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Abstract— Level set methods have been mostly used in image 

Processing and computer vision applications. In conventional 

level set function generally generates the irregularities during 

its evolution, which may increases numerical errors and looses 

the stability of the evolution. Hence degraded Level set function 

periodically replace by numerical remedy called reinitialization 

with a signed distance function. However, the reinitialization 

raises serious problems as when and how it should be 

performed, but also affects numerical accuracy. To avoid this, 

in proposed method level set evolution is designed as the 

gradient flow that minimizes energy function with a distance 

regularization term and an external energy that drives the 

motion of the zero level set toward desired locations. The 

distance regularization term is defined with a potential function 

such as Single Well, Double Well, Triple Well, Quad Well & 

Huber such that the derived level set evolution has 

forward-and-backward (FAB) diffusion effect, which is able to 

maintain a desired shape of the level set function, particularly a 

signed distance profile near the zero level set. This proposes a 

new type of level set evolution called distance regularized level 

set evolution (DRLSE). The distance regularization of level set 

function eliminates the need for reinitialization and reduced the 

induced numerical errors. DRLSE uses the more general and 

efficient initialization of the level set function which able to use 

relatively large time steps in the finite difference scheme to 

reduce the number of iterations, while ensuring sufficient 

numerical accuracy. To demonstrate the effectiveness of the 

DRLSE formulation, we apply it to an edge-based active 

contour model for image segmentation 

 
Index Terms—Distance regularized level set function, 

Potential function, Reinitialization.  

 

I. INTRODUCTION 

The Level set method was introduced by Osher & Sethian [2] 

in 1987 to capture dynamic interfaces and shapes. The basic 
idea of the level set method is to represent a contour as the 

zero level set of a higher dimensional function, called a level 

set function (LSF), and formulate the motion of the contour 

as the evolution of the level set function. Level set method 

able to represent contours of complex topology and are able 

to handle topological changes, such as splitting and merging, 

in a natural and efficient way, which is not allowed in 

parametric active contour models [7], [9], [10] unless extra 

indirect procedures are introduced in the implementations. 

Also another desirable feature of level set methods is that 

numerical computations can be performed on a fixed 

Cartesian grid without having to parameterize the points on a 
contour as in parametric active contour models. Level set 

methods are used to solve a wide range of scientific and 

engineering problems, their applications have been suffer 

with the irregularities of the Level set function. In 

conventional level set methods, the LSF develops 

irregularities during its evolution, which generates the 

numerical errors and looses the stability of the level set 

evolution. This problem is avoided by numerical remedy, 

called as reinitialization [20], [21], Reinitialization is 

achieved by periodically stopping the evolution and 

reshaping the degraded LSF as a signed distance function 

[22], [21]. The proposed variationl level set formulation with 

a distance regularization term with an external energy term 

that drive the motion of the zero level contour toward desired 

locations. The distance regularization term is defined with a 

potential function such that it forces the gradient magnitude 
of the level set function to one of its minimum points, for 

maintaining the desired shape of the level set function, 

particularly a signed distance profile near its zero level set. 

As Potential function, single well, double well, triple Well, 

quad Well & huber function is used. Where well indicates the 

minimum point & number indicates the number of 

repetitions. In proposed method, we provide a double-well, 

triple well, quad well & Huber potential for the distance 

regularization term. The level set evolution is derived by 

gradient flow that minimizes the energy functional. 

Regularity of the LSF is maintained by a forward- 

and-backward (FAB) diffusion derived from the distance 
regularization term. As a result, the distance regularization 

eliminates the need for reinitialization. To demonstrate the 

effectiveness of the DRLSE formulation, we apply it to an 

edge-based active contour model. Due to the distance 

regularization term, the DRLSE can be implemented with a 

simpler and more efficient numerical scheme in both full 

domain and narrowband implementations than conventional 

level set formulations. Moreover, relatively large time steps 

can be used to significantly reduce the number of iterations 

and computation time, while ensuring sufficient numerical 

accuracy. 
 

II. PROPOSED DISTANCE REGULARIZED LEVEL SET 

FUNCTION (DRLSE) 

In DRLSE, Level set function designed as the gradient flow 

that minimizes energy function with a distance regularization 

term and an external energy that drives the motion of the zero 

level set toward desired locations. The distance 

regularization term is defined with a potential function such 
as Single Well, Double Well, Triple Well, Quad Well & 

Huber such that the derived level set evolution has 

forward-and-backward (FAB) diffusion effect, which is able 

to maintain a desired shape of the level set function, 

particularly a signed distance profile near the zero level set. 

Let ∅: Ω →  ℛ be a LSF defined on a domain Ω . Energy 

function ε(∅) defined as as 

ε ∅ = μℛp ∅ + εext  ∅            (1) 
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Where ε ∅  is energy Function,  ℛp ∅  is level set 

regularization term defined as follows & εext  ∅  is external 

energy that depends upon the data of interest & μ is constant 

whose value is greater than zero.  

The initial Level set function ∅ defined on a domain Ω as 

shown below, 

 
Fig. 1 Initial Level Set Function ∅ for Two Cell Image. 

 

The level set regularization term ℛp ∅   is defined by 

following equation, 

ℛp ∅ =  p(|∇∅|)
 

Ω

dX           (2) 

Where p is a potential function. The external energy 

εext  ∅  is designed to achieve a minimum when the zero 

level set of the LSF is located at desired position. 

 

A. Gradient Flow for Energy Minimization 

Energy functional F(∅) is minimize by finding the steady 

state solution of the gradient flow equation as follows, 
∂∅

∂t
= −

∂F

∂∅
            (3) 

Where 
𝜕𝐹

𝜕∅
 is the Gâteaux derivative of the Energy functional 

F(∅).Gâteaux derivative of the functional ℛ𝑝 ∅  is obtained 

as follows. 

𝜕ℛp

𝜕∅
= −μ div(𝑑𝑝(|∇∅ ∇∅         (4) 

Where div(.) is divergence operator and  𝑑𝑝  is obtained by, 

𝑑𝑝 =
𝑝′ 𝑠 

𝑠
               5  

Where p’(s) is the first derivative of potential functional. 

Where potential function may double well, triple well, quad 

well or huber Function. From equation no (1), 
𝜕𝜀

𝜕∅
= μ

𝜕ℛp

𝜕∅
+
𝜕𝜀𝑒𝑥𝑡
𝜕∅

               (6) 

Where 
∂εext

∂∅
 is Gâteaux derivative of the external energy 

functional εext  with respect to ∅. 
𝜕∅

𝜕𝑡
= μ div(𝑑𝑝(|∇∅ ∇∅ −

𝜕𝜀𝑒𝑥𝑡
𝜕∅

               (7) 

 

Above PDE is called as DRLSE which preserve the signed 

distance property of the LSF, which is associated with the 

Distance regularization term ℛp ∅ . The gradient flow of 

Energy  μℛp ∅  shows the effect of distance regularization 

in DRLSE. 
𝜕∅

𝜕𝑡
= μ div(𝑑𝑝(|∇∅ ∇∅          (8) 

𝜕∅

𝜕𝑡
= div D∇∅                            9  

Where diffusion rate D = −μ div(𝑑𝑝(|∇∅| . Diffusion rate 

can be positive or negative. If the diffusion rate is positive, 

the diffusion is Forward, which decreases the|∇∅|. While if 

diffusion rate is negative, the diffusion is Backward which 

increases the|∇∅|. This diffusion is called as Forward and 

backward Diffusion (FAB) [1]. This FAB diffusion 

adaptively increases or decreases to force it to be close to one 

of the minimum points of the potential function p(s), thereby 

maintaining the desired shape of the function ∅. 

 

B. Potential Function 

In proposed method contains the different potential function 

such as Single well, Double well, Triple Well, Quad Well & 

Huber. Where well indicates the function minimum point 

while number indicates the number of wells. Huber function 

contain the single minima at s=1. 

A good potential function for the regularization term has 

ability to force the level set function to be zero. Such a level 

set regularization term has a strong smoothing effect, but may 

flatten the LSF and finally make the zero level contour 
disappear. Purpose of introducing the level set regularization 

term is not only to smooth the LSF, but also to maintain the 

signed distance property, at least in a vicinity of the zero level 

set, in order to ensure accurate computation for curve 

evolution.  

Single well Potential Function as minimum points at s=1. 

Hence distance regularization term with Single well potential 

function is defined as follows, 

p = p1 s =
1

2
 s − 1 2            (10) 

With single well potential function 𝑝 = p1 s , level set 

regularization term ℛp ∅  is defined as, 

P ∅ =
1

2
 (|∇∅| − 1)

 

Ω

2

dX           (11) 

 

However, the derived level set evolution with Single well 

potential function for energy minimization has an undesirable 
side effect on the LSF in some circumstances. This problem 

is avoided by taking the minimum points at s=0 & s=1, which 

is called as Double well Potential Function. Such a potential 

is a double-well potential p2 s  as it has two minimum points 

(wells). 

p = p2 s =  

1

 2π 2
 1 − cos⁡(2πs  )  if s ≤ 1

1

2
 s − 1 2          if s > 1          (12)

  

 

Triple well Potential Function p3 s  is defined as follows. 

Which has minima at three different points s=0, s=0.5 & s=1. 

p = p3 s =  

1

 2π 2
 1 − cos⁡(4πs  )  if s ≤ 1

1

2
 s − 1 2          if s > 1          (13)

  

Quad well Potential Function p4 s  is defined as follows. 

Which has minima at four different points s=0, s=0.33, 

s=0.66 & s=1. 

p = p3 s =  

1

 2π 2
 1 − cos⁡(6πs  )  if s ≤ 1

1

2
 s − 1 2          if s > 1          (14)
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Huber potential function has single minima at s=1 while on 

both side of minima magnitude of potential function is 

increases in logarithmic scale as expressed below, 

𝜌1 =
∆0

2

2
  1 +

4φ1 s 

∆0
2            (15) 

Where ∆0
  is constant value,   φ1 s = e2  where e = sk − sr 

Following fig. 1 shows various potential functions, 

 
Fig. 2 a) Single Well Potential Function b) Double Well 

Potential Function c) Triple Well Potential Function d) Quad 

Well Potential Function e) Huber Well Potential Function. 

 

C. External Energy 𝜀𝑒𝑥𝑡  ∅  

Let be I an image on a domain Ω & edge indicator function g 

is defined as  

g =
1

1 +  ∇𝐺𝜎 ∗ I 2
          16  

Where 𝐺𝜎  is a Gaussian kernel with a standard deviation. 

Gaussian kernel is used to smooth the image to reduce the 

noise. Edge indicator function takes smaller values at object 

boundaries than at other locations. 

For an LSF, we define an external energy functional  
εext  ∅  by following equation, 

εext  ∅ = 𝜆𝐿𝑔 ∅ + 𝛼𝐴𝑔 ∅           17  

Where 𝜆 & 𝛼  are constants whose values is greater than zero, 

𝐿𝑔 ∅  is Line integral of function of g along the zero level 

contour of ∅, 𝐴𝑔 ∅  is weighted area of region ∅. 𝐿𝑔 ∅  is 

Line integral of function  is minimized when the zero level 

contour ∅  is located at the object boundaries. Where 𝐴𝑔 ∅  

weighted area is introduced to speed up the motion of the zero 

level contour in the level set evolution process, which is 

necessary when the initial contour is placed far away from the 

desired object boundaries. Mathematically 𝐴𝑔 ∅  & 𝐿𝑔 ∅  is 
expressed as follows. 

𝐿𝑔 ∅ =  𝑔𝛿 ∅ |∇∅|𝑑𝑥
 

Ω

          18  

𝐴𝑔 ∅ =  𝑔𝐻 −∅ 𝑑𝑥
 

Ω

          19  

Where 𝛿 &  𝐻 are the dirac delta function & Heaviside 

Function respectively. In practice, the Dirac delta function 

𝛿 and Heaviside function 𝐻 in the functional 𝐿𝑔  and 𝐴𝑔  are 

approximated by the following smooth functions 𝛿ε  and 

𝐻ε  as in many level set methods [20], defined by 

𝛿ε(x) =  

1

 2ε  
 1 + cos(

πx

ε
) 

 

  if |x| ≤ ε

0                    if  x > 𝜀          (20)

  

𝐻ε(x) =

 
 

 
1

 2  
 1 +

x

ε
+

1

π
sin(

πx

ε
) 

 

  if |x| ≤ ε

1                                              if  x > 𝜀
0                          if  x < −𝜀          (21)

  

With dirac delta function 𝛿  & Heaviside function 𝐻 in (18) 

& (19) replaced by 𝛿ε  & 𝐻ε, the energy functional ε ∅  is 
then approximated by, 

ε ∅ = μ p(|∇∅|)
 

Ω

dX + 𝜆 𝑔𝛿ε ∅ |∇∅|𝑑𝑥
 

Ω

+ 𝛼 𝑔𝐻ε −∅ 𝑑𝑥
 

Ω

           (22) 

above energy functional is minimized by solving the 

following gradient flow, 
𝜕∅

𝜕𝑡
= μ div(𝑑𝑝(|∇∅|∇∅) + 𝜆 𝑔𝛿ε ∅ 𝑑𝑖𝑣(𝑔 

∇∅

 ∇∅ 
+ 𝛼 𝑔𝐻ε −∅          (23) 

 
Fig. 3 The final level set function ∅  by minimizing the 

gradient flow equation for Two Cell Image. 
 

The first term on the right hand side in equation no (23) is 

associated with the distance regularization energyℛp ∅ , 

while the second and third terms are associated with the 

energy terms 𝐿𝑔 ∅  and  𝐴𝑔 ∅ , respectively. Equation (23) 

is an edge-based geometric active contour model. 

 

III. ALGORITHM & FLOW CHART OF IMPLEMENTATION 

A. Algorithm 

Step 1: Input image smoothening by using Gaussian kernel 
(16). 

Step 2:  Define initial level set function ∅0. 

Step 3: Obtain partial differentiation of Edge Indicator 

Function g (27) of original Image. 

Step 4: Compute Distance Regularization Term (2). 

Step 5: Compute Dirac delta function 𝛿ε (20) & Heaviside 

function 𝐻ε  (21). 

Step 6: Compute Energy Functional (23). 

Step 7: If either the zero crossing points stop varying for 
consecutive iterations or exceeds a prescribed maximum 

number of iterations, then stop the iteration, otherwise, go to 

Step 3. 

 

B. Flow Chart  
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Fig. 4 Algorithm of DRLSE Implementation 

IV. RESULTS 

The performance of DRLSE obtained by considering the 

various parameters such as effect of constant terms on the 

evolution of LSF, by comparing the True coordinator of 

Synthetic Image with obtained coordinator for various 

potential functions which is also called as Mean square Error 

MSE i.e. Euclidian distance between coordinator of True 

Image Contour & Obtained contour for various Potential 

functions, CPU computation time of DRLSE for various 

Potential functions. 
The DRLSE results obtained for both Synthetic & Real 

Images. The proposed DRLSE algorithm contains the 

constant like 𝛼, 𝜇,𝜆  and time step ∆𝑡 . Performance of 

proposed algorithm is not affected by 𝜇 & 𝜆. For obtaining 

the result typical values of constants are as 𝜆 = 5, 𝜇 = 0.04 

& ∆𝑡 = 5 . All the constant parameters need to be tuned 

according to the image. A nonzero 𝛼  provides additional 
external force to drive the motion of the contour, which may 

deviate final contour from the true object boundary due to the 

shrinking or expanding effect of the weighted area term. This 

deviation can be refining by further evolving the contour for a 

few iterations with the parameter 𝛼 = 0. For images with 

weak object boundaries, a large value of may cause boundary 

leakage, i.e., the active contour may easily pass through the 

object boundary. Therefore, for images with weak object 

boundaries the value of 𝛼  should be chosen relatively small. 

Following images shows Final Segmented Image using 
DRLSE. For computation of DRLSE the parameters are 

selected as, time step ∆t = 5,  μ =
0.2

∆t
, Gaussian Kernel scale 

σ = 1.5 , Width of the Dirac Delta function ε = 1.5 , 

coefficient of the weighted length term L(phi)  λ = 5 , 

coefficient of the weighted area term A(phi) α = 1.5. 

 

 
Fig. 5 a) Initial Zero Level Contour b) Initial Level set 

function c) Final Zero Level Contour d) Final Level set 

function for Original Two Cell Image. 

 

 
Fig. 6 a) Initial Zero Level Contour b) Initial Level set 

function c) Final Zero Level Contour d) Final Level set 

function for Original Gourd Image. 

The true object boundaries are known for the synthetic 

images, which can be used to evaluate the accuracy of the 
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segmentation results. A metric to evaluate the accuracy of a 

segmentation result is the mean error defined by, 

𝑒 𝐶 =
1

𝑁
 𝑑𝑖𝑠𝑡 𝑃𝑖 , 𝑆 

𝑁

𝑛=1

                (24) 

Where S is True object Contour Coordinates, 𝑃1 ,𝑃2 ,…… . .𝑃𝑁  

be the obtained coordinator points on contour C using various 

Potential Functions & 𝑑𝑖𝑠𝑡 𝑃𝑖 ,𝑆  is the Euclidian distance 
between True object Contour coordinates & obtained 

coordinator points on contour C using various Potential 

Function. Following table 1. Shows the Euclidian distance 

for Two cell Image & Gourd Image using various Potential 

Function. Final contour obtained using Triple well & Quad 

well potential function achieves the maximum similarity i.e. 

less MSE 0.8826 for Gourd Image & 2.1097 for Two Cell 

Image respectively, as compared to other potential function.  

  

Potential 

Function 
Two Cell Image Gourd Image 

Single Well 2.1663 0.9043 

Double Well 2.1316 0.9005 

Triple Well 2.1253 0.8826 

Quad Well 2.1097 0.9709 

Huber 2.5199 1.4043 

Table 1. Mean square errors for various Potential Function 

for Two cell & Gourd Image respectively 

 

CPU times consumed for the three different images are 

recorded. DRLSE is implemented on Matlab 2014 version. 

The CPU times were obtained by running the program on a 

Dell XPS Laptop with Intel (R) Core (TM) i5 CPU, 4GB 

RAM. With same parameter for all three images i.e. time 

step ∆𝑡 = 5,  𝜇 =
0.2

∆𝑡
, Gaussian Kernel scale 𝜎 = 1.5, Width 

of the Dirac Delta function 𝜀 = 1.5 , coefficient of the 

weighted length term L(phi)  λ = 5 , coefficient of the 

weighted area term A(phi) 𝛼 = 1.5. The CPU consumed time 

for contour obtained using Triple well & Quad well Potential 
Function is less as compared to other contour using Double 

well, Single well & Huber Potential Function. 

 

Potential 

Function 

Two Cell 

Image 

Gourd 

Image 

Character 

Image 

Single Well 6.014381 6.213023 9.132854 

Double Well 5.778856 6.206560 8.941343 

Triple Well 6.505027 6.000688 13.092965 

Quad Well 5.769963 6.311557 11.208121 

Huber 6.528460 6.292171 12.025842 

 

Table 2. CPU consumed time using different potential 

function for Two cell Image, Gourd Image & Character 

Image respectively (All times are in second). 

 

V. CONCLUSION 

The proposed DRLSE with various Potential Functions has 

capability to maintain the regularity of Level set function, 

particularly the desirable signed distance property in a 

vicinity of the zero level set, which ensures accurate 

computation and stable level set evolution. 

DRLSE is implemented by a simpler and more computational 

efficient numerical scheme than conventional level set 

methods. DRLSE is more flexible and provides efficient 

initialization for generating a signed distance function as the 

initial LSF. By varying the time step, proposed method able 

to reduce the iteration numbers and computation time, while 

maintaining sufficient numerical accuracy, due to the 

intrinsic distance regularization embedded in the level set 

evolution. The distance regularization of level set function 

eliminates the need for reinitialization and reduced the 
induced numerical errors. To demonstrate the effectiveness 

of the DRLSE formulation, proposed method applied to the 

edge-based active contour model for image segmentation. 
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