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Abstract. In the present paper, we consider a position vector of an arbitrary curve

in the three-dimensional Galilean space G3. Furthermore, we give some conditions on the

curvatures of this arbitrary curve to study special curves and their Smarandache curves.

Finally, in the light of this study, some related examples of these curves are provided and

plotted.
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1 Introduction

Discovering Galilean space-time is probably one of the major achievements of non rela-

tivistic physics. Nowadays Galilean space is becoming increasingly popular as evidenced

from the connection of the fundamental concepts such as velocity, momentum, kinetic

energy, etc. and principles as indicated in [7]. In recent years, researchers have begun to

investigate curves and surfaces in the Galilean space and thereafter pseudo-Galilean space.

In classical curve theory, the geometry of a curve in three-dimensions is essentially char-

acterized by two scalar functions, curvature κ and torsion τ as well as its Frenet vectors.

A regular curve in Euclidean space whose position vector is composed by Frenet frame

vectors on another regular curve is called a Smarandache curve. Smarandache curves have

been investigated by some differential geometers [2,8]. M. Turgut and S. Yilmaz defined a

special case of such curves and call it Smarandache TB2 curves in the space E4
1
[8]. They

studied special Smarandache curves which are defined by the tangent and second binor-

mal vector fields. Additionally, they computed formulas of this kind curves. In [2], the

author introduced some special Smarandache curves in the Euclidean space. He studied

Frenet-Serret invariants of a special case.

In the field of computer aided design and computer graphics, helices can be used for

the tool path description, the simulation of kinematic motion or the design of highways,

etc. [12]. The main feature of general helix or slope line is that the tangent makes a
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constant angle with a fixed direction in every point which is called the axis of the general

helix. A classical result stated by Lancret in 1802 and first proved by de Saint Venant in

1845 says that: A necessary and sufficient condition that a curve be a general helix is that

the ratio (κ/τ) is constant along the curve, where κ and τ denote the curvature and the

torsion, respectively. Also, the helix is also known as circular helix or W-curve which is a

special case of the general helix [11].

Salkowski (resp. Anti-Salkowski) curves in Euclidean space are generally known as family

of curves with constant curvature (resp. torsion) but nonconstant torsion (resp. curva-

ture) with an explicit parametrization.They were defined in an earlier paper [13].

In this paper, we compute Smarandache curves for a position vector of an arbitrary curve

and some of its special curves. Besides, according to Frenet frame T, N, B of the consid-

ered curves in the Galilean space G3, the meant Smarandache curves TN, TB and TNB

are obtained. We hope these results will be helpful to mathematicians who are specialized

on mathematical modeling.

2 Preliminaries

Let us recall the basic facts about the three-dimensional Galilean geometry G3. The

geometry of the Galilean space has been firstly explained in [10]. The curves and some

special surfaces in G3 are considered in [3]. The Galilean geometry is a real Cayley-

Klein geometry with projective signature (0, 0,+,+) according to [5]. The absolute of

the Galilean geometry is an ordered triple (w, f, I ) where w is the ideal (absolute) plane

(x0 = 0), f is a line in w (x0 = x1 = 0) and I is elliptic ((0 : 0 : x2 : x3) −→ (0 : 0 :

x3 : −x2)) involution of the points of f . In the Galilean space there are just two types of

vectors, non-isotropic x(x, y, z) (for which holds x 6= 0). Otherwise, it is called isotropic.

We do not distinguish classes of vectors among isotropic vectors in G3. A plane of the

form x = const. in the Galilean space is called Euclidean, since its induced geometry is

Euclidean. Otherwise it is called isotropic plane. In affine coordinates, the Galilean inner

product between two vectors P = (p1, p2, p3) and Q = (q1, q2, q3) is defined by [4]:

〈P,Q〉G3
=

{

p1q1 if p1 6= 0 ∨ q1 6= 0,

p2q2 + p3q3 if p1 = 0 ∧ q1 = 0.
(2.1)
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And the cross product in the sense of Galilean space is given by:

(P ×Q)G3
=
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; if p1 = 0 ∧ q1 = 0.

(2.2)

A curve η(t) = (x(t), y(t), z(t)) is admissible in G3 if it has no inflection points (η̇(t)×η̈(t) 6=

0) and no isotropic tangents (ẋ(t) 6= 0). An admissible curve in G3 is an analogue of a

regular curve in Euclidean space. For an admissible curve η : I →G3, I ⊂ R parameterized

by the arc length s with differential form dt = ds, given by

η(s) = (s, y(s), z(s)). (2.3)

The curvature κ(s) and torsion τ(s) of η are defined by

κ(s) =
∥

∥

∥
η
′′

(s)
∥

∥

∥
=
√

y′′(s)2 + z′′(s)2,

τ(s) =
det(η′(s), η′′(s), η′′′(s))

κ2(s)
. (2.4)

Note that an admissible curve has non-zero curvature. The associated trihedron is given

by

T(s) = η
′

(s) = (1, y
′

(s), z
′

(s)),

N(s) =
η
′′

(s)

κ(s)
=

(0, y
′′

(s), z
′′

(s))

κ(s)
,

B(s) =
(0,−z

′′

(s), y
′′

(s))

κ(s)
. (2.5)

For derivatives of the tangent T, normal N and binormal B vector field, the following

Frenet formulas in the Galilean space hold [10]









T

N

B









′

=









0 κ 0

0 0 τ

0 −τ 0

















T

N

B









. (2.6)

From (2.5) and (2.6), we derive an important relation

η′′′(s) = κ′(s)N(s) + κ(s)τ(s)B(s).

In [8] authors introduced:

Definition 2.1 A regular curve in Minkowski space-time, whose position vector is com-

posed by Frenet frame vectors on another regular curve, is called a Smarandache curve.
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In the light of the above definition, we adapt it to admissible curves in the Galilean space

as follows:

Definition 2.2 let η = η(s) be an admissible curve in G3 and {T,N,B} be its moving

Frenet frame. Smarandache TN,TB and TNB curves are respectively, defined by

ηTN =
T+N

‖T+N‖
,

ηTB =
T+B

‖T+B‖
,

ηTNB =
T+N+B

‖T+N+B‖
. (2.7)

3 Smarandache curves of an arbitrary curve in G3

In this section, we consider the position vector of an arbitrary curve with curvature κ(s)

and torsion τ(s) in the Galilean space G3 which introduced by [2] as follows

r(s) =

(

s,

∫
(
∫

κ(s) cos

(
∫

τ(s)ds

)

ds

)

ds,

∫
(
∫

κ(s) sin

(
∫

τ(s)ds

)

ds

)

ds

)

.

(3.1)

The derivatives of this curve are respectively, given by

r′(s) =

(

1,

∫

κ(s) cos

(
∫

τ(s) ds

)

ds,

∫

κ(s) sin

(
∫

τ(s) ds

)

ds

)

,

r′′(s) =

(

0, κ(s) cos

(∫

τ(s) ds

)

, κ(s) sin

(∫

τ(s) ds

))

,

r′′′(s) =

(

0, κ′(s) cos
(∫

τ(s) ds
)

− κ(s)τ(s) sin
(∫

τ(s) ds
)

,

κ′(s) sin
(∫

τ(s) ds
)

+ κ(s)τ(s) cos
(∫

τ(s) ds
)

)

. (3.2)

The frame vector fields of r are as follows

Tr =

(

1,

∫

κ(s) cos

(∫

τ(s) ds

)

ds,

∫

κ(s) sin

(∫

τ(s) ds

)

ds

)

,

Nr =

(

0, cos

(
∫

τ(s) ds

)

, sin

(
∫

τ(s) ds

))

,

Br =

(

0,− sin

(∫

τ(s) ds

)

, cos

(∫

τ(s) ds

))

. (3.3)

By Definition (2.2), the TN, TB and TNB Smarandache curves of r are respectively,

written as

rTN =

(

1, cos
(∫

τ(s) ds
)

+
∫

κ(s) cos
(∫

τ(s) ds
)

ds,
∫

κ(s) sin
(∫

τ(s) ds
)

ds+ sin
(∫

τ(s) ds
)

)

,
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rTB =

(

1,
∫

κ(s) cos
(∫

τ(s) ds
)

ds− sin
(∫

τ(s) ds
)

,

cos
(∫

τ(s) ds
)

+
∫

κ(s) sin
(∫

τ(s) ds
)

ds

)

,

rTNB =









1, cos
(∫

τ(s) ds
)

+
∫

κ(s) cos
(∫

τ(s) ds
)

ds

− sin
(∫

τ(s) ds
)

, cos
(∫

τ(s) ds
)

+
∫

κ(s) sin
(∫

τ(s) ds
)

ds+ sin
(∫

τ(s) ds
)









. (3.4)

4 Smarandache curves of some special curves in G3

4.1 Smarandache curves of a general helix

Let α(s) be a general helix in G3 with (τ/κ = m = const.)which can be written as

α(s) =

(

s, 1

m

∫

sin
(

m
∫

κ(s) ds
)

ds,
−1

m

∫

cos
(

m
∫

κ(s) ds
)

ds

)

. (4.1)

Then α′, α′′, α′′′ for this curve are respectively, expressed as

α′(s) =

(

1,
1

m
sin

(

m

∫

κ(s) ds

)

,
−1

m
cos

(

m

∫

κ(s) ds

))

,

α′′(s) =

(

0, κ(s) cos

(

m

∫

κ(s) ds

)

, κ(s) sin

(

m

∫

κ(s) ds

))

,

α′′′(s) =















0, κ′(s) cos
(

m
∫

κ(s) ds
)

−

m κ2(s) sin
(

m
∫

κ(s) ds
)

,

κ′(s) sin
(

m
∫

κ(s) ds
)

+

m κ2(s) cos
(

m
∫

κ(s) ds
)















. (4.2)

The moving Frenet vectors of α(s) are given by

Tα =

(

1,
1

m
sin

(

m

∫

κ(s) ds

)

,
−1

m
cos

(

m

∫

κ(s) ds

))

,

Nα =

(

0, cos

(

m

∫

κ(s) ds

)

, sin

(

m

∫

κ(s) ds

))

,

Bα =

(

0,− sin

(

m

∫

κ(s) ds

)

, cos

(

m

∫

κ(s) ds

))

. (4.3)

From which, Smarandache curves are obtained

αTN =

(

1, cos
(

m
∫

κ(s) ds
)

+ 1

m
sin
(

m
∫

κ(s) ds
)

,
−1

m
cos
(

m
∫

κ(s) ds
)

+ sin
(

m
∫

κ(s) ds
)

)

,

αTB =

(

1,−

(

m− 1

m

)

sin

(

m

∫

κ(s) ds

)

,

(

m− 1

m

)

cos

(

m

∫

κ(s) ds

))

,

αTNB =

(

1, cos
(

m
∫

κ(s) ds
)

−
(

m−1

m

)

sin
(

m
∫

κ(s) ds
)

,
(

m−1

m

)

cos
(

m
∫

κ(s) ds
)

+ sin
(

m
∫

κ(s) ds
)

)

. (4.4)
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4.2 Smarandache curves of a circular helix

Let β(s) be a circular helix in G3 with (τ = a = const., κ = b = const.) which can be

written as

β(s) =

(

s, a

∫
(
∫

cos(bs) ds

)

ds, a

∫
(
∫

sin(bs) ds

)

ds

)

. (4.5)

For this curve, we have

β′(s) =
(

1,
a

b
sin(bs),−

a

b
cos(bs)

)

,

β′′(s) = (0, a cos(bs), a sin(bs)) ,

β′′′(s) = (0,−ab sin(bs), ab cos(bs)) . (4.6)

Making necessary calculations from above, we have

Tβ =
(

1,
a

b
sin(bs),−

a

b
cos(bs)

)

,

Nβ = (0, cos(bs), sin(bs)) ,

Bβ = (0,− sin(bs), cos(bs)) . (4.7)

Considering the last Frenet vectors, the TN, TB and TNB Smarandache curves of β are

respectively, as follows

βTN =
(

1, cos(bs) +
a

b
sin(bs),−

a

b
cos(bs) + sin(bs)

)

,

βTB =

(

1,

(

a− b

b

)

sin(bs),

(

b− a

b

)

cos(bs)

)

,

βTNB =

(

1, cos(bs) +
(

a−b
b

)

sin(bs),
(

b−a
b

)

cos(bs) + sin(bs)

)

. (4.8)

4.3 Smarandache curves of a Salkowski curve

Let γ(s) be a Salkowski curve in G3 with (τ = τ(s), κ = a = const.) which can be written

as

γ(s) =

(

s, a
∫ (∫

cos
(∫

τ(s) ds
)

ds
)

ds,

a
∫ (∫

sin
(∫

τ(s) ds
)

ds
)

ds

)

. (4.9)

If we differentiate this equation three times, one can obtain

γ′(s) =

(

1, a

∫

cos

(
∫

τ(s) ds

)

ds , a

∫

sin

(
∫

τ(s) ds

)

ds

)

,

γ′′(s) =

(

0, a cos

(∫

τ(s) ds

)

, a sin

(∫

τ(s) ds

))

,

γ′′′(s) =

(

0,−a τ(s) sin
(∫

τ(s) ds
)

,

a τ(s) cos
(∫

τ(s) ds
)

)

. (4.10)
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In addition to that, the tangent, principal normal and binormal vectors of γ are in the

following forms

Tγ =

(

1, a

∫

cos

(
∫

τ(s) ds

)

ds, a

∫

sin

(
∫

τ(s) ds

)

ds

)

,

Nγ =

(

0, cos

(∫

τ(s) ds

)

, sin

(∫

τ(s) ds

))

,

Bγ =

(

0,− sin

(
∫

τ(s) ds

)

, cos

(
∫

τ(s) ds

))

. (4.11)

Furthermore, Smarandache curves for γ are

γTN =

(

1, cos
(∫

τ(s) ds
)

+ a
∫

cos
(∫

τ(s) ds
)

ds,

a
∫

sin
(∫

τ(s) ds
)

ds+ sin
(∫

τ(s) ds
)

)

,

γTB =

(

1, a
∫

cos
(∫

τ(s) ds
)

ds− sin
(∫

τ(s) ds
)

,

cos
(∫

τ(s) ds
)

+ a
∫

sin
(∫

τ(s) ds
)

ds

)

,

γTNB =









1, cos
(∫

τ(s) ds
)

+ a
∫

cos
(∫

τ(s) ds
)

ds

− sin
(∫

τ(s) ds
)

, cos
(∫

τ(s) ds
)

+

a
∫

sin
(∫

τ(s) ds
)

ds+ sin
(∫

τ(s) ds
)









. (4.12)

4.4 Smarandache curves of Anti-Salkowski curve

Let δ(s) be Anti-Salkowski curve in G3 with (κ = κ(s), τ = a = const.) which can be

written as

δ(s) =

(

s,
∫ (∫

κ(s) cos(as)ds
)

ds,
∫ (∫

κ(s) sin(as)ds
)

ds

)

. (4.13)

It gives us the following derivatives

δ′(s) =

(

1,

∫

κ(s) cos(as)ds,

∫

κ(s) sin(as)ds

)

,

δ′′(s) = (0, κ(s) cos(as), κ(s) sin(as)) ,

δ′′′(s) =

(

0, κ′(s) cos(as)− a κ(s) sin(as),

κ′(s) sin(as) + a κ(s) cos(as)

)

. (4.14)

Further, we obtain the following Frenet vectors T, N, B in the form

Tδ =

(

1,

∫

κ(s) cos(as)ds,

∫

κ(s) sin(as)ds

)

,

Nδ = (0, cos(as), sin(as)) ,

Bδ = (0,− sin(as), cos(as)) . (4.15)

Thus the above computations of Frenet vectors are give Smarandache curves by

δTN =

(

1, cos(as) +

∫

κ(s) cos(as) ds,

∫

κ(s) sin(as) ds+ sin(as)

)

7



δTB =

(

1,

∫

κ(s) cos(as) ds− sin(as), cos(as) +

∫

κ(s) sin(as)ds

)

δTNB =

(

1, cos(as) +
∫

κ(s) cos(as) ds− sin(as),

cos(as) +
∫

κ(s) sin(as)ds + sin(as)

)

(4.16)

5 Examples

Example 5.1 Let α : I −→ G3 be an admissible curve and κ 6= 0 of class C2, τ 6= 0 of

calss C1 its curvature and torsion, respectively written as

α(s) =
(

s,
s

10
(−2 cos(2 ln s) + sin(2 ln s)) ,−

s

10
(cos(2 ln s) + 2 sin(2 ln s))

)

By differentiation, we get

α′(s) =

(

1, cos(ln s) + sin(ln s),−
1

2
cos(2 ln s)

)

,

α′′(s) =

(

0,
cos(2 ln s)

s
,
sin(2 ln s)

s

)

,

α′′′(s) =

(

0,−
cos(2 ln s) + 2 sin(2 ln s)

s2
,
2 cos(2 ln s)− sin(2 ln s)

s2

)

.

Using (2.5) to obtain

Tα =

(

1, cos(ln s) sin(ln s),−
1

2
cos(2 ln s)

)

,

Nα = (0, cos(2 ln s), sin(2 ln s)) ,

Bα = (0,− sin(2 ln s), cos(2 ln s)) .

The natural equations of this curve are given by

κα =
1

s
, τα =

2

s
.

Thus, the Smarandache curves of α are respectively, given by

αTN =

(

1, cos(2 ln s) + cos(ln s) sin(ln s),−
1

2
cos(2 ln s) + sin(2 ln s)

)

,

αTB =

(

1,− cos(ln s) sin(ln s),
1

2
cos(2 ln s)

)

,

αTNB =

(

1, cos(2 ln s)− cos(ln s) sin(ln s),
1

2
cos(2 ln s) + sin(2 ln s)

)

.

The curve α and their Smarandache curves are shown in Figures 1,2.
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Figure 1: The general helix α in G3 with κ = 1
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Figure 2: From left to right, the TN, TB and TNB Smarandache curves of α.

Example 5.2 For an admissible curve δ(s) in G3 parameterized by

δ(s) =

(

s,
e−s

25
(−3 cos(2s)− 4 sin(2s)),

e−s

25
(4 cos(2s)− 3 sin(2s))

)

,

we use the derivatives of δ; δ′, δ′′, δ′′′ to get the associated trihedron of δ as follows

Tδ =

{

1,−
e−s

5
(cos(2s)− 2 sin(2s)),−

e−s

5
(2 cos(2s) + sin(2s))

}

,

Nδ = (0, cos(2s), sin(2s)) ,

Bδ = (0,− sin(2s), cos(2s)) .

Curvature κ(s) and torsion τ(s) are obtained as follows

κδ = e−s, τδ = 2.

According to the above calculations, Smarandache curves of δ are

δTN =

(

1, cos(2s)− 1

5
e−s(cos(2s)− 2 sin(2s)),

sin(2s)− 1

5
e−s(2 cos(2s) + sin(2s))

)

,

δTB =

(

1,− e−s

5
(cos(2s) + (−2 + 5es) sin(2s)) ,

cos(2s)− e−s

5
(2 cos(2s) + sin(2s))

)

,

δTNB =

(

1, cos(2s)− e−s

5
(cos(2s)− 2 sin(2s))− sin(2s),

cos(2s) + sin(2s)− e−s

5
(2 cos(2s) + sin(2s))

)

.
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Figure 3: The Anti-Salkowski curve δ in G3 with κδ = e−s and τδ = 2.
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Figure 4: The TN, TB and TNB Smarandache curves of δ.

6 Conclusion

In the three-dimensional Galilean space, Smarandache curves of an arbitrary curve and

some special curves such as helix, circular helix, Salkowski and Ant-Salkowski curves have

been studied. To confirm our main results, two examples (helix and Anti-Salkowski curves)

have been given and illustrated.
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