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Abstract—TIt has been demonstrated recently that state-of-the-
art face-recognition algorithms can surpass human accuracy at
matching faces over changes in illumination. The ranking of
algorithms and humans by accuracy, however, does not provide
information about whether algorithms and humans perform the
task comparably or whether algorithms and humans can be fused
to improve performance. In this paper, we fused humans and
algorithms using partial least square regression (PLSR). In the
first experiment, we applied PLSR to face-pair similarity scores
generated by seven algorithms participating in the Face Recogni-
tion Grand Challenge. The PLSR produced an optimal weighting
of the similarity scores, which we tested for generality with a jack-
knife procedure. Fusing the algorithms’ similarity scores using
the optimal weights produced a twofold reduction of error rate
over the most accurate algorithm. Next, human-subject-generated
similarity scores were added to the PLSR analysis. Fusing humans
and algorithms increased the performance to near-perfect classi-
fication accuracy. These results are discussed in terms of maxi-
mizing face-verification accuracy with hybrid systems consisting
of multiple algorithms and humans.

Index Terms—Face and gesture recognition, human information
processing, performance evaluation of algorithms and systems.

I. INTRODUCTION

HE FIELD of automatic face-recognition algorithms has

expanded in the past decade from consisting of simple
algorithms that operate on highly controlled images of faces
to more sophisticated algorithms aimed at operating in the
natural conditions that characterize most security applications.
One particularly difficult challenge in advancing algorithms
from controlled to natural environments has been the problem
of operating over substantial changes in illumination. The
computational difficulties posed by the illumination problem
have been well documented in the automatic face-recognition
(cf. [1]-[3]) and human-perception literature [4]-[6].

In more practical terms, the performance of face-recognition
algorithms in controlled and uncontrolled illumination environ-
ments was assessed recently in the Face Recognition Grand
Challenge (FRGC), a U.S. Government-sponsored test of face-
recognition algorithms aimed at fostering algorithm develop-
ment [7], [8]. The FRGC (2004-2006) included academic,
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Fig. 1. Sample pair of face images from a “match” trial. Participants re-
sponded by rating the likelihood that the pictures were of the same person using
a five-point scale ranging from “1) sure they are the same person” to “5) sure
they are not the same people.”

industrial, and research laboratory competitors. Competitors
participated in the program by volunteering to have their algo-
rithms tested on one or more of six face-matching experiments
varying in difficulty. The set of experiments included both a
controlled-illumination face-matching experiment and a more
difficult experiment where algorithms matched face identity in
images taken under different illumination conditions. Because
the FRGC tested multiple algorithms simultaneously using a
standardized evaluation protocol and a common image set, it
provides a useful time-locked look at the performance of state-
of-the-art face-recognition algorithms.

The difficulty of the illumination problem can be seen
clearly by comparing the performance of the algorithms in
the controlled and uncontrolled illumination experiments of
the FRGC. In both cases, the task of the algorithms was to
decide for each of a large number of face pairs (>128 million),
whether the images were of the same person or of different
people. In the controlled-illumination experiment, the illumi-
nation conditions were the same for both images in the pair.
In the uncontrolled-illumination experiment, one image was
taken under controlled-illumination conditions, and the other
was taken under uncontrolled illumination (see Fig. 1 for a
sample image pair).

Twenty algorithms competed in the controlled-illumination
experiment and achieved an average verification rate of 0.91
at 0.001 false-accept rate. By contrast, in the uncontrolled-
illumination experiment, only seven algorithms participated,
achieving an average verification rate of 0.41 at 0.001 false-
accept rate. The difference in participant numbers and av-
erage performance in these experiments is evidence that the
illumination problem continues to challenge face-recognition
algorithms.

A rather different perspective on the relatively poor per-
formance of algorithms in the uncontrolled-illumination ex-
periment comes from comparing the algorithms to humans
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performing a comparable task. In a recent study [9], human-
face-matching performance was compared to the performance
of the seven algorithms participating in the uncontrolled-
illumination matching experiment of the FRGC. We describe
this previous study in some details, here, because it provides
the fusion data used in this paper.

A. Source of Fusion Data

Algorithms in the FRGC uncontrolled-illumination ex-
periment (experiment 4 in FRGC nomenclature) matched
face identities in all possible pairs of 16028 target im-
ages and 8014 probe images, with target images taken un-
der controlled-illumination conditions and probe images taken
under uncontrolled-illumination conditions (see Fig. 1 for a
sample pair). The output for each algorithm was a matrix
of similarity scores for all possible pairs of faces. For each
algorithm, a receiver operating characteristic (ROC) curve was
generated from the similarity score matrix. The performance of
the seven algorithms was compared using these ROC curves (cf.
[9] for complete results).

The primary difficulty in comparing the performance of
humans to algorithms in the FRGC is the implausibly large
number of face-pair comparisons required for an exhaustive
comparison. Therefore, to compare the performance of humans
to algorithms, face pairs were sampled from the matrix by
selecting a set of the easiest and most difficult pairs [9]. In this
paper, we concentrate on the most difficult image pairs. In both
cases, however, the sampling was done with the help of a con-
trol algorithm based on a principal component analysis (PCA)
of the aligned and scaled face images. Using this algorithm,
easy match pairs were defined based on similarity scores that
were substantially greater than the mean for the distribution
of matched face pairs, i.e., highly similar images of the same
person. Difficult match pairs were those with similarity scores
substantially lower than the match mean, i.e., highly dissimilar
images of the same person. Easy and difficult nonmatch pairs
were defined inversely.

Human subjects matched the identity of 240 sample face
pairs by rating their certainty that the pairs were of the same
person. Human responses ranged on a five-point scale from
“certain the two images are of the same person” to “certain that
two images are not of same person.” The rating data allowed for
the generation of a ROC curve for human performance that was
comparable to the ROC curves derivable from the performance
of the algorithms.

The human-machine comparison was conducted by extract-
ing the algorithms’ similarity scores for the same face pairs
tested in the human-face-matching experiment. These were
plotted on ROC curves along with human match-accuracy data
[9]. The results demonstrated clearly that three algorithms [10]—
[12] surpassed human performance on the difficult face pairs.
Of these, the algorithm from The New Jersey Institute of Tech-
nology [10] and the algorithm from Carnegie Mellon University
[11] have been published. Details on the third algorithm, from
the Viisage Corporation,' are only partially available [12].

I'See Acknowledgment.
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In addition to the finding that three algorithms were com-
petitive with humans on the difficult pairs of faces, all but one
algorithm surpassed human performance on the easy face pairs.
Combined, these findings suggest that, although the algorithm
performance on the uncontrolled-illumination experiment in
the FRGC may be poor in absolute terms, it is nonetheless
competitive with the human performance. This comparison is
of interest due to the fact that humans are currently performing
this task in most applied situations. This previous study forms
the base of this paper.

B. Rationale for Fusion

Although the quantitative ranking of human performance
relative to a set of algorithms provides a useful benchmark,
this ranking does not offer any insight into whether algorithms
recognize faces in ways that are similar to humans. The FRGC
showed that algorithms performed poorly on face recognition
in uncontrolled-illumination environments. Our previous work
showed the same result for humans. If algorithms and humans
take diverse approaches to the problem of face matching, it is
possible that an appropriate fusion of algorithms and humans
can yield better performance than a single algorithm or the
fusion of multiple algorithms. Indeed, previous work has
shown that fusing the multiple face-recognition algorithms
improves performance over a single algorithm (cf. [13]-[15]).
However, no previous studies have fused human and algorithm
performance.

In the majority of applications for face recognition, a hu-
man operator is present and involved in the decision process.
Thus, it may be of general value to optimize system per-
formance by explicitly incorporating human-face-recognition
capabilities into the decision process. Toward this end, we
present a methodology for fusing algorithm and human
performance.

In this paper, we asked two questions. First, can perfor-
mance be improved by fusing algorithms from the FRGC
uncontrolled-illumination experiment? Second, does fusing hu-
mans and algorithms improve performance above the level
achieved by the algorithm fusion? The availability of multiple
algorithm estimates of face similarity, in conjunction with
analogous human estimates of similarity, offers the possibility
of exploring these questions in a more systematic way than
generally possible. Here, we investigated the possibility of
fusing face-similarity estimates from algorithms and humans to
improve face-matching performance.

Fusion was performed by partial least square regression
(PLSR), a statistical technique that generalizes and combines
features from the PCA and multiple regression [16], [17]. The
technique is used to predict a set of dependent variables from a
set of independent variables (predictors). The choice of PLS
is, in part, arbitrary, because other pattern classification or
neural network techniques will give comparable results. We
used the PLS because it has the advantage of providing easily
interpretable weights for individual predictors (see as follows).
Although the PLS is less well known in pattern-recognition
literature, it is widely used in chemometrics, sensory evalua-
tion, and for neuroimaging data analysis (cf. [16], [18], [19],
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and [21]). We give complete algorithm details for the PLSR
algorithm in the Appendix.

In this paper, algorithm and human estimates of face similar-
ity were the predictors, and the match status of individual face
pairs (i.e., same person or different people) was the dependent
variable. The PLSR gives a set of orthogonal factors, sometimes
called latent vectors {ti,...,t;}, from the covariance matrix
of predictors and dependent variables. These can be used to
predict the dependent variable(s), by appropriately weighting
the predictors. This set of weights is called B, in the PLSR
literature [16]. To fuse algorithms, the weights prescribed in
the latent vector(s) are used to combine the similarity scores
from each of the seven algorithms to produce an estimate of
the match status for the face pairs. When fusing humans and al-
gorithms, there are eight predictors: seven from the algorithms
and one from the averaged human data.

The predictive power of these factors is generally assessed
with cross-validation techniques such as a bootstrap or jack-
knife procedure. All factors, or only a subset of them, can be
used to compute the prediction of the dependent variable(s),
which are obtained as a weighted combination of the original
predictors given by Byps. The larger the number of factors
kept, the better the prediction of the “learning set.” In general,
however, a smaller number of factors is optimal for robust
prediction (i.e., for test-set predictions).

In the first experiment, we applied the PLS to the similarity
scores generated by seven algorithms that participated in the
FRGC uncontrolled-illumination experiment. We tested the
generality of the optimal weights found in the analysis for
predicting face-match status using a jackknife procedure. In
the second experiment, we added human-generated similarity
scores to the algorithms’ scores and measured the contribution
human estimates make to the fusion.

II. PROCEDURE
A. Stimuli

Face stimuli were chosen from a large database developed
for the FRGC study [7], [8]. The uncontrolled-illumination
probe faces had a resolution of 2272 x 1704 pixels. The
controlled-illumination target faces had a resolution of 1704 x
2272 pixels. For the present analyses, we used the same set
of difficult face pairs sampled for the previous quantitative
comparison between humans and algorithms [9]. These were
sampled from the 128 448 392 pairs available, which included
407352 (0.32%) match pairs (i.e., image pairs of the same
person) and 128 041 040 (99.68%) nonmatch pairs (i.e., image
pairs of different people). To eliminate the possibility that
humans could base identity comparisons on the surface facial
characteristics associated with race or age, all images in the
study were of faces of Caucasian males and females in their
twenties. All pairs were matched by sex. Although these de-
mographic choices have consequences for the comparison of
humans versus algorithms in absolute terms, these choices were
best suited with the goal of the previous study [9].

In this paper, only “difficult face pairs” were included. These
were chosen using a control algorithm based on the PCA of
the aligned and scaled images. Specifically, difficult match
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face pairs (n = 60) were sampled randomly from match pairs
that had similarity scores less than two standard deviations
below the match mean. Difficult nonmatch face pairs (n =
60) were sampled randomly from nonmatch pairs that had
similarity scores greater than two standard deviations above the
nonmatch mean.

The validity of the PCA as a prescreening algorithm for
humans and algorithms was supported in the previous study [9].
The PCA algorithm reliably predicted “easy” and “difficult”
sets of face pairs for humans in three experiments [9]. All
seven algorithms were likewise more accurate on the PCA-
screened easy face pairs than on the PCA-screened difficult
faces [9]. The PCA, therefore, can serve as a useful sampling
tool, even though it is not considered “state-of-the-art.” We did
not use the algorithms available from the FRGC, which perform
more accurately than PCA, because of the potential to bias
the success of particular algorithms in the algorithm—human
evaluation [9].

B. Human-Subject Judgments of Face Similarity

The human-subject data for this experiment were collected
in an experiment in which subjects viewed the image pairs and
rated the likelihood that the images were of the same person
or of different people [9]. For completeness, we sketch out the
methods used in that study. There are 49 subjects (25 males
and 24 females) that viewed the 120 pairs of faces for 2 s
each and responded by rating each pair on the following scale:
1) sure that the pictures are of the same person; 2) think that
the pictures are of the same person; 3) do not know; 4) think
that the pictures are not of the same person; and 5) sure that the
pictures are not of the same person. Of the 120 pairs, half were
match pairs and half were nonmatch pairs. Equal numbers of
male and female pairs were included in the match and nonmatch
conditions. The subjects were instructed to examine the face
images and to determine whether the images were of the same
person or of different people. Subjects were not informed about
the proportion of match versus nonmatch trials nor were they
given practice trials. The image pairs were presented for 2 s,
but there was no time limit for entering a response.

For each pair of faces, the average rating was computed
across the 49 subjects. This average served as the human
similarity score for that pair of faces in the PLSR.

C. Algorithms’ Judgments of Face Similarity

The similarity scores of the 120 difficult face pairs presented
to participants in the human experiment were extracted from
each algorithm’s 16 028 x 8014 similarity matrix. These scores
served as the algorithm data for the PLSR.

III. RESULTS
A. Experiment 1—Algorithm Fusion by PLSR

The similarity scores for the seven algorithms for the 120
difficult face pairs (60 match and 60 nonmatch) were combined
in a columnwise matrix. The dependent variable was a 120-
element vector containing the match status (41 for match
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TABLE 1
WEIGHTS FOR ALGORITHM FUSION DIFFICULT FACE PAIRS

NJIT  Viisage — CMU A B C D
weights 2.2 -1.81 -.05 00 -15 00 16
error rates 12 20 14 37 .23 25 .36

The table shows the weights for combining algorithm similarity
estimates for optimal match performance (top row). Large absolute values
indicate the most useful predictors, which in this case are the NJIT
algorithm [10] and Viisage [12]. The bottom row gives the proportion of
classification errors for the algorithms individually. The fusion cuts the best
algorithm’s error rate by a factor of two, from .12 to .059.

and —1 for nonmatch) for each face pair. PLSR was applied
simultaneously to the combined similarity score and match-
status data matrices.

We varied the number of PLSR factors retained from one to
five and found a three-factor solution to be optimal. Retaining
three factors indicates that the first three latent vectors, which
are ordered according to the proportion of variance explained
in the covariance matrix, are combined linearly to specify the
weights for combining the similarity scores.

A robust performance estimate was determined with a jack-
knife simulation. We started with the 120 face pairs available
and systematically deleted each face pair in turn, recomputing
the PLSR with the remaining 119 pairs of faces. We tested the
match-status predictions for the PLSR solutions derived from
119 pairs of faces on the “left-out” face pair. This yielded 120
generalized match-prediction tests. The error rate we report is
the fraction of left-out face pairs incorrectly classified accord-
ing to match status.

Error rates for classification with one through five factors
were 0.067, 0.075, 0.059, 0.067, and 0.083, respectively. These
error rates are all lower than the minimum error rate achieved
by any single algorithm operating alone (cf. Table I for er-
ror rates for each individual algorithm). Specifically, the data
indicate that fusion, following the optimal weighting derived
with the PLSR, cuts the error rate of the best performing
algorithm (NJIT [10] with a 0.12 error rate) by a factor
of two.

For purposes of interpretation, the weights for combining
similarity scores appear in Table I. These weights are used
to combine the similarity scores from the seven algorithms to
achieve a maximal separation between the match and nonmatch
face-pair distributions. Algorithms with weights that have large
absolute values are the most useful in improving the perfor-
mance with fusion.

Using this as an interpretation guide, it is clear that most
of the improvement in accuracy comes from combining just
two algorithms, NJIT [10] and Viisage [12], whose weights
have the largest absolute values. This might be due to these
algorithms having maximally diverse strategies in computing
the face similarity. This interpretation seems likely given that
the CMU algorithm [11] performed somewhat better than the
algorithm of Viisage [12]. Thus, more benefit can be derived
from combining lesser performing algorithms that operate
in different fashions than by combining higher performing
similar algorithms.
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TABLE 1I
WEIGHTS FOR HUMAN—-ALGORITHM FUSION

Human  NJIT Viisage ~ CMU B D

-1.29 -71 -.03 =12 20

The table shows the weights for combining human and
algorithm similarity estimates for optimal match performance.
Algorithms A and C had weights of zero and are not included in the
table. The addition of humans to the PLSR decreased the error rate
from .059, for algorithm fusion, to .008 for human-algorithm fusion.

weights 47

B. Experiment 2—Human and Algorithm Fusion by PLSR

Can fusing humans and algorithms add to the accuracy of
the match estimates and further improve classification over
that obtained with the fused algorithms? In this experiment,
we added human similarity estimates to the PLSR model.
The analysis proceeded as before but with a column vector
containing the averaged human similarity data appended to the
predictor matrix.?

Again, we varied, from one to five, the number of PLSR
factors we retained. In this case, we found a two-factor solution
to be most robust, using the jackknife procedure described
previously. The weights for combining human and algorithm
similarity estimates are shown in Table II. Performance with
one factor through five factors yielded classification error rates
of 0.042, 0.008, 0.033, 0.033, and 0.042, respectively.

These results illustrate that it is possible to obtain nearly
perfect classification, when humans are added into the predic-
tor matrix. This suggests that human strategies for assigning
similarities to faces add usefully to those employed by the best
algorithms. In particular, this result shows that human similarity
ratings provide specific information about the face-pair compar-
isons that are not available from any of the algorithms.

It is worth noting from previous work [9] that the accuracy
of humans was found to be below that of NJIT [10], CMU [11],
and Viisage [12] but above the accuracy of algorithms A, B, C,
and D. In that study, similarity ratings from individual subjects
were collapsed across the 120 face pairs to create an ROC
curve for each subject. These individual ROC curves were then
averaged to give an overall estimate of human accuracy. Here,
we averaged the similarity ratings for 120 face pairs, collapsing
across the individual subjects. Interestingly, although perhaps
not surprisingly, we found that by averaging across the 49
human subjects’ estimates of face similarity for each face pair
individually, human error rate was 0.12, comparable to NJIT,
which is the best algorithm. This suggests that individual sub-
jects, like algorithms, may employ diverse strategies for judging
the similarity of the face pairs. By consequence, combining
the similarity estimates of individual subjects by fusion could
likewise benefit accuracy.

IV. DISCUSSION
Fusing humans and algorithms is a reasonable goal for

face-recognition researchers and corporations with hopes of

2The direction of the similarity scores for the humans was inverted as
compared to the algorithms, so for interpretation purposes, attention should be
paid only to the absolute values of the PLSR weights.
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applying their systems to real applications. Knowing how ac-
curately algorithms and humans are by themselves is a start
in trying to estimate how well combinations of algorithms and
humans will work. However, quantitative measures of accuracy
for individual algorithms and humans are not sufficient in guid-
ing the development of hybrid systems. This paper illustrates
that the most useful fusions of algorithms and humans are likely
to come from combining face-recognition systems (algorithms
or humans) with diverse face-recognition strategies.

In this paper, we demonstrated that fusing algorithms and
humans substantially improved performance on a difficult face-
matching task. The use of PLSR to fuse the algorithms and
humans also yielded a precise indication of how to combine
the individual components of the fusion optimally. This weight
vector serves simultaneously as a recipe for fusing systems
and as an indicator of the similarity of algorithm and human
strategies for face verification.

Given that neither algorithms nor humans perform face
recognition well in uncontrolled environments and that a ma-
jority of applications have a human operator in the loop, a rea-
sonable goal of researchers should be to design face-recognition
strategies that optimally combine algorithms and humans. Fu-
sion of algorithms and humans to create good hybrids can,
therefore, be a useful and practical approach to improving face-
matching performance in important applications.

APPENDIX

In this Appendix, we give a brief description of the PLSR.
A more complete presentation can be found in previous works
[16], [20]. MATLAB programs can be downloaded from
www.utdallas.edu/~herve. The PLSR generalizes and combine,
features from PCA and multiple regression. Its goal is to
optimally predict a set of dependent variables from a set of
predictors. Specifically, PLSR searches for a set of components
(called latent vectors) that performs a simultaneous decompo-
sition of X and Y with the constraint that these components
explain as much as possible of the covariance between X
and Y. This step is followed by a regression step where the
decomposition of X is used to predict Y.

A. Notation

The I observations described by K-dependent variables are
stored in an I x K matrix denoted by Y, and the I x J matrix
of predictors is denoted X. Without loss of generality, both
X and Y are assumed to be centered and normalized. The
common set of (orthogonal) latent vectors is stored inthe I x L
matrix T (i.e., TTT = I). PLRS decomposes X as

X =TP"

where P is a J x L matrix called the X-loading matrix. The
matrix Y is estimated as

Y = TBC"
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where B is a diagonal matrix with the “regression weights”
as diagonal elements, and C is the “weight matrix” of the
dependent variables.

B. Computations of Latent Vectors, Loadings, and Weights

A latent vector is obtained by finding two sets of weights w
and c in order to create (respectively) a linear combination of
the columns of X and Y such that their covariance is maximum.
Specifically, the goal is to obtain a first pair of vectors

t=Xw u=Yc €))
under the constraint that
wiw=1 tTt=1 tTu be maximal. 2)

When the first latent vector has been found, it is subtracted from
both X and Y, and the procedure is iterated until X becomes a
null matrix (see the algorithm section for more).

C. Algorithm

The different components of PLSR can be found by a series
of singular-value decompositions, each followed by a deflation.
Specifically, the first weight vectors w and c are, respectively,
the first right and left singular vectors of the matrix XTY.
Vectors t and u are then derived using (1). With these vectors,
the value of b is computed as b =tTu and then used to
predict Y from t as Y = btcT. The factor loadings for X
are computed as p = Xt. Now, subtract (i.e., partial out) the
effect of t from both X and Y as follows: X = X — tpT and
Y =Y — btcT. The vectors t, u, w, ¢, and p are then stored
in the corresponding matrices, and the scalar b is stored as a
diagonal element of B. If X is a null matrix, then the whole
set of latent vectors has been found; otherwise the procedure is
repeated.

D. Prediction of the Dependent Variables

The dependent variables are predicted using the multivariate
regression formula defined as

Y = TBC" = XBp1s (3)
with
Bprs = PTTBCT 4

where P+ is the Moore—Penrose pseudoinverse of PT.
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