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Single-walled carbon nanotubes (SWCNTs) can be promising delivery nanodevices for a diverse range of

applications, however, little is known about their dynamical interactions with moving nanoscale

particles. In this paper, dynamic response of a SWCNT subjected to a moving nanoparticle is examined

in the framework of the nonlocal continuum theory of Eringen. The inertial effects of the moving

nanoparticle and the existing friction between the nanoparticle surface and the inner surface of the

SWCNT are incorporated in the formulation of the problem. The equivalent continuum structure

associated with the SWCNT is considered and modeled using nonlocal Rayleigh beam theory under

simply supported boundary conditions. The governing equations are then established both in the strong

and weak forms. The set of linear equations are solved in the time domain using generalized Newmark-

b method. The effects of mass weight of the moving nanoparticle, its velocity, and small scale effect

parameter on the dynamic amplitude factors of longitudinal and transverse displacements as well as

those of axial force and bending moment are studied in some detail. Additionally, the possibility of

moving nanoparticle separation from the inner surface of the SWCNT is investigated. The role of

influential parameters on the possibility of this phenomenon is also addressed and discussed.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In a lecture in 1959, the well-known physicist Feynman
predicted the outlook of innovations in nanoscale sciences [1],
now called nanotechnology. It was stipulated that this new field
of physics will make to enable humankind to construct much
smaller timesaving devices. It was emphasized that this fact
would not be unexpected if humankind could find appropriate
ways to manipulate and control things at the atomistic scale. In
the aforementioned lecture, Feynman expressed that there is
plenty of room at the bottom. It does imply that there is a room
that you can decrease the size of things in a practical way. Perhaps
it can be said that one of the above-mentioned rooms was found
when Iijima [2] discovered carbon nanotubes (CNTs) in 1991. Just
a short time after that, a large body of theoretical and experi-
mental works was conducted to investigate the mechanical
behavior of CNTs. The astonishing properties of CNTs make them
as a promising technology for potential applications. The newly
produced materials have extremely high strength, nearly perfect
geometrical structure, low mass density, and linear elastic
ll rights reserved.
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behavior for longitudinal strain lower than 12%. These extra-
ordinary properties of CNTs provide them in many applications in
nanotechnology, nanobiology, optic, electronic, and other fields of
material sciences as well as in medical fields. Within the
aforementioned fields of applications for CNTs, one use of CNTs
is as new transporter systems for the delivery of drugs [3–6]. In
such a case, one confronts the problem of interaction between
CNTs and moving nanoscale objects.

When a nanoparticle starts to move inside a single-walled
carbon nanotube (SWCNT), the SWCNT generally vibrates in the
transverse and longitudinal directions due to the mass weight of
the moving nanoparticle and the existing friction between the
outer surface of the moving nanoparticle and the inner surface of
the SWCNT. When the mass weight of the moving nanoparticle is
negligible in comparison with the mass weight of the SWCNT, the
inertial effects of the moving nanoparticle are insignificant. For
this case, vibration of a nanotube structure under a moving
nanoparticle was examined by Kiani and Mehri [7] using nonlocal
beam theories. The explicit expressions of dynamical deflection
and angle of rotation fields for each nonlocal beam were obtained.
Moreover, the critical velocity of the moving nanoparticle was
evaluated for each nonlocal beam model in the context of
nonlocal continuum theory of Eringen. In another study, Kiani
[8,9] investigated the dynamic behavior of double-walled carbon
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nanotubes (DWCNTs) traversed by a moving nanoparticle by
employing various nonlocal beam models. In the studied problem,
it was presumed that the inertial effects of the moving
nanoparticle would be infinitesimal. The explicit expressions of
dynamic displacements of both the innermost and outermost
CNTs are then extracted by considering the existing van-der-
Waals forces between the layers of CNTs. Additionally, the critical
velocities of the moving nanoparticle for various models are
established and the role of important parameters on the critical
velocities was addressed and discussed in some detail. However,
as the mass weight of the moving nanoparticle increases, its
inertial effects could not be ignored at all. In contrast to the
previous case, the linear relationship between the maximum
dynamic deflection and the mass weight of the moving nano-
particle would be no longer valid. Furthermore, due to entrance of
the inertial effects in the equations of motion, seeking an exact
solution for the problem is fairly impossible. In such a case, the
proper consideration of the inertial effects of the moving
nanoparticle plays an important role in rational prediction of
dynamic response of the SWCNTs. For this purpose, special
treatments should be taken into account for solving of the
problem.

In the problems of interaction of a SWCNT with a moving
nanoparticle, the wavelength of the propagated sound waves
through the SWCNT is strongly depended on the mass weight and
velocity of the moving nanoparticle as well as material properties,
geometry and boundary conditions of the SWCNT. On the other
hand, as the wavelength becomes comparable to the length of the
SWCNT, the application of the classical continuum theory would
be doubtful since it cannot reasonably predict the dynamic
response of the nanostructure [10]. To overcome this drawback of
the classical continuum theory, the nonlocal continuum theory of
Eringen [10,11] is exploited in the present work. The so-called
continuum theory states that the stress at each point of the
medium is also affected by the stresses at the neighboring points
of that point. Such affectivity is described by an appropriate
kernel function accounting for the internal atomistic length. Up to
now, the nonlocal continuum theory of Eringen has been adopted
for various types of problems associated with the SWCNTs,
including buckling [12–14], postbuckling [15], linear free vibra-
tion [16–18] and nonlinear free vibration of the SWCNTs [19].

This paper deals with the dynamic response of a SWCNT under
a moving nanoparticle based on the nonlocal Rayleigh beam
theory (NRBT). The full inertial terms of the moving nanoparticle
associated with the longitudinal and transverse vibration of the
SWCNT as well as its friction with the inner surface of the SWCNT
are incorporated in the theoretical formulations of the problem.
The discrete equations of motion are obtained and then appro-
priately solved. The effects of moving nanoparticle velocity, mass
weight of the moving nanoparticle, and small scale effect
parameter on the dynamic amplitude factors of longitudinal and
transverse displacements as well as those of axial force and
bending moment are examined in some detail. The possibility of
moving nanoparticle separation from the inner surface of the
SWCNT is also explored. The role of influential parameters on the
possibility of this phenomenon is then addressed and discussed.
Mg v
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Fig. 1. A simply supported SWCNT subjected to a moving nanoparticle.
2. Modeling of the problem

2.1. Description of the mathematical model

Dynamic analysis of a SWCNT under a moving nanomass using
molecular mechanics would be a difficult job. It is because of the
fact that most of the terms associated with the sum of the
potentials of all atoms should be modified at each time step of
calculations. Therefore, the computational effort for solving the
problem dramatically increases. For convenience in vibration
analysis of SWCNTs, some useful equivalent continuum structures
(ECSs) have been developed [20–22]. In the suggested models, the
ECS is often a homogeneous isotropic cylinder with the length and
the mean radius equal to those of the SWCNT. The thickness of the
ECS is then obtained such that its frequencies for the desired
vibration modes or its displacements would be identical to those
of the SWCNT with a good accuracy.

Now consider an ECS corresponding to a SWCNT of length lb,
cross-sectional area Ab, cross-sectional inertia moment Ib, Young’s
modulus Eb, and density rb, as shown in Fig. 1. The simply
supported ECS is axially pinned at its left end and movable at its
right end. The longitudinal and transverse displacement fields of
the ECS is denoted by u(x,t) and w(x,t), respectively. The ECS is
acted upon by a moving nanoparticle of mass M and constant
velocity v. The moving nanoparticle would be in contact with the
ECS when it travels inside the ECS. The existing friction between
the outer surface of the moving nanoparticle and inner surface of
the ECS is simulated using the Coulomb friction model. However,
the author knows that the friction at the nanoscale would be more
complex than the assumed model. Since this issue has not been
completely understood until now, we use this simple model to
investigate the effect of the friction on the coupling between the
longitudinal and transverse displacements. It is assumed that the
ratio of the length to the diameter of the ECS is generally as great
as that the predicted results by the NRBT would be trustable [7].
2.2. Equations of motion in the context of nonlocal continuum

mechanics

The equations of motion in the context of nonlocal continuum
theory based on the Rayleigh beam theory could be expressed as

rbAb €u�Nnl
b,x ¼M mx g�

D2w

Dt2

����
�����D2u

Dt2

� �
dðx�xMÞHðlb�xMÞ, ð1aÞ

rbðAb €w�Ib €w ,xxÞ�Mnl
b,xx ¼M g�

D2w

Dt2

� �
dðx�xMÞHðlb�xMÞ, ð1bÞ

where g is the applied gravitational acceleration, mx is the
coefficient of kinetic friction, xM is the location of the moving
nanoparticle (xM¼vt), H is the Heaviside step function, d is the
Dirac delta function. Moreover, ð_Þ and D represent the time and
material derivatives, respectively. Based on the nonlocal con-
tinuum mechanics of Eringen, the nonlocal axial force (Nb

nl) and
the nonlocal bending moment (Mb

nl) within the ECS are provided
by

Nnl
b �ðe0aÞ2Nnl

b,xx ¼ EbAbu,x, ð2aÞ

Mnl
b �ðe0aÞ2Mnl

b,xx ¼�EbIbw,xx, ð2bÞ

where e0a is the small scale effect parameter. The value of this
parameter could be determined by justification of the obtained
results by the nonlocal continuum theory with those of atomistic-
based models. Using Eqs. (1) and (2), the nonlocal axial force and
bending moment in terms of displacements are obtained in the
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following form:

Nnl
b ¼ EbAbu,xþðe0aÞ2 rbAb €u�M mx g�

D2w

Dt2

����
�����D2u

Dt2

� �
dðx�xMÞHðlb�xMÞ

� �
,x

,

ð3aÞ

Mnl
b ¼�EbIbw,xxþðe0aÞ2 rbðAb €w�Ib €w ,xxÞ�M g�

D2w

Dt2

� �
dðx�xMÞHðlb�xMÞ

� �
,

ð3bÞ

substituting Eq. (3) into Eq. (1) gives the governing equations as
follows:

rbAbð €u�ðe0aÞ2 €u ,xxÞ�EbAbu,xx ¼M mx g�
D2w

Dt2

����
�����D2u

Dt2

� ��

dðx�xMÞ�ðe0aÞ2 mx g�
D2w

Dt2

����
�����D2u

Dt2

� �
dðx�xMÞ

� �
,xx

#
Hðlb�xMÞ,

ð4aÞ

rbðAb €w�Ib €w ,xxÞ�ðe0aÞ2rbðAb €w ,xx�Ib €w ,xxxxÞþEbIbw,xxxx

¼M g�
D2w

Dt2

� �
dðx�xMÞ�ðe0aÞ2 g�

D2w

Dt2

� �
dðx�xMÞ

� �
,xx

" #
Hðlb�xMÞ:

ð4bÞ

Eqs. (4a) and (4b) represent the strong form of the equations of
motion for a SWCNT under a moving nanoparticle by considering the
frictional and inertial effects of the moving nanoparticle. If the value
of small scale effect parameter is set equal to zero, one could arrive at
the equations of motion of a macroscale beam under a moving mass.
3. Solving the governing equations

Generally, finding an analytical solution to Eq. (4) is so difficult
due to the presence of the first spatial differentiation of the
displacements in the right hand side of Eqs. (4a) and (4b). As a
result, finding a suitable numerical approach to solve the problem
would be of great advantage. In this paper, the unknown
displacements are discretized in terms of mode shapes associated
with the boundary conditions of the problem. To construct the
discrete form of the governing equations, both sides of Eqs. (4a)
and (4b) are, respectively, multiplied by du and dw. Subsequently,
by integration over the length of the nanotube structure and
application of the integration by parts

Z lb

0
rbAbdw €wþrbIbdw,x €w ,xþEbIbdw,xxw,xx

8<
:
�dwM g�

D2w

Dt2

� �
dðx�xMÞHðlb�xMÞ�ðe0aÞ2dw,xx rb Ab €w

��

�Ib €w ,xx

�
�M g�

D2w

Dt2

� �
dðx�xMÞHðlb�xMÞÞþrbAbdu €uþEbAbdu,xu,x

�M mx g�
D2w

Dt2

����
�����D2u

Dt2

� �
dudðx�xMÞHðlb�xMÞ

þðe0aÞ2 rbAbdu,x €u ,x�Mdu,x mx g�
D2w

Dt2

����
�����D2u

Dt2

� ���

�dðx�xMÞ

�
,x

Hðlb�xMÞ

�)
dx¼ 0: ð5Þ

The displacement field of the problem are expressed in terms of
mode shapes as

uðx,tÞ ¼
Xnm

i ¼ 1

fu
i ðxÞuiðtÞ, ð6aÞ
wðx,tÞ ¼
Xnm

i ¼ 1

fw
i ðxÞwiðtÞ, ð6bÞ

where fu
i ðxÞ and fw

i ðxÞ are, respectively, the ith mode shapes
associated with the longitudinal and transverse displacements,
ui(t) and wi(t) are the unknown coefficients pertinent to
the ith mode shapes of displacements, and nm is the
number of modes required for appropriate discretization of
the displacement fields. Substitution of Eq. (6) into Eq. (5)
would result in the following discrete form of the governing
equations

½Mb�
uu ½Mb�

uw

½Mb�
wu ½Mb�

ww

" #
€u

€w

( )
þ
½Cb�

uu ½Cb�
uw

½Cb�
wu ½Cb�

ww

" #
_u

_w

� �

þ
½Kb�

uu ½Kb�
uw

½Kb�
wu ½Kb�

ww

" #
u

w

� �
¼
ffbg

u

ffbg
w

( )
, ð7Þ

where

½Mb�
uu
ij ¼

Z lb

0
rbAbðf

u
i f

u
j þðe0aÞ2fu

i,xf
u
j,xÞdxþMðfu

i ðxMÞ

�ðe0aÞ2fu
i,xxðxMÞÞf

u
j ðxMÞHðlb�xMÞ, ð8aÞ

½Mb�
uw
ij ¼mxM sgn g�

D2wðxM ,tÞ

Dt2

� �
ðfu

i ðxMÞ�ðe0aÞ2fu
i,xxðxMÞÞf

w
j ðxMÞHðlb�xMÞ,

ð8bÞ

½Mb�
ww
ij ¼

Z lb

0
½rbðAbf

w
i f

w
j þ Ibf

w
i,xf

w
j,xÞ�ðe0aÞ2rbf

w
i,xxðAbf

w
j �Ibf

w
j,xxÞ�dx

þMðfw
i ðxMÞ�ðe0aÞ2fw

i,xxðxMÞÞf
w
j ðxMÞHðlb�xMÞ, ð8cÞ

½Cb�
uu
ij ¼ 2Mvðfu

i ðxMÞ�ðe0aÞ2fu
i,xxðxMÞÞf

u
j,xðxMÞHðlb�xMÞ, ð8dÞ

½Cb�
uw
ij ¼ 2mxMv sgn g�

D2wðxM ,tÞ

Dt2

� �
ðfu

i ðxMÞ�ðe0aÞ2fu
i,xxðxMÞÞf

w
j,xðxMÞHðlb�xMÞ,

ð8eÞ

½Cb�
ww
ij ¼ 2Mvðfw

i ðxMÞ�ðe0aÞ2fw
i,xxðxMÞÞf

w
j,xðxMÞHðlb�xMÞ, ð8fÞ

½Kb�
uu
ij ¼

Z lb

0
EbAbf

u
i,xf

u
j,x dxþMv2

ðfu
i ðxMÞ�ðe0aÞ2fu

i,xxðxMÞÞf
u
j,xxðxMÞHðlb�xMÞ,

ð8gÞ

½Kb�
uw
ij ¼ mxMv2 sgn g�

D2wðxM ,tÞ

Dt2

� �
ðfu

i ðxMÞ�ðe0aÞ2fu
i,xxðxMÞÞf

w
j,xxðxMÞHðlb�xMÞ,

ð8hÞ

½Kb�
ww
ij ¼

Z lb

0
EbIbf

w
i,xxf

w
j,xx dxþMv2

ðfw
i ðxMÞ�ðe0aÞ2fw

i,xxðxMÞÞf
w
j,xxðxMÞHðlb�xMÞ,

ð8iÞ

ffbg
u
i ¼ mxMg sgn g�

D2wðxM ,tÞ

Dt2

� �
ðfu

i ðxMÞ�ðe0aÞ2fu
i,xxðxMÞÞHðlb�xMÞ,

ð8jÞ

ffbg
w
i ¼Mgðfw

i ðxMÞ�ðe0aÞ2fw
i,xxðxMÞÞHðlb�xMÞ, ð8kÞ

by introducing the following dimensionless parameters

x¼
x

lb
, u ¼

u

lb
, w ¼

w

lb
, t¼ 1

l2b

ffiffiffiffiffiffiffiffiffiffiffi
EbIb

rbAb

s
t, m¼ e0a

lb
,

l¼
lb
rb

, CL ¼

ffiffiffiffiffiffi
Eb

rb

s
, MN ¼

M

rbAblb
, b¼

v

CL
, g¼

ffiffiffiffiffiffi
glb

p
CL

: ð9Þ
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Eq. (7) could be rewritten in the dimensionless form as

½Mb�
uu ½Mb�

uw

½Mb�
wu ½Mb�

ww

" #
u ,tt

w ,tt

( )
þ
½Cb�

uu ½Cb�
uw

½Cb�
wu ½Cb�

ww

" #
u ,t

w ,t

( )

þ
½Kb�

uu ½Kb�
uw

½Kb�
wu ½Kb�

ww

" #
u

w

� �
¼
ff bg

u

ff bg
w

( )
, ð10Þ

where the nonzero nondimensional submatrices are stated as

½Mb�
uu
ij ¼

Z 1

0
ðfu

i f
u
j þm2fu

i,xf
u
j,xÞdxþMNðf

u
i ðxMÞ�m2fu

i,xxðxMÞÞf
u
j ðxMÞHð1�xMÞ,

ð11aÞ

Mb


 �uw

ij
¼ mxMN sgn 1�

1

lg

� �2

}wðxM ,tÞ
 !

ðfu
i ðxMÞ�m2fu

i,xxðxMÞÞf
w
j ðxMÞHð1�xMÞ,

ð11bÞ

½Mb�
ww
ij ¼

Z 1

0
½ðfw

i f
w
j þl

�2fw
i,xf

w
j,xÞ�m

2fw
i,xxðf

w
j �l

�2fw
j,xxÞ�dx

þMNðf
w
i ðxMÞ�m2fw

i,xxðxMÞÞf
w
j ðxMÞHð1�xMÞ, ð11cÞ

½Cb�
uu
ij ¼ 2lbMNðf

u
i ðxMÞ�m2fu

i,xxðxMÞÞf
u
j,xðxMÞHð1�xMÞ, ð11dÞ

½Cb�
uw
ij ¼ 2mxlbMN sgn 1�

1

lg

� �2

}wðxM ,tÞ
 !

ðfu
i ðxMÞ

�m2fu
i,xxðxMÞÞf

w
j,xðxMÞHð1�xMÞ, ð11eÞ

½Cb�
ww
ij ¼ 2lbMNðf

w
i ðxMÞ�m2fw

i,xxðxMÞÞf
w
j,xðxMÞHð1�xMÞ, ð11fÞ

½Kb�
uu
ij ¼ l2

Z 1

0
fu

i,xf
u
j,x dxþMNðlbÞ2ðf

u
i ðxMÞ�m2fu

i,xxðxMÞÞf
u
j,xxðxMÞHð1�xMÞ,

ð11gÞ

½Kb�
uw
ij ¼ mxðlbÞ

2MN sgn 1�
1

lg

� �2

}wðxM ,tÞ
 !

ðfu
i ðxMÞ

�m2fu
i,xxðxMÞÞf

w
j,xxðxMÞHð1�xMÞ, ð11hÞ

½Kb�
ww
ij ¼

Z 1

0
fw

i,xxf
w
j,xx dxþMNðlbÞ2ðf

w
i ðxMÞ�m2fw

i,xxðxMÞÞf
w
j,xxðxMÞHð1�xMÞ,

ð11iÞ

ff bg
u
i ¼ mxðlgÞ

2MN sgn 1�
1

lg

� �2

}wðxM ,tÞ
 !

ðfu
i ðxMÞ�m2fu

i,xxðxMÞÞHð1�xMÞ,

ð11jÞ

ff bg
w
i ¼ ðlgÞ

2MNðf
w
i ðxMÞ�m2fw

i,xxðxMÞÞHð1�xMÞ, ð11kÞ

in which in Eq. (11), the operator } is defined as

}w ¼
@

@t þlb
@

@x

� �
@w

@t þlb
@w

@x

� �
, ð12Þ

the nonlocal axial force and bending moment within the ECS in
terms of nondimensional displacement components are ex-
pressed as follows:

Nnl
b ¼ EbAb u ,xþm2

"
1

l2
u ,ttx�mxMNg2 sgn 1�

1

lg

� �2

}wðxM ,tÞ
 !(

� 1�
1

lg

� �2

}wðxM ,tÞ
 !

dðx�xMÞ

 !
,x

Hð1�xMÞ

#9=
;, ð13aÞ
Mnl
b ¼

EbIb

lb
�w ,xxþm2 w ,tt�

1

l2
w ,ttxx�MNðlgÞ2 1�

1

lg

� �2

}w

 !"(

�dðx�xMÞHð1�xMÞ

#)
: ð13bÞ

Since study of the problem for a pinned-movable SWCNT under
simply supported boundary conditions is of concern, the follow-
ing normalized mode shapes should be taken into account (see
Fig. 1)

fu
i ðxÞ ¼

ffiffiffi
2
p

sinðði�0:5ÞpxÞ, fw
i ðxÞ ¼

ffiffiffi
2
p

sinðipxÞ, ð14Þ

substitution of Eq. (14) into Eq. (11) and evaluation of the
integrals, leads to the more simple expressions for the subma-
trices with integrals. The explicitly obtained statements for such
submatrices are provided in Appendix. A. To solve the set of
ordinary differential equations in Eq. (10) in the time domain, the
generalized Newmark-b method is employed. This newly devel-
oped scheme has been explained in some detail in Ref. [23].
4. Results and discussions

4.1. Some comparisons

In this part, some comparisons are provided to ensure us about
the accuracy of the presented model and calculations. For this
purpose, the analytical expressions of the phase velocities
associated with the longitudinally and transversely propagated
waves are obtained and the results are compared with those of
other researchers. Then, the plots of dynamic transverse displace-
ment of the ECS under a moving nanoparticle will be presented. In
a special case, the predicted results by the proposed model are
also compared with those of another work.

4.1.1. Longitudinal and transverse wave propagation in the SWCNT

When the mass weight of the moving nanoparticle is negligible
with respect to the mass weight of the SWCNT (i.e., MN¼0), the
governing equations associated with the longitudinal and trans-
verse vibrations are decouple. If one assume u ¼ u0ei$lt and
w ¼w0ei$tt, Eq. (11) is then reduced to the following form

det½�$2
l ðU

uu
ij þm

2Guu
ij Þþl

2Guu
ij � ¼ 0, ð15aÞ

det½�$2
t ðU

ww
ij þl

�2Gww
ij þm

2ðXww
ij þl

�2Sww
ij ÞÞþS

ww
ij � ¼ 0, ð15bÞ

where $l and $t are, respectively, the dimensionless frequencies
of the longitudinal and flexural waves. u0 and w0 in order are the
initial values of the dimensionless longitudinal and transverse
displacements. By solving the set of eigenvalue equations in
Eq. (15) and using Eq. (A2), the eigenvalues (i.e., dimensionless
natural frequencies) of the ECS modeled by the NRBT are obtained
as

$li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2l2
ði�0:5Þi

1þp2m2ði�0:5Þi

s
, ð16aÞ

$ti
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4i4

1þp4m2l�2i4þp2i2ðl�2
þm2Þ

s
: ð16bÞ

The phase velocities are defined as v½ � ¼o½ �=k½ �; ½ � ¼ l or t where
$½ � ¼ l2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rbAb=ðEbIbÞ

p
o½ �. The longitudinal and transverse wave

numbers associated with the ith vibration modes of the under
study ECS are readily expressed by kli ¼ ði�0:5Þp=lb and kti

¼ ip=lb,
respectively. As a result, the explicit statements of longitudinal
and transverse wave velocities of the ECS based on the NRBT are
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derived as

vli ¼

ffiffiffiffiffiffi
Eb

rb

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

ð1þp2m2ði�0:5ÞiÞði�0:5Þ

s
, ð17aÞ

vti
¼
pi

l

ffiffiffiffiffiffi
Eb

rb

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1þp2m2i2Þð1þp2i2l�2
Þ

s
, ð17bÞ

if the rotary inertia of the nonlocal beam is neglected, the term
1þp2i2l�2 is omitted in Eq. (17a). In such a case, one could arrive
at the common expression of the flexural phase velocity for
SWCNTs based on the nonlocal Euler–Bernoulli beam theory
(NEBT) [24]

vti
¼
pi

l

ffiffiffiffiffiffi
Eb

rb

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þp2m2i2

s
: ð18Þ

Comparison between Eqs. (17b) and (18) reveals that the
predicted flexural phase velocities by the NRBT are always lower
than those of the NEBT. Nevertheless, the differences between the
phase velocities of the NRBT and the NEBT reduce with the
slenderness ratio of the ECS.

4.1.2. Time history plots of the transverse displacement of the

SWCNT

The time history plots of the normalized transverse displace-
ment (wN) of the midspan point of the ECS correspond to the
SWCNT under a moving nanoparticle are depicted in Fig. 2(a) and
(b) where wN ¼w=ðMgl2b=ð48EbIbÞÞ. The results have been provided
for three levels of the mass weight of the moving nanoparticle
(i.e., MN¼0.001, 0.2, and 0.4) as well as three values of the
normalized small scale effect parameter (i.e., m¼ 0, 0.3, and 0.5).
Moreover, the geometry and material properties of the SWCNT are
identical to those of the nanotube structure mentioned in Ref. [7].
The other parameters are as nm¼10, mx ¼ 0:3, l¼ 50,
tf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=rb

p
=ðlvÞ, and v¼ 0:7p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=rb

p
=l. The predicted results

by the NEBT from Ref. [7] are also presented in Fig. 2(a) for the
above-mentioned values of m. In Ref. [7], neither the inertial
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Fig. 2. Normalized dynamic transverse displacement at the midspan point of the EC

(b) MN¼0.2, and (c) MN¼ 0.4 (ð3Þ m¼ 0; ð&Þ m¼ 0:3; ðnÞ m¼ 0:5; (– – –) Kiani and Me
effects of the moving nanoparticle nor its frictional effects were
considered in the modeling of the problem. Therefore, for an
infinitesimal magnitude of the mass weight of the moving
nanoparticle (i.e., MN¼0.001), it is expected that the present
theory could also predict the results of the NEBT which are
presented in Ref. [7]. As it is seen in Fig. 2(a), the obtained results
by the present model are in good agreement with those of the
NEBT which was developed by Kiani and Mehri [7]. As it is
obvious from Fig. 3(a) to (c), the maximum values of the plots of
wN increase with the mass weight of the moving nanoparticle as
well as the normalized small scale effect parameter.

4.2. Numerical studies

In order to realize the role of important parameters on the
interaction between a moving nanoparticle and a SWCNT, some
instructive parametric studies are carried out. In this regard, the
effects of the velocity and mass weight of the moving nanoparticle
as well as the small scale effect parameter on the dynamic
response of SWCNTs are studied in some detail. For this purpose,
the thickness, mean radii and length of the ECS are set equal to
0.34, 1, and 30 nm, respectively. The density and Young’s modulus
of the ECS are in order assumed to be 2500 kg/m3 and 1 TPa. The
normalized velocity parameter of the moving nanoparticle is
defined as VN¼v/vcr where vcr ¼ pCL=l. The dynamic amplitude
factor (DAF) of the deflection/bending moment of the ECS under a
moving nanoparticle, i.e., DAFw/DAFM, is defined as the ratio of the
maximum dynamic deflection/bending moment to the maximum
static deflection/bending moment due to the applied weight of
the moving nanoparticle at the midspan point of the ECS.
Additionally, the DAF of the axial displacement/axial force, i.e.,
DAFu/DAFN, is defined as the ratio of the maximum dynamic axial
displacement/axial force to the maximum statically axial dis-
placement/axial force due to an axially applied force with
magnitude mxMg at the midspan point of the ECS.

From macroscopic point of view, coefficient of kinetic friction
relies on various parameters such as temperature, speed, aging and
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hri [7]; and (—) present work).
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deaging times as well as the roughness of the pair of surfaces in
contact. For macroscale structures, the coefficient of friction is
determined empirically. For most dry surfaces of macroscale
materials in contact, the coefficient of friction is commonly in the
range of 0.3–0.6. On the other hand, determining the forces
required to move an atom or a molecule over a set of them is a
challenging issue in designing nanodevices. In 2008, Ternes et al.
[25] could move a single atom on a surface for the first time, and
the normal and lateral forces were measured. Using ultrahigh
vacuum at the nearly zero Kelvin temperature, a modified atomic
force microscope was utilized to force a cobalt atom, and a carbon
monoxide molecule, across the surfaces of copper and platinum. It
was found that the needed force for moving an atom on the surface
depends robustly on the adsorbate and the surface. The obtained
results also revealed that the lateral force plays the dominant role
for moving the metal atoms on the metal surfaces. A brief survey of
the literature reveals that there is a lack of sufficient information
regarding the coefficient of kinetic friction in the atomic scale. As a
result, its value for the Coulomb model is set equal to a low value of
the coefficient of friction for macroscale materials, namely 0.3.
However, it will be shown that the predicted DAFs of displace-
ments as well as those of internal forces of the SWCNT do not vary
with the coefficient of kinetic friction.

The value of the small scale effect parameter is determined by
comparing the predicted dispersion curves by the nonlocal model
with those obtained by an appropriate atomistic-based model.
Through justification of the results of the higher order strain
gradient for elastic beams with those of molecular dynamics,
Wang and Hu [18] suggested e0¼0.288 for SWCNTs with
armchair construction. Sudak [12] used a¼0.142 nm for buckling
analysis of multi-walled carbon nanotubes. In another study,
Wang et al. [26] proposed a value of e0a¼0.7 nm for the
application of the nonlocal elastic rod theory in prediction of
axial stiffness of SWCNTs. The obtained results were compared
with those of molecular dynamics and a good agreement was
achieved. On the other hand, the nonlocal small scale parameter
e0a is generally considered in the range of 0–2 nm [27–30] for the
dynamic analysis of CNTs. In the present work, the obtained
results are presented for e0a¼0, 0.5, 1, and 1.5 nm.
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considering the inertial effects; and (—) by considering the inertial effects).
Throughout this paper, the obtained results are demonstrated
for two cases: without and with consideration of the inertial
effects of the moving nanoparticle. The results of these cases are
presented by dashed and solid lines, respectively. Moreover, the
latter case describes the problem of moving nanoparticle–
SWCNTs interaction and the differences between the results of
these two cases show the effects of the moving nanoparticle
inertia.
4.2.1. The effect of the velocity of the moving nanoparticle on the

DAFs of displacements and forces of the SWCNT

The effect of the velocity of the moving nanoparticle on DAFu,
DAFN, DAFw, and DAFM has been depicted in Figs. 3–6. The plotted
results have been provided for three levels of the mass weight of
the moving nanoparticle (i.e., MN¼0.001, 0.2, and 0.4) and four
levels of the small scale effect parameter (i.e., e0a¼0, 0.5, 1, and
1.5 nm). In Fig. 3(a)–(c), the predicted DAFu in terms of VN has
been demonstrated. In the case of MN¼0.001, the DAFu commonly
increases with VN up to a certain value of the moving nanoparticle
velocity ðVN � 0:95Þ, regardless of the value of the small scale
effect parameter. As the mass weight of the moving nanoparticle
increases, the peaks of DAFu-VN occur in lower levels of the
velocity of the moving nanoparticle. For instant, the maximum of
the graphs DAFu-VN for MN¼0.2 and 0.4 would take place in
VN � 0:77 and 0.67, correspondingly. The magnitude of DAFu

increases with MN, irrespective of the magnitude of e0a. Moreover,
the value of DAFu would generally magnify with small scale effect
parameter for most values of Vn, irrespective of MN. The predicted
values of DAFw as a function of VN are presented in Fig. 4(a)–(c).
The differences between the predicted values of the above-
mentioned two cases would generally increase with the mass
weight of the moving nanoparticle, particularly for high levels of
the velocity. Equally important, as the mass weight of the moving
nanoparticle increases, the maximum of DAFw occurs in higher
values of velocity. For both cases, with and without considering
the inertial effect, the predicted values of DAFw would generally
increase with the small scale effect parameter. The plots of
DAF of axial force (DAFN) in terms of VN have been provided in
VN VN
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Fig. 5(a)–(c). In the case of MN¼0.001, DAFN varies slightly with
VN. As the mass weight of the moving nanoparticle magnifies, the
predicted values of DAFN by considering the inertial effect would
be generally lower than those without considering the inertial
effect for velocities lower than a certain value. In such cases, the
graphs of DAFN-VN fluctuate harshly for some ranges of velocity of
the moving nanoparticle (see Fig. 5(b) and (c)). As it will be
discussed in the next parts, the main reason of this fact is the
change of the contact force sign from positive to negative. The
graphs of DAF associated with the bending moment of the SWCNT
(DAFM) as a function of VN have been plotted in Fig. 6(a)–(c). As it
is expected, the predicted values of DAFM in two cases, with and
without considering the inertial effects, are corresponding to each
other for MN¼0.001. As the magnitudes of mass weight and
velocity of the moving nanoparticle increase, the effects of inertia
of the moving nanoparticle become highlighted. The general trend
of the plots of DAFM-VN is somehow analogous to those of
DAFw-VN.
4.2.2. Possibility of the moving nanoparticle separation from the

inner surface of the SWCNT

An important analysis is given for the role of the moving
nanoparticle velocity on the minimum value of the transverse
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contact force for different values of the small scale
effect parameter. To this end, the normalized contact force is
defined as

FcðtÞ ¼ 1�
1

lg

� �2

}wðxM ,tÞ, ð19Þ

the possibility of the moving nanoparticle separation from the
surface of ECS could be checked by the sign of the transverse
contact force between the moving nanoparticle and the base
nanobeam. This phenomenon would be possible when the sign of
the transverse contact force changes from positive to negative;
however, in the present work, the moving nanoparticle would be
in contact with the ECS when it traverses the nanotube structure.
To examine the possibility of this phenomenon, the variation of
the minimum value of the normalized transverse contact force as
a function of moving nanoparticle velocity is depicted in
Fig. 7(a)–(c). In the case of without consideration of the inertial
effects, the transverse contact force would be equal to the mass
weight of the moving nanoparticle. In such a case, Fc¼1 at all
times, regardless of the velocity of the moving nanoparticle (see
dashed lines in Fig. 7(a)–(c)). For a moving nanoparticle with an
infinitesimal mass weight (say MN¼0.001), the normalized
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transverse contact force would be somewhat lower than 1 for
different levels of the moving nanoparticle velocity and
small scale effect parameter (see Fig. 7(a)). For higher values
of mass weight of the moving nanoparticle, the sign of the
contact force change from positive to negative for a certain
value of moving nanoparticle velocity. A close observation
of Fig. 7(b) and (c) reveals that higher values of the small scale
effect parameter would generally result in a higher possibility
of the moving nanoparticle separation from the SWCNT.
Additionally, the absolute value of the minimum transverse
contact force commonly increases with the velocity of
the moving nanoparticle as well as the small scale effect
parameter.
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4.2.3. The effect of the mass weight of the moving nanoparticle on

the DAFs of displacements and forces of the SWCNT

In Figs. 8 and 9, the variation of DAFs of displacements and
internal forces as a function of moving nanoparticle weight is
plotted for different values of the small scale effect parameter.
The plotted results have been provided for VN¼0.3 and four levels
of the small scale effect parameter (e0a¼0, 0.5, 1, and 1.5 nm). As
Fig. 8(a) shows, DAFu increases with the mass weight of the
moving nanoparticle. Moreover, higher small scale effect
parameter, higher the predicted value of DAFu for most values
of MN. As it is seen in Fig. 8(b), the predicted values of DAFN would
lessen as the mass weight of the moving nanoparticle increases.
Furthermore, the magnitude of DAFN increases as the effect of the
MN
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small scale parameter becomes highlighted, irrespective of the
mass weight of the moving nanoparticle. In Fig. 9(a) and (b), the
predicted values of DAFw and DAFM are more or less linearly
proportional with mass weight of the moving nanoparticle.
Moreover, higher small scale effect parameter leads to higher
values of DAFw and DAFM, regardless of the mass weight of the
moving nanoparticle.

4.2.4. The effect of the mass weight of the moving nanoparticle on

the minimum and maximum values of the transverse contact force

The plots of the minimum and maximum transverse contact
forces as a function of the mass weight of the moving nanoparticle
have been provided in Fig. 10(a) and (b) for different levels of the
small scale effect parameter. As it is obvious, the minimum
transverse contact force decreases with mass weight of the
moving nanoparticle; however, the maximum transverse contact
force increases with mass weight of the moving nanoparticle. By
considering the inertial effect of the moving nanoparticle, the
minimum and maximum transverse contact forces generally take
lower and higher values, respectively, as the magnitude of small
scale effect parameter increases.

4.2.5. The effect of the coefficient of kinetic friction on the DAFs of

displacements and forces of the SWCNT

According to the definitions of the DAFu and DAFN, it is anticipated
that if the longitudinal inertial force of the moving nanoparticle
would be negligible in comparison with its frictional force, the
obtained values of DAFu and DAFN would be fairly independent of the
coefficient of kinetic friction. Fortunately, this is the most common
case in practical applications of SWCNTs because the longitudinal
stiffness of the SWCNTs is commonly much larger than its transverse
stiffness. For example, for the under study SWCNT, one could obtain

from Eq. (20): ½Kb�
uu
ij =½Kb�

ww
ij � l2=ðp2ijÞ ¼ 41:832=ðijÞ. This relation

implies that the nondimensional longitudinal stiffness of the SWCNT
is much larger than the nondimensional transverse stiffness of the
SWCNT, particularly for the first modes of vibration, which are the
dominant ones. On the other hand, one could arrive at the following

relation based on Eq. (20): ½Mb�
uu
ij =½Mb�

ww
ij � 1. It is indicated that the
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considering the inertial effects; and (—) by considering the inertial effects; VN¼0.3).
predicted transverse displacement would be so larger than the
predicted longitudinal displacement. Therefore, the longitudinal
inertial force of the moving nanoparticle would be negligible in
compare to the transverse inertial force or even the Coulomb
frictional force. Moreover, the DAFw and DAFM are not affected by
the change of the coefficient of kinetic friction because the governing
equation in the transverse direction is only expressed in terms of
transverse displacement field (see Eq. (4b)). As a result, for a fairly
slender SWCNT that the obtained results by the NRBT are trustable,
the plotted results of DAFu, DAFN, DAFw, and DAFM in terms of other
parameters remain unchanged for other values of the coefficient of
kinetic friction. Furthermore, the presented discussions for those
graphs are still valid with a good accuracy, irrespective of the
assumed value of coefficient of kinetic friction.
5. Concluding remarks

Dynamic response of a single-walled carbon nanotube
(SWCNT) under a moving nanoparticle was scrutinized in the
context of the nonlocal continuum theory of Eringen. The
equivalent continuum structure (ECS) corresponding to
the SWCNT was modeled using nonlocal Rayleigh beam theory
under the simply supported boundary conditions. The interaction
between the moving nanoparticle and the ECS was taken into
account in the modeling of the problem by considering the
inertial effect of the moving nanoparticle as well as existing
friction between the nanoparticle surface and the inner surface of
the ECS. The strong form of the governing equations was
established and then the discrete equations of motion were
obtained using Galerkin method. The resulting set of ordinary
differential equations was solved in the time domain using
generalized Newmark-b method. The effects of mass weight of
the moving nanoparticle, its velocity, and small scale effect
parameter on the dynamic amplitude factors (DAFs) of long-
itudinal and transverse displacements as well as DAFs of nonlocal
axial force and bending moment were studied in some detail. The
aforementioned DAFs were extracted in two cases: with
and without considering the inertial effects of the moving
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nanoparticle. The obtained results reveal that as the mass weight
of the moving nanoparticle increases, not only the differences
between the predicted values of DAFs for the above-mentioned
cases intensify, but also the predicted values of DAFs of
displacements and internal forces would increase. This issue is
more obvious when the moving nanoparticle traverses the
SWCNT with higher levels of velocity. Furthermore, the predicted
DAFs of displacements, axial force, and bending moment
generally increase with the small scale effect parameter. The
possibility of the moving nanoparticle separation from the inner
surface of the SWCNT was also investigated. The possibility of this
phenomenon was monitored by the sign of the transverse contact
force between the moving nanoparticle and the ECS. The obtained
results indicate that the possibility of this phenomenon goes to a
greater extent as the mass weight of the moving nanoparticle
increases, particularly for higher values of the small scale effect
parameter and moving nanoparticle velocity.
Appendix A

For a simply supported ECS with fixed-movable condition, the
submatrices in Eq. (11) whose expressions involve integrations
are now rewritten in a more simple form as follows:

½Mb�
uu
ij ¼ U uu

ij þm
2Guu

ij þMNðf
u
i ðxMÞ�m2fu

i,xxðxMÞÞf
u
j ðxMÞHð1�xMÞ,

½Mb�
ww
ij ¼ U ww

ij þ l�2Gww
ij þ m

2ðXww
ij þ l�2Sww

ij Þ þMNðf
w
i ðxMÞ

�m2fw
i;xxðxMÞÞf

w
j ðxMÞHð1�xMÞ;

½Kb�
uu
ij ¼ l2Guu

ij þMNðlbÞ2ðf
u
i ðxMÞ�m2fu

i;xxðxMÞÞf
u
j;xxðxMÞHð1�xMÞ;

½Kb�
ww
ij ¼ Sww

ij þMNðlbÞ2ðf
w
i ðxMÞ�m2fw

i;xxðxMÞÞf
w
j;xxðxMÞHð1�xMÞ;

ðA1Þ

where

U uu
ij ¼ U ww

ij ¼
1; i ¼ j;

0; ia j;

(
Guu

ij ¼
p2ði�0:5Þj; i ¼ j;

0; ia j;

(

Gww
ij ¼

p2ij; i ¼ j;

0; ia j;

(
Xww

ij ¼
p2i2; i ¼ j;

0; ia j;

(
Sww

ij ¼
p4i2j2; i ¼ j;

0; ia j:

(

ðA2Þ
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