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Abstract—Interaction between users in online social networks 
plays a key role in social network analysis. One on important 
types of social group is full connected relation between some 
users, which known as clique structure. Therefore finding a 
maximum clique is essential for some analysis. In this paper, 
we proposed a new method using ant colony optimization 
algorithm and particle swarm optimization algorithm. In the 
proposed method, in order to attain better results, it is 
improved process of pheromone update by particle swarm 
optimization. Simulation results on popular standard social 
network benchmarks in comparison standard ant colony 
optimization algorithm are shown a relative enhancement of 
proposed algorithm.  

Keywords- social network analysis; clique problem; ACO; 
PSO. 

I.  INTRODUCTION 

Today online social networks are formed a new type of 
life due to some facilities and services for a wide ranges of 
ages such as young to old. There is no doubt about either 
influence or growth of social networks. Therefore, several 
many of researchers are focused on social network analysis 
aspects. It seems to be useful, studying structure of relation 
between users in social networks. One of the important user 
group structure associated with a full connected of some 
users, which known as clique structure [1]. Several 
applications of finding clique are reported by researchers 
such as social networks analysis [2], online shopping 
recommendation [3] and evolution of social networks [12]. 
In literature, finding clique is categorized as NP-complete 
problems in graph theory [4]. 

Evolutionary algorithms (EAs) are stochastic 
optimization techniques based on the principles of natural 
evolution which applied several NP problems [13-15] such 
as clique problem. Various types of algorithms have been 
presented to solve clique problem, while evolutionary 
algorithms such as genetic algorithm (GA) and ant colony 
optimization (ACO) have been used more. Popular algorithm 
named Ant-clique algorithm, which make a maximal clique 
using sequential greedy heuristics based on ant colony 
optimization by adding vertices to the partial cliques 
iteratively [5]. Besides, another ACO based method 

hybridized by simulated annealing (SA) [6] and tabu search 
[7]. Although new hybrid algorithm obtained good results, 
they have a high complexity in practice.  

In this study, Particle Swarm Optimization (PSO) 
algorithm has been applied as the heuristic to enhance the 
performance of ACO algorithm for finding a maximal clique 
in social network graph. Simulation results on social network 
benchmark are shown the better results in comparison with 
standard ACO algorithm. In the rest of this paper, section II 
and III are consisted of ACO and PSO introduction 
respectively, in section IV, proposed method is discussed. 
Simulation results on social networks datasets are reported in 
section V.   

II. ANT COLONY OPTIMIZATION (ACO) 

Ant Colony optimization (ACO) algorithm works well 
for solving several discrete problems. The basic algorithm of 
ACO was proposed by Dorigo as a multi agent approach in 
order to solve traveling salesman problem (TSP) [8]. The 
main idea of ACO algorithm is inspired from the behavior of 
seeking out food by colonies of ants. Ants search their 
environment randomly to find food. They return some of the 
food to their nest once found a food and leave pheromone in 
their return path. The amount of pheromone left on their path 
depends on quality and size of the food source and it 
evaporates gradually. Remaining pheromones will persuade 
other ants to follow the path and just after a short time, 
majority of the ants will trace the shorter path which is 
marked with stronger pheromone. Procedure of ACO 
algorithm has been presented in Figure 1. 

 
Procedure ACO_MetaHeuristic 
    while(termination_conditions) 
       generateSolutions() 
       daemonActions() {Optional} 
       pheromoneUpdate() 
    end while 
  end procedure 

Figure 1.  Pseudo-code of ACO algorithm [9] 

During running of the algorithm, ants first produce 
different solutions randomly in the main loop after 
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initialization. Afterwards, the solutions are improved by 
updating the pheromones and using a local search optionally. 
According to the problem and graph traverse, pheromones 
set on vertices or edges of graph. Traversing the edge 
between vertices i and j depends on the probability of edge 
which is calculated as below: 
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Where, pij

k is probability of traversing the edge between 
vertices i and j, while τij

α is amount of pheromone present on 
the above mentioned edge. An optional local search can 
contribute to improvement of the results prior to updating the 
pheromones. However, method of updating the pheromones 
can be like this: 
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Where, ρ is evaporation rate of pheromone, τij

t+1 is 
amount of new pheromone for edge between i and j, τij

t is 
amount of current pheromone for edge between i and j, Δτij

t 
is amount of reinforced pheromone for proper solutions 
which can be calculated from the following equation. 
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III. PARTICLE SWARM OPTIMIZATION (PSO) 

Particle swarm optimization (PSO) is a population based 
optimization technique developed by Eberhart and Kennedy 
in 1995, which inspired from social behavior of birds 
seeking for food. In this method, group of birds seek for food 
in a specified space randomly. Birds follow the bird with the 
shortest distance to food in order to find position of the food 
[10]. 

Every solution in PSO algorithm which is called a 
particle corresponds to a bird in their pattern of social 
movement. Each particle has a value of fitness calculated by 
a fitness function. A particle bears greater fitness once it is 
located in a closer position to the target (food in the model of 
moving birds) within search space. Moreover, any particle 
represents a speed which is responsible to direct the particle. 
A particle will keep going through the problem space by 
following the optimum particle at current state [16]. 

A group of particles (solutions) are created randomly at 
the beginning of particle swarm optimization algorithm and 
they try to find the optimum solution through being updated 
among generations. A particle is updated in each step using 
the best local and global solution. The best position a particle 
has ever succeeded to reach is called pbest and saved while 
the best position achieved by the population of particles is 
named gbest. Velocity and location of each particle will be 
updated using Equations (4) and (5) in each step of 

implementing the algorithm after finding the best local and 
global values. 

(4)    
i

t +1 t t t t t
i i 1 1 i i 2 2 iv = wv + c r pbest - x + c r gbest - x

 

(5) t +1 t t
i i ix = x + v i = 1, ..., m 

Where, vi is the velocity of ith particle and xi is the current 
position of it. r1 and r2 are random values in the range of 
(0,1). c1 and c2 are learning parameters usually assumed 
equal (c1=c2). w is inertia weight which is considered as a 
constant or variable coefficient as random, linear, nonlinear 
and adaptive [11]. PSO has been used in various applications 
and this research utilizes it to improve amount of 
pheromones. 

 

IV. PROPOSED ALGORITHM 

High complexity was a major drawback of the previous 
heuristic methods for solving the clique problem since it 
significantly adds to the volume of calculations. All methods 
provided so far apply the following relation to calculate Δτ 
although the proposed algorithm take the advantage of PSO 
algorithm to improve results and reduce complexity. 
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This algorithm has used the hybrid of ACO and PSO 
algorithms in order to find the maximal clique in a graph. For 
this purpose, some ants are placed initially on the graph and 
follow paths to find the maximal clique. After evaporation of 
existing pheromones, proper path is updated by its amount 
on the edges using particle swarm optimization algorithm. 
This procedure is repeated until the optimum clique is 
obtained on the desired graph. Determining the amount of 
pheromone through PSO is such that the total pheromone 
measured at this step and the total pheromone associated 
with the best answer up to present step will be calculated 
taking into account the amount of pheromones at current 
step. Now, Δτ for the reinforced pheromone of the desired 
clique will be calculated with PSO algorithm using the 
following equation: 

 
(7) 1    t t tV 

 

Where, Δτij
t is amount of reinforcement for current 

pheromone and Δτij
t+1 is amount of reinforcement for new 

pheromone, while Vt gives the amount of change which can 
be achieved from this equation: 

 
(8) t+1 t

1 1 2 2 3V = c r (pτ -Δτ) + c r (gτ -Δτ) + c V 

 
Where, Vt+1 is the new value of Vt. r1 and r2 are two 

random values within range of (0,1), while c1, c2 and c3 are 
learning parameters (c1=c2=c3). pτ and gτ are considered as 
the pheromone correspondent with the best current clique 
and the best clique found so far, respectively. In this case, 
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discovering the changed amount of pheromone will be 
implemented much more intelligent. 

Taking into consideration the mentioned items, general 
routine of proposed the algorithm can be summarized as 
below: 

1. Initialize the parameters 
2. Repeat steps 3 to 5 until reaching conditions of 

termination 

3. Traverse the graph by ants and create sub-graphs as 
clique 

4. Evaluate the obtained cliques 
5. Update pheromones by PSO according to equation 

(8) 
6. End. 

 

V. SIMULATION RESULTS 

For evaluation of the proposed method, experiments applied 
on some popular social network datasets. The description of 
popular social networks is listed in the table 1. 

TABLE I.  SOCIAL NETWORKS DESCRIPTIONS 

 Dataset Nodes Edges 
I Zachary's karate club 34 78 

II 
Common adjective and nouns 
in "David Copperfield" 

112 425 

III 
Neural network of the 
nematode C. Elegans 

297 8479 

IV 
social network of dolphins, 
Doubtful Sound, New Zealand 

62 159 

V 
Pajek network: Erdos 
collaboration network 971 

472 1314 

VI 
Pajek network: Erdos 
collaboration network 991 

492 1417 

VII 
Pajek network: World Soccer, 
Paris 1998 

35 295 

VIII 
Pajek network: graph and 
digraph glossary 

72 118 

IX 
Pajek network: Slovenian 
journals 1999-2000 

124 823168 

X 
co-authoship of scientists in 
network theory & experiments 

1589 1190 

XI 
Pajek network: SmaGri 
citation network 

1059 4919 

XII 
email interchange network, 
Univ. of Rovira i Virgili, 
Tarragona 

1133 5451 

 
Topology of zachary’s karate club and social network of 

dolphins are presented in figure 2 and 3 respectively as the 
most popular of the social network datasets. 

 

 
Figure 2.  Zachary's karate club social network 

 
Figure 3.  Dolphins social network 

The setting of parameters for experiment is listed in 
below. It is noted that choosing different values for 
improving the results is also possible. 

In this paper has used 30 ants with ρ=0.95, Φ=0.0002, 
Δτinitial=0, τmin=0.01, τmax=6. 

Meanwhile, parameters of PSO were initialized as V=0, 
c1=c3=0.3, and c2=1-c1. α and ρ were given the following 
values based on the experiments done and t is the number of 
iterations. 

(9) 
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 Average of 10 independent runs with 1000 iterations for 
each implementation have been listed in table 2 and table 3 
for proposed method (ACO-PSO) and ACO algorithm 
respectively, including the maximum (Best), average (Avg), 
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standard deviation (Std) and run-time of algorithm for 
finding a maximum clique in each graph datasets. 

TABLE II.  SIMULATION RESULTS OF ACO-PSO FOR FINDING A 
MAXIMUM CLIQUE  

Run-time Std Avg Best Graph 
11.84 0.070 4.995 5 I 
23.37 0.412 4.783 5 II 
49.47 1.482 5.543 7 III 
15.69 0.044 4.998 5 IV 

105.11 0.6673 5.848 7 V 
111.89 0.819 6.011 7 VI 
10.742 0.322 4.118 5 VII 
12.94 0.121 3.985 4 VIII 
22.07 0.299 3.185 4 IX 

118.59 0.371 2.253 3 X 
481.34 0.765 6.409 8 XI 
529.04 2.241 7.997 12 XII 

TABLE III.  SIMULATION RESULTS OF ACO FOR FINDING A 
MAXIMUM CLIQUE  

Run-time Std Avg Best Graph 
64.03 0.082 4.991 5 I 
355.81 0.495 4.709 5 II 
1121.71 1.568 5.521 7 III 
132.12 0.094 4.991 5 IV 
5853.59 0.861 8.753 7 V 
6281.35 0.924 5.961 7 VI 
55.15 0.293 3.910 5 VII 
153.66 0.232 3.943 4 VIII 
438.87 0.316 3.017 4 IX 
2142.03 0.434 2.175 3 X 
9153.65 0.815 6.025 8 XI 

11109.17 2.374 7.562 12 XII 

 
Table 2 and table 3 indicate that the proposed method 

(ACO-PSO) produces better results in comparison with ACO 
method since the proposed approach is an appropriate 
method to update pheromones of the traversed paths for ants 
in calculating the optimum clique.  

VI. CONCLUSION 

A new hybrid algorithm has been presented in this paper 
using ACO and PSO (ACO-PSO) for finding a maximum 
clique in social networks. Traditional algorithms suffered 
high complexity while the hybrid proposed algorithm just 
change the process of update pheromone. It has been shown 
that the new algorithm was able to improve the basic ACO 
algorithm as simply and quickly. Simulation results on 
popular social networks datasets indicate the improved 
results for proposed algorithm in comparison with the ACO 
algorithm. 
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