
A Tutorial on Satisfiability Modulo Theories�

(Invited Tutorial)

Leonardo de Moura1, Bruno Dutertre2, and Natarajan Shankar2

1 Microsoft Research
1 Microsoft Way,

Redmond WA 98052 USA
leonardo@microsoft.com

http://research.microsoft.com/leonardo/
2 Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

{bruno,shankar}@csl.sri.com
http://www.csl.sri.com/˜{bruno,shankar}/

Abstract. Solvers for satisfiability modulo theories (SMT) check the satisfiabil-
ity of first-order formulas containing operations from various theories such as the
Booleans, bit-vectors, arithmetic, arrays, and recursive datatypes. SMT solvers
are extensions of Boolean satisfiability solvers (SAT solvers) that check the sat-
isfiability of formulas built from Boolean variables and operations. SMT solvers
have a wide range of applications in hardware and software verification, extended
static checking, constraint solving, planning, scheduling, test case generation, and
computer security. We briefly survey the theory of SAT and SMT solving, and
present some of the key algorithms in the form of pseudocode. This tutorial pre-
sentation is primarily directed at those who wish to build satisfiability solvers or
to use existing solvers more effectively.

1 Introduction

Satisfiability is the basic and ubiquitous problem of determining if a formula express-
ing a constraint has a model or a solution. A large number of problems can be de-
scribed in terms of satisfiability, including graph problems, puzzles such as Sudoku,
planning, scheduling, software and hardware verification, extended static checking,
optimization, test case generation, among others. Many of these problems can be en-
coded by Boolean formulas and solved using Boolean satisfiability (SAT) solvers. Other
problems require the added expressiveness of equality, uninterpreted function sym-
bols, arithmetic, arrays, datatype operations, and quantifiers. Such problems can be
handled by solvers for theory satisfiability or satisfiability modulo theories (SMT).
In recent years, satisfiability procedures have undergone dramatic improvements in
efficiency and expressiveness. SAT solvers like WalkSAT [SKC96], SATO [Zha97],

� This research was supported NSF Grants CCR-ITR-0326540 and CCR-ITR-0325808. We
thank Sam Owre and Ashish Tiwari for their comments and corrections.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 20–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Tutorial on Satisfiability Modulo Theories 21

GRASP [MSS99], Chaff [MMZ+01], zChaff [ZM02,Zha03], Siege [Rya04], and Min-
iSAT [ES03] have introduced several enhancements to the efficiency of SAT solving.
Though SMT technology has been in development since the late 1970s with the work
of Shostak [Sho79] and Nelson and Oppen [NO79,Nel81], the incorporation of SAT-
based search has yielded very significant efficiencies. Satisfiability is an active and
growing area of research with a number of exciting applications and connections to
artificial intelligence, operations research, and computational biology. The present tu-
torial is mostly based on the Yices SMT solver [DdM06b]. It is directed at non-experts
and aims to explain some of the basic principles of SAT and SMT solving.

Section 2 covers the basic background on logic and satisfiability. In Section 3, we
explain the basic DPLL search procedures for satisfiability. Procedures for solving
constraints in individual theories are discussed in Section 4. Theory combinations are
discussed in Section 5, and the DPLL-based search procedure for satisfiability mod-
ulo theories is presented in Section 6. E-graph matching [Nel81,DNS03] described in
Section 7 is an important technique for introducing relevant instantiations of quantified
formulas within a search procedure.

2 Preliminaries

We explain the basic syntactic and semantic background needed to follow the rest of
the tutorial.

2.1 Propositional Logic

A propositional formula φ can be a propositional variable p or a negation ¬φ0, a con-
junction φ0 ∧φ1, a disjunction φ0 ∨φ1, or an implication φ0 ⇒ φ1 of smaller formulas
φ0, φ1. A truth assignment M for a formula φ maps the propositional variables in φ
to {�, ⊥}. A given formula φ is satisfiable if there is a truth assignment M such that
M |= φ under the usual truth table interpretation of the connectives. If M |= φ for
every truth assignment M , then φ is valid. A propositional formula is either valid or its
negation is satisfiable.

A literal is either a propositional variable p or its negation ¬p. The negation of a
literal p is ¬p, and the negation of ¬p is just p. A formula is a clause if it is the iterated
disjunction of literals of the form l1 ∨ . . . ∨ ln for literals li, where 1 ≤ i ≤ n. A
formula is in conjunctive normal form (CNF) if it is the iterated conjunction of clauses
Γ1 ∧ . . . ∧ Γm for clauses Γi, where 1 ≤ i ≤ m.

2.2 First-Order Logic

In defining a first-order signature, we assume countable sets of variables X , function
symbols F , and predicates P . A first-order logic signature Σ is a partial map from
F ∪P to the natural numbers corresponding to the arity of the symbol. A Σ-term τ has
the form

τ := x | f(τ1, . . . , τn),

22 L. de Moura, B. Dutertre, and N. Shankar

where f ∈ F and Σ(f) = n. For example, if Σ(f) = 2 and Σ(g) = 1, then f(x, g(x))
is a Σ-term. A Σ-formula has the form

ψ := p(τ1, . . . , τn) | τ0 = τ1 | ¬ψ0 | ψ0 ∨ ψ1 | ψ0 ∧ ψ1 | (∃x : ψ0) | (∀x : ψ0),

where p ∈ P and Σ(p) = n, and each τi, 1 ≤ i ≤ n is a Σ-term. For example, if
Σ(<) = 2 for a predicate symbol <, then (∀x : (∃y : x < y)) is a Σ-formula. The set
of free variables in a formula ψ is represented as vars(ψ). A sentence is a formula with
no free variables.

A Σ-structure M consists of a nonempty domain |M | where for each f ∈ F such
that Σ(f) = n, M(f) is an n-ary map on |M |, for each p ∈ P such that Σ(p) = n,
M(p) is a subset of |M |n, and for each x ∈ X , M(x) ∈ |M |. The interpretation of
a term a in M is given by M [[x]] = M(x) and M [[f(a1, . . . , an)]] = M(f)(M [[a1]], . . . ,
M [[an]]). For a Σ-formula ψ and a Σ-structure M , satisfaction M |= ψ can be
defined as

M |= a = b ⇐⇒ M [[a]] = M [[b]]
M |= p(a1, . . . , an) ⇐⇒ (M [[a1]], . . . , M [[an]]) ∈ M(p)

M |= ¬ψ ⇐⇒ M
|= ψ

M |= ψ0 ∨ ψ1 ⇐⇒ M |= ψ0 or M |= ψ1

M |= ψ0 ∧ ψ1 ⇐⇒ M |= ψ0 and M |= ψ1

M |= (∀x : ψ) ⇐⇒ M{x �→ a} |= ψ, for all a ∈ |M |
M |= (∃x : ψ) ⇐⇒ M{x �→ a} |= ψ, for some a ∈ |M |

A first-order Σ-formula ψ is satisfiable if there is a Σ-structure M such that M |= ψ,
and it is valid if in all Σ-structures M , M |= ψ. A Σ-sentence is either satisfiable or
its negation is valid. We focus on the satisfiability problem for quantifier-free first-order
formulas.

3 SAT Solving

The principles of modern SAT solving have their origin in the 1960 procedure of
Davis and Putnam [DP60], as simplified in 1962 by Davis, Logemann, and Love-
land [DLL62]. The first step in the Davis–Putnam–Logemann–Loveland (DPLL) pro-
cedure is to convert the formula to conjunctive normal form (CNF) by introducing new
variables to label the subformulas. A formula can be converted to clausal form by intro-
ducing fresh variables for each compound subformula and adding suitable clauses, e.g.,
in converting ¬p ∨ (¬q ∧ r), we label ¬q ∧ r as b and ¬p ∨ b as a to obtain the clauses
a, a ∨ p, a ∨ ¬b, ¬a ∨ ¬p ∨ b, b ∨ q ∨ ¬r, ¬b ∨ ¬q, ¬b ∨ r.

The input to the satisfiability procedure is given as a set of clauses K represent-
ing the CNF formula

∧
K . The DPLL procedure builds a partial truth assignment for

the variables in K by successively guessing an assignment for an unassigned literal,
propagating the consequences of the partial assignment with respect to the clauses, and
backtracking on the partial assignment when a conflict is detected in the form of a falsi-
fied clause. The procedure terminates either with a truth assignment satisfying each of

A Tutorial on Satisfiability Modulo Theories 23

dpll(K) := dpllr(0, ∅, K, ∅) (init)
dpllr(0, M, K, C) := ⊥, if (contrad)

propagate(M, K, C) = ⊥[Γ]
dpllr(h + 1, M, K, C) := dpllr(h′, Mh′ , K, C′), where (backjump)

propagate(M, K, C) = ⊥[Γ],
analyze(h + 1, M, Γ) = Γ ′,
C′ = C ∪ {Γ ′},
h′ = L2 (Γ ′)

dpllr(h, M, K, C) := dpllr(h + 1, M ′′, K, C), where (split)
M ′ = propagate(M, K, C) �= ⊥,
l = select(M ′, K) �= ⊥,
M ′′ = M ′; l

dpllr(h, M, K, C) := M ′, where (sat)
M ′ = propagate(M, K, C) �= ⊥,
select(M ′, K) = ⊥

Fig. 1. The DPLL Boolean Satisfiability Procedure

the clauses, or with a demonstration that no such assignment can be constructed. The
state of the search procedure is a 4-tuple 〈h, M, K, C〉 consisting of the decision level
h, the partial assignment M , the input clause set K , and a set C of conflict clauses
derived from K that are constructed during the search.

At a decision level h, the partial assignment consists of a sequence M0; . . . ; Mh.
Each Mi at decision level i is of the form d; 〈l1[Γ1], . . . , lk[Γk]〉 for some k, where
d is the decision literal at level i, and each li is an implied literal and the clause Γi

occurs in K ∪ C. The assignment M0 contains no decision literal. A decision literal
or implied literal in M is said to be an assigned literal in M . No assigned literal in M
occurs twice in M , nor does it occur negated in M . The assignment corresponding to
M maps a variable p to � (respectively, ⊥) if p (respectively, ¬p) is an assigned literal
in M . If neither p nor ¬p occurs in M , then the assignment is undefined. Given an
assigned literal l occurring in M at level i, the assignment preceding l, written as M<l,
consists of M0; . . . ; Mi−1; M<l

i , where M<l
i consists of the part of the assignment of

Mi preceding the occurrence of l. For each entry l[Γ] in M , the clause Γ occurs in
K ∪ C and is of the form l ∨ Γ ′, where M<l |= ¬Γ ′. The notation Mh represents the
sequence M0; . . . ; Mh.

The DPLL search algorithm shown in Figure 1 works by constructing the partial as-
signment M through the use of propagation, analysis/backjumping, and decision literal
selection, until it has constructed an assignment satisfying the input clauses K or it
can be shown that there is no such assignment. For decision level h > 0, the propaga-
tion operation propagate(h, M, K, C) shown in Figure 2 works by adding l[Γ] to Mh,
where Γ ∈ K ∪ C is of the form l ∨ Γ ′, where M |= ¬Γ ′. When h = 0, each unit
clause l in K ∪ C is placed in M0 as l[l]. Propagation can also detect a conflict where
there is a clause of the form Γ such that M |= ¬Γ . If a conflict is detected at decision
level 0, then the dpll algorithm reports unsatisfiability. If no conflict is detected, then a
literal that is unassigned in M is selected using the select(M, K) operation and added
to the partial assignment. The procedure is then invoked at level h + 1.

24 L. de Moura, B. Dutertre, and N. Shankar

propagate(M, K, C) := propagate(〈M, l[Γ]〉, K, C), where (unit)
Γ ∈ K ∪ C,
Γ ≡ l ∨ l1 ∨ . . . ∨ ln,
M �|= l,
M |= ¬li ∧ . . . ∧ ¬ln

propagate(M, K, C) := ⊥[Γ], where (conflict)
if Γ ∈ K ∪ C : M |= ¬Γ

propagate(M, K, C) := M, where (terminate)
for each Γ ∈ K ∪ C,
M |= Γ or
Γ ≡ l ∨ l′ ∨ Γ ′, and l, l′ �∈ dom(M)

Fig. 2. DPLL Propagation

Otherwise, if clause Γ in K ∪ C is the source of the conflict, it can be analyzed by
the analyze(h, M, Γ) operation to construct a conflict clause that is added to C. Here,
Γ is of the form l1 ∨ . . . ∨ ln where M contains ¬li[¬li ∨ Γi], for 1 ≤ i ≤ n. The
analysis phase successively replaces Γ with the result of resolving Γ with each clause
¬li ∨Γi for li occurring at level h until Γ contains a unique literal l at level h. Note that
M |= ¬Γ for each such clause Γ generated through analysis. Furthermore, the clause
Γ contains at least one literal l such that ¬l is assigned at level h since the conflict is
detected at level h. The analysis process is iterated until there is a unique such literal
l such that Mh |= ¬l. The clause Γ ′ = analyze(h, M, Γ) constructed by the analysis
phase is added as a conflict clause to C to obtain the new conflict clause set C′. Let
h′ = L2 (Γ ′) be the highest level below h such that there is a literal l′ in Γ ′ with
Mh′ |= ¬l′. The unique literal l at level h in Γ ′ is implied by the partial assignment
Mh′ and Γ ′.

The search is resumed with the state 〈h′, Mh′ , K, C′〉. Though the partial assignment
has shrunk, it now contains more implied literals at level h′. On the other hand, if no
conflict is detected at level h, then an unassigned literal d is selected as the decision lit-
eral at level h + 1, and the search is resumed with the state 〈h + 1, 〈M ; d〉, K, C〉. If no
unassigned literals remain, then the algorithm terminates with a satisfying assignment
M for K . Termination [NOT06,Sha05] follows since each step of propagation, back-
jumping (with propagation), or selection increases the quantity

∑h
i=0 |Mi| ∗ N (N−h)

towards the bound N (N+1) for N = |vars(K)|.
We have assumed that the propagation phase is complete, but the procedure works

even when the propagation step is incomplete so that Mh need not contain all the literals
that are implied by M0; . . . ; Mh. Thus it is possible that Mj contains literals that are
actually implied at some level i, with i < j. In this case, a conflict can still be traced to
some level ĥ below the current level h, and the analyze operation can be modified to
construct a conflict clause Γ that contains a unique literal at level ĥ.

The algorithm can either terminate with an assignment M satisfying the input clause
set K , or with an unsatisfiability when a conflict is reported at the decision level 0. The
SAT procedure can also generate a proof of unsatisfiability since a conflict at level 0
implies that some clause Γ in K when resolved with other clauses from K ∪ C yields
a contradiction. The clauses in C are themselves derived by resolution.

A Tutorial on Satisfiability Modulo Theories 25

step h M K C Γ

select s 1 ; s K ∅
select r 2 ; s; r K ∅
propagate 2 ; s; r, ¬q[¬q ∨ ¬r] K ∅
propagate 2 ; s; r, ¬q, p[p ∨ q] K ∅
conflict 2 ; s; r, ¬q, p K ∅ ¬p ∨ q

analyse 0 ∅ K q

propagate 0 q[q] K q

propagate 0 q, p[p ∨ ¬q] K q

propagate 0 q, p, r[¬p ∨ r] K q

conflict 0 q, p, r K q ¬q ∨ ¬r

Fig. 3. Example of the DPLL Satisfiability Procedure

Example 1. An example computation of the DPLL algorithm for demonstrating the
unsatisfiability of the input K given by {p ∨ q, ¬p ∨ q, p ∨ ¬q, s ∨ ¬p ∨ q, ¬s ∨ p ∨
¬q, ¬p ∨ r, ¬q ∨ ¬r}. is shown in Figure 1. In this example, there are no unit input
clauses. The partial assignment M0 is therefore empty. The literal s is selected as the
decision literal at level 1. Propagation does not yield any new implied literals at level
1. Then, literal r is selected as the decision literal at level 2. Now propagation adds
the literals ¬q and p, but then detects the conflict with clause ¬p ∨ q. Analyzing this
conflict, we obtain the conflict clause q which is added to C while backjumping to level
0. Now there is a unit clause q, and propagation adds the literals p and r to M0 before
detecting the conflict on the clause ¬q ∨ ¬r. Since this conflict is at level 0, the input
clause is judged to be unsatisfiable.

The proof of unsatisfiability for the example in Figure 1 can be constructed by res-
olution. The conflict clause q is proved by resolving ¬p ∨ q with p ∨ q. The proof of
unsatisfiability is constructed by resolving ¬q∨¬r with ¬p∨r to obtain ¬p∨¬q which
is in turn resolved with p ∨ ¬q to obtain ¬q which is resolved with the conflict clause q
to derive ⊥.

Given two clause sets K1 and K2 such that K1 ∪ K2 is unsatisfiable, a Craig inter-
polant [Cra57] is a formula φ whose propositional variables appear in both K1 and K2
such that K1 =⇒ φ and φ, K2 is unsatisfiable. Interpolants are useful for a number of
applications and can be extracted from proofs of unsatisfiability [McM05]. The DPLL
procedure can also be used for computing the disjunctive normal form (DNF) or Binary
Decision Diagram (BDD) representation corresponding to all satisfying assignments
for a formula. The DPLL procedure can also be used to construct a minimal unsatis-
fiable core of clauses from the input and a maximal subset of the input clauses that is
satisfiable. Pseudo-Boolean constraints are of the form

∑n
i=1 ci ∗ pi ≥ N , where for

1 ≤ i ≤ n, ci is an integer constant, N is an integer constant, and ci ∗ pi equals ci if
pi, and 0, otherwise. The conjunction of a clause set K together with pseudo-Boolean
constraints can also be solved.

SAT solving can be used to solve constraints over finite domains involving planning
and scheduling, and in the verification of finite-state hardware and software systems.
Key ideas in the development of efficient SAT solvers originate from SATO [Zha97],

26 L. de Moura, B. Dutertre, and N. Shankar

GRASP [MSS99], and Chaff [MMZ+01]. Efficient implementations of SAT algorithms
include ZChaff [ZM02,Zha03], Berkmin [GN02], Siege [Rya04], and MiniSAT [ES03].

4 Theory Constraint Solving

We now examine satisfiability in first-order theories. These theories can be presented
axiomatically or as a class of first-order structures. We define a theory over a signature
Σ as a class of first-order structures closed under isomorphism and variable reassign-
ment. The current section will examine the clausal validity problem (CVP) of determin-
ing if a clause l1 ∨ . . . ∨ ln is valid, or equivalently, if the conjunction ¬l1 ∧ . . . ∧ ¬ln
is satisfiable. For SMT applications, it is important that these procedures support the
incremental assertion of literals, efficient backtracking, and the production of explana-
tions in the form of the subset of input literals needed for unsatisfiability.

4.1 Equivalence

CVP for an equivalence relation given by axioms for reflexivity, symmetry, and transi-
tivity can be solved using the union-find algorithm. The input literals are equalities and
disequalities between variables. The algorithm maintains two data structures: a mapping
F on the variables in the input and a set of input disequalities D. The find structure F
must be acyclic so that for any n > 0 and variable x, either F (x) = x or Fn(x)
= x.
The operation F ∗(x) can be defined to return the canonical representative of the equiv-
alence class containing x. The operation union(F)(x, y) is used to construct the find
structure in which the equivalence classes of x and y are merged. It assumes a total
ordering ≺ on the variables.

union(F)(x, y) =
{

F [x′ := y′], y′ ≺ x′

F [y′ := x′], otherwise

where x′ ≡ F ∗(x)
≡ F ∗(y) ≡ y′

The addeqlit procedure shown in Figure 4 takes as input a literal l (an equality or
disequality), the find structure F , and the disequality set D. Initially F (x) = x for each
variable x, and D is empty. The operation addeqlit(l, F, D) updates the state 〈F, D〉
with the constraint given by the literal l.

There are many variations on this basic theme that involve path compression and
tree-weight directed union which together yield the near-linear O((m + n) ∗ α(n))
complexity for m union/find operations over n variables [GF64,Tar75]. The algorithm
can also be augmented to maintain proofs in the form of transitivity chains and to sup-
port efficient retraction [dMRS04,NO05]. The algorithm can be applied to equivalence
relations other than equality.

4.2 Congruence Closure

The free theory Φ(Σ) over a signature Σ is the first-order theory with an empty set of
non-logical axioms. Equality is treated as a logical symbol with the axioms of reflex-
ivity, symmetry, transitivity, and congruence. Note that the equivalence theory above is

A Tutorial on Satisfiability Modulo Theories 27

addeqlit(x = y, F, D) := 〈F, D〉, if (skip)
F ∗(x) ≡ F ∗(y)

addeqlit(x = y, F, D) :=
�

⊥, if F ′∗(u) ≡ F ′∗(v) for some u �= v ∈ D
〈F ′, D〉, otherwise

(union)

where
x′ = F ∗(x) �≡ F ∗(y) = y′,
F ′ = union(F)(x, y)

addeqlit(x �= y, F, D) := ⊥, if F ∗(x) ≡ F ∗(y) (contrad)
addeqlit(x �= y, F, D) := 〈F, D〉, if F ∗(x) ≡ F ∗(x′), F ∗(y) ≡ F ∗(y′), (skipdiseq)

for x′ �= y′ ∈ D
addeqlit(x �= y, F, D) := 〈F, {x �= y} ∪ D〉, otherwise. (adddiseq)

Fig. 4. Adding an Equality to a Union-Find Structure

just the free theory Φ(∅) over an empty signature. CVP for Φ(Σ) requires the extension
of the union–find procedure to the computation of the congruence closure
[Koz77,Sho78]. Bachmair, Tiwari, and Vigneron [BTV03] give an elegant presenta-
tion of congruence closure in the form of inference rules. Our presentation is closer to
a typical implementation.

A congruence relation extends equivalence with the rule that for each n-ary func-
tion f , f(s1, . . . , sn) = f(t1, . . . , tn) if si = ti for each 1 ≤ i ≤ n. The oper-
ation congruent(F, s, t) checks if s ≡ f(s1, . . . , sn), t ≡ f(t1, . . . , tn) such that
F ∗(si) ≡ F ∗(ti) for 1 ≤ i ≤ n. The term universe T which includes every term
in the CVP is assumed to be given. Any subterm of a term in T is also a member of T .
For any term t in T , π(t) returns the set of terms t′ in T of the form f(t1, . . . , tn) such
that for some i, 1 ≤ i ≤ n, t ≡ ti. The congruence closure operation for closing a find
structure under congruence is shown in Figure 5.

close(F, D, Q,π) := close(F ′, D, Q′, π), (congruence)
when s, t : s = t ∈ Q, F ∗(s) �≡ F ∗(t),
congruent (F, s, t)
〈F ′, D, π′〉 = addeqlit(s = t, F, D, Q, π),

Q′ = Q ∪ {s′ = t′| s
′ ∈ π(s), t′ ∈ π(t),

congruent(F ′, s′, t′)}
close(F, D, Q,π) := 〈F, D, π〉, otherwise. (terminate)

Fig. 5. Congruence Closure

The addeqlit operation can be modified to make use of close , and the only relevant
case of this definition is shown below.

addeqlit (s = t, F, D, π) :=
{

⊥, if F ′(u) ≡ F ′(v) for some u
= v ∈ D
close(F ′, D, ∅, π), otherwise

where
s′ = F ∗(s), t′ = F ∗(t), s′
≡ t′,
s′ ≺ t′, F ′ = F [t′ := s′], π′ = π[s′ := π(s′) ∪ π(t′)]

28 L. de Moura, B. Dutertre, and N. Shankar

The Ackermann reduction is a simple alternative to congruence closure. It works
by reducing congruence to equivalence by successively replacing each term f(x) in
the given formula ψ with a fresh variable xf(x) to obtain ψ′. The satisfiability of ψ is
equivalent to that of ψ′ ∧

∧
{x1
= y1 ∨ . . . ∨ xn
= yn ∨ xf(x) = xf(y) | xf(x), yf(x) ∈

vars(ψ′)}, and the latter formula is in Φ(∅).

4.3 Difference Arithmetic

Difference arithmetic (DA) deals with arithmetic constraints of the form x − y ≤ c,
where c is an integer constant. Equality constraints x = y can be expressed as x − y ≤
0 ∧ y − x ≤ 0. Strict inequalities can also be captured so that x − y < c is just
x − y ≤ c − 1, and the negation of x − y ≤ c is just y − x ≤ −c − 1. By introducing
a special variable x0 representing 0, we can also express unary constraints of the form
x ≤ c as x − x0 ≤ c and x ≥ c as x0 − x ≤ −c.

A conjunction of such constraints is satisfiable if there is an assignment ρ of integers
to the variables such that for each inequality x−y ≤ c, the integer difference ρ(x)−ρ(y)
evaluates to a value that is at most c.

Difference constraints can be modeled by means of a weighted directed graph with
the variables as vertices with an edge of weight c from y to c corresponding to each
constraint x − y ≤ c. The Bellman–Ford algorithm can be employed in an incremental
form to find an integer assignment, when one exists, for the variables satisfying the
constraints. If there is a negative-weight cycle of edges such that x−x1 ≤ c1, x1−x2 ≤
c2, . . . xn − x ≤ cn, where

∑n
i=1 cn < 0, then the constraints are unsatisfiable since

there is no assignment to x or the other variables in the cycle that would satisfy the
chaining of these inequalities.

The procedure maintains a variable assignment ρ so that it satisfies the inequality
constraints processed, and an edge map E such that for each vertex y, E(y) is a set of
pairs 〈x, c〉 such that x − y ≤ c is a constraint that has been processed. Initially, the
assignment ρ can be arbitrary, and the edge map E is empty. The addineq(x, y, c, ρ, E)
operation adds a constraint x − y ≤ c to 〈ρ, E〉.

addineq(x, y, c, ρ, E) := 〈ρ, E[y := E(y) ∪ {〈x, c〉}]〉, if

ρ(x) − ρ(y) ≤ c

addineq(x, y, c, ρ, E) :=
{

⊥, if ρ′′ = ⊥
〈ρ′′, E′〉, otherwise

where ρ(x) − ρ(y) > c

ρ′ = ρ[x := ρ(y) + c]
E′ = E[y := E(y) ∪ {〈x, c〉}],
ρ′′ = relaxv(y, ρ′, E′, {x})

The operation relaxv(y, ρ, E, Q) is defined to relax each edge 〈x, z〉 by ensuring that
ρ(z)−ρ(x) ≤ c for 〈z, c〉 ∈ E(x). If the vertex y itself appears in the queue of vertices
to be processed, then a negative weight cycle is signaled.

A Tutorial on Satisfiability Modulo Theories 29

relaxv(y, ρ, E, ∅) := ρ

relaxv(y, ρ, E, Q) := ⊥, if y ∈ Q

relaxv(y, ρ, E, Q) := relaxv(y, ρ′, E, Q′), where

〈ρ′, Q′〉 = relax (x, ρ, Q), for x ∈ Q

relax (x, ρ, Q) := 〈ρ′, Q′〉, where

Q′ = (Q − {x}) ∪ {z | 〈z, c〉 ∈ E(x), ρ(z) − ρ(x) > c}
ρ′ = ρ ◦ [z �→ ρ(x) + c | 〈z, c〉 ∈ E(x), ρ(z) − ρ(x) > c]

The above incremental procedure is based on the incremental Bellman–Ford al-
gorithm of Wang, Ivančić, Ganai, and Gupta [WIGG05]. Cherkassky and Goldberg
[CG96] give a survey of negative-weight cycle detection algorithms.

4.4 Linear Arithmetic

Linear arithmetic (LA) constraints have the form c0 +
∑n

i=1 ci ∗xi ≤ 0, where each ci,
for 0 ≤ i ≤ n is a rational constant, and the variables xi range over the reals. The LA
solver described below is based on the method of de Moura and Dutertre [DdM06a].
This method is often faster than the Bellman–Ford procedure on difference arithmetic
constraints, and supports an efficient but incomplete check for unsatisfiability that is
useful in an SMT solver.

The input to the procedure is

– A set of n real-valued variables x1, . . . , xn

– A set of m linear equalities (where m ≤ n)

a11x1 + . . . + a1nxn = 0
...

am1x1 + . . . + amnxn = 0

written in matrix form, Ax = 0.
– Bounds on all variables: li ≤ xi ≤ ui where li is either −∞ or a rational number,

and ui is either +∞ or a rational number.

The goal is to determine whether there is x such that Ax = 0 and li ≤ xi ≤ ui for
i = 1, . . . , n (i.e., whether the constraints are satisfiable).
The solver maintains a tableau and an assignment.

– The tableau is defined by dividing the variables into a set B of m basic variables
and a set N of n − m non-basic variables, then rewriting the constraints Ax = 0 as
follows:

xi1 =
∑

xj∈N

b1jxj

...

xim =
∑

xj∈N

bmjxj

where xi1 , . . . , xim are the basic variables.

30 L. de Moura, B. Dutertre, and N. Shankar

– The assignment β assigns a rational value β(xi) to every variable xi, such that
• For all non-basic variable xj , we have lj ≤ β(xj) ≤ uj .
• For all basic variable xik

, we have

β(xik
) =

∑

xj∈N

bkjβ(xj).

If β also satisfies the bounds on basic variables, namely,

lik
≤ β(xik

) ≤ uik

for k = 1, . . . , n then the constraints are satisfiable and β(x1)...β(xn) is a feasible
solution. Otherwise, if there is a basic variable xik

with β(xik
) < lik

, then a pivoting
step is used to swap it with a non-basic variable xj such that bkj > 0 and xj < uj or
bkj < 0 and xj > lj , and symmetrically when β(xik

) > uik
.

A0 =
j

s1 = −x + y

s2 = x + y
β0 = (x �→ 0, y �→ 0, s1 �→ 0, s2 �→ 0)

A1 = A0 x ≤ −4 β1 = (x �→ −4, y �→ 0, s1 �→ 4, s2 �→ −4)
A2 = A1 −8 ≤ x ≤ −4 β2 = β1

A3 =
j

y = x + s1

s2 = 2x + s1

−8 ≤ x ≤ −4
s1 ≤ 1 β3 = (x �→ −4, y �→ −3, s1 �→ 1, s2 �→ −7)

Fig. 6. Example

Figure 6 illustrates the algorithm on a small example. Each row represents a state.
The columns contain the tableaux, bounds, and assignments. The first row contains the
initial state. Suppose x ≤ −4 is asserted. Then the value of x must be adjusted, since
β0(x) > −4. Since s1 and s2 depend on x, their values are also modified. No pivoting
is required since the basic variables do not have bounds, so A1 = A0. Next, x ≥ −8
is asserted. Since β1(x) satisfies this bound, nothing changes: A2 = A1 and β2 = β1.
Next, s1 ≤ 1 is asserted. The current value of s1 does not satisfy this bound, so s1
is pivoted with y to decrease s1. The resulting state S3 is shown in the last row; all
constraints are satisfied.

If s2 ≥ −3 is asserted in S3 then an inconsistency is detected: Tableau A2 does not
allow s2 to increase since both x and s1 are at their upper bound. Therefore, s2 ≥ −3
is inconsistent with state S3.

5 Combining Theories

We have shown solutions to the CVP problem for individual theories such as linear
arithmetic and the theory of equality over uninterpreted terms. Many natural constraint
solving problems contain symbols from multiple theories. Given two theories T1 and T2

A Tutorial on Satisfiability Modulo Theories 31

over signatures Σ1 and Σ2, the union theory T1 + T2 is the class of Σ-structures, with
Σ = Σ1 ∪ Σ2 whose projection to Σi is a Ti-model, for i = 1, 2. The easiest case to
consider is when Σ1 and Σ2 are disjoint. The Nelson–Oppen procedure [NO79] gives a
method for composing CVP-solvers for T1 and T2 into one for T1 +T2. For example, T1
the free theory Φ(Σ1) over a signature Σ and T2 is the difference arithmetic theory DA.

A quantifier-free Σ-formula ψ can be purified so that each literal in the formula is a
Σi-literal for i = 1, 2. Let ψ[t := s] be the result of replacing each occurrence of t in ψ
by s. A pure Σi-term, for i = 1, 2, is a Σi-term that is not a variable.

purify(ψ, R) := purify(ψ[t := x], R ∪ {x = t}),
for fresh x,

pure Σi-term t in ψ, i = 1, 2

purify(ψ, R) := (
∧

R) ∧ ψ, otherwise.

The main point of purification is that if purify(ψ, ∅) = ψ′, then ψ and ψ′ are equi-
satisfiable and each literal in ψ′ is a Σ1-literal or a Σ2-literal.

A partition Π on a set of variables γ is a disjoint collection subsets γ1, . . . , γn such
that

⋃n
i=1 γi = γ. Given a partition Π of the form γ1, . . . , γn, an arrangement AΠ

is a union of the set of equalities {x = y | for some i : x, y ∈ γi} and the set of
disequalities {x
= y | for some i, j : i
= j, x ∈ γi, y ∈ γj}.

A Boolean implicant P for a quantifier-free Σ-formula ψ containing the set of literals
L is a subset of literals in L such that

∧
P =⇒ ψ in propositional logic. The formula

ψ is T -satisfiable if there is an Boolean implicant P of ψ that is T -satisfiable. If T =
T1∪T2 for Σ1-theory T1 and Σ2-theory T2, with Σ1∩Σ2 = ∅, and P = P1∪P2, where
each Pi consists of Σi-literals and γ = vars(P1) ∩ vars(P2), then P is T -satisfiable if
there is an arrangement AΠ of γ such that each Pi ∪ AΠ is Ti-satisfiable. For this joint
satisfiability result to hold, the theories T1 and T2 must be stably infinite [Opp80], i.e.,
if a formula is Ti-satisfiable, it must be satisfiable in a countable model.

We now show how the T -satisfiability of a quantifier-free Σ-formula can be solved
by an extension of the dpll procedure.

6 Satisfiability Modulo Theories

The extension of the dpll satisfiability procedure to T -satisfiability of quantifier-free
Σ-formulas employs an oracle for T -satisfiability of implicants. This procedure adds a
context S for the incrementally updated state of the theory solver. We assume that there
is a procedure assert(l[Γ], S) that adds a literal implied by S and the clause Γ ∈ K∪C
to the state S. When the added literal l is a decision literal, we indicate the absence of an
implying clause by l[]. This procedure need not be complete with respect to detecting
unsatisfiability, so we have a complete procedure check (S) which checks if the state
S is satisfiable. We also have a third procedure ask (l, S) which is an incomplete test
for determining if the result of adding l to state S is unsatisfiable. We assume that all
three procedures when they return ⊥ also return an explanation clause Γ ′ of the form
l1 ∨ . . .∨ ln such that ¬li is an input literal. We assume that the state S is check-pointed

32 L. de Moura, B. Dutertre, and N. Shankar

tdpll(K) := tdpllr(0, ∅, ∅, K, ∅) (tinit)
tdpllr(0, M, S, K, C) := ⊥, where (tcontrad)

scanprop(M, S, K, C) = ⊥[Γ]
tdpllr(h + 1, M, S, K, C) := tdpllr(h′, M, Sh′ , K, C′), where (tbackjump)

scanprop(M, S, K, C) = ⊥[Γ],
tanalyze(h + 1, M, Γ) = Γ ′,
C′ = C ∪ {Γ ′},
h′ = L2 (Γ ′)

tdpllr(h, M, S, K, C) := tdpllr(h + 1, M ′, S′′, K, C), where (tsplit)
〈M ′, S′〉 = scanprop(M, S, K, C) �= ⊥,
l = tselect(M, S, K) �= ⊥,
S′′ = assert (l[], S′)

tdpllr(h, M, S, K, C) :=

����
���

S′, if check(S′) �= ⊥
tdpllr(h′, M, Sh′ , K, C′), where
check(S′) = ⊥[Γ],
h′ = L2 (Γ), C′ = C ∪ {Γ}

(tcheck)

with S′ = scanprop(M, S, K, C) �= ⊥,
tselect(M, S′, K) = ⊥

Fig. 7. DPLL Search for Satisfiability Modulo Theories

at each level so that Si represents the state at level i including all the input assertions
up to that point.

With these, we can modify the dpll procedure from Section 3 as shown in Figure 7.
The main difference from dpll is that the selected literal is asserted to the context S
and the complete check procedure is used to check for T -satisfiability of the context S
when there are no splitting literals left. The procedure of literal selection tselect can be
identical to select . The theory propagation procedure scanprop is defined below. It first
identifies some of the literals l such that l or ¬l appears in K that are entailed by the
context S.

scanprop(M, S, K, C) := tpropagate(M ′, S, K, C′), where

〈M ′, C′〉 = scanlits(M, S, K, C)
scanlits(M, S, K, C) := 〈M ′, C′〉, where

M ′ = M ◦ 〈l ∈ lits(K) − lits(M) | ask(¬l, S) = ⊥[Γ]〉,
C′=C∪ {Γ | ∃l ∈ lits(K) − lits(M) : ask(¬l, S)=⊥[Γ]}

The tpropagate procedure is adapted from the propagate procedure from Section 3
and shown in Figure 8. The literals that are added to M are also asserted to the
context S.

Methods combining DPLL SAT solving with theory constraint solving were intro-
duced in CVC [BDS02], ICS [dMRS02], and Verifun [FJOS03], and Nieuwenhuis,
Oliveras, and Tinelli [NOT06] give a rigorous and abstract presentation of this
combination.

A Tutorial on Satisfiability Modulo Theories 33

tpropagate(M, S, K, C) :=
�

⊥[Γ], if S′ = ⊥[Γ]
tpropagate(〈M, l[Γ]〉, S′, K, C), otherwise

(tunit)

where
Γ ∈ K ∪ C,
Γ ≡ l ∨ l1 ∨ . . . ∨ ln,
M �|= l,
M |= ¬li ∧ . . . ∧ ¬ln
S′ = assert(l, S)

tpropagate(M, S, K, C) := ⊥[Γ], where (tconflict)
if Γ ∈ K ∪ C : M |= ¬Γ

tpropagate(M, S, K, C) := 〈M, S〉, where (tterminate)
for each Γ ∈ K ∪ C,
M |= Γ or
Γ ≡ l ∨ l′ ∨ Γ ′, and l, l′ �∈ dom(M)

Fig. 8. Theory Propagation

7 E-Graph Matching

Most SMT solvers incorporate quantifier reasoning using matching over E-graphs (i.e.,
E-matching) [Nel81,DNS03]. An E-graph data-structure is the find structure F main-
tained in Section 4.2. Each equivalence class containing a term t has a canonical repre-
sentative F ∗(t). Let class(t) denotes the equivalence class that contains t, i.e.,
{s | F ∗(s) = F ∗(t)}.

Semantically, the formula ∀x1, . . . , xn.ψ is equivalent to the infinite conjunction∧
β β(F) where β ranges over all substitutions over the x. In practice, solvers use

heuristics to select from this infinite conjunction those instances that are “relevant” to
the conjecture. The key idea is to treat an instance β(ψ) as relevant whenever it contains
enough terms that are represented in the current E-graph. That is, non-ground terms tp
from ψ are selected as patterns, and β(ψ) is considered relevant whenever β(tp) is in
the E-graph.

An abstract version of the E-matching algorithm is shown in Fig. 9. The set of rele-
vant substitutions for a pattern p can be obtained by taking

⋃
t∈E match(tp, t, ∅). The

abstract matching procedure returns all substitutions that E-match a pattern tp with term
t. That is, if β ∈ match(tp, t, ∅) then U∪β |= tp = t, and conversely, if U∪β |= tp = t,
then there is a β′ congruent to β such that β′ ∈ match(tp, t, ∅).

match(x, t, S) := {β ∪ {x �→ t} | β ∈ S , x �∈ dom(β)} ∪
{β | β ∈ S , F ∗(β(x)) = F ∗(t)}

match(c, t, S) := S if c ∈ class(t)

match(c, t, S) := ∅ if c �∈ class(t)

match(f(p1, . . . , pn), t, S) =
�

f(t1,...,tn)∈class(t)

match(pn, tn, . . . ,match(p1, t1, S))

Fig. 9. E-matching (abstract) algorithm

34 L. de Moura, B. Dutertre, and N. Shankar

8 Conclusions

Satisfiability is the process of finding an assignment of values to variables given some
constraints on these variables, or explaining why the constraints have no solution. Many
computational problems are instances of satisfiability. For this reason, it is important
to have efficient solvers for Boolean constraints, constraints over finite domains, con-
straints in specific theories, and constraints in combinations of theories. SMT solving
is an active and exciting area of research with many practical applications. We have
presented some of the basic algorithms, but a real implementation requires careful at-
tention to a large number of implementation details and heuristics that we have not
covered.

SAT and SMT solving technologies are already making a profound impact on a num-
ber of application areas. The theoretical challenges include better representations and
algorithms, efficient methods for combining theories and for quantifier reasoning, and
various extensions to the basic search method. A lot of experimental work also remains
to be done on the careful evaluation of different algorithms and heuristics. In the next
few years, satisfiability is likely to become the core engine underlying a wide range of
powerful technologies.

References

BDS02. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404, Springer, Heidelberg (2002)

BTV03. Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. Journal of Au-
tomated Reasoning 31(2), 129–168 (2003)

CG96. Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. In: European
Symposium on Algorithms, pp. 349–363 (1996)

Cra57. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Logic 22(3), 269–285 (1957)

DdM06a. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for dpll(t). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

DdM06b. Dutertre, B., de. Moura, L.: The Yices SMT solver (2006)
DLL62. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem prov-

ing. Communications of the ACM 5(7), 394–397 (1962) Reprinted in Siekmann and
WrightsonSiekmannWrightson83, pp. 267–270, (1983)

dMRS02. de Moura, L., Rue, H., Sorea, M.: Lazy theorem proving for bounded model check-
ing over infinite domains. In: Voronkov, A. (ed.) Automated Deduction - CADE-18.
LNCS (LNAI), vol. 2392, pp. 438–455. Springer, Heidelberg (2002)

dMRS04. de Moura, L., Rue\ss, H., Shankar, N.: Justifying equality. In: Proceedings of PDPAR
’04 (2004)

DNS03. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. In: Technical Report HPL-2003-148, Hewlett-Packard Systems Research Center
(2003)

A Tutorial on Satisfiability Modulo Theories 35

DP60. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7(3),
201–215 (1960)

ES03. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT 2003 (2003)

FJOS03. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof ex-
plication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
355–367. Springer, Heidelberg (2003)

GF64. Galler, B.A., Fisher, M.J.: An improved equivalence algorithm. Commun. ACM 7(5),
301–303 (1964)

GN02. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat solver (2002)

Koz77. Kozen, D.: Complexity of finitely presented algebras. In: Conference Record of the
Ninth Annual ACM Symposium on Theory of Computing, pp. 164–177, Boulder,
Colorado (May 2–4 ,1977)

McM05. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–
121 (2005)

MMZ+01. Matthew, W., Moskewicz, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference
(DAC’01) (June 2001)

MSS99. Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

Nel81. Nelson, G.: Techniques for program verification. Technical Report CSL-81-10, Xe-
rox Palo Alto Research Center, Palo Alto, Ca (1981)

NO79. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

NO05. Nieuwenhuis, R., Oliveras, A.: Robert Nieuwenhuis and Albert Oliveras. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidelberg (2005)

NOT06. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theo-
ries: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
J. ACM 53(6), 937–977 (2006)

Opp80. Derek, C.: Complexity, convexity and combinations of theories. Theoretical Com-
puter Science 12, 291–302 (1980)

Rya04. Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Si-
mon Fraser University, M.Sc. Thesis (2004)

Sha05. Shankar, N.: Inference systems for logical algorithms. In: Ramanujam, R., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 60–78. Springer, Heidelberg (2005)

Sho78. Shostak, R.: An algorithm for reasoning about equality. Comm. ACM 21, 583–585
(1978)

Sho79. Shostak, R.: A practical decision procedure for arithmetic with function symbols.
JACM 26(2), 351–360 (1979)

SKC96. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, vol. 26 of DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. AMS (1996)

SW83. Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning: Classical Papers on
Computational Logic, vol. 1 & 2. Springer, Heidelberg (1983)

Tar75. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22(2),
215–225 (1975)

36 L. de Moura, B. Dutertre, and N. Shankar

WIGG05. Wang, C., Ivančić, F., Ganai, M., Gupta, A.: Deciding separation logic formulae by
SAT and incremental negative cycle elimination. In: Sutcliffe, G., Voronkov, A. (eds.)
LPAR 2005. LNCS (LNAI), vol. 3835, pp. 322–336. Springer, Heidelberg (2005)

Zha97. Zhang, H.: SATO: An efficient propositional prover. In: Conference on Automated
Deduction, pp. 272–275 (1997)

Zha03. Zhang, L.: Searching for Truth: Techniques for Satisfiability of Boolean Formulas.
PhD thesis, Princeton University (2003)

ZM02. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In:
Voronkov, A. (ed.) Proceedings of CADE-19, Berlin, Germany, Springer, Heidelberg
(2002)

	Introduction
	Preliminaries
	Propositional Logic
	First-Order Logic

	SAT Solving
	Theory Constraint Solving
	Equivalence
	Congruence Closure
	Difference Arithmetic
	Linear Arithmetic

	Combining Theories
	Satisfiability Modulo Theories
	E-Graph Matching
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

