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Abstract

A main puzzle of deep neural networks (DNNs) revolves around the apparent absence of
“overfitting”, defined in this paper as follows: the expected error does not get worse when
increasing the number of neurons or of iterations of gradient descent. This is surprising
because of the large capacity demonstrated by DNNs to fit randomly labeled data and the
absence of explicit regularization. Recent results by [1] provide a satisfying solution of the
puzzle for linear networks used in binary classification. They prove that minimization of loss
functions such as the logistic, the cross-entropy and the exp-loss yields asymptotic, “slow”
convergence to the maximum margin solution for linearly separable datasets, independently
of the initial conditions. Here we prove a similar result for nonlinear multilayer DNNs near
zero minima of the empirical loss. The result holds for exponential-type losses but not for
the square loss. In particular, we prove that the weight matrix at each layer of a deep
network converges to a minimum norm solution up to a scale factor (in the separable case).
Our analysis of the dynamical system corresponding to gradient descent of a multilayer
network suggests a simple criterion for ranking the generalization performance of different
zero minimizers of the empirical loss.

1 Introduction
In the last few years, deep learning has been tremendously successful in many important
applications of machine learning. However, our theoretical understanding of deep learning,
and thus the ability of developing principled improvements, has lagged behind. A satisfactory
theoretical characterization of deep learning is emerging. It covers the following questions: 1)
representation power of deep networks 2) optimization of the empirical risk and 3) generalization
— why the expected error does not suffer, despite the absence of explicit regularization, when the
networks are overparametrized?
∗To whom correspondence should be addressed
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Cifar-10 Cifar-10 with Random Labels

(a) (b)

Figure 1: Generalization for Different number of Training Examples. (a) Generalization error
in CIFAR and (b) generalization error in CIFAR with random labels. The DNN was trained by
minimizing the cross-entropy loss and it is a 5-layer convolutional network (i.e., no pooling) with
16 channels per hidden layer. ReLU are used as the non-linearities between layers. The resulting
architecture has approximately 10000 parameters. SGD was used with batch size = 100 for 70
epochs for each point. Neither data augmentation nor regularization is performed.

This paper addresses the third question which we call the no-overfitting puzzle, around which
several recent papers revolve (see among others [2, 3, 4, 5, 6]). We show that generalization
properties of linear networks described in [1] and [7] – namely that linear networks with certain
exponential losses trained with gradient descent converge to the max margin solution, providing
implicit regularization – can be extended to DNNs and thus resolve the puzzle. We also show
how the same theory can predict generalization of different zero minimizers of the empirical risk.

2 Overfitting Puzzle
Classical learning theory characterizes generalization behavior of a learning system as a function
of the number of training examples n. From this point of view DNNs behave as expected: the
more training data, the smaller the test error, as shown in Figure 1a. Other aspects of this
learning curve seem less intuitive but are also easy to explain, e.g. the test error decreases for
increasing n even when the training error is zero (as noted in [1], this is because the classification
error is reported, rather than the risk minimized during training, e.g. cross-entropy). It seems
that DNNs may show generalization, technically defined as convergence for n→∞ of the training
error to the expected error. Figure 1 suggests generalization for increasing n, for both normal
and random labels. This is expected from previous results such as in [8] and especially from the
stability results by [9]. Note that the property of generalization is not trivial: algorithms such as
one-nearest-neighbor do not have this guarantee.
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Error in Cifar-10 Loss in Cifar-10

(a) (b)

Figure 2: Expected error in CIFAR-10 as a function of number of neurons. The DNN is
the same as in Figure 1. (a) Dependence of the expected error as the number of parameters
increases. (b) Dependence of the cross-entropy risk as the number of parameters increases. There
is some “overfitting” in the expected risk, though the peculiarities of the exponential loss function
exaggerate it. The overfitting in the expected loss is small because SGD converges to a network
with minimum norm Frobenius norm for each layer (see theory in the text). As a result the
expected classification error does not increase here when increasing the number of parameters,
because the classification error is more robust than the loss (see Appendix 9).

The property of generalization, though important, is of academic importance here. The real
puzzle in the overparametrized regime typical for today’s deep networks – and the focus of this
paper– is the apparent lack of overfitting in the absence of regularization. The same network
which achieves zero training error for randomly labeled data (Figure 1b), clearly showing large
capacity, does not show an increase in expected error when the number of neurons is increased
in each layer without changing the multilayer architecture (see Figure 2a). In particular, the
unregularized classification error on the test set does not get worse when the number of parameters
increases well beyond the size of the training set.

It should be clear that the number of parameters is just a rough guideline to overparametriza-
tion. For details of the experimental setup, see Section 6.

3 Deep networks: definitions
We define a deep network with K layers with the usual coordinate-wise scalar activation functions
σ(z) : R → R as the set of functions f(W ;x) = σ(WKσ(WK−1 · · ·σ(W 1x))), where the input
is x ∈ Rd, the weights are given by the matrices W k, one per layer, with matching dimensions.
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We use the symbol W as a shorthand for the set of W k matrices k = 1, · · · ,K. For simplicity
we consider here the case of binary classification in which f takes scalar values, implying that
the last layer matrix WK is WK ∈ R1,Kl . The activation functions we discuss are the ReLU
activation, linear activation and polynomial activation.

For RELU activations the following positive homogeneity property holds σ(z) = ∂σ(z)
∂z z.

For the network this implies f(W ;x) =
∏K
k=1 ρkf̃(V1, · · · , VK ;xn), where Wk = ρkVk with the

Frobnius norm ||Vk|| = 1. In addition, Lemma 2.1 of [10] holds:

∑
i,j

∂f(x)
∂(Wk)i,j

(Wk)i,j = f(x). (1)

4 Linear networks and dynamical systems
Though we are mostly interested in the cross-entropy loss, our analysis is applicable to the
square loss and the family of losses with exponential tails (see [1]), which include the exponential,
logistic and cross-entropy losses. For simplicity we will mostly discuss here the simplest of them,
the exponential loss, though the results follow for the whole class. The exponential loss is of the
following form:

L(w) =
N∑
n=1

`(yn, f(W ;xn)). (2)

The square loss corresponds to `(yn, f(W ;xn)) = (yn − f(W ;xn))2 and the exponential loss
to `(yn, f(W ;xn)) = e−ynf(W ;xn) with yn = ±1 (binary classification).

Training a network by using gradient descent is equivalent to running the discrete version of
the gradient dynamical system defined by

Ẇ = −∇WL(W ) = F (W ) (3)

We consider the continuous case and therefore neglect the time-dependent learning rate parameter
(see remarks in the Supplementary Material).

In the case of one-layer, linear models – f(W ;x) = wTx where W 1 = wT – an explanation for
the lack of overfitting has been recently proposed in [1]. Two main properties are suggested to be
important: the implicit regularization properties of gradient descent methods and the difference
between classification error and the empirical loss which is actually minimized. Gradient descent
iteratively controls the complexity of the model. As the number of iterations can be considered
the inverse of a virtual regularization parameter, less regularization is enforced (see Appendix
in [11]) as the number of iterations increase. This description is valid for several different loss
functions but the limit of zero regularization (or infinite iterations) depends on the loss function
in a subtle and important way:

• In the case of square loss the limit for t→∞ is the minimum norm solution if gradient
descent starts with small weights.
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• In the case of the exponential loss – and also for the logistic and cross-entropy loss – the
limit is again the minimum norm solution but now the convergence is independent of initial
conditions.

In both cases, gradient descent does not change components of the weights that are in the null
space of the xn data. The proof holds in the case of linear networks for a variety of loss functions
and in particular for the square loss (see Appendix in [12] and Appendix 6.2.1 in [11]). However,
for the exponential losses the limit limt→∞

w(t)
||w(t)|| used for classification will be independent of

the initial conditions on the weights. In all cases, the minimum norm solution is the maximum
margin solution. Intuitively, this ensures good expected classification error for linearly separable
problems.

The results of [1] provide an interesting characterization in the case of losses with exponential
tails. Lemma 1 in [1] shows that for loss functions such as cross-entropy, gradient descent on
linear networks with separable data converges asymptotically to the max-margin solution with any
starting point w0, while the norm ||w|| diverges. In particular, Theorem 3 in [1] states that the
solution for β-smooth decreasing loss functions with tight exponential tail is w(t) = w̃ log t+ ρ(t)
such that

lim
t→∞

w(t)
||w(t)|| = w̃

||w̃||
(4)

and that w̃ is the solution to the hard margin SVM, that is w̃ = arg minw∈Rd ||w||2 s.t. ∀n wTxn ≥
1.

Furthermore, [1] proves that the convergence to the maximum margin solution w̃
||w̃|| is only

logarithmic in the convergence of the empirical risk itself. This explains why optimization of the
logistic loss helps decrease the classification error in testing, even after the training classification
error is zero and the empirical risk is very small, as in Figure 1. The conditions on the data that
imply good classification accuracy are related to Tsybakov conditions (see [13] and references
therein).

5 Nonlinear dynamics of Deep Networks
Our main theorem provides and extension of the results for linear networks to nonlinear deep
networks by exploiting the qualitative theory of dynamical systems. There are two main steps in
our proof:

(a) We show that linearization around an equilibrium point yields a linear system with weight
matrices at each layer that, once normalized, converge asymptotically to a finite limit which
is the minimum norm solution for that specific linearization and is independent of initial
conditions. The result does not extend to the square loss, as in this case the minimum norm
solution for a linear network depends on the initial conditions.

(b) We prove that in the neighborhood of asymptotically stable minima of the training error,
linearization of the nonlinear dynamics induced by the cross-entropy loss of a deep network
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describes its qualitative behavior. For this we use the classical Hartman-Grobman theorem
(see Appendix). In particular, we show that the theorem is valid here for an arbitrarily small
quadratic regularization term λP (W ) and thus also in the limit λ→ 0.

We explain the two steps here with more details in the Appendix.

5.1 Linearization

To be able to extend the linear results to nonlinear DNNs, we consider the dynamical systems
induced by GD and use classical tools to analyze them. The dynamical systems considered here
are defined in terms of the gradient of a potential (or Lyapunov) function that we identify here
as the empirical risk. We are interested in the qualitative behavior of the dynamical system
Equation 3 near a stable equilibrium point W0 where F (W0) = 0, attained for t→∞. Note that
we assume that gradient descent has found a set of weights that separate the training data that
is ynf(xn;W ) > 0, ∀n = 1, · · · , N . It easy to see that under this assumption GD converges
then to zero loss for t→∞.

One of the key ideas in stability theory is that the qualitative behavior of an orbit under
perturbations can be analyzed using the linearization of the system near the orbit [14]. Thus the
first step is to linearize the system, which means considering the Jacobian of F or equivalently
the Hessian of −L at W0, that is Hij = − ∂2L

∂Wi∂Wj
and evaluate it at the equilibrium. Then the

(linearized) dynamics of a perturbation δW at W0 is given by

˙δW = HW0δW, (5)

where the matrix H has only real eigenvalues since it is symmetric.
In the case of the exponential loss L(f(W )) =

∑N
i=1 e

−f(xi;W )yi with a deep network f , the
gradient dynamics induced by GD is given by the K matrix differential equations (see Appendix)
for k = 1, · · · ,K:

Ẇk =
N∑
n=1

yn
∂f(xn;W )
∂Wk

e−ynf(xn;W ). (6)

We absorb here and later yn into f(xn;W ) and assume that the new f(xn;W ) is positive.
As in the linear network case of [1], the weights of layer k that change under the dynamics must
be in the vector space spanned by the [∂f(xn;W )

∂Wk
] (which play the role of the data xn of the linear

case). For overparametrized deep networks the situation is usually degenerate as reflected in the
Hessian which for large t is negative semi-definite with several zero eigenvalues. The linearized
dynamics of the perturbation is thus given by ˙δWk = J(W )δW , with

J(W )kk′ = −
N∑
n=1

e−ynf(W0;xn)
(
∂f(W ;xn)
∂Wk

∂f(W ;xn)
∂Wk′

− yn
∂2f(W ;xn)
∂Wk∂Wk′

)∣∣∣∣∣
W0

. (7)

It is worth comparing this to the linear case where the Hessian is −
∑N
n=1(xin)(xjn)e−(wT xn).
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The key point here is that linearization around an equilibrium W 0 = W 0
1 , · · ·W 0

k yields a
set of K equations for the weights at each layer. The dynamics is hyperbolic with any small
regularization term and it converges to the minimum norm solution for each k

Lemma 1 Linearization of the nonlinear dynamics of the weight matrices Wk at each layer
k = 1, · · · ,K yields a system of equations in the weights Wk = W̃kρk where W̃k are normalized
||W̃k|| = 1with the following properties:

1. each Wk converges to the minimum norm solution.

2. The convergence is independent of initial conditions.

5.2 Validity of linearization

The question is whether linearization near an equilibrium provides a valid description of the
properties of the nonlinear system. If yes, then the classical results for linear networks also apply
to each layer of a nonlinear deep network near an equilibrium.

The standard tool to prove that the behavior of the nonlinear dynamical system associated
with GD can be well described by its linearization is the Hartman-Grobman theorem. In our
case, the theorem cannot be immediately applied. For square loss, this is because the minimum
is in general degenerate for overparametrized deep networks. For losses with exponential tails,
this is because the global minimum is only achieved at infinity. Both of these problems can be
solved by adding a regularization term λP (Wk) to the equation for Ẇk for k = 1, · · · ,K. The
simplest case of P corresponds to weight decay that is λP (Wk) = λ||Wk||2, that is the Frobenius
norm for the matrix Wk. We now show that the regularization term restore hyperbolicy and can
be arbitrarily small.

Lemma 2 The dynamics of the weight matrices Wk can be regularized by adding the term
λk||Wk||2 to the loss function. Such regularization ensures hyperbolicity of the linearized dynamics
around a zero minimizer of the empirical loss for any λk > 0 and thus validity of the Hartman-
Grobman theorem. The Hartman-Grobman theorem in turn implies that the nonlinear flow and
the linearized flow are topologically conjugate. Thus both converge – in the limit λk → 0 – to
their minimum norm solution.

Proof sketch
As shown in more detail in the Appendix the regularized nonlinear dynamics for the weight

matrix Wk is

Ẇk =
n∑
n=1

yn
∂f(xn;W )
∂Wk

e−ynf(xn;W ) − λkWk. (8)

It can be seen that the dynamics is asymptotically hyperbolic since the first r.h.s. matrix
components decrease to zero because of the exponential, while the second term provides stability
around the equilibrium. More detailed analyses involving the Hessian are in the appendices. It is
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easy to check that, remarkably, hyperbolicity is guaranteed for any value λk > 0: smaller and
smaller λk imply that the equilibrium is reached at longer and longer times. This in turns means
that we can make statements about the limit λ→ 0, in close analogy to a standard definition of
the pseudoinverse of a matrix.

Remember that two functions f and g are topologically conjugate if there exist an homeo-
morphism h such that g = h−1 ◦ f ◦ h. As an example, consider the functions f = a : X → X
and: g = a′ : X ′ → X ′, which are functions in the vector spaces X and X ′ respectively, and
h : X → X ′ is a homeomorphism. Consider a to be the matrix that solves the system of equations
az = b in X and a′ be the matrix that solves a′z′ = b′ in the vector space X ′. These systems
are topologically conjugate if and only if the dimensions of stable (negative eigenvalues) and
unstable (positive eigenvalues) subspaces of X and X ′ match. The topological conjugacies are
then hu : Xu → X ′u and hs : Xs → X ′s, conjugating the flows on unstable and stable subspaces.
Then the map that conjugates the equations for z and z′ is h : xu + yu 7→ hu(xu) + hs(xs).
Note that if f and g are topologically conjugate then the iterated systems f (n) and g(n) are
topologically conjugate.

The application of the Hartman-Grobman theorem strictly requires smooth activations. We
can satisfy this hypothesis by considering polynomial approximations of the RELUs in the deep
networks, since we have empirically shown that they are equivalent to the standard non-smooth
RELUs in terms of performance. In addition, we conjecture that the hypothesis of smooth
activations is just a technicality due to the necessary conditions for existence and uniqueness of
solutions to ODEs, which the Hartman-Grobman theorem assumes. Generalizing to differential
inclusions and non-smooth dynamical systems should allows for these conditions to be satisfied
in the Filippov sense [15].

5.3 Main result

Putting together the lemmas, we obtain

Theorem 3 Given an exponential loss function and training data that are nonlinearly separable
– that is ∃f(W ;xn) s.t. ynf(W ;xn) > 0 for all xn in the training set, yielding zero classification
error – the following properties hold around an asymptotic equilibrium:

1. the gradient flow induced by GD is topologically equivalent to the linearized flow;

2. the solution is the local (for the specific minimum) minimum Frobenius norm solution for
the weight matrices at each layer.

In the case of quadratic loss the same analysis applies but since the linearized dynamics
converges to the minimum norm only for zero initial conditions, the final statement of the theorem
saying “ the solution is the local minimum norm solution” holds only for linear networks, such as
kernel machines, but not for deep networks. Thus the differences between the square loss and the
exponential losses becomes very significant in the nonlinear case. An intuitive grasp of why this
is, is given by Figure 3. For deep networks around a global zero minimum the landscape of the
square loss has generically many zero eigenvalues and this is flat many directions. However, for
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Near zero minima of the empirical square loss the topology of the dynamics corresponds to 
quadratic loss with degenerate Hessian

Figure 3: A quadratic loss function in two parameters w1 and w2 is shown on the left. The
minimum has a degenerate Hessian with a zero eigenvalue. In the proposition described in the
text, it represents the “generic” situation in a small neighborhood of zero minimizers with many
zero eigenvalues – and a few positive eigenvalues – of the Hessian for a nonlinear multilayer
network. An illustration of the cross-entropy risk near the global minimum at convergence is
shown on the right part of the Figure. The valley is slightly sloped downwards for ||w|| → ∞. In
multilayer networks the loss function is likely to be a fractal-like surface with many degenerate
global minima, each similar to a multidimensional version of the two minima shown here.

the cross-entropy and other exponential losses, the empirical error valleys have a small downwards
slope towards zero at infinity (see Figure 3).

In the Supplementary Material we show that considering a related dynamics by writing
Wk = ρkVk and imposing ||Vk||2 = 1 via a penalty parameter λ, allows us to show independence
on initial conditions and equivalence of early stopping and regularization.

5.4 Why classification is less prone to overfitting

Because the solution is the minimum norm solution of the linearized system, we expect, for low
noise data sets1, little or no overfitting in the classification error associated with minimization of
the cross-entropy [1]. Note that gradient descent in the cross-entropy case yields convergence
with linearly separable data to the local max-margin solution with any starting point (intuitively
because of the non-zero slope in Figure 3). Thus, overfitting may not occur at all for the expected
classification error, as shown in Figure 2. Usually the overfit in the associated loss is also small,
at least for almost noiseless data, because the solution is the local maximum margin solution
– effectively the pseudoinverse of the linearized system around the minimum. A recent result

1In the linear case this corresponds to the linear separability condition, while in more general settings the low
noise requirement is known as Tsybakov conditions [13].
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(Corollary 2.1 in [10]) formally shows that the minima of the gradient of a hinge-loss for a
deep network with RELU activations have large margin if the data are separable. The result is
consistent with our extension to nonlinear networks of the results in [1] for exponential type losses.
Note that so far we did not make any claim about the quality of the expected error. Different
zero minimizers may have different expected errors, though in general this rarely happen for
similar initializations of SGD. We discuss in a separate paper how our approach here may predict
the expected error associated with each of the empirical minimizers.

In summary, our results imply that multilayer, deep networks behave similarly to linear models
for classification. More precisely, in the case of classification by minimization of exponential
losses the global minimizers are guaranteed to have local maximum margin. Thus the theory of
dynamical systems suggests a satisfactory explanation of the central puzzle of non overfitting
shown in Figure 2. The main result is that close to a zero minimum of the empirical loss, the
solution of the nonlinear flow inherits the minimum norm property of the linearized flow because
the flows are topologically conjugate. Overfitting in the loss may be controlled by regularization,
explicitly (for instance via weight decay) or implicitly (via early stopping). Overfitting in
the classification error may be avoided anyway depending on the data set, in which case the
asymptotic solution is the maximum margin solution (for the cross-entropy loss) associated with
the specific minimum.

6 Experimental sanity check
In this paper, we focus on gradient descent (GD) rather than stochastic gradient descent (SGD),
just like the authors of [1]. The main reason is simplicity of analysis, since we expect the relevant
results to be valid in both cases [16]. In simple problems, such as in the CIFAR dataset [17]
we use in this paper, one can replace SGD with GD without affecting the empirical results. In
more difficult problems, SGD not only converges faster but also is better at selecting global
minima vs. local minima, for the theoretical reasons discussed in [18]. In all computer simulations
shown in this paper, we turn off all the “tricks” used to improve performance such as data
augmentation, weight decay, etc. This is because our goal is to study the basic properties of
DNNs optimized with gradient descent algorithms. We keep in several figures batch normalization
as it allows to quickly reach zero training error. We also reduce in some of the experiments
the size of the network or the size of the training set. As a consequence, performance is not
state-of-the-art, but optimal performance is not the goal here (in fact the networks we use achieve
state-of-the-art performance using standard setups). The expected risk was measured as usual
by an out-of-sample test set.

We test part of our theoretical analysis with the following experiment. After convergence of
GD, we apply a small random perturbation δW with unit norm to the parameters W , then run
gradient descent until the training error is again zero; this sequence is repeated m times. The
dynamics of the perturbations are given by Equation 5. The analysis of previous sections makes
then the following predictions for the square loss:

• The training error will go back to zero after each sequence of GD.
10



• Any small perturbation of the optimum W0 will be corrected by the GD dynamics to push
back the non-degenerate weight directions to the original values. Since the components
of the weights in the degenerate directions are in the null space of the gradient, running
GD after each perturbation will not change the weights in those directions. Overall, the
weights will change in the experiment.

• Repeated perturbations of the parameters at convergence, each followed by gradient descent
until convergence, will not increase the training error but will change the parameters,
increase norms of some of the parameters and increase the associated test error. The L2
norm of the projections of the weights in the null space undergoes a random walk (see the
Appendix).

The same predictions apply also to the cross entropy case with the caveat that the weights
increase even without perturbations, though more slowly. Previous experiments by [18] showed
changes in the parameters and in the expected risk, consistently with our predictions above, which
are further supported by the numerical experiments of Figure 5. In the case of cross-entropy the
almost zero error valleys of the empirical risk function are slightly sloped downwards towards
infinity, becoming flat only asymptotically.

The numerical experiments show, as predicted, that the behavior under small perturbations
around a global minimum of the empirical risk for a deep networks is similar to that of linear
degenerate regression (compare 5 with Figure 4 ). For the loss, the minimum of the expected risk
may or may not occur at a finite number of iterations. If it does, it corresponds to an equivalent
optimum non-zero regularization parameter λ. Thus a specific “early stopping” would be better
than no stopping. The corresponding classification error, however, may not show overfitting.

7 Putting to rest the overfitting puzzle
Our analysis shows that deep networks, similarly to linear models, though they may overfit
somewhat the expected risk, do not usually overfit the classification error for low-noise datasets.
This follows from properties of gradient descent for linear network, namely implicit regularization
of the risk and the corresponding margin maximization for classification. In practical use of
deep networks, explicit regularization (such as weight decay) together with other regularizing
techniques (such as virtual examples) is usually added and it is often beneficial but not necessary,
especially in the case of classification.

As we discussed, the square loss is different from the exponential loss. In the case of the
square loss, regularization with arbitrarily small λ (in the absence of noise) restores hyperbolicity
of the gradient system and, with it, convergence to a solution. However, the norm of the
solution depends on the trajectory and is not guaranteed to be the local minimum norm solution
(in the case of nonlinear networks) in the parameters induced by the linearization. Without
regularization, linear networks – but not deep nonlinear networks – are guaranteed to converge
to the minimum norm solution. In the case of the exponential loss linear networks as well
as nonlinear ones yield a hyperbolic gradient flow. Thus the solution is guaranteed to be the
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Figure 4: Training and testing with the square loss for a linear network in the feature space (i.e.
y = WΦ(X)) with a degenerate Hessian of the type of Figure 3. The target function is a sine
function f(x) = sin(2πfx) with frequency f = 4 on the interval [−1, 1]. The number of training
points is 9 while the number of test points is 100. For the first pair of plots the feature matrix
φ(X) is a polynomial with degree 39. For the first pair had points were sampled to according to
the Chebyshev nodes scheme to speed up training to reach zero on the train error. Training was
done with full Gradient Descent step size 0.2 for 10, 000, 000 iterations. Weights were perturbed
every 120, 000 iterations and Gradient Descent was allowed to converge to zero training error
(up to machine precision) after each perturbation. The weights were perturbed by addition of
Gaussian noise with mean 0 and standard deviation 0.45. The perturbation was stopped half
way at iteration 5, 000, 000. The L2 norm of the weights is shown in the second plot. Note that
training was repeated 29 times figures reports the average train and test error as well as average
norm of the weights over the repetitions. For the second pair of plots the feature matrix φ(X) is
a polynomial with degree 30. Training was done with full gradient descent with step size 0.2 for
250, 000 iterations. The L2 norm of the weights is shown in the fourth plot. Note that training
was repeated 30 times figures reports the average train and test error as well as average norm of
the weights over the repetitions. The weights were not perturbed in this experiment.

maximum margin solution independently of initial conditions. For linear networks, including
kernel machines, there is a single maximum margin solution. In the case of deep nonlinear
networks there are several maximum margin solutions, one for each of the global minima. In
some sense, our analysis shows that regularization is mainly needed to provide hyperbolicity of
the dynamics. Since this is true also for λ → 0 in the case of well-conditioned linear systems,
the generic situation for interpolating kernel machines is that there is no need of regularization
in the noiseless case (the conditioning number depends on separation of the x data and is thus
independent of noise in the y labels, see [19]). In the case of deep networks this is true only for
exponential type loss but not for the square loss.

The conclusion is that there is nothing magic in deep learning that requires a theory different
from the classical linear one with respect to generalization, intended as convergence of the
empirical to the expected error, and especially with respect to the absence of overfitting in the
presence of overparametrization. Our analysis explains the puzzling property of deep networks,
seen in several situations such as CIFAR, of not overfitting the expected classification error by
showing that the properties of linear networks (for instance those emphasized by [1]) apply to
deep networks.
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8 Discussion
Of course, the problem of establishing quantitative and useful bounds on the performance of deep
networks, remains an open and challenging problem (see [10]), as it is mostly the case even for
simpler one-hidden layer networks, such as SVMs. Our main claim is that the puzzling behavior
of Figure 2 can be explained qualitatively in terms of the classical theory.

There are of a number of open problems. Though we explained the absence of overfitting –
meant as tolerance of the expected error to increasing number of parameters – we did not explain
in this paper why deep networks generalize as well as they do. In other words, this paper explains
why the test classification error in Figure 2 does not get worse when the number of parameters
increases well beyond the number of training data, but does NOT explain why such test error is
low.

We conjecture that the answer to this question may be contained in the following theoretical
framework about deep learning, based on [20], [18], [16], [10]:

• unlike shallow networks deep networks can approximate the class of hierarchically local
functions without incurring in the curse of dimensionality ([21, 20])

• overparametrized deep networks yield many global degenerate, or almost degenerate, “flat”
minima which are selected by SGD with high probability ([16]);

• overparametrization, which may yield overfit of the expected risk, can avoid overfitting the
classification error for low-noise datasets because of the margin maximization implicitly
achieved by gradient descent methods.

According to this framework, the main difference between shallow and deep networks is in
terms of approximation power or, in equivalent words, of the ability to learn good representations
from data based on the compositional structure of certain tasks. Unlike shallow networks, deep
local networks – in particular convolutional networks – can avoid the curse of dimensionality in
approximating the class of hierarchically local compositional functions. This means that for such
class of functions deep local networks represent an appropriate hypothesis class that allows a
realizable setting, that is zero approximation error, with a minimum capacity.

Acknowledgments

We thank Lorenzo Rosasco, Yuan Yao, Misha Belkin and especially Sasha Rakhlin for illuminating
discussions. NSF funding provided by CBMM.

13



APPENDICES

9 Summary: overfitting and lack of it in Figure 2
The key reason of why there is often little or no overfitting in overparametrized networks, such
as in Figure 2, is that the network minimizing the training error with close to zero loss is a
minimum norm solution, as we prove in this paper in the case of deep networks. Informally a
minimum norm solution implies that the network has the minimum complexity needed to fit the
data. As an aside, it is clear that the number of parameters is not a good measure of the capacity
or complexity of a function. Other measures are more appropriate such as covering numbers and
entropy; norms and number of bits are closely related. The explanation in terms of minimum
norm is classical for linear networks: the pseudoinverse solution is the best, independently of
overparametrization. It does not overfit in the ideal noiseless case (up to numerical noise). Figure
6 shows an example.

This is only part of the explanation. With real data there is always some “noise”, either in
the training or testing data, since they do not exactly reflect the “true” underlying distribution.
This implies the usual appearance of small overfitting. This is the case for the right side of Figure
2. The classification error is more resistant to overfitting, if the data satisfy Tsybakov “low noise”
conditions (data density is low at the classification boundary). This explains the behavior of the
left side of Figure 2, despite the small overfitting of the cross-entropy loss (on the right).

10 Hartman-Grobman theorem and dynamical systems
Consider the case in which the stable point(s) of the dynamical system is hyperbolic (the
eigenvalues of the associated Hessian are negative). In this case the Hartman-Grobman theorem
([22]) holds (recall we assume that the RELUs are smoothly differentiable, since they can be
replaced by polynomials). It says that the behavior of a dynamical system in a domain near a
hyperbolic equilibrium point is qualitatively the same as the behavior of its linearization near
this equilibrium point. Here is a version of the theorem adapted to our case.

Hartman-Grobman Theorem Consider a system evolving in time as ẇ = −F (w) with
F = ∇wL(w) a smooth map F : Rd → Rd. If F has a hyperbolic equilibrium state w∗ and the
Jacobian of F at w∗ has no zero eigenvalues, then there exist a neighborhood N of w∗ and a
homeomorphism h : N → Rd, s.t. h(w∗) = 0 and in N the flow of ẇ = −F (w) is topologically
conjugate by the continuous map U = h(w) to the flow of the linearized system U̇ = −HU where
H is the Hessian of L.

Flows

For a linear dynamical system ẋ = Ax, we can define the flow of the solutions φt(xo), which is
the collection of the solutions depending on the initial conditions. The flow is solved by

φt(x0) = eAtx0. (9)
14



Note, that for a symmetric d × d matrix A, all that really matters for the dynamics are the
eigenvalues of A, since we can perform the diagonalization A = QΛAQT , where ΛA is a diagonal
matrix of eigenvalues of A and Q ∈ O(d) is an orthogonal matrix. We can then write

ẋ = QΛAQTx⇒ QT ẋ = ΛAQTx

Now QT is just a rotation or reflection in Rd, so up to this simple transformation, the dynamics
of a linear system and its phase portrait are governed by the eigenvalues of A.

Conjugacy

An important question in the theory of dynamical systems is whether any two given systems are
different from each other. There exists several notions of equivalence, differing in smoothness.
Here we review three of them:

1. Linear conjugacy We say that two linear systems x′ = Ax and y′ = By are linearly
conjugate iff there exists an invertible transformation H such that A = H−1BH and
y = Hx. Linear conjugacy is thus equivalent to similarity of matrices.

2. Differentiable conjugacy For nonlinear systems, we can consider nonlinear changes
of coordinates y = h(x), where h : X → Y is a diffeomorphism, i.e. a continuously
differentiable bijective map with a continuously differentiable inverse. We then say that an
equation x′ = F (x) on some open set Ox is differentiably conjugate to y′ = G(y) on Oy
when there exists a diffeomorphism h : Ox → Oy such that the change of variables y = h(x)
converts one of the systems to the other. The requirement for this to happen is

G(y) = DXh(h−1(y))F (h−1(y)). (10)

Around equilibria xeq and yeq of the two dynamical systems, the dynamics linearize to

u′ = DXF (xeq)u and v′ = DYG(yeq)v (11)

and the two systems are linearly conjugate by H = DXh(xeq). This implies that, like in
the linear case, the eigenvalues of A = DXF (xeq) and B = DYG(yeq) have to be the same.

3. Topological conjugacy A relaxation of the above employs homeomorphisms (continuous
bijective maps with continuous inverse) rather than diffeomorphisms. We say that two
flows of dynamical systems φt : X → X and ψt : Y → Y are topologically conjugate if
there exists a homeomorphism h : X → Y such that ∀x ∈ X∀t ∈ R we have

h(φt(x)) = ψt(h(x)). (12)

Importantly, for linearized systems with flows φt(x) etAx and ψt(y) = etBy the topological
conjugacy relaxes the statement of similarity of A and B to the requirement that the
dimensions of stable and unstable spaces of A are equal to those of B, i.e. only the signs of
eigenvalues have to match.
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11 Analysis: One layer linear networks
In this section we prove existence of a finite limit for the normalized weight vector w̃ independently
of initial conditions. Our approach uses dynamical systems tools. It is more qualitative and less
detailed than [1] but it can be used also for the nonlinear case in section 12.

We consider linear networks with one layer and one scalar output f(W ;x) = wTx with
W 1 = wT (multilayer linear networks have been recently analyzed by [23]).

11.1 Square loss

Consider

L(f(w)) =
N∑
n=1

(yn − wTxn)2 (13)

where yn is a bounded real-valued variable. Assume further that the d-dimensional weight vector
w0 fits all the n training data, achieving zero loss on the training set, that is yn = wTxn ∀n =
1, · · · , N.

1. Dynamics The dynamics is

ẇ = −F (w) = −∇wL(w) = 2
N∑
n=1

Enx
T
n (14)

with En = (yn − wTxn).
The only components of the the weights that change under the dynamics are in the vector
space spanned by the examples xn; components of the weights in the null space of the
matrix of examples XT are invariant to the dynamics. Thus w converges to the minimum
norm solution if the dynamical system starts from zero weights, as we will see also later.

2. Linearized dynamics The Jacobian of −F – and Hessian of −L – for w = w0 is

JF (w) = −
N∑
n=1

(xin)(xjn) (15)

This linearization of the dynamics around w0 for which L(w0) = ε0 yields

˙δw = JF (w0)δw. (16)

where the associated L is convex, since the Jacobian JF is minus the sum of auto-covariance
matrices and thus is semi-negative definite. It is negative definite if the examples span the
whole space but it is degenerate with some zero eigenvalues if d > n [11].
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3. Regularization If a regularization term λw2 is added to the loss the gradient will be zero
for finite values of w.
In detail we have

ẇ = −∇w(L+ λ|w|2) = 2
N∑
n=1

Enx
T
n − λw (17)

with

JF (w) = −
N∑
n=1

(xin)(xjn)− λ (18)

which is always negative definite for any arbitrarily small λ > 0. Thus the equilibrium in

˙δw = JF (w0)δw. (19)

is hyperbolic and the Hartman-Grobman theorem applies.

In summary, regularization ensures the existence of a hyperbolic equilibrium for any λ > 0 at
a finite w0 (which increases to ∞ for λ→ 0). If the initial conditions are w(0) ≈ 0, in the limit
of λ→ 0 the equilibrium converges to a minimum norm solution for w and a maximum margin
solution for w̃ = w

||w|| . The reason is that the degenerate directions of w in which the gradient is
zero will not change during gradient descent and remain close to 0.

11.2 Exponential loss

Consider now the exponential loss. Even for a linear network the dynamical system associated
with the exponential loss is nonlinear. While [1] gives a rather complete characterization of the
dynamics, here we describe a different approach based on linearization of the dynamics. We will
then extend this analysis from linear networks to nonlinear networks.

The exponential loss is

L(f(w)) =
N∑
n=1

e−w
T xnyn (20)

where yn is a binary variable taking the value +1 or −1. Assume further that the d-dimensional
weight vector w̃ separates correctly all the n training data, achieving zero classification error
on the training set, that is yi(w̃)Txn ≥ ε,∀n = 1, · · · , n ε > 0. In some cases below (it will be
clear from context) we incorporate yn into xn.

1. Dynamics The dynamics is

ẇ = F (w) = −∇wL(w) =
N∑
n=1

xTne
−xT

nw (21)
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thus F (w) =
∑N
n=1 x

T
ne
−xT

nw.
It is well-known that the weights of the networks that change under the dynamics must
be in the vector space spanned by the examples xn; components of the weights in the
null space of the matrix of examples XT are invariant to the dynamics, exactly as in the
square loss case. Unlike the square loss case, the dynamics of the weights diverges but the
limit w

|w| is finite and defines the classifier. This means that if a few components of the
gradient are zero (for instance when the matrix of the examples is not full rank – which is
the case if d > n) the associated component of the vector w will not change anymore and
the corresponding component in w

|w| will be zero. This is why there is no dependence on
initial conditions, unlike the square loss case.

2. Linearized dynamics Though there are no equilibrium points at any finite w, we can look
at the Jacobian of F – and Hessian of −L – for a large but finite w = w0. It is

J(w) = −
N∑
n=1

(xin)(xjn)e−(wT xn) (22)

The linearization of the dynamics around any finite w0 yields a convex L, since J(wε) is
the negative sum of auto-covariance matrices. The Jacobian is semi-negative definite in
general. It is negative definite if the examples span the whole space but it is degenerate
with some zero eigenvalues if d > n.
The dynamics of perturbation around w0 is given by

˙δw = JF (w0)δw. (23)

where the degenerate directions of the gradient will be washed out asymptotically in the
vector w

|w| which is effectively used for classification, as described earlier.

3. Regularization If an arbitrarily small regularization term such as λw2 is added to the loss,
the gradient will be zero for finite values of w – as in the case of the square loss. Different
components of the gradient will be zero for different v wi. At this equilibrium point the
dynamic is hyperbolic and the Hartman-Grobman theorem directly applies:

ẇ = −∇w(L+ λ|w|2) =
N∑
n=1

ynx
T
ne
−yn(xT

nw) − λw. (24)

The minimum is given by
∑
n xne

−xT
nw = λw, which can be solved by w =

∑
n knxn with

e
−knxn·

∑
j
xj = knλ for n = 1, . . . , N .

The Hessian of −L in the linear case for w0 s.t.
∑
n yn(xn)e−yn(xT

nw
0) = λ(w0) is given by
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−
N∑
n=1

xTnxne
−yn(xT

nw
0) − λ (25)

which is always negative definite, since it is the negative sum of the coefficients of positive
semi-definite auto-covariance matrices and λ > 0. This means that the minimum of L is
hyperbolic and linearization gives the correct behavior for the nonlinear dynamical system.

As before for the square loss, regularization ensures the existence of a hyperbolic equilibrium.
In this case the equilibrium exists for any λ > 0 at a finitew0 which increases to ∞ for λ→ 0. In
the limit of λ→ 0 the equilibrium converges to a maximum margin solution for w̃ = w

||w|| . The
reason is that the components of w in which the gradient is zero will not change during gradient
descent. Those components will be divided by a very large number (the norm of w) and become
zero in the normalized norm w̃.

12 Analysis: Nonlinear deep networks

12.1 Square loss

L(f(w)) =
N∑
n=1

(yn − f(W ;xn))2 (26)

Here we assume that the function f(W ) achieves zero loss on the training set, that is yn =
f(W ;xn) ∀n = 1, · · · , N.

1. Dynamics
The dynamics now is

˙(Wk)i,j = −Fk(w) = −∇Wk
L(W ) = 2

N∑
n=1

En
∂f

∂(Wk)i,j
(27)

with En = (yn − f(W ;xn)).

2. Linearized dynamics The Jacobian of −F – and Hessian of −L – for W = W0 is

J(W )kk′ = 2
N∑
n=1

(−(∇Wk
f(W ;xn))(∇Wk′f(W ;xn)) + En∇2

Wk,Wk′f(W ;xn))

= −2
N∑
n=1

(∇Wk
f(W ;xn))(∇Wk′f(W ;xn)),

(28)

where the last step is because of En = 0. Note that the Hessian involves derivatives across
different layers, which introduces interactions between perturbations at layers k and k′.
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The linearization of the dynamics around W0 for which L(W0) = 0 yields a convex L, since
the Jacobian is semi-negative definite. In general we expect several zero eigenvalues because
the Hessian of a deep overparametrized network under the square loss is degenerate as
shown by the following theorem in Appendix 6.2.4 of [11]:

Theorem 4 (K. Takeuchi) Let H be a positive integer. Let hk = Wkσ(hk−1) ∈ RNk,n

for k ∈ {2, . . . ,H + 1} and h1 = W1X, where NH+1 = d′. Consider a set of H-hidden
layer models of the form, Ŷn(w) = hH+1, parameterized by w = vec(W1, . . . ,WH+1) ∈
RdN1+N1N2+N2N3+···+NHNH+1. Let L(w) = 1

2‖Ŷn(w) − Y ‖2F be the objective function. Let
w∗ be any twice differentiable point of L such that L(w∗) = 1

2‖Ŷn(w∗)− Y ‖2F = 0. Then,
if there exists k ∈ {1, . . . ,H + 1} such that NkNk−1 > n ·min(Nk, Nk+1, . . . , NH+1) where
N0 = d and NH+1 = d′ (i.e., overparametrization), there exists a zero eigenvalue of Hessian
∇2L(w∗).

3. Regularization The effect of regularization is to add the term λk||Wk||2 to the loss. This
results in a Hessian of the form

J(W )kk′ = −2
N∑
n=1

(∇Wkf(W ;xn))(∇Wk′f(W ;xn))− λkδkk′I, (29)

which is always negative definite for any λ > 0.

12.2 Exponential loss

Consider again the exponential loss

L(f(W )) =
N∑
n=1

e−f(W ;xn)yn (30)

with definitions as before. We assume that f(W ;x), parametrized by the weight vectors Wk,
separates correctly all the n training data xi, achieving zero classification error on the training
set for W = W 0, that is yif(W 0;xn) > 0,∀n = 1, · · · , N . Observe that if f separates the data,
then lima→∞ L(af(W 0)) = 0 and this is where gradient descent converges [1].

Again there is no critical point for finite t. Let us linearize the dynamics around a large W 0

by approximating f(W 0 + ∆Wk) with a low order Taylor approximation for small ∆Wk.

1. Dynamics
The gradient flow is not zero at any finite (W 0)k. It is given by

Ẇk =
N∑
n=1

yn[∂f(W ;xn)
∂Wk

]e−ynf(xn;W ) (31)
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where the partial derivatives of f w.r.t. Wk can be evaluated in W0.
Let us consider a small perturbation of Wk around W 0 in order to linearize F around W 0.

2. Linearized dynamics
The linearized dynamics of the perturbation are ˙δWk = J(W )δW , with

J(W )kk′ = −
N∑
n=1

e−ynf(W0;xn)
(
∂f(W ;xn)
∂Wk

∂f(W ;xn)
∂Wk′

− yn
∂2f(W ;xn)
∂Wk∂Wk′

)∣∣∣∣∣
W 0

. (32)

Note now that the term containing the second derivative of f does not vanish at a minimum,
unlike in the square loss case. Indeed, away from the minimum this term contributes
negative eigenvalues.

3. Regularization
Adding a regularization term of the form

∑K
i=1 λk||Wk||2 yields for i = 1, · · · ,K

Ẇk = −∇w(L+ λ|Wk|2) =
n∑
n=1

yn
∂f(W ;xn)
∂Wk

e−ynf(xn;W ) − λkWk (33)

For compactness of notation, let us define

g
(n)
k = yn

∂f

∂Wk
e−ynf(W ;xn), (34)

with which we have a transcendental equation for the minimum.

λk(Wk)min =
∑
n

g
(n)
k . (35)

The Jacobian of F (and negative Hessian of loss) is then

J(W )kk′ =
∑
n

∂g
(n)
k

∂Wk′
− λkδkk′I. (36)

4. At this new finite equilibrium the Hessian is now positive definite for any λi > 0. This
guarantees that a perturbation δW around W0 remains small: there is asymptotic stability.
Furthermore, for the exponential loss – but not for the square loss – the dynamics for any
W close to W0 remains qualitatively the same when λ→ 0, in other words is not affected
by the presence of regularization. The parameters resulting from linearization may be
different from the original weights: the minimum norm solution is in terms of these new
local parameters.
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5. Normalized dynamics
We consider here the dynamics of the normalized network with normalized weight matrices
W̃k induced by the gradient dynamics of Wk, where Wk is the weight matrix of layer k. We
note that this normalized dynamics is related to the technique called “weight normalization”
used in gradient descent[24]. For simplicity of notation we consider here for each weight
matrix Wk the corresponding “vectorized” representation in terms of a vector that we
denote as w (dropping the index k for convenience).
We use the following definitions and self-evident properties:

• Define w
||w|| = w̃; thus w = ||w||w̃ with ||w̃|| = 1.

• The following relations are easy to check:
(a) ∂||w||

∂w = w̃

(b) ∂w̃
∂w = I−wwT

||w|| = S. S has at most one zero eigenvalue since wwT is rank 1 with a
single eigenvalue λ1 = 1.

(c) Sw = Sw̃ = 0
(d) ||w||S2 = S

(e) ∂||w̃||2
∂w = 0

• We assume f(w) = f(||w||, w̃) = ||w||f(1, w̃) = ||w||f̃ .

• Thus ∂f
∂w = w̃f̃ + |w|S ∂f̃

∂w̃

• The gradient descent dynamic system used in training deep networks for the exponential
loss of Equation 30 is given by Equation 6, that is by

ẇ = −∂L
∂w

=
N∑
n=1

yn
∂f(xn;w)

∂wi
e−ynf(xn;w) (37)

with a Hessian given by (assuming ynf(xn) > 0)

H =
N∑
n=1

e−f(xn;w)(∂f(xn;w)
∂w

∂f(xn;w)
∂w

T

− ∂2f(xn;w)
∂w2 ) (38)

• The dynamics above for w induces the following dynamics for ||w|| and w̃:

˙||w|| = ∂||w||
∂w

ẇ = w̃ẇ (39)

and
˙̃w = ∂w̃

∂w
ẇ = Sẇ (40)

Thus

˙||w|| = w̃T ẇ = 1
||w||

N∑
n=1

wT
∂f(xn;w)

∂wi
e−f(xn;w) =

N∑
n=1

e−||w||f̃(xn)f̃(xn) (41)
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where, assuming that w is the vector corresponding to the weight matrix of layer k, we
obtain (wT ∂f(w;x)

∂w ) = f(w;x) because of Lemma 1 in [10]. We assume that f separates
all the data, that is ynf(xn) > 0 ∀n. Thus d

dt ||w|| > 0 and limt→∞ ˙||w|| = 0. In
the 1-layer network case the dynamics yields ||w|| ≈ log t asymptotically. For deeper
networks, this is different. In Section 14 we show that the product of weights at each
layer diverges faster than logarithmically, but each individual layer diverges slower
than in the 1-layer case. By defining∑

n

e−‖|w||f̃(xn)∂f̃(xn)
∂w̃

= B̃ (42)

the Equation above becomes
˙̃w = I − w̃w̃T

||w||
B̃. (43)

The dynamics imply ˙̃w → 0 for t→∞, while ||w̃|| = 1. As in the square loss case for
w, the degenerate components of ˙̃w are not directly updated by the gradient equation
but unlike the square loss case, they are indirectly updated because ||w̃|| = 1. Thus
the dynamics is independent of the initial conditions, unlike the dynamics of w in the
square loss case. Note that the constraint ||w̃|| = 1 is automatically enforced by the
definition of w̃.

This section, and in particular inspection of Equations 41 and 43, shows that the dynamics
of the normalized matrices at each layer converges. Adding a regularization term of the form
λ||Wk||2 and letting λ go to 0 supports the following conjecture

Proposition 5 The normalized weight matrix at each layer W̃k converges to the minimum
Frobenius norm solution, independently of initial conditions.

12.3 Another approach to prove linearization of a nonlinear deep network
and its validity

In this section we study the linearization of the deep nonlinear networks around fixed points of
GD and its relation with equivalent linear networks. We first review the step of linearization
described in section 5.1 for linear networks with either square or exponential losses to study the
dynamics of perturbations ˙δW = HδW . We also review the same linearizaton step for the deep
nonlinear networks. Unlike the linear case, the Hessian can have negative eigenvalues, and only
becomes positive-definite around the minimum.

We then

• show that in the case of the square loss, the Hessian of a deep nonlinear network can be
mapped to a linear network with appropriately transformed data;

• for the exponential losses we show that linearization of a deep nonlinear network yields a
deep linear network.

23



• show that the Hartman-Grobman theorem guarantees that the linearization faithfully
describes the behavior of the DNNs near a minimum of GD.

Proof sketch
We first regularize the square loss or a loss with an exponential tail L and derive the continuous
dynamical system in Ẇk = −∇Wk

L associated with gradient descent (with a fixed learning rate).
We then linearize around the asymptotic equilibrium w0 at which the gradient is zero, obtaining
the dynamical system for perturbations δWk around W 0 in Equation (5). At this point we check
that the analysis available for linear networks – especially in the case of exponential losses –
applies to the linearized dynamical systems. For this, we need to understand the dynamics of
perturbations δWk for both the linear networks and the deep nonlinear ones.

Note that the phase portraits of a dynamical system (5) depend solely on the eigenvalues
of H. For both the exponential losses and the square loss on linear networks, the Hessian is
positive semi-definite everywhere, even without any regularization, with the number of distinct
eigenvalues bounded by N – the number of training examples xn ∈ Rd. For the deep nonlinear
networks, the Hessian can in general have negative eigenvalues, and only at a minimum of GD it
become positive semi-definite. Interestingly, for the square loss at w∗ the Hessian has also at
most N distinct eigenvalues, since we have

H = 2
N∑
n=1

((∇Wk
f(W ;xn))(∇Wk′f(W ;xn))− En∇2

WkWk′
f(W ;xn)),

where En = yn − f(W ;xn) vanishes at a zero minimum. Due to the higher number of weights
than in the one layer linear network case, the Hessian is of higher dimensionality (D ×D) than
in the linear case (D > d). This implies that the linearization of the nonlinear deep network
with square loss corresponds to a linear system with higher dimensional “virtual” data x′n ∈ RD
related to the original data by x′n = ∇W f(W ;xn)|W0 . This construction provides a (stronger)
differentiable conjugacy to a linear network.

In the case of losses with exponential tails, the Hessian has a non-vanishing additional term
proportional to yn∇2

W f(W ;xn). In the case of the exponential loss we obtain

Hexp =
N∑
n=1

e−ynf(W ;xn)(∂f(W ;xn)
∂Wk

∂f(W ;xn)
∂Wk′

− yn
∂2f(W ;xn)
∂Wk∂Wk′

).

In particular, derivatives across different layers induce a higher number of distinct eigenvalues
than N . We show below that deep linear networks (with f(W ; sn) = WKWk−1 · · ·W2W1xn)
have the same behavior for derivatives across layers (here and elsewhere we do not assume
a convolutional structure). The only difficulty is then of two derivatives in the same layer,
f ′′(W ;xn), which we remove by the assumption of rectified nonlinearities, for which the second
derivative vanishes. Thus a deep nonlinear network with an exponential loss linearizes to a deep
linear network with same loss, which also converges to the pseudo-inverse like the shallow linear
network. Finally, the linearized system satisfies the Hartman-Grobman theorem (for any λ > 0)
and is therefore a good qualitative description of the dynamics of the nonlinear system around
the asymptotic equilibrium W0.
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12.3.1 Square loss

Note that the Hessian of a deep network is of much higher dimensionality D > d for over-
parametrized networks. However, since the number of distinct eigenvalues of the linear and
nonlinear Hessians match (since they are both sums of outer products of training example
vectors), we can find a linear system with inputs x′ ∈ RD with x′n = ∇W f(W ;xn)|W0 and weights
W ′ ∈ RD that satisfies the same linearized dynamical system as the linearized deep network.
Since we can explicitly match the two Hessians, the dynamical system of a deep network with a
square loss around a minimum of gradient descent is differentiably conjugate to a linear network
with square loss.

12.3.2 Exponential loss

The Hessian around W 0 for the exponential loss is quite different from the square loss case for
the same network f . This is because the term yn

∂2f(W ;xn)
∂Wk∂Wk′

cannot in general be written as an
outer product of some vector. Let us investigate two simple cases.

1. Consider a simple one-layer network, with an arbitrary smooth non-linear activation applied
to it. In this case we have f(W ;xn) = f(wTxn). It is easy to see that in this case

∂2f(wTxn)
∂wi∂wj

= xinx
j
nf
′′(wTxn), (44)

which is again a simple outer product of a vector. Hence, the Hessian has again at most N
distinct eigenvalues, just like in the linear case. It is interesting to note that this simple
case is also valid for a deep network, if we restrict ourselves to optimizing only one layer
at a time. This extends the results in [1] from piecewise-linear activations to arbitrary
nonlinear smooth ones.
In the one-layer case there exists a simple mapping of the continuum GD dynamics of the
nonlinear network around a minimum to an equivalent linear system with an exponential
loss by setting x′ne−

1
2ynw′T x′n = xn

√
f ′(wTxn)2 − f ′′(wTxn)e−

1
2ynwT xn . The exact mapping

of Hessians implies again a differentiable conjugacy of the two dynamical systems.

2. If we add a single linear layer on top of the one we just considered, i.e. W 2σ(W 1 · xn), the
second derivative becomes

∂2f(W ;xn)
∂W k∂W k′

= δ1kδ1k′xnxnW
2 · σ′′(W 1 · xn) + [δ2kδ1k′xn + δ2k′δ1kxn]σ′(W 1 · xn). (45)

The second term here cannot be written as a simple outer product of a vector, hence there
is no guarantee that the Hessian has only N distinct eigenvalues. This naturally extends
to the case with more layers. Indeed, simple numerical checks show that this bound is
generically broken.

25



From the second example it is clear that when we consider derivatives across layers, the
Hessian of a deep network with an exponential loss around a minimum for N training examples
has more eigenvalues than a one layer linear model with the same loss. Adding a regularization
term P (Wk) = λ|Wk|2 helps with making all the eigenvalues positive, but does not change the
number of distinct eigenvalues. Hence, unlike the square loss, there does not exist a linear model
with a single layer which is differentiably conjugate to the dynamical system of the deep network
around a minimum. Nonetheless, after adding an arbitrarily small regularization it is possible to
construct a linear network with an equal number of positive eigenvalues. Thus the dynamical
system of a deep nonlinear network with arbitrarily small regularization parameter λ around a
minimum of gradient descent is topologically conjugate to that of a regularized linear network.

It is natural to ask whether we can strengthen this statement into differentiable conjugacy
in some way. With this in mind, let us consider a deep linear network, which also converges
in general to the minimum norm solution. We have f(W ;xn) = WKWK−1 · · ·W2W1xn for a
network with K layers. Without loss of generality, consider the two-layer case, for which the
Hessian is

Hlin =
∑
n

[
(δk1W2 + δk2W1)(δk′1W2 + δk′2W1)xnxTn − yn(δk1δk′2xn + δk′1δk2xn)

]
e−ynW2W1xn .

(46)
This expression clearly cannot be written as a sum of outer products of N vectors, hence we
expect it to have in principle more than N distinct eigenvalues. This is indeed generically true
in simulations.

We would like to compare this to the Hessian of a nonlinear deep network

Hnl =
∑
n

[
∂f(W ;xn)
∂Wk

∂f(W ;xn)
∂Wk′

− yn
∂2f(W ;xn)
∂Wk∂Wk′

]
e−ynf(W ;xn),

where the second term is given by Equation (45). To simplify the comparison, let us consider case
when the second derivative f ′′ at the same layer vanishes, which holds true for rectified nonlinear-
ities. The nonlinear network can be written as f(W ;x) = xTW1D1(x)W2D2(x) · · ·DK−1(x)WK ,
where Dt(xn) is a diagonal matrix with entries 0 or 1 giving the profile of the ReLU activations
in layer t [10]. While it is straightforward to match the value of the nonlinear network to a linear
one at a point for each of the training examples, we do not in principle have enough variables
to match the Hessians exactly. From the discussion in Section 10 we know that we only have
to match the eigenvalues, rather than matrices. In [25] the spectrum of the Hessian of a deep
network with cross-entropy loss was studied numerically and was shown to be highly degenerate
around a minimum of GD.

Since the Hessians are real symmetric matrices, they are linearly conjugate to diagonal
matrices. Thus we obtain two linear systems ẋi = µixi and ẏi = νiyi, where µi and νi are the
eigenvalues of the nonlinear and linear deep networks respectively. Adding an arbitrarily small
regularization P (w) now gives hyperbolic dynamics, for which the Hartman-Grobman theorem
applies. Ordering the eigenvalues so that µ1 ≥ µ2 ≥ · · ·µD > 0 and similarly for νi, we can
construct the conjugacies

hi(xi) = sgn(xi)|x|νi/µi . (47)
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If µi = νi, then hi is a diffeomorphism, otherwise it is a homeomorphism. If there exists a deep
linear network with the same number of distinct eigenvalues as the nonlinear one at a minimum
(up to the freedom of choosing the regularization parameters), then we obtain differentiable
conjugacy. Otherwise there will exist directions in weight-space in which the equivalence will
hold up to a topological conjugacy. Whether the number of eigenvalues can be matched remains
an open question.

The results above hold not only for the exponential loss, but also for the family of losses with
exponential tails, for example the logistic function. Note that technically the statements above
work for smooth nonlinearities, for example σ(x) = x/(1 + e−x/ε

2), but we expect they should
apply to non-smooth dynamical systems in the Filippov sense [15].

In particular, the results obtained by [1] and [23] for the case of linear networks (both
shallow and deep) guarantee a “linearized” minimum norm solution in the neighborhood of
f
|f | independently of the path taken by gradient descent to reach the neighborhood of f

|f | . In
our derivation this is because the convergence is driven by non zero gradient and it is thus
independent of initial conditions. It is important to note that this situation is unlike the case of
the square loss (see Figure 3) where the dependence on initial conditions means that the norm of
the local linearized solution depends on the overall trajectory of gradient descent and not only
on W0.

13 Early stopping
We discuss here a slightly different dynamical system minimizing the same exponential loss
function. The dynamics is related to gradient descent with batch normalization.

Consider the usual loss function L(f(w)) =
∑N
n=1 e

−f(W ;xn)yn . We define Wk = ρkVk
for k = 1, · · · ,K where K is the number of layer and Wk is the matrix of weights of layer
k, Vk is the normalized matrix of weights at layer k. Homogeneity of f implies f(W ;x) =∏K
k=1 ρkf̃(V1, · · · , VK ;xn). We enforce ||Vk||2 =

∑
i,j(Vk)2

i,j = 1 as constraints (any constant
instead of 1 is acceptable) in the minimization of L by penalization controlled by λ. Note that
this penalty is formally different from a regularization parameter since it enforces unit norm.
Thus we are led to finding Vk and ρk for which L =

∑N
n=1 e

−f(xn;w)yn +
∑K
k=0 λk(||Vk||2 − 1) is

zero. We minimize L with respect to ρk, Vk by gradient descent. We obtain for k = 1, · · · ,K

ρ̇k =
∑
n

ρ1 · · · ρi−1ρi+1 · · · ρKe−
∏K

i=1 ρk f̃(V1,··· ,VK ;xn)f̃(xn), (48)

and for each layer k

V̇k = (
K∏
i=1

ρi)
∑
n

e−
∏K

i=1 ρif̃(V1,··· ,VK ;xn)∂f̃(xn)
∂Vk

− 2λkVk = Bk − 2λkVk (49)

where (
∏K
i=1 ρi)

∑
n e
−
∏K

i=1 ρif̃(V1,··· ,VK ;xn) ∂f̃(xn)
∂Vk

= Bk.
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Observe (see next section) that ρ̇k > 0, decreasing to zero for t→∞. Also limt→∞Bk(t) = 0
from the results in Section 14. Note that, since ∂||Vk||2

∂t = 2VkV̇k, Equation 49 implies

∂||Vk||2

∂t
=
∑
i,j

(Vk)i,j(V̇k)i,j = (
K∏
k=1

ρk)
∑
n

e−
∏K

i=1 ρif̃(xn)f̃(xn)− 2λk(Vk)2. (50)

Equation 50 can be rewritten as

∂zk

∂t
= Ck(z, · · · )− 2λkzk (51)

with Ck(z) > 0 decreasing to zero for increasing t. When Ck = 2λk the equilibrium is reached
and Vk has unit norm.

In the approach of this section the values of the λk are set by V̇k = 0 which enforces the
constraint. This means that the value of λk effectively determines T0, the time at which the
change in z stop because Ck(T0) = 2λk(T0). Thus a finite stopping time T0 follows from the
value of λk(T0). The dynamics around the equilibrium point is hyperbolic for any λ > 0, allowing
the use of the Hartman-Grobman theorem. Note that the unperturbed dynamics around Vk(T0)
is topologically the same for λk(T0) as well as for λ = 0. This suggests a possible approach to
prove that (necessary) early stopping is equivalent to regularization. The argument would claim
that in the absence of the λk terms the dynamics has to be stopped after a (possibly very long)
time T0 and this is equivalent to a small finite regularization term.

Finally, the Hessian of L wrt Vk tells us about the linearized dynamics around a minimum
where the gradient is zero. The Hessian is

∑
n

−( K∏
i=1

ρ2
i

)
∂f̃(V ;xn)

∂Vk

∂f̃(V ;xn)
∂Vk′

T

+
(
K∏
i=1

ρi

)
∂2f̃(V ;xn)
∂Vk∂Vk′

 e−∏K

i=1 ρif̃(V ;xn) − 2λI. (52)

Thus the Hessian is negative semidefinite for λk = 0 for large times because the absolute
value of the first term decreases more slowly than the second term. However, it is asymptotically
negative definite with any λk > 0 and thus also in the limit of λk → 0.

Putting together all the observations above we have the following proposition:

Proposition 6 The linearized dynamics for the exponential loss is hyperbolic for large, finite
t, describing the dynamics of each layer weight matrix near a zero minimum of the loss. The
Hartman-Grobman theorem implies that near a global asymptotic minimum L = 0, for an arbitrar-
ily large finite T0, the linearized flow is topologically equivalent to the nonlinear dynamics induced
by a deep network. The flow converges to the local maximum margin solution asymptotically,
independently of the trajectory leading to the global minimum.

Remarks
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The intuition behind the equations of this section is that if a solution for the weightsWk exists
such that ynf(W,xn) > 0, ∀n, then the normalized solution also separates the data. In this
case the loss can be made as small as desired by increasing ρk. Among all normalized solutions,
GD selects the one with minimum norm because only the nondegenerate directions around a
minimum – in which the gradient is not zero – increase. The degenerate directions, which do not
change, are “washed out” by normalization since the effective norm increases steadily during
gradient descent. This justifies the term λk||Vk||2 and its limit for λk → 0.

Note that we do not assume linearization in the previous paragraph. Linearization only enters
when we consider the Hessian and its properties around a minimum. It seems therefore possible
to compare meaningfully the norms of different minima to predict expected errors. In particular,
consider running gradient descent. Assume that GD converges to an asymptotic global minimum,
around which the increase in the norm is very slow. Set εT0 and use Equations 48, 49, with
λk = 0, to compute the products of the Frobenius norms (

∏K
i=1 ρi) when L = εT0 . This network

norm would be a proxy for the complexity of the network at the specific minimum, allowing a
comparison of different minimizers.

14 Rate of growth of weights
In linear 1-layer networks the dynamics of gradient descent yield ||w|| ∼ log t asymptotically. For
the validity of the results in the previous section, we need to show that the weights of a deep
network also diverge at infinity. In general, the K nonlinearly coupled equations (48) are not
easily solved analytically. For simplicity of analysis, let us consider the case of a single training
example N = 1, as we expect the leading asymptotic behavior to be independent of N . In this
regime we have

ρkρ̇k = f̃(x)
(

k∏
i=1

ρi

)
e−
∏K

i=1 ρif̃(x) (53)

Keeping all the layers independent makes it difficult to disentangle for example the behavior
of the product of weights

∏K
i=1 ρi, as even in the 2-layer case the best we can do is to change

variables to r2 = ρ2
1 + ρ2

2 and γ = eρ1ρ2f̃(x), for which we still get the coupled system

γ̇ = f̃(x)2r2, rṙ = 2log γ
γ

, (54)

from which reading off the asymptotic behavior is nontrivial.
As a simplifying assumption let us consider the case when ρ := ρ1 = ρ2 = . . . = ρk. This

gives us the single differential equation

ρ̇ = f̃(x)KρK−1e−ρk f̃(x). (55)

This implies that for the exponentiated product of weights we have(
eρk f̃(x)

)̇
= f̃(x)2K2ρ2K−2. (56)
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Changing the variable to R = eρk f̃(x), we get finally

Ṙ = f̃(x)
2
KK2 (logR)2− 2

K . (57)

We can now readily check that for K = 1 we get R ∼ t, so ρ ∼ log t. It is also immediately clear
that for K > 1 the product of weights diverges faster than logarithmically. In the case of K = 2
we get R(t) = li−1(f̃(x)K2t+ C), where li(z) =

∫ z
0 dt/ log t is the logarithmic integral function.

We show a comparison of the 1-layer and 2-layer behavior in the left graph in Figure 7. For
larger K we get faster divergence, with the limit K →∞ given by R(t) = L−1(α∞t+ C), where
α∞ = limK→∞ f̃(x)

2
KK2 and L(z) = li(z)− z

log z .
Interestingly, while the product of weights scales faster than logarithmically, the weights at

each layer diverge slower than in the linear network case, as can be seen in the right graph in
Figure 7.

Remarks

• Cross-entropy loss with Softmax classifier While the results in the article have been derived
for binary classification, they extend to the case of labels in the set yn ∈ {1, . . . , C}. In
this case we can write the neural network with K layers and rectified nonlinearities σ as

f(x;W ) = σ(σ(. . . σ(xTW1)W2 . . .WK−1)WK , (58)

where the last layer WK ∈ RdK ,C . In this notation f(x;W ) is a C-dimensional vector and
we can label its’ c-th component as fc. The cross-entropy loss with the Softmax classifier is
then

L = −
N∑
n=1

log
(

efyn (xn;W )∑C
c=1 e

fc(xn;W )

)
, (59)

where fyn is the component of f(xn;W ) corresponding to the correct label for the example
xn. The gradient of the loss is then

∇WL =
N∑
n=1

C∑
c=1

1∑C
c′=1 e

fc′ (xn;W )−fc(xn;W )∇W (fc(xn;W )− fyn(xn;W )) . (60)

The equivalent assumption of non-linear separability for the cross-entropy loss is that there
exists a W ∗ such that fyn(xn;W ∗)− fc(xn;W ∗) > 0 ∀n ∀c 6= yn. Using the property of
rectified networks W T∇W f(x;W ) = f(x;W ), we immediately get that

W ∗T∇WL < 0

for any value of W . We thus get that as the gradient of the cross-entropy loss ∇L → 0,
the weights W diverge. Rewriting fyn(xn;W )− fc(xn;W ) = f(xn;W ) we see that up to a
slightly different normalization (by a sum of exponentials rather than a single exponential)
and an additional summation, the dynamics of GD for the cross-entropy loss are those of
the exponential loss for binary classification, and as such the results in this article apply
also to multi-class classification.
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• GD with weight normalization Note that the dynamics of Equations 48 and 49 is different
from other gradient descent dynamics, though similar. It represents one of the possible
approaches for training deep nets on exponential type losses: the first approach is to update
W and then, in principle at least, normalize at the end. The second approach, is similar to
using weight normalization: GD implements the dynamics of w̃. The third approach uses
the dynamics corresponding to a penalization term enforcing unit Frobenius norm of the
weight matrix Vk.

• Non separable case Consider the linear network in the exponential loss case. There will
be a finite w for which the gradient is zero. The question is whether this is similar to the
regularization case or not, that is whether misclassification regularizes.
Let us look at a linear example:

ẇ = F (w) = −∇wL(w) =
n∑
n=1

xTne
−xT

nw (61)

in which we assume that there is one classification error (say for n = 1), meaning that
the term e−x

T
1 w grows exponentially with w. Let us also assume that gradient descent

converges to w∗. This implies that
∑n
n=2 x

T
ne
−xT

nw
∗ = −xT1 e−x

T
1 w
∗ : for w∗ the gradient is

zero and ẇ = 0. Is this a hyperbolic equilibrium? Let us look at a very simple 1D, n = 2
case:

ẇ = −x1e
x1w∗ + x2e

−x2w∗ (62)

If x2 > x1 then ẇ = 0 for e(x1+x2)w∗ = x2
x1

which implies w∗ =
log( x2

x1
)

x1+x2
. This is clearly a

hyperbolic equilibrium point, since we have

∇wF (w) = −x2
1e
x1w∗ − x2

2e
−x2w∗ < 0, (63)

so the single eigenvalue in this case has no zero real part.
In general, if there are only a small number of classification errors, one expects a similar
situation for some of the components. Differently from the regularization case, misclassifi-
cation errors do not “regularize” all components of w but only the ones in the span of the
misclassified examples.

• Learning rate and discretization In the paper we have neglected the time dependence of the
learning rate in GD because we considered the associated continuous dynamical systems.
A time-dependent learning rate is important when the differential equations are discretized.
This can be seen by considering the differential equation

dx

dt
+ γ(t)x = 0 (64)
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with solution x(t) = x0e
−
∫
γ(t)dt. The condition

∫
γ(t)dt→∞ corresponds to

∑
γn =∞.

Conditions of this type are needed for asymptotic convergence to the minimum of the
process x(t). Consider now the “noisy” case dx

dt + γ(t)(x+ ε(t)) = 0: we need γ(t)ε(t)→ 0
to eliminate the effect the “noise” ε(t), implying at least γn → 0. The “noise” may just
consist of discretization “noise”.
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Figure 5: We train a 5-layer convolutional neural networks on CIFAR-10 with Gradient Descent
(GD) on cross-entropy loss with and without perturbations. The main results are shown in the
3 subfigures in the bottom row. Initially, the network was trained with GD as normal. After
it reaches 0 training classification error (after roughly 1800 epochs of GD), a perturbation is
applied to the weights of every layer of the network. This perturbation is a Gaussian noise with
standard deviation being 1

4 of that of the weights of the corresponding layer. From this point,
random Gaussian noises with such standard deviations are added to every layer after every 100
training epochs. The empirical risk goes back to the original level after the perturbation, but
the expected risk grows increasingly higher. As expected, the L2-norm of the weights increases
after each perturbation step. After 7500 epochs the perturbation is stopped. The left column
shows the classification error. The middle column shows the cross-entropy risk on CIFAR during
perturbations. The right column is the corresponding L2 norm of the weights. The 3 subfigures
in the top row shows a control experiment where no perturbation is performed at all throughout
training, The network has 4 convolutional layers (filter size 3× 3, stride 2) and a fully-connected
layer. The number of feature maps (i.e., channels) in hidden layers are 16, 32, 64 and 128
respectively. Neither data augmentation nor regularization is performed.
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Figure 6: Training and testing with the square loss for a linear network in the feature space (i.e.
y = Wφ(X)) with a degenerate Hessian. The feature matrix is a polynomial with increasing
degree, from 1 to 300. The square loss is plotted vs the number of monomials, that is the number
of parameters. The target function is a sine function f(x) = sin(2πfx) with frequency f = 4 on
the interval [−1, 1]. The number of training points is 76 and the number of test points is 600.
The solution to the over-parametrized system is the minimum norm solution. More points were
sampled at the edges of the interval [−1, 1] (i.e. using Chebyshev nodes) to avoid exaggerated
numerical errors. The figure shows how eventually the minimum norm solution overfits.

36



K=4

K=2

K=1

10 100 1000
t

5

10

15


i=1

K

ρi

K=4

K=2

K=1

5 10 50 100
t

1

2

3

4

5

ρ

Figure 7: The left graph shows how the product of weights
∏K
i=1 scales as the number of

layers grows when running gradient descent with an exponential loss. In the 1-layer case we
have ρ = ||w|| ∼ log t, whereas for deeper networks the product of norms grows faster than
logarithmically. As we increase the number of layers, the individual weights at each layer diverge
slower than in the 1-layer case, as seen on the right graph.
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