
Communication-Optimal Parallel Recursive
Rectangular Matrix Multiplication

James Demmel∗, David Eliahu†††, Armando Fox‡††, Shoaib Kamil§,
Benjamin Lipshitz¶††, Oded Schwartz‖††, and Omer Spillinger∗∗††

Abstract—Communication-optimal algorithms are known
for square matrix multiplication. Here, we obtain the first
communication-optimal algorithm for all dimensions of rectan-
gular matrices. Combining the dimension-splitting technique of
Frigo, Leiserson, Prokop and Ramachandran (1999) with the
recursive BFS/DFS approach of Ballard, Demmel, Holtz, Lipshitz
and Schwartz (2012) allows for a communication-optimal as
well as cache- and network-oblivious algorithm. Moreover, the
implementation is simple: approximately 50 lines of code for
the shared-memory version. Since the new algorithm minimizes
communication across the network, between NUMA domains,
and between levels of cache, it performs well in practice on both
shared- and distributed-memory machines. We show significant
speedups over existing parallel linear algebra libraries both on
a 32-core shared-memory machine and on a distributed-memory
supercomputer.

Index Terms—communication-avoiding algorithms; linear al-
gebra; matrix multiplication

I. INTRODUCTION

Matrix multiplication is a fundamental kernel of high-
performance computing, scientific computing, and distributed
computing. It is an inherently parallelizable task, and algo-
rithms which take advantage of parallel architectures achieve
much higher performance than serial implementations. When
designing efficient parallel algorithms, it is important not only
to load balance the arithmetic operations (flops), but also to
minimize the amount of data transferred between processors
and between levels of the memory hierarchy (communication).
Since communication is becoming more expensive relative
to computation (both in terms of time and energy), finding
communication-optimal algorithms has significant practical
impact.

The most widely-used algorithm for parallel matrix multi-
plication is SUMMA [33], which perfectly load balances the
flops for any matrix dimension, but is only communication-
optimal for certain matrix dimensions or if assuming no extra
memory. For square matrix multiplication, communication cost
lower bounds have been proved [24], [5], [2], suggesting that
known 2D algorithms (such as SUMMA) and 3D algorithms

∗Mathematics Department and CS Division, UC Berkeley, Berkeley, CA
94720. demmel@cs.berkeley.edu
†deliahu@berkeley.edu
††EECS Department, UC Berkeley, Berkeley, CA 94720.
‡fox@cs.berkeley.edu
§CSAIL, MIT, Cambridge, MA 02139. skamil@mit.edu
¶lipshitz@cs.berkeley.edu
‖odedsc@cs.berkeley.edu
∗∗omers88@berkeley.edu

[7], [1] are only optimal in certain memory ranges. These
bounds led to “2.5D” algorithms [27], [30], [29] as well as
a BFS/DFS-based algorithm [3], which are communication-
optimal for all memory sizes and are faster in practice. In
this work, we prove new communication cost lower bounds
in the case of rectangular matrix multiplication, and give the
first parallel algorithm that minimizes communication for all
matrix dimensions and memory sizes.

It is possible to perform rectangular matrix multiplication
with fewer than the naı̈ve number of operations by using fast
algorithms. The arithmetic cost of such algorithms has been
extensively studied (see [21], [9], [14], [26], [22], [23], [15]
and further details in [10]). Additionally, their communication
cost is asymptotically lower than that of the classical algorithm
[4]. However, the constant factors in their costs are often
large enough that they are not practically useful. An alternate
approach is to split the rectangular matrix multiplication
problem into several square matrix multiplications, and then
solve each of those with a fast square algorithm (such as
Strassen’s algorithm [32], which has been shown to work well
in parallel [6]). In this work we focus only on classical matrix
multiplication, and do not consider algorithms that perform
less arithmetic.

A. Cache-oblivious algorithms

Although we are primarily interested in the parallel case
here, minimizing communication is also useful for sequential
matrix multiplication. One technique is to block the algorithm
into sizes that fit into cache, which attains the sequential lower
bound [20].

An alternate approach is to use a recursive algorithm where
the largest of the three dimensions is split at each recursive
step. In [17] it is shown that this approach asymptotically min-
imizes the communication costs for any hierarchy of caches
and any matrix dimension, without any machine-dependent
parameters appearing in the algorithm, making the algorithm
cache-oblivious. Cache-oblivious algorithms can get good per-
formance on a wide variety of platforms with relatively little
programmer effort. Although most high-performance linear
algebra libraries are hand-tuned or auto-tuned for specific
architectures, there have been a few attempts to write com-
petitive cache-oblivious libraries [16], [34], [35].

We next consider an analogous algorithmic choice in the
parallel case.

B. BFS/DFS versus Grid-based algorithms

Two approaches have emerged for parallelizing dense linear
algebra—one that requires tuning and one that does not.

The first is iterative and grid-based, where the processors
are thought of as residing on a two- or three-dimensional grid.
This class includes SUMMA and 2.5D, as well as the recently
proposed 3D-SUMMA algorithms [28], which attempt to
combine the communication-avoidance of 2.5D matrix mul-
tiplication with the generality of SUMMA. As our commu-
nication lower bounds show, 3D-SUMMA is communication-
optimal for many, but not all, matrix dimensions (see Table I).
Grid-based algorithms can provide very high performance,
especially when matched to the grid or torus-based topologies
of many modern supercomputers [31]. However they may
not perform as well in more general topologies. Even when
the global topology is a torus, on some supercomputers the
allocation can be an arbitrary subset, eliminating the possibility
of matching the algorithm to the network.

The second approach, named BFS/DFS, has recently been
used to parallelize Strassen’s algorithm in a communication-
optimal way to obtain the fastest dense matrix multiplication
algorithm in practice (see [3], [6], and a similar algorithm in
[27]). BFS/DFS algorithms are based on sequential recursive
algorithms, and view the processor layout as a hierarchy
rather than a grid. Breadth-first steps (BFS) and depth-first
steps (DFS) are alternate ways to solve the subproblems. At
a BFS step, all of the subproblems are solved in parallel
on independent subsets of the processors, whereas at a DFS
all the processors work together on one subproblem at a
time. In general, BFS steps reduce communication costs,
but may require extra memory relative to DFS steps. With
correct interleaving of BFS and DFS steps to stay within
the available memory, it has been shown that BFS/DFS gives
a communication-optimal algorithm both for square classical
matrix multiplication and for Strassen’s algorithm, for any
memory size. Because of their recursive structure, BFS/DFS
algorithms are cache-, processor-, and network-oblivious in
the sense of [8], [12], [13]. Note that they are not oblivious
to the global memory size, which is necessary to determine
the optimal interleaving of BFS and DFS steps. Additionally,
they are typically a good fit for hierarchical computers, which
are becoming more common as individual nodes become more
complicated.

C. CARMA

We apply the BFS/DFS approach to the dimension-splitting
recursive algorithm to obtain a communication-avoiding recur-
sive matrix multiplication algorithm, CARMA, which is asymp-
totically communication-optimal for any matrix dimensions,
number of processors, and memory size, and is cache- and
network-oblivious. CARMA is a simple algorithm. However,
because it is optimal across the entire range of inputs, we find
cases where it significantly outperforms existing, carefully-
tuned libraries. A simplified version of its pseudocode appears
as Algorithm 1 (for more details, see Algorithm 2). At each
recursive step, the largest of the three dimensions is split in

half, yielding two subproblems. Depending on the available
memory, these subproblems are solved by either a BFS step
or a DFS step.

Algorithm 1 CARMA, in brief

Input: A is an m× k matrix, B is a k × n matrix
Output: C = AB is m× n

1: Split the largest of m,n, k in half, giving two subproblems
2: if Enough memory then
3: Solve the two problems recursively with a BFS
4: else
5: Solve the two problems recursively with a DFS

D. Contributions

Our primary contributions here are the CARMA algorithm,
as well as its analysis and benchmarking. We also prove
tight lower bounds on the communication costs of rectangular
matrix multiplication in all cases. Some of these bounds have
appeared previously in [24], and the new bounds use the
same techniques (along with those of [2]). As illustrated in
Figure 1, the communication costs naturally divide into three
cases that we call one large dimension, two large dimensions,
and three large dimensions. SUMMA matches the lower
bounds in the case of two large dimensions, and 3D-SUMMA
matches the lower bounds in cases of two or three large
dimensions. CARMA is the only algorithm that matches the
communication lower bounds in all three cases.

We implement CARMA and compare it to existing paral-
lel linear algebra libraries on both a multi-node distributed-
memory machine and a NUMA shared-memory machine. In
the shared-memory case, we compare to Intel’s Math Kernel
Library (MKL) and show comparable performance for square
matrices and matrices where the middle dimension is small
relative to the other two, and improvements of up to 6.6× on
matrices where the middle dimension is large. In the multi-
node case, we compare CARMA to ScaLAPACK running on
Hopper at NERSC, and see performance increases of up to 3×
for square multiplication, 2500× for multiplication where the
middle dimension is large, and 2× for multiplication where the
middle dimension is small. With minor tuning, ScaLAPACK
performs much better and our 2500× increase drops to 141×.
As expected, the biggest improvements come in the case of
one large dimension, where CARMA communicates much less
than previous algorithms.

E. Paper organization

We describe CARMA in detail in Section II. After a brief
discussion of the communication model in Section II-A, we
prove communication lower bounds for classical rectangular
matrix multiplication in Section II-B, and derive the commu-
nication costs of CARMA in Section II-C. We summarize
the bandwidth costs of these three algorithms in each case
in Table I. We implement CARMA and compare it to existing
parallel linear algebra libraries in Section III. Finally, in
Section IV we discuss data layout requirements for attaining

the communication lower bounds, potential to incorporate
CARMA into existing libraries, and opportunities for tuning
CARMA.

II. ALGORITHM

Detailed pseudocode for CARMA is shown in Algorithm 2.
The recursion cuts the largest dimension in half to give
two smaller subproblems. At each level of the recursion in
CARMA, a decision is made between making a depth-first
step (DFS) or a breadth-first step (BFS) to solve the two
subproblems. A BFS step consists of two disjoint subsets of
processors working independently on the two subproblems in
parallel. In contrast, a DFS step consists of all processors in
the current subset working on each subproblem in sequence.
A BFS step increases memory usage by a constant factor, but
decreases future communication costs. On the other hand, a
DFS step decreases future memory usage by a constant factor,
but increases future communication costs. On P processors,
with unlimited memory, we show that the algorithm only needs
BFS steps and is communication-optimal.

If the execution of only BFS steps causes the memory
requirements to surpass the bounds of available memory, it is
necessary to interleave DFS steps within the BFS steps to limit
memory usage. We show that the resulting algorithm is still
communication-optimal, provided the minimal number of DFS
steps are taken. As we show in the analysis in Section II-C,
only a constant factor extra memory is needed in the cases of
one or two large dimensions, so DFS steps are not necessary in
these cases. When all dimensions are large, the extra memory
requirement may grow asymptotically. Therefore the memory
may become a limiting resource in that case and DFS steps
may be necessary. In our experiments, we used relatively
small matrices on many processors so that the problem is
communication-bound rather than computation-bound. As a
result, the matrices are small enough that memory was not a
limiting factor, and only BFS steps were used.

See Section IV-D and Figure 6 for a description of the data
layout in the distributed-memory case.

A. Communication Model and Notation

We model a distributed-memory machine as having P
processors, each with local memory size M . The only way
to access data in another processor’s local memory is by
receiving a message. We count the number of words of
data sent and received (bandwidth cost) and the number of
messages sent and received (latency cost). We assume that
each processor can only send or receive one message at a
time, and we count the bandwidth and latency costs along the
critical path of an algorithm.

Although designed for a distributed-memory machine, the
model also applies to the case of a shared-memory system with
non-uniform access. In this case, M is the amount of memory
closest to any given processor. Even though a processor may
access other memory without sending an explicit message, it
is desirable to reduce both the volume and frequency of access
to remote memory.

Algorithm 2 CARMA(A,B,C,m,k,n,P)

Input: A is an m× k matrix and B is a k × n matrix
Output: C = AB

1: if P = 1 then
2: SequentialMultiply(A, B, C, m, k, n)
3: if Enough Memory then . Do a BFS
4: if n is the largest dimension then
5: Copy A to disjoint halves of the processors.

Processor i sends and receives local A from
processor i± P/2

6: Parallel do
7: CARMA(A, Bleft, Cleft, m, k, n/2, P/2)
8: CARMA(A, Bright, Cright, m, k, n/2, P/2)
9: if m is the largest dimension then

10: Copy B to disjoint halves of the processors.
Processor i sends and receives local B from
processor i± P/2

11: Parallel do
12: CARMA(Atop, B, Ctop, m/2, k, n, P/2)
13: CARMA(Abot, B, Cbot, m/2, k, n, P/2)
14: if k is the largest dimension then
15: Parallel do
16: CARMA(Aleft, Btop,C, m, k/2, n, P/2)
17: CARMA(Aright, Bbot,C, m, k/2, n, P/2)
18: Gather C from disjoint halves of the processors.

Processor i sends C and receives C ′ from
processor i± P/2

19: C ← C + C ′

20: else . Do a DFS
21: if n is the largest dimension then
22: CARMA(A, Bleft, Cleft, m, k, n/2, P)
23: CARMA(A, Bright, Cright, m, k, n/2, P)
24: if m is the largest dimension then
25: CARMA(Atop, B, Ctop, m/2, k, n, P)
26: CARMA(Abot, B, Cbot, m/2, k, n, P)
27: if k is the largest dimension then
28: CARMA(Aleft, Btop, C, m, k/2, n, P)
29: CARMA(Aright, Bbot, C, m, k/2, n, P)

We consider the case of computing C = AB where A is
an m × k matrix, B is a k × n matrix, and C is an m × n
matrix. In the next two subsections, it will be convenient to
have an ordered notation for the three dimensions. Hence
we define d1 = min(m,n, k), d2 = median(m,n, k), and
d3 = max(m,n, k). Both the lower bounds and the communi-
cation costs of CARMA depend only on the values of the three
dimensions, not on their order. Similarly, let M3,M2,M1 be
the three matrices in increasing size, so M3 has dimensions
d1, d2, M2 has dimensions d1, d3, and M1 has dimensions
d2, d3.

P < d3
d2

d3
d2

< P < d2d3
d2
1

d2d3
d2
1

< P

“1 large dimension” “2 large dimensions” “3 large dimensions”

Lower Bound [24][here] d1d2

√
d2
1
d2d3
P

d1d2d3
P
√
M

+
(
d1d2d3

P

)2/3
2D SUMMA [33]

√
d2
1
d2d3
P

√
d2
1
d2d3
P

√
d2
1
d2d3
P

3D SUMMA [28]

√
d2
1
d2d3
P

√
d2
1
d2d3
P

d1d2d3
P
√
M

+
(
d1d2d3

P

)2/3
CARMA [here] d1d2

√
d2
1
d2d3
P

d1d2d3
P
√
M

+
(
d1d2d3

P

)2/3
TABLE I: Asymptotic bandwidth costs and lower bounds for matrix multiplication on P processors, each with local memory
size M , where the matrix dimensions are d1 ≤ d2 ≤ d3. 2D SUMMA and 3D SUMMA have the variant and processor grid
chosen to minimize the bandwidth cost.

B. Communication Cost Lower Bounds

Following [24], the classical rectangular matrix multipli-
cation algorithm requires mnk scalar multiplications, which
may be arranged into a rectangular prism of size m × n × k
with the three matrices as its faces, see Figure 1. To perform a
given multiplication, a given processor must have access to the
entries of A, B, and C corresponding to the projections onto
the m×k, n×k, and m×n faces of the prism, respectively. If
these entries are not assigned to that processor by the initial or
final data layout, these entries correspond to words that must
be communicated. We assume that each of the three matrices
is load balanced in its input or output data layout.

At least one processor will perform at least mnk
P mul-

tiplications. Consider such a processor, and let S be the
set of multiplications it performs. Let |Si| be the size of
the projection of S onto matrix Mi. The Loomis-Whitney
inequality [25] gives a lower bound on the product of these
projections:

|S1| · |S2| · |S3| ≥
(
d1d2d3

P

)2

(1)

There are three cases to consider, depending on the aspect ratio
of the matrices (see Figure 1 for graphical representations of
the cases).

1) Three large dimensions: If

P ≥ 2
d2d3
d21

,

then by Theorem 3.1 of [24], we have

W ≥ d1d2d3

2
√

2P
√
M
−M.

In the case that

M ≤
(
d1d2d3

4P

)2/3

,

this bound can be simplified to

W = Ω

(
d1d2d3

P
√
M

)
. (2)

k

mn

(a) One large dimension

n
m

k

(b) Two large dimensions

m
n

k

(c) Three large dimensions

Fig. 1: Examples of the three cases of aspect ratios on P = 8
processors. The lowest communication cost is attained if an
algorithm divides the m×n×k prism of multiplications into 8
equal sub-prisms that are as close to cubical as possible. If that
division involves dividing only one of the dimensions, we call
that case one large dimension. If it involves dividing only two
of the dimensions, we call that case two large dimensions. If
all three dimensions are divided, we call that case three large
dimensions. Note that in the first two cases, only one processor
needs access to any given entry of the largest matrix, so with
the right data layout an algorithm only needs to transfer the
smaller matrices.

Additionally, following the methods of [2], Inequality 1
implies that

max{|S1|, |S2|, |S3|} ≥
(
d1d2d3

P

)2/3

.

Note that the amount of data available to one processor in the
initial/final layout of any of the matrices is at most d2d3

P (recall

that d1 ≤ d2 ≤ d3), so this corresponds to a bandwidth cost
of at least

W ≥
(
d1d2d3

P

)2/3

− d2d3
P

.

By the assumption that P ≥ 2d2d3

d2
1

, the first term dominates,
and

W = Ω

((
d1d2d3

P

)2/3
)
. (3)

Equation 2 only applies for M ≤
(
d1d2d3

4P

)2/3
, but for larger

M , the bound in Equation 3 dominates it. Thus the lower
bound may be concisely expressed as their sum:

W = Ω

(
d1d2d3

P
√
M

+

(
d1d2d3

P

)2/3
)
. (4)

This bound is attainable for any load balanced data layout,
since it is larger than the cost of d2d3

P words to redistribute
the data.

The latency lower bound is the combination of two trivial
bounds: at least one message must be sent, and the maximum
message size is M . Therefore the number of messages is:

L = Ω

(
d1d2d3
PM3/2

+ 1

)
2) Two large dimensions: Next consider the case that

2
d2d3
d21

> P ≥ 2
d3
d2

.

We consider two posibilities depending on the size of |S1|.
If |S1| ≥ 3d2d3

2P , then the processor needs access to at least
this many entries of M1. We assumed that the input and output
data layouts are exactly load balanced, so at most d2d3

P of
these entries are stored by that processor in the initial/final data
layout. As a result, the remaining d2d3

2P must be communicated
by that processor.

If |S1| < 3d2d3

2P , we may substitute for |S1| in Inequality 1
to obtain

|S2| · |S3| ≥
2d21d2d3

3P
. (5)

It follows that

max{|S2|, |S3|} ≥
√

2

3

√
d21d2d3

P
.

The amount of data a processor stores of M2 or M3 in the
initial/final layout is at most d1d3

P (recall that d1 ≤ d2 ≤ d3),
thus we obtain a bandwidth lower bound of

W ≥
√

2

3

√
d21d2d3

P
− d1d3

P
.

By the assumption that P ≥ 2d3

d2
, the first term dominates and

this simplifies to

W ≥

(√
2

3
− 1√

2

)√
d21d2d3

P
= Ω

(√
d21d2d3

P

)
.

The lower bound is the minimum of these two possibilities:

W = Ω

(
min

{√
d21d2d3

P
,
d2d3
P

})
.

By the assumption that d2d3

d2
1

> P , this simplifies to

W = Ω

(√
d21d2d3

P

)
. (6)

Note that this lower bound is only attainable if the largest
matrix is distributed among the processors in such a way that
it doesn’t need to be communicated.

The latency lower bound is the trivial one that there must
be at least one message: L = Ω(1).

3) One large dimension: Finally, consider the case of one
very large dimension, so that

2
d3
d2

> P.

We consider three possibilities depending on the sizes of |S1|
and |S2|.

If |S1| ≥ 5d2d3

4P , then the processor needs access to at least
this many entries of M1. We assumed that the input and output
data layouts are exactly load balanced, so at most d2d3

P of
these entries are stored by that processor in the initial/final data
layout. As a result, the remaining d2d3

4P must be communicated
by that processor.

Similarly, if |S2| ≥ 5d1d3

4P , then the processor needs access
to at least this many entries of M2. We assumed that the
input and output data layouts are exactly load balanced, so
at most d1d3

P of these entries are stored by that processor in
the initial/final data layout. As a result, the remaining d1d3

4P
must be communicated by that processor.

If |S1| < 5d2d3

4P and |S2| < 5d1d3

4P , we may substitute into
Inequality 1 to obtain

|S3| ≥
16

25
d1d2.

Since M3 is load balanced, only d1d2

P of these entries can be
owned by the processor in the initial/final data layout, so for
P ≥ 2, at least

W ≥ 7

50
d1d2 = Ω(d1d2)

words must be communicated. The lower bound is the mini-
mum of these three possibilities:

W = Ω

(
min

{
d1d2,

d2d3
P

,
d1d3
P

})
.

By the assumption that 2d3

d2
> P , this simplifies to

W = Ω (d1d2) . (7)

Since this lower bound depends only on the size of the
smallest matrix, it is only attainable if the two larger matrices
are distributed such that each processor owns corresponding
entries of them.

The latency lower bound is the trivial one that there must
be at least one message: L = Ω(1).

Note that whenever P = Θ
(

d2d3

d2
1

)
, Equations 4 and 6

give the same bound. Similarly, whenever P = Θ
(

d3

d2

)
,

Equations 6 and 7 give the same bound. We may thus drop
the factors of 2 in the definitions of one, two, and three large
dimensions.

C. Communication cost of CARMA

CARMA will perform a total of log2 P BFS steps, possibly
with some DFS steps interleaved. There are again three cases
to consider. In each case, CARMA attains the bandwidth lower
bound up to a constant factor, and the latency lower bound up
to a factor of at most logP . In the previous subsection, we
defined one large dimension, two large dimensions, and three
large dimensions asymptotically. The lower bounds are “con-
tinuous” in the sense that they are equivalent for parameters
within a constant factor of the threshold, so the precise choice
of the cutoff does not matter. In this section, we define them
precisely by CARMA’s behavior. For simplicity, we consider
the three cases in the opposite order as in the previous section.

1) One large dimension: If P ≤ d3

d2
, then there are no DFS

steps, only one dimension is ever split, and the smallest matrix
is replicated at each BFS step. The communication cost is the
cost to send this matrix at each step:

W = O

log2 P−1∑
i=0

d1d2
P

2i

 = O (d1d2) ,

since d1d2/P is the initial amount of data of the smallest
matrix per processor, and it increases by a factor of 2 at each
BFS step. In this case the BFS steps can be thought of as
performing an all-gather on the smallest matrix.

The memory use is the memory required to hold the input
and output, plus the memory required to hold all the data
received, so

M = O

(
d1d2 + d1d3 + d2d3

P
+ d1d2

)
= O

(
d2d3
P

)
.

At most a constant factor of extra memory is required.
The number of messages sent at each BFS is constant, so

the latency cost is L = O(logP).
2) Two large dimensions: Next consider the case that

d3

d2
< P ≤ d2d3

d2
1

. There will be two phases: for the first

log2
d3

d2
BFS steps, the original largest dimension is split;

then for the remaining log2
Pd2

d3
BFS steps, the two original

largest dimensions are alternately split. Again, no DFS steps
are required. The bandwidth cost of the first phase is

W1 = O

log2
d3
d2
−1∑

i=0

d1d2
P

2i

 = O

(
d1d3
P

)
.

The bandwidth cost of the second phase is

W2 = O


1
2 log2

Pd2
d3∑

i=0

d1d2
Pd2/d3

2i

 = O

(√
d21d2d3

P

)
,

since every two BFS steps increases the amount of data being
transferred by a factor of 2.

The cost of the second phase dominates the cost of the
first. Again, the memory use is the memory required to hold
the input and output, plus the memory required to hold all the
data received, so

M = O

(
d1d2 + d1d3 + d2d3

P
+

√
d21d2d3

P

)
= O

(
d2d3
P

)
.

At most a constant factor of extra memory is required,
justifying our use of BFS only.

There are a constant number of messages sent at each BFS
step, so the latency cost is L = O(logP).

3) Three large dimensions: Finally, consider the case that
P > d2d3

d2
1

. The first phase consists of log2
d3

d2
BFS steps

splitting the largest dimension, and is exactly as in the pre-
vious case. The second phase consists of 2 log2

d2

d1
BFS steps

alternately splitting the two original largest dimensions. After
this phase, there are P3 =

Pd2
1

d2d3
processors working on each

subproblem, and the subproblems are multiplication where
all three dimensions are within a factor of 2 of each other.
CARMA splits each of the dimensions once every three steps,
alternating BFS and DFS to stay within memory bounds, until
it gets down to one processor.

The cost of the first phase is exactly as in the previous case.
The bandwidth cost of the second phase is

W2 = O

log2
d2
d1∑

i=0

d1d2
Pd2/d3

(2)
i

 = O

(√
d2d3
P

)
.

In the final phase, the cost is within a factor of 4 of the
square case, which was discussed in Section 6.4 of [3], giving

W3 = O

(
d31

P3

√
M

+

(
d31
P3

)2/3
)

= O

(
d1d2d3

P
√
M

+

(
d1d2d3

P

)2/3
)
,

while remaining within memory size M . W3 is the dominant
term in the bandwidth cost.

The latency cost of the first two phases is log d2d3

d2
1

, and the
latency cost of the third phase is

L3 = O

((
d1d2d3
PM3/2

+ 1

)
log

Pd21
d2d3

)
,

giving a total latency cost of

L = O

(
d1d2d3
PM3/2

log
Pd21
d2d3

+ logP

)
.

Fig. 3: Level 3 cache misses for CARMA versus MKL
for m = n = 64, k = 524288. CARMA suffers fewer
cache misses than MKL, and this reduction in data movement
accounts for its higher performance.

III. EXPERIMENTAL RESULTS

We have implemented two versions of CARMA: a shared-
memory version written using Intel Cilk Plus and a distributed-
memory version written in C++ with MPI. Each is bench-
marked on three shapes of matrices corresponding to the three
cases in the communication costs in Table I.

A. Shared-Memory Version

We benchmark the shared-memory version on Emerald,
which has 4 Intel Xeon X7560 processors, for a total of 32
cores split between 4 NUMA regions. We compare CARMA’s
performance to Intel’s Math Kernel Library (MKL) version
10.3.6. Since Emerald has 32 = 25 cores, CARMA performs
5 BFS steps and then uses MKL serially for the base case
multiplications. All tests are for multiplication of randomly
generated matrices. In each case the cache is cleared imme-
diately before the benchmark, and the values shown are the
average of 50 trials. Except where noted, the variation between
trials was on the order of 1%− 10%.

For the case of one large dimension, we benchmark 64×k×
64 multiplication for k ranging from 26 up to 224, shown in
Figure 2a. This shape is used in, for example, the CholeskyQR
algorithm [19] for well-conditioned matrices. MKL’s perfor-
mance is roughly flat at about 20 GFlop/s, whereas CARMA
is able to use the extra parallelism of larger k values to be
up to 6.6× faster for single-precision multiplication, and 5×
faster for double-precision multiplication.

For the case of two large dimensions, we benchmark k = 64
for m = n ranging from 26 up to 215. This is one of the
most common shapes since it is used, for example, to perform
the updates in LU factorization. On this shape, as shown in
Figure 2c, MKL and CARMA achieve similar performance;
in most cases MKL is slightly faster.

Finally, for the case of three large dimensions, we bench-
mark square matrices with dimension ranging from 26 up to

(a) m = n = 192, k = 6291456

(b) m = n = 12288, k = 192

(c) m = n = k = 6144

Fig. 4: Time breakdown between communication (MPI calls)
and computation (everything else, including local data move-
ment). Perfect strong scaling would correspond to equal total
heights at 24 cores and 6144 cores.

(a) Cilk Plus version, 64× k × 64. (b) MPI version, 192× 6291456× 192

(c) Cilk Plus version, m× 64× n, m = n. (d) MPI version, 12288× 192× 12288

(e) Cilk Plus version, square. (f) MPI version, square.

Fig. 2: Performance results for both versions. Left column: performance versus matrix size of the Cilk Plus version of CARMA
compared to MKL on Emerald. Right column: strong scaling of the MPI version compared to ScaLAPACK on Hopper.

215. In this case CARMA is slightly faster than MKL (see
Figure 2e). For square multiplication of dimensions 4096 and
8192, we see larger variation (up to 30%) in the performance
of both MKL and CARMA, for which we do not have a
definitive explanation.

Figure 3 shows the number of level 3 cache misses for
CARMA and for MKL on m = n = 64, k = 524288, a
case where CARMA is significantly faster, obtained using the
Performance Application Programming Interface (PAPI [18]).
CARMA incurs only 14% as many cache misses in double
precision, and only 3% as many in single precision, while
performing essentially the same number of floating point oper-
ations. As expected, our improvement is due to communication
being reduced.

B. Distributed-Memory Version

We benchmark the distributed-memory version on Hopper,
a Cray XE6 at the National Energy Research Scientific Com-
puting Center (NERSC). It consists of 6,384 compute nodes,
each of which has 2 twelve-core AMD “Magny-Cours” 2.1
GHz processors and 32 GB of DRAM (384 of the nodes have
64 GB of DRAM). The 24 cores are divided between 4 NUMA
regions.

CARMA gets the best performance when run as “flat
MPI”, with one MPI process per core. Local sequential matrix
multiplications are performed by calls to Cray LibSci version
11.1.00. The distributed-memory version of CARMA supports
splitting by arbitrary factors at each recursive step rather than
just by a factor of 2. For each data point, several splitting
factors and orders were explored and the one with the best
performance is shown. It is possible that further performance
improvements are possible by exploring the search space more
thoroughly. For a description of the data layout used by
distributed CARMA, see Section IV-D.

We compare CARMA against ScaLAPACK version 1.8.0 as
optimized by NERSC. ScaLAPACK also uses LibSci for local
multiplications. For each data point we explore several possi-
ble executions and show the one with the highest performance.
First, we try running with 1, 6, or 24 cores per MPI process.
Parallelism between cores in a single process is provided by
LibSci. Second, we explore all valid processor grids. We also
try storing the input matrices as stated, or transposed. In some
cases transposing one of the input increases ScaLAPACK’s
performance by more than a factor of 10.

The topology of the allocation of nodes on Hopper is outside
the user’s control, and, for communication-bound problems on
many nodes, can affect the runtime by as much as a factor of
2. We do not attempt to measure this effect. Instead, for every
data point shown, the CARMA and ScaLAPACK runs were
performed during the same reservation and hence using the
same allocation.

For the case of one large dimension, we benchmark m =
n = 192, k = 6291456. The aspect ratio is very large so it
is in the one large dimension case (k/P > m,n) even for
our largest run on P = 24576 cores. In this case we see
improvements of up to 140× over ScaLAPACK. This data is

shown in Figure 2b. If ScaLAPACK is not allowed to transpose
the input matrices, the improvement grows to 2500×.

For the case of two large dimensions, we benchmark
m = n = 24576, k = 192. In this case both CARMA
and ScaLAPACK (which uses SUMMA) are communication-
optimal, so we do not expect a large performance difference.
Indeed performance is close between the two except on very
large numbers of processors (the right end of Figure 2d) where
CARMA is nearly 2× faster.

Finally for the case of three large dimensions, we bench-
mark m = n = k = 6144. For small numbers of processors,
the problem is compute-bound and both CARMA and ScaLA-
PACK perform comparably. For more than about 1000 cores,
CARMA is faster, and on 24576 cores it is nearly 3× faster.
See Figure 2f.

Figure 4 shows the breakdown of time between computation
and communication for CARMA and ScaLAPACK, for each
of these matrix sizes, and for 24 cores (1 node) and 6144
cores (256 nodes). In the case of 1 large dimension on 6144
cores, CARMA is 16× faster at the computation, but more
than 1000× faster at the communication. CARMA is faster at
the computation because the local matrix multiplications are
as close to square as possible allowing for more efficient use
of the cache. For the other two sizes, the computation time is
comparable between the two, but CARMA spends about 3.5×
less time on communication on 6144 cores.

All tests are for multiplication of randomly generated double
precision matrices. For each algorithm and size, one warm-up
run was performed immediately before the benchmark.

IV. CONCLUSIONS AND OPEN PROBLEMS

CARMA is the first distributed-memory parallel matrix
multiplication algorithm to be communication-optimal for
all dimensions of matrices and sizes of memory. We prove
CARMA’s communication optimality and compare it against
ScaLAPACK and MKL. Despite its simple implementation,
the algorithm minimizes communication on both distributed-
and shared-memory machines, yielding performance improve-
ments of up to 140× and 5×, respectively. As expected, our
best improvement comes in ranges where CARMA achieves
lower bounds on communication but previous algorithms do
not. We next discuss future research directions for parallel
matrix multiplication.

A. Opportunities for Tuning

The algorithm described in Section II always splits the
largest dimension by a factor of 2. This can be generalized
considerably. At each recursive step, the largest dimension
could be split by any integer factor s, which could vary
between steps. Increasing s from 2 decreases the bandwidth
cost (by at most a small constant factor) while increasing the
latency cost. The choice of split factors is also affected by the
number of processors, since the product of all split factors at
BFS steps must equal the number of processors. Additionally,
when two dimensions are of similar size, either one could
be split. As long as the s are bounded by a constant, and

Fig. 5: Choosing the optimal number of recursive steps can
make CARMA up to 60% faster than using the minimum
number. The number of recursive steps is one of the param-
eters in CARMA that can be tuned to search for additional
performance.

the dimension that is split at each step is within a constant
factor of the largest dimension, a similar analysis to the one
in Section II-C shows that CARMA is still asymptotically
communication-optimal. Note that this means that CARMA
can efficiently use any number of processors that does not have
large prime factors, by choosing split factors s that factor the
number of processors.

In practice, however, there is a large tuning space, and more
performance improvements may be possible by exploring this
space further. Our MPI implementation allows the user to
choose any dimension to split and any split factor at each
recursive step (but the required data layout will vary; see
Section IV-D). On Hopper, we have found that splitting 6 or
8 ways at each step typically performs better than splitting 2
ways, but we have not performed an exhaustive search of the
tuning space.

For the shared-memory version, the data presented in Sec-
tion II is without any tuning; we benchmarked the simplest
version of CARMA, as outlined in Algorithm 2. By changing
the depth of recursion above the minimum value of 5 for
running on 32 cores, we obtain higher performance in some
cases, see Figure 5.

B. Comparing Grid-Based and BFS/DFS Algorithms

In Section I-B, we discussed the relative merits of grid-
based tuned algorithms with BFS/DFS algorithms that are
resource-oblivious. However, we have not performed a thor-
ough experimental comparison of the two. Such a comparison
would involve testing both types of algorithms on computers
like Hopper, where the allocation is arbitrary and there is an
on-node hierarchy, and on computers like IBM Blue Gene,
where allocations are guaranteed to be grid topologies and the
machine can be thought of as “flat”.

It may be possible to use the BFS/DFS approach for many
other sequential recursive algorithms. Work is in progress

to write a BFS/DFS based SEJITS (Selective Embedded JIT
Specialization [11]) specializer to provide automatic resource-
oblivious parallelization for recursive algorithms.

C. Perfect Strong Scaling Range

We say that an algorithm exhibits perfect strong scaling
if its computation and communication costs decrease linearly
with P . In the square case, the 2.5D algorithm and the square
BFS/DFS algorithm exhibit perfect strong scaling in the range
P = Ω(n2/M) and P = O(n3/M3/2), which is the maximum
possible range. Similarly, in the case of three large dimensions,
defined by

P = Ω

(
d2d3
d21

,

)
,

both CARMA and 3D-SUMMA exhibit perfect strong scaling
in the maximum possible range

P = Ω

(
mn + mk + nk

M

)
, P = O

(
mnk

M3/2

)
.

Note that in the plots shown in this paper, the entire problem
fits on one node, so the range degenerates to just P = 1.

In the case of one or two large dimensions, the bandwidth
lower bound does not decrease linearly with P (see Table I).
As a result, perfect strong scaling is not possible. Figure 2b
shows very good strong scaling for CARMA in practice
because, even though the bandwidth cost does not decrease
with P in this case, it is small enough that it is not dominant
up to 6144 cores (see Figure 4a).

D. Data Layout Requirements

Recall the three cases of the bandwidth cost lower bounds
from Section II-B. In the case of three large dimensions, the
lower bound is higher than the size of the input and output data
per processor: mn+nk+mk

P . This means it is possible to attain
the bandwidth lower bound with any load balanced initial/final
data layout, since the bandwidth cost of redistributing the data
is sub-dominant.

However, in the case of one or two large dimensions,
the bandwidth cost lower bound is lower than the size of
the input and output data per processor. This means that a
communication-optimal algorithm cannot afford to redistribute
the largest matrix, which limits the data layouts that can be
used. For example, in the case of one large dimension, where
CARMA shows its greatest advantage, it is critical that only
entries of the smallest matrix ever be communicated. As a
result, it is necessary for corresponding entries of the two
larger matrices to be on the same processor in the initial/final
data layout.

The MPI version of CARMA only communicates one of
the three matrices at each BFS step. It requires that each
of the two halves of the other two matrices already resides
entirely on the corresponding half of the processors. See
Figure 6. This requirement applies recursively down to some
block size, at which point CARMA uses a cyclic data layout
(any load balanced layout would work for the base case). The
recursive data layout that the distributed version of CARMA

B
top
on

1,...,P/2

B
bot
on

P/2+1,...,P

A
left

on

1,...,P/2

A
right

on

P/2+1,...,P

C

on

1,...,P

Fig. 6: Data layout for a BFS step splitting dimension k.
Before the BFS step, all three matrices are distributed on P
processors. The distributed code assumes that Aleft and Btop
are distributed among the first P/2 processors, Aright and Bbot
are distributed among the remaining P/2 processors, and C
is distributed among all the processors. The layout applies
recursively, following the execution pattern, and in the base
case the layout is cyclic.

uses is different from any existing linear algebra library; hence
CARMA cannot be directly incorporated into, for example,
ScaLAPACK.

In fact, even if a new library is designed for CARMA,
there is a complication. If a matrix is used multiple times
in a computation, sometimes as the largest and sometimes
not the largest, the data layouts CARMA prefers will not
be consistent. It should still be possible to asymptotically
attain the communication lower bound for any sequence of
multiplications by choosing the correct initial or final layout
and possibly transforming the layout between certain multipli-
cations. Doing so in a way that makes the library easy to use
while remaining efficient is left as an open problem.

This limitation does not affect the shared-memory version
of CARMA, whose performance improvements are primarily
due to the local matrix multiplications being close to square.
Hence the Cilk Plus version of CARMA can be used as a
drop-in replacement for the matrix multiplication routine of
any shared-memory linear algebra library like MKL.

ACKNOWLEDGMENTS

Research supported by Microsoft (Award #024263) and
Intel (Award #024894) funding and by matching funding
by U.C. Discovery (Award #DIG07-10227). Additional sup-
port comes from Par Lab affiliates National Instruments,
Nokia, NVIDIA, Oracle, and Samsung. Research is also
supported by DOE grants DE-SC0004938, DE-SC0005136,
DE-SC0003959, DE-SC0008700, and AC02-05CH11231, and
DARPA grant HR0011-12-2-0016.

This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar.
A three-dimensional approach to parallel matrix multiplication. IBM
Journal of Research and Development, 39:39–5, 1995.

[2] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Brief
announcement: Strong scaling of matrix multiplication algorithms and
memory-independent communication lower bounds. In Proceedings of
the 24th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’12, pages 77–79, New York, NY, USA, 2012. ACM.

[3] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Communication-optimal parallel algorithm for Strassen’s matrix mul-
tiplication. In Proceedings of the 24th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’12, pages 193–204, New York,
NY, USA, 2012. ACM.

[4] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Graph
expansion analysis for communication costs of fast rectangular matrix
multiplication. In Proceedings of The 1st Mediterranean Conference on
Algorithms, MedAlg ’12. Springer, 2012.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing
communication in numerical linear algebra. SIAM J. Matrix Analysis
Applications, 32(3):866–901, 2011.

[6] G. Ballard, J. Demmel, B. Lipshitz, and O. Schwartz. Communication-
avoiding parallel Strassen: Implementation and performance. In Pro-
ceedings of 2012 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, New York, NY, USA,
2012. ACM.

[7] J. Berntsen. Communication efficient matrix multiplication on hyper-
cubes. Parallel Computing, 12(3):335 – 342, 1989.

[8] G. Bilardi, A. Pietracaprina, G. Pucci, and F. Silvestri. Network-
oblivious algorithms. In Proceedings of 21st International Parallel and
Distributed Processing Symposium, 2007.

[9] D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.7799) complexity
for n × n approximate matrix multiplication. Information Processing
Letters, 8(5):234 – 235, 1979.

[10] P. Bűrgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Com-
plexity Theory. Number 315 in Grundlehren der mathematischen
Wissenschaften. Springer Verlag, 1997.

[11] B. Catanzaro, S. A. Kamil, Y. Lee, K. Asanovi, J. Demmel, K. Keutzer,
J. Shalf, K. A. Yelick, and A. Fox. Sejits: Getting productivity and
performance with selective embedded jit specialization. Technical Re-
port UCB/EECS-2010-23, EECS Department, University of California,
Berkeley, Mar 2010.

[12] R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran.
Oblivious algorithms for multicores and network of processors. In
IPDPS, pages 1–12, 2010.

[13] R. Cole and V. Ramachandran. Resource oblivious sorting on multicores.
In Proceedings of the 37th international colloquium conference on
Automata, languages and programming, ICALP’10, pages 226–237,
Berlin, Heidelberg, 2010. Springer-Verlag.

[14] D. Coppersmith. Rapid multiplication of rectangular matrices. SIAM
Journal on Computing, 11(3):467–471, 1982.

[15] D. Coppersmith. Rectangular matrix multiplication revisited. J. Com-
plex., 13:42–49, March 1997.

[16] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive
blocked algorithms and hybrid data structures for dense matrix library
software. SIAM review, 46(1):3–45, 2004.

[17] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In FOCS ’99: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, page 285, Washington,
DC, USA, 1999. IEEE Computer Society.

[18] B. D. Garner, S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
portable programming interface for performance evaluation on modern
processors. The International Journal of High Performance Computing
Applications, 14:189–204, 2000.

[19] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins
Studies in Mathematical Sciences)(3rd Edition). The Johns Hopkins
University Press, 3rd edition, Oct. 1996.

[20] J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game.
In STOC ’81: Proceedings of the thirteenth annual ACM symposium on
Theory of computing, pages 326–333, New York, NY, USA, 1981. ACM.

[21] J. E. Hopcroft and L. R. Kerr. On minimizing the number of multipli-
cations necessary for matrix multiplication. SIAM Journal on Applied
Mathematics, 20(1):pp. 30–36, 1971.

[22] X. Huang and V. Y. Pan. Fast rectangular matrix multiplications and
improving parallel matrix computations. In Proceedings of the second
international symposium on Parallel symbolic computation, PASCO ’97,
pages 11–23, New York, NY, USA, 1997. ACM.

[23] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and
applications. J. Complex., 14:257–299, June 1998.

[24] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. J. Parallel Distrib. Comput.,
64(9):1017–1026, 2004.

[25] L. H. Loomis and H. Whitney. An inequality related to the isoperimetric
inequality. Bulletin of the AMS, 55:961–962, 1949.

[26] G. Lotti and F. Romani. On the asymptotic complexity of rectangular
matrix multiplication. Theoretical Computer Science, 23(2):171 – 185,
1983.

[27] W. F. McColl and A. Tiskin. Memory-efficient matrix multiplication in
the BSP model. Algorithmica, 24:287–297, 1999. 10.1007/PL00008264.

[28] M. D. Schatz, J. Poulson, and R. A. van de Geijn. Scalable universal
matrix multiplication algorithms: 2d and 3d variations on a theme.
submitted to ACM Transactions on Mathematical Software.

[29] E. Solomonik, A. Bhatele, and J. Demmel. Improving communication
performance in dense linear algebra via topology aware collectives. In
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 77:1–
77:11, New York, NY, USA, 2011. ACM.

[30] E. Solomonik and J. Demmel. Communication-optimal parallel 2.5D
matrix multiplication and LU factorization algorithms. In Euro-Par’11:
Proceedings of the 17th International European Conference on Parallel
and Distributed Computing. Springer, 2011.

[31] E. Solomonik and J. Demmel. Matrix multiplication on multidimen-
sional torus networks. Technical Report UCB/EECS-2012-28, EECS
Department, University of California, Berkeley, Feb 2012.

[32] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–
356, 1969.

[33] R. A. van de Geijn and J. Watts. SUMMA: scalable universal matrix
multiplication algorithm. Concurrency - Practice and Experience,
9(4):255–274, 1997.

[34] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and
P. Stodghill. Is search really necessary to generate high-performance
BLAS? Proceedings of the IEEE, 93(2):358 –386, Feb 2005.

[35] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson. An exper-
imental comparison of cache-oblivious and cache-conscious programs.
In Proceedings of the Nineteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’07, pages 93–104, New York, NY,
USA, 2007. ACM.

