COMPLEX ANALYSIS NOTES

HAO (BILLY) LEE

ABsTRACT. These are notes I took in class, taught by Professor Marianna Csornyei. 1 claim no credit to the originality of

the contents of these notes. Nor do I claim that they are without errors, nor readable.
Stein- Complex analysis
Midterm 23rd, in class.

1. REVIEW

D C Cis a domain (open, connected), f: D — C. f is holomorphic if

zZ—20 zZ— 20
exists for all zg € D.
If =1 exists and is continuous, and f(D) is a domain, f(z) # 0 then f~! is holomorphic, with (f_l)/ (2) = W

Exercise 1.1. C' = 9B(0, 1) be the unit circle, and C' C D with f holomorphic on D. Let zp € C. What is the tangent
at f(z0).

Proof. If zy = e, then take derivative of the map t — f(e''), to get f/(ei’0) -iefto = /() - iz. a
f(z) =3, anz™ power series, then the radius of convergence is

R = liminf ———.
|an|1/n
If |z| < R, then > a,z™ converges. On B(0,r) with r < R, f converges uniformly. If |z| > R, then the series diverges.

Proof. If |z| > R, then there are infinitely many n such that |a,z"| > 1.

If |z| < R, then for large enough n, we have |a,,2"| < ¢™ for some ¢ < 1. Uniformly, because ¢ is independent of z. O

Theorem 1.2. f(z) = Y77 jan (2 — 20)" is holomorphic on B(zo,r) for r < R. Conversely, if f is holomorphic on
B(z,7), then f(z) =>,"an (z — 20)".

To get the a,,’s, take derivative and evaluate z = zg, so

Let v : [a,b] — R? be a continuous curve of finite (or o-finite) length.

JRCE SCICEPRY

where z;’s partition v, and s;’s are some point in the interval. If f is continuous and v has finite length, then the integral

[yf(z)dz

b
/ f(2)dz = / F (/@) Y (1)

D is simply connected, if for any closed v C D, there is a continuous deformation mapping it to a point
1

exists, and

< (length of v) - max | f(2)|

If v is piece-wise smooth, then
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notation: n(vy, zo) is the number of times vy goes around zj.

Theorem 1.3. n(v,2) = 5 fy L_dz.

27 zZ—2z0

Theorem 1.4. (Cauchy) If D is simply connected, and f is holomorphic on D, v C D is a closed curve, then

/ f(z)dz = 0.
¥
Additionally,

Similarly,

2mi z—zo)t1 T

f(n)(ZO)n(%Zo)Z ! /(f(z)dz

Special case: v is a circle around zg, then n(vy, zo) is always 1, so

R ON

an:% ’Y(Zizo)n*i’l z.

Theorem 1.5. If D is simply connected, and f is holomorphic, then
Z2
| 1@ =) - s
21
Here, can integrate over any .

2. LocAL BEHAVIOUR OF HOLOMORPHIC FUNCTIONS

Suppose f(z) #constant, holomorphic on B(zp,r), then
flz)= Z an(z — 20)".
n>0
Let m > 1 be the smallest index such that a,, # 0. Then

f(z) = f(z0) = Zan(z —2z)" =(2—2z)" Z Apm(z — 20)".

n>0
This means that % — am as z — zp (need to prove that the sum on the right converges uniformly, not just
term-wise).

|f(2)—f(20)

Corollary 2.1. E RN |arm| is called circle preserving.

Basically, fixing a small circle of radius r around zg, f(z) is not far away from f(zp), with radius about |a,,|r™.

Corollary 2.2. We have
Ang (f(2) = f(20)) —m - Ang (z — 20) = Ang(am).
This is like angle preserving.
If we tend to zo along a half-line, then Ang (f(z) — f(20)) = m - Ang (z — z0) + Ang(a,,) where the RHS is constant.

It’s like we stay inside a cone. That is, the image has a tangent at f(zo) of this direction. If we tend to zg along a different

half line, then the angle between the images is m times larger.

Theorem 2.3. (Mazimal Principle). f is holomorphic, non-constant on some domain D. Then |f| cannot attend its

supremum on D (domains are open).

Definition 2.4. f is holomorphic on B(0,7¢). Define the maximal modulus of f to be M(r) = supg( ) |f(2)|, with
0<r<rg.

Fact 2.5.
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(1) M(r) is increasing

(2) If f #constant, then M(r) is strictly increasing

(3) If f is continuous on cl (B(0,r)), then M(r) = max.cop(o,r |f(2)]-

(4) M(r) is continuous (f can jump, but M is defined a sup of open sets, so we are fine. Need to check this for
going up and below, cuz you are monotone. The other direction, take a sequence converging, take a converging

subseugnece of f(blah), since f continuous on it, it can’t be too small.

roposition 2.6. Le : , 1) — ;1) wi =0and ap = ... = ay,. en ot 1S increasing. 15 1S @
P ition 2.6. Let f : B(0,1) — B(0,1) with f(0) = 0 and Then MU) s g ing. This i

generalization of the above.

Corollary 2.7. (Special Case). Schwartz Lemmma. [ : B(0,1) — B(0,1) with f(0) = 0 then |f(2)| < |z|. If equality holds

at some z, then f is constant times z.

Proof. Since M|(z||z|) is increasing, just need to check at an endpoint. Well, f maps into B(0, 1), so it’s bounded by 1.
f(2) = z(a1z +agz + ...) call the bracket g(z). Then My (r) = rMy(r) for r < 1. Then My(1) = My(1). Since
M;(1) <1, s0is My(r), as required.

If equality holds, then g is constant. O

Theorem 2.8. Hadamard’s Three circle theorem. Take 3 circles, with r*> = riry then M(r)? < M(r1)M(ry). That is,
log M is a convez function of logr.

Alternatively, [ is bounded on a domain that contains (closed) annulus.

Proof. Suppose f is maximal on |z| = r at zo. Let

o2 = 1)1 (2)

z
on the annulus (between the two circles). The é is really mapping the annulus to itself.
Since g is bounded on the annulus, with
M(r)? < [f(20)?] = |g(20)| < max (Mg(r1), My(r2)) -
Notice that My(r1) < My(r1)Mg(re) and My(re) < Mg(re) - My (r1). O

Proof. 2 proofs of maximal principle. Cauchy’s theorem. write zg € D, f(20) as

feo) = 5 [ Lz

271 zZ— 2

where + is a circle around 0. Then

|f(20)] <

By the same argument:

Theorem 2.9. Louiville’s theorem. f is holomorphic and bounded on C then f is constant. If it is bounded by a polynomial

|z| then it’s a polynomial.

Proof. Open mapping theorem to imples maximal principle. Given something in the image, and put a small disk around

an image point, then there’s a small neighbourhood in the domain mapping into it. O

Theorem 2.10. (Quantative open mapping theorem). Let D be a domain, with zo € D, f holomorphic non-constant.
Let m be first number such that m > 1, a,, # 0. For every € > 0 small enough, there exists > 0 such that for every
w € B(f(z0),9), there are exactly m points z1, ..., zm € B(z0,€) such that f(z;) = w.
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Proof. Choose € small, so that f(zg) is not attained at any other point B(zg,€) and f’ # 0, except possibly at z.

Let v be 9B(zo,€). Let
flz) —w
z) = —————.
= 56— 1
Then ¢ has a pole at zg of multiplicity m. Choose ¢ < minz@ |f(2) = f(20)]. Then
)]

—w
| PR 2 e |
o) =11= |52 | <5
for all z € 4. Therefore, g(z) # 0 for all z € « (that is, n (g(v), 0) =0).

By the argument principle, since g has a pole of multiplicity m, it must also have a zero of multiplicity m. Therefore,

there are m-roots with multiplicity 1 because f’ # 0. (argument principle says that

/7 J;/((ZZ)) dz =2mi-n(f o~,0) = 2mi(zeroes — poles)

(cuz centered at 0). O

3. CONFORMAL MAPPINGS

Definition 3.1. Let f : D; — D> is a bijection, f holomorphic and f~! holomorphic.

Dy, D5 are conformally equivalent if there exists such an f.

Theorem 3.2. Riemann mapping theorem.

Example 3.4.

(1) C — C translation, rotation, dilation.
(2) log z conformal action on C\RZ% = D;. For z = re'? | logz = logr +if. Dy =R x (-7, 7).
(3) Half-plane to the disc.

Take f(z) =

. Since for every pomt of the upper halfplane, z is closer to ¢ than —i, this is in B(0,1). This is

holomorphic because —i ¢ H. Let % Z+Z = w, then z = Z}T This is a holomorphic function on the disk. Now, if
w = u + tv, then z = thﬁﬁ Just need the real part of the fraction is positive. The real part is %.

Exercise 3.5. Consider f(z) = iz Show that this is a conformal mapping between upper half disc and....

Proof. Notice that we can write
1—2z 2 {— 21 +x) ) 2y

I+ 14z (+2P+8®  (l4a)+y?
From this, we see that the Re(f(z)) > 0 and Im (f(z)) < 0. Claim that we have the whole bottom right quadrant.

Suppose

1—=z 1—w
=N = = —
1+=2 14+w

is holomorphic. To see that this lands in the upper half disk, we multiply by i, to rotate to the upper right plane. From
B(0,1) = H" via =%, just identify the parts we want. O

Definition 3.6. Fractional linear transform is f(z) = Zzzidb on the Riemann sphere C U {oo}, with det # 0.

10 a 0
Fact 3.7. These form a group, have translations given by ( 0 1 ) and rotations ( 0 1 ) with |a| = 1; and L > given

0 1
b :
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This is conformal, because

tran'sia;tion Z 4+ g dil’eﬁgon |02’ (Z + d) }i}z 1
c c |c2] (

)
dilate lbc — ad| rotate bc —ad tranglation bc—ad  a
e EErD 2ED
_ az+b
B cz+d
Let f(z) = %+ conformal from C\ {=¢} — C\ {2}. Then define

d
f () = o0 and f(o0) = 2.
c c
This makes sense geometrically (stereographic projection). Through the stereographic projection, we see that

line in C < circle in sphere through the north pole.

Let C = CU {oc}. If 2z + 00, then 2/ — N (on the sphere). So {|z| > r} is a basis of the topology around oco. If f is
continuous at oo, this means that f(z) has a limit as z — co.

A circle in C gets mapped to a circle in S (viewing lines as circles passing through oo). Consider the equation
A(a:2+y2) +Bx+Cy+D=0
of a circle in R2. Let

y e

! x /
Y = =
2 Y 14224 y? 14224 y?

r=——-
1+22+4y
Divide the above equation by 1 + z2 + y2, to get
(A—D)z' +Bx'+Cy' +D=0
is a plane in R3, and intersections our sphere in a circle (a planar section).

Theorem 3.8. The image of a circle or a line through a fractional linear transform is a circle or a line.

Proof. Since the group is generated by transformation, dilation, rotation and % (the first few have the desired properties).
Just need to check this for % Enough to choose a chart on the sphere and check circle goes to circle.
If rr* = 1, then if|z| = r then . r = tan(stuf f) and r* = tan(stuf f). Point is z — 2* in C gives ¢ to —¢ reflecton on

the sphere (p is the angle). O

Fact 3.9. Given zs, 23,24 distinct points, there exists unique fractional linear transform mapping to vo,vs, vy distinct

points.

Proof. Enough to check this for v =1, v3 = 0 and vy = co. Take
. zZ— Z3 Z9 — 23
1z) = (z—24> / <Z2 - 24) '

Definition 3.10. The cross ratio (z1, ..., z4) € C is the image of z; under the fractional linear transformation that maps

O

29, 23,24 to 1,0, c0.
Theorem 3.11. Cross ratio is invariant under fractional linear transform.
Proof. Suppose f is a fractional linear transform,

(21, ey 24) = (f(21)y ooy f(24))

Let g denote the fractional linear transform sending zs, 23,24 to 1,0, 00. Then g(z1) = (g o ffl) (f(=1))- |
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Corollary 3.12. TFAE:

(1) (Zla ..-,Z4) eR
(2) z1,...,24 lie on a circle or a line

(8) stereographic image is on a circle
Proof. Choose fractional linear transform f sending 2o, 23, 24 to 1,0, 00. Then
(Zlv a3 Z4) = (f(zl)v 1a Oa OO) .

LHS is real iff f(21) € R iff f(21),1,0,00 is on a line (the real line actually) iff (by taking f~!) LHS is on a line or

circle. O

Definition 3.13. Reflection. z,z* are symmetric with respect to C' (a circle or a line) if (z,..,24) = (2%, 22, ..., 24),

29,23,24 € C.
Remark 3.14. If 25, ..., z4 are real, then
(215 ooy 24) = (Z1, 22y +vs 24) -

This can be deduced from the f above.

Fact 3.15. If C is a line, then z — z* is the usual reflection.
If C is the unit circle (correponding to the equator of C) then z* =

W=

Symmetric points are preserved by fractional linear transformation

Every reflection maps (circle or line) to (circle or line)

Exercise 3.16. Two points are symmetric wrt C' (circle or line) iff any circle or line C’ through the two points is orthogonal
to C.

Proof. Since fractional linear transform preserves symmetry and angles, can reduce to case where the reflection is over
R-axis. O

Claim 3.17. The conformal automorphisms of B(0,1) are of the form
fz) =20

22071

with zg € B(0,1) and |¢| = 1. These all also conformal automorphisms.

Proof. First, assume that f is a conformal automorphism of B(0,1) and f is a fractional linear transform. Denote
20 = f71(0) € B(0,1).
Claim that % = f~!(occ). This is because 0 and oo are symmetric, and so f~!(co) must be symmetric (reflected
through the unit circle, which is preserved by f). Then
f)=c

1720

Zo—1
Since the top and bottom has the same modulus, |¢| =1 (have to map circle to circle).

Every f defined in the claim, is a conformal aut of B(0,1). Since 2o and % are symmetric, then 0, co must be symmetric
such that the image of the unit circle becomes a circle around 0 (from having to be perpendicular to the 2 circles by the
exercise. By the formula, |f(1)| = 1, and so the image has radius 1.

Let g be an arbitrary automorphism. Need to show g has the desired form. Let zp = ¢g(0). Let f be the fractional
linear transform sending 2o to 0. Then f (¢(0)) =0 and f o g fixes 0, (f o g) " fixes 0.

Schwartz lemma implies that |(f o g)(z)| < 2z and ’(f og)™" z’ > z and so f o g is a rotation. Rotation is a fractional

linear transform and so is f, this implies so is g. By the above, ¢ has the desired form. O

Example 3.18.
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(1) f(z) = z* upper half-plane to somewhere, with 0 < o < 2. (Want it to be injective, so o < 2. Since highest angle
on upper half plane is 7, this maps to angle ar so still injective).

2) f(z) = [, ﬁdw. For example, f(1) = fol ﬁdw = 2. When z > 1 (and real), then this becomes purely
complex. The boundary then looks like

LI-shape
(symmetry around 0, goes out to 7). This is conformal, because it’s the inverse of sin z.
(3) flz)=J; mdw with 0 < ¢ < 1. When 0 < w < 1, both terms are positive, the image of [0,1] is then

some interval [0, k1], where k1 = f(1). The image of [1, ] is a vertical line from k1 to k;y +iky (purely imaginary).

c
After %, it becomes negative real, so we go back etc. Get a rectangle.
This is called an elliptic integral

(4) Schwarz-Christofell Integral
1

S(z) = /0 (w—a)™ ... (w—a,)™" dw

with a; < ... < a, real numbers, each —1 < a;; < 1 and 1 < Y «a; < 2. The above were special cases of this. These

are not all conformal mapping of polygons. Claim will be that all are close to this form.

Claim 3.19. If f is a conformal mapping from upper half-plane to some P, then f is of the form f(z) = ¢15(2) + ¢2. (not
iff)

Fact 3.20.
t is holomorphic on a;+1y:y < the half-lines).
1) It is hol hi C\{a; +i 0} (the half-li
o ) (@—ay)™ T >a; : N :
(2) (x—a;)™ = since a; < 1. Integral exists up to the real line including the points a;.

(aj —x)™ €™z < a,

D

1 _
<clwl

where >~ a; > 1, S(00) etists.

(8) What is the image of R?
1

(x —a)™ ...(z —an)

Argument of S’(x) = 0+...40—7 (@j41 + ... + a). The image is then a polygon connecting S(ay), ..., S(ay), S(c0).

S'(x) =

The angle of segment S(az) to S(az) with the next segment (extend and outside) is mas. So the same for S(oo)
to S(ay) is (2 —> oy) .

3.1. Main Lemmas.
Lemma 3.21. (Area formula 1). f: D — f(D) conformal. Then area of f(D) = [ [}, |F/(2)|? dady.

Proof. We know
area of f(D):// ldmdy:// det Jydzdy.
f(D) D

Write f = u + v, then we know that

ou ou 2 2
= 2t ou ov

detJf:det< o Oy ) = () + () :
% %y Ox oz

For derivative, can look at any direction. Pick z direction, so f' = % + z’%. O

Lemma 3.22. Caratheodort Eztension. If f is conformal between B(0,1) and P, then it extends continuously to
cl (B(0,1)) — ¢l (P) homeomorphically (?)

Proof. Two sequences that converges to z € B(0, 1), their image can not converge to different points wq,ws. Suppose

Zn, 7, € D converging to z, f(z,) — w and f(z],) — w’, not equal.
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Let d = dist (w,w') .

d

Claim. We have curves v and 7' from w to w’ such that dist (v,7') > §, and 7 contains infinity many of f(z,) and +

contains infinitely many f(z7,).
Proof. Just connect the points of the sequences. O

Take inverse images of the v and ’. Let r be small, and take a small circle around z. Let 2, and z/. be any two points

of intersection of the circle with the preimage of the curves.

d
< — =
S S 1f () - £ =

Can use any curve connecting z; and z'». Pick z; + ret®. Then
y g 2 i

d 02(r) /2 1/2
3 S / |f'(2)| rdf < </ lf (2 rdﬂ) </ rd@) by Holder’s
3 01 (r)

Bul (f T d@)l/ < V 27” . ThlS means tha‘
/2
27(7

' 2
00 = / (d/3) dr < // \f'(z)|2 dxdy = area of some domain < co.
0

2mr

But

This is a contradiction.
Then extend via this. Need to check continuity holds. This is true by a sequence from inside to the boundary. But
what about a sequence on the boundary. But I can just pick a sequence in the interior that approximates the sequence

on the boundary. O

Corollary 3.23. The upper halfplane instead of the ball, and we get a homeomorphism of the closed upper halfplane,

including co and cl(P).

Lemma 3.24. Schwarz reflection. D domain, symmetric about the R-azis, call the two pieces DV and D~. Suppose f
is holomorphic on DY. Let I = RN D. [ extends to I continuously, with f(I) C R. Then f can be extended to D as a

holomorphic function.

Proof. Define f(Z) = f(z). Claim that this is holomorphic.

If we write f(2) =Y an (2 — 20)", then f(2) = >_ @, (2 — Zp)" . Just need that this has non-zero radius of convergence.
But the radii of convergences are the same. Now, have to check that f is holomorphic on I. Take a circle v around the
point. Need to check that fﬂ/ =0.

Will integrate over an e-away upper half of the circle, and e-away bottom half of the circle. Since each half are strictly

above or below R, they are both zero. As e — 0, converges to

+f .
/upper half circle line segment close to R

Now, suffices to show that the integral of line segments close to R coverge to integral on R as ¢ — 0. This follows from

continuity. O
Corollary 3.25. Instead of Rs, we can choose any circle/ or line.
Proof. Fractional linear transforms preserve symmetry. O

Lemma 3.26. Analytic continuation. Suppose D1 and Do are two domains, with f; holomorphic on D;. D = Dy N Dy
also a domain, with f1 = fo on D (in fact, just need to agree in some ball in D). Then they extend to a holomorphic
function on Dy U Ds.
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Take the power series 1 + z + 22 + ... converges in the unit disk. It does not converge outside, but it can be extended
outside holomorphically. What happens if you extend, extend etc then come back. No reason we should have the same
thing. If we assume that f; holomorphic on D; and D = Dy N Dy is a domain.

Let f: H — P conformal. Claim that f(z) = ¢15(2) + c1.

Proof. First, choose «; to be the exterior angles of the polygon, a;’s to be the inverse image of the vertices.

s\
It is enough to show that (%) = 0. This is

f18" — f8" B J;T/ — %’/’
2 - (8)2
&3 GG

. Qj
J z—aj

Thus, enough to show that ?—l,/ =-3

Recall:
1

(x —a)™ ... (x —ay)

S'(a) =

Now, show that ’}—/,’ +> Zf{lj = 0. Want to show that the function is entire. Think about the domain to be strips
(mapping to sections of the polygon). Use Schwarz reflection to reflect the line, to get things outside the polygon. Have to
be careful with the vertices (corresponding to these division lines). Want some overlaps between the strips, to use analytic
continuation. Want to reflect through strip of ay_1 to ax4+1 (includes ay). But the line of a; does not map to line. Need

to straighten it out.

hi(2) = (£(2) = flar) = .
The exterior angle is way, so the interior angle is 7 (1 — ay). This above will then map interval of ap_1 to ax to a line
segment, and so can apply Schwarz reflection. This extends H ,j to H .

Write hy = h, ap, = o and a = a.

W) = o (F) ~ F@) ™ () = 2 h()(2)
1l—«a 11—«
ff = A—a)h*on HT
(2) = —a(l—a)®)’h 4+ (1—a)hh ™
Then . o
J;T, =—ah'h™' + R
Just need %/,/ is holomorphic, which is #’ # 0 on HF U H_ (including boundary). Meanwhile, % = —% + holomrphic from
h having a simple pole at a.
Hence, on H lj , we have ’}—',’ = — -2~ +holomorphic. Hence, L s holomorphic, and can be extended to the union of the
two strips. Therefore, ’;—/,/ +3 j Zfzj is holomorphic on H ,j U H for each k. These strips have non-trivial intersection.

We don’t know that they agree on the intersection of the bottom strip, but they agree in a ball of the upper half plane,
and that suffices to apply analytic continuation. There’s more work for Hfr and H;I but it’s not a big deal.

Now, we know the function is entire. Will show that ’}—',/ +> L -
constant 0. Extend f to C\ball from fT on H\ball. This is bounded because f is bounded on the upper half plane. O

— 0 as 2z — oo. Then it’s bounded and must be the

Exercise 3.27. For every function f holomorphic at oo, }}—/,/ decays like % as z — oo.

Proof. Can differentiate normally, cuz it’s uniformly bounded at disk sufficiently large. Then we see that using % expansion,

we get it. If a; = 0, then just do the next, and continue. 0
Now, suppose f(z) = ag + a1z + .... Is it conformal. We can assume that ap = 0 and a; = 1.
Theorem 3.28. If > ° ,nla,| <1, then f is conformal on B(0,1).

Proof. 1f that holds, each n |a,| < 1, and so {/]a,| < L — 1 so this is holomorphic, with radius of convergence > 1.
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f(21) = f(z2) = (21— 22) +as (2 —25) + ..
= (21— 2) (1 +az(21 + 22) + az(2f + 22120 + 23) + ...) .
The |as (21 + 22)| < 2|as]|, |as...]| < 3lag|... etc (we are in the unit ball). Therefore,
[f(z1) = fz2)| = [21 = 22| (1 = 2az| — 3lag|) > 0.
Basically, for f = z 4+ a22% + ... the sum a222 + .... is less than z. O
Theorem 3.29. If it is conformal, then |as| < 2. (HWK, to check that this is sharp)

Exercise 3.30. Sharp

2
Proof. f(z)=2z+22243234+ .. =2(14+22+322+...) ==z (d% lfz) = ﬁ This is als (lfz) . Then we can

write f(z) = (g o h)(2) with h(z) = % and g(z) = z + z%. Then check.... O

Corollary 3.31. (Koebe-Bierberbach) If f(z) = z 4+ azz* + .... is conformal, then f (B(0,1)) 2 B (0, 7).

Proof. Suppose zp ¢ f(B(0,1)). Define g(z) = z‘lf(f)) is holomorphic. Easy to check that this is injective.
From zof(z) = (20 — f(2)) g(2), we see that

1
202 + a22022 +... = (zo -z — a2z2 — a3z3 + ) (z + (z + a2> 22 + )
0
This gives us the formula for g, and |az| < 2 and ’% + ag‘ <250 ‘%‘ < 4. Therefore, |zp| > §. O
Lemma 3.32. (Area formula 2) f(z) = > .7 a,z™ holomorphic on a domain that contains the curve C, =contain 0

with radius r. f is injective on C,.. Then the area enclosed by

oo

D mlanf'r

n=—oo

f(Cr) =7

Proof. Write f = u + iv and z = re*?. The area enclosed is equal to

/QW w(0)v' (0)do.
0

> (anei"‘g + @e—me) r™. Similarly, v(0) = % > (anemg — Ene_i”a) .

=

Therefore, the product is
1
— +m
uv(f) = I E (-) mrnTm,

m,n

When integrating from fo%’ a lot are 0, and we get

27
/0

1
— .27 g m ama_m + U@ >™ + Ty r>™ + a_mam)

= 722771‘0,7"‘2 2m

which is what we wanted. Here, >  mama_,, = 0 because m and —m appears in the sum. ]

Corollary 3.33. f(2) =1 + by + b1z + b22? + ... Suppose this is conformal on B (0,1)\ {0} then > 0" n b, | < 1.

Proof If r is close to r, the area enclosed is 7 |— = + > " oM |bn \2 2n. When r is very small, the main contribution is

727 and the inside is negative. For all 0 < r < 1 is is negative, because it’s continuity and never 0.
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What happens as 7 — 1. 1 — S n|b,|* < 0. We get our result. O

Suppose f(z) = z + azz® + azz® + ... Then 2 = 1 4 ayz + ... is still holomorphic on B(0,1) and non-zero (because

f(2) can only have a simple root at 0). Therefore, we can take

f(z) az
= = 1 v
9(2) . +5zt
h(z) = zg(2?) = 2+ %2% + .... Then
11 e
h(z) 2z 2 S

Claim 3.34. h is conformal.
Proof. Need to show injectivity. h(z1) = h(z22). Sinze h%(z) = f(2?) then 27 = 23 implies 2; = +25. Then z; = 2 because
B(1) = 219(8) = 229(2) = h(z2)
which determines the sign. O
This means that for ﬁ, %2 <1.
Definition 3.35. f is called typically real if f(z) € Riff z € R.
We will show that if f is z + a22? + a3z® + .... conformal on B(0, 1) and typically real, then |a,| < n for all n.

Claim 3.36. 2z + az2? + ... typically real and conformal on B(0, 1) then |a,| < n for all n
Proof. f =wu+ iv with z = re*. Then
f(z) = Z an (cosnb + isinnf) r*.
Hence, v(re'®) = 3" a, 7" sinnf. Then
/ v (re'®) sinmé = / Z anr" sin(nd) sin(m) = EUzmrm.
0 0o 5 2

We know -

’zamrm’ < m/ |v(re“9)sin9’.

2 0
We know v(ie’) and sin 6 don’t change sign between (0, 7). Hence, the above is equal to m%r. This says

|amr™| < mr.
This is true for all € (0,1), and r — 1, |am,| < m. O
4. ENTIRE FUNCTIONS

e Where can it be 07 It can be constant 0 or discrete.

Claim 4.1. Given z1, z3,... € C with no accumulation points, there is an entire function that vanishes exactly at these

points, with desired multiplicity.

e How does it grow at infinity.
e To what extend is it determined by its zeroes? Answer: unique up to a multiplicative factor, provided f has finite

rate of growth

Definition 4.2. Suppopse f is entire. f has order of growth at most « if
()] < exe

for some ¢y, co constants. The order of growth is the infimum of the a’s.
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Example 4.3.

e ¢*. We know
|62| _ eRe(z) < 6|z|
and so the order of growth is 1. (note e® is not always big. It’s big if Re(z) is big).
e sinz and cos z can be placed in an exponential, and get 1
ez

e ¢ is infinity

Notation: f entire function. Denote by n(r) to be the number of roots in B(0,r) (with multiplicity).
Theorem 4.4. If f has order of growth p < « then n(r) < cr® for some constant c, for large enough r.
Lemma 4.5. (Jensen’s formula). f # 0 on the circle |z| = r, and # 0 at the origin. Let z1, ..., z, be roots in B(0,r) with

multiplicity. Then

n

z 1 27 .
log |£(0)] = > log % + ﬁ/o log | f(re')| do.

=1
Proof.
(1) If f has no roots, let g(z) = log f(z) exists.
1f(2)] = ’emz) — (Relg(2))

Then

log |f(0)| = Re(g(0)) = Re (217T/0 7Tg (rei‘g) d@) = %/0 i log ‘f(rew)’ de.

(2) Suppose f =z — zy with zg € B(0,7). We need to show that
1 2 .
logr = —/ log |rew — zo| do,
2 0
which is to say

e Yzo

1-— de.

1 2 ) 1 2
0o = — logew—z—odez—/ log
2m Jo r 2m Jo

We see that 1 — # is never zero. We can apply step 1, to h(z) =1 — 202 to get

1 2m )
0 =1log(1) = %/ log ’1 - %e’e de,
0

it’s not —0, but going backwards doesn’t change the desired result.

(3) General case, let f(z) = (z — 2z1) ... (z — 2x) % We proved it for every term of the product already.

The product breaks into a sum, so we are done.

O
Exercise 4.6. f has order of growth p

Proof. of Theorem. Recall that
Z log ’ﬁ
=1 r

Consider the ¢ such that |z,| < §. Each contributes a log2 < in the LHS of the above. So get

1

2m
—/ log|f(rei6)|d9710g|f(0)| <cr®+c.
0

<
|27

log2-n (g) <cr® + e

and so N
2
701( r)?te < cr®.

<
n(r) < log 2
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Corollary 4.7. If f has order growth p < a and z, 2o, ... Toots with multiplicity. Then > ﬁ < 00.

Proof. Choose p < 8 < . Then

SOy 1|a czﬁnwuczm Sy

V4
i 2iswz€|s2i+1‘ ¢
J

This is because n(2/+1) < 2018, -

IN

IN

Suppose z1, 22, ... € C have no accumulation points. Want to find an entire function with exactly these roots. Define
f(z)=(z—21)(z — 22) ...
What happens with infinite products.
00 N
[12 = o 11 =
n=1 n=1
if it exists. If z,, = 0 for any then it exists and is 0. Assume it’s not the case. If the limit exists, then z, — 1. Write

Zn =1+ w,.
Fact 4.8. If Y |wy,| < oo then the product exists, and [] z, # 0, unless z, = 0 for some n.

Proof. Hﬁ;l(l +wy) = Hﬁ;l log(L+wn) — 351 los(1+wn)  We know that [log (1 + wy)| < 2|wy| if Jw,| < L. This will
happen, since our thing absolutely converges. This shows that anl log (1 4+ w,,) has a limit as N — oc. O

Claim 4.9. Suppose fi, fo,... holomorphic on D with |1 — f,,(2)| < ¢, for every z € D, with Y ¢, < oo then [, f,

converges uniformly to holomorphic f on D. (something about non-zero too).
Proof. We can assume that ¢, < 1.
N
H Folz) = X loe(tan(@) _ co(2)
uniformly on D. Weierstrass implies g(z) is holomorphic. a

" on the set where f#0.

Remark 4.10. > log f,(z) — log f(z). Similarly, Z 7 f

Now, back to the f(2) = (z — 21) (z — 22)... = [[°°, (1 - 7)
disk. Suppose > ‘i’ < oo. In particular, this is good if the order of growth is < 1.

An example when it doesn’t work is sin(nz) with integer roots.

we have - o = co. However, (1 - Z2) (1+Z) = ( - fT;;) So view

(- 2) e

n=1
which does converge and is an entire function, since > | | < 00, so bounded on each disk. Is this sin(7z)? No, but close.
F0)=1#m.

Theorem 4.11. However, 7z [~ (1 — 2—2) = sin(7z).

Proof. We have
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call the terms f;. Consider

g1 & 2 ()
PO AP B i O

(sin(7z))’

sin(7z)

Meanwhile,

= 7 cot(mz).

Note, that if —ff/ = %’ then f = constant - g. Enough to show that
1 = 22
— —_— t .
. + nEZI 22T (z)

e Both holomorphic on C\Z
e simple pole at 0 (because it’s 1+holomorphic)
e Both are odd functions f(—z) = —f(2).

e Both are periodic (because

— 2z 1 1
222—712:2<z—n+z+n>

n=1
1
< —— >1
{lel < 5.l 21}

Difference is an entire function, bounded (because bounded in the strip, bounded in the reflection because of odd, bounded

and do stuff.

e Bounded on the set

where z = x + iy.

in the middle cuz bounded domain, so bounded everywhere by periodicity). It’s odd, so the only constant possible is 0. O

Can use z = %, to get

a0 4) ~I(M5 ) -1 (5 5)

G (T TR J Y
2 n—12n+1) 13357

n=1

Reciprocate to get

is called Wallis product.

Natural questions:
(1) Given a sequence ay, ... € C, is there an entire function with zeroes and precisely these points.
(2) Given an entire function, can we factor it based on its zeroes
1 is true if |a,| — oo (no accumulation point). We can try [[ (z — a;), but will not converge. Try [] (1 - a%)? will only

work if Y ﬁ < oo converges, but not in general. Call Ey(z) = 1 — z, which satisfies

(1) Ep(1)=0
(2) 1= Eo(2)] < 7]

Definition 4.12. Define Weierstrass canonical factors

22 P
Eip(z) =(1—2z)exp <z+2+...+k>.

The inside is the Taylor polynomial for —log(1 — z). This is an entire function with order of growth k.
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Observe that if |z| < 1, then

22 P
Ex(z) = exp <log(1 —z)+z+ 5 Tt k>
. k1 k2
= exp|— — — .
PAUTE+1  kr2
Call the inside WW. Then

W < |Z|k+1 (1 e+ |z\2 N ) - |z|k+1 Y |Z‘k+1
~ k+1 )= 2 '

This means that

w| W
11— Ep(z)| =[1-e"| < |1—|+%+...32\W| < 202",
Then Fj(z) satisfies

(1) Ex(1)=0
(2) |1 — Ey(2)] <2]2/"* for 2| < 1
Theorem 4.13. Weierstrass factorization theorem.

(1) Given ay,aq, ... € C such that |a,| — oo with a,, # 0 for all n. The function
= z
h(z) = H E, ()
n=1 n
is an entire function with zeroes precisely at {a,}. (multiply z in the front if you want zero at zero)

(2) If [ is an entire function. Let m be the order of zero of f at 0. Let a,, be the other zeroes. Then there exists an

entire g such that

f(z) = e zm H E, <GZ> .
n=1 n

Proof.
(1) Fix R > 0. Will show that h(z) is holomorphic on the disk of radius R.
z z
o= I B(2) I B
mldley YRR T
For the second product, 2|z| > |a,|. This means that this is a finite product (because |a,| — oo and these are

just the bounded ones).

For the other one, consider

P 5 n+1 1 n+1
1-FE,(—)| <2 — <2 - .
> -md)| 2|2 2x(G) <=
|vl<3
Hence, the first also converges absolutely.
(2) Consider
f(z)

N | e En(Z)

is an entire function with no zeroes. Therefore, it’s equal to e9(*) for some entire g.

If f has finite order of growth, can we say more. Let f be entire, py =order of growth of f.
F(@)] < e

for all € > 0. Let {a,} be the non-zero zeroes of f.
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For which k > 0, is it true that [])”, Ex(Z) is entire. Recall that in the proof, we need a bound on

Z < Z ﬂ e < RkJrlZ 1
g - lanl ) 7  Jan]* T

lan]

- ()

n

1
2
This converges if k + 1 > pg (not iff).

Theorem 4.14. Hadamard Factorization theorem. Let f be entire. py the order of growth of f. Let {a,} be the non-zero
zeroes. Let m be the order of f at z = 0. Then there exists a polynomial P with degree k = |pg| such that

— PO TT R (2.
= ] ()
Remark 4.15. Apply this to sin, which has order of growth 1. We have

sinmz = e¥+h; ﬁ (E1 (%) B (_Zm>) .

m=1

We know that )

B (2) B <2) = (1-2) e (12)61 1o
m -m m -m m
T Z
: _ paz
sinmz =e zH(l—nQ>.
n=1
b

Since sin 7z is odd, and [] is even, z is odd. Hence, e®**? is even. That is, e**** = ¢=%**® hence a = 0. To see e’ = T,

Hense,

take derivative and evaluate at 0.

Proof. Based on everything,
f(Z) _ eg(z)

2 [Tty Ek(i)

for some entire function g. Outline, E(z) = 2™ [[" | Ex(Z) is not too small, so that ’%

< CeCl#l" for most z, and

for all s > pg. Then
Ceclzl® > eRel9(2)

so that Re (g(z)) < C'|z|” for most s. O
Remark 4.16. Exam solution. f(z) = % + ap + a1z + ... conformal on D — {0} and avoids zp,2;. Assume zg = 0. Let
9(2) = 55~ Then 2 > ; and s0 4 > [z — z].
We had Ey(z) =1 — 2z and E(z) = (1 — z)ez“‘é"’““"’% = . We had |w| < ¢|z[FTif |2] < i
Exercise 4.17. Do this for cos.
Lemma 4.18. We have
e_clzlk+l l z < 1
ABIE A
(1—z)e =" if |2| > %
Proof. The first already follows from the fact that if Fx(z) = e® then |w| < ¢ |z|kJrl if |2] < 3.
If |k| > 1. Then
22 Zk
Ep(z)=(1—2)e*tz % = (1-2)ev
where |w| < ¢|z|". O

Corollary 4.19. We have
HEk Z\ | > el
Zn -

wherep<s<k+1,z¢B(zn,‘z"‘%+l).
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Proof. We have

z z
L a() I a ()
n: |z, |<2z n: |z, |>22

The second product is easier. This is

k+1 _ola|kH1 1
zin —e clz| 2n e FFT

> He_c
n

We get
1 1 1 1 c

20l |2, [FF170 T Lzl [f e

‘znlk-i-l -

where |2,| > 2|z|. Second product is > e~¢*I" (by the lemma before). Also, 3 ﬁ < o0.

The first product is
z -
> 1- = S P
> I (1-2)1Ie

n:|zn | <2|z| n:...

k

s—

k s
—. Hence, the second product is > e~¢l*I",

_ |Zn|571 < Clzl

E - [2n ]

The second of these is

‘Zn‘k

First part is

Zn — 2

- 10

e .
— eclel" T log(elzl) > gclzl,

AR
= =11 8+2><c|z|)

|Zn| |Zn|

Zn

f(2) = e9G) 2 [] Ey, (i) Need to show that ¢ is a polynomial of degree <t. We have

s

eRelo) < ’emz) < el

provided z ¢ UB (zn, %) . Take log, to get

[2n
Re(g) < clz|”.
Almost done, but we have this bound outside of some balls. The sum of the radii are finite, so we can find and arbitrarily
large R so that the circle does not touch any of the balls.
Recall |Re(g(2))] < c|z|® for € < s < € + 1 on a circle of radius r for any large . Does this mean g is a polynomial of
degree < s. Let z =€, g(2) = Y a,2™.

1 [27 ) ) anr™ n>0
- g (ieza) efznG _ )
2m Jo 0 n<o0
Also,
1 A~ 5
py. /g (rei®)e=m0dp =0
if n>0.
1 . .
o 2Re (g(ie”)) e""df = a,r™ n > 0.
T

1

Trn

Hence, |a,| < fozﬂ |Re (g(i€™))|d < cr®=™ for n > s and |a,| = 0 for n > s. This prove that g is a polynomial.

Theorem 4.20. Little Picard Theorem. f is non-constant entire function of order of growth p.

(1) If p ¢ N, then f attains every complex number at co-ly many points (counter, e* is never zero)

(2) If p € N, then if f misses a value, then it attains every other value at infinitely many points

Proof. If f(z) —w has only finitely many roots then it’s e?(*)¢(z) for some polynomials p, ¢. If e?*)¢(t) has no roots then

q is constant. p attains every value and so eP(*) attachs anything except 0 (and infinitely many times). O

Theorem 4.21. Picard theorem. If f is a non-constant entire function, then f can miss at most one value.
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Proof. Suppose f misses two points wy # w;. Then

f(z) —wo

w1 — Wo

misses 0 and 1. Let g(z) = 5= log (M) misses Z. Let

h(z) = Vg(2) = Vg(z) — 1

misses all \/n ++/n —1,0.

Proof. If we get 0,

V() =Vg(z) =1 = g(z) =g(z) - 1

which is a contradiction.

VIE) - Ve -1 = Vm+vVm—1

1 1
z z)—1= = ———————=vm m—1
VIR HVIE 1= e ST T Vet VT
Then
2\/g(z) = Vm.
|
log h(z) misses log (/m & v/m — 1) + 2me for all n,e.
Proof. limy, o log (vVm £ vm —1) —log (Vm —2+ /m —2) =0. O

It is enough to idnetify that the image of every entire function contains an arbitrarily large disc. Suppose this is false
for an entire function f non-constant. Then f’ # 0. Choose zg such that f’(z¢) # 0. Let
f(z) = f(20)
f'(z0)

ge(z) = €g (2). ge(0) = 0 and g.(0) = 1. If I'm (g) does not contain any disc of radius R, then g. of radius eR.

< z+a2z2 + ...

g(z) =

Enough to show that the following theorem. ]
Theorem 4.22. For some ¢ > 0, the image of entire functionf(z) = z + ag2% + ... contain a disc of radius c

Proof. Consider (1 —r) My (r) = w(r) continuous. w(0) =1 and w(1) = 0. Let 79 > 0 be the largest with w(ro) = 1. Let

|ZO| = To, |f/(ZO)| = 1,1”)'
Then B (zo, 1_27'0) CB (O,ro + 1_”’) =B (07 1"'%) C B(0,1). In the smallest ball, |f'(2)| < My (1+T0) < 1 _

5 ) > Tr
2 2 1— 2O

2
1—’[‘0 :

Let p = 15 then f/(z) = % Therefore,

2

If(2) = f(z0)] £1

on B (zg, p).
Let g(=) = [(= + 20) — f(20), then g(0) = 0. [¢/(0)] = &, [g(=)| < 1 on B(0,p). h(z) = 2(pz) on B(0,1). Then
h(0) =0, ' (0) =1, |h(z)] < z on B(0,1). O

Lemma 4.23. f(z) = z+az2? + ... holomorphic on B(0,1) and bounded by M on B(0,1) (for us, it’s 2). Then the image

of f contains a ball of radius ;.
Proof. |a,| < M for each M for each n, ap, =1s0 M > 1. For 0 <r < 1,

£ (=)

Vv

lz| = |f(2) —2| > — M (r* +1r% +...)
Mr?
1—r
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M—
4M Then ‘f( )| Z 41 %ﬁ

> > s Therefore f(2) and f(2) — 537 have the same number of roots.
Since f(z) =0 at 0, so does f(z) — |w| < =x7. Therefore, f(z) —

i (1)2 {uw: le—@lw}

Choose r =

Can put and w has at least 1 root. That is

Let f(2) =ap+ a1z + ...

be an entire function. The radius of convergence is infinite, so ’\L/m —0
Theorem 4.24.

(1) If {/|an| < ;% for some c for large enough n then p =order of growh < —

(2) Conversely, zfp <=z L then /]a,| < - for some ¢ and large enough n.
Proof.

(1) We can assume n > ag and « > 0. Choose ng so large, so that ng > <. Claim that

o0
= g anz"

n=no

has order of growth < %

lg(2)]

IN

o acl/a|z‘1/a an
Z|an|\z| Z (mll Dl e

an
n=ng n=no
k+1
(acl/a |Z‘1/0‘)
kk

there are at most ¢ = 1 + 1 many terms such that [an] = k. This is

<Zc

< Zc\z|1/0‘ M

The |z] / grows slower than exponential. That sum is basically a exponential in \z|1/ .
(2) We have

M(r) < CeCTl/a

la,| <

Tn TTL
for all r. Take derivative and set to zero to find optimal r. To find r = (an)® is the minimum. Then
eCO{TL CTL
lan| < c—ar < —.
(an

5. PRIME NUMBER THEOREM

p be the set of prime numbers. If we write Zpg , means some over all primes < .
Definition 5.1. Define 7(z) =3 _ 1

Notation: f(z) ~ g(z) means that ggg — 1lasz — oo.
Prime number theorem, says m(z) ~

loga: ~ longl'
Logarithmic integral
1
li(x) = —dt
i(@) /2 logt
Then 7(z) ~ £;(x).

Arithmetic formula on a(n), A(z)
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Example 5.2. a(n) = Xprime
d(n)= number of divisors of n
w(n) the number of prime factors

Q(n)=number of prime factors with multiplicity

Example 5.3. >, _ d(n) =3, |5]
anr U)(?’l) = Epgz I_%J

Definition 5.4. a(n) is multiplicative if
a(mn) = a(m)a(n)

if (m,n) = 1 (completely multiplicative if it holds regardless).

Theorem 5.5. Abel summation, Dirichlet Test

(1) Discrete series, write Y a(n)f(n) in terms of A(x) and differences of f's. Integration by parts give

n n—1

Y alk)f(k) =Y A(k) (f(k) = f(k+1)) + A(n) f(n) = A(m)f(m).
k=m+1 k=m
Proof. The first follows from a(k) = A(k) — A(k — 1). O

Corollary 5.6. If f(n) is real and > 0, decreasing and ), . a(n) <c>_, ., b(n) for all z, then
Y a(m)f(n) <e bn)f(n)
n<z n<lz

for all .

Corollary 5.7. If A(n)f(n) — 0 then Y oo a(n)f(n) = > .2, A(n) (f(n) — f(n— 1)) in the sense that if one of the

sums converges, then so does the other.
Theorem 5.8. (Dirichlet)
(1) |A(n)| < ¢ for all n

(2) f(n) =0
(3) S0, (f(n) — f(n+1)) converges absolutely

then > a(n)f(n) converges and

> a3 Ifm) — fn+ 1)

Example 5.9. > %% r(1) = L we need |A(n)] < C, Re(s) > 0, a(n) = —4~ then L converges absolutely if
Re(s) > 1.

Continuous version.

a(n) arithmetric function and f : R — R or C continuously differentiable on (y, z]. Then

n+1
fn+ 1)~ f(n) = / F(t)dt.

Abel:

Theorem 5.10. Dirichlet
(1) [A(n)] < C
(2) f—0
(3) [;°|f'(t)| dt converges
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Then Y~ a(n)f(n) is convergent. Additionally,

Example 5.11.
(1) Given that

how to estimate A(z). Let b(n) = @, then |B(n)| < C for all n,
A(n) = b(1)+2b(2) + 3b(3) + ...nb(n)
= nB(n)—-B(l)—..—B(n-1)

and |A(n)| < (2n—1)C
(2) Given that |A(z)] < Cz, what about Y 7 Well

x
C
Za(n) ’ ‘/ dt‘<0+/ “dt =C(logz +1).
n 1 t
n<x
Exercise 5.12. Show that
(1) Toep 85 = 42+ [} St
Proof. This is directly from Abel, using f(¢) = 1 (use 1 — ¢ for your y and let € — 0). O

(2) Write an expression for }- _, ., a(n)logn =...

Proof. This is

TA(t
A(z)logx — A(y)logy — / %dt
y
|
(3) Zy<n§;c na(n)
Proof. This is
zA(z) — yA(y) — / A(t)dt = xA(z) — yA(z) — Y nA(n)
Y n=[y]
|
— _ T A(t
(4) If a’( ) 0 then Zn 2 logn - logz +f t log? t
Proof. This is exactly by definition.... |

Let F(z) =Y, <, f(z) and I(z) = [ f. Then F(n) — f(1) < I(n) < F(n— 1) if f is decreasing.
If f > 0 is decreasing,
I(z) < F(x) < I(z) + f(1)

and increasing then

with |r(z)] < f(z).

Example 5.13. We have

(1) logz <>, ., 2 <logz+1
(2) |X,<zlogn —xlogz +x — 1| <logz. The sum is like log (2!), then xlogz = z*... Gives us

m m
m! =~ (—) .
e
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Corollary 5.14. If f > 0 decreasing, then > -, f(n) converges iff [ f(t) converges.
zf®§Z¥W§A.WHﬂU

Example 5.15. Have many divisors does a random number have
Interested in ¢ >, d(n) = 1> _ [Z]. We have

x n<zx x

Therefore, the average is about log x.
5.1. Euler Summation.

Proposition 5.16. Euler’s Summation, version 1. Let f : [m,n] — C,R continuously differentiable.

sy~ [ rwde= [ (1)) o
> g0 [ o= |

Proof. We have
k k
/ (t— m)f’(t)dt:/ (t—k+ 1) f/()dt
k—1 k—1
then use integration by parts to get

k

k
=fO)(t—k+1) i - f)dt = f(k) - f@).

k—1 k—1
The result follows. O

Proposition 5.17. Version 2.

Proof. We have

k 1 , B B 1 L B k
[ (t-1-5) roa = ¢-re ol - [ o
2 k-1

Proposition 5.18. Version 3. We have

zjﬂm—/ﬂmﬁz/ivwmfww—u—mnﬂm

m<k<z m

If f is continuously differentiable on (1, 00), and both Y f(n) and [ f(¢) converges, then
_ dt = . () diversi
S [ s = )+ [ = 14]) £ @dsversion 1

: = % + /100 (t —[t] - ;) f/(t)dt  version 2.

Even if they don’t converge, we can still estimate the difference. If f — 0 then F(z) — I(x) — L finite limit as z — 0.

Here,

L=+ [ =) £
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0 < L < f(1). We can estimate

|F(z) = I(x) = L] =

/ T ) ] < fa)
for all x.

Example 5.19. " _ 1 —logz has a limit, called  the Euler constant.

Ft— |t
=1- dt
=1 [

n<lzx

with 0 < v < 1. Look at

1 1
Zf—logx—y < -—.
n x

n<z

Want 0;(z) = [} grdt ~ 5. With integration by parts,

logz

. logt  \logt . e loth_logCE ¢ e loth'

If we let I,(z) = [7 m then
x
I,(z) = Toga)™ e+ nl,i1(z).
Claim 5.20. I, (z)

~ T
(logz)™ "

Proof. Need to show that I(”%l(f) — 0 as ¢ — 0. This will imply that I,,41(z) ~ W.
log x)™
vE @ 1
Ii1(z) = / +/ .
am= log )" Sz (log )"
. . T o ontl,
The first is </, the second is < G logm)nﬂ = g T
Recall that .
x
I == ~
0= [ g™ Ty

and

I(x)—L—e—i—nI (x)

" (log )™ s
Also

x
(o) ~ o) ~ o
We have
x
Li(x) =
(@) = s+ 7(0)
with r(z) ~ EEIER
Claim 5.21. 1i(x) = 75— + q(z) with ¢(z) ~ -
Proof. We have
(z) = Ii(z)+ const — * = + const + 215 (x) — T
¢ - logz —1  log(x) ? logz — 1

1 n 1 1
v logz  (logz)? logz —1
B x(logx(loga:—l)—klogx—1—10g2x>
log? z (logz — 1) '

23
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By the same method,

X
logz  log?x ( ) (log x) +1(@)
Here, Tn+1($) ~ ’I’L'W

T for all m.

(log )

m(z) — ti(2)] <

Definition 5.22. Chebyshev’s function.

O(x) = Z log p.
We have -
O(x) = Z Xxp(n)logn = n(z)logz — /2 ?dt

n<z

because 7(x) = >, ., Xp.- We can also write

1 x
7(z) = Xpl081N _ 0(x) +/ 9(2) dt.
= logn logz ~ Jo tlog®(t)
These relations show that
m(x) =  f(z)~x.

~ log x
Chebyshev showed that c;z < 6(x) < cox but the constants are not close to 1. However, as a corollary:

<7(x) < e

“ log x logz’

Theorem 5.23. 6(z) < (log4) z.

Proof. Assume z is an integer. Then

o () =

is divisible by the product of all primes between n + 1 and 2n + 1.

2n+1
log N > Z logp=602n+1)—0(n+1).
n+1
We know that .
- <2n + 1) 2n+1
S =
k
k=0

S0
nlog4 > log N.

Claim. By induction, 6(k) < klog(4).
Proof. Check this for £ = 1,2. Assume true up to 2n. Then

0(2n+2) < nlog(4)+60(n+1) <nlogd+ (n+1)log4
= (2n+1)log4 < (2n +2)log4.

Exercise 5.24. Calculate

1
Z — < cloglog .
p<z

Proof. m a
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5.2. Dirichlet Series.

Definition 5.25. Dirichlet series.

ns
n=1
Converges for some half-plane.

Claim 5.26. There exists o., o, where the series absolutely converges if Re(s) > o, and no absolute convergence if
Re(s) < o, (possibly infinity).

Clearly, 0. < 0, and in fact, o, < o, + 1.

Example 5.27. a(n) = (—-1)", then 0, =1, 0. = 0.

Theorem 5.28. If s =0 + it € R, then
(1) {(o) converges for all o > 1
(2) (o) > 1 and is decreasing
(8) =5 < ((s) < 25 + 1 (comparison with integral)
(4) C(6) > 1 aso — o0 and (o) - 0 as o — 1T
(5) (0 —1)¢(c) > 1aso— 17

Let A(z) =, <, a(n). Then

a(n) _ A() [T AQ@)
> = + /1 dt

ns s ts+1 :

If s # 0 and 22 —5 0 as z — oo, then

x

§e [,

1 ts+1

if they both converge (if one converges then so does the other).

a(n Az At
sl A A0,

n>x
Suppose f(t) = O(t*) for some o > 0, t > 1. The integral I(s) = [~ tfs(—ﬂdt is called the Dirichlet integral of f, which
converges for Re(s) = o > . Similarly, define I,(s) = [/ tf(fz Since |I(s)| < £,

c 1

o—azr’«

[(s) = Io(s)| <

Theorem 5.29. If A(x) = O(z®) for some o > 0, then

Pl =Y.

converges for o > «. Additionally,

Fo(s) =Y “f;‘)
lsl 1).

satisfies |Fy(s)| < ¢l and |F(s) — Fu(s)| < === (

o—a’ o«

o

Proof. of existence of o..
Need to show that if > % converges for some « € R, then )
Let b(n) = 42 and B(n) = Y, b(n), B(z) = O (2°). Then

b(n a(n
Yoy

converges if Re(s) > 0. O

a(n) .
-~ converges for every s with o > a.
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Theorem 5.30.

(1) If Y aT(LZ converges for some o > 0, then A(z) = O(z7)
(2) Let « be the inf of these o for which A(x) = O (), if « > 0 then o. = «.

Proof.
(1) f(n)=> % and > b(n) converges with B(z) bounded.

=Y nb(n) =a"B(z) — 0 /1 " B(t)dt.

n<x

Exercise 5.31. Let I =inf{oc € R: |A(z)| < O(z?)}. If I > 0 then o, = I. What happens when I is not > 0.

Proof. Let b(n) = a,,(L’Z), which is bounded so |B(x)| < O(1).

z) = b(n)n” = B(x)a" — a/lw B(t)t°~Ldt.

n<x

The B(z)z” = O(27) and the integral is O(z”) — O(1). Need to analyze the tail of A(z). Let L =73" -, a(n) if it exists
and 0 else. Then for ¢ < 0.

x

> a(n)= Y bn)n’ = B(x)z" — By)y’ — o / B(t)ttdt

y<n<z y<n<z

Still assuming that > b(n) converges, so |B(z)| < O(1). As x — oo, LHS is L — A(y), RHS is

—mmw—o/waf*m=0@%+owﬂ=0ww

Therefore, the change of the statement should be let L be as above, Z ) converges, then |A(z) — L] < O(z°),

=inf{c eR: |A(z) — L| < O(2%)}
then o, = I. This is because for all r € (I, Re(s))

Za:sl) 2*4_8/ to+1L+Ldt

n<zx

then analyze this. O

Theorem 5.32. F(s) =) aT(;Z) is a holomorphic function on {c > o.}, then F'(s) = =5 a(n)logn,

ns

Proof. Need to show some local uniform convergence of the sum.
For a > 0., b(n) = 2% |B(z)| < C. G(s) = 2 F(s) = G(s — a).

ne ns ?

Claim. G is holomorphic on |Re(s) > 0].

Proof. We have
W@—&@gi(M+Q

n® \ o
for s = o +it. Then G, (s) = G(s) locally uniformally on {o > 0} . O

Example 5.33. ((s) is holomorphic on {Re(s) > 1}.

Arithmetic function a(n) for F,(s).
e a =1, then Fi(s) =
® a = xp, then Fy(s) =" p%
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e o =square modulus, then F,(s) = ((2s)

Fact 5.34. If things converges nicely,

Fu(s)Fy(s) = (Z a;i]:)) <Z béf)>

I
=[]

where

e(n) = (axb) (n) = 3 ak)b(0)
n=kl
is the convolution of a and b. Then

fbl% ::EL*b
If LHS absolutely converges on {Re(s) > o} then so does RHS. We have product normula, ¢(n) = logn, then

Llaxb) = (logn) > a(k)b(t) = > (logk + log¥)a(k)b(t)

n=k¢ n=*kt
= > (loghk)a(k)b(t) + > a(k) (log ) b(¢)
n=kt n=k{
= (La)xb+ ax(¢b)
1 i=h
Example 5.35. 0; x0; = d;;, where §;(h) = , then 1(n) = 1 for every n.
0 i#h
1 ifiln
dix1= and ax1=73% . a(j)
0 else

1% 1(n) =d(n) and x, * 1(n) = w(p).
C(s)? = Y00, M with Re(s) > 1. ((s) = 3, & = Y02, 2,

(Zam)) (Z b<n>> =3 (axb) (n)

if they converges absolutely.
Let A(z) =3, ., a(n) and B(z) =3, ., b(n). We see that

>o(axb)(n) = 37 a(i)b(k) = 3D al)B(7) = SIbRA()-
k

n<z g, k<z J
Additionally,
T
D (ax1)(n) =Y a()|=].
n<x i<z J
From d = 1 %1, we have the formula:
x
S dm) = Y12
n<x j<z J

Proposition 5.36. (Dirichlet’s Hyperbola Identity) [Draw a picture to see this]

> @t )= Y al)s () + S0 (F) - A

n<w i<y k<

Proposition 5.37.

(1) Suppose a,b are multiplicative, then a b is completely multiplicative

(2) a,b are arbitrary, c is completely multiplicative, then
(ac) * (bc) = (a *b)c.

(8) The identity is 61 and a has an inverse iff a(1l) # 0 <—- exercise



COMPLEX ANALYSIS NOTES 28

Euler Product. a(n) completely multiplicative, |a(p)| < 1 for each prime p (absolute convergence of > a(n) will give
this), then

H %W = H (1+a(p) +alp®) +...) = Z a(n).

n>1

Proof. Of exercise. Suppose a(1) # 0, then to get inverse, easy check that b(1) = iy, then try (axb) (2)... O

Example 5.38. ((s) =[] #
[l,<n (1+a(p) +a(p?)...) = 3, a(n) where the sum is over all n’s whose prime factors are < N. Therefore,

Za(n)—H...z Z Z|a )| =0

n p<N p|n with p>N n>N

if " a(n) is absolutely convergent. This is because |a(p)| < 1 for every p.

Corollary 5.39. If a(n) is completely multiplicative, > a(n) absolutely convergent, then Y a(n) # 0. In particular,
C(s) # 0 and Re(s) > 1

Exercise 5.40. Calculate A= all integers of the form 2"3™, > _, 2.
Proof. Let a(n) = xa(n)%, >, ca 2= = I1, #(m = ﬁﬁ -

Theorem 5.41. We have )

[SJ[eY
U

p<z p L> loglogx— 5

Proof. We have

1 1.
Hl—p_1: . Z HZZE>IOgN'

p<N n with prime factors p<N n=1
1
Let sy =3,y 5 then
1 1
log H —1 | =5~ <§.
p<N P

From the Euler product,

1
u(n)a(n) = 1—a(p)) = .
> uima(m) = L (- a(p) = sprs
This p(n) is called the mobius function, and is

0 if n is not square free

(—=1)¥  k number of primes

1 p(n)
Then ( y = el

Theorem 5.42. If Y a(n) is absolutely convergent, a(n) completely multiplicative then

Zn>1a ZM

n>1

Remark 5.43. We have -((s) =1 then

1
¢(s)
F,-F, =F;,.
This suggestes px1 = 6.
Indeed,
. T r
1)( —-1) =(1-1) =0
(e = ) = S0 () = (-
Jln

if r # 0, where r is the number of prime factors of n.
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Corollary 5.44. ax1 =10 iff a = bx . (just convolute with u on both sides).

If a is completely multiplicative, the inverse of a is pa
Proof. 1% p =61, then a* pa = ad; = d1. O

Corollary 5.45. Suppose ax1 =10 (iff a =bx ), then

B(z) =Y (ax1)(n) = ZA(%).

n<zx n<zx

Similarly,

Theorem 5.46. Mobius Inversion. Let F : Rt — R or C. F(z) = 0 if # < € define G(x) = Y~ | F(£) finite sum.
Then -
x
F) =Y umol)
n=1
Proof. We have
oo
Fz) = Z(ﬁ(])F(}) = ZF(;)ZM(Z) = ZM(Z)ZF(%), where j = ik
j=1 j i3 i K
T
= Y ui)G(=)
0
Remark 5.47. We have ) (n)
w(n
— = Re(s) > 1.
SORR R
If s — 1, ﬁ — 0. This suggests that ) % = 0. This is in fact true, but there’s no simple proof. It is actually
equivalent to prime number theorem.
Easier: }Z@ <1.
Proof. We have
N N N N
N w(n) N
1= e ) =l =N 3 M- Y {2,
1 1 1 1
The latter term has || < N — 1. O

Definition 5.48. ¢(n) =number of numbers between 1 and n coprime to n.

Then given n = [[p;"* then

w(n)znf{l (1—;> :nZ@.

k|n

This means that ¢ = id x u and so ¢ x 1 = id. Therefore,

> e =n

jln

for all n # 0.

=3 =Ty

then

logg(s) = Y e = >

n=1
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then

1=
cn)=¢" P
0 else
Often unclear,
1 1
1 - —| < -
0g((s) =Y <3
We also have (o) log(n)e(n) A(n)
5) —log(n)e(n) _ n
¢(s) - Z ns Z ns
and this A(n) is called the Mangolds function. It is
logp n=p™
0 else
We know that s
S !
s s),
() = ()
which suggests that Ax1=/¢ (¢(n) = logn).

Proof. When n = 1, this is good.

n=pit..py*, then

(A*1)(n)= Zaj log p; = logn.

Knowing this, we now know that ¢ u = A.
Recall that

x
() ~ log s = I(z)~zx.
Let ¢(2) = >, <, A(n). We know that ¢)(z) > 0(z). Meanwhile,

Y(z) < 0(2) +0(Vz) +..0 (V) ~ 0(z) + clogz < O(z) + Vx

Since /zlog x << x, we know that

O(z) ~z <= P(z) ~x.
We already know that ¢(z) < cx, just need the reverse.
Notation:

1 ifn=1
v=01—205 =X -9 ifn=2
0 else
and
1 if n is odd
(vx1l)(n) = .
Define

—1 if niseven

1 if [z] is odd
vx1l)(n

if |z] is even



COMPLEX ANALYSIS NOTES 31

and
ZA(j)E(f) = Y Axwx1) () =Y (xr)(n) =Y v() Y logk
n<x n<x J k<1
= ) logk—2) logk.
k< K<z
When z = 2n,
P(2n) = Z A7) = Z A(])E(i—n) = log (2:) > log <2n4i 1) > nlog4d —log(2n + 1).

Use monotonicity to finish.

6

Theorem 5.49. The probability that two random numbers are co-prime are —.

Proof. We have

23 el 7

n<x

The reason this is what we want, is because the set of (k,n) with k& < n where they are coprime is just ¢(n). The 2 is just

with £ > n. Now,
D> o) =Y uk) > i

n<a k i<t
Meanwhile,
z/k 1,2
| = / tdt + error = %2 + error.
i<% 0
The error is cf. So
p(n) = 1 Z u(k) + Zermr
2 2
n<x k<x
The error is ~ xlogx. Also,
pk) o plk) o plk)
K2 Z K2 Z 2
k<w 1 k+1
the first is bounded by ﬁ, and
pu(k) 1 _1
S lEsg 0
k>x k>x

6. RIEMANN ZETA FUNCTION ((s)

We can extend ((s) to a holomorphic function on {Re(s) > 0} with simple pole at s = 1.

C(s):sil—i—l—s/l t;+Ldet

makes sense if the integral is holomorphic in Re(s) > 0. Look at partial sums:

Euler summation:

/ ft dt+/ (t— [t]) f'(t)dt.

For us, f(t) = -5, and

te?

N — N

1 1 Ni=s t— |t
) DE T PSR L /1 it
Then

1 Ni=s <t —|t]
C(s):Z;JrS_lfs/N eS| dt.



COMPLEX ANALYSIS NOTES

N
) 1 les
C(S)NIE}IOQ( 1’[1‘3+8—1>

n=

The integral — 0 as N — co. Then

for Re(s) > 0. Each of these do not converge on its own, but does together.

Claim 6.1. ((s) = 511 + ag —|—a1(s— 1) +a2(s N 1)2 T

1 <t
C(S)*S_lilfS/1 ts+Llet.

“t— |t
a0=1—/1 thdt

is the same you get from Euler summation of ) L.

Proof. We have

Ass— 1,

From ((s) = 725 +v+ai(s — 1) + az(s — 1)? + ... get

1

and s .

s

RO =i +v+ ..

We know

I¢(e +1it)] < ((o)
but this does not hold for o < 1.
Theorem 6.2. We have instead

|C(o +it)| <logt+4
foro>1,t>2. (o0 =1 is allowed).
Proof. We compute
N 1 1—s
C(S):;E+ 1 +7rn(s)

The error term is

Choose N = |t]. Then

Meanwhile,
Al | 1
ng — <logN +1<logt+1.
ns n
n=1 n=1
Finally,
N1—s 1 1
< - < -,
s—1]|—t 2
Theorem 6.3. Same assumptions,
1
(o +it)] < 5 (logt +3)?

foro>1,t>2.

Proof. From

1 N'-® <t — |t
C(S)ZZ;+S_178/N ts+1

dt,

32
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for N = [t], we get

logn N'=%log N N1=s
!
<
G < ns s—1 + (s —1)2
°°t— |t] (t—|t])logt
+ ‘/ == dt‘ ‘S[V ]

We know that

1
dt<71 g6+ —.

log2 log3 Nogt
g+g+/ g
3

Nlogn
RS

— 2 3 2 8
Also,
1—s
N "%log N <10gN<10gt<1<1.
s—1 -t Tt T e 2
Next,
ot — |t <1 1 1
’/ v+L1Jdt‘§/ TINS5
N N 2 N2
Finally,
t—|t] e logt logt 1
log tdt .
‘/ ts+1 08 ‘ ‘/ ’ oN° + O-QNU

We wanted to bound s times that, so

(logt+1) <2(logt+1).

( >10gN+1 1+1¢

N - N
|
Next goal: ((s) # 0 when Re(s) =
Claim 6.4. If a(n) > 0 for all n,
Z a(n)
nS
converges to f(s) for Re(s) > o then
Re (3f(0) + 4f (o +it) + f (o + 2it)) > 0.
Proof. Write f(s) =3 % @) Then
a(n) 4 1
(*):Z no (3+7th+ 2it>
We have A )
Re (3 + v + nQ“f) = 3 + 4 cos(a) + cos(2a).
Recall that cos(2a) = 2cos?(a) — 1 and so
4 1 2 2
Re 3+T’t+ﬁ =2cos“a+4cosa+2=2(cosa+1)".
n

]

Corollary 6.5. [((0)3¢ (o + it)* ¢ (o + Qit)‘ >1

Proof. Let f(s) =log((s). O

Now, assume ((1 4 it) = 0 for some .

L Cloit) =61 +it)

o—1+ oc—1

= (o +it).

We have

C(O'*“)rg(a +2it)(oc — 1)| > 1.

o—1

’[w (o)) [
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However, the first [-] — 1, the second ¢’(1 + it), the next term (1 + 2it) and the last 0. This is a contradiction.
Theorem 6.6. ((s) # 0 when Re(s) = 1.

Lemma 6.7. (Quantative version)

[C(o + 2it)| < My (t) and | (o +it)] < Ma(t).
These imply that |((o + it)] > W foro >1,t>tg.
Corollary 6.8. |¢ (0 +it)| > c|logt + ¢|*.

Suppose

|C(o+2it)| < DM;(t)
I (o +it)] < Msy(t)

forallt >ty >1and o > 1 (M;(t), M2(t) > 1).. Then for any such o and ¢,

1

N A AGER

Proof. By continuity, can assume that ¢ > 1. Then \4(18)| < [¢(o)] < 2%

Case 1. o > 2, then -2 is already a better bound than the lemma.

o—1
91/3
Case 2. o < /2, then [((0)| < 2.

Then for a fixed ¢,

Etﬂﬂﬁa+meﬂ021

from last time. Therefore,

(o —1)*/*
|C(U+it)|ZW:ﬂU) (%)
Choose ¢ such that f(q) = 2M>(t)(¢ — 1). Then

1
1 =
25 M (t) Mo (t)1/4

<

1
q 1

not only o < 2 but ¢ < 2. Hence, (x) holds for q.
If o < g, then

|C(o +it) — ((qg+it)| < /q ((a+it)da < Ma(t)(q— o) < Ma(t)(qg —1).

Then
t)| > Ma(t)(q—1) = ssnr 3
(Gl +it)l 2 Mg = 1) = gy s
If 0 > ¢ then
1
o+ > f(2) 2 19) = S mnm7
1 ifz>1
Notation. E(z) = , and f ;. means integrating along the vertical line Re(s) = c.
0 else ’

Lemma 6.9. We have

1 S
/ - E(z)logx

i ), &
for any x > 0 and ¢ > 0.
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Proof. We have

s slogx
x e
- = 28—2(1+slog$+szlog2x+...).
Call the circle v. Then
1 / logx simple curve v going around 0
2mi Jy 0 else

(just look at the residue). Call C; the circle cut by the the left side of v and Cs the right (middle line is L.). Then

1 xs 1 22
— | < ——=-2rR—=0
2 /C o) e
as R — oo, for |z°| < z¢if x > 1 and ¢ > Re(s).
1 x® 1 z¢
— | < —=2rR—=0
2 /02 2| S ar R
as R — oo, if z < 1 and ¢ < Re(s). O
Lemma 6.10. We have )
SCS
— ——=F -1
2mi Jp_ s(s—1) (@) —1)
forx >0 and c > 1.
Proof. Assume as because,
L et 1 et feed
2mi Jp o s—1 2mi i s g
The estimate we use, is
xS z/L‘C
<
s(s—1)| ~ R(R—-1)
and so both C¢,Cy — 0. O
If fs) =300, “T(L'SL) for Re(s) > 1, integration term-wise can be justified. Then
1 x® a(n) 1 A T, [x
t L e - SEPEETIC
27t Jp, s(s — 1)f(s) Z 271 /L s(s—1) (n) Za(n) (n> n
c nzl c TLZl
x
= Za(n) (ﬁ_l)
n<lz
Also,
1 A 1 1 YA
— —_— = ——— = dg.
omi /L AL ;a(") (n m) Abel/l e %
Notice that the last expression does not depend on ¢. This is like Cauchy’s theorem, that it does not matter which circle
you choose.
Theorem 6.11. Suppose f(s) =3, aflf) is absolutely convergent on Re(s) > 1. Let A(z) =3_, ., a(n). Then

o | e = S (1 - 1) = [ 4

n<x

forx >1 and c > 1.
Proof. We have
2 f(s) = G(s) + H(s)

where
S

G(s) = aln) |~
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finite sum.
S

H(s) = Za(n)‘%

is an absolutely convergent sum and so is bounded, by say M.

1 H(s) 1 M
- < — .7 9
2m/02 3(5—1)‘—% RE—1) =0

as R — oo. O

Theorem 6.12. (Main Theorem,).
(1) If f(s) = > o) absolutely converges on Re(s) > 1, holomorphic in a neighbourhood of Re(s) > 1 except

n>1 ns

possibly a simple pole at s = 1
(2) f(s) = =2 4+ ap+ (s — 1)h(s), h(s) is holomorphic in a neighbourhood of Re(s) > 1

s—1
(3) There is P(t) such that |f(c £it)] < P(t) foro>1,t>ty>1 and [ PO < .

t
Then,
oo A _
/ Mdm =g — Q.
1 :I;

Remark 6.13. This applies to f(s) = ((s), and PNT follows.
Lemma 6.14. If p € L', then [7_e™p(t)dt — 0 as A — +oo.

Theorem 6.15. We know that

fs) =y 4

converges absolutely on Re(s) > 1, = 27 + ag + (s — 1)h(s) where h(s) is holomorphic in a neighbourhood of Re(s) > 1.

Additionally, | f(o +it)| < P(t) for all o > 1, t > to > 1 with [ 28 < oo, THEN

o0 A _
/ 7@) 5 axdx =ay— Q.
1 x

We know that f(s) = ((s) satisfies this. [ C(i#d:n =v-1.

Recall, PNT iff ¢)(x) ~ z. Let f(z) =" Me) - _C(s), P(t) < c(logt + ¢)?, satisfies the theorem. Conclusion:

n=1 ns s

¢(s)
/°° (z) —=
1 2

converges. This implies that |i)(x) — x| < ex for every € most of the time.

Proof. We see that

So we have, for ¢ > 1,

1 1 s—1 s—1 _ s—1
— T lp(s)ds = — ’ f(s)ds — i/ ’ ds - X~ ¢ / v ds
2mi g, 2mi Jp, s(s—1) 2mi Jp, (s —1)2 2w Jp, s(s—1)

T AP dy aloge (a0—)(1=3)

_ /le(yL;“y_(ao_a) (1-1).

Goal is to show that LHS goes to 0 as x — oc.

(1) The same is true for ¢ =1

Goal is to show that for ¢ sufficiently close, integral of L. and Ly are close. First, for ¢ < 2,

P(t)

#5710 (5)] < Joep(s)] <

This shows that the difference of f‘t|>N 257 1p(s) between Re(s) =1 or ¢ differs by < e for N large enough.
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(2) When ¢ =1,
1 [~ [~
5 z2p(1 4+ iN)d\ = 5 zAMBTH(1 4 iN)dN — 0

(because this is the Fourier transform of ), as long as we show ¢ € L.
(3) ¢ € L', because
t2p(s) < |s(s — 1)p(s)| < P(t) 4 const

for s = o +it. So p(s) < Pt(;) €Ll

Finally, we will check that if

/°° A(z) — azx
1 z?

@) o asz— oo

converges, with A > 0 and increasing, then AT

Proof. Do this in case.

Casel. a=0.
For all € there exists NV where the following holds. Since floo Ar(f) converges, A(xz) < ex for x > N. Suppose

< Az) < q
B Z €T 3 = €.
o x o x

] A _ ] 1 Xy 1
/ #2(14’6)"50/ —27/ —.
o xz o Y o xz

We can choose z1 = (1+¢€) zg ,
1 1

T 62
x| ———) —log— =€e—log(l+¢)~—>0.
o X1 Lo €

o A _ ZTo 1 o 1
/ WSQ—G)%/ 7—/ L
T2 T zo L2 zg L

1 1 2
T (—) —log@:e+log(l—e)§—€—<0.
T2 To 2 2

A(xg) > exo,

Case2. a=1.
If A(zo) > (1+ €)xo,

If A(zo) < (1 —€)xo,

If we let 29 = (1 — €)xo,

Recall,
Z uln) _ 0.
n

n=1
That’s the next goal.
a(n

f(s) = > %5+ absolutely converges in Re(s) > 1, = 227 + ag + (s — 1)h(s).

ns

\f(o +it)] < ...

Prime number theorem then tells us that
(1) Integral version [ de =ay—«

(2) Limit version @ — «a (provided A > 0 increasing. This, we can also do A = B — C where B, C are monotone
and satisfy all the other conditions).

(3) Series version

oo glogr — ag.

n
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Proof. This is

A TA 1
—ﬂ-&-/ (g)dy—oz/ —dy — a+ (v — a) = ap.
1Y 1Y

x
]
e Proof of Zn21 @ =0, u C 5 = Zn21 H,(LZ) a=oy=0
Integral version, M (z) = Z < 1(n), J\i(f =
Series version: 3_, -, “(n) 0.
Note, for us, p = 1 — (1 — p) (which are the B and C). 1 > 0 and gives ((s), the other is also > 0 and gives
o)~y
e Proof of |1)(x) — x| = O(x®) then ¢ has no roots a < Re(s).
((ls) =s [ Iafls(fl) dx, Re(s) > 1, Re(s) > a. This implies that

¢(s) #0
if Re(s) > a.

st s -1 ((s)
implies that RHS is holomorphic when Re(s) > «.
(GET PICTURE FROM ADAN, or PALLAV). From this,

frun e <

[(z) — x| < cemcVie®,

Which is equivalent to |7(z) — £;(z)| having some bound.
1 —+/log x 1
— e Vieer «
x° (log x)

and I, (z) = [ (log -
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