
Matlab for Engineers:
Debugging - warnings and errors

Violeta Monasterio
Mauricio Villarroel

May 31st, 2012

Centre for Doctoral Training in Healthcare Innovation

Institute of Biomedical Engineering
Department of Engineering Science

University of Oxford

Supported by the RCUK Digital Economy Programme grant number EP/G036861/1

There are two types of errors

• Syntax errors: detected by matlab compiler

• Runtime errors: due to wrong logic used by
the programmer:

– Usually become apparent when one obtains
erroneous or unexpected results

– It is necessary to find the erroneous statements
that caused the error: debugging

• Example:

Techniques to track down errors

• Use “Code Analyzer” (mlint)

• Removing / deleting semicolons

• Executing function as a script

– The inputs can be fixed for which the results are
known

• Keyboard statement

• Matlab debugger

Using the Keyboard statement

• Keyboard stops the execution

• Allows the programmer to examine the local
workspace and execute statements from the
command prompt (whos, size,...)

Using the debugger

breakpoints
workspace selection

execution control

Debugging from the command line

Command Description

dbstop set breakpoint

dbclear clear breakpoint

dbclear all clear all breakpoints

dbstop if stop on warning, error or NaN/Inf

error NaN/Inf generation

dbstep single step execution

dbstep in step into a function

dbstep nlines execute one or more lines

dbcont continue execution

dbquit quit debugging

dbstack list function call stack

dbstatus list all breakpoints

dbtype list M-file with line numbers

dbdown / dbup change local workspace down / up

Preventing common errors

• Avoid dividing by zero: 1/x  1/(x + eps)

• Default else for if-elseif,

 Default otherwise for switch-case

if condition1,

 statement1;

elseif condition2

 statement2;

...

elseif conditionN,

 statementN;

else default_statement

end

Preventing common errors

• Check inputs: number, type, size

– assume default values where possible

– if a required input is missing: throw error and exit
(assert)

function write2file(varargin)

min_inputs = 2;

assert(nargin >= min_inputs, 'You must call function...

 %s with at least %d inputs', mfilename, min_inputs)

infile = varargin{1};

assert(ischar(infile), 'First argument must be a filename.')

fid = fopen(infile, 'w');

assert(fid > 0, 'Cannot open file %s for writing', infile)

fwrite(fid, varargin{2});

Handling errors

• Try / catch block

try

 [hrv, R_t] = rpeakdetect(ecg1); % QRS detector

catch err

 if(strcmp(err.identifier,...

 'MATLAB:catenate:dimensionMismatch'))

 try % try again with transposed input

 [hrv, R_t] = rpeakdetect(ecg1);

 catch

 rethrow(err) % rethrow original error

 end

 end

end

Keeping things tidy (onCleanup)

• Leave your program environment in a clean
state:
– close any open files

– restore the MATLAB path

– set the working folder back to its default

– make sure global variables are in the correct state

function openFileSafely(fileName)

fid = fopen(fileName, 'r');

c = onCleanup(@()fclose(fid));

s = fread(fid);

 .

 .

 .

end

Other tools

• In the editor -> Tools -> Compare against

– compares M-files, MAT-files and directories

Practice: QRS detector
(practice_5.m)

5.52 5.525 5.53 5.535 5.54

x 10
4

-0.4

-0.2

0

0.2

0.4

0.6

5.525 5.53 5.535 5.54

x 10
4

-0.5

0

0.5

5.522 5.524 5.526 5.528 5.53 5.532 5.534 5.536 5.538 5.54

x 10
4

0

0.1

0.2

0.3

0.4

0.5

5.525 5.53 5.535 5.54

x 10
4

0

0.2

0.4

0.6

0.8

1. Low-pass filter

2. Derivation

3. Squaring

4. Integration
5. Thresholding

