User’s Guide:

How to Run C/MATLAB Codes on Android Smartphones
as Open Source and Portable Research Platforms

for Hearing Improvement Studies

N. KEHTARNAVAZ AND A. SEHGAL
UNIVERSITY OF TEXAS AT DALLAS

MARCH 2017

This work was supported by the National Institute of the Deafness and Other
Communication Disorders (NIDCD) of the National Institutes of Health (NIH) under the
award number 1R01DC015430-01. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the NIH.

Table of Contents

INTRODUCTION 3
USER’S GUIDE ACCOMPANYING CODES 3
SECTION 1: ANDROID SOFTWARE TOOLS 5
1.1 JAvA JDK 5
1.2 ANDROID STUDIO WITH NATIVE DEVELOPMENT KIT 5
1.3 ENVIRONMENT VARIABLE CONFIGURATION 7
1.4 ANDROID STUDIO CONFIGURATION 8
SECTION 2: RUNNING C CODES AS ANDROID APPS 11
2.1 PROGRAMMING LANGUAGE 11
2.2 CREATING JAVA SHELL 11
2.3 CREATING GUI 13
SECTION 3: CONVERTING MATLAB CODESTO C 18
3.1 CREATING A MATLAB SCRIPT 18
3.2 GENERATING C CoDE UsING MATLAB CODER 18
3.3 RUNNING C CODE AS ANDROID APP 22
SECTION 4:1/0 HARDWARE DEPENDENCIES 27
4.1 UsSING HARDWARE PREFERRED SETTINGS 27
4.2 MAINTAINING MICROPHONE CONSISTENCY 27
SECTION 5: REAL-TIME 1/O IMPLEMENTATION 28
5.1 CREATING Aubio I/O App 28

Introduction

This user’s guide covers the steps one needs to take in order to run C/MATLAB
algorithms on Android mobile devices as open source and portable research platforms for

hearing improvement studies.

The first section covers the software tools required for algorithm implementation on
Android devices. In the second section, it is shown how to run C codes on Android devices. The
third section discusses the use of the MATLAB Coder for converting MATLAB codes into C
codes. The fourth section covers hardware dependencies that users will need to be aware of
when implementing algorithms on different Android devices having different i/o characteristics.
Finally, the fifth section describes frame-based processing for real-time operation.

User’s Guide Accompanying Codes
The accompanying codes for this user’s guide consist of the following (see Fig. 1):

e “codegen” — This folder includes the code generated by the MATLAB coder for the MATLAB
script “fibonacci.m”.

e “fibonacci_testbench.m” — This file is the testbench MATLAB script associated with
“fibonacci.m”.

e “FrequencyDomain” — This folder includes the code solution for section 5.

e “TestApp” — This folder includes the code solution for sections 2 and 3.

Bl = [l

[GenericUsersGuide_Android

Favorites

{ﬁ} AirDrop

E Al My Files

¢ iCloud Drive
?ag Applications
[Z2] Desktop

ﬁ Documents

0 Downloads

Devices

Remote Disc
Tags
® Red
@ Orange
Yellow

8 . ‘;rnﬂn

Name

» [7 codegen

m fibonacei_testbench.m
m fibonacci.m
» [FrequencyDomain

» [0 Testapp

Date Modified

Feb 23, 2017, 5:48 PM
Feb 12, 2017, 5:21 PM

Feb 12, 2017, 10:07 PM
Feb 22, 2017, 5:23 PM
Feb 27, 2017, 11:24 AM

Kimd

Foldel
Objec
Objec
Foldel
Folde

Section 1: Android Software Tools

Android is an open-source operating system developed by Google for mobile phones
and tablets. The Android apps are normally coded in Java. In this section, it is shown how to set
up the Android Studio IDE (Integrated Development Environment) for developing Android apps.

1.1 Java JDK

Since Android apps require Java, the Java Development Kit (JDK) needs to be first
installed on your computer. The latest version of JDK can be downloaded from this link:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The latest version of the JDK can be installed using the “Java Platform (JDK)”, shown in Fig. 2.
Click download and select the appropriate downloaded package.

[E Java SE - Downloads | O %

- a X
&« C @ www.oracle.com/technetwork/java/javase/downloads/index htm| ir
Sign In/Register Help Country ~ Communities ~ |ama..~ Iwantto..~ | Search Q
Products Solutions Downloads Store Support Training Partners About OTN
Oracle Technclogy Network » Java > Java SE > Downloads
Java SE Overview | Downloads || Documentation | Community || Technologies || Training ava 3D Ka anel loslel
Java EE
Java ME Java SE Downloads
Java SE Support
Java SE Advanced & Suite 5
Java Embedded —> lava‘ m # MetBeans IDE
Java DB - . & Java Mission Control
Web Tier
[oowonss] SN
Java Card & Java APIs
X Java Platfarm (JDK) 8u121 NetBeans with JOK & C
& Technical Articles
Java Platform, Standard Edition & Demos and Videos
Java SE 8ui21 & Foums
Java SE Bui21 includes important security fixes. Oracle strongly recommends that all Java SE 8 ~
users upgrade o this relase. # Java Magazine
Leam more » -
& Javanet
Important planned change for MD5-signed JARs & Developer Trainin
‘Starting with the April Critical Patch Update releases, planned for April 18 2017, all JRE
versions will treat JARS signed with MDS as unsigned. Learn more and view testing & Tutorials
instructions. N
For more information cn eryplographic algarithm support, please check the JRE and JDK & Java.com
Crypto Roadmap.
= Installation Instructions. JOK
R
Server JRE
- Readme Files
+ JDK Readhle JRE
.

Fig. 2
1.2 Android Studio with Native Development Kit

It is recommended to create a common directory for installation of the Android
software tools. Here, “C:\Android” is specified as the directory for the installation of all Android
development related files. For Mac and Linux operating systems, a similar directory needs to
get created and the same steps to be followed.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The recommended IDE for creating Android apps is Android Studio. It is available at the

following link:

https://developer.android.com/studio/index.html

Along with Android Studio, the Native Development Kit (NDK) needs to be installed
which allows incorporating C codes into the Android environment. The NDK can be downloaded

from the following link:

https://developer.android.com/ndk/downloads/index.html

Depending on which operating system the above are installed, the corresponding
Android Studio and NDK need to be placed into the directory created for the Android app

development.

Install Android Studio first by running the installer. In the “Install Locations” page of the
installation wizard, change the installation directory of Android Studio as shown in Fig. 3.

Android Studio Setup — X

| Configuration Settings
Install Locations
I

Android Studio Installation Location

The location specified must have at least S00ME of free space.
Click Browse to customize:

| C:\android\Studio Browse..

Android SDK Installation Location

The location specified must have at least 3. 2GE of free space.
Click Browse to customize:

| C:\android\sdk Browse...

< Back Cancel
Fig. 3

After the installation is finished, deselect “Start Android Studio”. Next, extract the NDK
in the “C:\Android” folder. After the extraction is complete, rename the “android-ndk-

<version>" file to ndk. Finally, make sure “C:\Android” has both a sdk and an ndk folder.

https://developer.android.com/studio/index.html
https://developer.android.com/ndk/downloads/index.html

1.3 Environment Variable Configuration

Before running Android Studio for the first time, the system environment needs to be
set up by adding the SDK platform-tools folder to the system path variable and setting the
variables to define the Android Virtual Device (AVD) storage location as well as the locations for
the Android SDK and NDK. The steps listed here are for the Windows 10 operating system.
Similar steps need to be followed for other operating systems.

On your desktop, right click on the Computer icon and select Properties. Next, open the
Advanced system settings menu and click on Environment Variables at the bottom of the
Advanced tab, see Fig. 4. Then, create new system variables by clicking the “New...” button
below the System variables section, shown in Fig. 5. There are three new system variables that
need to be set: “ANDROID_SDK_HOME” with the value: “C:\Android”, “ANDROID_SDK_ROOT”
with the value: “%ANDROID_SDK_HOME%\sdk”, and “ANDROID_NDK_HOME" with the value
“%ANDROID _SDK_HOME%\ndk”.

Then, add the following text as a new edit to your system path variable
“%ANDROID_SDK_ROOT%\platform-tools” as shown in Fig. 6. The modifications are now
complete and the settings menus can be closed.

System Properties X Environment Variables X
Computer Name Hardware Advanced System Protection Remote User variables for Abhishek Sehgal
Variable Value
You must be logged on as an Administrator to make most of these changes. OneDrive Ci\Users\Abhishek Sehgal\OneDrive
Performance Path %USERPROFILE%\AppData\Local\Microsoft\WindowsApps;
TEMP %USERPROFILE%\AppData\Local\Temp
Visual effects, processor scheduling, memory usage, and virtual TMP %USERPROFILE%\AppData\Local\Temp
memory
Settings...
User Profiles
. . . New... Edit... Delete
Desktop settings related to your sign-in
System variables
Settings...
Variable Value
ANDROID_NDK_HOME %ANDROID_SDK_HOME%\ndk
Startup and Recovery ANDROID_SDK_HOME C\Android
System startup, system failure, and debugging information ANDRGID_SDK_ROOT %ANDROID_SDK_ HOME\=dk
ComSpec C\Windows\system32\cmd.exe
NUMBER_OF PROCESSORS 2
Settings... os Windows _NT
Path C\ProgramData\Oracle'Java\javapath;C:\Windows\system32,C:\...
PATHEXT COM;.EXE; BAT; CMD;.VBS; VBE.JS; JSE. WSF; WSH;.MSC
Environment Variables...
New... Edit... Delete
oK Cancel Apply ¢ Cancel
Fig. 4 Fig. 5

Edit environment variable X

C:\ProgramData\Oracle\Java\javapath

New
%SystemRoot%\system32
%SystemRoot% Edit
%SystemRoot%\System32\Whbem
%SYSTEMROOT%\System32\WindowsPowerShell\v1.0\
%ANDROID_SDK_ROOT%\platform-tools Bl ez
Delete
Move Up

Move Down

Edit text...

Fig. 6
1.4 Android Studio Configuration

Navigate to the “C:\Android\Studio\bin” directory and edit the file “idea.properties”
with a text editor. Uncomment the lines “idea.config.path” and “idea.system.path” and replace
S{idea.home} with “C:/Android” for both of these lines. The final lines need to appear as shown
in Fig. 7. At this time, also set up a shortcut to either studio.exe or studio64.exe on your
desktop, as this is the main executable for Android Studio.

Android Studio may now be started for the first time using the shortcut just created. The
tool will prompt to import settings and check for the correct Java JDK. At the “Install Type”
screen, select the “Custom” option and click Next. On the “SDK Components Setup” screen,
verify that the Android SDK Location is properly detected as “C:\Android\sdk”. If it is correct,
click “Finish”, which will cause checking for any available updates to Android Studio. When this

is done, the Android Studio home screen should appear as shown in Fig. 8.

|idea - Notepad — a X
File Edit Format View Help

DO NOT modify this file directly. If there is a value that you would like to override,
please add it to your user specific configuration file.

Use ${idea.home.path} macro to specify location relative to IDE installation home.
Use ${xxx} where xxx is any Java property (including defined in previous lines of this file) to refer to its value.

#

#

#

See http://tools.android.com/tech-docs/configuration

#

#

#

Note for Windows users: please make sure you're using forward slashes (e.g. c:/idea/system).

o o m e o e o e e e
Uncomment this option if you want to customize path to IDE config folder. Make sure you're using forward slashes.

ﬂ ___

idea.config.path=C:/Android/.AndroidStudio/config

Hm mmm e e e e e e e e e e

Uncomment this option if you want to customize path to IDE system folder. Make sure you're using forward slashes.

,,,

idea.system.path=C:/Android/.AndroidStudio/system

fm mm o m e e e e e e

Uncomment this option if you want to customize path to user installed plugins folder. Make sure you're using forward slashes.
2

idea.plugins.path=${idea.config.path}/plugins

Fig. 7

Welcome to Android Studio — ®

Android _S_tudio

L% Start a new Android Studic project

Open an existing Android Studio project
¥ Check out project from Version Control =
I'..‘ Import project (Eclipse ADT, Gradle, etc.)

[¥ Import an Android code sample

Configure ~ Get Help +
Fig. 8

)

Now run the “SDK Manager”, whose entry can be found by clicking on the “Configure’
option. The “SDK Manager” will automatically select any components of the Android SDK that
need updating, as illustrated in Fig. 9. From this menu, additional system images for emulation
and API (Application Program Interface) packages for future Android versions can be added.

Click the “Install” option and allow the update process to complete.

@ Default Settings
(Q
Appearance & Behavior

Appearance
Menus and Toolbars
System Settings
Passwords
HTTP Proxy
Updates
Usage Statistics
Notifications
Quick Lists
Path Variables
Keymap
Editor
Plugins
Build, Execution, Deployment

Tools

Manager for the Android SDK and Tools used by Android Studio

& Behavior > S

Android SDK Location: C\Android\sdk

SDK Platforms | SDK Tools SDK Update Sites

Each Android SDK Platform package includes the
Android platform and sources pertaining to an APl level
by default. Once installed, Android Studio will
automatically check for updates. Check "show package
details" to display individual SDK components.

Name
Android 7.1.1 (Nougat)
[Android 7.0 (Nougat)
| Android 6.0 (Marshmallow)
7_I Android 5.1 (Lollipop)
|| Android 5.0 (Lollipop)
) Android 44W (Kitkat Wear)
|| Android 4.4 (KitKat)
[] Android 4.3 (Jelly Bean)
[Android 4.2 (Jelly Bean)
__| Android 4.1 (Jelly Bean)
|:I Android 4.0.3 (lceCreamSandwich)
["] Android 4.0 (IceCreamSandwich)
() Android 3.2 (Honeycomb)
__| Android 3.1 (Heneycomb)
[Android 3.0 (Honeycomb)
[Android 2.3.3 (Gingerbread)
() Android 2.3 (Gingerbread)
EI Android 2.2 (Froyo)
[} Android 2.1 (Eclair)

Launch Standalone SDK Manager

y Settings > Android SDK

Fig. 9

API Level

WW R R W S BT U W W R R WM W

Revision

Status

Installed

Update available
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed
Not installed

[J Show Package Details

Cancel App Help

For help with the installation of Android Studio, one may refer to Chapter 2 of the book

“Smartphone-Based Real-Time Digital Signal Processing”, which can be acquired from this link:

http://www.morganclaypool.com/doi/abs/10.2200/S00666ED1V01Y201508SPR013

10

http://www.morganclaypool.com/doi/abs/10.2200/S00666ED1V01Y201508SPR013

Section 2: Running C Codes as Android Apps

2.1 Programming Language

For creating Android apps, Java is used to create a shell for inserting and running C
codes. To allow C codes to be called by Java, the Java Native Interface (JNI) framework is
utilized. JNI acts as a translator that allows native code like C, C++ or assembly to be used when

the app engine is not written in Java.
2.2 Creating Java Shell

The creation of a Java shell starts by creating a GUI (Graphical User Interface) to link

data to a C code. The steps needed for creating a basic shell are listed below:

e Open Android Studio and select “Start a new Android Studio project” on the startup

splash screen, see Fig. 10.

* Welcome to Android Studio - X

o

Android Studio

£ Start a new Android Studio project

Open an existing Android Studio project
¥ Check out project from Version Control ~
i d Import project (Eclipse ADT, Gradle, etc)

4" Import an Android code sample

% Configure ~ Get Help ~

Fig. 10

e On the page that comes up, shown in Fig. 11, set the application name as TestApp and
the company domain as dsp.com. This is important as it affects the naming of the native

methods. Do not select “Include C++ Support”.

11

® Create New Project X

H New Project

Android Studio

Configure your new project

Application name: | TestApp
Company Domain: | dsp.com
Package name: com.dsp.testapp Edit

[] Include C++ Support

Project location: | CAAndroidiStudioProjects\TestApp

Fig. 11

In the next screen, select the platform as “Phone and Tablet” and set the minimum SDK
as “APl 15” as shown in Fig. 12.

@ Create New Project X

A Target Android Devices

Select the form factors your app will run on
Different platforms may require separate SDKs

Phone and Tablet

Minimum SDK | API 15: Android 4.0.3 (IceCreamSandwich)

Lower APl levels target mare devices, but have fewe
By targeting APl 15 and later, your app will run on a|
97.4% of the devices

that are active on the Google Play Store.

Help me choose
| Wear
Minimum SDK | APl 21: Android 5.0 (Lollipop)
dmw
Minimum SDK | APl 21: Android 5.0 (Lollipop)
|| Android Auto

D Glass

Minimum SDK | Glass Development Kit Preview (APl 19)

proviows | [NECEE | concet | [i

Fig. 12

12

e On the next screen, select “Empty Activity”.

e Leave the default naming and click “Finish”. The new app project is now created.
2.3 Creating GUI

Navigate to the Java directory of the app in the Project window and open the

“MainActivity.java” file under “com.dsp.helloworld”.

The entity that typically defines an Android app is called an “Activity”. Activities are
generally used to define user interface elements. An Android app has activities containing
various sections that users might interact with, such as the main app window. Activities can also
be used to construct and display other activities—such as if a settings window is needed.
Whenever an Android app is opened, the “onCreate” function or method is called. This method
can be regarded as the “main” (C terminology) of an activity. Other methods may also be called

during various portions of the app lifecycle as detailed at the following website:

http://developer.android.com/training/basics/activity-lifecycle/starting.html

In the default code created by the SDK, “setContentView(R.layout.activity_main)”
exhibits the GUI. The layout is described in the file “res/layout/activity_main.xml” in the
Package Explorer window. Open this file to preview the user interface. Layouts can be modified
using the WYSIWYG editor, which is built into Android Studio. For now, the basic GUI suits our

purposes with one minor modification noted below.

e Open the XML text of the layout, see Fig. 13, by double clicking on the “Hello world!”
text or by clicking on the activity_main.xml tab next to the Graphical Layout tab.
e Add the line android:id="@+id/Log" within the “<TextView/>" section on a new line and

save the changes. This gives a name to the TextView Ul element.

TextView in the GUI acts similar to a console window. It displays text. Additional text can
be appended to it. By adding the “android:id” directive to TextView, interfacing can be done

within the code.

13

http://developer.android.com/training/basics/activity-lifecycle/starting.html

o
Eile Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DHD ¢4 X0 QR ¢ > AGp-/ P &5 L d B 8L ? Qa
TestApp app sre main [Zres layout & activity_mainxml|
Android ~ @5 - 1| & activity_mainxml X | (€) MainActivityjava X Preview i 1P
E‘ app RelativeLayout |TextView EHE 8§ & [newss~ w5~ QPapptheme Slanguage~ &
- manifests <?xml wversion="1.0" encoding="utf-8"2> Vi =
<[] 3
“ java € <RelativeLayout xmlns:android="http://schemas.android.cong O @R ¥ 2
s xmlns:tools="http://schemas.android.com/tools" L)
g B android:id="@+id/activity main" g
§ drawable R . - {
android:layout_width="match_parent" 3
4 layout android:layout_height="match_parent"
[< activity_mainxml android:paddingBottom="g#dimen/activity vertical margin"
mipmap android:paddingleft="@dimen/activity horizontal margin" ¥ 6:00
android:paddingRight="@dimen/activity horizontal margin"
values - — — Tes‘lApp
- android:paddingTop="@dimen/activity vertical margin"
8 £ Gradle Scripts tools:context="com.dsp.testapp.MainActivity">
® Hello World?
<TextView
android:id="g+id/Log"
android:layout_width="wrap content”
android:layout height="wrap content"
android:text="Hello World!" />
</RelativeLayout>
A
m >
E >
&
: g
= £
3 z
a g
- : &
Design Text =
[Terminal ' 6: Andraid Monitar 0: Messages. ATODO Event Log [x] Gradle Console
] Gradle build finished in 30s 873ms (today 10:59 AM) 14:22 CRLF+ u &

Fig. 13

To allow Android Studio to be able to build C code, it is needed to configure settings
related to the NDK. In the project navigator, add a JNI folder by right clicking on the “app”
folder and navigating to “New->Folder->JNI” as shown in Fig. 14. Click “Finish” on the next

screen without editing the location of the folder.

Now right click on the newly created JNI folder, labelled “cpp”. Add a new file by going
to “New->file”. Name the file “Cmakelists.txt” and save it. Inside the file, add the following
code:

cmake_minimum_required(VERSION 3.4.1)

add_library(Algorithm SHARED
Algorithm.c

target_link_libraries(Algorithm

android
log)

14

TestApp app D build.gradle

15" Android v €= %~ 1° © activity mainxml X | (& app X | (C) MainActivityjava X
app, apply pluain: 'eom android annlication'
New € Java Class
Link C++ Project with Gradle Module
Y4 1 Android resource file
G Android resource directory
"~ CopyPath Ctri+Shift+c =l File
; Package stapp”
Copy as Plain Text]
ﬁi Paste Ctrl+v (8 C++ Class
Find in Path... Ctrl+Shift+F € C/C++ Source File
- Replace in Path... Ctrl+Shift+R = C/C++ Header File
e Gra Analyze) W Image Asset - "android.support.test.rur
O Refactor ” 'i' Vector Asset
o i) Singlet
Add to Favorites ’ Ing) S e
il Show Image Thumbnails ~ Ctrl+Shift+T Edit File Templates...
= Reformat Code Ctri+Alt+L W' AIDL *ultProguardFile ('proguard-
il Optimize Imports Ctrl+Alt+O 'W' Activity ’
O) 'ﬁ' Android Auto >

Local History
ill ¢ synchronize "app’
Show in Explorer
File Path
{i Compare With...
Open Module Settings
@ Create Gist...

1! Fragment » L.k Assets Folder

W Google ' JNI Folder

Ctrl+Alt+F12 .

1§ Other » | Java Folder Loso: e
Gk 1§ Service » Lk Java Resources Folder 5,
F4 1§ Ul Component » L.k RenderScript Folder
I Wear » Lk Res Folder
test i Widget >
} 1§ XML v

11l Resource Bundle

Fig. 14

Now open “local.properties” file in the project navigator. Add the following line of code
after the sdk definition. This is assuming that the ndk was stored in “C:\Android”. This points
Android Studio to the ndk directory.

ndk.dir=C\:\\Android\\ndk

After this step, open “build.gradle” belonging to the app module and add the following
code to the “android” section of the file. This tells Android Studio the location of the

“CMakelists.txt” file.

externalNativeBuild {
cmake {

path 'src/main/jni/CMakeLists.txt'

15

Now create a new C file by right-clicking on the “cpp” folder and navigating to “New-
>C/C++ Source File”. Select the type as “.c” and name the file “Algorithm”. After the file has

been created, enter the following code in the file:

#import <jni.h>

JNIEXPORT jstring JNICALL Java_com_dsp_testapp_MainActivity getString(JNIEnv *env, jobject thiz) {
return (*env)->NewStringUTF(env, "Hello World from C!");

}

After entering the code to be called from “MainActivity”, take the following steps:

e Add a TextView by importing it in “MainActivity” using the following code line:

import android.widget. TextView;

e Load the C functions by adding the following code in the public class definition:

static{
System.loadLibrary("Algorithm");

}
public native String getString();

e Inthe “onCreate” function, add the following lines to change the text of TextView to the

string received from the C code:

TextView log = (TextView)findViewByld(R.id.Log);
log.setText(getString());

e Next, sync the gradle. The CMakesLists.txt file should now appear under ‘External Build

Files’” in the project navigator.

As a result, the Android app accepts a string from a C code, and then prints it to the
main activity of the app and displays it to the user. The app can be run on the Android emulator
or an actual Android smartphone or tablet by clicking on the play button in the taskbar or

navigating to “Run-> Run app”. The output of the app should appear as shown in Fig. 15.

16

Hello World from C!

Fig. 15

Sample codes can also be obtained from the Google GitHub repository at the following
link:

https://github.com/googlesamples/android-ndk/tree/master/hello-jni

17

https://github.com/googlesamples/android-ndk/tree/master/hello-jni

Section 3: Converting MATLAB Codes to C

This section looks at deploying MATLAB codes on an Android device by using the
MATLAB Coder utility. A simple example is shown here indicating the generation of C code from
a MATLAB code which can be placed into “TestApp” covered in Section 2.

3.1 Creating a MATLAB Script

The MATLAB Coder requires a function of interest to be coded in MATLAB and also a
Test Bench script to be coded in MATLAB for verifying the outputs of the function and also to
see whether the function runs without any errors. The example shown here involves the

creation of the Fibonacci sequence.

e Let us name a function “fibonacci” in MATLAB. Enter the following code. Keep the order

of the parameters as noted below, otherwise the output will not appear correctly.

function fib_sequence = fibonacci(n,t1,t2)
fib_sequence = zeros(1,n);
fib_sequence(1) = t1;
fib_sequence(2) = t2;
fori=3:n
fib_sequence(i) = fib_sequence(i-1) + fib_sequence(i-2);.

end

e Next, create a test bench script to verify the output of the function. The test bench

script for the above function is displayed below:

clear all;
clc;
n=10;
t1=0;
t2=1;

fib_sequence = fibonacci(n, t1, t2);

This script allows generating the Fibonacci sequence for 10 numbers with the initial

elements being 0 and 1.
3.2 Generating C Code Using MATLAB Coder

After the function and the test bench script are created, an equivalent C code can be
generated by using the MATLAB Coder. The MATLAB Coder can be found under the APPS tab in

18

the MATLAB toolbar. Before starting the MATLAB Coder, make sure you are in the directory

which contains the function and the test bench script.

e In the MATLAB Coder splash screen, shown in Fig. 16, select the Numeric Conversion as
“Convert to single precision”. In the Generate code for function, browse the function
name. After you select both the options, the splash screen will display the location
where the MATLAB Coder will create the project. Click Next.

[] @& MATLAB Coder - fibonacci.prj

Review

MATLAB Coder

Numeric Conversion Convert to single precision ﬂ

Entry-Point Functions:

fibonacci 7 K

4+ Add Entry-Point Function

Project location: Users/abhisheksehgal/Documents/MATLAB/fibonacci.prj

Fig. 16

e In the screen that comes up, shown in Fig. 17, select the test bench and click
“Autodefine input Types”. Make sure the option “Does this code use global variables?”
is set to No. This will populate the splash screen with all the inputs to the function.

Verify all the three inputs are present, namely n, t1 and t2. Then, click Next.

19

e0e
B»» Define Input Types

MATLAB Coder - fibonacci.pr

€ Back

To convert MATLAB to C, you must define the type of each input for every entry
point function. Learn more

To automatically define input types, call fibonacci or enter a script that calls
fibonacci in the MATLAB prompt below:

»> Tibonacci_testbench ¥ - |I|

Autodefine Input Types

e X
fibonacci.m
n double(lx 1)
tl double(lx 1)
t2 double(l = 1)

Add global

Next ¥

Fig. 17

In the next splash screen, shown in Fig. 18, click “Check for Issues”. If any errors are

displayed at this point, rectify them. Click Next when the screen shows “No issues

detected”.

This step creates a MEX function from your MATLAB function(s),
invokes the MEX function, and reports issues that may be hard to
diagnose in the generated C code. Learn more

Enter code or select a script that exercises fibonacci:

>> fibonacci_testbench| v - I:l

Collect MATLAB line execution counts Check for Issues

¥ Noissues detected. View MATLAB line execution counts

@ 7] 7]

Generating trial code Building MEX Running test file with MEX

Fig. 18

20

e In the next screen that comes up, shown in Fig. 19, check to see that the options appear
as
o Build Type: Source Code

o Language: C

If these options are correct, then click “Generate”.

Build type: | |c] Source Code -
Language @ C C++

Hardware Board MATLAB Host Computer -
Device Generic MATLAB Host Computer

Device vendor Device type
Toolchain =~ Automatically locate an installed toolchain a
MureSettings lf.l Generate
Fig. 19

o After the C code is generated, it will display all the .c and .h files associated with the
generated C code as shown in Fig. 20. Click Next.
e The next page will display the project summary along with the locations of the

generated output.

21

D2 Generate Code GENERATE » VERIFY CODE ®@E

3| fibonacci 2 % Academic License for use in teaching, academic research, and meeting
3 * course requirements at degree granting institutions only. Not for |
r 4 * government, commercial, or other organizational use. |
5 * File: fibonacci.c |
B *
7 * MATLAB Coder version 1 3.2
8 # C/C++ source code generated on : 12-Feb-2017 22:18:35
9 *x/

11 /¥ Include Files %/
“rt_nonfinite.h"
"fibonacci.h"

= 14 #ir e "fibonacci_emxutil.h"
¥ Qutput Files 15 -
< fibonacci_emxAPl.c 16 /* Function Definitions */
c fibonacci_emxutil.c 17
¢ fibonacci_initialize.c 18 /*
¢ fibonacci_terminate.c 19 = Arguments : float n
2w = float t1
c main.c 21 = float t2
¢ rt_nonfinite.c 22 = emxArray_real32_T =fib_sequence
¢ rGetinf.c 23 % Return Type : void
¢ rtGetNaN.c 24 x/
h fibonacci_emxAPLh 25 void fibonacci{fleat n, float t1, float t2, emxArray_real32_T *fib_sequence)
h fibonacci_emxutil.h 26 {
h fibonacci_initialize.h
) T N Target Build Log | Variables
h fibonacci_terminate.h = .
. A Wariable Type Size
h fibonacci_types.h : 2
h fibonacci.h npu
b main.h n single 1x1
h rt_nonfinite.h tl single 1x1
h rtGetinf.h t2 single 1x1
h rtGetNaN.h Output
h !’leypes,h fib_sequence single 1 x :Inf
| index.html
. Local
rtw_proj.tmw
i sinale 1 2]
€ Back Next
Fig. 20

3.3 Running C Code as Android App
e First make the following changes to the “CMakelLists.txt” file.

cmake_minimum_required(VERSION 3.4.1)
file(GLOB C_FILES "*.c")

add_library(

Algorithm SHARED

Algorithm.c
${C_FILES}
)

target_link_libraries(
Algorithm
android

log)

e Then, navigate to the folder with the C source code and add all the .c and .h files by
copying and pasting them in the JNI folder, as shown in Fig. 21 and Fig. 22. Sync the
gradle and all the .c and .h files should appear in the cpp folder.

22

[

«

= | fibonacci

Home Share View
v p » codegen » lib » fibonacci
Name

3 Quick access

Date modified

examp\es 2/12/2017 10:18 PM

& OneDrive html 2/12/2017 10:18 PM
& This pC interface 2/12/2017 10:18 PM
| | fibonacci.c 2/12/2017 10:18 PM

& Network | | fibonacci_emxAPl.c 2/12/2017 10:18 PM
| | fibonacci_emxutil.c 2/12/2017 10:18 PM

| | fibonacci_initialize.c 2/12/2017 10:18 PM

|| fibonacci_terminate.c 2/12/2017 10:18 PM

: rt_nonfinite.c 2/12/2017 10:18 PM

| riGetinfc ' E scan with Windows Defender... 0:18 PM

| rtGetNaN.c 0:18 PM

|| fibonaccih Share with ? lo1a pm

| | fibonacci_er Send to > lo:18 PM

‘j fibonacci_er_ cut 0:18 PM

_-‘ fibonacci_in — 0:18 PM

L] fibonacci_le_ 0:18 PM

| fibonacci ty ~ Create shortcut 0:18 PM

| | rt_nonfinite, Delete 0:18 PM

.; rtGetinf.h Rename 0:18 PM

L fGetNaNh proerties 0:18 PM

| rtwiypes.h zrrzrzorr10:18 PM

“ buildinfo 2/12/2017 10:18 PM

~7 codelnfo 2/12/2017 10:18 PM

j gcGuiReport 2/12/2017 11:43 PM

| fibonacci_rtw.mk 2/12/2017 10:18 PM

; fibonacci_ref.rsp 2/12/2017 10:18 PM

[rtw_proj.tmw 2/12/2017 10:18 PM

27 items 18 items selected 28.5 KB

Type Size

File folder

File folder

File folder

C File

C File

C File

C File

C File

C File

C File

C File

H File

H File

H File

H File

H File

H File

H File

H File

H File

H File

Microsoft Access Tabl...
Microsoft Access Tabl...
Microsoft Access Tabl...
MK File

RSP File

TMW File

2 KB
4 KB
3 KB
1KB
1KB
3 KB
4 KB
3 KB
1KB
2 KB
1KB
1KB
1KB
2 KB
2 KB
1KB
1KB
5KB
6 KB

11 KB
173 KB
12 KB

0 KB
1KB

Fig. 21

23

B TestApp - [C:\Android\StudioProjects\TestApp] - [app] - ..\app\src\main\jni\Algorithm.c - Android Studio 2.2.3
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

Ol O + c ¢ A |[ERapp ~ P & [C m & tx L ?
TestApp app src main Jni
1® Captures
1§ Android v @ == | %~ I | [€ Algorithm.c x | [4jlocal.properties X (€) MainActivityjava * | [
g app
&
= manifests
* .
- java
o PP New vimport <jni.h>
= € Algorithm.c
E Zres NIEXPORT jstring JNICALL Java com dsp testapp M
,E‘,,‘\ & Gradle Scripts e return (*env)->NewStringUTF(env, "Hello Worl¢

Copy Path
Copy as Plain Text
Copy Reference

build.gradle (Proje
= build.gradle (Mod
il gradle-wrapper.pr,
=| proguard-rules.pr¢ Find Usages
Find in Path...
Replace in Path...

il gradle.properties
& settings.gradle (Pr
il local.properties (5| Analyze
Ak External Build Files

=| CMakelists.txt (ap

Refactor
Add to Favorites

Ctrl+Alt+Shift+C

Alt+F7
Ctrl+Shift+F
Ctrl+Shift+R

Show Image Thumbnails ~ Ctrl+Shift+T

Reformat Code
Optimize Imports
Local History

(45 Synchronize ‘jni’
Show in Explorer
File Path

|T_| Compare With...

id @ Create Gist...

Android Monitor

E Google Pixel Anc

g if& logcat Monitors +*
&
2|0 = 02-23 18:58
2 i
& & 02-23 18:58
" B oo isss

%) 02-23 18:58
E 02-23 18:59
"g @ 02-23 19:00
fhi =
A ? ‘—’5

»
' 6: Android Monitor 0: Messages [Terminal

[Ppaste from clipboard

Ctrl+Alt+L
Ctrl+Alt+O

Ctrl+Alt+F12
Ctrl+D

$33.703 12358-12358/? I/art: Late-enabling -Xcheck:jni

$33.735 12358-12366/? I/art: Debugger is no longer active

$33.735 12358-12366/? I/art: Starting a blocking GC Instrumentation

$37.851 12358-12366/com.dsp.testapp W/art: Suspending all threads took: 27.759%ms
:20.481 12358-12366/com.dsp.testapp W/art: Suspending all threads took: 23.84%ms
$32.177 12358-12366/com.dsp.testapp W/art: Suspending all threads took: 27.085ms

P 4: Run 2T0DO

Fig. 22

In the “Algorithm.c” file, add the following directives. These directives are used to call
the MATLAB Coder functions in the C code.

#include "rt_nonfinite.h"
#include "fibonacci.h"

#include "fibonacci_initialize.h"
#include "fibonacci_terminate.h"
#include "fibonacci_emxAPI.h"

#include <android/log.h>

24

e In the getString function in “Algorithm.c”, add the following code before the return
function. Since MATLAB has its own data types, this code allows memory to be allocated
and then de-allocated when data types have finished their purpose.

/I Inputs to the MATLAB Function
float n = 10;
float t1 = 0;
float t2 = 1;

/I MATLAB array data type definition

emxArray_real32_T *fib_sequence;

/I Allocating memory to the MATLAB array
/I 2 represents the number of dimensions

emxInitArray_real32_T(&fib_sequence, 2);

/I MATLAB function call
/I Inputs are entered first in order, followed by the outputs

fibonacci(n, t1, t2, fib_sequence);

/I Printing the elements from the Fibonacci Sequence
int i;
for (i=0;i<n;it+){

__android_log_print(ANDROID_LOG_DEBUG, “Fibonacci Output”, "Fibonacci Sequence %d - %0.0f\n",i +
1, fib_sequence->datali]);

}

/I Deallocate the MATLAB data array

emxDestroyArray_real32_T(fib_sequence);

e Run the app. When the button is pressed in the app, the console will be populated with

the Fibonacci sequence as shown in Fig. 23.

25

Br L

Ci T 5 adb shell am start -n "com.dsp.testapp/com.dsp.testapp.MainActivity" -a android.inten
H 3 Client not ready yet..Waiting for process to come online

Connected to process 30161 on device google-pixel-FA6BX0301921

] “__-a W/art: Before Android 4.1, method android.

graphics.PorterDuffColorFilter android.suppor|

E D/Fibonacci Ouput: Fibonacci Sequence 1 - 0
[T D/Fibonacci Ouput: Fibonacci Sequence 2 - 1
'E' D/Fibonacci Ouput: Fibonacci Sequence 3 - 1
E X = D/Fibonacci Ouput: Fibonacci Sequence 4 - 2
= ? o D/Fibonacci Ouput: Fibonacci Sequence 5 - 3
% : D/Fibonacci Ouput: Fibonacci Sequence & - 5
.g. D/Fibonacci Ouput: Fibonacci Sequence 7 - 8
D/Fibonacci Ouput: Fibonacci Sequence 8§ - 13 h
" D/Fibonacci Ouput: Fibonacci Sequence 9 - 21 >
£ D/Fibonacci Ouput: Fibonacci Sequence 10 - 34 g.-
% I/Adreno: QUALCOMM build : abb4970, If5818605d9 3
N Build Date : 10/12/16 £
x OpenGL ES Shader Compiler Version: XE031.09.00.04 &
Tamal Danmmaln . wnan
i 6: Android Monitor =|0: Messages [@|Terminal | @ 4:Run “2TODO [E]Gradle Console 4 Event Log
1 Gradle build finished in 14s 586ms (a minute ago) 13:42 CRLF+ UTF-8 Context: Algorithm-Debug-armé64-v8a + &

Fig. 23

This simple example showcases how to generate a C code from a MATLAB code. More
details of the conversion from MATLAB to C codes are provided in the book “Anywhere-
Anytime Signals and Systems Laboratory: From MATLAB to Smartphones”, which can be

acquired from this link:

http://www.morganclaypool.com/doi/abs/10.2200/S00727ED1V01Y201608SPR014

26

http://www.morganclaypool.com/doi/abs/10.2200/S00727ED1V01Y201608SPR014

Section 4: 1/O Hardware Dependencies

This section discusses the i/o hardware dependency issues associated with different
smartphones or mobile devices and a solution to cope with them.

4.1 Using Hardware Preferred Settings

The microphone of a particular smartphone is designed to work with the lowest latency
at a certain sampling frequency and with a specific input frame size. To achieve low latency
apps, such as noise classification and speech enhancement, the preferred settings by the
manufacturer need to be used. Using non-preferred i/o settings increases the i/o latency due to
resampling or data rearrangement. Furthermore, care must be taken by not choosing the frame
size to be too small as this can lead to frames getting skipped due to a lack of adequate

processing time.

The following link provides a listing of optimum frame sizes and sampling frequency for

different smartphones and the i/o delays associated with them:

http://superpowered.com/latency

Generally, the preferred sampling frequency for Android devices is 48 kHz and the minimum

input frame size or length varies from device to device.
4.2 Maintaining Microphone Consistency

Since different microphones are used in different smartphones, the input frequency
characteristics may vary from smartphone to smartphone. For example, some manufacturers
favor flat response microphones and some favor microphones with low frequency emphasis for
speech processing. Other factors that may affect sound data captured by a smartphone is the
location of the smartphone microphone from which audio data are captured, and whether a

smartphone cover is placed around the microphone or not.

The difference in microphones and i/o hardware leads to inconsistency among data
collected from different smartphones, which would affect the outcome of signal processing
algorithms. As a solution, the training and testing of a signal processing algorithm ought to be
carried out by the microphone of the same smartphone to decouple the effect of different

microphone characteristics and the performance of the algorithm.

27

http://superpowered.com/latency

Section 5: Real-Time I/O Implementation

For real-time low-latency implementation on Android devices, it is advisable to use
Superpowered utility, which is an audio API developed for mobile devices. On Android devices,
Superpowered uses OpenSL to allow processing of audio data in a low-latency manner. More

information on these APIs are available at the following links:

e Superpowered: http://superpowered.com

e OpenSLES: https://www.khronos.org/opensles/

In what follows, a simple audio I/O path is implemented via Superpowered and it is

shown how to implement an algorithm as an Android app.
5.1 Creating Audio I/O App

e Go to http://superpowered.com and download the SuperpoweredSDK. Store it in
“C:\Android”.

e Open Android Studio. In the splash screen, select “Open an existing Android Studio

Project”.
e Navigate to the SuperpoweredSDK folder. In the “Android” subfolder, open the

“FrequencyDomain” example in Android Studio, as shown in Fig. 24.

¥ Open File or Project x
ame Ex O Hide path
ChAndroid\SuperpoweredSDIM\Android\FrequencyDomain

3
Android
SuperpoweredSDK

Android

CrossExample

HLSExample

SuperpoweredUSBExample
docs
Superpowered
SuperpoweredCrossExample
SuperpoweredFrequencies
SuperpoweredFrequencyDomain
SuperpoweredHLSExample
SuperpoweredOfflineProcessingExample
SuperpoweredPerformance

m ‘ Cancel | | Help |

Fig. 24

28

http://superpowered.com/
https://www.khronos.org/opensles/
http://superpowered.com/

If the project shows errors on opening, that may be due to an incorrect path to the
Superpowered directory. Go to “local.properties” of the project in the project navigator
window and change the path of the Superpowered directory to
“C:\Android\SuperpoweredSDK\Superpowered” and sync the gradle again.
Open “MainActivity”. In that, the JNI native function “FrequencyDomain” can be seen,
which is the C++ function that calls the function to start audio I/O with the supplied
sampling rate and input buffer size. As it gets called inside the “onCreate” method, the
audio path is created as soon as the app is loaded.
Now go to the “FrequencyDomain.cpp” file inside “cpp->jni” in the project navigator. In
that two methods can be seen:
o FrequencyDomain: This is the JNI method which is called from “MainActivity”.
This function is used to create a Superpowered Audio I/O session.
o audioProcessing: This is the callback linked with the Audio I/O session which is
repeatedly called when the input data are available for processing.
To build a simple unprocessed audio I/O path, let us add a simple C code to process the
incoming audio. Right-Click on the JNI folder and go to “New->C/C++ Source File”. Enter
the name of the file as “File”, set the type as “.c” and click on “create an associated
header”. The files may not appear in the Project Navigator. Add the following codes to
the “CMakelists.txt” file.

o Add the following line of code:
file(GLOB C_FILES "*.c")

o Inthe “add_library” section, add the following line of code:
${C_FILES}

After this, when you sync the gradle, the two files should appear in the “jni”

folder.

In the “FIR.c” file, add the following code:

void FIR(float* input, float* output, int nSamples) {
inti=0;

static float endSamples[2] = {0,0};

for (i = nSamples - 1;i> 1; i--) {
output[i] = (input[i] + input[i - 1] + input[i - 2])/3;

29

And in the FIR.h file, add the following code:

e After the algorithm has been coded in C, it can be called in the main file. In

“FrequencyDomain.cpp”, replace the existing code with the following code:

In the above code, the SuperpoweredAudiolO session is initialized and then in
“audioProcessing” the audio data are processed. The audio received is interleaved and it
is deinterleaved before processing. After the processing is complete, the audio is
interleaved again and stored back in the original buffer “audiolnputOutput”. When true
is returned in the method, it sends the buffer to the speaker.

You can now run the app and listen to the audio path. Similar to “FIR.c”, one can add
other audio processing algorithms to process audio data.

31

