
COMPLEX ANALYSIS NOTES

HAO (BILLY) LEE

Abstract. These are notes I took in class, taught by Professor Marianna Csornyei. I claim no credit to the originality of

the contents of these notes. Nor do I claim that they are without errors, nor readable.

Stein- Complex analysis

Midterm 23rd, in class.

1. Review

D ⊆ C is a domain (open, connected), f : D → C. f is holomorphic if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists for all z0 ∈ D.
If f−1 exists and is continuous, and f(D) is a domain, f(z) 6= 0 then f−1 is holomorphic, with

(
f−1

)′
(z) = 1

f ′(f−1(z)) .

Exercise 1.1. C = ∂B(0, 1) be the unit circle, and C ⊆ D with f holomorphic on D. Let z0 ∈ C. What is the tangent

at f(z0).

Proof. If z0 = eit0 , then take derivative of the map t 7→ f(eit), to get f ′(eit0) · ieit0 = f ′(z0) · iz0. �

f(z) =
∑
n anz

n power series, then the radius of convergence is

R = lim inf
1

|an|1/n
.

If |z| < R, then
∑
anz

n converges. On B(0, r) with r < R, f converges uniformly. If |z| > R, then the series diverges.

Proof. If |z| > R, then there are in�nitely many n such that |anzn| > 1.

If |z| < R, then for large enough n, we have |anzn| < qn for some q < 1. Uniformly, because q is independent of z. �

Theorem 1.2. f(z) =
∑∞
n=0 an (z − z0)

n
is holomorphic on B(z0, r) for r < R. Conversely, if f is holomorphic on

B(z0, r), then f(z) =
∑∞
n=0 an (z − z0)

n
.

To get the an's, take derivative and evaluate z = z0, so

an =
f (n)(z0)

n!
.

Let γ : [a, b]→ R2 be a continuous curve of �nite (or σ-�nite) length.∫
γ

f(z)dz = lim
i

∑
f(si)(zi − zi−1)

where zi's partition γ, and si's are some point in the interval. If f is continuous and γ has �nite length, then the integral

exists, and ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ (length of γ) ·max |f(z)|

If γ is piece-wise smooth, then ∫
γ

f(z)dz =

∫ b

a

f (γ(t)) γ′(t)dt.

D is simply connected, if for any closed γ ⊆ D, there is a continuous deformation mapping it to a point
1
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notation: n(γ, z0) is the number of times γ goes around z0.

Theorem 1.3. n (γ, z0) = 1
2πi

∫
γ

1
z−z0 dz.

Theorem 1.4. (Cauchy) If D is simply connected, and f is holomorphic on D, γ ⊆ D is a closed curve, then∫
γ

f(z)dz = 0.

Additionally,

f(z0)n(γ, z0) =
1

2πi

∫
γ

f(z)

z − z0
dz.

Similarly,

f (n)(z0)n(γ, z0) =
n!

2πi

∫
γ

f(z)

(z − z0)n+1
dz.

Special case: γ is a circle around z0, then n(γ, z0) is always 1, so

an =
1

2πi

∫
γ

f(z)

(z − z0)n+1
dz.

Theorem 1.5. If D is simply connected, and f is holomorphic, then∫ z2

z1

f ′(z) = f(z2)− f(z1)

Here, can integrate over any γ.

2. Local Behaviour of Holomorphic Functions

Suppose f(z) 6=constant, holomorphic on B(z0, r), then

f(z) =
∑
n≥0

an(z − z0)n.

Let m ≥ 1 be the smallest index such that am 6= 0. Then

f(z)− f(z0) =
∑
m

an(z − z0)n = (z − z0)m
∑
n≥0

an+m(z − z0)n.

This means that f(z)−f(z0)
(z−z0)m → am as z → z0 (need to prove that the sum on the right converges uniformly, not just

term-wise).

Corollary 2.1.
|f(z)−f(z0)|
|z−z0|m → |am| is called circle preserving.

Basically, �xing a small circle of radius r around z0, f(z) is not far away from f(z0), with radius about |am| rm.

Corollary 2.2. We have

Ang (f(z)− f(z0))−m ·Ang (z − z0)→ Ang(am).

This is like angle preserving.

If we tend to z0 along a half-line, then Ang (f(z)− f(z0)) → m · Ang (z − z0) + Ang(am) where the RHS is constant.

It's like we stay inside a cone. That is, the image has a tangent at f(z0) of this direction. If we tend to z0 along a di�erent

half line, then the angle between the images is m times larger.

Theorem 2.3. (Maximal Principle). f is holomorphic, non-constant on some domain D. Then |f | cannot attend its

supremum on D (domains are open).

De�nition 2.4. f is holomorphic on B(0, r0). De�ne the maximal modulus of f to be M(r) = supB(0,r) |f(z)|, with
0 < r ≤ r0.

Fact 2.5.
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(1) M(r) is increasing

(2) If f 6=constant, then M(r) is strictly increasing

(3) If f is continuous on cl (B(0, r)), then M(r) = maxz∈∂B(0,r) |f(z)|.
(4) M(r) is continuous (f can jump, but M is de�ned a sup of open sets, so we are �ne. Need to check this for

going up and below, cuz you are monotone. The other direction, take a sequence converging, take a converging

subseuqnece of f(blah), since f continuous on it, it can't be too small.

Proposition 2.6. Let f : B(0, 1) → B(0, 1) with f(0) = 0 and a0 = ... = an. Then M(r)
rn+1 is increasing. This is a

generalization of the above.

Corollary 2.7. (Special Case). Schwartz Lemma. f : B(0, 1)→ B(0, 1) with f(0) = 0 then |f(z)| ≤ |z|. If equality holds

at some z, then f is constant times z.

Proof. Since M(|z|)
|z| is increasing, just need to check at an endpoint. Well, f maps into B(0, 1), so it's bounded by 1.

f(z) = z (a1z + a2z + ...) call the bracket g(z). Then Mf (r) = rMg(r) for r < 1. Then Mf (1) = Mg(1). Since

Mf (1) ≤ 1, so is Mg(r), as required.

If equality holds, then g is constant. �

Theorem 2.8. Hadamard's Three circle theorem. Take 3 circles, with r2 = r1r2 then M(r)2 ≤ M(r1)M(r2). That is,

logM is a convex function of log r.

Alternatively, f is bounded on a domain that contains (closed) annulus.

Proof. Suppose f is maximal on |z| = r at z0. Let

g(z) = f(z)f

(
z2

0

z

)
on the annulus (between the two circles). The

z20
z is really mapping the annulus to itself.

Since g is bounded on the annulus, with

M(r)2 ≤
∣∣f(z0)2

∣∣ = |g(z0)| ≤ max (Mg(r1),Mg(r2)) .

Notice that Mg(r1) ≤Mf (r1)Mf (r2) and Mg(r2) ≤Mf (r2) ·Mf (r1). �

Proof. 2 proofs of maximal principle. Cauchy's theorem. write z0 ∈ D, f(z0) as

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz

where γ is a circle around 0. Then

|f(z0)| ≤ 1

2π
· 2πr · max

|z−z0|=r

|f(z)|
r

= max |f(z)| .

�

By the same argument:

Theorem 2.9. Louiville's theorem. f is holomorphic and bounded on C then f is constant. If it is bounded by a polynomial

|z| then it's a polynomial.

Proof. Open mapping theorem to imples maximal principle. Given something in the image, and put a small disk around

an image point, then there's a small neighbourhood in the domain mapping into it. �

Theorem 2.10. (Quantative open mapping theorem). Let D be a domain, with z0 ∈ D, f holomorphic non-constant.

Let m be �rst number such that m ≥ 1, am 6= 0. For every ε > 0 small enough, there exists δ > 0 such that for every

w ∈ B (f(z0), δ), there are exactly m points z1, ..., zm ∈ B(z0, ε) such that f(zi) = w.
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Proof. Choose ε small, so that f(z0) is not attained at any other point B(z0, ε) and f
′ 6= 0, except possibly at z0.

Let γ be ∂B(z0, ε). Let

g(z) =
f(z)− w

f(z)− f(z0)
.

Then g has a pole at z0 of multiplicity m. Choose δ < minz∈γ |f(z)− f(z0)|. Then

|g(z)− 1| =
∣∣∣∣ f(z0)− w
f(z)− f(z0)

∣∣∣∣ < δ

δ
= 1

for all z ∈ γ. Therefore, g(z) 6= 0 for all z ∈ γ (that is, n (g(γ), 0) = 0).

By the argument principle, since g has a pole of multiplicity m, it must also have a zero of multiplicity m. Therefore,

there are m-roots with multiplicity 1 because f ′ 6= 0. (argument principle says that∫
γ

f ′(z)

f(z)
dz = 2πi · n (f ◦ γ, 0) = 2πi(zeroes− poles)

(cuz centered at 0). �

3. Conformal Mappings

De�nition 3.1. Let f : D1 → D2 is a bijection, f holomorphic and f−1 holomorphic.

D1, D2 are conformally equivalent if there exists such an f .

Theorem 3.2. Riemann mapping theorem.

Remark 3.3. THE MIDTERM WILL HAVE A QUESTION ON THE LEMMA OF THIS PROOF!!!!!!!!!

Example 3.4.

(1) C→ C translation, rotation, dilation.

(2) log z conformal action on C\R≥0 = D1. For z = reiθ, log z = log r + iθ. D2 = R× (−π, π).

(3) Half-plane to the disc.

Take f(z) = i−z
i+z . Since for every point of the upper halfplane, z is closer to i than −i, this is in B(0, 1). This is

holomorphic because −i /∈ H. Let i−z
i+z = w, then z = i 1−w

1+w . This is a holomorphic function on the disk. Now, if

w = u+ iv, then z = i 1−u−iv
1+u+iv . Just need the real part of the fraction is positive. The real part is (1−u)(1+u)−v2

blah .

Exercise 3.5. Consider f(z) = 1−z
1+z . Show that this is a conformal mapping between upper half disc and....

Proof. Notice that we can write

1− z
1 + z

=
2

1 + z
− 1 =

2(1 + x)

(1 + x)2 + y2
− i 2y

(1 + x)
2

+ y2
− 1.

From this, we see that the Re(f(z)) > 0 and Im (f(z)) < 0. Claim that we have the whole bottom right quadrant.

Suppose
1− z
1 + z

= w =⇒ z =
1− w
1 + w

is holomorphic. To see that this lands in the upper half disk, we multiply by i, to rotate to the upper right plane. From

B(0, 1) ∼= Hn via i−z
i+z , just identify the parts we want. �

De�nition 3.6. Fractional linear transform is f(z) = az+b
cz+d on the Riemann sphere C ∪ {∞}, with det 6= 0.

Fact 3.7. These form a group, have translations given by

(
1 b

0 1

)
and rotations

(
a 0

0 1

)
with |a| = 1; and 1

z given

by

(
0 1

1 0

)
.
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This is conformal, because

z
translation7→ z +

d

c

dilation7→
∣∣c2∣∣ (z +

d

c

)
1/z7→ 1

|c2|
(
z + d

c

)
dilate7→ |bc− ad|

|c2|
(
z + d

c

) rotate7→ bc− ad
c2
(
z + d

c

) translation7→ bc− ad
c2
(
z + d

c

) +
a

c

=
az + b

cz + d

Let f(z) = az+b
cz+d conformal from C\

{−d
c

}
→ C\

{
a
c

}
. Then de�ne

f

(
−d
c

)
=∞ and f(∞) =

a

c
.

This makes sense geometrically (stereographic projection). Through the stereographic projection, we see that

line in C↔ circle in sphere through the north pole.

Let C̄ = C ∪ {∞}. If z 7→ ∞, then z′ → N (on the sphere). So {|z| > r} is a basis of the topology around ∞. If f is

continuous at ∞, this means that f(z) has a limit as z →∞.

A circle in C gets mapped to a circle in S (viewing lines as circles passing through ∞). Consider the equation

A
(
x2 + y2

)
+Bx+ Cy +D = 0

of a circle in R2. Let

x′ =
x

1 + x2 + y2
, y′ =

y

1 + x2 + y2
, z′ =

x2 + y2

1 + x2 + y2
.

Divide the above equation by 1 + x2 + y2, to get

(A−D) z′ +Bx′ + Cy′ +D = 0

is a plane in R3, and intersections our sphere in a circle (a planar section).

Theorem 3.8. The image of a circle or a line through a fractional linear transform is a circle or a line.

Proof. Since the group is generated by transformation, dilation, rotation and 1
z (the �rst few have the desired properties).

Just need to check this for 1
z . Enough to choose a chart on the sphere and check circle goes to circle.

If rr? = 1, then if|z| = r then . r = tan(stuff) and r? = tan(stuff). Point is z 7→ z? in C gives ϕ to −ϕ re�ecton on

the sphere (ϕ is the angle). �

Fact 3.9. Given z2, z3, z4 distinct points, there exists unique fractional linear transform mapping to v2, v3, v4 distinct

points.

Proof. Enough to check this for v2 = 1, v3 = 0 and v4 =∞. Take

f(z) =

(
z − z3

z − z4

)
/

(
z2 − z3

z2 − z4

)
.

�

De�nition 3.10. The cross ratio (z1, ..., z4) ∈ C̄ is the image of z1 under the fractional linear transformation that maps

z2, z3, z4 to 1, 0,∞.

Theorem 3.11. Cross ratio is invariant under fractional linear transform.

Proof. Suppose f is a fractional linear transform,

(z1, ..., z4) = (f(z1), ..., f(z4)) .

Let g denote the fractional linear transform sending z2, z3, z4 to 1, 0,∞. Then g(z1) =
(
g ◦ f−1

)
(f(z1)). �
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Corollary 3.12. TFAE:

(1) (z1, ..., z4) ∈ R
(2) z1, ..., z4 lie on a circle or a line

(3) stereographic image is on a circle

Proof. Choose fractional linear transform f sending z2, z3, z4 to 1, 0,∞. Then

(z1, ..., z4) = (f(z1), 1, 0,∞) .

LHS is real i� f(z1) ∈ R i� f(z1), 1, 0,∞ is on a line (the real line actually) i� (by taking f−1) LHS is on a line or

circle. �

De�nition 3.13. Re�ection. z, z? are symmetric with respect to C (a circle or a line) if (z, .., z4) = (z?, z2, ..., z4),

z2, z3, z4 ∈ C.

Remark 3.14. If z2, ..., z4 are real, then

(z1, ..., z4) = (z̄1, z2, ..., z4) .

This can be deduced from the f above.

Fact 3.15. If C is a line, then z → z? is the usual re�ection.

If C is the unit circle (correponding to the equator of C̄) then z? = 1
z̄ .

Symmetric points are preserved by fractional linear transformation

Every re�ection maps (circle or line) to (circle or line)

Exercise 3.16. Two points are symmetric wrt C (circle or line) i� any circle or line C ′ through the two points is orthogonal

to C.

Proof. Since fractional linear transform preserves symmetry and angles, can reduce to case where the re�ection is over

R-axis. �

Claim 3.17. The conformal automorphisms of B(0, 1) are of the form

f(z) = c
z − z0

zz̄0 − 1

with z0 ∈ B(0, 1) and |c| = 1. These all also conformal automorphisms.

Proof. First, assume that f is a conformal automorphism of B(0, 1) and f is a fractional linear transform. Denote

z0 = f−1(0) ∈ B(0, 1).

Claim that 1
z̄0

= f−1(∞). This is because 0 and ∞ are symmetric, and so f−1(∞) must be symmetric (re�ected

through the unit circle, which is preserved by f). Then

f(1) = c
1− z0

z̄0 − 1
.

Since the top and bottom has the same modulus, |c| = 1 (have to map circle to circle).

Every f de�ned in the claim, is a conformal aut of B(0, 1). Since z0 and
1
z̄0

are symmetric, then 0,∞ must be symmetric

such that the image of the unit circle becomes a circle around 0 (from having to be perpendicular to the 2 circles by the

exercise. By the formula, |f(1)| = 1, and so the image has radius 1.

Let g be an arbitrary automorphism. Need to show g has the desired form. Let z0 = g(0). Let f be the fractional

linear transform sending z0 to 0. Then f (g(0)) = 0 and f ◦ g �xes 0, (f ◦ g)
−1

�xes 0.

Schwartz lemma implies that |(f ◦ g)(z)| ≤ z and
∣∣∣(f ◦ g)

−1
z
∣∣∣ ≥ z and so f ◦ g is a rotation. Rotation is a fractional

linear transform and so is f , this implies so is g. By the above, g has the desired form. �

Example 3.18.
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(1) f(z) = zα upper half-plane to somewhere, with 0 < α < 2. (Want it to be injective, so α < 2. Since highest angle

on upper half plane is π, this maps to angle απ so still injective).

(2) f(z) =
∫ z

0
1√

1−w2
dw. For example, f(1) =

∫ 1

0
1√

1−w2
dw = π

2 . When z > 1 (and real), then this becomes purely

complex. The boundary then looks like

t-shape

(symmetry around 0, goes out to ±π2 ). This is conformal, because it's the inverse of sin z.

(3) f(z) =
∫ z

0
1√

1−w2
√

1−c2w2
dw with 0 < c < 1. When 0 < w < 1, both terms are positive, the image of [0, 1] is then

some interval [0, k1], where k1 = f(1). The image of [1, 1
c ] is a vertical line from k1 to k1 + ik2 (purely imaginary).

After 1
c , it becomes negative real, so we go back etc. Get a rectangle.

This is called an elliptic integral

(4) Schwarz-Christofell Integral

S(z) =

∫ z

0

1

(w − a1)
α1 ... (w − an)

αn dw

with a1 < ... < an real numbers, each −1 < αi < 1 and 1 <
∑
αi < 2. The above were special cases of this. These

are not all conformal mapping of polygons. Claim will be that all are close to this form.

Claim 3.19. If f is a conformal mapping from upper half-plane to some P , then f is of the form f(z) = c1S(z) + c2. (not

i�)

Fact 3.20.

(1) It is holomorphic on C\ {aj + iy : y ≤ 0} (the half-lines).

(2) (x− aj)αj =

(x− aj)αj x > aj

(aj − x)
αj eiπαj x < aj

since αj < 1. Integral exists up to the real line including the points aj.

∣∣∣∣ 1∏
(w − aj)αj

∣∣∣∣ ≤ c |w|−∑
αi

where
∑
αj > 1, S(∞) exists.

(3) What is the image of R?
S′(x) =

1

(x− a1)
α1 ... (x− an)

αn

Argument of S′(x) = 0+...+0−π (αi+1 + ...+ αn). The image is then a polygon connecting S(a1), ..., S(an), S(∞).

The angle of segment S(a2) to S(a3) with the next segment (extend and outside) is πα3. So the same for S(∞)

to S(a1) is (2−
∑
αi)π.

3.1. Main Lemmas.

Lemma 3.21. (Area formula 1). f : D → f(D) conformal. Then area of f(D) =
∫ ∫

D
|f ′(z)|2 dxdy.

Proof. We know

area of f(D) =

∫ ∫
f(D)

1dxdy =

∫ ∫
D

det Jfdxdy.

Write f = u+ iv, then we know that

det Jf = det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
∂u

∂x

)2

+

(
∂v

∂x

)2

.

For derivative, can look at any direction. Pick x direction, so f ′ = ∂u
∂x + i ∂v∂x . �

Lemma 3.22. Caratheodort Extension. If f is conformal between B(0, 1) and P , then it extends continuously to

cl (B(0, 1))→ cl (P ) homeomorphically (?)

Proof. Two sequences that converges to z ∈ B(0, 1), their image can not converge to di�erent points w1, w2. Suppose

zn, z
′
n ∈ D converging to z, f(zn)→ w and f(z′n)→ w′, not equal.
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Let d = dist (w,w′) .

Claim. We have curves γ and γ′ from w to w′ such that dist (γ, γ′) > d
3 , and γ contains in�nity many of f(zn) and γ′

contains in�nitely many f(z′n).

Proof. Just connect the points of the sequences. �

Take inverse images of the γ and γ′. Let r be small, and take a small circle around z. Let zr and z
′
r be any two points

of intersection of the circle with the preimage of the curves.

d

3
≤ |f(zr)− f(z′r)| =

∣∣∣∣∣
∫ z′r

zr

f(s)ds

∣∣∣∣∣ .
Can use any curve connecting zi and z

′
i. Pick zi + reiθ. Then

d

3
≤

∫ θ2(r)

θ1(r)

|f ′(z)| rdθ ≤
(∫
|f ′(z)|2 rdθ

)1/2(∫
rdθ

)1/2

by Holder's

But
(∫
rdθ
)1/2 ≤ √2πr. This means that

d/3√
2πr
≤
(∫
|f ′(z)|2 rdθ

)1/2

But

∞ =

∫ r

0

(d/3)
2

2πr
dr ≤

∫ ∫
|f ′(z)|2 dxdy = area of some domain <∞.

This is a contradiction.

Then extend via this. Need to check continuity holds. This is true by a sequence from inside to the boundary. But

what about a sequence on the boundary. But I can just pick a sequence in the interior that approximates the sequence

on the boundary. �

Corollary 3.23. The upper halfplane instead of the ball, and we get a homeomorphism of the closed upper halfplane,

including ∞ and cl(P ).

Lemma 3.24. Schwarz re�ection. D domain, symmetric about the R-axis, call the two pieces D+ and D−. Suppose f

is holomorphic on D+. Let I = R ∩D. f extends to I continuously, with f(I) ⊆ R. Then f can be extended to D as a

holomorphic function.

Proof. De�ne f(z̄) = f(z). Claim that this is holomorphic.

If we write f(z) =
∑
an (z − z0)

n
, then f(z̄) =

∑
ān (z̄ − z̄0)

n
. Just need that this has non-zero radius of convergence.

But the radii of convergences are the same. Now, have to check that f is holomorphic on I. Take a circle γ around the

point. Need to check that
∫
γ

= 0.

Will integrate over an ε-away upper half of the circle, and ε-away bottom half of the circle. Since each half are strictly

above or below R, they are both zero. As ε→ 0, converges to∫
upper half circle

+

∫
line segment close to R

.

Now, su�ces to show that the integral of line segments close to R coverge to integral on R as ε → 0. This follows from

continuity. �

Corollary 3.25. Instead of Rs, we can choose any circle/ or line.

Proof. Fractional linear transforms preserve symmetry. �

Lemma 3.26. Analytic continuation. Suppose D1 and D2 are two domains, with fi holomorphic on Di. D = D1 ∩D2

also a domain, with f1 = f2 on D (in fact, just need to agree in some ball in D). Then they extend to a holomorphic

function on D1 ∪D2.
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Take the power series 1 + z + z2 + ... converges in the unit disk. It does not converge outside, but it can be extended

outside holomorphically. What happens if you extend, extend etc then come back. No reason we should have the same

thing. If we assume that fi holomorphic on Di and D = D1 ∩D2 is a domain.

Let f : H→ P conformal. Claim that f(z) = c1S(z) + c1.

Proof. First, choose αj to be the exterior angles of the polygon, aj 's to be the inverse image of the vertices.

It is enough to show that
(
f ′

S′

)′
= 0. This is

f ′′S′ − f ′S′′

(S′)
2 =

f ′′

f ′ −
S′′

S′

(S′)2

f ′S′

.

Thus, enough to show that f ′′

f ′ = −
∑
j

αj
z−aj .

Recall:

S′(x) =
1

(x− a1)
α1 ... (x− an)

αn .

Now, show that f ′′

f ′ +
∑ αj

z−aj = 0. Want to show that the function is entire. Think about the domain to be strips

(mapping to sections of the polygon). Use Schwarz re�ection to re�ect the line, to get things outside the polygon. Have to

be careful with the vertices (corresponding to these division lines). Want some overlaps between the strips, to use analytic

continuation. Want to re�ect through strip of ak−1 to ak+1 (includes ak). But the line of ak does not map to line. Need

to straighten it out.

hk(z) = (f(z)− f(ak))
1

1−αk .

The exterior angle is παk, so the interior angle is π (1− αk). This above will then map interval of ak−1 to ak to a line

segment, and so can apply Schwarz re�ection. This extends H+
k to H−k .

Write hk = h, αk = α and ak = a.

h′(z) =
1

1− α
(f(z)− f(a))

1
1−α−1

f ′(z) =
1

1− α
h(z)αf ′(z)

f ′ = (1− α)h′h−α on H+

f ′′(z) = −α(1− α) (h′)
2
h−α−1 + (1− α)h′′h−α

Then
f ′′

f ′
= −αh′h−1 +

h′′

h′
.

Just need h′′

h′ is holomorphic, which is h′ 6= 0 on H+
ε ∪H−ε (including boundary). Meanwhile, h

′

h = −α
z−a +holomrphic from

h having a simple pole at a.

Hence, on H+
k , we have

f ′′

f ′ = − α
z−a +holomorphic. Hence, f

′′

f ′ is holomorphic, and can be extended to the union of the

two strips. Therefore, f
′′

f ′ +
∑
j

αj
z−aj is holomorphic on H+

k ∪H
−
k for each k. These strips have non-trivial intersection.

We don't know that they agree on the intersection of the bottom strip, but they agree in a ball of the upper half plane,

and that su�ces to apply analytic continuation. There's more work for H+
1 and H+

n but it's not a big deal.

Now, we know the function is entire. Will show that f ′′

f ′ +
∑ αj

z−aj → 0 as z →∞. Then it's bounded and must be the

constant 0. Extend f to C\ball from f+ on H\ball. This is bounded because f is bounded on the upper half plane. �

Exercise 3.27. For every function f holomorphic at ∞, f
′′

f ′ decays like
1
z as z →∞.

Proof. Can di�erentiate normally, cuz it's uniformly bounded at disk su�ciently large. Then we see that using 1
z expansion,

we get it. If a1 = 0, then just do the next, and continue. �

Now, suppose f(z) = a0 + a1z + .... Is it conformal. We can assume that a0 = 0 and a1 = 1.

Theorem 3.28. If
∑∞
n=2 n |an| ≤ 1, then f is conformal on B(0, 1).

Proof. If that holds, each n |an| ≤ 1, and so n
√
|an| ≤ n

√
1
n → 1 so this is holomorphic, with radius of convergence ≥ 1.
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f(z1)− f(z2) = (z1 − z2) + a2

(
z2

1 − z2
2

)
+ ...

= (z1 − z2)
(
1 + a2(z1 + z2) + a3(z2

1 + 2z1z2 + z2
2) + ...

)
.

The |a2 (z1 + z2)| < 2 |a2|, |a3...| ≤ 3 |a3|... etc (we are in the unit ball). Therefore,

|f(z1)− f(z2)| ≥ |z1 − z2| (1− 2 |a2| − 3 |a3|) ≥ 0.

Basically, for f = z + a2z
2 + ... the sum a2z

2 + .... is less than z. �

Theorem 3.29. If it is conformal, then |a2| ≤ 2. (HWK, to check that this is sharp)

Exercise 3.30. Sharp

Proof. f(z) = z + 2z2 + 3z3 + ... = z
(
1 + 2z + 3z2 + ...

)
= z

(
d
dz

z
1−z

)
= z

(1−z)2 . This is also
z

1−z +
(

z
1−z

)2

. Then we can

write f(z) = (g ◦ h) (z) with h(z) = z
1−z and g(z) = z + z2. Then check.... �

Corollary 3.31. (Koebe-Bierberbach) If f(z) = z + a2z
2 + .... is conformal, then f (B(0, 1)) ⊇ B

(
0, 1

4

)
.

Proof. Suppose z0 /∈ f (B(0, 1)). De�ne g(z) = z0f(z)
z0−f(z) is holomorphic. Easy to check that this is injective.

From z0f(z) = (z0 − f(z)) g(z), we see that

z0z + a2z0z
2 + ... =

(
z0 − z − a2z

2 − a3z
3 + ...

)(
z +

(
1

z0
+ a2

)
z2 + ...

)
This gives us the formula for g, and |a2| ≤ 2 and

∣∣∣ 1
z0

+ a2

∣∣∣ ≤ 2 so
∣∣∣ 1
z0

∣∣∣ ≤ 4. Therefore, |z0| ≥ 1
4 . �

Lemma 3.32. (Area formula 2) f(z) =
∑∞
n=−∞ anz

n holomorphic on a domain that contains the curve Cr =contain 0

with radius r. f is injective on Cr. Then the area enclosed by

f (Cr) = π

∣∣∣∣∣
∞∑

n=−∞
n |an|2 r2n

∣∣∣∣∣ .
Proof. Write f = u+ iv and z = reiθ. The area enclosed is equal to∫ 2π

0

u(θ)v′(θ)dθ.

u(θ) = 1
2

∑(
ane

inθ + ane
−inθ) rn. Similarly, v(θ) = 1

2i

∑(
ane

inθ − ane−inθ
)
rn.

v′(θ) =
1

2i

∑
m

(
ame

imθ + ame
−imθ) imrm.

Therefore, the product is

uv(θ) =
1

4

∑
m,n

(·)mrn+m.

When integrating from
∫ 2π

0
, a lot are 0, and we get∣∣∣∣∫ 2π

0

∣∣∣∣ =

∣∣∣∣∣14 · 2π∑
m

m
(
ama−m + amamr

2m + amamr
2m + a−mam

)∣∣∣∣∣
=

π

2

∑
m

2m |am|2 r2m

which is what we wanted. Here,
∑
mmama−m = 0 because m and −m appears in the sum. �

Corollary 3.33. f(z) = 1
z + b0 + b1z + b2z

2 + .... Suppose this is conformal on B (0, 1) \ {0} then
∑∞
n=0 n |bn|

2 ≤ 1.

Proof. If r is close to r, the area enclosed is π
∣∣∣− 1

r2 +
∑∞
n=0 n |bn|

2
r2n
∣∣∣. When r is very small, the main contribution is

1
r2 , and the inside is negative. For all 0 < r < 1 is is negative, because it's continuity and never 0.
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What happens as r → 1. 1−
∑
n |bn|2 ≤ 0. We get our result. �

Suppose f(z) = z + a2z
2 + a3z

3 + .... Then f(z)
z = 1 + a2z + ... is still holomorphic on B(0, 1) and non-zero (because

f(z) can only have a simple root at 0). Therefore, we can take

g(z) =

√
f(z)

z
= 1 +

a2

2
z + ...

h(z) = zg(z2) = z + a2
2 z

3 + .... Then
1

h(z)
=

1

z
− a2

2
z + ...

Claim 3.34. h is conformal.

Proof. Need to show injectivity. h(z1) = h(z2). Sinze h2(z) = f(z2) then z2
1 = z2

2 implies z1 = ±z2. Then z1 = z2 because

h(z1) = z1g(z2
1) = z2g(z2

2) = h(z2)

which determines the sign. �

This means that for 1
h(z) ,

a2
2 ≤ 1.

De�nition 3.35. f is called typically real if f(z) ∈ R i� z ∈ R.

We will show that if f is z + a2z
2 + a3z

3 + .... conformal on B(0, 1) and typically real, then |an| ≤ n for all n.

Claim 3.36. z + a2z
2 + ... typically real and conformal on B(0, 1) then |an| ≤ n for all n

Proof. f = u+ iv with z = reiθ. Then

f(z) =
∑

an (cosnθ + i sinnθ) rn.

Hence, v(reiθ) =
∑
anr

n sinnθ. Then∫ π

0

v
(
reiθ

)
sinmθ =

∫ π

0

∑
n

anr
n sin(nθ) sin(mθ) =

π

2
amr

m.

We know ∣∣∣π
2
amr

m
∣∣∣ ≤ m ∫ π

0

∣∣v(reiθ) sin θ
∣∣ .

We know v(ieiθ) and sin θ don't change sign between (0, π). Hence, the above is equal to mπ
2 r. This says

|amrm| ≤ mr.

This is true for all r ∈ (0, 1), and r → 1, |am| ≤ m. �

4. Entire Functions

• Where can it be 0? It can be constant 0 or discrete.

Claim 4.1. Given z1, z2, ... ∈ C with no accumulation points, there is an entire function that vanishes exactly at these

points, with desired multiplicity.

• How does it grow at in�nity.

• To what extend is it determined by its zeroes? Answer: unique up to a multiplicative factor, provided f has �nite

rate of growth

De�nition 4.2. Suppopse f is entire. f has order of growth at most α if

|f(z)| ≤ c1ec2|z|
α

for some c1, c2 constants. The order of growth is the in�mum of the α's.
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Example 4.3.

• ez. We know

|ez| = eRe(z) ≤ e|z|

and so the order of growth is 1. (note ez is not always big. It's big if Re(z) is big).

• sin z and cos z can be placed in an exponential, and get 1

• eez is in�nity

Notation: f entire function. Denote by n(r) to be the number of roots in B(0, r) (with multiplicity).

Theorem 4.4. If f has order of growth ρ < α then n(r) ≤ crα for some constant c, for large enough r.

Lemma 4.5. (Jensen's formula). f 6= 0 on the circle |z| = r, and 6= 0 at the origin. Let z1, ..., zn be roots in B(0, r) with

multiplicity. Then

log |f(0)| =
n∑
`=1

log
|z`|
r

+
1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ.
Proof.

(1) If f has no roots, let g(z) = log f(z) exists.

|f(z)| =
∣∣∣eg(z)∣∣∣ = eRe(g(z))

Then

log |f(0)| = Re (g(0)) = Re

(
1

2π

∫ 2π

0

g
(
reiθ

)
dθ

)
=

1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ.
(2) Suppose f = z − z0 with z0 ∈ B(0, r). We need to show that

log r =
1

2π

∫ 2π

0

log
∣∣reiθ − z0

∣∣ dθ,
which is to say

0 =
1

2π

∫ 2π

0

log
∣∣∣eiθ − z0

r

∣∣∣ dθ =
1

2π

∫ 2π

0

log

∣∣∣∣1− e−iθz0

r

∣∣∣∣ dθ.
We see that 1− e−iθz0

r is never zero. We can apply step 1, to h(z) = 1− z0
r z to get

0 = log(1) =
1

2π

∫ 2π

0

log
∣∣∣1− z0

r
eiθ
∣∣∣ dθ,

it's not −θ, but going backwards doesn't change the desired result.

(3) General case, let f(z) = (z − z1) ... (z − zk) f(z)
(z−z1)...(z−zk) . We proved it for every term of the product already.

The product breaks into a sum, so we are done.

�

Exercise 4.6. f has order of growth ρ

Proof. of Theorem. Recall that∣∣∣∣∣
n∑
`=1

log
∣∣∣z`
r

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣ 1

2π

∫ 2π

0

log
∣∣f(reiθ)

∣∣ dθ − log |f(0)|
∣∣∣∣ ≤ crα + c.

Consider the ` such that |z`| < r
2 . Each contributes a log 2 ≤ in the LHS of the above. So get

log 2 · n
(r

2

)
≤ c1rα + c2

and so

n(r) ≤ c1(2r)α + c2
log 2

≤ crα.

�
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Corollary 4.7. If f has order growth ρ < α and z1, z2, ... roots with multiplicity. Then
∑

1
|z`|α <∞.

Proof. Choose ρ < β < α. Then∑
i

∑
2i≤|zε|≤2i+1

1

|zε|α
≤ c

∑
j

1

2jα
n(2j+1) ≤ c

∑
j

1

2jα
c′2(j+1)β

≤ c
∑
j

2j(β−α)+β <∞.

This is because n(2j+1) ≤ c′2(j+1)β . �

Suppose z1, z2, ... ∈ C have no accumulation points. Want to �nd an entire function with exactly these roots. De�ne

f(z) = (z − z1) (z − z2) ...

What happens with in�nite products.
∞∏
n=1

zn = lim
N→∞

N∏
n=1

zn

if it exists. If zn = 0 for any then it exists and is 0. Assume it's not the case. If the limit exists, then zn → 1. Write

zn = 1 + wn.

Fact 4.8. If
∑
|wn| <∞ then the product exists, and

∏
zn 6= 0, unless zn = 0 for some n.

Proof.
∏N
n=1(1 + wn) =

∏N
n=1 e

log(1+wn) = e
∑N
n=1 log(1+wn). We know that |log (1 + wn)| ≤ 2 |wn| if |wn| < 1

2 . This will

happen, since our thing absolutely converges. This shows that
∑N
n=1 log (1 + wn) has a limit as N →∞. �

Claim 4.9. Suppose f1, f2, ... holomorphic on D with |1− fn(z)| ≤ cn for every z ∈ D, with
∑
cn < ∞ then

∏∞
n=1 fn

converges uniformly to holomorphic f on D. (something about non-zero too).

Proof. We can assume that cn ≤ 1
2 .

N∏
n=1

fn(z) = e
∑

log(1+gn(z)) → eg(z)

uniformly on D. Weierstrass implies g(z) is holomorphic. �

Remark 4.10.
∑

log fn(z)→ log f(z). Similarly,
∑ f ′n

fn
→ f ′

f on the set where f 6= 0.

Now, back to the f(z) = (z − z1) (z − z2)... =
∏∞
n=1

(
1− z

zn

)
. This is okay if

∑∣∣∣ zzn ∣∣∣ < ∞. Will have to do this on a

disk. Suppose
∑∣∣∣ 1

zn

∣∣∣ <∞. In particular, this is good if the order of growth is < 1.

An example when it doesn't work is sin(nz) with integer roots.

z
∏
n∈Z\0

(
1− z

n

)
,

we have
∑

1
|n| =∞. However,

(
1− z

n

) (
1 + z

n

)
=
(

1− z2

n2

)
. So view

z

∞∏
n=1

(
1− z2

n2

)
= f(z)

which does converge and is an entire function, since
∑∣∣ 1

n2

∣∣ <∞, so bounded on each disk. Is this sin(πz)? No, but close.

f ′(0) = 1 6= π.

Theorem 4.11. However, πz
∏∞
n=1

(
1− zn

n2

)
= sin(πz).

Proof. We have

f(z) = πz

(
1− z2

1

)(
1− z2

4

)(
1− z2

9

)
...
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call the terms fi. Consider ∑ f ′n
fn

=
1

z
+

∞∑
n=1

2z

z2 − n2
→ f ′(z)

f(z)
.

Meanwhile,
(sin(πz))

′

sin(πz)
= π cot(πz).

Note, that if f
′

f = g′

g then f = constant · g. Enough to show that

1

z
+

∞∑
n=1

2z

z2 − n2
= π cot(πz).

• Both holomorphic on C\Z
• simple pole at 0 (because it's 1

z+holomorphic)

• Both are odd functions f(−z) = −f(z).

• Both are periodic (because
∞∑
n=1

2z

z2 − n2
=
∑(

1

z − n
+

1

z + n

)
and do stu�.

• Bounded on the set {
|x| ≤ −1

2
, |y| ≥ 1

}
where z = x+ iy.

Di�erence is an entire function, bounded (because bounded in the strip, bounded in the re�ection because of odd, bounded

in the middle cuz bounded domain, so bounded everywhere by periodicity). It's odd, so the only constant possible is 0. �

Can use z = 1
2 , to get

sin π
2

π/2
=

∞∏
n=1

(
1− 1

4n2

)
=
∏(

4n2 − 1

4n2

)
=
∏(

2n− 1

2n
· 2n+ 1

2n

)
.

Reciprocate to get

π

2
=

∞∏
n=1

(
2n

2n− 1

2n

2n+ 1

)
=

2

1

2

3

4

3

4

5
...

is called Wallis product.

Natural questions:

(1) Given a sequence a1, ... ∈ C, is there an entire function with zeroes and precisely these points.

(2) Given an entire function, can we factor it based on its zeroes

1 is true if |an| → ∞ (no accumulation point). We can try
∏

(z − ai), but will not converge. Try
∏(

1− z
ai

)
, will only

work if
∑

1
|an| <∞ converges, but not in general. Call E0(z) = 1− z, which satis�es

(1) E0(1) = 0

(2) |1− E0(z)| ≤ |z|

De�nition 4.12. De�ne Weierstrass canonical factors

Ek(z) = (1− z) exp

(
z +

z2

2
+ ...+

zk

k

)
.

The inside is the Taylor polynomial for − log(1− z). This is an entire function with order of growth k.
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Observe that if |z| < 1
2 , then

Ek(z) = exp

(
log (1− z) + z +

z2

2
+ ...+

zk

k

)
= exp

(
− z

k+1

k + 1
− zk+2

k + 2
− ...

)
.

Call the inside W . Then

|W | ≤ |z|
k+1

k + 1

(
1 + |z|+ |z|2 + ...

)
≤ |z|

k+1

2
· 2 = |z|k+1

.

This means that

|1− Ek(z)| =
∣∣1− eW ∣∣ ≤ |W |

1
+
|W |2

2!
+ ... ≤ 2 |W | ≤ 2 |z|k+1

.

Then Ek(z) satis�es

(1) Ek(1) = 0

(2) |1− Ek(z)| ≤ 2 |z|k+1
for |z| < 1

2

Theorem 4.13. Weierstrass factorization theorem.

(1) Given a1, a2, ... ∈ C such that |an| → ∞ with an 6= 0 for all n. The function

h(z) =

∞∏
n=1

En

(
z

an

)
is an entire function with zeroes precisely at {an}. (multiply z in the front if you want zero at zero)

(2) If f is an entire function. Let m be the order of zero of f at 0. Let an be the other zeroes. Then there exists an

entire g such that

f(z) = eg(z)zm
∞∏
n=1

En

(
z

an

)
.

Proof.

(1) Fix R > 0. Will show that h(z) is holomorphic on the disk of radius R.

h(z) =
∏

n, | Ran |≤ 1
2

En

(
z

an

) ∏
| Ran |> 1

2

En(
z

an
).

For the second product, 2 |z| > |an|. This means that this is a �nite product (because |an| → ∞ and these are

just the bounded ones).

For the other one, consider∑
| Ran |≤ 1

2

∣∣∣∣1− En(
z

an
)

∣∣∣∣ ≤ 2
∑∣∣∣∣ zan

∣∣∣∣n+1

≤ 2
∑(

1

2

)n+1

<∞.

Hence, the �rst also converges absolutely.

(2) Consider
f(z)

zm
∏∞
n=1En( z

an
)

is an entire function with no zeroes. Therefore, it's equal to eg(z) for some entire g.

�

If f has �nite order of growth, can we say more. Let f be entire, p0 =order of growth of f .

|f(z)| ≤ CeC|z|
ρ0+ε

for all ε > 0. Let {an} be the non-zero zeroes of f .
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For which k ≥ 0, is it true that
∏∞
n=1Ek( z

an
) is entire. Recall that in the proof, we need a bound on

∑
R
|an|
≤ 1

2

∣∣∣∣1− Ek(
z

an
)

∣∣∣∣ ≤∑(
|z|
|an|

)k+1

≤ Rk+1
∑
n

1

|an|k+1
.

This converges if k + 1 > ρ0 (not i�).

Theorem 4.14. Hadamard Factorization theorem. Let f be entire. ρ0 the order of growth of f . Let {an} be the non-zero
zeroes. Let m be the order of f at z = 0. Then there exists a polynomial P with degree k = bρ0c such that

f(z) = eP (z)zm
∞∏
n=1

Ek

(
z

an

)
.

Remark 4.15. Apply this to sin, which has order of growth 1. We have

sinπz = eaz+bz

∞∏
m=1

(
E1

( z
m

)
E1

(
z

−m

))
.

We know that

E1

( z
m

)
E1

(
z

−m

)
=
(

1− z

m

)
e
z
m

(
1− z

−m

)
e

z
−m = 1− z2

m2
.

Hense,

sinπz = eaz+bz

∞∏
n=1

(
1− zn

n2

)
.

Since sinπz is odd, and
∏

is even, z is odd. Hence, eaz+b is even. That is, eaz+b = e−az+b hence a = 0. To see eb = π,

take derivative and evaluate at 0.

Proof. Based on everything,
f(z)

zm
∏∞
n=1Ek( z

an
)

= eg(z)

for some entire function g. Outline, E(z) = zm
∏∞
n=1Ek( z

an
) is not too small, so that

∣∣∣ f(z)
E(z)

∣∣∣ ≤ CeC|z|
s

for most z, and

for all s > ρ0. Then

Cec|z|
s

≥ eRe(g(z))

so that Re (g(z)) ≤ C |z|s for most s. �

Remark 4.16. Exam solution. f(z) = 1
z + a0 + a1z + ... conformal on D − {0} and avoids z0, z1. Assume z0 = 0. Let

g(z) = 1
f(z) . Then

1
|z0−z1| ≥

1
4 and so 4 ≥ |z2 − z1|.

We had E0(z) = 1− z and Ek(z) = (1− z)ez+ z2

2 +....+ zk

k = cw. We had |w| ≤ c |z|k+1
if |z| ≤ 1

2 .

Exercise 4.17. Do this for cos.

Lemma 4.18. We have

|Ek(z)| ≥

e−c|z|
k+1

if |z| ≤ 1
2

(1− z) e−c|z|k if |z| ≥ 1
2

.

Proof. The �rst already follows from the fact that if Ek(z) = ew then |w| ≤ c |z|k+1
if |z| ≤ 1

2 .

If |k| > 1
2 . Then

Ek(z) = (1− z)ez+ z2

2 +...+ zk

k = (1− z) ew

where |w| ≤ c |z|k. �

Corollary 4.19. We have ∣∣∣∣∏Ek

(
z

zn

)∣∣∣∣ ≥ e−c|z|s
where ρ < s < k + 1, z /∈ B

(
zn,

1
|zn|k+1

)
.
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Proof. We have ∏
n: |zn|≤2z

Ek

(
z

zn

) ∏
n: |zn|≥2z

Ek

(
z

zn

)
The second product is easier. This is

≥
∏
n

e−c|
z
zn
|k+1

= e
−c|z|k+1 ∑

n
1

|zn|k+1 .

We get
1

|zn|k+1
=

1

|zn|s
1

|zn|k+1−s ≤
1

|zn|s
c

|z|k+1−s

where |zn| ≥ 2 |z|. Second product is ≥ e−c|z|s (by the lemma before). Also,
∑

1
|zn|s <∞.

The �rst product is

≥
∏

n:|zn|≤2|z|

(
1− z

zn

) ∏
n: ...

e−−c|
z
zn
|k .

The second of these is 1
|zn|k

= |zn|s−1

|zn| ≤ c
|z|s−k
|zn|s . Hence, the second product is ≥ e−c|z|s .

First part is

=
∏∣∣∣∣zn − zzn

∣∣∣∣ ≥∏ 1
|zn|k+1

|zn|
=
∏ 1

|zn|s+2 ≥
(

1

c |z|

)c|s|s−ε
= e−c|z|

s−ε log(c|z|) ≥ e−c|z|
s

.

�

f(z) = eg(z)zm
∏
Ek

(
z
zn

)
. Need to show that g is a polynomial of degree ≤ t. We have

eRe(g) ≤
∣∣∣eg(z)∣∣∣ ≤ ec|z|s

provided z /∈ ∪B
(
zn,

1
|zn|s+1

)
. Take log, to get

Re(g) ≤ c |z|s .

Almost done, but we have this bound outside of some balls. The sum of the radii are �nite, so we can �nd and arbitrarily

large R so that the circle does not touch any of the balls.

Recall |Re(g(z))| ≤ c |z|s for ε < s < ε+ 1 on a circle of radius r for any large r. Does this mean g is a polynomial of

degree ≤ s. Let z = reiθ, g(z) =
∑
anz

n.

1

2π

∫ 2π

0

g
(
ieiθ
)
e−inθ =

anrn n ≥ 0

0 n < 0
.

Also,
1

2π

∫
g (reiθ)e−inθdθ = 0

if n > 0.
1

2π

∫
2Re

(
g(ieiθ)

)
e−inθdθ = anr

n n > 0.

Hence, |an| ≤ 1
πrn

∫ 2π

0

∣∣Re (g(ieiθ)
)∣∣ dθ ≤ crs−n for n > s and |an| = 0 for n > s. This prove that g is a polynomial.

Theorem 4.20. Little Picard Theorem. f is non-constant entire function of order of growth ρ.

(1) If ρ /∈ N, then f attains every complex number at ∞-ly many points (counter, ez is never zero)

(2) If ρ ∈ N, then if f misses a value, then it attains every other value at in�nitely many points

Proof. If f(z)−w has only �nitely many roots then it's ep(z)q(z) for some polynomials p, q. If ep(z)q(t) has no roots then

q is constant. p attains every value and so ep(z) attachs anything except 0 (and in�nitely many times). �

Theorem 4.21. Picard theorem. If f is a non-constant entire function, then f can miss at most one value.
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Proof. Suppose f misses two points w0 6= w1. Then

f(z)− w0

w1 − w0

misses 0 and 1. Let g(z) = 1
2πi log

(
f(z)−w0

w1−w0

)
misses Z. Let

h(z) =
√
g(z)−

√
g(z)− 1

misses all
√
n±
√
n− 1, 0.

Proof. If we get 0, √
g(z) =

√
g(z)− 1 =⇒ g(z) = g(z)− 1

which is a contradiction. √
g(z)−

√
g(z)− 1 =

√
m±

√
m− 1√

g(z) +
√
g(z)− 1 =

1√
g(z)−

√
g(z)− 1

=
1

√
m±

√
m− 1

=
√
m∓

√
m− 1

Then

2
√
g(z) =

√
m.

�

log h(z) misses log
(√
m±

√
m− 1

)
+ 2πε for all n, ε.

Proof. limm→∞ log
(√
m±

√
m− 1

)
− log

(√
m− 2±

√
m− 2

)
= 0. �

It is enough to idnetify that the image of every entire function contains an arbitrarily large disc. Suppose this is false

for an entire function f non-constant. Then f ′ 6= 0. Choose z0 such that f ′(z0) 6= 0. Let

g(z) =
f(z)− f(z0)

f ′(z0)
≤ z + a2z

2 + ...

gε(z) = εg
(
z
ε

)
. gε(0) = 0 and g′ε(0) = 1. If Im (g) does not contain any disc of radius R, then gε of radius εR.

Enough to show that the following theorem. �

Theorem 4.22. For some c > 0, the image of entire functionf(z) = z + a2z
2 + ... contain a disc of radius c

Proof. Consider (1− r)Mf ′(r) = w(r) continuous. w(0) = 1 and w(1) = 0. Let r0 ≥ 0 be the largest with w(r0) = 1. Let

|z0| = r0, |f ′(z0)| = 1
1−r0 .

Then B
(
z0,

1−r0
2

)
⊆ B

(
0, r0 + 1−r0

2

)
= B

(
0, 1+r0

2

)
⊆ B (0, 1). In the smallest ball, |f ′(z)| ≤ Mf ′

(
1+r0

2

)
≤ 1

1− 1+r0
2

=

2
1−r0 .

Let ρ = 1−r0
2 , then f ′(z0) = 1

2ρ . Therefore,

|f(z)− f(z0)| ≤ 1

on B (z0, ρ).

Let g(z) = f(z + z0) − f(z0), then g(0) = 0. |g′(0)| = 1
2ρ , |g(z)| ≤ 1 on B (0, ρ). h(z) = 2g(ρz) on B(0, 1). Then

h(0) = 0, h′(0) = 1, |h(z)| ≤ z on B(0, 1). �

Lemma 4.23. f(z) = z+a2z
2 + ... holomorphic on B(0, 1) and bounded by M on B(0, 1) (for us, it's 2). Then the image

of f contains a ball of radius c
M .

Proof. |an| ≤M for each M for each n, an = 1 so M ≥ 1. For 0 < r < 1,

|f(z)| ≥ |z| − |f(z)− z| ≥ r −M
(
r2 + r3 + ...

)
= r − Mr2

1− r
.
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Choose r = 1
4M . Then |f(z)| ≥ 1

4M −
M 1

16M2

1− 1
4m

≥ ... ≥ 1
6M . Therefore, f(z) and f(z)− 1

6M have the same number of roots.

Since f(z) = 0 at 0, so does f(z)− 1
6M . Can put and |w| ≤ 1

6M . Therefore, f(z)− w has at least 1 root. That is,

im (f) ⊇
{
w : |w| ≤ 1

6M

}
.

�

Let f(z) = a0 + a1z + ... be an entire function. The radius of convergence is in�nite, so n
√
|an| → 0.

Theorem 4.24.

(1) If n
√
|an| ≤ c

nα for some c for large enough n then ρ =order of growh ≤ 1
α

(2) Conversely, if ρ < 1
α then n

√
|an| ≤ c

nα for some c and large enough n.

Proof.

(1) We can assume n ≥ a0 and α > 0. Choose n0 so large, so that n0 >
1
α . Claim that

g(z) =

∞∑
n=n0

anz
n

has order of growth ≤ 1
α .

|g(z)| ≤
∞∑

n=n0

|an| |z|n ≤
∞∑

n=n0

cn

nαn
|z|n =

∑(
αc1/α |z|1/α

αn

)αn

≤
∑

c

(
αc1/α |z|1/α

)k+1

kk

there are at most c = 1
α + 1 many terms such that dαne = k. This is

≤
∑
k

c |z|1/α
(
c |z|1/α

)k
k!

.

The |z|1/α grows slower than exponential. That sum is basically a exponential in |z|1/α.
(2) We have

|an| ≤
M(r)

rn
≤ ce

cr1/α

rn

for all r. Take derivative and set to zero to �nd optimal r. To �nd r = (αn)
α
is the minimum. Then

|an| ≤ c
ecαn

(αn)
αn ≤

cn

nαn
.

�

5. Prime number Theorem

p be the set of prime numbers. If we write
∑
p≤x means some over all primes ≤ x.

De�nition 5.1. De�ne π(x) =
∑
p≤x 1.

Notation: f(x) ∼ g(x) means that f(x)
g(x) → 1 as x→∞.

Prime number theorem, says π(x) ∼ x
log x ∼

x
log x−1 .

Logarithmic integral

`i(x) =

∫ x

2

1

log t
dt.

Then π(x) ∼ `i(x).

Arithmetic formula on a(n), A(x) =
∑
n≤x a(n).
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Example 5.2. a(n) = χprime

d(n)= number of divisors of n

w(n) the number of prime factors

Ω(n)=number of prime factors with multiplicity

Example 5.3.
∑
n≤x d(n) =

∑
j≤xb

x
j c∑

n≤x w(n) =
∑
p≤xb

x
p c.

De�nition 5.4. a(n) is multiplicative if

a(mn) = a(m)a(n)

if (m,n) = 1 (completely multiplicative if it holds regardless).

Theorem 5.5. Abel summation, Dirichlet Test

(1) Discrete series, write
∑
a(n)f(n) in terms of A(x) and di�erences of f ′s. Integration by parts give

n∑
k=m+1

a(k)f(k) =

n−1∑
k=m

A(k) (f(k)− f(k + 1)) +A(n)f(n)−A(m)f(m).

Proof. The �rst follows from a(k) = A(k)−A(k − 1). �

Corollary 5.6. If f(n) is real and ≥ 0, decreasing and
∑
n≤x a(n) ≤ c

∑
n≤x b(n) for all x, then∑

n≤x

a(n)f(n) ≤ c
∑
n≤x

b(n)f(n)

for all x.

Corollary 5.7. If A(n)f(n) → 0 then
∑∞
n=1 a(n)f(n) =

∑∞
n=1A(n) (f(n)− f(n− 1)) in the sense that if one of the

sums converges, then so does the other.

Theorem 5.8. (Dirichlet)

(1) |A(n)| ≤ c for all n
(2) f(n)→ 0

(3)
∑∞
n=1 (f(n)− f(n+ 1)) converges absolutely

then
∑
a(n)f(n) converges and ∣∣∣∑ a(n)f(n)

∣∣∣ ≤ C∑ |f(n)− f(n+ 1)|

Example 5.9.
∑ a(n)

ns , f(t) = 1
ts we need |A(n)| ≤ C, Re(s) > 0, a(n) = 1

n1+ε then
∑

1
ns converges absolutely if

Re(s) > 1.

Continuous version.

a(n) arithmetric function and f : R→ R or C continuously di�erentiable on (y, x]. Then

f(n+ 1)− f(n) =

∫ n+1

n

f ′(t)dt.

Abel: ∑
y<n≤x

a(n)f(n) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t)dt.

Theorem 5.10. Dirichlet

(1) |A(n)| ≤ C
(2) f → 0

(3)
∫∞

0
|f ′(t)| dt converges
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Then
∑
a(n)f(n) is convergent. Additionally,∣∣∣∑ a(n)f(n)

∣∣∣ ≤ c∫ ∞
1

|f ′(t)| dt.

Example 5.11.

(1) Given that ∣∣∣∣∑ a(n)

n

∣∣∣∣ ≤ C,
how to estimate A(x). Let b(n) = a(n)

n , then |B(n)| ≤ C for all n,

A(n) = b(1) + 2b(2) + 3b(3) + ...nb(n)

= nB(n)−B(1)− ...−B(n− 1)

and |A(n)| ≤ (2n− 1)C

(2) Given that |A(x)| ≤ Cx, what about
∑ a(n)

n ? Well∣∣∣∣∣∣
∑
n≤x

a(n)

n

∣∣∣∣∣∣ ≤
∣∣∣∣A(x)

x

∣∣∣∣+

∣∣∣∣∫ x

1

A(x)

t2
dt

∣∣∣∣ ≤ C +

∫ x

1

C

t
dt = C (log x+ 1) .

Exercise 5.12. Show that

(1)
∑
n≤x

a(n)
n = A(x)

x +
∫ x

1
A(t)
t2 dt

Proof. This is directly from Abel, using f(t) = 1
t (use 1− ε for your y and let ε→ 0). �

(2) Write an expression for
∑
y<n≤x a(n) log n =...

Proof. This is

A(x) log x−A(y) log y −
∫ x

y

A(t)

t
dt

�

(3)
∑
y<n≤x na(n)

Proof. This is

xA(x)− yA(y)−
∫ x

y

A(t)dt = xA(x)− yA(x)−
bxc∑

n=dye

nA(n)

�

(4) If a(1) = 0 then
∑x
n=2

a(n)
logn = a(x)

log x +
∫ x

2
A(t)
t log2 t

dt

Proof. This is exactly by de�nition.... �

Let F (x) =
∑
n≤x f(x) and I(x) =

∫ x
1
f . Then F (n)− f(1) ≤ I(n) ≤ F (n− 1) if f is decreasing.

If f ≥ 0 is decreasing,

I(x) ≤ F (x) ≤ I(x) + f(1)

and increasing then

F (x) = I(x) + r(x)

with |r(x)| ≤ f(x).

Example 5.13. We have

(1) log x ≤
∑
n≤x

1
n ≤ log x+ 1

(2)
∣∣∣∑n≤x log n− x log x+ x− 1

∣∣∣ ≤ log x. The sum is like log (x!), then x log x = xx... Gives us

m! ≈
(m
e

)m
.
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Corollary 5.14. If f ≥ 0 decreasing, then
∑∞
n=1 f(n) converges i�

∫
f(t) converges.∫ ∞

1

f(t) ≤
∞∑
n=1

f(n) ≤
∫ ∞

1

f(t) + f(1).

Example 5.15. Have many divisors does a random number have

Interested in 1
x

∑
n≤x d(n) = 1

x

∑
n≤xb

x
nc. We have

x

n
− 1 ≤ bx

n
c ≤ x

n
.

Therefore, the average is about log x.

5.1. Euler Summation.

Proposition 5.16. Euler's Summation, version 1. Let f : [m,n]→ C,R continuously di�erentiable.

n∑
k=m+1

f(k)−
∫ n

m

f(t)dt =

∫ n

m

(t− btc) f ′(t)dt.

Proof. We have ∫ k

k−1

(t− btc) f ′(t)dt =

∫ k

k−1

(t− k + 1) f ′(t)dt

then use integration by parts to get

= f(t) (t− k + 1) |kk−1 −
∫ k

k−1

f(t)dt = f(k)−
∫ k

k−1

f(t).

The result follows. �

Proposition 5.17. Version 2.

f(m) + f(n)

2
+

n−1∑
m+1

f(k)−
∫ n

m

f(t)dt =

∫ n

m

(
t− btc − 1

2

)
f ′(t)dt.

Proof. We have ∫ k

k−1

(
t− btc − 1

2

)
f ′(t)dt = (t− k +

1

2
)f(t) |kk−1 −

∫ k

k−1

f(t)dt

=
f(k) + f(k − 1)

2
−
∫ k

k−1

f(t)dt.

�

Proposition 5.18. Version 3. We have∑
m<k≤x

f(k)−
∫ x

m

f(t)dt =

∫ x

m

(t− btc) f ′(t)dt− (x− bxc) f(x).

If f is continuously di�erentiable on (1,∞), and both
∑
f(n) and

∫
f(t) converges, then

∞∑
n=1

f(n)−
∫ ∞

1

f(t)dt = f(1) +

∫ ∞
1

(t− btc) f ′(t)dtversion 1

=
f(1)

2
+

∫ ∞
1

(
t− btc − 1

2

)
f ′(t)dt version 2.

Even if they don't converge, we can still estimate the di�erence. If f → 0 then F (x) − I(x) → L �nite limit as x → 0.

Here,

L = f(1) +

∫ ∞
1

(t− btc) f ′(t)dt,
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0 ≤ L ≤ f(1). We can estimate

|F (x)− I(x)− L| =
∣∣∣∣∫ ∞
x

(t− btc) f ′(t)dt
∣∣∣∣ ≤ f(x)

for all x.

Example 5.19.
∑
n≤x

1
n − log x has a limit, called γ the Euler constant.

γ = 1−
∫ ∞

1

t− btc
t2

dt

with 0 < γ < 1. Look at ∣∣∣∣∣∣
∑
n≤x

1

n
− log x− γ

∣∣∣∣∣∣ ≤ 1

x
.

Want `i(x) =
∫ x

2
1

log tdt ∼
x

log x . With integration by parts,∫ x

e

1

log t
dt =

(
t

log t

)x
e

+

∫ x

e

1

log2 t
=

x

log x
− e+

∫ x

e

1

log2 t
.

If we let In(x) =
∫ x
e

1
(log t)n then

In(x) =
x

(log x)
n − e+ nIn+1(x).

Claim 5.20. In(x) ∼ x
(log x)n .

Proof. Need to show that In+1(x)
x

(log x)n
→ 0 as x→ 0. This will imply that In+1(x) ∼ x

(log x)n+1 .

In+1(x) =

∫ √x
e

1

(log t)
n+1 +

∫ x

√
x

1

(log t)
n+1 .

The �rst is ≤
√
x, the second is ≤ x

( 1
2 log x)

n+1 = 2n+1x
(log x)n+1 . �

Recall that

In(x) =

∫ x

e

1

(log t)
n ∼

x

(log x)
n

and

In(x) =
x

(log x)
n − e+ nIn+1(x).

Also

π(x) ∼ `i(x) ∼ x

log x
.

We have

`i(x) =
x

log x
+ r(x)

with r(x) ∼ x
log(x)2 .

Claim 5.21. `i(x) = x
log x−1 + q(x) with q(x) ∼ x

log(x)3 .

Proof. We have

q(x) = I1(x) + const− x

log x− 1
=

x

log(x)
+ const+ 2I2(x)− x

log x− 1

∼ x

(
1

log x
+

1

(log x)
2 −

1

log x− 1

)

= x

(
log x (log x− 1) + log x− 1− log2 x

log2 x (log x− 1)

)
.

�
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By the same method,

`i(x) =
x

log x
+

x

log2 x
+ ...+ (n− 1)!

x

(log x)
n + rn+1(x).

Here, rn+1(x) ∼ n! x
(log x)n+1 .

|π(x)− `i(x)| � x

(log x)
m for all m.

De�nition 5.22. Chebyshev's function.

θ(x) =
∑
p≤x

log p.

We have

θ(x) =
∑
n≤x

χp(n) log n = π(x) log x−
∫ x

2

π(t)

t
dt

because π(x) =
∑
p≤x χp. We can also write

π(x) =
∑
n≤x

χp log n

log n
=
θ(x)

log x
+

∫ x

2

θ(t)

t log2(t)
dt.

These relations show that

π(x) ∼ x

log x
⇐⇒ θ(x) ∼ x.

Chebyshev showed that c1x ≤ θ(x) ≤ c2x but the constants are not close to 1. However, as a corollary:

c1
x

log x
≤ π(x) ≤ c2

x

log x
.

Theorem 5.23. θ(x) ≤ (log 4)x.

Proof. Assume x is an integer. Then

N =

(
2n+ 1

n

)
=

(2n+ 1)!

n! (n+ 1)!

is divisible by the product of all primes between n+ 1 and 2n+ 1.

logN ≥
2n+1∑
n+1

log p = θ(2n+ 1)− θ(n+ 1).

We know that
2n+1∑
k=0

(
2n+ 1

k

)
= 22n+1

so

n log 4 ≥ logN.

Claim. By induction, θ(k) ≤ klog(4).

Proof. Check this for k = 1, 2. Assume true up to 2n. Then

θ (2n+ 2) ≤ n log(4) + θ(n+ 1) ≤ n log 4 + (n+ 1) log 4

= (2n+ 1) log 4 ≤ (2n+ 2) log 4.

�

�

Exercise 5.24. Calculate ∑
p≤x

1

p
≤ c log log x.

Proof. m �
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5.2. Dirichlet Series.

De�nition 5.25. Dirichlet series.
∞∑
n=1

a(n)

ns
.

Converges for some half-plane.

Claim 5.26. There exists σc, σa where the series absolutely converges if Re(s) > σa and no absolute convergence if

Re(s) < σc (possibly in�nity).

Clearly, σc ≤ σa and in fact, σa ≤ σc + 1.

Example 5.27. a(n) = (−1)n, then σa = 1, σc = 0.

Theorem 5.28. If s = σ + it ∈ R, then

(1) ζ(σ) converges for all σ > 1

(2) ζ(σ) > 1 and is decreasing

(3) 1
σ−1 ≤ ζ(s) ≤ 1

σ−1 + 1 (comparison with integral)

(4) ζ(σ)→ 1 as σ →∞ and ζ(σ)→∞ as σ → 1+

(5) (σ − 1) ζ(σ)→ 1 as σ → 1+

Let A(x) =
∑
n≤x a(n). Then ∑

n≤x

a(n)

ns
=
A(x)

xs
+ s

∫ x

1

A(t)

ts+1
dt.

If s 6= 0 and A(x)
xs → 0 as x→∞, then

∞∑
n=1

a(n)

ns
= s

∫ ∞
1

A(t)

ts+1
dt

if they both converge (if one converges then so does the other).

∑
n>x

a(n)

ns
= −A(x)

xs
+ s

∫ ∞
x

A(t)

ts+1
dt.

Suppose f(t) = O(tα) for some α ≥ 0, t ≥ 1. The integral I(s) =
∫∞

1
f(t)
ts+1 dt is called the Dirichlet integral of f , which

converges for Re(s) = σ > α. Similarly, de�ne Ix(s) =
∫ x

1
f(t)
ts+1 . Since |I(s)| ≤ c

σ−α ,

|I(s)− Ix(s)| ≤ c

σ − α
1

xσ−α
.

Theorem 5.29. If A(x) = O(xα) for some α ≥ 0, then

F (s) =

∞∑
n=1

a(n)

ns

converges for σ > α. Additionally,

Fx(s) =
∑
n≤x

a(n)

ns

satis�es |Fx(s)| ≤ c |s|σ−α , and |F (s)− Fx(s)| ≤ c
xσ−α

(
|s|
σ−α + 1

)
.

Proof. of existence of σc.

Need to show that if
∑ a(n)

nα converges for some α ∈ R, then
∑ a(n)

ns converges for every s with σ > α.

Let b(n) = a(n)
nα , and B(n) =

∑
n≤x b(n), B(x) = O

(
x0
)
. Then∑ b(n)

ns
=
∑ a(n)

ns+α

converges if Re(s) > 0. �
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Theorem 5.30.

(1) If
∑ a(n)

nσ converges for some σ > 0, then A(x) = O(xσ)

(2) Let α be the inf of these σ for which A(x) = O (xσ), if α > 0 then σc = α.

Proof.

(1) f(n) =
∑ a(n)

nσ and
∑
b(n) converges with B(x) bounded.

A(x) =
∑
n≤x

nσb(n) = xσB(x)− σ
∫ x

1

ts−1B(t)dt.

�

Exercise 5.31. Let I = inf {σ ∈ R : |A(x)| ≤ O(xσ)}. If I > 0 then σc = I. What happens when I is not > 0.

Proof. Let b(n) = a(n)
nσ , which is bounded so |B(x)| ≤ O(1).

A(x) =
∑
n≤x

b(n)nσ = B(x)xσ − σ
∫ x

1

B(t)tσ−1dt.

The B(x)xσ = O(xσ) and the integral is O(xσ)−O(1). Need to analyze the tail of A(x). Let L =
∑
n≥1 a(n) if it exists

and 0 else. Then for σ < 0. ∑
y<n≤x

a(n) =
∑

y<n≤x

b(n)nσ = B(x)xσ −B(y)yσ − σ
∫ x

y

B(t)tσ−1dt

Still assuming that
∑
b(n) converges, so |B(x)| ≤ O(1). As x→∞, LHS is L−A(y), RHS is

−B(y)yσ − σ
∫ ∞
y

B(t)tσ−1dt = O(yσ) +O(yσ) = O(yσ).

Therefore, the change of the statement should be let L be as above,
∑ a(n)

nσ converges, then |A(x)− L| ≤ O(xσ),

I = inf {σ ∈ R : |A(x)− L| ≤ O (xσ)}

then σc = I. This is because for all r ∈ (I,Re(s)),∑
n≤x

a(n)

ns
=
A(x)− L

xs
+
∑ L

xs
+ s

∫ x

1

A(T )− L+ L

tσ+1
dt

then analyze this. �

Theorem 5.32. F (s) =
∑ a(n)

ns is a holomorphic function on {σ > σc}, then F ′(s) = −
∑ a(n) logn

ns .

Proof. Need to show some local uniform convergence of the sum.

For α > σc, b(n) = a(n)
nα , |B(x)| ≤ C. G(s) =

∑ b(n)
ns , F (s) = G(s− α).

Claim. G is holomorphic on |Re(s) > 0|.

Proof. We have

|G(s)−Gn(s)| ≤ c

nσ

(
|s|
σ

+ 1

)
for s = σ + it. Then Gn(s)→ G(s) locally uniformally on {σ > 0} . �

�

Example 5.33. ζ(s) is holomorphic on {Re(s) > 1}.

Arithmetic function a(n) for Fa(s).

• a = 1, then F1(s) = ζ(s)

• a = χp, then Fa(s) =
∑

1
ps
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• a =square modulus, then Fa(s) = ζ(2s)

Fact 5.34. If things converges nicely,

Fa(s)Fb(s) =

(∑ a(k)

ks

)(∑ b(`)

`s

)
=
∑
n

c(n)

ns

where

c(n) = (a ? b) (n) =
∑
n=kl

a(k)b(`)

is the convolution of a and b. Then

FaFb = Fa?b.

If LHS absolutely converges on {Re(s) ≥ σ} then so does RHS. We have product normula, `(n) = log n, then

` (a ? b) = (log n)
∑
n=k`

a(k)b(`) =
∑
n=k`

(log k + log `) a(k)b(`)

=
∑
n=k`

(log k) a(k)b(`) +
∑
n=k`

a(k) (log `) b(`)

= (`a) ? b+ a ? (`b)

Example 5.35. δi ? δj = δij , where δi(h) =

1 i = h

0 i 6= h
, then 1(n) = 1 for every n.

δi ? 1 =

1 if i | n

0 else
and a ? 1 =

∑
j|n a(j).

1 ? 1(n) = d(n) and χp ? 1(n) = ω(p).

ζ(s)2 =
∑∞
n=1

d(n)
ns with Re(s) > 1. ζ(s) =

∑
p

1
ps =

∑∞
n=1

a(n)
ns .( ∞∑

n=1

a(n)

)( ∞∑
n=1

b(n)

)
=
∑
n

(a ? b) (n)

if they converges absolutely.

Let A(x) =
∑
n≤x a(n) and B(x) =

∑
n≤x b(n). We see that∑

n≤x

(a ? b)(n) =
∑
j,k≤x

a(j)b(k) =
∑
j

a(j)B(
x

j
) =

∑
k

b(k)A(
x

k
).

Additionally, ∑
n≤x

(a ? 1)(n) =
∑
j≤x

a(j)bx
j
c.

From d = 1 ? 1, we have the formula: ∑
n≤x

d(n) =
∑
j≤x

bx
j
c.

Proposition 5.36. (Dirichlet's Hyperbola Identity) [Draw a picture to see this]∑
n≤x

(a ? b) (n) =
∑
j≤y

a(j)B

(
x

j

)
+
∑
k≤ xy

b(k)A
(x
k

)
−A(y)B(

x

y
).

Proposition 5.37.

(1) Suppose a, b are multiplicative, then a ? b is completely multiplicative

(2) a, b are arbitrary, c is completely multiplicative, then

(ac) ? (bc) = (a ? b)c.

(3) The identity is δ1 and a has an inverse i� a(1) 6= 0 <�� exercise
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Euler Product. a(n) completely multiplicative, |a(p)| < 1 for each prime p (absolute convergence of
∑
a(n) will give

this), then ∏
p

1

1− a(p)
=
∏
p

(
1 + a(p) + a(p2) + ...

)
=
∑
n≥1

a(n).

Proof. Of exercise. Suppose a(1) 6= 0, then to get inverse, easy check that b(1) = 1
a(1) , then try (a ? b) (2)... �

Example 5.38. ζ(s) =
∏

1
1−p−s .∏

p≤N
(
1 + a(p) + a(p2)...

)
=
∑
n a(n) where the sum is over all n's whose prime factors are ≤ N . Therefore,∣∣∣∣∣∣

∑
n

a(n)−
∏
p≤N

...

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

p|n with p>N

a(n)

∣∣∣∣∣∣ ≤
∑
n≥N

|a(n)| → 0

if
∑
a(n) is absolutely convergent. This is because |a(p)| < 1 for every p.

Corollary 5.39. If a(n) is completely multiplicative,
∑
a(n) absolutely convergent, then

∑
a(n) 6= 0. In particular,

ζ(s) 6= 0 and Re(s) > 1.

Exercise 5.40. Calculate A= all integers of the form 2n3m,
∑
n∈A

1
n2 .

Proof. Let a(n) = χA(n) 1
n2 ,

∑
n∈A

1
n2 =

∏
p

1
1−a(p) = 1

1− 1
4

1
1− 1

3

= 3
2 . �

Theorem 5.41. We have
∑
p≤x

1
p ≥ log log x− 1

2 .

Proof. We have ∏
p≤N

1

1− p−1
=

∑
n with prime factors p≤N

1

n
≥

N∑
n=1

1

n
> logN.

Let sN =
∑
p≤N

1
p then ∣∣∣∣∣∣log

∏
p≤N

1

1− 1
p

− sN
∣∣∣∣∣∣ ≤ 1

2
.

�

From the Euler product, ∑
µ(n)a(n) =

∏
p

(1− a(p)) =
1∑
a(n)

.

This µ(n) is called the mobius function, and is

µ(n) =

0 if n is not square free

(−1)k k number of primes
.

Then 1
ζ(s) =

∑ µ(n)
ns .

Theorem 5.42. If
∑
a(n) is absolutely convergent, a(n) completely multiplicative then

1∑
n≥1 a(n)

=
∑
n≥1

µ(n)a(n).

Remark 5.43. We have 1
ζ(s) · ζ(s) = 1 then

Fµ · F1 = Fδ1 .

This suggestes µ ? 1 = δ1.

Indeed,

(µ ? 1)(n) =
∑
j|n

µ(j) =
∑

(−1)i
(
r

i

)
= (1− 1)

r
= 0

if r 6= 0, where r is the number of prime factors of n.
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Corollary 5.44. a ? 1 = b i� a = b ? µ. (just convolute with µ on both sides).

If a is completely multiplicative, the inverse of a is µa

Proof. 1 ? µ = δ1, then a ? µa = aδ1 = δ1. �

Corollary 5.45. Suppose a ? 1 = b (i� a = b ? µ), then

B(x) =
∑
n≤x

(a ? 1) (n) =
∑
n≤x

A
(x
n

)
.

Similarly,

A(x) = ... =
∑
j≤x

µ(j)B(
x

j
).

Theorem 5.46. Mobius Inversion. Let F : R+ → R or C. F (x) = 0 if x < ε de�ne G(x) =
∑∞
n=1 F ( xn ) �nite sum.

Then

F (x) =

∞∑
n=1

µ(n)G(
x

n
).

Proof. We have

F (x) =

∞∑
j=1

δ1(j)F (
x

j
) =

∑
j

F (
x

j
)
∑
i|j

µ(i) =
∑
i

µ(i)
∑
k

F (
x

k
), where j = ik

=
∑
i

µ(i)G(
x

i
).

�

Remark 5.47. We have
1

ζ(s)
=
∑ µ(n)

ns
Re(s) > 1.

If s → 1, 1
ζ(s) → 0. This suggests that

∑ µ(n)
n = 0. This is in fact true, but there's no simple proof. It is actually

equivalent to prime number theorem.

Easier:
∣∣∣∑ µ(n)

n

∣∣∣ ≤ 1.

Proof. We have

1 =

N∑
1

(1 ? µ) (n) =

N∑
1

µ(n)bN
n
c = N

N∑
1

µ(n)

n
−

N∑
1

µ(n)

{
N

n

}
.

The latter term has |·| ≤ N − 1. �

De�nition 5.48. ϕ(n) =number of numbers between 1 and n coprime to n.

Then given n =
∏

pnii then

ϕ(n) = n

k∏
i=1

(
1− 1

pi

)
= n

∑
k|n

µ(k)

k
.

This means that ϕ = id ? µ and so ϕ ? 1 = id. Therefore,∑
j|n

ϕ(j) = n

for all n 6= 0.

ζ(s) =
∑ 1

ns
=
∏ 1

1− 1
ps

then

log ζ(s) =
∑
m

∑
p

1

mpms
=

∞∑
n=1

c(n)

ns
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then

c(n) =

 1
n n = pm

0 else
.

Often unclear, ∣∣∣∣log ζ(s)−
∑ 1

ps

∣∣∣∣ < 1

2
.

We also have
ζ ′(s)

ζ(s)
=
∑ − log(n)c(n)

ns
= −

∑ Λ(n)

ns

and this Λ(n) is called the Mangolds function. It islog p n = pm

0 else
.

We know that
ζ ′(s)

ζ(s)
ζ(s) = ζ ′(s),

which suggests that Λ ? 1 = ` (`(n) = log n).

Proof. When n = 1, this is good.

n = pα1
1 ...pαkk , then

(Λ ? 1) (n) =
∑

αj log pj = log n.

�

Knowing this, we now know that ` ? µ = Λ.

Recall that

π(x) ∼ x

log x
⇐⇒ θ(x) ∼ x.

Let ψ(x) =
∑
n≤x Λ(n). We know that ψ(x) ≥ θ(x). Meanwhile,

ψ(x) ≤ θ(x) + θ(
√
x) + ...θ

(
m
√
x
)
∼ θ(x) + c log x ≤ θ(x) +

√
x.

Since
√
x log x << x, we know that

θ(x) ∼ x ⇐⇒ ψ(x) ∼ x.

We already know that ψ(x) ≤ cx, just need the reverse.

Notation:

ν = δ1 − 2δ2 =


1 if n = 1

−2 if n = 2

0 else

and

(ν ? 1) (n) =

1 if n is odd

−1 if n is even
.

De�ne

E(x) =
∑
n≤x

(ν ? 1) (n) =

1 if bxc is odd

0 if bxc is even
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and ∑
Λ(j)E(

x

j
) =

∑
n≤x

(Λ ? (ν ? 1)) (n) =
∑
n≤x

(` ? ν) (n) =
∑
j

ν(j)
∑
k≤ xj

log k

=
∑
k≤x

log k − 2
∑
k≤ x2

log k.

When x = 2n,

ψ(2n) =
∑
j≤2n

Λ(j) =
∑
j≤2n

Λ(j)E(
2n

j
) = log

(
2n

n

)
≥ log

(
4n

2n+ 1

)
≥ n log 4− log(2n+ 1).

Use monotonicity to �nish.

Theorem 5.49. The probability that two random numbers are co-prime are 6
π2 .

Proof. We have
2

x2

∑
n≤x

ϕ(n)→?.

The reason this is what we want, is because the set of (k, n) with k ≤ n where they are coprime is just ϕ(n). The 2 is just

with k ≥ n. Now, ∑
n≤x

ϕ(n) =
∑
k

µ(k)
∑
j≤ xk

j.

Meanwhile, ∑
j≤ xk

j =

∫ x/k

0

tdt+ error =
x2

2k2
+ error.

The error is cxk . So ∑
n≤x

ϕ(n) =
1

2
x2
∑
k≤x

µ(k)

k2
+
∑

error.

The error is ∼ x log x. Also, ∑
k≤x

µ(k)

k2
=

∞∑
1

µ(k)

k2
−
∞∑
k+1

µ(k)

k2

the �rst is bounded by 1
ζ(2) , and ∣∣∣∣∣∑

k>x

µ(k)

k2

∣∣∣∣∣ ≤∑
k>x

1

k2
≤ 1

x
→ 0.

�

6. Riemann Zeta Function ζ(s)

We can extend ζ(s) to a holomorphic function on {Re(s) > 0} with simple pole at s = 1.

Euler summation:

ζ(s) =
1

s− 1
+ 1− s

∫ ∞
1

t− btc
ts+1

dt

makes sense if the integral is holomorphic in Re(s) > 0. Look at partial sums:

N∑
n=2

f(n) =

∫ N

1

f(t)dt+

∫ N

1

(t− btc) f ′(t)dt.

For us, f(t) = 1
ts , and

N∑
n=1

1

ns
= 1 +

1

s− 1
+
N1−s

s− 1
− s

∫ N

1

t− btc
ts+1

dt.

Then

ζ(s) =

N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞
N

t− btc
ts+1

dt.
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The integral → 0 as N →∞. Then

ζ(s) = lim
N→∞

(
N∑
n=1

1

ns
+
N1−s

s− 1

)
for Re(s) > 0. Each of these do not converge on its own, but does together.

Claim 6.1. ζ(s) = 1
s−1 + a0 + a1(s− 1) + a2(s− 1)2 + ...

Proof. We have

ζ(s)− 1

s− 1
= 1− s

∫ ∞
1

t− btc
ts+1

dt.

As s→ 1,

a0 = 1−
∫ ∞

1

t− btc
ts+1

dt

is the same you get from Euler summation of
∑

1
n . �

From ζ(s) = 1
s−1 + γ + a1(s− 1) + a2(s− 1)2 + ... get

1

ζ(s)
= (s− 1)− γ(s− 1)2 + ...

and
ζ ′(s)

ζ(s)
= − 1

s− 1
+ γ + ...

We know

|ζ(σ + it)| ≤ ζ(σ)

but this does not hold for σ < 1.

Theorem 6.2. We have instead

|ζ(σ + it)| ≤ log t+ 4

for σ ≥ 1, t ≥ 2. (σ = 1 is allowed).

Proof. We compute

ζ(s) =

N∑
n=1

1

ns
+
N1−s

s− 1
+ rN (s).

The error term is

|rN (s)| ≤ |s|
σNσ

≤
(

1 +
t

σ

)
1

Nσ
.

Choose N = btc. Then
|rN (s)| ≤ 1 + t

N
≤ 2.

Meanwhile, ∣∣∣∣∣
N∑
n=1

1

ns

∣∣∣∣∣ ≤
N∑
n=1

1

n
≤ logN + 1 ≤ log t+ 1.

Finally, ∣∣∣∣N1−s

s− 1

∣∣∣∣ ≤ 1

t
≤ 1

2
.

�

Theorem 6.3. Same assumptions,

|ζ ′(σ + it)| ≤ 1

2
(log t+ 3)

2

for σ ≥ 1, t ≥ 2.

Proof. From

ζ(s) =

N∑
n=1

1

ns
+
N1−s

s− 1
− s

∫ ∞
N

t− btc
ts+1

dt,



COMPLEX ANALYSIS NOTES 33

for N = btc, we get

|ζ ′(s)| ≤

∣∣∣∣∣
N∑
n=1

− log n

ns

∣∣∣∣∣+

∣∣∣∣N1−s logN

s− 1

∣∣∣∣+

∣∣∣∣ N1−s

(s− 1)2

∣∣∣∣
+

∣∣∣∣∫ ∞
N

t− btc
ts+1

dt

∣∣∣∣+

∣∣∣∣s∫ ∞
N

(t− btc) log t

ts+1
dt

∣∣∣∣ .
We know that ∣∣∣∣∣

N∑
n=1

log n

n

∣∣∣∣∣ ≤ log 2

2
+

log 3

3
+

∫ N

3

log t

t
dt <

1

2
log2 6 +

1

8
.

Also, ∣∣∣∣N1−s logN

s− 1

∣∣∣∣ ≤ logN

t
≤ log t

t
≤ 1

e
<

1

2
.

Next, ∣∣∣∣∫ ∞
N

t− btc
ts+1

dt

∣∣∣∣ ≤ ∫ ∞
N

1

t2
=

1

N
≤ 1

2
.

Finally, ∣∣∣∣∫ ∞
N

t− btc
ts+1

log tdt

∣∣∣∣ ≤ ∣∣∣∣∫ ∞
N

log t

ts+1
dt

∣∣∣∣ =
log t

σNσ
+

1

σ2Nσ
.

We wanted to bound s times that, so∣∣∣∣s∫ ∣∣∣∣ ≤ (1 +
t

σ

)
logN + 1

N
≤ 1 + t

N
(log t+ 1) ≤ 2 (log t+ 1) .

�

Next goal: ζ(s) 6= 0 when Re(s) = 1.

Claim 6.4. If a(n) ≥ 0 for all n, ∑ a(n)

ns

converges to f(s) for Re(s) > σ then

Re (3f(σ) + 4f(σ + it) + f (σ + 2it)) ≥ 0.

Proof. Write f(s) =
∑ a(n)

ns . Then

(?) =
∑
n

a(n)

nσ

(
3 +

4

nit
+

1

n2it

)
We have

Re

(
3 +

4

nit
+

1

n2it

)
= 3 + 4 cos(α) + cos(2α).

Recall that cos(2α) = 2 cos2(α)− 1 and so

Re

(
3 +

4

nit
+

1

n2it

)
= 2 cos2 α+ 4 cosα+ 2 = 2 (cosα+ 1)

2
.

�

Corollary 6.5.

∣∣∣ζ(σ)3ζ (σ + it)
4
ζ (σ + 2it)

∣∣∣ ≥ 1

Proof. Let f(s) = log ζ(s). �

Now, assume ζ(1 + it) = 0 for some t.

lim
σ→1+

ζ (σ + it)− ζ(1 + it)

σ − 1
→ ζ ′(σ + it).

We have ∣∣∣∣∣[(σ − 1)3ζ(σ)3
] [ζ(σ + it)

σ − 1

]4

ζ(σ + 2it)(σ − 1)

∣∣∣∣∣ ≥ 1.
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However, the �rst [·]→ 1, the second ζ ′(1 + it), the next term ζ(1 + 2it) and the last 0. This is a contradiction.

Theorem 6.6. ζ(s) 6= 0 when Re(s) = 1.

Lemma 6.7. (Quantative version)

|ζ(σ + 2it)| ≤M1(t) and |ζ ′(σ + it)| ≤M2(t).

These imply that |ζ(σ + it)| ≥ 1
32M1(t)M2(t)3 for σ ≥ 1, t ≥ t0.

Corollary 6.8. |ζ (σ + it)| ≥ c |log t+ c|2.

Suppose

|ζ(σ + 2it)| ≤ M1(t)

|ζ ′ (σ + it)| ≤ M2(t)

for all t ≥ t0 ≥ 1 and σ ≥ 1 (M1(t),M2(t) ≥ 1).. Then for any such σ and t,

|ζ (σ + it)| ≥ 1

32M1(t)M2(t)3
.

Proof. By continuity, can assume that σ > 1. Then 1
|ζ(s)| ≤ |ζ(σ)| ≤ σ

σ−1 .

Case 1. σ > 5
4 , then

σ
σ−1 is already a better bound than the lemma.

Case 2. σ < 3
√

2, then |ζ(σ)| ≤ 21/3

σ−1 .

Then for a �xed t,
2

|σ − 1|3
|ζ (σ + it)|4M1(t) ≥ 1

from last time. Therefore,

|ζ(σ + it)| ≥ (σ − 1)
3/4

21/4M1(t)1/4
= f(σ) (?).

Choose q such that f(q) = 2M2(t)(q − 1). Then

q − 1 =
1

25M1(t)M2(t)1/4
≤ 1

4

not only σ < 5
4 but q < 5

4 . Hence, (?) holds for q.

If σ < q, then

|ζ(σ + it)− ζ(q + it)| ≤
∫ q

σ

ζ ′(α+ it)dα ≤M2(t)(q − σ) ≤M2(t)(q − 1).

Then

|ζ(σ + it)| ≥M2(t)(q − 1) =
1

25M1(t)M2(t)3
.

If σ > q then

|ζ(σ + it)| ≥ f(σ) ≥ f(q) =
1

25M1(t)M2(t)3
.

�

Notation. E(x) =

1 if x ≥ 1

0 else
, and

∫
Lc

means integrating along the vertical line Re(s) = c.

Lemma 6.9. We have
1

2πi

∫
Lc

xs

s2
= E(x) log x

for any x > 0 and c > 0.
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Proof. We have
xs

s2
=
es log x

s2
=

1

s2

(
1 + s log x+ s2 log2 x+ ...

)
.

Call the circle γ. Then

1

2πi

∫
γ

=

log x simple curve γ going around 0

0 else

(just look at the residue). Call C1 the circle cut by the the left side of γ and C2 the right (middle line is Lc). Then∣∣∣∣ 1

2πi

∫
C1

xs

s2

∣∣∣∣ ≤ 1

2π

x2

R2
· 2πR→ 0

as R→∞, for |xs| ≤ xc if x ≥ 1 and c > Re(s).∣∣∣∣ 1

2πi

∫
C2

xs

s2

∣∣∣∣ ≤ 1

2π

xc

R2
2πR→ 0

as R→∞, if x < 1 and c < Re(s). �

Lemma 6.10. We have
1

2πi

∫
Lc

xs

s(s− 1)
= E(x)(x− 1)

for x > 0 and c > 1.

Proof. Assume as because,

1

2πi

∫
Lc

xs

s− 1
− 1

2πi

∫
Lc

xs

s
=

x− 1

0
.

The estimate we use, is ∣∣∣∣ xs

s(s− 1)

∣∣∣∣ ≤ xc

R(R− 1)

and so both C1, C2 → 0. �

If f(s) =
∑∞
n=1

a(n)
ns for Re(s) > 1, integration term-wise can be justi�ed. Then

1

2πi

∫
Lc

xs

s(s− 1)
f(s) =

∑
n≥1

a(n)

2πi

∫
Lc

1

s(s− 1)

(x
n

)s
=
∑
n≥1

a(n)E(
x

n
)
(x
n
− 1
)

=
∑
n≤x

a(n)
(x
n
− 1
)
.

Also,
1

2πi

∫
Lc

xs−1

s(s− 1)
f(s) =

∑
n≤x

a(n)

(
1

n
− 1

x

)
=
Abel

∫ x

1

A(ξ)

ξ2
dξ.

Notice that the last expression does not depend on c. This is like Cauchy's theorem, that it does not matter which circle

you choose.

Theorem 6.11. Suppose f(s) =
∑
n≥1

a(n)
ns is absolutely convergent on Re(s) > 1. Let A(x) =

∑
n≤x a(n). Then

1

2πi

∫
Lc

xs−1

s(s− 1)
f(s)ds =

∑
n≤x

a(n)

(
1

n
− 1

x

)
=

∫ x

1

A(ξ)

ξ2
dξ

for x > 1 and c > 1.

Proof. We have

xsf(s) = G(s) +H(s)

where

G(s) =
∑
n≤x

a(n)
∣∣∣x
n

∣∣∣s
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�nite sum.

H(s) =
∑
n>x

a(n)
∣∣∣x
n

∣∣∣s
is an absolutely convergent sum and so is bounded, by say M .∣∣∣∣ 1

2πi

∫
C2

H(s)

s(s− 1)

∣∣∣∣ ≤ 1

2π
· M

R(R− 1)
2πR→ 0

as R→∞. �

Theorem 6.12. (Main Theorem).

(1) If f(s) =
∑
n≥1

a(n)
ns absolutely converges on Re(s) > 1, holomorphic in a neighbourhood of Re(s) ≥ 1 except

possibly a simple pole at s = 1

(2) f(s) = α
s−1 + α0 + (s− 1)h(s), h(s) is holomorphic in a neighbourhood of Re(s) ≥ 1

(3) There is P (t) such that |f(σ ± it)| ≤ P (t) for σ ≥ 1, t ≥ t0 ≥ 1 and
∫ P (t)

t2 <∞.

Then, ∫ ∞
1

A(x)− αx
x2

dx = α0 − α.

Remark 6.13. This applies to f(s) = ζ(s), and PNT follows.

Lemma 6.14. If ϕ ∈ L1, then
∫∞
−∞ eiλtϕ(t)dt→ 0 as λ→ ±∞.

Theorem 6.15. We know that

f(s) =

∞∑
n=1

a(n)

ns

converges absolutely on Re(s) > 1, = α
s−1 + α0 + (s− 1)h(s) where h(s) is holomorphic in a neighbourhood of Re(s) ≥ 1.

Additionally, |f(σ ± it)| ≤ P (t) for all σ ≥ 1, t ≥ t0 ≥ 1 with
∫ P (t)

t2 <∞, THEN∫ ∞
1

A(x)− αx
x2

dx = α0 − α.

We know that f(s) = ζ(s) satis�es this.
∫∞

1
ζ(x)−x
x2 dx = γ − 1.

Recall, PNT i� ψ(x) ∼ x. Let f(x) =
∑∞
n=1

Λ(s)
ns = − ζ

′(s)
ζ(s) . P (t) ≤ c (log t+ c)

9
, satis�es the theorem. Conclusion:∫ ∞

1

ψ(x)− x
x2

converges. This implies that |ψ(x)− x| < εx for every ε most of the time.

Proof. We see that

ϕ(s) =
h(s)

s
=

f(s)

s(s− 1)
− α

(s− 1)2
− α0 − α
s(s− 1)

.

So we have, for c > 1,

1

2πi

∫
Lc

xs−1ϕ(s)ds =
1

2πi

∫
Lc

xs−1

s(s− 1)
f(s)ds︸ ︷︷ ︸∫ x

1
A(y)

y2
dy

− α

2πi

∫
Lc

xs−1

(s− 1)2
ds︸ ︷︷ ︸

α log x

− α0 − α
2πi

∫
Lc

xs−1

s(s− 1)
ds︸ ︷︷ ︸

(α0−α)(1− 1
x )

=

∫ x

1

A(y)− αy
y2

− (α0 − α)

(
1− 1

x

)
.

Goal is to show that LHS goes to 0 as x→∞.

(1) The same is true for c = 1

Goal is to show that for c su�ciently close, integral of Lc and L1 are close. First, for c < 2,∣∣xs−1ϕ(s)
∣∣ ≤ |xϕ(s)| ≤ xP (t)

t2
.

This shows that the di�erence of
∫
|t|>N x

s−1ϕ(s) between Re(s) = 1 or c di�ers by < ε for N large enough.
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(2) When c = 1,
1

2πi

∫ ∞
−∞

xiλϕ(1 + iλ)dλ =
1

2πi

∫ ∞
−∞

xiλ log xϕ(1 + iλ)dλ→ 0

(because this is the Fourier transform of ϕ), as long as we show ϕ ∈ L1.

(3) ϕ ∈ L1, because

t2ϕ(s) ≤ |s(s− 1)ϕ(s)| ≤ P (t) + const

for s = σ + it. So ϕ(s) ≤ P (t)
t2 ∈ L

1.

�

Finally, we will check that if ∫ ∞
1

A(x)− αx
x2

converges, with A ≥ 0 and increasing, then A(x)
x → α as x→∞.

Proof. Do this in case.

Case 1. α = 0.

For all ε there exists N where the following holds. Since
∫∞

1
A(x)
x2 converges, A(x) ≤ εx for x > N . Suppose

A(x0) > εx0, ∫ ∞
x0

A(x)

x2
≥ εx0

∫ ∞
x0

1

x2
= ε.

Case 2. α = 1.

If A(x0) > (1 + ε)x0, ∫ x1

x0

A(x)− x
x2

≥ (1 + ε)x0

∫ x1

x0

1

x2
−
∫ x1

x0

1

x
.

We can choose x1 = (1 + ε)x0 ,

x1

(
1

x0
− 1

x1

)
− log

x1

x0
= ε− log(1 + ε) ∼ ε2

ε
> 0.

If A(x0) < (1− ε)x0, ∫ x0

x2

A(x)− x
x2

≤ (1− ε)x0

∫ x0

x2

1

x2
−
∫ x0

x2

1

x
.

If we let x2 = (1− ε)x0,

x2

(
1

x2
− 1

x0

)
− log

x0

x2
= ε+ log(1− ε) ≤ −ε

2

2
< 0.

�

Recall,
∞∑
n=1

µ(n)

n
= 0.

That's the next goal.

f(s) =
∑ a(n)

ns absolutely converges in Re(s) > 1, = α
s−1 + α0 + (s− 1)h(s).

|f(σ + it)| ≤ ...

Prime number theorem then tells us that

(1) Integral version
∫ A(x)−αx

x2 dx = α0 − α
(2) Limit version A(x)

x → α (provided A ≥ 0 increasing. This, we can also do A = B − C where B,C are monotone

and satisfy all the other conditions).

(3) Series version∑
n≤x

a(n)
n − α log x→ α0.
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Proof. This is

=
A(x)

x
+

∫ x

1

A(y)

y2
dy − α

∫ x

1

1

y
dy → α+ (α0 − α) = α0.

�

• Proof of
∑
n≥1

µ(n)
n = 0, use 1

ζ(s) =
∑
n≥1

µ(n)
ns . α = α0 = 0.

Integral version, M(x) =
∑
n≤x µ(n),

∫ M(x)
x2 = 0.

Series version:
∑
n≥1

µ(n)
n = 0.

Note, for us, µ = 1 − (1− µ) (which are the B and C). 1 ≥ 0 and gives ζ(s), the other is also ≥ 0 and gives

ζ(s)− 1
ζ(s) .

• Proof of |ψ(x)− x| = O(xα) then ζ has no roots α < Re(s).
1
ζ(s) = s

∫∞
1

M(x)
xs+1 dx, Re(s) > 1, Re(s) > α. This implies that

ζ(s) 6= 0

if Re(s) > α.

s

∫
x− ψ(x)

xs+1
=

s

s− 1
+
ζ ′(s)

ζ(s)

implies that RHS is holomorphic when Re(s) > α.

(GET PICTURE FROM ADAN, or PALLAV). From this,

|ψ(x)− x| ≤ ce−c
√

log x.

Which is equivalent to |π(x)− `i(x)| having some bound.
1

xε
� e−

√
log x � 1

(log x)
2

and In(x) =
∫

1
(log t)n .


	1. Review
	2. Local Behaviour of Holomorphic Functions
	3. Conformal Mappings
	3.1. Main Lemmas

	4. Entire Functions
	5. Prime number Theorem
	5.1. Euler Summation
	5.2. Dirichlet Series

	6. Riemann Zeta Function (s)

