there is

one fewer trailing zero. In this way, the control problem (4.4.2) always has N decision variables,

but this optimization envelope moves down the trajectory of N +Ns inputs. The implemented

input is

ui (1) =λiυ
2p̄
i (1)+ (1−λi )υ0

i (1)

and the controller problem (4.4.2) is initialized at the next time step with υ
2p̄
i . These steps are

repeated until k = Ns , at which time the controllers compute the point

υ
(Ns+1)p̄
i = {υp̄

i (0), . . . ,υ(Ns+1)p̄
i (Ns ), . . . ,υ(Ns+1)p̄

i (N +Ns −1)}

This point is used to form the input sequence

uNs
i =λiυ

(Ns+1)p̄
i + (1−λi )u0

i , ∀i ∈ I1:4

Starting from x(0), the implemented inputs until time k = Ns are contained in this input

sequence

uNs
i = {ui (0), . . . ,ui (Ns)︸ ︷︷ ︸

Ns+1

,ui (Ns +1), . . . ,ui (N +Ns −1)︸ ︷︷ ︸
N−1

}
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for each i ∈ I1:4. The first Ns+1 inputs are implemented, and the last N−1 are used for the warm

start, which we define in the sequel.

4.4.4 Objective Decrease

To prove stability, we show that the objective function decreases with every outer iterate and

is bounded above between outer iterates.

Lemma 4.8 (Upperbound). Let t be the last outer iterate. Then the cost V (x,uk
1 ,uk

2 ,uk
3 ,uk

4 ) is

upperbounded by V (x,ut
1,ut

2,ut
3,ut

4) for each k ∈ It :t+Ns .

Proof. The proof is similar to Lemma 4.1.

Lemma 4.9 (Convergence and optimality). The cost V (x,ut
1,ut

2,ut
3,ut

4) decreases at each outer

iterate t and converges to the optimal value V 0(x) as t →∞. The inputs ut → u0(x), the optimal

centralized input sequence, as t →∞.

Proof. The proof is similar to Lemma 4.1 and Lemma 4.2.

Remark 4.10 (Asynchronous). Lemmas 4.8 and 4.9 do not require evenly spaced outer iterates,

nor do they require p̄ be the same in each neighborhood.

Given Remark 4.10, the neighborhoods may exchange information after any number of it-

erates, and each neighborhood may be optimized on its own time schedule.

4.4.5 Stability

For every i ∈ I1:4, let Ai = diag(A1i , . . . , A4i ) and Bi = [B ′
1i , . . . ,B ′

4i ]′

Assumption 4.11. For all (i , j ) ∈ I1:4 × I1:4

1. The systems (Ai ,Bi ) are stabilizable.

2. The input penalties Ri > 0.

3. The state penalties Qi ≥ 0.
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4. The systems (Ai ,Qi ) are detectable.

5. No ≥ maxi∈I1:4 (nu
i ), in which nu

i is the number of unstable modes of Ai , i.e., number of λ ∈
eig(Ai ) such that |λ| ≥ 1.

Notice we make no assumption on the strength of the interactions between subsystems.

Let XN be the forward invariant set of all initial states such that the control problem (4.4.2) is

feasible.

Theorem 4.12 (Exponential stability). Given Assumption 4.11, the origin of the closed-loop sys-

tem φ(k, x) is exponentially stable on the set XN .

Proof. The proof closely follows that of the discussion of suboptimal MPC in (Rawlings and

Mayne, 2009, pp.415-420). Consider the initialization of the control algorithm at the next outer

iterate with the warm start

V (xNs+, ũNs+) =V (x,uNs )− ∑
i∈I1:4

Ns∑
k=0

ρi

2
`i (xi (k),ui (k))+ ∑

i∈I1:4

ρi

2
xi (N )′Ψi (Ns)xi (N )

in which xNs+ =φ(Ns +1, x) and

Ψi (Ns) = (ANs+1
i )′Pi f ANs+1

i −Pi f +
Ns∑

k=0
(Ak

i )′Qi Ak
i

By the terminal constraint (4.4.2d) and the terminal penalty (4.3.2),

xi (N +Ns)′Ψi (Ns)xi (N +Ns) =
xi (N +Ns)′Ss

i

(
(As

i i
′)Ns+1Σi As

i i
Ns+1 −Σi +

∑
k∈I0:Ns

(As
i i
′)k Ss

i
′Qi Ss

i (As
i i )k

)
Ss

i
′xi (N +Ns)

Proposition 4.13. P f satisfies

A′P f A−P f =−Q

for any A,Q if and only if, for all N > 0, P f satisfies

(AN )′P f AN −P f =−
N−1∑
k=0

(Ak )′Q Ak
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Proof. The proof is by induction.

By Proposition 4.13

xi (N )′Ψi (Ns)xi (N ) = 0 ∀i ∈ I1:4

therefore

V (xNs+, ũNs+) =V (x,uNs )− ∑
i∈I1:4

Ns∑
k=0

ρi

2
`i (xi (k),ui (k))

By Lemma 4.9

V (xNs+,uNs+) ≤V (x,uNs )− ∑
i∈I1:4

Ns∑
k=0

ρi

2
`i (xi (k),ui (k))

Hence, there exists a c such that

V (xNs+,uNs+)−V (x,uNs ) ≤−c
∣∣x, v Ns

∣∣2
(4.4.6)

in which v Ns = {u(0), . . . ,u(Ns −1)}. Between outer iterates, by Lemma 4.8

V (x,uk )−V (x,u0) ≤ 0 k ∈ I0:Ns

The standard upper and lower bounding norms on V (·) follow from the compactness of each

Ui . We remove the appearance of the input u(0) in the norm of (4.4.6) using constraint (4.4.2e)

and complete the proof similarly to Lemma 6.4 in (Rawlings and Mayne, 2009, p.418). A visual

representation of the proof is shown in Fig. 4.3. Therefore we may construct an exponentially

decaying function upperbounding V at each time step, and exponential stability follows.

Remark 4.14 (M Subsystems and L Levels). The above arguments are presented with a plant

composed of 4 subsystems split into 2 neighborhoods. These arguments are extended to any num-

ber of subsystems, however, by replacing 4 in the above arguments with any integer M > 0. Levels

are added to the hierarchy by treating the outer iterate for level L as an inner iterate for level L+1.

For the remainder of the chapter, we will assume M subsystems.
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a

Figure 4.3: Exponential decaying upperbound of objective function. The upperbound given by

line (a) is shown by Lemma 4.8. The cost drop given by the line (b) is show by Lemma 4.9. These

properties allow the construction of the exponentially decaying function γ(k).

4.5 Reducing Communication

In addition to reducing the frequency of information exchange between subsystems, it is

also advantageous to reduce the complexity of the plantwide communication topology. In this

section, we explicitly define neighborhoods and provide a change of variables that allows ex-

change of information between only a subset of the subsystems.

4.5.1 Time Delays

Consider the model xi j

zi j

+

=
Ai j I

0 0

xi j

zi j

+
 0

Bi j

u j

In this model, one time step elapses before a change in u j contributes to xi j . We then say that

the xi j model contains one time delay and abbreviate the model as

x+
i j = Ai j xi j +Bi j u−

j
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Nu
i

Ni

i

Ni

N
u
i

Figure 4.4: Subsystems grouped into neighborhoods with leaders. The neighborhood for sub-

system i is Ni with leader Ni . The neighborhood upstream of subsystem i is Nu
i with leader

N
u
i .

Similarly, a model with q time delays is abbreviated

x+
i j = Ai j xi j +Bi j uq−

j

4.5.2 Network Structure

Definition 4.15 (Neighborhood). The set N is denoted a neighborhood if for all (i , j ) ∈N×N the

xi j model has zero time delays.

Definition 4.16 (Upstream Neighborhood). The neighborhood Nu is defined as upstream to

neighborhoodN if, for all i ∈N and j ∈Nu , the model xi j has one time delay.

For all i ∈ I1:M , denote the neighbors of subsystem i asNi and the upstream neighbors asNu
i .

For each neighborhood Ni , we denote the (singlet) leader set for the neighborhood as Ni for all

i ∈ I1:M . Similarly, the leader set for the upstream neighborhoods of subsystem i is denotedN
u
i .

For example, see Fig. 4.4.
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4.5.3 Models

Consider an alternative model to (4.3.1) in which for every i ∈ I1:M , the model for subsystem

i is

x+
i j = Ai j xi j +Bi j u j ∀ j ∈Ni

x+
i l = Ai l xi l +Bi l u−

l ∀l ∈Nu
i (4.5.1)

x+
i s = Ai s xi s +Bi suq−

s ∀s ∈N[q]
i ,∀q > 1

in which the qth upstream neighborhood is N[q]
i = ⋃

j∈Nu
i
N

[q−1]
j with N[1]

i =Nu
i . Without loss of

generality2, we may write the model in the following form

x+
i j = Ai j xi j +Bi j u j ∀ j ∈Ni (4.5.2a)

x+
i l = Ai l xi l +Ei l xsl ∀l ∈Nu

i , s ∈Nl (4.5.2b)

in which Ei l ∈ Rni j×nsl . Collecting the states into vectors xi = [· · · , x ′
i j , · · · ]′ for all i ∈ I1:M , j ∈

Ni ∪Nu
i , and we form the following matrices for all i ∈ I1:M

Āi i = diag(· · · , Ai j , · · · ) ∀ j ∈Ni ∪Nu
i

Āi l = [· · · , Ē ′
i j , · · · ,0, · · · ,0]′ ∀ j ∈Nl s.t. l ∈Nu

i

in which Āi j ∈Rni×n j and

Ēi j = [0 · · · E ′
i j︸︷︷︸

j th position

· · · 0]′ ∈Rni×ni j ∀ j ∈Nu
i

For all Āi j not defined above, Āi j = 0 . These matrices form the model

x+
i = Āi i xi +

∑
j∈Ni

B̄i j u j +
∑

l∈Nu
i

Āi l xl ∀i ∈ I1:M (4.5.3)

Notice that each state is affected only by inputs within its neighborhood and the states of up-

stream leaders.
2See the discussion in Appendix A
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4.5.4 Interaction Graph

To represent the state-to-state interactions of (4.5.3), we construct a directed graph G =
(V ,E ) in which each subsystem is a vertex, i.e., V = I1:M . For each subsystem i ∈ I1:M , there

exists an edge (i , i ) ∈ E and an edge ( j , i ) ∈ E for all j ∈Nu
i .

A path is a sequence of vertices connected by edges. A path P = {i , j , l , . . . ,m,n} such that

i , j , l , . . . ,m,n ∈ V and (i , j ), ( j , l ), . . . , (m,n) ∈ E . Let the path Pi j be a path from subsystem i to

subsystem j and the set Pk
i j = {Pi j } be the set of all paths from i to j having k connecting edges.

Define

Ā[k]
i j = ∑

Pi j∈Pk
i j

∏
(m,n)∈Pi j

Āmn

This matrix gives the total effect of the state-to-state interactions from subsystem i to subsys-

tem j that propagate in k steps.

4.5.5 Reduced Communication

Communication is reduced by rearranging model (4.5.3) in the following way. For all i ∈ L

α+
i = Āi iαi +

∑
j∈Ni

B̄i j u j (4.5.4)

for whichαi (0) = xi (0). Notice thatα is defined only for the neighborhood leaders, and its com-

putation needs only information, e.g., states and inputs, available within the neighborhood. At

time k ≥ 0, the states of subsystem i ∈ I1:M are

xi (k) =Āk
i i xi (0)+

k−1∑
τ=0

∑
j∈Ni

Āk−τ−1
i i B̄i j u j (τ)+

k−1∑
τ=0

∑
l∈L

∑
s∈I1:M \l

Ā[k−τ−1]
i s Āslαl (τ)

To compute its state, each subsystem communicates only with the neighborhood leaders. This

communication topology reduces the complexity of information sharing in the network. The

total plantwide communication required in cooperative control is N m bytes per exchange. By

exchanging only the α trajectories between neighborhoods, the communication is N (
∑

i∈Lni )

bytes per exchange.
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4.5.6 Control Algorithm

As previously, assume the last outer iterate is k = 0. First the leaders communicate and com-

pute the values of α0
l for all l ∈ L. Then for all i ∈ I1:M , the following optimization is performed

for all p ∈ Ikp̄:(k+1)p̄

min
υi

V (x(0),υ1, . . . ,υi , . . . ,υM ) (4.5.5a)

subject to (4.5.5a)

υi ∈UN
i (4.5.5b)

Su
j i
′x j i (k +No) = 0 j ∈ I1:M (4.5.5c)

|υi | ≤ di
∑

j∈I1:M

∣∣x j i (0)
∣∣ if x j i (0) ∈Br j ∈ I1:M (4.5.5d)

υ j =υp
j j ∈Ni \ i (4.5.5e)

υl =υ0
l l ∈ I1:M \Ni (4.5.5f)

υi (τ) = υp
i (τ) ∀τ ∈ I0:k−1 ∪ Ik+No :N−1 (4.5.5g)

The inner and outer iterates are performed as in Section 4.4. At an outer iterate, the leaders

recompute α. The procedure is then repeated.

Remark 4.17. Because the neighborhoods exchange the trajectory ofα values instead of the input

trajectories, the future input plans are not shared between neighborhoods.

Remark 4.18. The control algorithm and optimization problem remains the same and, given the

previous assumptions remain satisfied, all properties proven in the previous sections are main-

tained.

4.6 Output feedback

In general the model (4.3.1) is nonminimal and the states xi j are unobservable. This prob-

lem motivates the an output feedback scheme in which the states are estimated at each time
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step. For all (i , j ) ∈ I1:M × I1:M , consider the model

x+
i j = Ai j xi j +Bi j u j

yi =
∑

i∈I1:M

Ci j xi j

in which yi ∈ Rpi is the output of subsystem i and Ci j ∈ Rpi×ni j . For notational simplicity, we

write yi =Ci xi in which Ci = [Ci 1, . . . ,Ci M ].

Assumption 4.19. For all i ∈ I1:M , (Ai ,Ci ) is detectable.

4.6.1 Smoothing the Initial State

Consider an estimate of the initial state x̂i (0) with covariance Pi 0. As new measurements are

obtained between synchronization times, we update the estimate of the initial state using the

following relationships. Letting x̂[0]−
i (0) = x̂i (0), P [0]

i = Pi 0 andΠ[0]
i =Qwi for all i ∈ I1:M

x̂[k+1]
i (0) = x̂[k]

i (0)+L[k]
i (yi (k)−Ci x̂[k]

i (k))

L[k]
i = P [k]

i (Ak
i )′C ′

i (CiΠ
[k]
i C ′

i +Rvi )−1

Π[k]
i = Ak

i P [k]
i (Ak

i )′+
k−1∑
t=0

At
i Qwi (At )′

P [k+1]
i = P [k]

i (Ak
i )′C ′

i (CiΠ
[k]
i C ′

i +Rvi )−1Ci Ak
i P [k]

i

in which x̂[k]
i (k) = φi (k; x̂[k]

i (0),uk ) is the nominal estimate of xi (k), and Qwi and Rvi are the

decentralized input and output disturbance covariances, respectively.

4.6.2 Nominal Estimation Error

Between outer iterates, the input injected into the plant is not communicated between sub-

systems in differing neighborhoods. This reduction of communication leads to estimate error

in the nominal system, because each subsystem estimates its state using old values of the inputs

outside its neighborhood. Between outer iterates, the state estimate is

x̂+
i = Ai x̂i +

∑
j∈Ni

B̄i j u j +
∑

j∈I1:M \Ni

B̄i j ũ j (4.6.1)
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in which ũ j is the last communicated value of u j . Defining the nominal error to be e[k]
i = xi (0)−

x̂[k]
i (0) for all i ∈ I1:M , this error propagates with the following model

e[k+1]
i = e[k]

i −L[k]
i Ci

(
xi (k)− x̂[k]

i (k)
)

Using (4.6.1), we arrive at the model

e[k+1]
i = (

I −L[k]
i Ci Ak

i

)
e[k]

i −L[k]
i Ci

∑
j∈I1:M \Ni

k−1∑
t=0

Ak−t−1
i B̄i j (u j (t )− ũ j (t ))

To reduce notation, we use the following

e[k+1]
i = A[k]

Li e[k]
i + ∑

j∈I1:M \Ni

B [k]
Li j (uk−1

j − ũ j )

in which

A[k]
Li = (I −L[k]

i Ci Ak
i )

B [k]
Li j =−L[k]

i Ci
∑

j∈I1:M \Ni

k−1∑
t=0

Ak−t−1
i B̄i j

Noting that nominally e[0]
i = 0, the above equation is further simplified to

e[k+1]
i = ∑

j∈I1:M \Ni

E [k−1]
i j (uk−1

j − ũ j )

in which

E [k−1]
i j =

k−1∑
t=0

( k−1∏
s=t+1

A[s]
Li

)
B [t ]

Li j

We form the plantwide error as

e[k+1] = E [k−1](uk−1 − ũ) (4.6.2)

in which E [k−1] = {E [k−1]
i j }. Notice that the nominal error is affected by the inputs at least two

time steps behind only.
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4.6.3 Output Feedback Stability

The nominal stability of output feedback follows similar arguments to that of the state feed-

back case in Section 4.4.5. We first show that if a stability assumption holds, the plantwide cost

is a Lyapunov function for the closed-loop system every Ns time steps. We then show that the

plantwide objective is upperbounded at all other times.

Define the set of admissible state and input sequence pairs as

ZN = {(x,u) ∈Rn ×UN |V (x,u) ≤ a,φ(N ; x,u) = 0}

in which a > 0 is arbitrary. The set of initial states XN is then

XN = {x | ∃u such that (x,u) ∈ZN }

To show stability, we require the nominal error to be small. First note that using (4.6.2) the

nominal estimate at the next outer iterate satisfies

x̂Ns+ = xNs+−e[Ns+] = xNs+−E [Ns−1](uNs−1 − ũ)

We then make the following assumption on the nominal error.

Assumption 4.20. For all x ∈XN and uNs ∈UN

V (xNs+,h(e[Ns+])) ≤V (x̂Ns+, ũNs+)

in which xNs+ =φ(Ns +1; x,uNs ), h(·) is the reinitialization function, and ũNs+ is the warm start

formed from uNs .

The following assumption bounds the nominal error between outer iterates.

Assumption 4.21. For all x ∈XN and ũ ∈UN

V (x,h(e[k]) ≤V (x, ũ) ∀k ∈ I0:Ns

Remark 4.22. The above assumptions require the true state x and the nominal estimated state

x̂[k] to be close for all input sequences chosen by the distributed controller without communica-

tion. For example, these requirements are be met by requiring E [k](uk − ũ) = 0 for all k ∈ I0:Ns .
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Theorem 4.23 (Output feedback nominal exponential stability). Let Assumptions 4.11, 4.20, and

4.21 hold. Then the origin of the closed-loop system φ(k, x) is exponentially stable.

Proof. At the outer iterate, we have by Assumption 4.20 that

V (xNs+,h(e[Ns+])) ≤V (x̂Ns+, ũNs+)

≤V (x,uNs − ∑
i∈I1:M

Ns∑
k=0

ρi

2
`i (x̂i (k),ui (k))+ ∑

i∈I1:M

ρi

2
x̂i (N )′Ψi (Ns)x̂i (N )

in which x̂i (k) = x̂[k]
i (k). Using similar arguments as Theorem 4.12, it follows that

V (xNs+,h(e[Ns+])) ≤V (x,uNs )− ∑
i∈I1:M

ρi

2
`i (x,u(0))

V (xNs+,uNs+) ≤V (x,uNs )w − ∑
i∈I1:M

ρi

2
`i (x,u(0))

by Assumption 4.21. We can then find a constant c such that

V (xNs+,uNs+) ≤V (x,uNs )− c |(x,u(0))|2

By Assumption 4.21 between outer iterates the cost is upperbounded. The proof is completed

as in Theorem 4.12.

Remark 4.24. The stability of output feedback with perturbation can be established as in The-

orem 3.17 because the smoothing estimator given in Section 4.6.1 is stable and therefore a Lya-

punov function for the error exists.

4.7 Hierarchical Control Example

To show the performance characteristics of hierarchical cooperative control, we perform

the same disturbance rejection examples as in Section 3.7. The control objective is to reject a

disturbance in a distillation column using LV control. The model for the process is

xD (s)

xB (s)

=


12.8e−s

16.7s+1
−18.9e−3s

21.0s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


R(s)

S(s)


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Table 4.1: Performance comparison. Performance deteriorates as Ns increases, but does not

approach the poor performance of decentralized or noncooperative control.

Cost Performance loss (%)
Ns = 0 87.5 15.4
Ns = 1 104 37.4
Ns = 5 139 83.2
Ns = 10 177 134
Ns = 20 195 157

The process is controlled with the poor pairing of xD − S and xB −R. At time t = 5 minutes

a disturbance enters xB , the bottoms mole fraction. The performance of the hierarchical co-

operative controller with different communication time schedules is shown in Figure 4.5. For

all time schedules, the disturbance is rejected, although performance deteriorates as the com-

munication delay, Ns is increased (see Table 4.1). Notice that control with Ns = 20 is stable,

even though this delay is larger than the optimization horizon No = 10. For this example, none

of the cases approach the poor performance of decentralized or noncooperative control (see

Table 3.1).
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Figure 4.5: Disturbance rejection example.
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Chapter 5

Implementing Plantwide Cooperative Control

5.1 Introduction

The goal of plantwide control is to coordinate many interacting subsystems. The subsys-

tems are often designed independently from the rest of the plant or added over time to meet

new production requirements. As each subsystem has its own implementation challenges,

within a plant there is often a mix of economic objectives, time scales, and modeling choices.

The challenge of plantwide control is to assimilate these objectives into a unifying control strat-

egy.

The proceeding chapters have been primarily concerned with giving the theoretical back-

ground of cooperative control. In this chapter we explore the practical application of coopera-

tive control and show the flexibility of the method. We begin by describing how to develop the

models for cooperative control. We then provide a chemical plant example to illustrate that co-

operative control can nominally coordinate subsystems operating at any time scale, sampling

at any time scale, and can exchange information on any time scale.

5.2 Plantwide Modeling

5.2.1 From Decentralized to Cooperative Control

Many large-scale chemical plants implement decentralized control. This control strategy

choice is often adequate if open-loop interactions between the subsystems in the plant are

weakly coupled (Sandell Jr. et al., 1978). Yet even weakly interacting subsystems can benefit

from distributed control, in which these interactions are taken explicitly into account.
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Consider a plant composed of M subsystems. These subsystems interact and hence, for

each pair of subsystems, we can represent the interactions with an input/output model Gi j (s)

capturing the affect of input u j on the output yi for all (i , j ) ∈ I1:M × I1:M . We can arrange these

models into the matrix form

y1

y2

...

yM

=



G11(s) G12(s) · · · G1M (s)

G21(s) G22(s) · · · G2M (s)
...

...
. . .

...

GM1(s) GM2(s) · · · GM M (s)





u1

u2

...

uM


In decentralized control the plantwide controller is implemented with the assumption that

Gi j (s) = 0 for all i 6= j . Most likely, this assumption is an approximation of the true plant model.

From the view of distributed control the decentralized assumption is a case of plant/model

mismatch. Plantwide performance can be improved by identifying each Gi j (s) and implement-

ing distributed control. Gudi and Rawlings (2006) give a method for determining Gi j (s) for

plantwide control.

For many plants it is infeasible or impossible to identify all interaction models, however. It

may also be easier, in practice, to develop the plant model over time. In both cases, plant/model

mismatch can be reduced by identifying a subset of the interaction models. We now provide an

example showing that distributed control provides better performance without identifying all

interaction models.

5.2.1.1 Distillation Column Example

Consider the distillation column for separating methanol from water in Figure 5.1. A two

input and two output model was proposed by Wood and Berry (1973). The Laplace domain

form of the model is

xD

xB

=


12.8e−s

16.7s+1
−18.9e−3s

21.0s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


R

S


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R
xD

xB

S
Figure 5.1: LV control of distillation column
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Table 5.1: Performance comparison. Adding subsystem interaction model information im-

proves controller performance.

Cost Performance loss (%)
Cooperative MPC 1.16 0
G12 = 0 1.7 46.9
G21 = 0 2.35 103
G12 =G21 = 0 2.53 119
Decentralized MPC 2.56 121

in which

xD −overhead mole fraction methanol

xB −bottoms mole fraction methanol

R −overhead reflux flow rate

S −bottoms steam flow rate

We choose the good pairing of subsystems, y1 = xD , u1 = R, y2 = xB , u2 = S. We simulate a

setpoint change of y1 from 0 to 0.75 subject to the input constraints 0 ≥ |u1| ≥ 0.15. Five simu-

lations are conducted. We show the performance of cooperative control subject to full knowl-

edge of the plant, but we also show performance with plant/model mismatch in which G12 = 0,

G21 = 0, and both are zero. The simulation results are shown in Figure 5.2. Each controller is

stabilizing, but performance increases as the model is made more like the plant (see Table 5.1).

In all cases, cooperative control is an improvement on decentralized control.

5.2.2 From Centralized to Cooperative Control1

A plantwide distributed controller can also be designed using a first-principles model of the

plant. This method is useful to evaluate decompositions of the plant into subsystems. A plant

decomposition is chosen by dividing the plantwide inputs and outputs into a M sets of (ui , yi )

1This section appears in (Stewart et al., 2010b)
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Figure 5.2: Performance of LV controller for the distillation column of Wood and Berry (1973).

The control performance improves as model information is added.
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pairs. Then consider the possibly nonminimal centralized model

x+ = Ax + ∑
j∈I1:M

B j u j (5.2.1)

yi =Ci x ∀i ∈ I1:M

For each input/output pair (u j , yi ) we transform the triple (A,B j ,Ci ) into its Kalman canonical

form (Antsaklis and Michel, 1997, p.270)

zoc
i j

z ōc
i j

zoc̄
i j

z ōc̄
i j



+

=



Aoc
i j 0 Aocc̄

i j 0

Aōoc
i j Aōc

i j Aōcoc̄
i j Aōcc̄

i j

0 0 Aoc̄
i j 0

0 0 Aōc̄o
i j Aōc̄

i j





zoc
i j

z ōc
i j

zoc̄
i j

z ōc̄
i j

+



B oc
i j

B ōc
i j

0

0

u j

yi j =
[
C oc

i j 0 C oc̄
i j 0

]


zoc
i j

z ōc
i j

zoc̄
i j

z ōc̄
i j

 yi =
∑

j∈I1:M

yi j

The vector zoc
i j captures the modes of A that are both observable by yi and controllable by u j .

The distributed model in the form of (3.4.1) is then

Ai j ← Aoc
i j Bi j ← B oc

i j Ci j ←C oc
i j xi j ← zoc

i j

In the following example, the above procedure is used to generate the distributed model.

5.3 Chemical Plant Example2

In this section, we construct a chemical plant example in order to evaluate the plantwide

control strategies. Consider a plant consisting of two reactors and a separator. A stream of pure

reactant A is added to each reactor and converted to the product B by a first-order reaction. The

product is lost by a parallel first-order reaction to side product C . The distillate of the separator

is split and partially redirected to the first reactor (see Figure 5.3). The model for the plant is

2A similar example is provided in (Stewart et al., 2010b)



70

H1 H2

F1 F2

FD

F3

FR

Q1 Q2

H3

Q3

F f 1 F f 2

Figure 5.3: Two reactors in series with separator and recycle.

d H1

d t
= 1

ρA1
(F f 1 +FR −F1)

d xA1

d t
= 1

ρA1H1
(F f 1xA0 +FR xAR −F1xA1)−kA1xA1

d xB1

d t
= 1

ρA1H1
(FR xBR −F1xB1)+kA1xA1 −kB1xB1

dT1

d t
= 1

ρA1H1
(F f 1T0 +FR TR −F1T1)

− 1

Cp
(kA1xA1∆HA +kB1xB1∆HB )+ Q1

ρA1Cp H1

d H2

d t
= 1

ρA2
(F f 2 +F1 −F2)

d xA2

d t
= 1

ρA2H2
(F f 2xA0 +F1xA1 −F2xA2)−kA2xA2

d xB2

d t
= 1

ρA2H2
(F1xB1 −F2xB2)+kA2xA2 −kB2xB2

dT2

d t
= 1

ρA2H2
(F f 2T0 +F1T1 −F2T2)

− 1

Cp
(kA2xA2∆HA +kB2xB2∆HB )+ Q2

ρA2Cp H2

d H3

d t
= 1

ρA3
(F2 −FD −FR −F3)

d xA3

d t
= 1

ρA3H3
(F2xA2 − (FD +FR )xAR −F3xA3)

d xB3

d t
= 1

ρA3H3
(F2xB2 − (FD +FR )xBR −F3xB3)

dT3

d t
= 1

ρA3H3
(F2T2 − (FD +FR )TR −F3T3)+ Q3

ρA3Cp H3
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in which for all i ∈ I1:3

Fi = kvi Hi kAi = kA exp(− E A

RTi
) kBi = kB exp(− EB

RTi
)

The recycle flow and weight percents satisfy

FD = 0.01FR xAR = αA xA3

x̄3
xBR = αB xB3

x̄3

x̄3 =αA xA3 +αB xB3 +αC xC 3 xC 3 = (1−xA3 −xB3)

The output and input are denoted, respectively

y =
[

H1 xA1 xB1 T1 H2 xA2 xB2 T2 H3 xA3 xB3 T3

]
u =

[
F f 1 Q1 F f 2 Q2 FR Q3

]
We linearize the nonlinear plant model around the steady state defined by Table 5.2 and

derive the following linear discrete-time model with sampling time ∆ = 0.1s

x+ = Ax +Bu y = x

5.3.1 Distributed Control

We choose to control the separator and each reactor independently and partition the plant

into 3 subsystems by defining

y1 =
[

H1 xA1 xB1 T1

]
u1 =

[
F f 1 Q1

]
y2 =

[
H2 xA2 xB2 T2

]
u2 =

[
F f 2 Q2

]
y3 =

[
H3 xA3 xB3 T3

]
u3 =

[
FR Q3

]
Following the distributed model derivation outlined in Section 5.2.2, we form the distributed

model for the plant.
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Table 5.2: Steady states and parameters

Parameter Value Units Parameter Value Units
H1 29.8 m A1 3 m2

xA1 0.542 wt.% A2 3 m2

xB1 0.393 wt.% A3 1 m2

T1 315 K ρ 0.15 kg/m3

H2 30 m Cp 25 kJ/kg·K
xA2 0.503 wt.% kv1 2.5 kg/m·s
xB2 0.421 wt.% kv2 2.5 kg/m·s
T2 315 K kv3 2.5 kg/m·s
H3 3.27 m xA0 1 wt.%
xA3 0.238 wt.% T0 313 K
xB3 0.570 wt.% kA 0.02 1/s
T3 315 K kB 0.018 1/s
F f 1 8.33 kg/s E A/R -100 K
Q1 10 kJ/s EB /R -150 K
F f 2 0.5 kg/s ∆HA -40 kJ/kg
Q2 10 kJ/s ∆HB -50 kJ/kg
FR 66.2 kg/s αA 3.5
Q3 10 kJ/s αB 1.1

αC 0.5

Table 5.3: Input constraints

Parameter Lower bound Steady state Upper bound Units
F f 1 0 8.33 10 kg/s
Q1 0 10 50 kJ/s
F f 2 0 0.5 10 kg/s
Q2 0 10 50 kJ/s
FR 0 66.2 75 kg/s
Q3 0 10 50 kJ/s
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Table 5.4: Distributed control performance comparison

Cost Performance loss (%)
Centralized MPC 0.101 0
Cooperative MPC (10 iterates) 0.101 0.504
Cooperative MPC (1 iterate) 0.12 18.9
Noncooperative MPC 0.301 199
Decentralized MPC 1.69 1.58e+03

5.3.2 Simulation

Consider the performance of distributed control with the partitioning defined above. The

tuning parameters are

Qyi = diag(1,0,0,0.1) ∀i = I1:2 Qy3 = diag(1,0,103,0)

Qi =C ′
i Qyi Ci +0.001I Ri = 0.01I ∀i ∈ I1:3

The horizon length is 5 seconds, i.e., N = 50. The input constraints are defined in Table 5.3. We

simulate a setpoint change in the output product weight percent xB3 at t = 0.5s.

5.3.3 Comparing Plantwide Control Methods

In Figure 5.4, the performance of the distributed control strategies are compared to the cen-

tralized control benchmark.3 For this example, noncooperative control is an improvement over

decentralized control (see Table 5.4). Cooperative control with only a single iteration is sig-

nificantly better than noncooperative control, however, and approaches centralized control as

more iteration is allowed.

5.4 Asynchronous Subsystem Communication

The communication in the distributed controller may be changed using the hierarchical

control theory of Chapter 4. We show the performance of hierarchical control with three neigh-

borhood configurations. In configuration 1, the reactors are paired in a neighborhood and the

3The cost is calculated as Cost =∑ksim
k=0 `(x(k),u(k))
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Figure 5.4: Performance of reactor and separator example.
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Table 5.5: Hierarchical control performance comparison

Cost ({1,2}{3}) Loss (%) Cost ({1}{2,3}) Loss (%) Cost ({1}{2}{3}) Loss (%)
Ns = 0 0.122 21.3 0.122 21.3 0.122 21.3
Ns = 1 0.132 31.2 0.133 31.8 0.131 30.5
Ns = 5 0.143 42.6 0.136 35.6 0.145 44.3
Ns = 10 0.129 28.6 0.122 21.1 0.134 33.1
Ns = 20 0.114 13.7 0.108 6.99 0.117 16.3

separator is in its own neighborhood. In configuration 2, the first reactor is in its own neighbor-

hood and the second reactor and separator form the other neighborhood. For configuration 3,

each subsystem is in its own neighborhood. Using the same chemical simulation, we vary the

communication time schedule in the plant. The performance for three communications times

in configuration 3 is given in Figure 5.5. As shown in Table 5.5, it is not possible to generalize

the performance loss associated with reducing the communication frequency. Reducing the

communication to every other or after every five time steps reduces performance. A reduction

to every ten or twenty time steps significantly improves performance. This performance gain

shows the benefit of the hierarchical control design.

5.5 Asynchronous Subsystem Optimization

Inside an industrial chemical plant, there are often subsystems with different dynamical

time scales. In the slower time scale subsystems, it may be unnecessary or impossible to provide

feedback at the fastest sampling time in the plant. Therefore, there is a motivation to allow the

subsystem controllers to optimize their control problems at multiple rates. Venkat (2006, Chap-

ter 11) proposed an asynchronous feedback scheme for cooperative control. In this framework,

a slow and fast time scale is defined. The slower time scale subsystems implement a zero-order

hold while the fast time scale subsystems re-solve their control optimization to provide updated

feedback.

The hierarchical control scheme in Chapter 4 also allows this separation of feedback time

scales. We divide the set of subsystems into fast and slow feedback sets, namely Ifast and Islow
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Figure 5.5: Hierarchical control performance of reactor and separator example. Each subsystem

is in its own neighborhood.
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such that Ifast ∪ Islow = I1:M . Let τ be the ratio of the slow to fast sampling times. Each subsystem

i ∈ Islow adds the following equality constraints to its control problem (4.4.2)

ui (0) = ui (1) = ·· · = u(τ−1)

ui (τ) = ui (τ+1) = ·· · = u(2τ−1)

...

ui (N −τ) = ui (N −τ+1) = ·· · = u(N −1)

The synchronization time is Ns = τ− 1. To reduce computation, it is only necessary to use

the inputs {ui (0),ui (τ), . . . ,ui (N −τ)} as decision variables in the control problem. The faster

subsystems optimize at the fast time scale. The horizon of the fast subsystems can be reduced

to aid implementation by choosing a smaller horizon Nfast < N − 1 and using the constraint

ui (Nfast) = ·· · = ui (N −1) = 0 for i ∈ Ifast.

In Figure 5.6, we show the performance of the chemical plant from Section 5.3 under asyn-

chronous cooperative control. The reactors optimize and communicate at every time step,

while the separator optimizes only every five time steps, i.e., τ = 5. The performance cost of

the asynchronous implementation is 0.148, which is 21% higher than fast, synchronous coop-

erative control.

5.6 Asynchronous Sampling

Chemical plants are often affected by high and low frequency disturbances. High frequency

disturbances are rejected by sampling fast responding outputs and taking control action quickly.

Disturbances that affect the plant over a longer time scale are rejected by measuring slower re-

sponding outputs less frequently. The traditional method for controlling a plant with multiple

disturbance time scales is cascade control (Ogunnaike and Ray, 1994, pp.567–570). In cascade

control a slow outer-loop controller sends setpoints to a fast inner-loop controller. Because

the inner-loop controller’s design goal is to track its setpoint, it may reject a disturbance that

helps the inner-loop controller, limiting the performance of the plant. This objective mismatch
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Figure 5.6: Asynchronous control performance of reactor and separator example.
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(a) Cascade control
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(b) MPC with asynchronous estimation

Figure 5.7: Asynchronous sampling. Traditional cascade control requires two levels of con-

trollers. MPC can be implemented with asynchronous estimation.

is similar to the weakness of noncooperative control. This problem motivates a controller that

can reject high frequency disturbances and ensure the slower outputs track their setpoints.

Nagrath, Prasad, and Bequette (2002) show that a single MPC can be used as an alternative

to a multi-loop cascade controller (see Figure 5.7). The MPC replaces the fast, inner-loop con-

troller and the outer-loop measurements are sampled on a slower time schedule. Because the

outer-loop measurements are used in the MPC, there is no objective mismatch in the controller,

and because only one controller is used, the tuning complexity is lower.

5.6.1 One Layer MPC with Delayed Estimation

Consider a single input/two output system

x+
1 = A1x1 +B1u x+

2 = A2x2 +B2u

y1 =C1x1 y2 =C2x2

Without loss of generality, we denote (y1,u) as the slow system and (y2,u) as the fast system.

The goal of the overall control scheme is to bring y1 to its setpoint y1sp . The y2 measurement
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is used to detect high frequency input disturbances so that they can be rejected before signifi-

cantly affecting y1. It is usually not required to control y2 to a setpoint. Because the outer-loop

measurement is sampled at a slower rate, we require a modification of the estimator defined in

Section 3.4. Let y1 be sampled every τ time steps. Using the same techniques as Rawlings and

Mayne (2009, pp.28–32), the outer-loop estimator for this case is defined by

x̂−
1 = A∆1 x̂1 +

∆−1∑
j=0

A∆− j−1
1 B1u( j )

P−
1 = A∆1 P1(A∆1 )′+

∆−1∑
j=0

A∆− j−1
1 Q1(A∆− j−1

1 )′

L1 = P−
1 C ′

1(C1P−
1 C ′

1 +R1)−1

P1 = P−
1 −P−

1 C ′
1(C1P−

1 C ′
1 +R1)−1C1P−

1

x̂1 = x̂−
1 +L1

(
y1 −C1x̂−

1

)
5.6.2 Asynchronous Sampling Example

In this example, we compare a traditional cascade controller to MPC with asynchronous

sampling. Consider the two output/one input plant with output disturbances

y1(s)

y2(s)

=


−4

20s+1

−2.5
5s+1

u

The goal of the control in this example is to keep y1 at its setpoint under all disturbances.

To design the cascade controller, we use the method given by Russo and Bequette (1997).

The cascade controller is constructed with a PI controller for the outer loop that controls y1 by

manipulating the setpoint of y2. The inner-loop controller uses proportional control only and

tries to move y2 to its setpoint by directly manipulating u. The outer loop executes every 50 time

steps. The cascade controllers are tuned using the gain of the LQR controller with parameters

Qy1 = 1, R1 = 1, Qy2 = 20, and R2 = 1. The integrating time constant for the outer loop is Ti =
0.04. The MPC is tuned with parameters Qy = diag(1,0) and R = 10.
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To illustrate a performance benefit of MPC over cascade control, we compare their rejec-

tion of a disturbance. At time t = 5s, a unit input disturbance enters the plant. The cascade

controller responds quickly and moves y2 closer to its setpoint. Because the outer loop does

not execute for another 45s, the y1 continues to drift away from its setpoint until it is sampled.

Alternatively, the MPC brings y1 back to setpoint even before sampling. This example show

that the objective mismatch of the loops in cascade control can lead to significant performance

losses.

Remark 5.1. The above arguments are for one MPC, but the same asynchronous sampling frame-

work can be applied to the decentralized estimator in each subsystem.

Remark 5.2 (Data network). In order to implement plantwide cooperative control, it is neces-

sary for the subsystem controllers and estimators to communicate. This communication can be

accomplished with a plantwide data network to which every subsystem can write and read in-

formation. This communication framework contrasts the coordinating optimizations usually

required in plantwide control (Scattolini, 2009).

5.7 Conclusions

In this chapter, we present examples showing the flexibility and practical advantages of co-

operative control over traditional plantwide control schemes. The examples show that the sub-

systems in the plant can communicate on any time schedule, the control problem solved in

each subsystem can be solved on any time schedule, and measurements can be sampled asyn-

chronously. Moreover, these design choices can be made independently and do not affect the

nominal stability of the plant. We also show that it is not necessary to identify all plantwide

subsystem interactions in order to benefit from cooperative control, and that alternatively, the

plantwide model can be constructed from first principles.
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Chapter 6

Cooperative Control for Nonlinear Systems

Note: The text of this chapter appears in (Stewart, Wright, and Rawlings, 2010c).

6.1 Introduction

In this chapter, we extend the work in Chapter 1 to nonlinear plants. The main difference

is that the plantwide objective function is nonconvex and therefore we propose a novel dis-

tributed nonconvex optimization that converges to stationary points without the use a of cen-

tral coordinating optimization. We avoid a coordinating optimization based on the following

two criteria for the plantwide control optimization: (i) the optimizers should not rely on a cen-

tral coordinator and (ii) the exchange of information between the subsystems and the iteration

of the subsystem optimizations should be able to terminate before convergence without com-

promising closed-loop properties. The first criterion is motivated by the practicality of indus-

trial distributed control. Distributed control strategies are used for plants in which centralized

control is often impractical or undesirable to implement, and a plantwide coordination layer

is likely as difficult to implement as centralized control. The second criterion is motivated by

the implementation of distributed control. A plantwide control strategy should be robust to

communication disruptions and algorithm failures. Therefore these strategies cannot rely on

iteration convergence in order to have an implementable input. In the absence of either of

these properties, the alternative is usually centralized control.
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The statement of the optimization follows in the next section. In Section 6.3, we present a

distributed controller that uses the nonconvex optimization and show that it is asymptotically

stable. We then present an illustrative example and follow with conclusions.

6.2 Distributed Nonconvex Optimization

Consider the optimization

min
u

V (u) s.t. u ∈U (6.2.1)

in which u ∈Rm and V (·) :Rm →R+ is twice continuously differentiable. We assumeU is closed,

convex, and can be separated into M orthogonal subspaces such that U = U1 ×·· ·×UM , for

which Ui ∈ Rmi for all i ∈ I1:M . We require approximate solutions to the following suboptimiza-

tions at iterate p ≥ 0 for all i ∈ I1:M

min
ui∈Ui

V (ui ,up
−i )

in which u−i = (u1, . . . ,ui−1,ui+1, . . . ,uM ). Let the approximate solution to these optimizations

be up
i . In the proposed algorithm, we compute the approximate solutions via line search with

gradient projection. At iterate p ≥ 0

up
i =P i (up

i −∇i V (up )) (6.2.2)

in which ∇i V (up ) is the i th component of ∇V (up ) and the function P i (·) denotes the projection

onto the set Ui . Define the step υ
p
i = up

i −up
i . To choose the stepsize αp

i , each suboptimizer

initializes the stepsize with αi and then uses backtracking with a factor of β ∈ (0,1) until αp
i

satisfies the Armijo rule (Bertsekas, 2008, p.230)

V (up )−V (up
i +αp

i υ
p
i ,up

−i ) ≥−σαp
i ∇i V (up )′υp

i (6.2.3)

in which σ ∈ (0,1). After all suboptimizers finish the backtracking process, they exchange steps.

Each suboptimizer forms a candidate step

up+1
i = up

i +wiα
p
i υ

p
i ∀i ∈ I1:M (6.2.4)
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and checks the following inequality, which tests if V (up ) is convex-like

V (up+1) ≤ ∑
i∈I1:M

wi V (up
i +αp

i υ
p
i ,up

−i ) (6.2.5)

in which
∑

i∈I1:M wi = 1 and wi > 0 for all i ∈ I1:M . If condition (6.2.5) is not satisfied, then we find

the direction with the worst cost improvement imax = argmaxi {V (up
i +αp

i υ
p
i ,up

−i )}, and elimi-

nate this direction by setting wimax to zero and repartitioning the remaining wi so that they sum

to 1. We then reform the candidate step (6.2.4) and check condition (6.2.5) again. We repeat

until (6.2.5) is satisfied. At worst, condition (6.2.5) is satisfied with one direction only. The steps

are formalized in Algorithm 1.

Remark 6.1. In Chapter 3, we proposed a similar distributed algorithm for a convex optimiza-

tion. The main difference in the nonconvex case is that poor suboptimizer steps must be elimi-

nated to ensure the objective function decreases at each iterate.

Remark 6.2 (Distributed). The test of inequality (6.2.5) does not need a coordinator. At each

optimization iterate the subsystems exchange the solutions of the gradient projection. Each sub-

system has a copy of the plantwide model and can evaluate the objection function independently.

Therefore the while-loop in Algorithm 1, which is a series of conditional statements without op-

timization, can be run on each controller. This computation is likely a smaller overhead than a

coordinating optimization.

Lemma 6.3 (Feasibility). Given a feasible initial condition, the iterates up are feasible for all

p ≥ 0.

Lemma 6.4 (Objective decrease). The objective function decreases at every iterate

V (up+1) ≤V (up )

Lemma 6.5 (Convergence). Every accumulation point of the sequence {up } is stationary.

The proofs of Lemmas 6.3 and 6.4 follow by construction of the algorithm. We give the proof

of Lemma 6.5 after establishing some preliminary propositions.
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Algorithm 1 Distributed gradient projection

Given finite p, 0 <σ< 1, and w i > 0 for all i ∈ I1:M such that
∑

i∈I1:M w i =
1.

for p = 0,1, . . . , p do
for i ∈ I1:M do

Compute up
i using (6.2.2);

Find αp
i satisfying (6.2.3);

V p
i ←V (up

i +αp
i υ

p
i ,up

−i );

υp ← (υp
1 , . . . ,υp

M );
k ← 1, Igood ← I1:M , wi ← w i

while k < M do
for i ∈ I1:M do

up+1
i ← up

i +wiα
p
i υ

p
i ;

if up+1 satisfies (6.2.5) then
break;

else
imax ∈ argmaxi∈I1:M {V p

i };
Igood ← Igood \ imax;
wimax ← 0;
w ←∑

j∈Igood
w j ;

for i ∈ I1:M do
wi ← wi /w ;

k ← k +1;
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Proposition 6.6. Given a closed, convex set U with any y ∈U and any z ∈ Rm , for the projection

P (·) onto U

(y − z)′(y −P (z)) ≥ 0

with equality if and only if y =P (z).

Proposition 6.7. If û is nonstationary

∇i V (û)′
[
ûi −P i (ûi −∇i V (û))

]≥ 0 i ∈ I1:M

with strict inequality for at least one i ∈ I1:M .

Proof. Set y = ûi and z = ûi −∇i V (û) in Proposition 6.6 to prove the first claim. To show the

second claim, observe that if equality holds for all i ∈ I1:M , then from Proposition 6.6 we would

have

ûi =P i (ûi −∇i V (û)) ∀i ∈ I1:M

and therefore û =P (û −∇V (û)), and û would be stationary.

Proposition 6.8. Suppose û is a nonstationary point. Then there are positive constants ρ and ε

and an index i ∈ I1:M such that for all u with |u − û| ≤ ρ, the i th suboptimizer chooses stepsize αi

for which

V (ui ,u−i )−V (ui +αiυi ,u−i ) ≥ ε

Proof. Let i be an index such that strict inequality holds in Proposition 6.7. Using the continuity

of ∇i V (·) and P i (·), define ρ > 0 and εi > 0 such that

−∇i V (u)′υi =∇i V (u)′
[
ui −P i (ui −∇i V (u))

]≥ εi
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for all u with |u − û| ≤ ρ. From Taylor’s theorem (Nocedal and Wright, 2006, p. 14), and using

continuity of ∇i V (·), there is an α̂i > 0 such that for all αi ∈ [0, α̂i ]

V (ui ,u−i )−V (ui +αiυi ,u−i ) =
−αi∇i V (ui ,u−i )′υi −αi

[∇i V (ui + tαiυi ,u−i )−∇i V (ui ,u−i )
]′
υi

=−αi∇i V (ui ,u−i )′υi +o(αi )

≥−σαi∇i V (ui ,u−i )′υi (6.2.6)

in which α̂i is small enough to ensure that the remainder term satisfies

o(αi ) ≤−(1−σ)αi∇i V (ui ,u−i )′υi

a strictly positive multiple ofαi . Hence the backtracking process terminates at a valueαi greater

than or equal to αi = min(αi ,βα̂i ) > 0. Hence, from (6.2.6), we have

V (ui ,u−i )−V (ui +αiυi ,u−i ) ≥−σαi∇i V (ui ,u−i )′υi ≥σαiεi > 0

Therefore the Proposition holds with ε=σαiεi .

We now proceed with the proof of the convergence result.

Proof of Lemma 6.5. Toward a contradiction, suppose that û is a nonstationary point, and let K

be a subsequence such that {up }p∈K → û. By taking a further subsequence if necessary, we have

from Proposition 6.8 that there is an index i and a positive constant ε such that

V (up
i ,up

−i )−V (up
i +αp

i υ
p
i ,up

−i ) ≥ ε

for all p ∈ K . Let j p be the index in I1:M that attains the best decrease on V at iterate p. Since

there are only finitely many possible values for j p , at least one of them must recur infinitely

often. By taking a further subsequence we can assure j p ≡ j for some j ∈ I1:M . We thus have

V (up )−V (up
j +α

p
j υ

p
j ,up

− j ) ≥V (up )−V (ui +αp
i υ

p
i ,up

−i ) ≥ ε

for all p ∈ K . Moreover, the index j remains in the set Igood for all inner iterations, at each

major iteration p ∈ K . Since all terms in the summation on the right-hand side of (6.2.5) are
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nonnegative and w j ≥ w j > 0, using (6.2.7), the right-hand side is bounded below by w j ε > 0.

Therefore

V (up )−V (up+1) ≥ w j ε> 0 ∀p ∈ K

for which w j ε does not depend on p. This inequality implies that V (up ) →−∞ over the entire

sequence {up }, since V (up ) decreases at every iteration. This contradicts limp∈K V (up ) =V (û),

and the proof is complete.

6.2.1 Example from Rawlings and Mayne

Consider the nonconvex function

V (u1,u2) = e−2u1 −2e−u1 +e−2u2 −2e−u2

+a exp(−β((u1 +0.2)2 + (u2 +0.2)2))

in which a = 1.1 and β= 0.4 (Rawlings and Mayne, 2009, p.462). There are two global minimum

located at (0.007,2.28) and (2.28,0,007) and a local minimum at (0.23,0.23). The inputs are

constrained such that 0.1 ≤ ui ≤ 4 for i ∈ I1:2. We start the algorithm at three initial conditions

(0.5,0.5), (3.9,3.6) and (3.5,3.9). As shown in Figure 6.1, each of these points converges to a

different local minimum.

6.3 Distributed Nonlinear Cooperative Control

In this section, we propose a controller that uses the distributed optimization described

in the previous section. To facilitate the exposition, we assume the plant comprises only two

subsystems.

6.3.1 Problem Formulation (Ideal Case)

In order to motivate the theory of our approach to distributed control, consider the ideal

case in which each controller can optimize and exchange information infinitely quickly. In the

sequel, we propose a controller with the goal of replicating the properties of the ideal case as

closely as possible without relaxing the basic properties of the controller.
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rithm 1



91

In general, we have models of the form

ẋ1 = f1(x1, x2,u1,u2) ẋ2 = f2(x1, x2,u1,u2)

and subsystem objective functions

V ∞
1

(
x1, x2,u1,u2

)= ∫ ∞

0
`1

(
x1(t ),u1(t )

)
d t V ∞

2

(
x1, x2,u1,u2

)= ∫ ∞

0
`2

(
x2(t ),u2(t )

)
d t

We define the plantwide objective function

V ∞(
x1, x2,u1(·),u2(·))=ρ1V ∞

1

(
x1, x2,u1(·),u2(·))+ρ2V ∞

2

(
x1, x2,u1(·),u2(·))

At time t , the subsystems solve the following optimizations

min
u1(·)

V ∞(
x1(0), x2(0),u1(·),u2

)
min
u2(·)

V ∞(
x1(0), x2(0),u1,u2(·))

s.t. u1(t ) ∈U1 ∀t ≥ 0 s.t. u2(t ) ∈U2 ∀t ≥ 0

u2(t ) = u0
2(t ; x1, x2) ∀t ≥ 0 u1(t ) = u0

1(t ; x1, x2) ∀t ≥ 0

ẋ1 = f1(x1(t ), x2(t ),u1(t ),u2(t )) ∀t ≥ 0 ẋ1 = f1(x1(t ), x2(t ),u1(t ),u2(t )) ∀t ≥ 0

ẋ2 = f2(x1(t ), x2(t ),u1(t ),u2(t )) ∀t ≥ 0 ẋ2 = f2(x1(t ), x2(t ),u1(t ),u2(t )) ∀t ≥ 0

in which U1 and U2 are the input constraints. We denote the solution to these problems as

u0
1(·; x1, x2) and u0

2(·; x1, x2), respectively. This controller has several properties. The decision

space of each controller is reduced to a subset of the inputs. The controller feedback converges

to the centralized optimal feedback infinitely quickly. Notice that in the ideal case the control

law is a function of both states, and hence initial states must be exchanged between controllers.

The assumptions of infinitely fast optimization and communication and infinite dimen-

sional decision variables are unrealistic, however. We wish to replicate the properties of this

ideal controller but weaken these assumptions. Therefore we use discrete time models, a finite

number of optimization and communication steps, and a finite decision space. For the pro-

posed controller, we retain the (ideal) properties of reducing the decision space of each con-

troller and having an implementable, stabilizing input at each sampling time. Notice that the
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same compromise exists in the centralized case when comparing an ideal infinite horizon con-

troller to an implementable discrete-time finite horizon control. Notice also that the choice of

a finite number of iterates of the optimization algorithm implies the distributed controller is

suboptimal. We now give the theory of the proposed distributed controller.

6.3.2 Model

We assuming the following models exist

x+
1 = f1(x1, x2,u1,u2) x+

2 = f2(x1, x2,u1,u2) (6.3.1)

in which xi ∈Rni , ui ∈Rmi , and fi :Rn1 ×Rn2 ×Rm1 ×Rm2 →Rni is continuous such that fi (0) = 0

for all i ∈ I1:2. We collect these models to form the plantwide model

x+ = f (x1, x2,u1,u2) = f (x,u)

in which

x =
x1

x2

 u =
u1

u2

 f (x,u) =
 f1(x1, x2,u1,u2)

f2(x1, x2,u1,u2)


for which x ∈Rn , u ∈Rm , and f :Rn ×Rm →Rn .

6.3.3 Constraints

At each time step k, we require the inputs to satisfy

u1(k) ∈U1 u2(k) ∈U2 k ∈ I0:N−1

in which each Ui ∈Rmi is compact, convex, and contains the origin in its interior.

6.3.4 Objective Functions

Usually in distributed control implementations an objective function is defined for each

subsystem. We construct the plantwide objective function from these objectives. For each sub-

system i ∈ I1:2, we denote the positive definite function `i (xi ,ui ) as the stage cost such that
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`i (0,0) = 0 and Vi f (x) as the terminal cost such that Vi f (0) = 0. The objective function for each

subsystem i ∈ I1:2 is defined

Vi
(
x(0),u1,u2

)= N−1∑
k=0

`i
(
xi (k),ui (k)

)+Vi f
(
x(N )

)
in which ui = {ui (0), . . . ,ui (N − 1)} ∈ RN mi , xi (k) = φi (k; xi ,u1,u2), and N > 0. Because xi is a

function of both u1 and u2, Vi is implicitly a function of both u1 and u2. We define plantwide

objective

V
(
x1(0), x2(0),u1,u2

)= ρ1V1
(
x(0),u1,u2

)+ρ2V2
(
x(0),u1,u2

)
in which ρ1,ρ2 > 0 are weighting factors. To simplify notation we use V (x,u) for the plantwide

objective.

Remark 6.9. Alternatively, the plantwide objective function can be defined without reference to

subsystem objective functions.

Assumption 6.10. For each i ∈ I1:2, there exists a K∞ function αi (·) such that

`i (xi ,ui ) ≥αi (|xi |) ∀(xi ,ui ) ∈Rni ×Ui (6.3.2)

6.3.5 Terminal Controller

Denote the plantwide terminal penalty V f (x) = ρ1V1 f (x)+ρ2V2 f (x). We define the terminal

region X f to be a sublevel set of V f . For a > 0, define

X f = {x |V f (x) ≤ a}

Assumption 6.11. The plantwide terminal penalty V f (·) satisfies

α f (|x|) ≤V f (x) ≤ γ f (|x|) ∀x ∈X f

in which α f (·) and γ f (·) are K∞ functions.

Defining `(x,u) = ρ1`1(x1,u1)+ρ2`2(x2,u2), we require the following stability assumption.
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Assumption 6.12. The terminal cost V f (·) satisfies

min
(u1,u2)∈U1×U2

{
V f

(
f (x,u1,u2)

)+`(x,u)

s.t. f (x,u1,u2) ∈X f

}
≤V f (x) ∀x ∈X f

This assumption implies that for x ∈X f there exists a κi f (x) ∈Ui for all i ∈ I1:2 such that

V f
(

f (x,κ1 f (x),κ2 f (x))
)+`(x,κ1 f (x),κ2 f (x)

)≤V f (x) (6.3.3)

s.t. f (x,κ1 f (x),κ2 f (x)) ∈X f

Each terminal controller κi f (·) may be found via a centralized calculation offline. We next pro-

vide an example of such a terminal control law.

6.3.5.1 Distributed Terminal Control Example

In this example, we make a linear approximation of the nonlinear model around the origin

and find a stabilizing linear control law. Let f (·) and `(·) be Lipschitz continuous in a neigh-

borhood of the origin. Define A = ∇x f (0,0), B = ∇u f (0,0), Q = ∇2
xx`(0,0), R = ∇2

uu`(0,0), and

S =∇2
xu`(0,0). Denote P f as the solution to the centralized discrete time Riccati equation

P f =A′P f A+Q − (A′P f B +S)(R +B ′P f B)−1(B ′P f A+S′)

and terminal controller gain K as

K =−(R +B ′P f B)−1(B ′P f A+S′)

In the terminal region, the unconstrained control law u = K x is used. Defining the stable matrix

AK = (A +BK ) and Q∗ = (Q +K ′RK ), let the matrix P satisfy the Lyapunov equation A′
K PAK +

2Q∗ = P . Following (Rawlings and Mayne, 2009, pp.135-137), there exists an a ∈ (0,∞) such that

V f ( f (x,κ1 f (x),κ2 f (x)))+ 1

2
x ′Q∗x −V f (x) ≤ 0 ∀x ∈W (a)

in which W (a) = {x | V f (x) ≤ a}

κ1 f (x1, x2) = K11x1 +K12x2

κ2 f (x1, x2) = K21x1 +K22x2
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V1 f (x1, x2) = 1

2
x ′

1P11x1 + 1

2
x ′

1P12x2 (6.3.4a)

V2 f (x1, x2) = 1

2
x ′

2P21x2 + 1

2
x ′

2P22x2 (6.3.4b)

and

P =
P11 P12

P21 P22

 K =
K11 K12

K21 K22


We then define the terminal set X f =W (a).

Remark 6.13. For systems in which it is undesirable or impossible to calculate the centralized

K and P matrices, a decentralized terminal controller can be used with the trade-off that X f is

smaller than for the centralized terminal controller case.

6.3.6 Removing the Terminal Constraint in Suboptimal MPC

To show stability, we must ensure that φ(N ; x,u) ∈ X f . Imposing a terminal constraint on

the state, however, requires the use of coupled input constraints in each suboptimization of

cooperative MPC. Such a constraint, in general, does not allow the distributed algorithm to

converge to the optimal plantwide control feedback without a coordinator (see Remark 3.19).

This terminal constraint can be removed from the control problem by modifying the terminal

penalty, however. In the following, we show this feature for the general suboptimal MPC case

(Rawlings and Mayne, 2009, pp.155–158), and note that the proposed distributed controller is

of this class.

For some β≥ 1, let the objective function be defined

V β(x,u) =
N−1∑
k=0

`(x(k),u(k))+βV f (x(N )) (6.3.5)

Define the set of admissible initial (x,u) pairs as

Z0 = {(x,u) ∈X×UN |V β(x,u) ≤V , φ(N ; x,u) ∈X f } (6.3.6)
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in which V > 0 is an arbitrary constant and X = Rn . Then the set of initial states X0 is the pro-

jection of Z0 onto X

X0 = {x ∈X | ∃u such that (x,u) ∈Z0}

Proposition 6.14 (Terminal constraint satisfaction). Let {(x(k),u(k)) | k ∈ I≥0} denote the set of

states and control sequences generated by the suboptimal system. There exists a β > 1 such that

for all β≥β, if (x(0),u(0)) ∈Z0, then (x(k),u(k)) ∈Z0 with φ(N ; x(k),u(k)) ∈X f for all k ∈ I≥0.

Proof. The proof is by induction.1 We show that there is a finite value β such that the following

property holds for all β ≥ β: For any state and input sequence (x,u) ∈ Z0, the successor state

and input sequence (x+,u+) ∈Z0. The successor state is x+ = f (x,u(0)) and the warm start is

ũ+ = {u(1),u(2), . . . ,u(N −1),κ f
(
x(N )

)
}

We know that ũ+ ∈UN because κ(x(N )) ∈U for x(N ) ∈X f . We also have from the properties of

κ f (·) that φ(N ; x+, ũ+) ∈X f and V β(x+, ũ+) ≤ V by (6.3.3). Next consider any control sequence

υ ∈UN meeting the suboptimal MPC cost requirement

V β(x+,υ) ≤V β(x+, ũ+)

Expanding the cost function on the left and using the bound on the right gives

N−1∑
i=0

`(z(i ),υ(i ))+βV f (z(N )) ≤V

in which z(i ) =φ(i ; x+,υ). This inequality implies

βV f (z(N )) ≤V

and if we choose

β≥β= max(1,V /a)

we obtain V f (z(N )) ≤ a, which implies that z(N ) ∈ X f . We have found a finite value of β such

that the terminal state corresponding to any admissible u+ from state x+ lies inX f for β≥β. By

induction, since (x(0),u(0)) ∈Z0, (x(k),u(k)) ∈Z0 for all k ∈ I≥0, and the result is established.

1The proof of this Proposition is by Rawlings, Stewart, Wright, and Mayne (2010)
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For the remainder of the chapter, we replace the plantwide objective with the modified ob-

jective V (·) ←V β(·) and hence the terminal constraint is satisfied.

6.3.7 Cooperative Control Algorithm

Let ũ ∈U be the initial condition for the cooperative MPC algorithm such thatφ(N ; x(0), ũ) ∈
X f . At each iterate p, an approximate solution of the following optimization problem is found

min
u

V
(
x1(0), x2(0),u1,u2

)
(6.3.7a)

s.t. x+
1 = f1(x1, x2,u1,u2) (6.3.7b)

x+
2 = f2(x1, x2,u1,u2) (6.3.7c)

ui ∈UN
i ∀i ∈ I1:2 (6.3.7d)

|ui | ≤ δi (|xi (0)|) if x(0) ∈Br ∀i ∈ I1:2 (6.3.7e)

in which δi (·) is a K∞ function and r > 0 can be chosen as small as required. Constraint (6.3.7e)

is needed for stability and is motivated in the sequel. We can write (6.3.7) in the form of (6.2.1)

by substituting the model equations (6.3.7b) and (6.3.7c) into the objective function (6.3.7a). To

achieve distributed control, we use Algorithm 1 to solve (6.3.7).

Let the input sequence returned by Algorithm 1 be up̄ (x, ũ). The first input of this sequence

κp̄ (x(0)) = u p̄ (0; x(0), ũ) is injected into the plant and the state is moved forward. To reinitialize

the algorithm at the next sampling time, we define the warm start

ũ+
1 = {u1(1),u1(2), . . . ,u1(N −1),κ1 f

(
x(N )

)
}

ũ+
2 = {u2(1),u2(2), . . . ,u2(N −1),κ2 f

(
x(N )

)
}

in which x(N ) = φ(N ; x(0),u1,u2). In general, it is not possible to solve optimization (6.3.7) to

optimality because of the limited time available to obtain feedback. The distributed controller

is therefore suboptimal, and the stability of the controller can be established by suboptimal

MPC theory.
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6.3.8 Stability of Distributed Nonlinear Cooperative Control

To establish stability of the control algorithm, we show that the plantwide objective cost

decreases between sampling times. Without loss of generality, assume k = 0 and the input u(0)

is injected into the plant. Using the warm start as the initial condition at the next sampling time,

we have

V (x+, ũ+) =V (x,u)−ρ1`1(x1,u1)−ρ2`2(x2,u2)

−ρ1V1 f (x(N ))−ρ2V2 f (x(N ))

+ρ1`1

(
x1(N ),κ1 f

(
x(N )

))+ρ2`2

(
x2(N ),κ2 f

(
x(N )

))
+ρ1V1 f

(
f1

(
x1(N ), x2(N ),κ1 f

(
x(N )

)
,κ2 f

(
x(N )

)))
+ρ2V2 f

(
f2

(
x1(N ), x2(N ),κ1 f

(
x(N )

)
,κ2 f

(
x(N )

)))
Using (6.3.3), the last six terms above are cumulatively nonpositive, giving

V (x+, ũ+) ≤V (x,u)−ρ1`1(x1,u1)−ρ2`2(x2,u2)

By Lemma 6.4, the objective function cost decreases from this warm start, so that

V (x+,u+) ≤V (x,u)−ρ1`1(x1,u1)−ρ2`2(x2,u2)

Hence

V (x+,u+)−V (x,u) ≤−α(|(x,u)|) (6.3.8)

in which α(|(x,u)|) = ρ1α1(|(x1,u1)|)+ρ2α2(|(x2,u2)|).

We now give the main result of this chapter. Let XN be the forward invariant set of all initial

states for which the control optimization (6.3.7) is feasible.

Theorem 6.15 (Asymptotic stability). Let Assumptions 6.10-6.12 hold and let V (·) ← V β(·) by

Proposition 6.14. Then for every x(0) ∈XN , the origin is asymptotically stable for the closed-loop

system x+ = f (x,κp̄ (x)).
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Proof. The proof follows from the stability of suboptimal MPC (Scokaert et al., 1999, Theorem

1), which requires satisfaction of three properties to prove asymptotic stability. 1) There exists

a lower bound α(|x|) ≤ V (x,u) by satisfaction of Assumptions 6.10 and 6.11. 2) The descent

property has been shown above in (6.3.8). 3) The Lyapunov constraint (6.3.7e) is explicitly added

to the optimization. We have accounted for each required property and the result is established.

Remark 6.16 (M subsystems). The arguments for the controller have been given for the case of

two subsystems only, but same arguments apply for any finite M > 0 number of subsystems.

6.4 Illustrative Example

For this example, we use the stage cost

`1(x1,u1) =1

2
(x ′

1Q1x1 +u′
1R1u1)

`2(x2,u2) =1

2
(x ′

2Q2x2 +u′
2R2u2)

in which Q1,Q2 > 0 and R1,R2 > 0. This stage cost gives the objective function

V (x,u) = 1

2

N−1∑
k=0

x(k)′Qx(k)+u(k)′Ru(k)+V f (x(N ))

in which Q = diag(Q1,Q2), R = diag(R1,R2) and V f (·) = V1 f (·)+V2 f (·) is defined by (6.3.4). The

terminal region is defined as in Section 6.3.5.1.

6.4.1 Simulation

Consider the unstable nonlinear system

x+
1 = x2

1 +x2 +u3
1 +u2

x+
2 = x1 +x2

2 +u1 +u3
2

with initial condition (x1, x2) = (3,−3). The control objective is to stabilize the system and drive

the states to the origin. For the simulation we choose the parameters

Q = I R = I N = 2 p = 3 β= 1 Ui = [−2.5,2.5] ∀i ∈ I1:2
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As shown in Figure 6.2, the control scheme is stabilizing. Increasing the maximum number of

iterations significantly improves the performance. In Figure 6.2, we also show the performance

for p = 10. The cost difference is given in Figure 6.3. To elucidate the difficulty in optimizing the

nonconvex objective function, the iterations of the zeroth stage control optimization are shown

in Figure 6.4 for the N = 1 case. The terminal region, calculated as in Section 6.3.5.1, is shown

in Figure 6.5.
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Figure 6.2: Controller performance with (x1(0), x2(0)) = (3,−3). Setting p = 10 approximates a

centralized controller solution.
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subsystem controllers with initial condition (u0
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2) = (0,0).
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Figure 6.5: Terminal region. Xt are the points in which the terminal controller is stabilizing and

X f = {x | V f (x) ≤ 0.485} ⊆Xt is the terminal region.
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Chapter 7

Conclusions and Future Work

We conclude with a summary of contributions and some suggestions for challenging prob-

lems motivated by this thesis.

Contributions

Plantwide offset-free feedback for linear plants: The theory of cooperative MPC was given in

Chapter 3. This control strategy has the following features: hard input constraints are satisfied;

terminating the distributed optimization iteration prior to convergence does not affect nominal

stability; the distributed optimization converges to the Pareto optimal (centralized) solution; no

coordinating optimization is needed. Exponential stability of the closed-loop plantwide sys-

tem was proven for the state and output feedback cases. An extension is also shown in which

sparsely coupled constraints between subsystems can be handled without loss of stability or

optimality. Stability does not depend on subsystem interaction strength.

Integration of multiple communication and optimization time scales: In Chapter 4, an ex-

tension to cooperative control was provided in which communication between subsystems oc-

curs at multiple time schedules, as in traditional hierarchical control. The hierarchical control

scheme was shown to provide exponentially stable performance under state and output feed-

back. This extension uses a modification of the distributed optimization and was shown to

converge to the Pareto optimum and can be terminated early without affecting nominal stabil-

ity.
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Plantwide implementation examples: To demonstrate the flexibility of cooperative control, a

series of examples were given in Chapter 5. These examples have shown that cooperative con-

trol can nominally stabilize subsystems optimizing, communicating, and sampling on any time

scale. Further examples were provided to illustrate that the modeling required for cooperative

control can be identified over time and that the models can be generated from a centralized,

first-principles model.

Plantwide nominally stable control for nonlinear plants: Chapter 6 presented a novel dis-

tributed optimization for nonconvex problems that provides convergence to stationary points.

We combined this optimization with a new result in suboptimal MPC to develop a plantwide

distributed nonlinear controller. This controller was shown to provide asymptotically stabiliz-

ing feedback and an example was used to illustrate its performance.

Future Work

Integration of cooperative and economic MPC: Recent work in economic MPC has led to a

method in which MPCs can track plant profit directly (Diehl, Amrit, and Rawlings, 2010; Rawl-

ings and Amrit, 2009). Real time optimization (RTO) is often used in plantwide control to find

the economically optimal steady state. Using the theory of economic MPC, the nonconvex op-

timization defined in Section 6.2 can instead be used to optimize economics directly in the

distributed controllers.

Systematic plant decomposition: In Chapter 5, two methods for constructing the plantwide

interaction model are given. These models must satisfy the stabilizability and detectability as-

sumptions (Assumptions 3.5 and 3.14). There is no systematic method to generate the best

plant decomposition for each plant. Similarly, there is not a method to form the best neighbor-

hood decomposition in hierarchical control. These methods would help guide practitioners to

the best use of cooperative control.
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Densely coupled input constraints: In Section 3.5, we provided a method for handling plants

with sparsely coupled input constraints between the subsystems. Densely coupled constraints

can occur in plants with strong dynamic coupling and hard output constraints. In the limit of

plants with coupled constraints between all subsystems, the optimization method presented

in this thesis requires each subsystem to solve the centralized control problem. This compu-

tational burden weakens the advantages of cooperative control. Therefore, there exists a need

for an alternative optimization method that can improve the objective and stay feasible at each

iterate while giving provable convergence to the global optimum.

Unstable models: To satisfy the stability assumption for linear systems (Assumption 3.5), un-

stable modes in the plant cannot be controllable by multiple subsystems. This stability as-

sumption is required to satisfy the terminal constraint in the MPC problem. A relaxed stability

assumption for linear systems can be formed by using terminal control MPC and removing the

terminal constraint as in Section 6.3.6. This relaxed stability requirement would allow a greater

diversity of plant decompositions to be controlled by cooperative MPC.

Nominal error bound in hierarchical control: The nominal stability of hierarchical control

depends upon the propagation of nominal error in the plant. To show stability, Assumptions 4.20

and 4.21 are required. The assumptions bound the nominal error. More work is needed to de-

termine which systems satisfy this bound.

Data network faults: In this thesis, we have assumed that the data communicated between

subsystem controllers is transferred without faults. Real plants have networks with interference

and errors that may lead to poor performance in plantwide control. The sensitivity of coopera-

tive control to these communication errors should be investigated.
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Appendix A: From input-to-state to state-to-state models

In this appendix, we provide a general method for switching models from an input-to-state

representation in (4.5.1) to the state-to-state representation in (4.5.2).

Example

Consider the network shown in Fig. A.1. In this network, each subsystem is its own neighbor-

hood. From the definition of neighborhoods (see Definition 4.15), there is a time delay between

subsystems for each edge in the network. This network is represented by the model

x+
11 = A11x11 +B11u1 x+

21 = A21x21 +B21u−
1 x+

31 = A31x31 +B31u2−
1

x+
12 = A12x12 +B12u2−

2 x+
22 = A22x22 +B22u2 x+

32 = A32x32 +B32u−
2

x+
13 = A13x13 +B13u−

3 x+
23 = A23x23 +B23u2−

3 x+
33 = A33x33 +B33u3

in which the superscript t− indicates a time delay of t steps. By augmenting the states of each

subsystem, we change the input-to-state model to a model with state-to-state interactions.

1

2
3

Figure A.1: Each node is its own neighborhood
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Each state xi j is augmented with the input u j one time step behind for all (i , j ) ∈ I1:3 × I1:3x11

u−
1

+

=
A11

0

x11

u−
1

+
B11

I

u1

x+
12 = A12x12 +

[
0 B12

] x32

u2−
2


 x13

u2−
3

+

=
A13

0

 x13

u2−
3

+
0 B13

0 I

x33

u−
3


 x21

u2−
1

+

=
A21

0

 x21

u2−
1

+
0 B21

0 I

x11

u−
1


x22

u−
2

+

=
A22

0

x22

u−
2

+
B22

I

u2

x+
23 = A23x23 +

[
0 B23

] x13

u2−
3



x+
31 = A31x31 +

[
0 B31

] x21

u2−
1


 x32

u2−
2

+

=
A32

0

 x32

u2−
2

+
0 B32

0 I
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u−
2
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0
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3
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I
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Notice that u3−
j is not used because the longest path in the graph is three steps. Then we have

the model

x+
11 = A11x11 +B11u1 x+

21 = A21x21 +B21x11 x+
31 = A31x31 +B31x21

x+
12 = A12x12 +B12x32 x+

22 = A22x22 +B22u2 x+
32 = A32x32 +B32x22

x+
13 = A13x13 +B13x33 x+

23 = A23x23 +B23x13 x+
33 = A33x33 +B33u3
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for which we have replaced the following parameters

x11 ←
x11

u−
1

 x21 ←
 x21

u2−
1

 x31 ← x31

x12 ← x12 x22 ←
x22

u−
2

 x32 ←
 x32

u2−
2


x13 ←

 x13

u2−
3

 x23 ← x23 x33 ←
x33

u−
3


A11 ← diag(A11,0) A21 ← diag(A21,0) A31 ← A31

A12 ← A12 A22 ← diag(A22,0) A32 ← diag(A32,0)

A13 ← diag(A13,0) A23 ← A23 A33 ← diag(A33,0)

B11 ←
B11

I

 B21 ←
0 B21

0 I

 B31 ←
[

0 B31

]

B12 ←
[

0 B12

]
B22 ←

B22

I

 B32 ←
0 B32

0 I


B13 ←

0 B13

0 I

 B23 ←
[

0 B23

]
B33 ←

B33

I


Following this procedure, we can change any input-to-state model into a model with state-to-

state interactions.
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This thesis presents a plantwide model predictive control strategy in which subsystems pro-

vide feedback by solving a local optimization and exchanging information across the plant.

The plant model is required to satisfy a stabilizability condition that does not depend upon the

strength of the open-loop, inter-subsystem interactions. This control strategy has the following

features: hard input constraints are satisfied; terminating the distributed optimization iteration

prior to convergence does not affect nominal stability; the distributed optimization converges

to the Pareto optimal (centralized) solution; no coordinating optimization is employed. Expo-

nential stability of the closed-loop plantwide system is proven for the state and output feedback

cases. A modification is presented in which constraints sparsely coupled between subsystems

can be handled without loss of stability or optimality.

An extension to the cooperative controller is provided in which communication between sub-

systems occurs at multiple time schedules, as in traditional hierarchical control. The hierar-

chical control scheme is shown to provide exponentially stable performance under state and

output feedback. This extension uses a modification of the distributed optimization. The op-

timization is shown to converge to the Pareto optimum and can be terminated early without

affecting nominal stability.

To demonstrate the flexibility of cooperative control, a series of examples are presented. These

examples show that cooperative control can nominally stabilize subsystems optimizing, com-

municating, and sampling on any time scale. Further examples are provided to illustrate that



the modeling required for cooperative control can be identified over time and that the models

can be generated from a centralized first-principles model.

Finally, a novel distributed optimization for nonconvex problems is presented that provides

convergence to stationary points. This optimization is combined with a new result in subop-

timal MPC to develop a plantwide distributed nonlinear controller. This controller provides

asymptotically stablizing feedback and an example is used to illustrate performance.
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