
Learning Multi-Relational Semantics Using
Neural-Embedding Models

Bishan Yang∗
Cornell University

Ithaca, NY, 14850, USA
bishan@cs.cornell.edu

Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng
Microsoft Research

Redmond, WA 98052, USA
scottyih,xiaohe,jfgao,deng@microsoft.com

Real-world entities (e.g., people and places) are often connected via relations, forming multi-
relational data. Modeling multi-relational data is important in many research areas, from natural
language processing to biological data mining [5]. Prior work on multi-relational learning can be
categorized into three categories: (1) statistical relational learning (SRL) [8], such as Markov-logic
networks [18], which directly encode multi-relational graphs using probabilistic models; (2) path
ranking methods [13, 6], which explicitly explore the large relational feature space of relations with
random walk; and (3) embedding-based models, which embed multi-relational knowledge into low-
dimensional representations of entities and relations via tensor/matrix factorization [21, 15, 16],
Bayesian clustering framework [12, 23], and neural networks [17, 2, 1, 22]. Our work focuses on
the study of neural-embedding models, where the representations are learned in a neural network
architecture. They have shown to be powerful tools for multi-relational learning and inference due
to their high scalability and strong generalization abilities.

A number of techniques have been recently proposed to learn entity and relation representations
using neural networks [2, 1, 22]. They all represent entities as low-dimensional vectors and represent
relations as operators that combine the representations of two entities. The main difference among
these techniques lies in the parametrization of the relation operators. For instance, given two entity
vectors, the model of Neural Tensor Network (NTN) [22] represents each relation as a bilinear
tensor operator and a linear matrix operator. The model of TransE [1], on the other hand, represents
each relation as a single vector that linearly interacts with the entity vectors. Both models report
promising performance on predicting unseen relationships in knowledge bases. However, they have
not been directly compared in terms of the different choices of relation operators and of the resulting
effectiveness. Neither has the design of entity representations in these recent studies been carefully
explored. For example, NTN [22] first shows the benefits of representing entities as an average of
word vectors and initializing word vectors with pre-trained vectors from large text corpora. This idea
is promising as pre-trained vectors tend to capture syntactic and semantic information from natural
language and can assist in better generalization of entity embeddings. However, many real-world
entities are expressed as non-compositional phrases (e.g. person names, movie names, etc.), of
which meaning cannot be composed by their constituent words. Therefore, averaging word vectors
may not provide an appropriate representation for such entities.

In this paper, we examine and compare different types of relation operators and entity vector repre-
sentations under a general framework for multi-relational learning. Specifically, we derive several
recently proposed embedding models, including TransE [1] and NTN [22], and their variants under
the same framework. We empirically evaluate their performance on a knowledge base completion
task using various real-world datasets in a controlled experimental setting and present several inter-
esting findings. First, the models with fewer parameters tend to be better than more complex models
in terms of both performance and scalability. Second, the bilinear operator plays an important role
in capturing entity interactions. Third, with the same model complexity, multiplicative operations
are superior to additive operations in modeling relations. Finally, initializing entity vectors with
pre-trained phrase vectors can significantly boost performance, whereas representing entity vectors
as an average of word vectors that are initialized with pre-trained vectors may hurt performance.

∗Work conducted while interning at Microsoft Research.

1

These findings have further inspired us to design a simple knowledge base embedding model that
significantly outperforms existing models in predicting unseen relationships, with a top-10 accuracy
of 73.2% (vs. 54.7% by TransE) evaluated on Freebase.

1 A General Framework for Multi-Relational Representation Learning

Most existing neural embedding models for multi-relational learning can be derived from a general
framework. The input is a relation triplet (e1, r, e2) describing e1 (the subject) and e2 (the object)
are in a certain relation r. The output is a scalar measuring the validity of the relationship. Each
input entity can be represented as a high-dimensional sparse vector (“one-hot” index vector or “n-
hot” feature vector). The first neural network layer projects the input vectors to low dimensional
vectors, and the second layer projects these vectors to a real value for comparison via a relation-
specific operator (it can also be viewed as a scoring function).

More formally, denote xei as the input for entity ei and W as the first layer neural network param-
eter. The scoring function for a relation triplet (e1, r, e2) can be written as

S(e1,r,e2) = Gr

(
ye1 ,ye2

)
, where ye1 = f

(
Wxe1

)
, ye2 = f

(
Wxe2

)
(1)

Many choices for the form of the scoring function Gr are available. Most of the existing scor-
ing functions in the literature can be unified based on a basic linear transformation gar , a bilinear
transformation gbr or their combination, where gar and gbr are defined as

gar (ye1 ,ye2) = AT
r

(
ye1
ye2

)
and gbr(ye1 ,ye2) = yT

e1Brye2 , (2)

which are parametrized by Ar and Br, respectively.

In Table 1 we summarize several popular scoring functions in the literature for a relation
triplet (e1, r, e2), reformulated in terms of the above two functions. Denote by ye1 ,ye2 ∈ Rn

two entity vectors. Denote by Qr1 ,Qr2 ∈ Rm×n and Vr ∈ Rn matrix or vector parameters for
linear transformation gar . Denote by Mr ∈ Rn×n and Tr ∈ Rn×n×m matrix or tensor parameters
for bilinear transformation gbr. I ∈ Rn is an identity matrix. ur ∈ Rm is an additional parameter
for relation r. The scoring function for TransE is derived from ||ye1 − ye2 + Vr||22 as in [1].

Models Br Ar Scoring Function Gr

Distance [3] -
[
Qr1 −Qr2

]
−||gar (ye1 ,ye2)||1

Single Layer [22] -
[
Qr1 Qr2

]
uT
r tanh(gar (ye1 ,ye2))

TransE [1] I
[
VT

r −VT
r

]
2gar (ye1 ,ye2)− 2gbr(ye1 ,ye2) + ||Vr||22

Bilinear [11] Mr - gbr(ye1 ,ye2)

NTN [22] Tr

[
Qr1 Qr2

]
uT
r tanh

(
gar (ye1 ,ye2) + gbr(ye1 ,ye2)

)
Table 1: Comparisons among several multi-relational models in their scoring functions.

This general framework for relationship modeling also applies to the recent deep-structured semantic
model [9, 19, 20], which learns the relevance or a single relation between a pair of word sequences.
The framework above applies when using multiple neural network layers to project entities and
using a relation-independent scoring function Gr

(
ye1 ,ye2

)
= cos[ye1(Wr),ye2(Wr)]. The cosine

scoring function is a special case of gbr with normalized ye1 ,ye2 and Br = I.

The neural network parameters of all the models discussed above can be learned by minimizing
a margin-based ranking objective1, which encourages the scores of positive relationships (triplets)
to be higher than the scores of any negative relationships (triplets). Usually only positive triplets
are observed in the data. Given a set of positive triplets T , we can construct a set of negative
triplets T ′ by corrupting either one of the relation arguments, T ′ = {(e′1, r, e2)|e′1 ∈ E, (e′1, r, e2) /∈
T} ∪ {(e1, r, e′2)|e′2 ∈ E, (e1, r, e

′
2) /∈ T}. The training objective is to minimize the margin-based

ranking loss

L(Ω) =
∑

(e1,r,e2)∈T

∑
(e′1,r,e

′
2)∈T ′

max{S(e′1,r,e
′
2)
− S(e1,r,e2) + 1, 0} (3)

1Other objectives such as mutual information (as in [9]) and reconstruction loss (as in tensor decomposition
approaches [4]) can also be applied. Comparisons among these objectives are beyond the scope of this paper.

2

2 Experiments and Discussion

Datasets and evaluation metrics We used the WordNet (WN) and Freebase (FB15k) datasets in-
troduced in [1]. WN contains 151, 442 triplets with 40, 943 entities and 18 relations, and FB15k
consists of 592, 213 triplets with 14, 951 entities and 1345 relations. We also consider a subset of
FB15k (FB15k-401) containing only frequent relations (relations with at least 100 training exam-
ples). This results in 560, 209 triplets with 14, 541 entities and 401 relations. We use link prediction
as our prediction task as in [1]. For each test triplet, each entity is treated as the target entity to be
predicted in turn. Scores are computed for the correct entity and all the corrupted entities in the dic-
tionary and are ranked in descending order. We consider Mean Reciprocal Rank (MRR) (an average
of the reciprocal rank of an answered entity over all test triplets), HITS@10 (top-10 accuracy), and
Mean Average Precision (MAP) (as used in [4]) as the evaluation metrics.

Implementation details All the models were implemented in C# and using GPU. Training was
implemented using mini-batch stochastic gradient descent with AdaGrad [7]. At each gradient step,
we sampled for each positive triplet two negative triplets, one with a corrupted subject entity and
one with a corrupted object entity. The entity vectors are renormalized to have unit length after each
gradient step (it is an effective technique that empirically improved all the models). For the relation
parameters, we used standard L2 regularization. For all models, we set the number of mini-batches
to 10, the dimensionality of the entity vector d = 100, the regularization parameter 0.0001, and the
number of training epochs T = 100 on FB15k and FB15k-401 and T = 300 on WN (T determined
based on the learning curves where the performance of all models plateaued.) The learning rate was
initially set to 0.1 and then adapted over the course of training by AdaGrad.

2.1 Model Comparisons

We examine five embedding models in decreasing order of complexity: (1) NTN with 4 tensor slices
as in [22]; (2) Bilinear+Linear, NTN with 1 tensor slice and without the non-linear layer; (3) TransE
with L2 norm , a special case of Bilinear+Linear as described in [1]; (4) Bilinear; (5) Bilinear-diag:
a special case of Bilinear where the relation matrix is a diagonal matrix.

FB15k FB15k-401 WN
MRR HITS@10 MRR HITS@10 MRR HITS@10

NTN 0.25 41.4 0.24 40.5 0.53 66.1
Blinear+Linear 0.30 49.0 0.30 49.4 0.87 91.6

TransE (DISTADD) 0.32 53.9 0.32 54.7 0.38 90.9
Bilinear 0.31 51.9 0.32 52.2 0.89 92.8

Bilinear-diag (DISTMULT) 0.35 57.7 0.36 58.5 0.83 94.2

Table 2: Comparison of different embedding models

Table 2 shows the results of all compared methods on all the datasets. In general, we observe that
the performance increases as the complexity of the model decreases on FB. NTN, the most complex
model, provides the worst performance on both FB and WN, which suggests overfitting. Com-
pared to the previously published results of TransE [1], our implementation achieves much better
results (53.9% vs. 47.1% on FB15k and 90.9% vs. 89.2% on WN) using the same evaluation met-
ric (HITS@10). We attribute such discrepancy mainly to the different choice of SGD optimization:
AdaGrad vs. constant learning rate. We also found that Bilinear consistently provides comparable
or better performance than TransE, especially on WN. Note that WN contains much more entities
than FB, it may require the parametrization of relations to be more expressive to better handle the
richness of entities. Interestingly, we found that a simple variant of Bilinear – BILINEAR-DIAG,
clearly outperforms all baselines on FB and achieves comparable performance to Bilinear on WN.

2.2 Multiplicative vs. Additive Interarctions

Note that BILINEAR-DIAG and TRANSE have the same number of model parameters and their dif-
ference lies in the operational choices of the composition of two entity vectors – BILINEAR-DIAG
uses weighted element-wise dot product (multiplicative operation) and TRANSE uses element-wise
subtraction with a bias (additive operation). To highlight the difference, here we use DISTMULT and

3

DISTADD to refer to BILINEAR-DIAG and TRANSE, respectively. Comparison between these two
models can provide us with more insights on the effect of two common choices of compositional
operations – multiplication and addition for modeling entity relations. Overall, we observed supe-
rior performance of DISTMULT on all the datasets in Table 2. Table 3 shows the HITS@10 score on
four types of relation categories (as defined in [1]) on FB15k-401 when predicting the subject entity
and the object entity respectively. We can see that DISTMULT significantly outperforms DISTADD
in almost all the categories.

Predicting subject entities Predicting object entities
1-to-1 1-to-n n-to-1 n-to-n 1-to-1 1-to-n n-to-1 n-to-n

DISTADD 70.0 76.7 21.1 53.9 68.7 17.4 83.2 57.5
DISTMULT 75.5 85.1 42.9 55.2 73.7 46.7 81.0 58.8

Table 3: Results by relation categories: one-to-one, one-to-many, many-to-one and many-to-many

2.3 Entity Representations

In the following, we examine the learning of entity representations and introduce two further im-
provements: using non-linear projection and initializing entity vectors with pre-trained phrase vec-
tors. We focus on DISTMULT as our baseline and compare it with the two modifications DISTMULT-
tanh (using f = tanh for entity projection) and DISTMULT-tanh-EV-init (initializing the entity
parameters with the 1000-dimensional pre-trained phrase vectors released by word2vec [14]) on
FB15k-401. We also reimplemented the word vector representation and initialization technique in-
troduced in [22] – each entity is represented as an average of its word vectors and the word vectors
are initialized using the 300-dimensional pre-trained word vectors released by word2vec. We denote
this method as DISTMULT-tanh-WV-init. Inspired by [4], we design a new evaluation setting where
the predicted entities are automatically filtered according to “entity types” (entities that appear as
the subjects/objects of a relation have the same type defined by that relation). This provides us with
better understanding of the model performance when some entity type information is provided. In

MRR HITS@10 MAP (w/ type checking)
DISTMULT 0.36 58.5 64.5

DISTMULT-tanh 0.39 63.3 76.0
DISTMULT-tanh-WV-init 0.28 52.5 65.5
DISTMULT-tanh-EV-init 0.42 73.2 88.2

Table 4: Evaluation with pre-trained vectors

Table 4, we can see that DISTMULT-tanh-EV-init provides the best performance on all the metrics.
Surprisingly, we observed performance drops by DISTMULT-tanh-WV-init. We suspect that this
is because word vectors are not appropriate for modeling entities described by non-compositional
phrases (more than 73% of the entities in FB15k-401 are person names, locations, organizations and
films). The promising performance of DISTMULT-tanh-EV-init suggests that the embedding model
can greatly benefit from pre-trained entity-level vectors.

3 Conclusion

In this paper we present a unified framework for modeling multi-relational representations, scoring,
and learning, and conduct an empirical study of several recent multi-relational embedding models
under the framework. We investigate the different choices of relation operators based on linear and
bilinear transformations, and also the effects of entity representations by incorporating unsupervised
vectors pre-trained on extra textual resources. Our results show several interesting findings, enabling
the design of a simple embedding model that achieves the new state-of-the-art performance on a
popular knowledge base completion task evaluated on Freebase. Given the recent successes of deep
learning in various applications, our future work will aim to exploit deep structure including possibly
tensor construct in computing the neural embedding vectors; e.g. [10]. This will extend the current
multi-relational neural embedding model to a deep version that is potentially capable of capturing
hierarchical structure hidden in the input data.

4

References
[1] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating Embed-

dings for Modeling Multi-relational Data. In NIPS, 2013.
[2] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic matching

energy function for learning with multi-relational data. Machine Learning, pages 1–27, 2013.
[3] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured

embeddings of knowledge bases. In AAAI, 2011.
[4] Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Chris Meek. Typed tensor decomposition of

knowledge bases for relation extraction. In EMNLP, 2014.
[5] Pedro Domingos. Prospects and challenges for multi-relational data mining. ACM SIGKDD

explorations newsletter, 5(1):80–83, 2003.
[6] Xin Luna Dong, K Murphy, E Gabrilovich, G Heitz, W Horn, N Lao, Thomas Strohmann,

Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach to probabilistic knowl-
edge fusion. In KDD, 2014.

[7] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[8] Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational Learning. The MIT
Press, 2007.

[9] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search using clickthrough data. In CIKM, 2013.

[10] B Hutchinson, L. Deng, and D. Yu. Tensor deep stacking networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8):1944–1957, 2013.

[11] Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, and Guillaume Obozinski. A latent
factor model for highly multi-relational data. In NIPS, 2012.

[12] Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada, and Naonori Ueda.
Learning systems of concepts with an infinite relational model. In AAAI, volume 3, page 5,
2006.

[13] Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and learning in a large
scale knowledge base. In EMNLP, pages 529–539, 2011.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NIPS, pages 3111–3119, 2013.

[15] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, pages 809–816, 2011.

[16] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing YAGO: scalable ma-
chine learning for linked data. In WWW, pages 271–280, 2012.

[17] Alberto Paccanaro and Geoffrey E. Hinton. Learning distributed representations of concepts
using linear relational embedding. IEEE Transactions on Knowledge and Data Engineering,
13(2):232–244, 2001.

[18] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine learning, 62(1-
2):107–136, 2006.

[19] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Gregoire Mesnil. A latent semantic
model with convolutional-pooling structure for information retrieval. In CIKM, 2014.

[20] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning semantic
representations using convolutional neural networks for web search. In WWW, pages 373–374,
2014.

[21] Ajit P Singh and Geoffrey J Gordon. Relational learning via collective matrix factorization. In
KDD, pages 650–658. ACM, 2008.

[22] Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Reasoning With
Neural Tensor Networks For Knowledge Base Completion. In NIPS, 2013.

[23] Ilya Sutskever, Joshua B Tenenbaum, and Ruslan Salakhutdinov. Modelling relational data
using bayesian clustered tensor factorization. In NIPS, pages 1821–1828, 2009.

5

	A General Framework for Multi-Relational Representation Learning
	Experiments and Discussion
	Model Comparisons
	Multiplicative vs. Additive Interarctions
	Entity Representations

	Conclusion

