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Abstract: Neutrosophic set has the ability to handle uncertain, incomplete, inconsistent, indeterminate 

information in a more accurate way. In this paper, we proposed a neutrosophic recommender system to predict 

the diseases based on neutrosophic set which includes single-criterion neutrosophic recommender system (SC-

NRS) and multi-criterion neutrosophic recommender system (MC-NRS). Further, we investigated some 

algebraic operations of neutrosophic recommender system such as union, complement, intersection, probabilistic 

sum, bold sum, bold intersection, bounded difference, symmetric difference, convex linear sum of min and max 

operators, Cartesian product, associativity, commutativity and distributive. Based on these operations, we 

studied the algebraic structures such as lattices, Kleen algebra, de Morgan algebra, Brouwerian algebra, BCK 

algebra, Stone algebra and MV algebra. In addition, we introduced several types of similarity measures based on 

these algebraic operations and studied some of their theoretic properties. Moreover, we accomplished a 

prediction formula using the proposed algebraic similarity measure. We also proposed a new algorithm for 

medical diagnosis based on neutrosophic recommender system. Finally to check the validity of the proposed 

methodology, we made experiments on the datasets Heart, RHC, Breast cancer, Diabetes and DMD. At the end, 
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we presented the MSE and computational time by comparing the proposed algorithm with the relevant ones such 

as ICSM, DSM, CARE, CFMD, as well as other variants namely Variant 67, Variant 69, and Varian 71 both in 

tabular and graphical form to analyze the efficiency and accuracy. Finally we analyzed the strength of all 8 

algorithms by ANOVA statistical tool. 

Keywords: Medical diagnosis, neutrosophic set, neutrosophic recommender system, non-linear regression 

model. 

 

1. Introduction 

      Medical diagnosis is process of investigation of a person’s symptoms on the basis of diseases. From modern medical 

technology, a large amount of information available to medical experts due to whom medical diagnosis contains 

uncertain, inconsistent, indeterminate information and this information are mandatory in medical diagnosis. A 

characterized relationship between a symptom and a disease is usually based on these uncertain, inconsistent information 

which leads to us for decision making in a medical diagnosis. Mostly diagnosis problems have pattern recognition on the 

basis of which medical experts make their decision. Medical diagnosis has successful practical applications in several 

areas such as telemedicine, space medicine and rescue services etc. where access of human means of diagnosis is a 

difficult task. Thus, starting from the early time of Artificial Intelligence, medical diagnosis has got full attention from 

both computer science and computer applicable mathematics research society. In this regard, Kononenko [27] in 2001 

proposed a process of medical diagnosis which is based on the probability or risk of a person who has a particular state of 

health in a specific time frame. This type of medical diagnosis is advantageous to reduce health problems such as bowel 

cancer, osteoporosis but on the other hand it can increase the ratio to the risk of other autoimmune problems and diseases. 

Davis et al., [10] conducted the study to predict individual diseases risk which is based on medical history. Their 

methodology depends on patient’s clinical history to predict the possible risk of the disease. For this purpose, they used 

collaborative filtering and clustering algorithms to predict patient diseases based on their clinical history. In 1976, 

Sanchez [40] applied successfully methods of resolution of the fuzzy relations to the medical diagnosis problems which 

was further extended by De et al., [12] in 2001. This approach is highly relied on defuzzification method through which 

the most suitable disease can be determined. Treasure [52] in 2011 studied diagnosis and risk management in care. In the 

same year Kala et al. [24] carried out the research on diagnosis of breast cancer using modular evolutionary neural 



 
 
 
 

networks.  Johnson et al. [23] discussed expertise and error in diagnostic problems in 1981. Mahdavi [29] in 2012 used 

recommender system for medial recognition and treatment. Parthiban and Subramanian [34] used CANFIS and genetic 

algorithm to construct a prediction system for heart disease in 2008. Similarly, Tan et al. [51] in 2003 applied 

evolutionary computing for knowledge discovery in medical diagnosis. Some theories on medical diagnosis and their 

applications can be referenced in [8, 11, 22, 30, 32, 33, 39, 41, 48, 49, 50, 56]. 

      A medical diagnostic problem often contains a huge amount of uncertain, inconsistent, incomplete, indeterminate 

data which is very difficult in retrieving. Neutrosophic Set proposed by Smarandache [42] in 1998 can handle this type of 

information very accurately. A neutrosophic set can be characterized independently by a truth membership function, 

indeterminate membership function and false membership function respectively. Recently, Ye [59] applied improved 

cosine similarity measures of simplified neutrosophic set (subclass of neutrosophic set) in medical diagnosis. In other 

papers [58, 59, 60, 61, 62, 63, 64], Ye et al. applied neutrosophic sets to medical diagnosis problem. Their approaches 

were based on dice similarity, distance-based similarity, vector similarity, tangent similarity measures and trapezoidal 

numbers of neutrosophic sets. In 2014, Broumi and Deli [5] studied the applicability of neutrosophic refined sets through 

correlation in medical diagnosis problem. Kharal [26] extended the approach of Sanchez to neutrosophic set. Further 

Broumi and Smarandache [6] in 2015 took the approach of extended Hausdorff distance and similarity measure of 

refined neutrosophic sets with possible applications in medical diagnosis. Pramanik and Mondal [35] in 2015 studied 

rough neutrosophic sets with its applications in medical diagnosis. Guo et al. [18] studied neutrosophic sets in lung 

segmentation for image analysis in thoracic computed tomography in 2013. Some more applications of neutrosophic set 

in medical diagnosis can be referenced in [1, 7, 65, 66].  

    The previous literature shows that the focusing aspect is to determine the relationship of patients and diseases by 

considering symptoms and diseases as well as patients and symptoms in [26]. But this is not the case which always true 

as these are sometimes missing. Ignoring the history of patient diagnosis is another drawback of the previous approaches. 

The previous work depends on deneutrosophication process, similarity measures [59, 60, 61, 62, 63], correlation 

coefficients [5, 20, 21, 58], distance measure [6] etc. However, mathematical properties such as distance measure [6], 

similarity measures [59, 60, 61, 62, 63] etc. were discussed in the previous work but it was not explained why these 

operations have been taken in the medical diagnosis problem. The previous discussed neutrosophic methods did not 

provided accurate information in medical diagnosis. 



 
 
 
 

    From the above discussion, it is clear that there should be an appropriate methodology which can handle these pointed 

out issues in medical diagnosis. The purpose of this article is to introduce a new hybrid structure which based on the 

neutrosophic set and recommender systems. Recommender systems are basically decision support systems which provide 

a recommendation by decreasing information overload. Yager [57] in 2003 derived the distinction between the 

recommender system and targeted marketing. Recommender systems are attractive computer-based techniques which are 

highly applicable in several interdisciplinary fields which provide predictive rating or preference to select the most 

suitable item among others. Park et. al. [67] in 2012 conducted a survey on the applicability of Recommender Systems in 

books, images, documents, music, movies, shopping, and TV programs. Ghazanfar and Prügel-Bennett [17] derived a 

hybrid recommendation algorithm for gray-sheep users to reduce the error rate by maintaining computational 

performance. Davis et al. [10] developed a Recommendation Engine which uses patient medical history to predict future 

diseases risk. Hassan and Syed [22] build a combined filtering technique which evaluated the patient risk by comparing 

new and historical records and patient demographics. Duan et. al. [11] in 2011 discussed the plans of nursing care in a 

healthcare Recommender System. A huge amount of literature of the applications of recommender systems in medical 

diagnosis can be seen in [9, 11, 29, 43, 44, 45, 46, 47]. Therefore, recommender systems can be used successfully to 

predict patient diseases on historic records. 

Motivated from the previous issues and the applications of neutrosophic sets in medical diagnosis, we observe that the 

neutrosophic recommender systems (NRS) could successfully handle all the pointed out issues of previous work. We 

focused the following areas in this article. 

 First, we proposed the single-criterion neutrosophic recommender system (SC-NRS) and multi-criterion 

neutrosophic recommender system (MC-NRS). 

 We investigated some algebraic operations of neutrosophic recommender system NRS such as union, 

complement, intersection, probabilistic sum, bold sum, bold intersection, bounded difference, symmetric 

difference, convex linear sum of min and max operators, and the Cartesian product. We gave explanation of 

these algebraic properties with illustrative examples. 

 Moreover, we discussed the algebraic properties such associativity, commutativity and distributive of 

neutrosophic recommender system NRS and we discussed some theoretic properties of these operations and 

explain them with illustrative examples. 



 
 
 
 

 In addition, we studied the algebraic structures such as lattices, Kleen algebra, de Morgan algebra, Brouwerian 

algebra, BCK algebra, Stone algebra and MV algebra. We also studied some theoretic properties of algebraic 

structures and explain them with illustrative examples. 

 Further, we introduced several types of similarity measures of single-criteria neutrosophic system (SC-NRS) and 

multi-criteria neutrosophic recommender system (MC-NRS). These similarity measures based on the algebraic 

operations discussed in section 2.3. We also studied some theoretic properties of these similarity measures and 

explain them with illustrative examples. 

 We also accomplished the formula on the basis of similarity measure for prediction. 

 For medical diagnosis, we proposed a new algorithm based on neutrosophic recommender system. 

 To check the validity of the proposed methodology, we made experiments on the datasets Heart, RHC, Breast 

cancer, Diabetes and DMD. 

 Finally, we presented the MSE and computational time (Sec.) by comparing the proposed algorithm with ICSM, 

DSM, CARE, CFMD, Variant 67, Variant 69, and Varian 71 both in tabular and graphical form to analyze the 

efficiency and accuracy. We also analyzed the strength of all 8 algorithms by ANOVA test. 

From the contributions and disadvantages of the previous research work, Neutrosophic Recommender System (NRS) has 

the following novelty and significance. 

 The notions of Neutrosophic Recommender System (NRS) are completely distinct in the sense that 

Neutrosophic Recommender System (NRS) shares both the integrated features and characteristics of 

Neutrosophic Set (NS) and Recommender System (RS). This hybridization can be clearly seen in single-

criterion neutrosophic recommender system (SC-NRS) and multi-criterion neutrosophic recommender system 

(MC-NRS). Both the (SC-NRS) and (MC-NRS) became the foundation of the neutrosophic collaborative 

filtering method (NCF). Moreover, Ye [59, 60, 61, 62], Broumi and Deli [5], Kharal [26], Broumi and 

Smarandache [6] and Pramanik and Mondal [35] used distance-based similarity measures to calculate the 

relationship of the patients and the diseases. But we used neutrosophic similarity measures based on algebraic 

operations to find out this relationship. 



 
 
 
 

 Our proposed hybrid structure can efficiently handle the limitations of neutrosophic set NS concerning this 

missing information and historic diagnosis of the medical patient. It also covers the issues of crisp and training 

dataset in a Recommender System (NRS).  

 The other significance of Neutrosophic Recommender System (NRS) is its generalization to all other currently 

existing Hybrid Recommender Systems. This novelty of Neutrosophic Recommender System (NRS) could 

improve accuracy of the related neutrosophic methods for medical diagnosis by a hybrid method with 

recommender systems. 

 The significance and importance of the proposed work can be seen from both the theoretical and practical 

aspects. It can increase the accuracy of the algorithms of neutrosophic set (NS) as well as recommender system 

(RS). The proposed hybrid structure (NRS) based on a strong mathematical foundation which lacks in the 

previous work. On the other hand, this work can contribute to medical diagnosis as well as some other extended 

areas of relevant applications. 

 The significance can also be seen in the construction of several types of algebras of neutrosophic recommender 

system studied in section 3.3. 

 The novelty of neutrosophic recommender systems can also be seen in the similarity measures. These similarity 

measures are mainly based on the algebraic operations discussed in section 3.2. 

 The significance of the proposed algorithm can be seen over the traditional ones on different types of medical 

datasets. 

2. Background 

In this section, we discussed the literature review about medical diagnosis, neutrosophic set; medical diagnosis based on 

neutrosophic set, recommender system and studied some of their basic properties which will be used in our later pursuit. 

2.1 Literature Review 

     To handle uncertain, incomplete, vague, inconsistent, indeterminate information, Smarandache [42] initiated the 

concept of Neutrosophic sets in 1998 which is basically inspired by Neutrosophic philosophy. A neutrosophic set has 

three independent components association (truth membership) degree, non-association (false membership) degree and 

indeterminacy degree. The potential applications of neutrosophic sets can be seen in decision making theory [13, 37, 65, 

66], relational database [54, 55], pattern recognition [2], image analysis [28], signal processing [3] and so on. In medical 



 
 
 
 

diagnosis, the neutrosophic sets also played a significant role. Broumi and Deli [5] showed the applicability of 

neutrosophic refined sets through correlation in medical diagnosis. Recently, Ye and Fu [62] studied multi-period 

medical diagnosis problems by applying neutrosophic sets. Applicability of neutrosophic set in medical AI has been 

discussed by Ansari et al. [4] in 2011. In some more paper, Ye et al. [59, 60, 61, 63, 64] applied neutrosophic sets to 

medical diagnosis problem. Further, (Kandasamy and Smarandache [25] in 2004 applied neutrosophic relational maps to 

HIV/AIDS. Gaber et al. [15] in 2015 discussed thermogram breast cancer detection based on neutrosophic set. Similarly, 

Kharal [26], Broumi and Smarandache [6] and Pramanik and Mondal [35] used distance-based similarity measures to 

calculate the relationship of the patients and the diseases. Guerram et al. [19] applied neutrosophic cognitive maps to 

viral infection. Pramanik and Mondal [35] studied rough neutrosophic sets with its applications in medical diagnosis. 

Guo et al. [18] in 2013 studied neutrosophic sets in lung segmentation for image analysis in thoracic computed 

tomography. In 2013, Mohan et al. [31] introduced a new filtering technique based on neutrosophic set for MRI de-

noising. Some theory of neutrosophic set in medical diagnosis can be referenced in [1, 7, 65, 66]. Medical diagnosis of 

neutrosophic set can be explained in Example 1 by using distance-based similarity measures. 

                Table 1. Relation between patients and the symptoms- S  

 Temperature (s1) Cough (s2) Throat pain 
(s3) 

Headache (s4) Body pain (s5) 

p1 <(0.8, 0.6, 0.5), 
(0.3, 0.2, 0.1), 
(0.4, 0.2, 0.1)> 

<(0.5, 0.4, 0.3), 
(0.4, 0.4, 0.3), 
(0.6, 0.3, 0.4)> 

<(0.2, 0.1, 0.0), 
(0.3, 0.2, 0.2), 
(0.8, 0.7, 0.7)> 

<(0.7, 0.6, 0.5), 
(0.3, 0.2, 0.1), 
(0.4, 0.3, 0.2)> 

<(0.4,0.3, 0.2), 
(0.6, 0.5, 0.5), 
(0.6, 0.4, 0.4)> 

p2 <(0.5, 0.4, 0.3), 
(0.3, 0.3, 0.2), 
(0.5, 0.4, 0.4)> 

<(0.9, 0.8, 0.7), 
(0.2, 0.1, 0.1), 
(0.2, 0.2, 0.1)> 

<(0.6, 0.5, 0.4), 
(0.3, 0.2, 0.2), 
(0.4, 0.3, 0.3)> 

<(0.6, 0.4, 0.3), 
(0.3, 0.1, 0.1), 
(0.7, 0.7, 0.3)> 

<(0.8,0.7, 0.5), 
(0.4, 0.3, 0.1), 
(0.3, 0.2, 0.1)> 

p3 <(0.2, 0.1, 0.1), 
(0.3, 0.2, 0.2), 
(0.8, 0.7, 0.6)> 

<(0.3, 0.2, 0.2), 
(0.4, 0.2, 0.2), 
(0.7, 0.6, 0.5)> 

<(0.8, 0.8, 0.7), 
(0.2, 0.2, 0.2), 
(0.1, 0.1, 0.0)> 

<(0.3, 0.2, 0.2), 
(0.3, 0.3, 0.3), 
(0.7, 0.6, 0.6) 

<(0.4,0.4, 0.3), 
(0.4, 0.3, 0.2), 
(0.7, 0.7, 0.5)> 

p4 <(0.5, 0.5, 0.4), 
(0.3, 0.2, 0.2), 
(0.4, 0.4, 0.3)> 

<(0.4,0.3, 0.1), 
(0.4, 0.3, 0.2), 
(0.7, 0.5, 0.3)> 

<(0.2,0.1, 0.0), 
(0.4, 0.3, 0.3), 
(0.7, 0.7, 0.6)> 

<(0.6, 0.5, 0.3), 
(0.2, 0.2, 0.1), 
(0.6, 0.4, 0.3)> 

<(0.5,0.4, 0.4), 
(0.3, 0.3, 0.2), 
(0.6, 0.5, 0.4)> 

 

            Example 1: Consider the dataset from [60]. Let  1 2 3 4, , ,p p p p  be a set of four patients, D  {Viral 

fever, Tuberculosis, Typhoid, Throat disease}, and S  {Temperature, Cough, Throat pain, Headache, Body pain} be a 

set of symptoms respectively which are illustrated in Table 1 and Table 2. The relationship between patients and 



 
 
 
 

symptoms is shown in Table 1, while Table 2 expressed the relationship of symptoms and diseases. The values obtained 

in Table 3 are the largest similarity measure which indicates the proper diagnose of the patient. 

              Table 2.  Relation between the symptoms and the diseases- SD  

 Temperature 
(s1) 

Cough (s2) Throat pain 
(s3) 

Headache 
(s4) 

Body pain 
(s5) 

Viral fever (d1) <0.8, 0.1, 0.1> <0.2,0.7,0.1> <0.3, 0.5, 0.2> (0.5, 0.3, 0.2) <0.5,0.4,0.1> 
Tuberculosis (d2) <0.2, 0.7, 0.1> <0.9,0.0,0.1> <0.7, 0.2, 0.1> (0.6, 0.3, 0.1) <0.7,0.2,0.1> 

Typhoid (d3) <0.5, 0.3, 0.2> <0.3,0.5,0.2> <0.2, 0.7, 0.1> (0.2, 0.6, 0.2) <0.4,0.4,0.2> 
Throat 

disease(d4) 
<0.1, 0.7, 0.2> <0.3,0.6,0.1> <0.8, 0.1, 0.1> (0.1, 0.8, 0.1) <0.1,0.8,0.1> 

 

Table 3. The relation between the patients and the diseases by distance-based similarity measure 

 Viral fever (d1) Tuberculosis (d2) Typhoid (d3) Throat disease(d4) 

p1 0.7358 0.6101 0.7079 0.5815 
p2 0.6884 0.7582 0.6934 0.5964 

p3 0.6159 0.6141 0.6620 0.6294 

p4 0.7199 0.6167 0.7215 0.5672 

 

2.2 Medical Diagnosis 

Definition 1 [27]:  Let  1 2, ,..., np p p ,  1 2, ,..., ms s s   and  1 2, ,..., kD d d d  be three lists of patients, 

symptoms and diseases, respectively such that , ,n m k N   be the numbers of patients, symptoms and diseases 

respectively. Let   , : 1,2,.., ; 1,2,...,i jp s i n j m
       be the set the relation between patients and 

symptoms where  ,i jp s is the level of the patient ip  who acquires the symptom js . The value of 

 ,i jp s  is either numeric number or a neutrosophic number which depends on the proposed domain of the 

problem. Similarly,   , : 1,2,..,m; 1,2,..., kD
D i js d i j

      be the set which represents the relation 

between the symptoms and the diseases where  ,D
i js d  reveals the possibility of the symptom is leads to the 

disease jd . The purpose of the medical diagnosis is to determine the relationship between the patients and the diseases 

and this can be described as   , : 1, 2,..,m; 1,2,...,kD
D i jp d i j

       where the value of 



 
 
 
 

 ,D
i jp d is either 0 or 1 which demonstrate that the patient ip  acquired the disease jd  or not. Mathematically the 

problem of medical diagnosis is an implication operator given by the map , D D     . 

2.3 Neutrosophic Set NS and Simplified Neutrosophic Set SNS 

Definition 2 [42]: Let X  be a non-empty set and x X . A neutrosophic set A in X  is characterized by a truth 

membership function AT , an indeterminacy membership function AI , and a falsehood membership function AF . Here 

 AT x ,  AI x  and  AF x  are real standard or non-standard subsets of  0 ,1     such that  

, , : 0 ,1A A AT I F X      .  There is no restriction on the sum of    ,A AT x I x  and  AF x , so, 

     0 3A A AT x I x F x     . From philosophical point view, the neutrosophic set takes the value from real 

standard or non-standard subsets of 0 ,1    . Thus it is necessary to take the interval  0,1  instead of 0 ,1    for 

technical applications because it is difficult to use 0 ,1     in the real life applications such as engineering and 

scientific problems. 

If the functions  AT x ,  AI x  and  AF x  are singleton subinterval/subsets of the real standard such that with

           : X 0,1 , I : X 0,1 , : 0,1A A AT x x F x X   . Then a simplification of the neutrosophic set Ais 

denoted by   

       , , , :A A AA x T x I x F x x X                            (1) 

with      0 3A A AT x I x F x    . It is a subclass of neutrosophic set and called simplified neutrosophic set. A 

simplified neutrosophic set SNS [59] contains the concept of interval neutrosophic set INS [54], and single valued 

neutrosophic set SVNS [55]. In our paper, we will use simplified neutrosophic set. 

Some operations of NS are defined as follows: For two NS    

           1 1 1 1 2 2 2 2{ ; ; ; | x X}  and A { ; ; ; | x X}A x T x I x F x x T x I x F x     



 
 
 
 

1. 1 2A A   if and only if            1 2 1 2 1 2; ;T x T x I x I x F x F x    ; 

2. 1 2A A   if and only if            1 2 1 2 1 2; ;T x T x I x I x F x F x    ; 

3.      1 1 1 1{ ; ; ; | x X}cA x F x I x T x  ; 

4.        1 2 1 2 1 2 1 2{ ; min{T (x);T };max{I ; I };max{F (x);F } | x X}A A x x x x x   ; 

5.        1 2 1 2 1 2 1 2{ ;max{T (x);T }; min{I ; I }; min{F (x);F } | x X}A A x x x x x   . 

2.3.1:  Neutrosophication and Deneutrosophication Process 

  Definition 3 [54]: Neutrosophication   

The main purpose of neutrosophication is to map input variables into neutrosophic input sets. If x  is a crisp input, then                                                                                    

                                                        

1
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                                                      
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                                 (3a) 

Where x X  and j ka x a   for truth membership, j kb x b   for indeterminacy membership and j kc x c   

for falsehood membership respectively and , 1, 2,3,4j k  . 

Definition 4 [54]: Deneutrosophication 

This step is similar to defuzzification of George and Bo [16] in 1995. This step involves in the following two stages:  

Stage 1: Synthesization 

In this stage, we transform a neutrosophic set kH  in to fuzzy set  by the following function: 

                                       , , : 0,1 0,1 0,1 0,1k k kH H H
f T y I y F y                                 (1b) 

Here f is defined by  

                              
4 2

k k

k
H H

B H

F y I y
T y T y                                                        (2b) 

Where 0 , , 1     such that 1     . 

Stage 2: Typical neutrosophic value 

In this stage, we can calculate a typical deneutrosophicated value   den T y  by the centroid or center of gravity 

method which is given below: 



 
 
 
 

                                           
 

 

b

a
b

a

T y ydy
den T y

T y dy











                                                                    (3b) 

2.4 Recommender Systems RS 

Definition 5 [38]:  Single-criteria recommender Systems (SC-RS) 

Suppose U is a set of all users and   is the set of items in the system. The utility function   is a mapping specified on 

1U U  and 1    as follows: 

                                  
1 1

1 1 1 1

:
; ;
U

u u 

  


                                                                        (2) 

where  1 1;u   is a non-negative integer or a real number within a certain range.   is a set of available ratings 

in the system. Thus, RS is the system that provides two basic functions below. 

(a) Prediction: determine  * *;u  for any      * *
1 1, , \ ;u U U     ; 

(b) Recommendation: choose *   satisfying  * argmax ,i I u    for all u U   

Definition 6 [38]: Multi-criteria recommender Systems (MC-RS) 

MCRS are the systems providing similar basic functions with RS but following by multiple criteria. In the other words, 

the utility function is defined below 

                       
   

1 1 1 2

1 1 1 2

: ... ,
; , ,...,

k

k

U
u 

     

  
                                                                     (3) 

 where  1,2,...,i i k   is the rating of user 1 1u U  for item 1 1   following by criteria i in this case, the 

recommendation is performed according to a given criteria. 



 
 
 
 

Example 2. Suppose that U = {John, David, Jenny, Marry} and I = {Titanic, Hulk, Scallet}. The set of criteria of a 

movie is  = {Story, Visual effects}. The ratings are assigned numerically from 1 (bad) to 5 (excellent). Table 4 

describes the utility function. From this table, it is clear that MCRS can help us to predict the ratings of users (Marry) to a 

movie that was not rated by her beforehand (Titanic). This kind of systems also recommends her favorite movie through 

available ratings. In cases that there is only a criterion in P, MCRS returns to the traditional RS.                       

                                 Table 4. Movies rating 

User Movie Story Visual effects 

John 

John 

David 

David 

David 

Jenny 

Jenny 

Marry 

Marry 

Hulk 

Scallet 

Titanic 

Hulk 

Scallet 

Hulk 

Titanic 

Hulk 

Titanic 

4 

2 

4 

3 

1 

2 

1 

3 

? 

3 

2 

2 

1 

4 

3 

2 

5 

? 

 

3. Neutrosophic Recommender System NRS 

    In this section, we introduced single-criteria neutrosophic recommender system (SC-NRS) and multi-criteria 

neutrosophic recommender system (MC-NRS). Further, we introduced some algebraic operations of neutrosophic 

recommender system as well as algebraic structures (algebras). Finally, we presented some similarity measures based on 

these algebraic operations. 

3.1: Single-criteria Neutrosophic Recommender System (SC-NRS) and Multi-criteria Neutrosophic Recommender 

System (MC-NRS) 



 
 
 
 

Let  1 2, ,..., np p p ,  1 2, ,..., ms s s   and  1 2, ,..., kD d d d  be three lists of patients, symptoms and 

diseases, respectively such that , ,n m k N   be the numbers of patients, symptoms and diseases respectively where ip  

and js  have some features and characteristics respectively such that 1,2,...,i n  and 1,2,...,j m . Further, we 

consider that the features of the patient and characteristics of the symptoms are denoted by   and which consist of s  

neutrosophic linguistic labels. Similarly, disease id also has s neutrosophic linguistic labels where 1,2,...,i k . 

Definition 7: Single-criteria Neutrosophic recommender System (SC-NRS) 

The (SC-NRS) is a utility function   which is a mapping defined on  ,  as follows: 

: D   

      
      

      

      
      

      

      
      

      

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

, , , , , , , , ,

, , , , , , , , ,

, , , , , ,

D D D

D D D

s s s s s s sD sD sD

T x I x F x T y I y F y T d I d F d

T x I x F x T y I y F y T d I d F d

T x I x F x T y I y F y T d I d F d

     

     

     

 
  

,     (4) 

where      , ,i i iT x I x F x   is the truth membership function, indeterminate membership function and false 

membership function of the patient to the linguistic label ith  of the feature   such that 1,2,...,i s  and 

       , , 0,1i i iT x I x F x    . Similarly,      , ,j j jT y I y F y   is the truth membership function, 

indeterminate membership function and false membership function of the symptom to the linguistic label jth  of the 

feature where 1, 2,...,j s  and        , , 0,1j j jT y I y F y    .  Additionally,      , ,lD lD lDT d I d F d is the 

truth membership function, indeterminate membership function and false membership function of the disease D  to the 

linguistic label lth  where such that 1, 2,...,l s  and        , , 0,1lD lD lDT d I d F d  .   

The single-criteria neutrosophic recommender system (SC-NRS) is potentially applicable in the real life to explain the 

uncertainties, ambiguities, indeterminacies, incompleteness, falsities etc. of choices of human decision. For illustration, 



 
 
 
 

consider Table 4 of Movies rating of different viewers. John comments about the story and visual effect of the movie 

hulk can be bitterly captured by applying (SC-NRS). For example John is in favor of story about 0.8 but he may be 

disagreeing or undecided up to some extent say 0.5 and 0.4 respectively. Similarly he likes the visual effect of the movie 

up to 0.6 but he may be dislike the visual effect or unsure due to number of reasons such as low quality of visual effect 

tools, print, graphics, mood, surrounding environment etc. However, in this type of complicated situations, the (SC-NRS) 

are extremely beneficial to represent the human decision accurately. 

SC-NRS depicts the following assertions: 

1. Prediction: Compute the values of       , ,lD lD lDT d I d F d  for all 1, 2,...,l s . 

2. Recommendation 1: select  1,i s


  which satisfies  

           
1

arg max 3
s

lD lD lD lD lDi
i T d T d T d I d F d



     . 

3. Recommendation 2: select  1,i s


  which satisfies  

            
1

arg max 2 1
s

lD lD lD lD lDi
i T d T d T d I d F d



     . 

The formula of recommendation 1 and recommendation 2 gives different results for some  1,i s


 . This means the 

neutrosophic recommender system the ability of depicting more than one choice for recommendation. 

Remark 1: 

a) It is clear from Definition 7 and Eq. 4 that the medical diagnosis which is denoted by the implication 

 ,Patient Symptom Disease  identical to the Definition 1. Consequently, The SC-NRS is another form of 

medical diagnosis which follows the philosophy of recommender system RS. 

b) SC-NRS in Definition 7 could be seen as the extension of the RS in Definition 5 in the following cases: 

 There exist      ; 1 0;i i ii T x I x F x            ; 0 1,j j jj i T x I x F x         

 There exist      ; 1 0;i i ii T y I y F y            ; 0 1,j j jj i T y I y F y         



 
 
 
 

 There exist      ; 1 0;iD iD iDi T d I d F d          ; 0 1,jD jD jDj i T d I d F d       

 There exist    ; 1 0;i ii T x I x        ; 0 1,j jj i T x I x       

 There exist    ; 1 0;i ii T x F x        ; 0 1,j jj i T x F x       

 There exist    ; 1 0;i ii T y I y        ; 0 1,j jj i T y I y       

 There exist    ; 1 0;i ii T y F y        ; 0 1,j jj i T y F y       

 There exist    ; 1 0;iD iDi T d I d       ; 0 1,jD jDj i T d I d      

 There exist    ; 1 0;iD iDi T d F d       ; 0 1jD jDj i T d F d     . 

Alternatively, the mapping in Eq. 4 can be written as  

                                             : D   

                                               , , , Dp s                                                                                      (5) 

Next, we extend single-criterion neutrosophic recommender system SC-NRS to multi-criteria neutrosophic recommender 

system MC-NRS which can handle multiple diseases  1 2, , , kD d d d  . 

Definition 8: Multi-criteria Neutrosophic recommender System (MC-NRS). The (MC-NRS) is a utility function   

which is a mapping defined on  ,  as follows: 

1 2: kD D D      

      
      

      

      
      

      
      
      

      

      
      

   

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1 1 1 2 1 2 1 2

2 1 2 1 2 1 2 2 2 2 2 2

1 1 1 2 2

, , , , , ,

, , , , , ,

, , , ,

, , , , , ,

, , , , , ,

, , , ,

s s s s s s

D D D D D D

D D D D D D

sD sD sD sD sD sD

T x I x F x T y I y F y

T x I x F x T y I y F y

T x I x F x T y I y F y

T d I d F d T d I d F d

T d I d F d T d I d F d

T d I d F d T d I d F d

     

     

     



 

 

 

  

      
      

      

1 1 1

2 2 2

2

, , ,

, , ,

, ,

D k D k D k

D k D k D k

sD k sD k sD k

T d I d F d

T d I d F d

T d I d F d

 


,    (4) 



 
 
 
 

The multi-criteria neutrosophic recommender systems (MC-NRS) can effectively explain the viewer’s ratings about the 

multiple movies simultaneously in Table 4. John rating of story line about movies Hulk and Scallet could be true up to 

0.8 and 0.2 respectively but He may be dislike or undecided up to some extent as human judgement is varying. So in 

short, the (MC-NRS) can handle the human ratings in an accurate way by considering the truth membership function, 

indeterminate membership function and falsity membership function. 

The MC-NRS defines the following two functions: 

1. Prediction: Compute the values of       , ,lD i lD i lD iT d I d F d  for all 1, 2,...,l s and 1,2,..., ki   

2. Recommendation 1: select  1,i s


  which satisfies  

           1 1
arg max 3

ks

j iD j iD j iD j iD j iD ji j
i w T d T d T d I d F d


 

 
     

 
 , 

where jw  is the weight of jd  which belongs to  0,1  and satisfying the constraint 
1

1
k

j
j

w


 . 

3. Recommendation 2: select  1,i s


  which satisfies  

            1 1
arg max 2 1

ks

j iD j iD j iD j iD j iD ji j
i w T d T d T d I d F d


 

 
     

 
 , 

where jw  is the weight of jd  which belongs to  0,1  and satisfying the constraint 
1

1
k

j
j

w


 . 

Example 3: Consider 4 patients in a medical diagnosis process who have age (feature)  which consists of 3 linguistic 

labels  , ,young middle old where 1, 2,3s  . Similarly, the “Temperature” is symptoms (characteristic) which 

comprise 3 linguistic labels , ,cold medium hot . The disease  1d  is  Fever which also comprise 3 linguistic levels

 1 2 3, ,L L L . We will use the trapezoidal neutrosophic number -TNN [64] to find which age of patient and types of 



 
 
 
 

temperature cause the relevant disease. The truth membership functions, indeterminate membership functions and false 

membership functions respectively of the patients to the linguistic label ith  of the age (feature)   are as follows: 

 
1 5 25,

45 25 45,20
0 45 50

young

if x
xT x if x

if x

 
   


 

                                              (5) 

 
0 5 25,

35 25 35,30
1 35,

young

if x
xI x if x

if x

 
   




                                                (6) 

 
0 5 25,
25 25 35,20
1 35,

young

if x
xF x if x

if x

 
   




                                                 (7) 

 

0 70,
25 25 35,20
1 35 50,

70 50 70,20

middle

if x
x if x

T x
if x

x if x


   
  
   

                                                  (8) 

 

1 70,
35 25 35,20
70 35 50,50

0 50 70,

middle

if x
x if x

I x
x if x

if x


   
   


 

                                                     (9) 

 

1 70,
40 25 35,20

0 35 50,
50 50 70,20

middle

if x
x if x

F x
if x

x if x


   
  
   

                                                      (10) 



 
 
 
 

 

0 25 70,
35 45 50,20
1 35 45,
35 50 70,50

old

if x
x if x

T x
if x

x if x

 
   
  
   

                                                     (11) 

 

1 50 70
50 25 3525

0 35 50
old

if x
x if x

I x
if x

 
   


 



                                                      (12) 

 

1 25 45,
60 45 50,20

0 25,55 70,
35 50 55,25

old

if x
x if x

F x
if x x

x if x

 
   
   
   

                                               (13) 

From Eq. (5)-(13), we can calculate the following information about the patients: 

       30 0,0.8,1 ; 0.25,0.25,0.5 , 0.75,0.16,0.25Alex t old middle young ,             (14) 

       40 1,0,1 ; 1,0.6,0 ; 0.25,1,1Linda t old middle young ,                                         (15) 

       50 0.75,0,0.5 ; 1,0.4,0 ; 0,1,1Bill t old middle young ,                                         (16) 

       55 0.4,1,0.8 ; 0.75,0,0.25 ; 0,1,1John t old middle young .                                  (17) 

Similarly, the truth membership functions, indeterminacy membership functions and falsity membership functions of the 

symptoms to the linguistic label jth  of characteristic   are given below: 



 
 
 
 

 

20 5,25
5 5 15,15

30 15 30,15
0 30,

cold

x if x

x if x
T x

x if x

if x

 

   


  

 

                                                                    (18) 

    

10 5,15
5 5 15,15

15 15 30,30
1 30,

cold

x if x

x if x
I x

x if x

if x

 

   


  

 

                                                                      (19) 

 

5 5 10,10
5 10 20,20

30 20 30,20
1 30,

cold

x if x

x if x
F x

x if x

if x

  

   


  

 

                                                                        (20) 

 

15 5 10,15
20 10 20,20
30 20 30,10

0 30,

medium

x if x

x if x
T x

x if x

if x

  

   


  

 

                                                                        (21) 

 

9 5 9,15
5 9 18,18

30 18 30,30
1 30,

medium

x if x

x if x
I x

x if x

if x

  

   


  

 

                                                                        (22) 



 
 
 
 

 

7 5 7,5
7 7 14,14

30 14 30,14
1 30,

medium

x if x

x if x
F x

x if x

if x

  

   


  

 

                                                                      (23) 

 

10 5 10,10
7 10 17,17

30 17 30,17
0 30,

hot

x if x

x if x
T x

x if x

if x

  

   


  

 

                                                                     (24) 

 

8 5 8,5
8 8 16,16

30 16 30,16
1 30,

hot

x if x

x if x
I x

x if x

if x

  

   


  

 

                                                                   (25) 

 

5 5 11,11
11 11 18,18

30 18 30,18
1 30,

hot

x if x

x if x
F x

x if x

if x

  

   


  

 

                                                                       (26) 

From Eqs. (18)- (26), we can compute the information of symptoms as follows: 

       4 0.64,0.4,0.1 ; 0.73,0.33,0.6 ; 0.6,0.8,0.09C cold medium hot                                   (27) 

       15 0.66,0.66,0.5 ; 0.25,0.55,0.57 ; 0.47,0.43,0.22C cold medium hot                     (28) 

       22 0.53,0.23,0.4 ; 0.8,0.26,0.57 ; 0.47,0.5,0.44C cold medium hot                           (29) 

       28 0.13,0.43,0.1 ; 0.2,0.06,0.14 ; 0.11,0.12,0.11C cold medium hot                            (30) 



 
 
 
 

Eqs. (14)-(17) and Eqs. (27)-(30) can be written in the following tabular form. 

              Table 5. A neutrosophic recommender system for medical diagnosis 

  Age Temperature Fever Level 
100 M/l 

 
 

 
 

0,0.8,1 ;

30 0.25,0.25,0.5 ;

0.75,0.16,0.25

old

Alex t middle

young


 

 
 

 
 

0.64,0.4,0.1 ;

4 0.73,0.33,0.6 ;

0.6,0.8,0.09

cold

C medium

hot


 1

2

3

0.5, 0.3,0.5 ,

0.4,0.7,0.1 ,

0.7, 0,0

L

L

L







 

 
 

 
 
 

1,0,1 ;

40 1,0.6,0 ;

0.25,1,1

old

Linda t middle

young


  

 
 

 

0.66, 0.66,0.5 ;

15 0.25,0.55,0.57 ;

0.47,0.43,0.22

cold

C medium

hot



 1

2

3

0.9,0.1,0.3 ,

0,0,0.8 ,

0.7,0,0.5

L

L

L







 

 
 

 
 

0.75,0,0.5 ;

50 1,0.4,0 ;

0,1,1

old

Bill t middle

young


 

 
 

 
 

0.53,0.23,0.4 ;

22 0.8,0.26,0.57 ;

0.47,0.5,0.44

cold

C medium

hot



 

1

2

3

0.15, 0.03,0.01 ,

0.24,0.75,0.16 ,

0.8,0.3, 0.1

L

L

L







 

 
 

 
 

0.4,1, 0.8 ;

55 0.75,0, 0.25 ,

0,1,1

old

John t middle

young


 

 
 

 
 

0.13,0.43, 0.1 ;

28 0.2,0.06,0.14 ;

0.11, 0.12,0.11

cold

C medium

hot


 1

2

3

0.55,0,0 ,

0,0.7,0.9 ,

0.4,0.4,0.4

L

L

L







 

   

 

3.2 Algebraic Operations on Neutrosophic Recommender System NRS 

In this section, we introduced some algebraic operations of neutrosophic recommender system NRS and studied some of 

their basic properties. We now proceed to define set theoretic operations of NRS. 

Suppose that we have three subsets of {X,Y,{D }| k 1,2,..., }kNRS n   which are given below:

1
1 1 1{X ; Y ;{D }| i 1,2,..., };iNRS n  2

2 2 2{X ;Y ;{D }| i 1, 2,..., };iNRS n   and 

3
3 3 3{X ;Y ;{D } | i 1, 2,..., };iNRS n   where, ;i iX X Y Y   and

    R ; T ; F ; I = R ; T ; F ; I | q=1,2,...,r;j=1,2,3;j j j j j j j j j
i i i i i iq iq iq iqD  . 



 
 
 
 

Some algebraic operations of neutrosophic recommender system (NRS) can be defined below: 

(a) Union: 1 2 12NRS NRS NRS  , where 

                                     

12
12 12 12

12 1 2

12 1 2

{X ;Y ;{D }| l=1,2,...,k}
X

lNRS
X X

Y Y Y


 
 

 

12 12 12 12 12 12 12 12 12

12 1 2 12 1 2 12 1 2

{D } (R ;T ; F ; I )={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}

T max{T ; T }; F min{F ;F }; I min{I ;I }
l l l l l lq lq lq lq

lq lq lq lq lq lq lq lq lq

  

  
                        (31) 

(b) Intersection: 1 2 12NRS NRS NRS  , where  

12
12 12 12

12 1 2

12 1 2
12 12 12 12 12 12 12 12 12

12 1 2 12 1 2 12 1

{X ;Y ;{D }| l=1,2,...,k}
X

{ } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}

T min{T ; T }; F max{F ;F }; I max{I ;I

l

l l l l l lq lq lq lq

lq lq lq lq lq lq lq lq lq

NRS
X X

Y Y Y
P



 
 

  

   2 }

                      (32) 

(c) Complement: 1
1 1 1{X ;Y ;{D }| i=1,2,...,n};

Cc C C
iNRS   where 

 

1 1

1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

\ X ,

\ ,

{D }={R ;T ;F ;I }={ R ;T ;F ;I | q=1,2,...,r; i=1,2,...,n}

T ;    F I ;    I T

C C C C C C C C C

C C C

C

C

i i i i i iq iq iq iq

iq iq iq iq iq iq

X X

Y Y Y

F





  

                                (33) 

Here we derived some properties of these algebraic operations. 

(a) Commutative: 

1 2 2 1

1 2 2 1

,
.

NRS NRS NRS NRS
NRS NRS NRS NRS

  
  

                                                                                     (34) 

(b) Associative: 



 
 
 
 

1 2 3 1 2 3

1 2 3 1 2 3

( ) NRS ( ),
( ) NRS ( ).
NRS NRS NRS NRS NRS
NRS NRS NRS NRS NRS

    

    
                                                (35) 

      (c) Distributive property: 

1 2 3 1 2 2 3( ) NRS ( ) ( )NRS NRS NRS NRS NRS NRS       

We proved the first commutative property in Equation (34). Other properties can be proved analogously. 

The fact that, we set 

       1 2 12NRS NRS NRS  , 

12
12 12 12

12 1 2

12 1 2
12 12 12 12 12 12 12 12 12

12 1 2 12 1 2 12

{X ;Y ;{D }| l=1,2,...,k},where
X

{ } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}

T max{T ; T }; F min{F ;F }; I min{I

l

l l l l l lq lq lq lq

lq lq lq lq lq lq lq l

NRS
X X

Y Y Y
P



 
 

  

   1 2;I }.q lq

                       (36) 

Similarly, we have 

         2 1 21NRS NRS NRS  , 

21
21 21 21

21 2 1

21 2 1

21 21 21 21 21 21 21 21 21

21 2 1 21 2 1 21 2

{X ;Y ;{D }| l=1,2,...,k}
X

{ } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r;l=1,2,...,k}

T max{T ; T }; F min{F ;F }; I min{I ;I

l

l l l l l lq lq lq lq

lq lq lq lq lq lq lq lq

NRS
X X

Y Y Y
P


 
 



   1 }.lq

                        (37) 

Thus, 12 21NRS NRS  such that 2 1 1 2NRS NRS NRS NRS    are the subsets of

1 2 3 1 2 3{x ; x ;x };Y {y ; y ;y }X    ; 1 2 1 2; ; ;X X X Y Y Y  . �  

Definition 9: Let 1NRS  and 2NRS  be two neutrosophic recommender systems. The probabilistic sum of 1NRS  and 

2NRS  denoted as 
1 2NRS NRS and is defined as: 



 
 
 
 

  12
1 2 12 12 12 1 2 12 1 2; ;{ } , ;lNRS NRS X Y D X X X Y Y Y      ,                                                         (38) 

12 12 12 12 12 12 12 12 12{D } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1; , l N; k N}l l l l l lq lq lq lq r                                              (39) 

       
       
       

12 1 2 1 2

12 1 2 1 2

12 1 2 1 2

. ;

. I ;

.F

lq lq lq lq lq

lq lq lq lq lq

lq lq lq lq lq

T T x T x T x T x

I I x I x I x x

F F x F x F x x

  

  

  

                                                                                         (40) 

where 12 12 12;I ;Flq lq lqT  are their truth membership functions, indeterminacy membership functions and falsity membership 

functions respectively. 

Definition 10. The bold sum of 1NRS  and 2NRS  is defined as following: 

 12
1 2 12 12 12 1 2 12 1 2; ;{ } , ;lNRS NRS X Y D X X X Y Y Y                                               (41) 

12 12 12 12 12 12 12 12 12{D } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}l l l l l lq lq lq lq                        (42) 

           
     

12 1 2 12 1 2

12 1 2

min{1;T T };I min{1;I };

min{1;F }
lq lq lq lq lq lq

lq lq lq

T x x x x x I x

F x x F x

   

 
                                    (43) 

Definition 11:  The bold intersection of 1NRS  and 2NRS  can be defined as following: 

1 2NRS NRS  =  12
12 12 12 1 2 12 1 2; ;{ } , ;lX Y D X X X Y Y Y                                                 (44) 

12 12 12 12 12 12 12 12 12{D } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}l l l l l lq lq lq lq                             (45)
 

           
     

12 1 2 12 1 2

12 1 2

max{0;T T 1}; I max{0; I 1};

max{0;F 1}
lq lq lq lq lq lq

lq lq lq

T x x x x x I x

F x x F x

     

  
                           (46) 

Definition 12: The bounded difference of 1NRS  and 2NRS  is defined as: 



 
 
 
 

1 2
.

| |NRS NRS  =  12
12 12 12 1 2 12 1 2; ;{ } , \ ; \lX Y D X X X Y Y Y                                                      (47) 

12 12 12 12 12 12 12 12 12{D } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}l l l l l lq lq lq lq                                  (48)
 

           
     

12 1 2 12 1 2

12 1 2

max{0;T T }; I max{0;I };

max{0;F }
lq lq lq lq lq lq

lq lq lq

T x x x x x I x

F x x F x

   

 
                                          (49)

 

Definition 13: The symmetrical difference of two neutrosophic recommender systems is defined as: 

1 2.
NRS NRS  =  12

12 12 12 1 2 12 1 2; ;{ } , ;lX Y D X X X Y Y Y                                                             (50) 

12 12 12 12 12 12 12 12 12{D } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}l l l l l lq lq lq lq                                          (51)
 

           
     

12 1 2 12 1 2

12 1 2

| T T |; I | I |;

| F |
lq lq lq lq lq lq

lq lq lq

T x x x x x I x

F x x F x

   

 
                                                                               (52)

 

Definition 14: The convex linear sum of min and max of 1NRS  and 2NRS  is defined as following:

 

1 2
.

||NRS NRS  =  12
12 12 12 1 2 12 1 2; ;{ } , ;lX Y D X X X Y Y Y                                                                     (53) 

12 12 12 12 12 12 12 12 12{D } {R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}l l l l l lq lq lq lq                                                   (54) 

where
 

             

           
           
           

12 1 2 1 2

12 1 2 1 2

12 1 2 1 2

min{T ;T } 1 max{T ;T },

min{I , } 1 max{I ; I },

min{F ,F } 1 max{F ;F },

lq lq lq lq lq

lq lq lq lq lq

lq lq lq lq lq

T x x x x x

I x x I x x x

F x x x x x

 

 

 

  

  

  

                                                       (55) 

and  0;1 . 



 
 
 
 

Definition 15: The Cartesian product of 1NRS  and 2NRS   is defined as: 

                      12
1 1 2 12 12 12 1 2 12 1 2; ;{ } , ;lNRS NRS X Y D X X X Y Y Y                                                         (56) 

                         12 1 2 1 2 1 2
12 12; ,T ,F . , I . | X ;l lq lq lq lq lq lqD x y x T y x F x x I x y Y  ;                            (57) 

           12
1 2 2 12 12 12 1 2 12 1 2; ;{ } , ;lNRS NRS X Y D X X X Y Y Y      ,                                                   (58) 

            

     
   
   

1 2

12 1 2
12 12

1 2

; , min{T , },

min{F , }, | ;

max{I , }

lq lq

l lq lq

lq lq

x y x T y

D x F x x X y Y

x I x

 
     
 
  

.                                                            (59) 

Remark 3: All of the above operators satisfy commutative and associative property. 

Example 4. Suppose that we have,  

 1 1 2 3{(x ;0,3;0,5;0,8); (x ;0;1,0;0); ;0,5;0, 2;0, 6 }X x ,  2 1 2 3{(x ;0, 4;0,3;0,7);(x ;0;1,0;0); ;0,8;0,0;0,5 }X x ; 

     1 1 2 3{ ;0;0,7;0 ; ;0, 4;0,8;0,6 ; ;0,2;0,7;0,4 }Y y y y ,      2 1 2 3{ ;0,4;0,5;0,8 ; ;0,3;0,4;0,7 ; ;0;0,8;0 }Y y y y  ,

1 2{d ;d }D  where 
       
   

1 2 3 1

2 3

1 1 1 2

2 2

;0;1;0.5 , ;1;0;0.5 , d ;0.4;1;0.4 , ;0.3;0.4;0.1

, ;0.5;0.2;0.4 , ;0.6;0.5;0.2

x x x x

X

x x

d d d
D

d d

    
  

 

     
     

1 2 3

1 2 3

1 1 1

2 2 2

;0;0.6;0.2 , ;0;0.8;0.5 , d ;0.8;0;0.4 ,

;0.2;0.7;0.1 , ;0.8;0.2;0.1 , ;0.8;0.5;0.2

y y y

Y

y y y

d d
D

d d d

    
  

 

 

 

 



 
 
 
 

Table 6. Algebraic operations 

1 2
ˆNRS NRS  1 2NRS NRS  

1 2
ˆNRS NRS   

 
 
 

1 2

1

2

3

{ ;0.4;0.3;0.7 ;

;0;1;0 ;

;0.8;0.2;0.5 }

X X
x

x

x

 

  

 
 
 

1 2 1

2

3

{ ;0.4;0.5;0

; ;0.4;0.4;0.6 ;

;0.2;0.7;0 }

Y Y y

y

y

 

 

 



 
 
 
 
 

1

2

3

1

2

3

12 12

12

12

12

12

12

{(d ;0.3;1;0.55);

;1;0.2;0.7 ;

;0.76;1;0.52 ;

;0.2;0.88;0.28 ;

;0.8;0.84;0.55

;0.96;0.5;0.52 }

x

x

x

y

y

y

D

d

d

d

d

d




  

 
 
 

1 2

1

2

3

{ ;0.4;0.3;0.7 ;

;0;1;0 ;

;0.8;0.2;0.5 }

X X
x

x

x

 
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3.3 Algebraic Structures Based on Neutrosophic Recommender Systems and Their Operators 

In this section, we proved that the collection of all neutrosophic recommender systems forms several types of algebraic 

structures such as lattices, de Morgan algebra, Kleen algebra, MV algebra, BCK-algebra, Stone algebra and Brouwerian 

Algebra. We also discussed some core properties of these algebraic structures.   

Let F (NRS) denote the collection of all neutrosophic recommender systems. Further, we suppose that  

NRS  is a neutrosophic recommender system which satisfies X   or Y  .

 
Proposition 1: The structure   , , , , NRSX YF NRS NRS     forms a complete lattice. 

Proof: Let us consider  1 2 3, ,NRS NRS NRS F NRS , then    

1) From Definition (a) and (b) in Section 3.2, we have 

 1 2 12NRS NRS NRS F NRS    and  1 2 12NRS NRS NRS F NRS   . 

2) From Definition (a) and (b) in Section 3.2,  we have  

1 1 1NRS NRS NRS   and 1 1 1NRS NRS NRS    

3) From properties (34) and (35), we see that  

1 2 2 1NRS NRS NRS NRS    and 1 2 2 1NRS NRS NRS NRS    

   
   

1 2 3 1 2 3

1 2 3 1 2 3

,

.

NRS NRS NRS NRS NRS NRS

NRS NRS NRS NRS NRS NRS

    

    
  

4) Also definition (31), (32), we have 



 
 
 
 

 1 2 1 1NRS NRS NRS NRS    and  1 2 1 1NRS NRS NRS NRS     

Thus from 1) to 4), we saw that the structure   , , , , NRSX YF NRS NRS     forms a lattice. 

Consider a collection of neutrosophic recommender systems {NRS : i N}i   over F(NRS). We have,  

1 1 1 1

, , ,i i i i
i i i i

X X Y Y X X Y Y
   

   

        with X ,i iX Y Y   

and  

1 2 1 2 1 2

{R ;T ; F ; I  }={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}

T max{T ; T ; ...}; F min{F ;F ;...}; I min{I ;I ;...}.
l l l l l lq lq lq lq

lq lq lq lq lq lq lq lq lq

D        

  

  

  
 

This implies  

 
1

i
i

NRS F NRS




 . Again, we have,  
1

i
i

NRS F NRS




  

Thus we have proved that  F NRS  is a complete lattice. 

Proposition 2: The structure   , ,F NRS    is a bounded distributive lattice.

 
Proof: From condition 4) in above Proposition 1, we have  

      1 2 3 1 2 1 2NRS NRS NRS NRS NRS NRS NRS        

and 

     1 2 3 1 2 1 2NRS NRS NRS NRS NRS NRS NRS       for all  1 2 3; ;NRS NRS NRS F NRS . 

This completes the proof. 

We can clearly see that    , ,F NRS    is a dual lattice, so all the properties and structural configurations hold dually 

in an understood manner.  

Proposition 3: de Morgan Laws: Let 1NRS  and  2NRS F NRS . Then the following conditions hold. 

1)  1 2 1 2 ,c c cNRS NRS NRS NRS     



 
 
 
 

2)  1 2 1 2
c c cNRS NRS NRS NRS   . 

Proof:   Here we only prove 1). 

1. Since, we have  

1 2 12( )c cNRS NRS NRS  , where       

12
12 12 12

12 1 2 1 2

12 1 2
12 12 12 12 12 12 12 12 12

12 12 1 2 12

{X ;Y ;{D }| l=1,2,...,k}

X ( )

{D } (R ;T ; F ; I )={(R ;T ; F ; I )| q=1,2,...,r, l N; k N}

T min{F ; F }; F

c c c c
l

c c c c

c c c

c c c c c c c c c
l l l l l lq lq lq lq

c c
lq lq lq lq lq

NRS

X X X X
Y Y Y

F



   

 

  

  12 1 2 12 12 1 2min{I ;I }; I max{T ;T }c
lq lq lq lq lq lq lqI T   

 

From definition of 1 2
c cNRS NRS  the proposition is proved. 

2) Can be proved on the same lines.
 
 

Proposition 4:   , ,F NRS    forms a de Morgan algebra. 

Proof: The proof is followed from Proposition 2 and 3. 

Proposition 5:   , , ,cF NRS   forms a Boolean algebra. 

Proof: From proposition 2 and proposition 3, we have   , , ,cF NRS    is a bounded distributive lattice and 

 1NRS F NRS with its complement  1
cNRS F NRS which completes the proof. 

Proposition 6:   , , , ,cF NRS NRS  forms Kleen algebra. 

Proof: From Proposition 4,   , , , ,cF NRS NRS  forms de Morgan algebra. Moreover

1 1 2 2
c cNRS NRS NRS NRS NRS     with  1 2,NRS NRS F NRS .  

Thus by definition   , , , ,cF NRS NRS   is a Kleen algebra.       

[

[



 
 
 
 

Proposition 7:   , , NRSc
X YF NRS   is an MV – algebra. 

Proof: To prove   , , , NRSc
X YF NRS   is an MV – algebra. We have to prove the following 4 conditions: 

MV1:   ,F NRS   is a commutative monoid. This proven is straightforward. 

MV2:  with every  1NRS F NRS , we have 1 1( )c cNRS NRS  which be implied from definition (33) 

MV3: 1 2;NRS NRS 1( ) ( )c c
X Y X YNRS NRS NRS NRS     . 

MV4:  Since, 

                 

 1 2 3 1 2 2

1 2 2

(( ) ) NRS

                                        = ( ) NRS
                                       

cc c c c

c

NRS NRS NRS NRS NRS

NRS NRS

    

   

 

 

1 2 2 2

1 2

2 1 1 1

                                        = (NRS NRS )

                                        =  (NRS NRS )

                                        =  (NRS NRS )

            

c

c

NRS NRS

NRS

NRS NRS


  

 

  

2 1 1                            = (NRS NRS )c NRS 

 

for all  1 2,NRS NRS F NRS . Thus    , , , NRSc
X YF NRS   is an MV-algebra.

  

Proposition 8:   , , NRScF NRS   also forms an MV- algebra 

Proof:  MV1, MV2 and MV3 are straightforward. We prove MV4: Since, 

 1 2 2 1 2 2(( ) ) NRS
cc c c cNRS NRS NRS NRS NRS      

 
1 2 2 2

1 2

1 2 1 1

1 2 1 1

2 1 1

2 1 1

( ) ( )

( ) ( )
( ) ( )

(NRS ) NRS

(NRS ) NRS

c

X Y

c

c

c

c c

NRS NRS NRS NRS
NRS NRS NRS

NRS NRS NRS NRS
NRS NRS NRS NRS

NRS

NRS



   

  

   

   

  

  

 



 
 
 
 

for all  1 2,NRS NRS F NRS . Thus    , , , NRScF NRS   is MV- algebra.

 

Proposition 9:   , | |, NRSF NRS   is a bounded BCK- algebra. 

Proof. For any  1 2 3, ,NRS NRS NRS F NRS ,  

BCI-1: 

      1 2 1 3 2 3| | NRS | | | | NRS | | | |NRS NRS NRS NRS

NRS

    


 

BCI-2: 

  1 1 2 2| | | | | |NRS NRS NRS NRS

NRS

  


 

BCI-3: 

1 2| |NRS NRS NRS  . 

BCI-4:   Let  

1 2 2 1| | ; | |NRS NRS NRS NRS NRS NRS      and this implies that 1 2NRS NRS  

BCI-5: 

1| |NRS NRS NRS    

Thus   , | |, NRSF NRS   is BCK- algebra. Now X YNRS   is such that: 

1 | | X YNRS NRS NRS    for all  1NRS F NRS . 

Therefore   , | |, NRSF NRS   is a bounded BCK- algebra.  

Definition 16: Let   , , ,cF NRS   be a bounded lattice and  1NRS F NRS . Then an element 1
cNRS  is called a 

pseudo-complement of 1NRS  , if 1 1
cNRS NRS NRS   and 2 1

cNRS NRS  whenever 1 2NRS NRS NRS  . 

If every element of a lattice F(NRS) is pseudo-complement, then  F(NRS) is said to be pseudo-complemented. The 

equation 1
c

X YNRS NRS NRS    is called Stone’s identity. 



 
 
 
 

Definition 17: A Stone algebra is a pseudo-complemented, distributive lattice satisfying Stone’s identity. 

Lemma 1: Let 1 2, ( )NRS NRS F NRS . Then the pseudo-complement of 1NRS  relative to 2NRS  exists in ( )F NRS  . 

Lemma 2: Let 1 2, ( )NRS NRS F NRS . Then pseudo-complement of 1NRS  relative to 2NRS  exists in  F NRS . 

Proposition 10:   , , ,cF NRS   forms a Brouwerian lattices. 

Proof: The proof follows from Lemma 1 and 2.          

3.4: Similarity Measures of Neutrosophic Recommender System Based Algebraic Operators 

In this section, we introduced several similarity measures based on the algebraic operations. 

Definition 18: Let  F NRS be a family of neutrosophic recommender systems and iNRS , jNRS  are subsets of 

 F NRS  where , 1, 2,...,i j n . Then the similarity measure based on algebraic union and intersection operations of 

iNRS  and jNRS  denoted as $
ijNRS and is defined below: 

                                  
, 1

$ S , , ijij ij ij ij

n

NRS D
i j

S S S  


    ,                                                            (60) 

where 

           
, 1

1
2

i j i j i j

ij

n

i j

T x T x I x I x F x F x
S

r
     




     
 
 
 

 ,                         (61) 

           
, 1

1
2

i j i j i j

ij

n

i j

T y T y I y I y F y F y
S

r
     




     
 
 
 

 ,                           (62) 

           
, 1

1
2

i j i j i j

ij

n
D D D D D D

D
i j

T d T d I d I d F d F d
S

r 

     
 
  

                           (63) 



 
 
 
 

Eq. (60), is the similarity measure of the neutrosophic recommender systems whereas ,  are union and 

intersection algebraic operations respectively. Eqs. (61), (62) and (63) are the similarity measures of the users or features 

of the patients ,i j  , items or characteristics of the symptoms ,i j    and the ratings or diseases ,i jD D  

respectively. The variable ' r ' in the Eqs. (61), (62) and (63) is the number of linguistic labels. 

Proposition 11: The similarity measure $
ijNRS  defined in Eq. (60) satisfies the following conditions. 

1. 0 $ 1
ijNRS  ; 

2. $ 0
ijNRS   if and only if i j ; 

3. $ $
ij jiNRS NRS ; 

4. If kNRS  is another subset in  F NRS  such that i j kNRS NRS NRS  , then $ $
ik ijNRS NRS and

$ $
ik jkNRS NRS where , , 1,2,...,i j k n . 

Proof:  

1. Since, the values of truth membership function, indeterminacy membership function and falsehood 

membership functions belongs to the unit interval  0,1 , so therefore, we have 0 1
ij

S  , 0 1
ij

S 

and 0 1ijD
S  . In this way, we also have,    0 , 1,0 , 1ij

ij ij ij D
S S S S       which implies 

that             0 , , 1ij
ij ij ijS S S S D       ,

            
, 1

0 , , 1
n

ij
ij ij ij

i j

S S S S D


       , 

                       Thus 0 $ 1
ijNRS  .                                                                                                          �  

2. Suppose that i j which gives i j   that implies 



 
 
 
 

           , ,i j i j i j
l l l l l lT x T x I x I x F x F x         

and 

           0, 0, 0i j i j i j
l l l l l lT x T x I x I x F x F x           .  

Thus 0
ij

S  . 

Next we consider i j     implies that  

           , ,i j i j i j
l l l l l lT y T y I y I y F y F y         

 and 

           0, 0, 0i j i j i j
l l l l l lT y T y I y I y F y F y           . 

 Therefore, 0
ij

S   

Finally by considering i jD D  gives that 

           , ,i j i j i j
lD lD lD lD lD lDT d T d I d I d F d F d    

which implies that  

           0, 0, 0i j i j i j
lD lD lD lD lD lDT d T d I d I d F d F d      , 

and hence we have 0ijD
S  . Consequently we have $ 0

ijNRS  .                                                              �  

Similarly the converse can be proved on the same lines. 

3. This is straightforward.                                                                                                           �  



 
 
 
 

4. If i j k      which implies that      i j k
l l lT x T x T x    ,      i j k

l l lI x I x I x     and 

     i j k
l l lF x F x F x     for all , , , 1,2,...,i j k l n . 

 Therefore, we have  

       i j i k
l l l lT x T x T x T x      ,        j k i k

l l l lT x T x T x T x      , 

       i j i k
l l l lI x I x I x I x      ,        2 3 1 3

l l l lI x I x I x I x      , 

       i j i k
l l l lF x F x F x F x      ,        j k i k

l l l lF x F x F x F x      . 

Thus 
13 12

S S   and 
13 23

S S  .  

Similarly we can easily show that
ik ij

S S  , 
ik jk

S S   and ik ijD D
S S , ik jkD D

S S .  

Next,  

   , ,
ik ik ij ij

S S S S     and    , ,ik ijik ikD D
S S S S   . 

Also,  

             , , , ,ik ijik ik ik ij ij ijD D
S S S S S S S S           , 

             
, 1 , 1

, , , ,ik ijik ik ik ij ij ij

n n

D D
i k i j

S S S S S S S S     
 

        . 

This shows that $ $
ik ijNRS NRS .                         �  

Similarly, we can prove $ $
ik jkNRS NRS . 



 
 
 
 

Example 5: Consider Table 5 from Example 3. Then the similarity measures of users
ij

S , items 
ij

S and ratings ijD
S

are calculated in the following table. 

Table 7. Similarity measures of patients, symptoms and diseases 

SIM of Users
ij

S  SIM of Items
ij

S  SIM of Ratings ijD
S  

 

 

 

 

 

 

, 0.4316,

, 0.39833,

, 0.29,

, 0.15833

, 0.30833

, 0.2333

S Alex Linda

S Alex Bill

S Alex John

S Linda Bill

S Lind John

S Bill John













 

 

 

 

 

 

 

 

4 ,15 0.20833,

4 ,22 0.11166,

4 ,28 0.2866,

15 ,22 0.2

15 C,28 0.23

22 ,28 0.23

S C C

S C C

S C C

S C C

S C

S C C













 

 

 

 

 

 

 

 

 

 

 

 

 

, 0.2666,

, 0.15833,

, 0.28333,

, 0.31666,

, 0.25833,

, 0.25666,

Alex Linda

Alex Bill

Alex John

Linda Bill

Linda John

Bill John

S L L

S L L

S L L

S L L

S L L

S L L













 

   

 

The column 
ij

S  is the similarity measures of users (patients) which is calculated by Eq. (61), The column 
ijYS  is the 

similarity measures of items (symptoms) which is calculated by Eq. (62), and finally, The column ijD
S  is the similarity 

measures of ratings (diseases) calculated by Eq. (63) where , 1, 2,3,4i j  . 

Now using Eq. (60), we can find the similarity matrix as in Table 8. Here in this table,  is the algebraic union 

operation, $
ijNRS is the similarity measures of iNRS and jNRS where , 1,2,3,4,5,6i j  . The bold highlighted values in 

this table indicate the largest similarity measure of the two rows in Table 7. The main advantage of this similarity 

measure is to provide an identical largest value among all the rows in Table 7 because of the algebraic union operation 

used in the similarity measure. But we are unable to get largest distinct values of the similarity measure between two 

rows in Table 7 if we have to predict about several diseases of a patient which is the big failure of this similarity measure. 



 
 
 
 

This similarity measure is not give accurate result as it lacks to provide us enough large value as compared to the 

similarity measures in Eqs. (65), (67), (69), and (71) respectively. This similarity measure can be used in those datasets 

where we have to find several patients with the same disease. 

Table 8. Similarity measures of iNRS  and jNRS based on union and intersection 

  
1

$
iNRS  

2
$

iNRS  
3

$
iNRS  

4
$

iNRS  
5

$
iNRS  

6
$

iNRS  

1
$

jNRS  0.20833 0.20833 0.2866 0.20833 0.23 0.23 

2
$

jNRS  0.20833 0.11166 0.2866 0.2 0.23 0.23 

3
$

jNRS  0.2866 0.2866 0.2866 0.2866 0.2866 0.2866 

4
$

jNRS  0.20833 0.2 0.2866 0.2 0.23 0.23 

5
$

jNRS  0.23 0.23 0.2866 0.23 0.23 0.23 

6
$

jNRS  0.23 0.23 0.2866 0.23 0.23 0.23 

 

Definition 18: Let $
ijNRS be a similarity measure of iNRS  and jNRS in Eq. (60) which is based on algebraic union and 

intersection operations. The weighted similarity measures can be defined as follows: 

          1 2
, 1

$ , , ijij ij ijij

n

Dw NRS
i j

w S S w S S  


                                 (64) 

with 1 2 1w w   where , 1, 2,...,i j n . 

Definition 19: Let  F NRS be a family of neutrosophic recommender systems and iNRS , jNRS  are subsets of 

 F NRS  where , 1,2,...,i j n . We define the following similarity measures based on algebraic operations. 

1. The similarity measure based on algebraic union, intersection and probabilistic sum is defined as: 



 
 
 
 

                     
, 1

$ . .ij ij
ij ij ij ij ij ij ij

n

NRS D D
i j

S S S S S S S S     


                                                (65)  

The weighted similarity measure of Eq. (65) is defined below: 

        1 2
, 1

$ . .ij ij
ij ij ij ij ij ijij

n

D Dw NRS
i j

w S S S S w S S S S     


                                                (66) 

with 1 2 1w w   where , 1, 2,...,i j n . 

2. The similarity measure based on algebraic intersection and bold sum of iNRS  and jNRS  is defined as: 

                          
, 1

$ min 1, min 1, ijij ij ij ij

n

NRS D
i j

S S S S  


                                  (67)      

The weighted similarity measure of Eq. (67) is as following: 

               
          1 2

, 1

$ min 1, min 1, ij
ij ij ijij

n

Dw NRS
i j

w S S w S S  


                                       (68) 

with 1 2 1w w   where , 1, 2,...,i j n . 

3. The similarity measure based on algebraic union and bounded difference of iNRS  and jNRS  is defined 

below: 

                              
, 1

$ max 0, max 0, ijij ij ij ij

n

NRS D
i j

S S S S  


                                              (69) 

The weighted similarity measure of Eq. (69) can be defined as following: 

              
          1 2

, 1
$ max 0, max 0, ijij ij ijij

n

Dw NRS
i j

w S S w S S  


                                         (70) 

with 1 2 1w w   where , 1, 2,...,i j n . 



 
 
 
 

4. The similarity measure based on the operation of algebraic symmetrical difference of iNRS  and jNRS is 

defined below: 

                                       
, 1

$ ij
ij ij ij ij

n

NRS D
i j

S S S S  


                                                                  (71) 

The weighted similarity measure of Eq. (71) can be defined as following: 

                    
      1 2

, 1
$ ij

ij ij ijij

n

Dw NRS
i j

w S S w S S  


                                                                (72) 

with 1 2 1w w   where , 1, 2,...,i j n . 

Here in Definition $
ijNRS denote the similarity measure between ,i jNRS NRS and ,

ij ij
S S  , ijD

S  are calculated from 

Eqs. (61), (62) and (63) respectively. 

Proposition 12: The similarity measures $
ijNRS  defined in Eq. (65), (67), (69) and (71) satisfies the following conditions. 

1. 0 $ 1
ijNRS  ; 

2. $ 0
ijNRS   if and only if i j ; 

3. $ $
ij jiNRS NRS ; 

4. If kNRS  is another subset of  F NRS  such that i j kNRS NRS NRS  , then $ $
ik ijNRS NRS and

$ $
ik jkNRS NRS where , , 1, 2,...,i j k n . 

Proof: The proof of these is straightforward.                 �  

Example 5: Consider ,
ij ij

S S  and ijD
S calculated in Table 7. From Eq. (65), (67), (69) and (71), we have calculated 

the following similarity matrix in Table 9, 10, 11, and 12 respectively. 

 



 
 
 
 

Table 9. Similarity measures of iNRS  and jNRS based on intersection and probabilistic sum 

  
1

$
iNRS  

2
$

iNRS  
3

$
iNRS  

4
$

iNRS  
5

$
iNRS  

6
$

iNRS  

1
$

jNRS  0.83878 0.67171 0.90812 0.74606 0.84832 0.82904 

2
$

jNRS  0.67171 0.50464 0.74105 0.57899 0.68124 0.66197 

3
$

jNRS  0.90812 0.74105 0.97746 0.8154 0.91765 0.89838 

4
$

jNRS  0.74606 0.57899 0.8154 0.65334 0.75559 0.73632 

5
$

jNRS  0.84832 0.68124 0.91765 0.75559 0.85784 0.83857 

6
$

jNRS  0.82904 0.66197 0.89838 0.73632 0.83857 0.8193 

 

Table 10. Similarity measures of iNRS  and jNRS based on intersection and bold sum 

  
1

$
iNRS  

2
$

iNRS  
3

$
iNRS  

4
$

iNRS  
5

$
iNRS  

6
$

iNRS  

1
$

jNRS  0.22555 0.12822 0.27067 0.17018 0.23192 0.22003 

2
$

jNRS  0.12822 0.07289 0.15387 0.09674 0.13184 0.12508 

3
$

jNRS  0.27067 0.15387 0.32482 0.20422 0.27831 0.26404 

4
$

jNRS  0.17018 0.09674 0.20422 0.12840 0.17498 0.16601 

5
$

jNRS  0.23192 0.13184 0.27831 0.17498 0.23846 0.22624 

6
$

jNRS  0.22003 0.12508 0.26404 0.16601 0.22624 0.21464 

 

 

 

 



 
 
 
 

Table 11. Similarity measures of iNRS  and jNRS based on union and bounded difference 

  
1

$
iNRS  

2
$

iNRS  
3

$
iNRS  

4
$

iNRS  
5

$
iNRS  

6
$

iNRS  

1
$

jNRS  0.44654 0.50994 0.22667 0.2237 0.3016 0.22657 

2
$

jNRS  0.50994 0.57334 0.29007 0.28667 0.365 0.28997 

3
$

jNRS  0.22667 0.29007 0.0068 0.0034 0.08173 0.0067 

4
$

jNRS  0.2237 0.28667 0.0034 0 0.07833 0.0033 

5
$

jNRS  0.3016 0.365 0.08173 0.07833 0.15666 0.08163 

6
$

jNRS  0.22657 0.28997 0.0067 0.0033 0.08163 0.006 

 

Table 12. Similarity measures of iNRS  and jNRS based on symmetrical difference 

  
1

$
iNRS  

2
$

iNRS  
3

$
iNRS  

4
$

iNRS  
5

$
iNRS  

6
$

iNRS  

1
$

jNRS  0.33 0.405 0.17167 0.00667 0.215 0.14164 

2
$

jNRS  0.405 0.48 0.24667 0.08167 0.29 0.21664 

3
$

jNRS  0.17167 0.24667 0.01334 -0.15166 0.05667 -0.01669 

4
$

jNRS  0.00667 0.08167 -0.15166 -0.31666 -0.10833 -0.18169 

5
$

jNRS  0.215 0.29 0.05667 -0.10833 0.1 0.02664 

6
$

jNRS  0.14164 0.21664 -0.01669 -0.18169 0.02664 -0.04672 

 

The symbol  refers to the aggregation operator in the Tables 9, 11, 12 while  refers to the geometric operator in 

Table 10 and the bold values indicate the largest similarity measures in these tables. The similarity measure in Table 9 

provides largest distinct values as compared to all other similarity measures in Tables (7), (9), (10) and (11). Further, this 



 
 
 
 

similarity measure provides us an accurate result with respect to other defined similarity measures in Eqs. (60), (67), (69), 

and (71) respectively. 

As the similarity measure in Eq. (65) gives us accurate largest distinct results, so we will use this similarity measure to 

find the predicting formula for calculating the levels of diseases of the patients in this paper. 

3.5 Prediction Formula and Non-linear Regression Model

 

Definition 20: Let hS  be the symptoms of the patient ip  whose diseases are  1 2, ,...., kd d d  in a multi-criteria 

neutrosophic recommender system (MC-NRS) where 1,2,3,..., ni   and 1, 2,3,..., mh  . The linguistic labels of the 

patient ip  can be predicted by the following formula: 

                                                   
 

1

1

$

$

j

ij l

i

l

ij

n
p

NRS D h
jp

D h n

NRS
j

T d
T d 








                                                                       (73) 

                                                      
 

1

1

$

$

j

ij l

i i

l l

ij

n
p

NRS D h
jp p

D h D h n

NRS
j

I d
I d T d 




 




                                                  (74) 

                                                        
 

1

1

$

$

j

ij l

i i

l l

ij

n
p

NRS D h
jp p

D h D h n

NRS
j

F d
F d I d 




 




                                                 (75) 

where $
ijNRS is the similarity measure of Eq. (65) in Definition 16 and for all 1, 2,3,..., mh  , 1, 2,3,..., ni  and for 

all 1, 2,3,...,sl  . Eq. (73) refers to predictive truth membership function while Eq. (74) refers predictive 

indeterminate membership function and Eq. (75) is the predictive false membership function of the linguistic labels of the 

patient ip . 



 
 
 
 

Theorem 1: The predictive values of Eqs. (73), (74), and (75) in Definition 17 are neutrosophic values.  

Proof: Since we have  

                                 

     
 

 
 

 
 

1

1

1 1

1 1

$

$

$ $

$ $

j

ij l

i i i

l l l

ij

j j

ij l ij l

i i

l l

ij ij

n
p

NRS D h
jp p p

D h D h D h n

NRS
j

n n
p p

NRS D h NRS D h
j jp p

D h D hn n

NRS NRS
j j

T d
T d I d F d

I d F d
T d I d





 

 


   

       
     
   
   
   





 

 

                                    (76) 

                                

     

     

1 1 1

1 1 1

1 1 1

1 1

$ $ $

$ $ $

$ $ $

$ $ $

j j j

ij l ij l ij l

ij ij ij

j j j

ij l ij l ij l

ij ij

n n n
p p p

NRS D h NRS D h NRS D h
j j j

n n n

NRS NRS NRS
j j j

n n n
p p p

NRS D h NRS D h NRS D h
j j j

n n

NRS NRS
j j

T d T d I d

T d I d F d

  

  

  

 

 
   

   
 
 
 

    
   
 
 
 

  

  

  

 
1

ij

n

NRS
j

 
 
 
 
 
 



                          (77) 

 
          1 1 1

1 1 1

$ $ $

$ $ $

j

ij l ij ij
j j j j j

l l l l l

ij ij ij

n n n
p

NRS D h NRS NRS
p p p p pj j j

D h D h D h D h D hn n n

NRS NRS NRS
j j j

T d
T d I d T d I d F d  

  


          

  

  
      (78) 

                                  1

1

$
3 2

$

ij
j j j

l l l

ij

n

NRS
p p pj

D h D h D hn

NRS
j

T d I d F d



    




                                                               (79) 

As we know from Definition 2 and Proposition 2 respectively that 

                                                              0 3j j j

l l l

p p p
D h D h D hT d I d F d                                                   (80) 

                                                                          0 $ 1
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This become obvious that  



 
 
 
 

                                                           0j j j
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Therefore,  
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          (83) 

This completes the proof.                                       �  

3.6 Non-linear Regression Model 

We have proposed a non-linear regression model for the prediction task shown in Fig. 1. The problem with linear 

regression is that it can model curves, but it might not be able to model the specific curve that exists in the data. A non-

linear model can possibly be infinite number of functions which can’t be easy to setup. But it can best fit a mathematical 

model to some data. Moreover, we used a neutrosophication and de-neutrosophication which convert data from crisp 

inputs into neutrosophic input and again from neutrosophic set to crisp input respectively which is shown in Fig 1. 

4. Evaluation 

In this section, the experimental environment as well as the database for this experiment is presented. In the subsection 

4.1, we describe the experimental set up while the subsection 4.2 is dedicated to the experimental results. 

4.1 Experimental Set up 

This part is dedicated to the experimental environments which are described below: 

Experimental tools: The proposed algorithm has been implemented in addition to the methods of ICSM [59], DSM [61], 

and CARE [10], and CFMD [22]. We run our proposed method as well as all these algorithms and Variants in the Matlab 

2015a programming language and executed them on a PC Intel(R) Core (TM) 2 Dual CPU T6400@2.00 GHz (2CPUs), 

2048MB RAM and the operating system is windows7 Professional 32 bits. The following Table 13 on the next page 

provides us the description of experimental datasets. Finally we analyzed the strength of all 8 algorithms by ANOVA 

test. 
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Fig.1. Non-linear regression model 
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                       Table 13. The descriptions of experimental datasets 

Dataset No. elements No. attributes No. classes 

RHC 5736 5 3 

Diabetes 404 4 2 

Breast 3304 5 3 

DMD 201 3 1 

Heart 271 4 2 

 

Experimental datasets: The benchmark dataset HEART has been taken from UCI Machine Learning Repository 

(University of California) while the remaining 4 benchmark datasets RHC (Right Heart Catheterization), Diabetes, Breast 

Cancer, DMD (Duchenne Muscular Dystrophy) have been taken from (Department of Biostatistics, Vanderbilt 

University). Table 13 gives an overview of all those datasets. 

Objectives:  

 To evaluate the qualities of algorithms through validity indices. In this regard, experiments on the 

computational time of algorithms are also considered; 

 To validate the performance of algorithms by various cases of parameters. 

4.2 The comparison of proposed algorithm quality 

     The following Table 14 presents the average MSE and computational time (Sec.) of our proposed method with ICSM 

[59], DSM [61], CARE [10], CFMD [22], Variant 67, Variant 69, and Variant 71 on the medical datasets of Heart, RHC, 

Diabetes, Breast and DMD.  For more detailed information, we refer to the Table 14. 

       In this Table 14, Mean Square Error (MSE) and Computational time (Sec) of all 8 algorithms have been computed 

on the 5 data sets Heart, RHC, Diabetes, Breast and DMD respectively. It is clearly seen that the MSE of our proposed 

method is better than ICSM, DSM, CARE and CFMD on the Heart data set while it does not give a reasonable change in 

MSE with the variants 67, 69, and 71. Specifically in Table 13, the average MSE of  ICSM, DSM, CARE, CFMD, 

Proposed method, Variant 67, Variant 69 and Variant 71 are 0.3407, 0.3407, 0.2502, 0.2525, 0.236052 1.4393e-007, 

0.235093 1.8290e-007, 0.2360791.7144e-007, 0.234787 2.2378e-007 respectively. 



 
 
 
 

Table 14. Mean Square Error (MSE) and Computational time (Sec) 

Dataset Mean Square Error (MSE) 

ICSM DSM CARE CFMD Proposed 

method 

Variant 

(67) 

Variant 

(69) 

Variant 

(71) 

Heart 0.3407 0.3407 0.2502 

 

0.2525 0.236052

   
1.4393e-

007 
 

0.235093

  
1.8290e-
007 
 

0.236079

  
1.7144e-

007 

0.234787

  
2.2378e-

007 

RHC 0.1780 0.1780 0.3658 0.1896 0.25 0.250000 
 

0.250000 
 

0.250000 
 

Diabetes 0.1085 0.1085 0.1253 0.0472 0.086841 


2.3494e-

005 

0.029185 

 1.5699e-

005 

0.029185 


2.1085e-

005 

0.078113

  
5.2897e-

005 
 

Breast 0.1984 0.1984 0.1494 0.1909 0.030004

  
6.3095e-

006 
 

0.030545

  
7.8554e-

006 

0.030545

  
1.6957e-

005 

0.029496

  
1.4263e-

005 

DMD 0.3589 0.3589 0.2439 0.0472 0.038967

  
4.2896e-

005 

0.035131

  
3.2675e-

006 

0.035131

  
3.2675e-

006 

0.03482


5.2897e-

005 
 

 Computational time (Sec)  

ICSM DSM CARE CFMD Proposed 

method 

Variant 

67 

Variant 

69 

Variant 

71 

Heart 0.152517 0.076999 0.139614 204.127803 0.192975 
 

0.268192 
 

0.25357 
 

0.270576 
 

RHC 0.325134 0.222736 56.976828 3064.0 420.05 269.812746 
 

269.8127 
 

235.2842 
 

Diabetes 0.189302 0.093844 0.302440 334.046758 1.4231 1.413615 
 

1.413615 
 

0.992357 
 

Breast 0.468686 0.155074 19.274739 1004.13321 71.01342 71.111934 
 

71.11193 
 

82.96327 
 

DMD 0.113384 0.021726 0.078052 565.664369 1.17265 1.117552 
 

1.117552 
 

0.991103 
 

 



 
 
 
 

 The MSE of our proposed algorithm is clearly better than CARE for the data set RHC but it does not provide a 

significant result as compared to ICSM, DSM, CFMD and Variant 67, 69, 71. Their average values in Table 13 for the 

data set RHC are 0.1780, 0.1780, 0.3658, 0.1896, 0.25, 0.250000, 0.250000, and 0.250000 respectively. Analogously, the 

proposed method has better MSE values over ICSM, DSM and CARE which are 0.086841 2.3494e-005, 0.1085, 

0.1085, 0.1253 respectively whereas the Variants 67, 69 and 71 have the MSE average values are 0.029185 1.5699e-

005, 0.029185 2.1085e-005, and 0.078113 5.2897e-005 respectively on the data set Diabetes. Similarly the proposed 

algorithm is advantageous for the remaining two data sets Breast and DMD because the MSE values are more accurate 

over all other algorithms and variants. These values in the Table 13 calculated for Breast data set are singly 0.1984, 

0.1984, 0.1494, 0.1909, 0.030004 6.3095e-006, 0.030545 7.8554e-006, 0.030545 1.6957e-005, and 0.029496

1.4263e-005. The average MSE values computed on the DMD data set are 0.3589, 0.3589, 0.2439, 0.0472, 0.038967

4.2896e-005, 0.035131 3.2675e-006, 0.035131 3.2675e-006 and 0.03482 5.2897e-005 respectively. Overall, the 

average MSE values of our proposed algorithm are better than the other algorithms. These can be demonstrated clearly in 

the following Figs. 1, 2, 3, 4, 5, 6, and 7. 

    The computational time of our proposed algorithm is also advantageous here in the data sets of all size. There is no 

such large difference in the computational time taken by our proposed method and other mentioned algorithms. From 

Table 14, it is clear that the computational time of the algorithms ICSM [59], DSM [61], CARE [10], CFMD [22], the 

proposed method, Variant 67, 69 and 71 are respectively 0.152517, 0.076999, 0.139614, 204.127803, 0.192975, 

0.268192, 0.25357, and 0.270576 on the data set of Heart. This scenario can also be seen on the data sets of Diabetes, 

and DMD. On the other hand, on the large data set RHC, the time taken our proposed method by calculation is quite large 

(420.05 sec) as compared to ICSM (0.325134), DSM (0.222736), CARE (56.976828), Variant 67 (269.812746), 

Variant 69 (269.8127), and Variant 71 (235.2842). This can be seen in Table 14. The analogous situation appeared for 

the data set of Breast. 

Here in Fig. 1, we choose ICSM and the proposed method for the sake of simplicity because we can easily extend the rest 

of the algorithms by replacing the ICSM algorithm with one by one.  



 
 
 
 

 

Fig. 2. MSE (Mean Square Error) of ICSM and Proposed method 

Fig. 2 describes the MSE between ICSM and our proposed method (65) on the datasets of Heart, RHC, Diabetes, 

Breast and DMD. The blue bars show the MSE of our proposed method while the brown ones demonstrate the MSE of 

our proposed ICSM. We can see clearly that the MSE of our proposed algorithm on each dataset is smaller than the 

MSE of ICSM. Thus Fig. 2 provides us the evidence that our proposed method can be applied to diagnose diseases in a 

better way with accuracy.  

 

Fig. 3. MSE (Mean Square Error) of DSM and Proposed method 
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In Fig. 3, we can see that the MSE values of DSM and our proposed method on the datasets of Heart, RHC, Diabetes, 

Breast and DMD. We can see clearly that the MSE of our proposed algorithm on each dataset is better (smaller) than the 

MSE of DSM. 

 

Fig. 4. MSE (Mean Square Error) of CARE and Proposed method 

Again it is clear that the MSE of our proposed algorithm on each dataset is better (smaller) than the MSE of CARE 

which can be seen in the Fig. 4. 

 

Fig. 5. MSE (Mean Square Error) of CFMD and Proposed method 
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Similarly the result is same for the CFMD as the comparison clearly demonstrates this fact in the Fig. 5 of CFMD and 

proposed algorithm in the blue and brown bars. 

 

Fig. 6. MSE (Mean Square Error) of Variant 67 and Proposed method 

In Figs. 6, 7, 8, the situation is almost same for the Variant 67, 69, 71 and the proposed method on the datasets of 

Heart, RHC, Diabetes, Breast and DMD. Here the MSE values are almost equal in these algorithms which do not give 

any significant difference with the comparison of our proposed method. 

 

Fig. 7. MSE (Mean Square Error) of Variant 69 and Proposed method 
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Fig. 8. MSE (Mean Square Error) of Variant 71 and Proposed method 

In the next Fig. 8, we have combined all the 8 algorithms which show the MSE values and give a good comparison 

among them. 

 

Fig. 9. MSE (Mean Square Error) of all the 8 algorithms 

By observing this chart, one can easily see that the largest MSE value is approximately 0.35 which is provide by the 

algorithms ICMS and CARE while the proposed method has the least MSE value which is approximately 0.04. The 

Variants has also provided us some good results as compared to ICSM, DSM, CARE, and CFMD.  
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In the next figures, we have shown the average MSE values of all the 7 algorithms on the 5 datasets in the line graphs. 

First, we gave the comparison of our proposed method with other 7 algorithms one by one in the Figs. 10, 11, 12, 13, 14, 

15 respectively and then combine them in one line graph in the Fig. 16. 

 

Fig. 10. MSE (Mean Square Error) of ICSM and Proposed method 

 

 

Fig. 11. MSE (Mean Square Error) of DSM and Proposed method 
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Fig. 12. MSE (Mean Square Error) of CARE and Proposed method 

 

 

Fig. 13. MSE (Mean Square Error) of CFMD and Proposed method 
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Fig. 14. MSE (Mean Square Error) of Variant 67 and Proposed method 

 

 

Fig. 15. MSE (Mean Square Error) of Variant 69 and Proposed method 
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Fig. 16. MSE (Mean Square Error) of Variant 71 and Proposed method 

 

 

Fig. 17. MSE (Mean Square Error) of all the 8 algorithms 

Now to analyze these algorithms deeply, we provide some more detail by drawing the average MSE values of all the 8 

algorithms on a single data set. In the Figs. 18, 19, 20, 21, 22 and 23, we presented the MSE of all datasets for 8 

algorithms including our proposed one to analyze them in a more detailed and comprehensive way. 
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Fig. 18. MSE of Heart dataset between 8 algorithms 

From Table 14 and Fig. 18, we can easily see that the MSE of our proposed method (approximately 0.23) is much 

smaller than the MSE of ICSM, DSM (approximately 0.35), CARE and CFMD (approximately 0.25) on the Heart 

dataset. Therefore our proposed algorithm is advantageous over the previous mentioned algorithms on the Heart dataset. 

On the other hand, the proposed algorithm has not significance MSE variation as compared to the Variants 67, 69 and 71 

(approximately 0.24). 

 

Fig. 19. MSE of Diabetes dataset between 8 algorithms 
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Here in Fig. 19, the result is same that the proposed algorithm (approx. 0.09)  has MSE is smaller than ICSM, DSM, and 

CARE (approx. 0.12) while the situation is reverse in the case of CFMD (approx.. 0.05), Variant 67, Variant 69 (approx. 

0.03) and Variant 71(approx. 0.08)  on the dataset of Diabetes. 

 

 

Fig. 20. MSE of Breast dataset between 8 algorithms 

From Fig. 20, it is clear that the MSE of our proposed method and the variants (approximately 0.03) is much smaller than 

the MSE of ICSM, DSM, CARE and CFMD (approximately 0.2) on the Heart dataset. Again our proposed algorithm is 

advantageous over ICSM, DSM, CARE and CFMD on the Breast dataset. 

Fig. 21 demonstrates that again the proposed algorithm surpasses over other methods. The MSE of proposed method and 

the variants (approximately 0.03) is much smaller as compared to the MSE of ICSM, DSM (approx. 0.35), CARE 

(approx. 0.25) whereas CFMD (approximately 0.05) is comparably the same MSE as that of proposed method on the 

DMD dataset. 
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Fig. 21. MSE of DMD dataset between 8 algorithms 

 

Fig. 22. MSE of RHC dataset between 8 algorithms 

On the other, the large dataset RHC, one can see that MSE of ICSM, DSM and CFMD (approx. 0.18) is smaller than the 

MSE of our proposed method and the variants (approx. 0.25) in Fig. 22, while CARE has quite larger MSE value as 

compared to all other 7 algorithms in this Fig. 22 on the large dataset RHC. 
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Overall in all 5 typical datasets, we can observed that the MSE result of RHC dataset is not very well due to its large size 

which has much noise and choosing random parameters  is not fit for our proposed model. This is a big drawback of our 

proposed method. 

In the next figures, we have analyze all of the 8 algorithms including the proposed method on the 5 datasets Heart, RHC, 

Breast Cancer, Diabetes and DMD of average MSE values in the line graphs which provide a more detailed explanation 

to see the behavior of the algorithms.  

 

Fig. 23.  MSE of Heart dataset between 8 algorithms 

 

Fig. 24. MSE of Diabetes dataset between 8 algorithms 
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Fig. 25. MSE of Breast dataset between 8 algorithms 

 

Fig. 26. MSE of DMD dataset between 8 algorithms 
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Fig. 27. MSE of RHC dataset between 8 algorithms 

The MSE values of each algorithm have been plotted on a single dataset in each figure to check the deviation among 

them. 

Important Note: Since our model has 36 numbers of parameters in neutrosophication process. Therefore, it is very 

difficult to present them in tabular form due to excessive number of pages. Thus, we have uploaded all the codes of our 

paper on the site in the Appendix.  

Here, we only presented the deneutrosophication process in which we checked the result of MSE and computational time 

(Sec.) by changing the values of parameters , ,   .  Although the values of parameters are different but there is no 

much difference in the values of MSE and this confirming the stability of our proposed method. 

Table 15. The results of proposed method by parameters of deneutrosophication step 

Dataset Deneutrosophication parameters 

A. Heart 

       MSE Time (sec) 

0.2 0.3 0.5 0.236009 0.331406 

0.3 0.2 0.5 0.235996 0.231169 
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0.5 0.3 0.2 0.236031 0.206800 

0.5 0.2 0.3 0.236010 0.212506 

0.3 0.5 0.2 0.236043 0.184897 

0.2 0.5 0.3 0.236036 0.196846 

B. RHC 

 0.2 0.3 0.5 0.250000 71.887356 

0.3 0.2 0.5 0.250000 72.612241 

0.5 0.3 0.2 0.250000 73.629676 

0.5 0.2 0.3 0.250000 77.334187 

0.3 0.5 0.2 0.250000 74.391425 

0.2 0.5 0.3 0.250000 73.131208 

C. Diabetes 

 0.2 0.3 0.5 0.055733 0.409223 

0.3 0.2 0.5 0.038069 0.402370 

0.5 0.3 0.2 0.030184 0.414937 

0.5 0.2 0.3 0.042295 0.421679 

0.3 0.5 0.2 0.042529 0.399683 

0.2 0.5 0.3 0.034698 0.391552 

D. Breast 

 0.2 0.3 0.5 0.033555 35.283942 

0.3 0.2 0.5 0.033579 36.248034 

0.5 0.3 0.2 0.033472 36.425809 

0.5 0.2 0.3 0.033522 35.224594 

0.3 0.5 0.2 0.033464 35.228633 

0.2 0.5 0.3 0.033488 36.703062 

E. DMD 



 
 
 
 

 0.2 0.3 0.5 0.250000 0.136135 

0.3 0.2 0.5 0.250000 0.126467 

0.5 0.3 0.2 0.250000 0.117475 

0.5 0.2 0.3 0.250000 0.132521 

0.3 0.5 0.2 0.250000 0.111520 

0.2 0.5 0.3 0.25000 0.127623 

     

 
 
In the deneutrosophication process, the values of MSE are almost remains the same in each datasets by changing 

randomly the values of parameters ,  and   in all the 5 medical datasets. For example, the MSE values are 

approximately the same (0.236009, 0.235996, 0.030184, 0.236010, 0.236043, 0.236036) respectively in the Heart 

dataset by taking the values of 0.2,0.3,0.5,0.5,0.3,0.2  , 0.3, 0.2,0.3,0.2, 0.5,0.5   and 0.5, 0.5,0.2, 0.3,0.2,0.3  . 

However, in the computational time (Sec.) some noticeable changes can be seen respectively (0.331406, 0.231169, 

0.206800, 0.212506, 74.391425, 0.196846).  The analogous scenario can be seen  for the other 4 datasets of RHC, 

Diabetes, Breast and DMD where the values of MSE remains the same in each datasets while the computational time 

(Sec.) varies by changing the values of parameters which can be checked in the above Table 15. 

 

4.3 Analyzing the strength of algorithms by ANOVA test 

 
Next, we have tested all the 8 algorithms using ANOVA one-way test and Kruskal-Wallis test of variance by considering 

the MSE values among all 8 algorithms on the same dataset.  This scenario can be seen in Figs. 27, 28 and Tables 16 and 

17 respectively. 

With regards to the ANOVA one-way test, in the Fig. 27, the blue bar represents the comparison interval for mean 

strength for our propose algorithm while the red bar represents the comparison interval for mean strength for the rest of 7 

algorithms. There is no overlap between the blue bar and res bar which designate that the mean strength for proposed 

algorithm is significantly different from the rest of the algorithms. 



 
 
 
 

 

Fig. 27. Analyze variance one- way for 8 algorithms  

The ANOVA Table 16 demonstrates the between-groups variation (column) and within-groups variation (error). Here 

df  denote the total degrees of freedom which mean total number of observation minus 1. In this case we have

8 1 7df    .  SS  is the sum of squares due to each source which is 0.09069 whereas, MS represents the mean 

squared error which is equal to 0.01296SS
dfMS   . F F -statistic which is the ratio of mean square and we have 

1.21 and finally Prob > F means the probability that the F  -statistic can take a value greater than the computed test-

statistic value. In this case, we have the probability of 0.3252. Table 16 summarizes all these results of ANOVA test. 

                  Table 16. Result of analyze variance one- way for 8 algorithms by ANOVA test 

Source SS df MS F Prob>F 

Columns 0.09069 7 0.01296 1.21 0.3252 

Error 0.34232 32 0.0107   

Total 0.43301 39    

 

 



 
 
 
 

The Kruskal-Wallis is a non-parametric test which is the classical version of one-way ANOVA test. 

 

                          Fig 28: Result of analyze Kruskal-Wallis test for 8 algorithms 

In the Kruskal-Wallis test, the F  -statistic value in ANOVA one-way test is replaced by Chi-square statistic. All the 

results of Kruskal-Wallis can be seen in the Table 17 below to analyze the 8 algorithms by this test as well. 

                   Table 17. Result of analyze Kruskal-Wallis test for 8 algorithms 

Source SS df MS Chi-sq Prob>Chi-
sq 

Columns 1052.5 7 150.357 1.71 0.3587 

Error 4270.5 32 133.453   

Total 5323 39    

 

5. Conclusion 

    This paper is dedicated to develop a novel neutrosophic recommender system based on neutrosophic set for medical 

diagnosis problems which has the ability to predict more accurately during diagnosis process. First, we presented a 

single-criteria neutrosophic recommender system (SC-NRS) and a multi-criteria neutrosophic recommender system (MC-



 
 
 
 

NRS) and studied some of their basic properties. Further, we studied some algebraic operations of neutrosophic 

recommender system NRS such as union, complement, intersection etc. We also showed that these algebraic operations 

satisfy commutative, associative and distributive property. Based on these operations, we investigated the algebraic 

structures such as lattices, Kleen algebra, de Morgan algebra, Brouwerian algebra, BCK algebra, Stone algebra and MV 

algebra. In addition, we introduced several types of algebraic similarity measures which are basically based on these 

algebraic operations and studied some of their theoretic properties. Using the proposed similarity measure, we developed 

a predication formula. We proposed a new algorithm for medical diagnosis based on neutrosophic recommender system. 

Some interesting properties of the proposed methodology were also investigated. Finally to check the validity of the 

proposed methodology, we made experiments on the datasets Heart, RHC, Breast cancer, Diabetes and DMD. At the end, 

we presented the MSE and computational time (Sec.) by comparing the proposed algorithm with ICSM, DSM, CARE, 

CFMD, Variant 67, Variant 69, and Varian 71 both in tabular and graphical form to analyze the effectiveness and 

accuracy. Numerical examples have been given throughout in the paper. Finally we analyzed the strength of all 8 

algorithms by ANOVA one-way test and Kruskal-Wallis test. 

    A numerical example has been presented on neutrosophic medical diagnosis data in the evaluation section. The 

experiments were conducted carefully on 5 benchmark medical datasets of both the small and large size. The benchmark 

dataset HEART has been taken from UCI Machine Learning Repository (University of California) and the remaining 4 

benchmark datasets RHC (Right Heart Catheterization), Diabetes, Breast Cancer, DMD (Duchenne Muscular Dystrophy) 

have been taken from (Department of Biostatistics, Vanderbilt University). The proposed methodology has the ability to 

predict and recommend with several kinds of datasets including neutrosophic data than other standalone algorithms such 

as ICSM, DSM, CARE, CFMD and neutrosophic set. Our proposed method has the more accuracy than the other 

algorithms as well as can handle the limitation and drawbacks of the previous work. The Mean Square Error (MSE), 

computational time and the accuracy of diagnosis in the proposed methodology is worth of much attention and 

concentration which provides us a good evidence of the usefulness of the proposed algorithm in the paper. 

   Due to the significance and the importance of the proposed work, some more solid research can be conducted in this 

area which can extend the effectiveness of the proposed work to other fields such as time series forecasting. We are 

planning to develop the parameter estimation for neutrosophic recommender system by Bayesian approach and a multi-



 
 
 
 

characteristic neutrosophic recommender system for medical diagnosis. A hybrid algorithm between our proposed 

algorithm and neutrosophic clustering method which can enhance the accuracy can be considered in the near future. 

Appendix 

Source codes and experimental datasets are found at: 

http://se.mathworks.com/matlabcentral/fileexchange/55239-a-neutrosophic-recommender-system-for-medical-diagnosis-

based-on-algebraic-neutrosophic-measures  
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