A short introduction to local fractional
complex analysis

Yang Xiao-Jun
Department of Mathematics and Mechanics, China University of Mining and
Technology, Xuzhou Campus, Xuzhou, Jiangsu, 221008, P. R.C

dyangxiaojun@163.com

This paper presents a short introduction to local fractional complex analysis. The generalized local
fractional complex integral formulas, Yang-Taylor series and local fractional Laurent’s series of

complex functions in complex fractal space, and generalized residue theorems are investigated.
Key words: Local fractional calculus, complex-valued functions, fractal, Yang-
Taylor series, local fractional Laurent series, generalized residue theorems

MSC2010: 28A80, 30C99, 30B99

1 Introduction

Local fractional calculus has played an important role in not only mathematics but also in
physics and engineers [1-12]. There are many definitions of local fractional derivatives and local
fractional integrals (also called fractal calculus). Hereby we write down local fractional derivative,

given by [5-7]

o =lim A" ((f(x)- f(xo)) (1.1)
e (X))
(%)),

with A”( £ (X)— (%)) =[(1+a) A( f(x
denoted by [5-6,8]

. d“f(x
fl ’(xo)=—dX£ )

and local fractional integral of f ( )

L im Y f()(a) @2

alb(a)f (X): r(1+a)J: f (t)(dt)a - F(lj-l-a) A0 4T

with At =t, , —t, andAt:max{Atl,Atz,Atj,...}, where for j=0,...,N -1, [tj'tm} is a partition
of the interval[a,b] and t, =a,t, =b.

More recently, a motivation of local fractional derivative and local fractional integral of
complex functions is given [11]. Our attempt, in the present paper, is to continue to study local
fractional calculus of complex function. As well, a short outline of local fractional complex

analysis will be established.



2 Local fractional calculus of the complex-variable

functions

In this section we deduce fundamentals of local fractional calculus of the complex-valued

functions. Here we start with local fractional continuity of complex functions.

2.1 Local fractional continuity of complex-variable functions

Definition 1
Given Z, and |Z — ZO| < 0 , then for any Z we have [11]

‘f(z)—f(zo)‘<g“. 2.1)
Here complex function f (Z) is called local fractional continuous at Z = Z,,, denoted by

lim f (z)=f(z,). (2.2)

-1
A function f (Z) is called local fractional continuous on the region R , denoted by
f(z)eC, (R).
As a direct result, we have the following results:

Suppose that lim f (z)= f(z,) and !anl 9(z)=9(z,). then we have that

Cm[r(@)sa(a)]- ()2 (x) e
lim[ f(2)9(2)]= (2)9(z). 2.4

and
im[f(2)/9(2)]=1(2)/9(z), 25)

the last only if g(z,)#0.

2.2 Local fractional derivatives of complex function

Definition 2
Let the complex function f (Z) be defined in a neighborhood of a point Z,, . The local fractional

derivative of f (Z) atZ,is defined by the expression [11]

ot (2o P12 1 ()]
o e (Z_Zo)a

O<a<l. (2.6)

If this limit exists, then the function f (z) is called to be local fractional analytic at Z, , denoted

by

dO{

Dif(2), o1 (2) or £1(z,).

7=1,



Remark 1. If the limits exist for all Z; in a region R , then f (Z) is said to be local fractional

analytic in a region ‘R , denoted by

f(Z)e D(SR)

Suppose that f (z) and g(z) are local fractional analytic functions, the following rules are

valid [11].
d“(f(z)ig(z)):d“f(z)id“g(z)_
dz* dz* dz*
cl 1,
.| f(z “f(z “q(z
5] e "o
dz* - g(z)z
ifg(z)=0;

d“(Cf(z)):Cd“f(z)
dz* dz*

where C s a constant;

If y(z)=(fou)(z) whereu(z)=g(z). then

2.3 Local fractional Cauchy-Riemann equations

Definition 3
If there exists a function

f(z)=u(xy)+i“v(xy),

whereU and V are real functions of X and Y . The local fractional complex differential

equations
o“u(xy) a"v(xy) 0
axa aya
and
0 u(x,y)+6 v(X,y) 0

aya axa
are called local fractional Cauchy-Riemann Equations.

Theorem 1
Suppose that the function

f(z)=u(xy)+i“v(xy)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

2.12)

(2.13)

(2.14)

(2.15)



is local fractional analytic in a region R . Then we have

o“u(x,y) ~ oV(x,Y)
axa 8ya

=0 (2.16)

and

o“u(x,y) s oV(x,Y)
aya axa

Proof. Since f () =u(X, y)+i"Vv(X, y), we have the following identity

=0. (2.17)

I f(z)-f
f(a)(zo):“m ( +a)|: (Z)a (ZO):I (218)
-7, (Z—ZO)
Consequently, the formula (2.18) implies that
im T(1+a)| f(z+A2)-f(2)]
Az—0 AVAd
i F(l+a)[u(x+Ax,y+Ay)—u(x,y)+i“(v(x+Ax,y+Ay)—v(x,y))]
=m a o
N0 A+ Ay . (219
In a similar manner, setting Ay — O and taking into account the formula (2.19), we have
(Ay)” —> Osuch that
I(1+a)| u(X y+Ay)—u(Xy)+i%(Vv(X, y+Ay)—V(X,
I e A G e U GRS )]
Ay—0 IaAya
Hence
£ (z,) =i ‘ u(>: ), 2 V():’ y) (2.21)
oy oy
If AX — 0, from (2.19) we have (AX)” —> O such that
[(1+a)| u(X+AX Y)—u( X, y)+i“(V(X+AX, Y)=V(X,
1 g iy OB D i (e )y
&0 AX®
Thus we get the identity
£ (z,)= U Y)  ju SVKY) (2.24)

Ox“ Ox“
Since f (z)=u(x,y)+i“v(x,y) is local fractional analytic in a region R , we have the

following formula

f<“)(zo)=alg():'y)+i“a\é(’:’y)=—i e (2.25)
X X

Hence, from (2.25) , we arrive at the following identity




o"u(x,y) o°v(xy)

_ -0 2.26
v oy (2.26)
and
oru(x, y)+8 v(x,y)ZO- (2.27)
oy° ox”

This completes the proof of Theorem 1.

Remark 2. Local fractional C-R equations are sufficient conditions that f (z) is local fractional

analytic inR .

The local fractional partial equations

o*u(x,y) .\ o*u(x,y)

v Y =0 (2.28)
and
2a 2a
) Z) 02
are called local fractional Laplace equations, denoted by
Veu(x,y)=0 (2.30)
and
Vev(x,y)=0, (2.31)
where

is called local fractional Laplace operator.

Remark 3. Suppose that V“u (X, y) =0, u(X, y) is a local fractional harmonic function in R |

2.4 Local fractional integrals of complex function

Definition 4
Let f (Z) be defined, single-valued and local fractional continuous in a region R . The local

fractional integral of f(z) along the contour C in R from point Z, to pointzq,is

defined as [11]
1" (2)
=———1lim Y f(z)(Az)" (2.33)

where fori=0,1,...,n Az; =7,-7,, z,=7,andz, =72,.



For convenience, we assume that

1,“f(z)=0 (2.34)
ifz=1,.

The rules for complex integration are similar to those for real integrals. Some important results are
as follows [11]:

Suppose that f (z)and g (Z) be local fractional continuous along the contour C in R .

1 1 ;
i _r(1+a)£ +a)£ 9(2)(e)
(2.35)
1 « k 3
F(1+a)z|:.kf (Z)(dz) =r(1+a)£f(z)(dz) ’ (2.36)

] ) e e s T e

F(lm)c{ f(2)(ce) :_F(1+a)_-£l f(z)(dz)"s 39
a1 Lrallf@ler|sme. e
where M is an upper bound of f (z) on C and L:F(l::_a).”(dz)a

Theorem 2

If the contour C has end points Z, and Z, with orientation z, toz, , and if function

f(z) hasthe primitive F(z) onC, then we have

r(1ia)£f(z)(dz)a:F(Zq)":(zp)- (2:40)

Remark 4. Suppose that f (z) € D (SR) .Fork=0,1,...,.nand0 < @ <1 there exists a local

fractional series

o f(k")(zo) w“
f = - 241
k times
with f*“)(z) e D(R), where f““) (2) = D,")...D,") f (2).

This series is called Yang-Taylor series of local fractional analytic function (for real function case,
see [12].)



Theorem 3

If C isasimple closed contour, and if function f (Z) has a primitive onC  then [11]

gS f( . (2.42)
C

Corollary 4

If the closed contoursC, , C, is such thatC, lies inside C, , and if f () is local fractional

analyticonC, , C, and between them, then we have [11]

1 P 1 a
— | f dz) =—— | f dz) . 4.43
F(1+a)é[ (2)(02) F(1+a)é[ (2)(0z) )
Theorem 5

Suppose that the closed contours C, , C, is such that C, lies inside C, , and if f (z) is local

fractional analytic on C,, C, and between them, then we have[11]
1 1

mjf(z)(dz)“ :mcj f(z)(dz)". (2.44)

G 2

3 Generalized local fractional integral formulas of

complex functions

In this section we start with generalized local fractional integral formulas of complex functions
and deduce some useful results.

Theorem 6
Suppose that f (Z) is local fractional analytic within and on a simple closed contour C and

Z, is any point interior to C . Then we have

1 1 CJ5f(z)a(dz)%f(zo). (3.1)

(27)"i* T(l+a) 3 (z-12,)

Proof. From(2.44), we arrive at the formula

L )qs(f(z)awz)a: L1 5 "0 gy

(27)i* T(l+a) g (z-2,) (27)"i* T(1+a)g (z-1,)
3.2
whereC, :|(z—2,)"|=&".
Setting ‘( z-1, )a‘ = &” implies that
2,0 = o°E, (") o9



and

(dz2)* =i“e“E, (i"0")(dO)". (3.4)
Taking (3.3) and (3.4), it follows from (3.2) that
T f E -H
1 1 J’z (ZO+8 (I ))iagaEa(iaHa)(de)a

(2z)"i* T(l+a)
i 1 1 27 . p
- Ll_r)rol oy 'F(1+a)'|.° f (zO +gE(|¢9))(d9)
From (3.5) , we get
1 1
(27;)“ F(1+a)

0 g°E, (i“&“) -

Ijﬂ(giigf(zoJrgE(ie)))(d@)a:f(zo)' L r”(dﬁ)“ (3.6)

Furthermore

flz) 1 [7"(do) = (2,). 37

(27)" T(1+a)”

Substituting (3.7) into (3.6) and (3.3) implies that

1 1 f(z) a
— —(dz) =1f(z,). (3.8)
(27)" i r(1+a)§5(z_zo) (d2) = f(z)

The proof of the theorem is completed.
Likewise, we have the following corollary:

Corollary 7
Suppose that f (Z) is local fractional analytic within and on a simple closed contour C and Z,is

any point interior to C . Then we have

(27z1)“ i“ 'r(11+a) ch (z _fz( ;()M)a (dz)" = 10(z,). (3.9)

Proof. Taking into account formula (3.1), we arrive at the identity.

Theorem 8
Suppose that f (Z) is local fractional analytic within and on a simple closed contour C and

Z, is any point interior to C . Then we have

1 (dz)” ¢ o
F(1+a)(-f(z—zo)a:(2”) t &9

Proof. Taking f (z) =1, from (3.9) we deduce the result.

Theorem 9
Suppose that f (Z) is local fractional analytic within and on a simple closed contour C and Z,is

any point interior to C . Then we have



1 ¢ (d2) _—0,forn>1. (3.10)
F(l+a)c(z—zo)

Proof. Taking f (z) =1, from (3.9) we deduce the result.

4 Complex Yang-Taylor’'s series and local fractional

Laurent’s series

In this section we start with a Yang-Taylor’s expansion formula of complex functions and deduce

local fractional Laurent series of complex functions.

4.1 Complex Yang-Taylor’s expansion formula

Definition 5
Let f(z) be local fractional analytic inside and on a simple closed contour C having its

center atZ = Z,, . Then for all points Z in the circle we have the Yang-Taylor series

representation of f (), given by

:f(zo)+r(1+;)(z—zﬂ)a+ (4.1)
) @)
M(Z_ZO) +....+m(z Z,) ..

ForC: |Z - Zo|a < R”, we have the complex Yang-Taylor series

f(2)=Ya (2-2,)". 42)

From (3.44) the above expression implies

-e—.

S B SV 43
(27[) i 1+a C k*l (dz) I(1+ka) (43)

forc:|z—z,|" <R“.

Successively, it follows from (4.3) that

f(z)=2a(z-2)", (@4
k=0

where

1 —. 1 95 f(2) - (dz)" = f(ka)(zo) 45)

I'(1+ka)’



forC:|z—z,|" <R”.

Hence, the above formula implies the relation (4.2).
Theorem 10

Suppose that complex function f (Z) is local fractional analytic inside and on a simple closed
contour C having its center at Z = Z, . There exist all points Z in the circle such that we have the

Yang-Taylor’s series of f (z)

f(2)=2a(z-2)", @5)
k=0
where
1 1 f(z . fr(z
ak - ' Cﬁ( ( (?(Jrl)a (dZ) =J
C

(2z)" i I(1+a) I'(l1+ka)’

z-1,)

forC :|z—z,|" <R”

Proof. Setting C, : |Z - Zo|a = R”and using (3.1) , we have

11 1
O o T -

—(d&)”. (4.6)

Taking & € C,, we get

=0l _ge<a 4.7)
&~ 2|
and
1
(&-2)°
_ 1 1
(¢ 20)a1_(z_20)a
E-17,)"
1 ( ) o) )

Substituting (4.8) into (4.6) implies that

10



f(2)
3 (@ ]
z{(Zﬂ') i 1+a)q-> )(n+1 }( 0) (49)

11 qsz{f(f)(z)njl“}( -

+ o
(2z)" i T(l+a)diR| (¢
Taking the Yang-Taylor formula of analytic function into account, we have the following relation

N £ (z,)(2-2,)"
)= (1t na)

+Ry, (4.10)

where Ry is reminder in the form

i{f(f)(z_z‘))m}(dé)“. 4.11)

1
(27) i T(l+a)d&| (£-7,)"

There exists a Yang-Taylor series

f(2)=3 1 (2)(2-2)" (4.12)

where is f (Z, ) is local fractional analytic at Z = z, .

na
-7
Taking into account the relation|( o) =q™ < 1and‘ f (Z)‘ <M , from (4.11) we get

(e-2,)"

5| D0 ey

Lt 1 S Y
(27) F(1+a)<ﬁn§;‘ ‘(5 0)(n+l)a ‘(dé)
1 L le M| e (4.13)
(272) F(l+a)§?§ (g_zo)a (§_ZO)M (df)

<
(2;;) F(1+a)1 q
|M|Ra qna
I'(l+a)l-q
Furthermore
leR =0.

From (4.9), we have

11



((0)-3 2t G HEED e

e (27z)ai“ 1“(1+05)Cl (5_20)(n+1)a

Hence

__ 11 o F(Ee)
- (27r)ai"’ F(l+a)(£(§_zo)(n+1)a- (4.15)

Hence the proof of the theorem is completed.

4.2 Singular point and poles

Definition 6
A singular point of a function f (z) isavalueof z atwhich f(z) fails to be local

fractional analytic. If f (Z) is local fractional analytic everywhere in some region except at an

interior point Z = zy, we call f (z) an isolated singularity.

If

f(z)=—¢(z) (4.16)

and
#(2)#0 (4.17)
Where¢(z) is local fractional analytic everywhere in a region includingZ = Z, and if N isa

positive integer, then f (Z) has an isolated singularity at Z = Z, , which is called a pole of order

n.
Ifn =1, the pole is often called a simple pole;

ifn =2, itis called a double pole, and so on.

4.3 Local fractional Laurent’s series

Definition 7
If f (Z) hasapole of order N at Z=1Z, butis local fractional analytic at every other point

inside and on a contour C with center at Z,, then
#(2)=(z2-12,)" f(2) (4.18)

is local fractional analytic at all points inside and on C and has a Yang-Taylor series about

Z=1, sothat

12



=N 4 T e (4.19)

L (22 e (22)
(z—-1,)
This is called a local fractional Laurent series for f (z) ,

More generally, it follows that

f(Z)=_Z ak(z_zo)ka (4.20)

as a local fractional Laurent series.

ForC:r” < |Z - Zo|a < R® we have a local fractional Laurent series

o0

f(2)=Y a(z-2)". (4.21)

k=-o0

From (3.44), the above expression implies that

g =

dz)”, 4.22
(Zﬂ)a.a 5 M 35 ) . (4:22)

whereC : r” <|Z—Zo|a <R”.

Setting C, : |Z - Zo|a =r“andC,: |Z - Zo|a = R“, from (2.44) we have

f ¢(”?m@r S é(“?mﬁf

(22)"i" T(1+a) ¢ (2-7,)" (22)"i" T(+a) & (2-7,)"

Successively, it follows from the above that

0

f(2)=> a(z-2)", (4.23)

where

a=—+ .1 ¢ f2) —_(dz)”, (4.24)

forC:r“ <|z—z,|" <R“.
Theorem 11

If f (Z) has local fractional analytic at every other point inside a contour C with center at Z,,

then f (Z) has a local fractional Laurent series about Z = Z;, so that

f(z):iak(z—zo)ka,0<a£1, (4.25)

where forC : r” < |Z—ZO|°Z < R*we have

13



A= (273“ i .F(lia)cf(z—fz(();(?ﬁl)a (d2)" @20

Proof. Setting C, : |Z - Zo|a =r“andC,: |Z - Zo|a = R“, from (2.44) we have that

1 1 f(¢) « 1 1 f(&) «

f(z)=———- —(d& —- —(d¢) . (4.27)
G Tl e-ar ™ e Ty

Taking the right side of (4.27) into account implies that for & € C,

|(§_Zo)a _ |§_Zo|a —
‘(Z_Zo)a‘ R

q* <1 (4.28)

and
\f (5)\ <M. (4.29)

By using (4.29) it follows from (4.27) that

t 1 (&)
o T )

f(f) (4.30)
l 1 S a na
B “ia nl)a dé: Z— .
(27)°i* [(l+a) g{i@%)( ) (dS) ]( %)
From (4.27) we get

L L F(E) o

_ ) g
(sz)ala F(l-ﬁ-a)?i( _Zo)a ( ‘):) "
1 _ 1 N-1 .

where

lim R, = fim ——— .1 Z!—
z

N -0 Naoo(zﬂ.)“ i 1"(1+a) b

is reminder.

na
ég_zo

z-1,

Since‘ f (f)‘ <M, taking =q" <1, we have

14



na

R S igg M| — 4 (d¢)”

z—-1,

na

< 1 . |M1| icﬁ 1 §—1, (df)a

(27)" T(l+a)i=| (-2,)"|12-12

< 1 . |M1| iq} 1 qna(dé:)a

(27)" q“‘z} (4.32)

Furthermore

Hence

Combing the formulas (4.30) and (4.33), we have the result.

Hence, the proof of the theorem is finished.

5 Generalized residue theorems

In this section we start with a local fractional Laurent series and study generalized residue
theorems.

Definition 8
Suppose that Z, is an isolated singular point of f (). Then there is a local fractional Laurent

series

f(z):iiak(z—zo)k“ (5.1)

valid for|Z - ZO|°Z < R“. The coefficient a_,of (z-2, )_a is called the generalized residue of
f (z)atz =1z, and is frequently written as

Res f(z). 5.2

2es 1 (2) 52

One of the coefficients for the Yang-Taylor series corresponding to
15



Na
$(2)=(2-2,)" 1(2), (5:3)
the coefficient @_, is the residue of f (Z) at the pole Z = Z,. It can be found from the

formula

(e
Res f(z)=a,=Ilim ! d

=1 -2 F(1+ na) dz(" {(Z - Zo)na f (Z)} (5.4)

where N is the order of the pole.

Setting f Z ak Z- Z , the expression (5.3) yields

=(2-2,)" Y a(2-2,)" (55)

—a, +a,,(2-2) +a,(z-2,)" " +..
We know that this is
(n-1)a 7
2, 2 n) 66
I'(1+na)
which is the coefficient of (2 -z, )" "
The generalized residue is thus
B ~ ¢(n—1)a (Zo)
e =2 = ) &0

whereg(2)=(z-12,)" f(2).
Corollary 12
If f (Z) is local fractional analytic within and on the boundary C of aregion ‘R exceptata

number of poles @ within R , having a residue @_, , then

e et ACCEL IO N

Proof. Taking into account the definitions of local fractional analytic function and the pole we

have local fractional Laurent’s series

f(z) :_Z a, (z—zo)k“ (5.9)
and therefore
f(z)=-+a,(z-2) " ++a,(2-2) “+a++a,(z-2,) +-. (510)

Hence we have the following relation

oen
—
M 8

(z-1,) jdz)a. (5.11)

[
8

16



furthermore

From (3.9), it is shown that

1 1 “ 1 1 a 3
: f YA dZ = . —1 dZ —a.. 513
o T O = T Sy @ =2 e
Hence we have the formula
l a a-q
r(1+a)<ff(z)(dz) =(27) 1"a,. (5.14)

Taking into account the definition of generalized residue, we have the result.
This proof of the theorem is completed.
From (5.8) , we deduce the following corollary:

Corollary 13
If f(z) is local fractional analytic within and on the boundary C of aregion R” except at

a finite number of poles Z,, Z;, Z,... within R“ , having residuesa ,,b ;,C ... respectively,

then

1 o
(27)° i“r(1+ac)98 Ha)e) = Z(;Fffzks f2)=as+b,+oy .. (5.15)
C i=

It says that the local fractional integral of f () is simply(27)" i” times the sum of the

residues at the singular points enclosed by the contour C .

6 Applications: Gauss formula of complex function

Theorem 14
Suppose that f (Z) is local fractional analytic and @ is any point, then for the circle

lz-a|" =

RE, (i“0°)

we have

L e L I CU

Proof. By using (3.1) there exists a simple closed contour C and Z, is any point interior to C such

that

()=t Ty

(272')a i« F(1+ a) 2 (z —a)) - (6.2)
When C can been taken to be @“ + R“E, (i“@“ ) for@ e [0, 27[] , substituting the relations
(z-0)" =RE,(i0") (6.3)

17



and
(dz)* =i“R°E, (i"0°)(d6)" (6.4)

in (6.2) implies that
( 1 (w+RE(i0))i“R“E, (i“6")(d0)"
w)z(z,,)“ia r(l+a) 9S RE, (i0)

(6.5)

and some cancelling gives the result.
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