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Chapter 19 Angular Momentum 
 

The situation, in brief, is that newtonian physics is incapable of predicting 
conservation of angular momentum, but no isolated system has yet been 
encountered experimentally for which angular momentum is not 
conserved. We conclude that conservation of angular momentum is an 
independent physical law, and until a contradiction is observed, our 
physical understanding must be guided by it. 1 

 
Dan Kleppner 

 
19.1 Introduction 
 
When we consider a system of objects, we have shown that the external force, acting at 
the center of mass of the system, is equal to the time derivative of the total momentum of 
the system,  

 
    


Fext =

dpsys

dt
. (19.1.1) 

 
We now introduce the rotational analog of Equation (19.1.1). We will first introduce the 
concept of angular momentum for a point-like particle of mass m  with linear momentum 
p  about a point S , defined by the equation 
    


LS =

rS ×
p , (19.1.2) 

 
where Sr

  is the vector from the point S  to the particle. We will show in this chapter that 
the torque about the point S  acting on the particle is equal to the rate of change of the 
angular momentum about the point S  of the particle, 
 

 
   


τS =

d

LS

dt
. (19.1.3) 

 
Equation (19.1.3) generalizes to any body undergoing rotation.  
 
We shall concern ourselves first with the special case of rigid body undergoing fixed axis 
rotation about the z-axis with angular velocity     


ω =ω zk̂ . We divide up the rigid body 

into N  elements labeled by the index i , 1,2,i N= … , the  ith  element having mass im  
and position vector ,S ir

 . The rigid body has a moment of inertia SI  about some point S  
on the fixed axis, (often taken to be the z-axis, but not always) which rotates with angular 
velocity  


ω  about this axis. The angular momentum is then the vector sum of the 

individual angular momenta,  
 
                                                
1 Kleppner, Daniel, An Introduction to Mechanics (1973), p. 307. 
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
LS =


LS ,i

i=1

i=N

∑ = rS ,i ×
pi

i=1

i=N

∑  (19.1.4) 

 
When the rotation axis is the z-axis the z-component of the angular momentum,   

LS ,z , 
about the point S  is then given by  
   

LS ,z = IS ω z . (19.1.5) 
 
We shall show that the z-component of the torque about the point S ,   

τ S ,z , is then the 
time derivative of the z-component of angular momentum about the point S , 
 

 
  
τ S ,z =

dLS ,z

dt
= IS

dω z

dt
= IS α z . (19.1.6) 

 
19.2 Angular Momentum about a Point for a Particle 
 
19.2.1 Angular Momentum for a Point Particle 
 
Consider a point-like particle of mass m  moving with a velocity v  (Figure 19.1). 
 

 
 

Figure 19.1 A point-like particle and its angular momentum about S . 
 
The linear momentum of the particle is m=p v  . Consider a point S  located anywhere in 
space. Let Sr

  denote the vector from the point S  to the location of the object.  
 

Define the angular momentum SL


 about the point S  of a point-like 
particle as the vector product of the vector from the point S  to the 
location of the object with the momentum of the particle, 
 

 S S= ×L r p
   . (19.2.1) 

 
The derived SI units for angular momentum are  [kg ⋅m2 ⋅s−1] = [N ⋅m ⋅s]= [J ⋅s] . There is 
no special name for this set of units. 
 
Because angular momentum is defined as a vector, we begin by studying its magnitude 
and direction. The magnitude of the angular momentum about S  is given by 
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 sinS S θ=L r p
   , (19.2.2) 

 
where θ  is the angle between the vectors  and p , and lies within the range [0 ]θ π≤ ≤  
(Figure 19.2). Analogous to the magnitude of torque, there are two ways to determine the 
magnitude of the angular momentum about S . 

 
Figure 19.2 Vector diagram for angular momentum. 

 
Define the moment arm, r⊥ , as the perpendicular distance from the point S  to the line 
defined by the direction of the momentum. Then  
 
     r⊥ = rS sinθ . (19.2.3) 
 
Hence the magnitude of the angular momentum is the product of the moment arm with 
the magnitude of the momentum, 
 

   

LS = r⊥

p . (19.2.4) 
 
Alternatively, define the perpendicular momentum, p⊥ , to be the magnitude of the 
component of the momentum perpendicular to the line defined by the direction of the 
vector    

rS . Thus 
 sinp θ⊥ = p . (19.2.5) 
 
We can think of the magnitude of the angular momentum as the product of the distance 
from S  to the particle with the perpendicular momentum, 
 
 

   

LS = rS p⊥ . (19.2.6) 

 
19.2.2 Right-Hand-Rule for the Direction of the Angular Momentum 
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We shall define the direction of the angular momentum about the point S  by a right hand 
rule. Draw the vectors Sr

  and p  so their tails are touching. Then draw an arc starting 
from the vector Sr

  and finishing on the vector p . (There are two such arcs; choose the 
shorter one.) This arc is either in the clockwise or counterclockwise direction. Curl the 
fingers of your right hand in the same direction as the arc. Your right thumb points in the 
direction of the angular momentum. 
 

 
 

Figure 19.3 The right hand rule. 
 
Remember that, as in all vector products, the direction of the angular momentum is 
perpendicular to the plane formed by Sr

  and p .  

 
Example 19.1 Angular Momentum: Constant Velocity 
 
A particle of mass   m = 2.0 kg  moves as shown in Figure 19.4 with a uniform velocity 

1 1ˆ ˆ3.0 m s 3.0 m s− −= ⋅ + ⋅v i j . At time  t , the particle passes through the point 

 (2.0 m, 3.0 m) . Find the direction and the magnitude of the angular momentum about the 
origin (point  O ) at time  t . 

 
 

Figure 19.4 Example 19.4 
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Solution: Choose Cartesian coordinates with unit vectors shown in the figure above. The 
vector from the origin  O  to the location of the particle is     

rO = 2.0 m î + 3.0 m ĵ . The 
angular momentum vector    


LO  of the particle about the origin  O  is given by: 

 

    


LO = rO × p = rO × m v

= (2.0m î + 3.0m ̂j)× (2kg)(3.0m ⋅s−1î + 3.0m ⋅s−1ĵ)

= 0+12kg ⋅m2 ⋅s−1 k̂ −18kg ⋅m2 ⋅s−1(−k̂)+

0

= −6kg ⋅m2 ⋅s−1 k̂.

 

 
In the above, the relations , ,× = × = − × = × =i j k j i k i i j j 0

         
 were used. 

 
Example 19.2 Angular Momentum and Circular Motion 
 
A particle of mass m  moves in a circle of radius r  at an angular speed ω  about the  z -
axis in a plane parallel to the   x-y  plane passing through the origin  O  (Figure 19.5). Find 
the magnitude and the direction of the angular momentum    


LO  relative to the origin. 

 

 
 

Figure 19.5 Example 19.2 
 
Solution: The velocity of the particle is given by ˆrω=v θ . The vector from the center of 
the circle (the point  O ) to the object is given by     

rO = r r̂ . The angular momentum about 
the center of the circle is the vector product 
 

    

LO = rO × p = rO × mv = rmv k̂ = rmrω k̂ = mr 2ω k̂ . 

 
The magnitude is 

    

LO = mr 2ω , and the direction is in the ˆ+ k -direction. 

 
Example 19.3 Angular Momentum About a Point along Central Axis for Circular 
Motion 
 
A particle of mass m  moves in a circle of radius r  at an angular speed ω  about the  z - 
axis in a plane parallel to but a distance h  above the   x-y  plane (Figure 19.6). (a) Find the 
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magnitude and the direction of the angular momentum    

LO  relative to the origin  O . (b) 

Find the  z -component of    

LO . 

 
 

Figure 19.6 Example 19.3 
 
Solution: We begin by making a geometric argument. Suppose the particle has 
coordinates ( , , )x y h . The angular momentum about the origin  O  is defined as 
 
    


LO = rO × mv . (19.2.7) 

 
The vectors    

rO  and v  are perpendicular to each other so the angular momentum is 
perpendicular to the plane formed by those two vectors. The speed of the particle is 
v rω= . Suppose the vector    

rO  forms an angle φ  with the  z -axis. Then    

LO  forms an 

angle 90 φ−  with respect to the z-axis or an angle φ  with respect to the   x-y  plane as 
shown in Figure 19.7.  

 

 
 

Figure 19.7 Direction of    

LO  

 
 

Figure 19.8 Direction of    

LO  sweeps out 

a cone 
 
The magnitude of    


LO  is  
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
LO = rO m v = m(h2 + (x2 + y2 ))1/2 rω . (19.2.8) 

 
The magnitude of    


LO  is constant, but its direction is changing as the particle moves in a 

circular orbit about the  z -axis, sweeping out a cone as shown in Figure 19.8.  We draw 
the vector    


LO  at the origin because it is defined at that point.  

 
We shall now explicitly calculate the vector product. Determining the vector product 
using polar coordinates is the easiest way to calculate    


LO = rO × mv . We begin by writing 

the two vectors that appear in Eq. (19.2.7) in polar coordinates. We start with the vector 
from the origin to the location of the moving object,     

rO = xî + yĵ+ hk̂ = rr̂ + hk̂  where 
2 2 1/ 2( )r x y= + . The velocity vector is tangent to the circular orbit so     

v = v θ̂ = rω θ̂ . 
Using the fact that   ̂r × θ̂ = k̂  and   k̂ × θ̂ = −r̂ , the angular momentum about the origin    


LO  

is 
     


LO = rO × mv = (rr̂ + hk̂)× mrωθ̂ = mr 2ωk̂ − hmrω r̂ . (19.2.9) 

 
The magnitude of    


LO  is given by  

 
  

    

LO = m(h2 + r 2 )1/2 rω = m(h2 + (x2 + y2 ))1/2 rω .  (19.2.10) 

 
Agreeing with our geometric argument. In Figure 19.9, denote the angle    


LO  forms with 

respect to the   x-y  plane by β . Then 
 

 
  
tanβ = −

L0z

L0r

= r
h
= tanφ , (19.2.11) 

 
so β φ=  also agreeing with our geometric argument. 
 

 
Figure 19.9 Geometry for components of    


LO  

 
The important point to keep in mind regarding this calculation is that for any point along 
the  z -axis not at the center of the circular orbit of a single particle, the angular 
momentum about that point does not point along the  z -axis but it is has a non-zero 
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component in the   x-y  plane (or in the   ̂r -direction if you use polar coordinates). 
However, the  z -component of the angular momentum about any point along the z-axis is 
independent of the location of the point along the axis. 
 
19.3 Torque and the Time Derivative of Angular Momentum about a 
Point for a Particle 
 
We will now show that the torque about a point S  is equal to the time derivative of the 
angular momentum about S , 

 
   


τS =

d

LS

dt
. (19.3.1) 

 
Take the time derivative of the angular momentum about S , 
 

 
   

d

LS

dt
=

d
dt
rS ×
p( ) . (19.3.2) 

 
In this equation we are taking the time derivative of a vector product of two vectors. 
There are two important facts that will help us simplify this expression. First, the time 
derivative of the vector product of two vectors satisfies the product rule, 
 

 
    

d

LS

dt
=

d
dt

(rS ×
p) =

drS

dt S

⎛

⎝⎜
⎞

⎠⎟
× p

⎛

⎝
⎜

⎞

⎠
⎟ +
rS ×

dp
dt

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
. (19.3.3) 

 
Second, the first term on the right hand side vanishes, 
  

 Sd m
dt

× = × =r p v v 0
    . (19.3.4) 

 
The rate of angular momentum change about the point S  is then 
 

 
   

d

LS

dt
= rS ×

dp
dt

. (19.3.5) 

 
From Newton’s Second Law, the force on the particle is equal to the derivative of the 
linear momentum, 

 
   


F =

dp
dt

. (19.3.6) 

 
Therefore the rate of change in time of angular momentum about the point S  is 
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d

LS

dt
= rS ×


F . (19.3.7) 

 
Recall that the torque about the point S  due to the force F


 acting on the particle is 

 
 S S= ×r F

τ . (19.3.8) 
 
Combining the expressions in (19.3.7) and (19.3.8), it is readily seen that the torque about 
the point S  is equal to the rate of change of angular momentum about the point S , 
 

 
   


τS =

d

LS

dt
. (19.3.9) 

 
19.4 Conservation of Angular Momentum about a Point  
 
So far we have introduced two conservation principles, showing that energy is constant 
for closed systems (no change in energy in the surroundings) and linear momentum is 
constant isolated system. The change in mechanical energy of a closed system is 
 
   Wnc = ΔEm = ΔK + ΔU , (closed system) . (19.3.10) 
 
If the non-conservative work done in the system is zero, then the mechanical energy is 
constant, 
   0 =Wnc = ΔEmechanical = ΔK + ΔU , (closed system) . (19.3.11) 
 
The conservation of linear momentum arises from Newton’s Second Law applied to 
systems, 

 
    


Fext = d

dt
pi =

d
dti=1

N

∑ psys  (19.3.12) 

 
Thus if the external force in any direction is zero, then the component of the momentum 
of the system in that direction is a constant. For example, if there are no external forces in 
the x - and y -directions then 
 

 

    


0 = (

Fext )x =

d
dt

(psys )x


0 = (

Fext ) y =

d
dt

(psys ) y .
 (19.3.13) 

 
We can now use our relation between torque about a point S  and the change of the 
angular momentum about S , Eq. (19.3.9), to introduce a new conservation law. Suppose 
we can find a point S  such that torque about the point S  is zero,  
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
0 =

τS =

d

LS

dt
, (19.3.14) 

 
then the angular momentum about the point S  is a constant vector, and so the change in 
angular momentum is zero, 
 

    
Δ

LS ≡


LS , f −


LS ,i =


0 . (19.3.15) 

 
Thus when the torque about a point S  is zero, the final angular momentum about S  is 
equal to the initial angular momentum, 
 

    

LS , f =


LS ,i . (19.3.16) 

 
Example 19.4 Meteor Flyby of Earth 
 
A meteor of mass m = 2.1×1013 kg  is approaching earth as shown in Figure 19.10. The 
distance h  is called the impact parameter. The radius of the earth is re = 6.37 ×10

6 m . 
The mass of the earth is me = 5.98 ×10

24 kg . Suppose the meteor has an initial speed of 
v0 = 1.0 ×10

1m ⋅ s−1 . Assume that the meteor started very far away from the earth. 
Suppose the meteor just grazes the earth. You may ignore all other gravitational forces 
except the earth. Find the impact parameter h . 
 

 
 

Figure 19.10 Meteor flyby of earth 
 
Solution:  The free-body force diagrams when the meteor is very far away and when the 
meteor just grazes the earth are shown in Figure 19.11. Denote the center of the earth by 
S . The force on the meteor is given by 

 

 2 ˆeGm m
r

= −F r


  (19.3.17) 

 
where r̂  is a unit vector pointing radially away from the center of the earth, and r  is the 
distance from the center of the earth to the meteor. The torque on the meteor is given by 
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,S S Fτ = ×r F
 , where , ˆS F r=r r  is the vector from the point S  to the position of the 

meteor. Because the force and the position vector are collinear, the vector product 
vanishes and hence the torque on the meteor vanishes about S .  
 

 
 

Figure 19.11 Free-body force diagrams for meteor 
 
Choose Cartesian coordinates as shown in Figure 19.12. The initial angular momentum 
about the center of the earth is 
 

    
(

LS )i =

rS ,i ×
p0 , (19.3.18) 

 
where the vector from the center of the earth to the meteor is  

rS ,i = −xi î + h ĵ      (we can 
choose some arbitrary xi  for the initial x -component of position), and the momentum is 

 
pi = mvi î . Then the initial angular momentum is 
      
 

    
(

LS )i =

rS ,0 ×
pi = (−xi î + h ĵ)× mvi î = −mvih k̂  (19.3.19) 

 

 
 

Figure 19.12 Momentum diagram for meteor 
 
The final angular momentum about the center of the earth is 
 
 

    
(

LS ) f =

rS , f ×
p f , (19.3.20) 
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where the vector from the center of the earth to the meteor is  

rS , f = re î  since the meteor 

is then just grazing the surface of earth, and the momentum is  
p f = −mvf ĵ . Therefore 

      
 ,

ˆ ˆ ˆ( ) ( )S f S f f e f e fr mv mr v= × = × − = −L r p i j k
   . (19.3.21) 

 
Because the angular momentum about the center of the earth is constant throughout the 
motion 
 

    
(

LS )i = (


LS ) f , (19.3.22) 

which implies that 

 −mvih k̂ = −mrevf k̂⇒ vf =
vih
re

. (19.3.23) 

  
The mechanical energy is constant and with our choice of zero for potential energy when 
the meteor is very far away, the energy condition becomes 
 

 1
2
mvi

2 = 1
2
mvf

2 − Gmem
re

. (19.3.24) 

Therefore 

 vf
2 = vi

2 + 2Gme

re
 (19.3.25) 

 
 Substituting v f  from part (d) and solving for h , we have that 
 

 h = re 1+
2Gme

revi
2   (19.3.26) 

On substituting the values we have,  
 
 h = 1117.4 re = 7.12 ×10

9m . (19.3.27) 
 
19.5 Angular Impulse and Change in Angular Momentum  
 
If there is a total applied torque   


τS  about a point S  over an interval of time  

Δt = t f − ti , 
then the torque applies an angular impulse about a point S , given by 
 

 
   


JS =


τS dt

ti

t f∫ . (19.4.1) 

 
Because total /S Sd dt= L

τ , the angular impulse about S  is equal to the change in angular 
momentum about S ,  
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
JS =


τS dt

ti

t f∫ =
d

LS

dt
dt

ti

t f∫ = Δ

LS =


LS , f −


LS ,i . (19.4.2) 

 
This result is the rotational analog to linear impulse, which is equal to the change in 
momentum, 

 
   


I =


F dt

ti

t f∫ = dp
dt

dt
ti

t f∫ = Δp = p f −
pi . (19.4.3) 

 
19.6 Angular Momentum of a System of Particles 
 
We now calculate the angular momentum about the point S  associated with a system of 
N  point particles. Label each individual particle by the index  j ,    j = 1,2,, N . Let the 

  j
th  particle have mass  

mj  and velocity 
   
v j . The momentum of an individual particle is 

then 
   
p j = mj

v j . Let 
    
rS , j  be the vector from the point S  to the   j

th  particle, and let  
θ j  be 

the angle between the vectors 
    
rS , j  and 

   
p j  (Figure 19.13). 

 

 
 

Figure 19.13 System of particles 
 
The angular momentum 

    

LS , j  of the   j

th  particle is  
 
 

    

LS , j =

rS , j ×
p j . (19.5.1) 

 
The angular momentum for the system of particles is the vector sum of the individual 
angular momenta,  

 
    


LS

sys =

LS , j

j=1

j=N

∑ = rS , j ×
p j

j=1

j=N

∑ . (19.5.2) 

 
The change in the angular momentum of the system of particles about a point S is given 
by 

 
    

d

LS

sys

dt
= d

dt

LS , j

j=1

j=N

∑ =
drS , j

dt
× p j +

rS , j ×
dp j

dt
⎛

⎝
⎜

⎞

⎠
⎟

j=1

j=N

∑ . (19.5.3) 
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Because the velocity of the   j
th  particle is 

    
vS , j = drS , j / dt , the first term in the 

parentheses vanishes (the cross product of a vector with itself is zero because they are 
parallel to each other) 

 
    

drS , j

dt
× p j =

vS , j × mj
vS , j = 0 . (19.5.4) 

 
Substitute Eq. (19.5.4) and 

    

Fj = dp j / dt

 
into Eq. (19.5.3) yielding 

 

 
    

d

LS

sys

dt
= rS , j ×

dp j

dt
⎛

⎝
⎜

⎞

⎠
⎟

j=1

j=N

∑ = rS , j ×

Fj( )

j=1

j=N

∑ . (19.5.5) 

Because  

 
    

rS , j ×

Fj( )

j=1

j=N

∑ =

τS , j

j=1

j=N

∑ =

τSS

ext +

τSS

int  (19.5.6) 

 
We have already shown in Chapter 17.4 that when we assume all internal forces are 
directed along the line connecting the two interacting objects then the internal torque 
about the point  S  is zero, 
     


τSS

int =

0 . (19.5.7) 

Eq. (19.5.6) simplifies to 

 
    

rS , j ×

Fj( ) = 

τSS , j
j=1

j=N

∑ =

τSS

ext

j=1

j=N

∑ . (19.5.8) 

 
 Therefore Eq. (19.5.5) becomes 

 
    


τSS

ext =
d

LS

sys

dt
. (19.5.9) 

 
The external torque about the point S  is equal to the time derivative of the angular 
momentum of the system about that point. 
 
Example 19.5 Angular Momentum of Two Particles undergoing Circular Motion 
 
Two identical particles of mass m  move in a circle of radius r , 180  out of phase at an 
angular speed ω  about the  z -axis in a plane parallel to but a distance h  above the   x-y  
plane (Figure 19.14). Find the magnitude and the direction of the angular momentum    


LO  

relative to the origin. 
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Figure 19.14 Example 19.5 
 

 
 

Figure 19.15 Angular momentum of 
each particle about origin and sum 

 
Solution: The angular momentum about the origin is the sum of the contributions from 
each object. Since they have the same mass, the angular momentum vectors are shown in 
Figure 19.15. The components that lie in the   x-y  plane cancel leaving only a non-zero  z -
component, 
 

    

LO =


LO ,1 +


LO ,2 = 2mr 2ωk̂ . (19.5.10) 

 
If you explicitly calculate the cross product in polar coordinates you must be careful 
because the units vectors r̂  and  θ̂  at the position of objects 1 and 2 are different. If we 
set 

    
rO ,1 = rr̂1 + hk̂  and     

v1 = rω θ̂1  such that   ̂r1 × θ̂1 = k̂  and similarly set 
    
rO ,2 = rr̂2 + hk̂  

and     
v2 = rω θ̂2  such that   ̂r2 × θ̂2 = k̂  then 1 2ˆ ˆ= −r r  and  θ̂1 = −θ̂2 . With this in mind we 

can compute 
 

              

    


L0 =


L0,1 +


L0,2 =

r0,1 × mv1 +
r0,2 × mv2

= (rr̂1 + hk̂)× mrω θ̂1 + (rr̂2 + hk̂)× mrω θ̂2

= 2mr 2ωk̂ + hmrω (−r̂1 − r̂2 ) = 2mr 2ωk̂ + hmrω (−r̂1 + r̂1) = 2mr 2ωk̂.

 (19.5.11) 

 
The important point about this example is that the two objects are symmetrically 
distributed with respect to the  z -axis (opposite sides of the circular orbit). Therefore the 
angular momentum about any point S  along the  z -axis has the same value 

2 ˆ2S mr ω=L k


, which is constant in magnitude and points in the + z -direction for the 
motion shown in Figure 19.14. 
 
Example 19.6 Angular Momentum of a System of Particles about Different Points 
 
Consider a system of N particles, and two points  A  and  B  (Figure 19.6). The angular 
momentum of the  j

th  particle about the point  A  is given by 
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
L A,j =

rA,j × mj
v j . (19.5.12) 

 

 
 

Figure 19.16 Vector triangle relating position of object and points  A  and  B  
 
The angular momentum of the system of particles about the point  A  is given by the sum 
 

 
   


L A =


L A,j

j=1

N

∑ = rA,j × mj
v j

j=1

N

∑   (19.5.13) 

 
The angular momentum about the point  B  can be calculated in a similar way and is given 
by 

 
   


LB =


LB,j

j=1

N

∑ = rB,j × mj
v j

j=1

N

∑ . (19.5.14) 

From Figure 19.16, the vectors  

 
   
rA,j =

rB,j +
rA,B . (19.5.15) 

 
We can substitute Eq. (19.5.15) into Eq. (19.5.13) yielding 
 

 
 


LA = (rB, j +

rA,B )×mj
v j

j=1

N

∑ = rB, j ×mj
v j

j=1

N

∑ + rA,B ×mj
v j

j=1

N

∑ . (19.5.16) 

 
The first term in Eq. (19.5.16) is the angular momentum about the point  B . The vector 

   
rA,B  is a constant and so can be pulled out of the sum in the second term, and Eq. 
(19.5.16) becomes 

 
 


LA =


LB +

rA,B × mj
v j

j=1

N

∑  (19.5.17) 

 
The sum in the second term is the momentum of the system 
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psys = mj
v j

j=1

N

∑ . (19.5.18) 

 
Therefore the angular momentum about the points A  and B  are related by 
 
  


LA =


LB +

rA,B ×
psys  (19.5.19) 

 
Thus if the momentum of the system is zero, the angular momentum is the same about 
any point.  

  

LA =


LB , (psys =


0) . (19.5.20) 

 
In particular, the momentum of a system of particles is zero by definition in the center of 
mass reference frame because in that reference frame  

psys =

0 . Hence the angular 

momentum is the same about any point in the center of mass reference frame.  

 
19.7 Angular Momentum and Torque for Fixed Axis Rotation  
 
We have shown that, for fixed axis rotation, the component of torque that causes the 
angular velocity to change is the rotational analog of Newton’s Second Law, 
 
    


τSS

ext = IS


α . (19.5.21) 

 
We shall now see that this is a special case of the more general result 
 

 
    


τSS

ext =
d
dt

LS

sys . (19.5.22) 

 
Consider a rigid body rotating about a fixed axis passing through the point S  and take 
the fixed axis of rotation to be the z -axis. Recall that all the points in the rigid body 
rotate about the z -axis with the same angular velocity     


ω ≡ (dθ / dt)k̂ ≡ω z k̂ . In a similar 

fashion, all points in the rigid body have the same angular acceleration, 

    

α ≡ (d 2θ / dt2 ) k̂ ≡ α z k̂ . The angular momentum is a vector, and will have a component 
along the direction of the fixed z -axis. Let the point  S  lie somewhere along the z -axis.  
 
As before, the body is divided into individual elements. We calculate the contribution of 
each element to the angular momentum about the point  S , and then sum over all the 
elements. The summation will become an integral for a continuous body.  
 



 19-18 

Each individual element has a mass imΔ  and is moving in a circle of radius , ,S ir ⊥  about 
the axis of rotation. Let ,S ir

  be the vector from the point S  to the element. The velocity 
of the element, iv

 , is tangent to this circle (Figure 19.17).  
 

 
 

Figure 19.17 Geometry of instantaneous rotation. 
 
The angular momentum of the  ith  element about the point S  is given by 
 
 , , ,S i S i i S i i im= × = ×ΔL r p r v

     . (19.5.23) 
 
Let the point  Oi  denote the center of the circular orbit of the element.  Define a vector 

    
rOi ,i

 from the point  Oi  to the element. Let 
    
rS ,Oi

 denote the vector from the point S  to the 

point  Oi . Then 
    
rS ,i =

rS ,Oi
+ rOi ,i

 (Figure 19.17). Because we are interested in the 

perpendicular and parallel components of 
    
rS ,i  with respect to the axis of rotation, denote 

the perpendicular component by 
    
rOi ,i

≡ rS ,⊥ ,i  and the parallel component by 
    
rS ,Oi

≡ rS ,,i . 

The three vectors are related by 
 
 

    
rS ,i =

rS ,,i +
rS ,⊥ ,i . (19.5.24) 

 
The angular momentum about S  is then  
 

 , , , , , ,

, , , ,

( )

( ) ( ).
S i S i i i S i S i i i

S i i i S i i i

m m
m m

⊥

⊥

= ×Δ = + ×Δ

= ×Δ + × Δ

L r v r r v
r v r v





    

    (19.5.25) 

 
In the last expression in Equation (19.5.25), the first term has a direction that is 
perpendicular to the z -axis; the direction of a vector product of two vectors is always 
perpendicular to the direction of either vector. Because , ,S ir 

  is in the z -direction, the 
first term in the last expression in Equation (19.5.25) has no component along the z -axis. 



 19-19 

Therefore the  z -component of the angular momentum about the point S ,   
(LS ,i )z , arises 

entirely from the second term, 
    
rS ,⊥ ,i × Δmi

v i . The vectors 
    
rS ,⊥ ,i  and iv

  are perpendicular, 
as shown in Figure 19.18.  
 

 
 

Figure 19.18 The z -component of angular momentum. 
 
Therefore the z -component of the angular momentum about S  is just the product of the 
radius of the circle, , ,S ir ⊥ , and the tangential component i im vΔ  of the momentum, 
 
   

(LS , i )z = rS ,⊥ , i Δmi vi . (19.5.26) 
 
For a rigid body, all elements have the same  z -component of the angular velocity, 

  ω z = dθ / dt , and the tangential velocity is 
   

vi = rS ,⊥ , iω z . (19.5.27) 
 
The expression in Equation (19.5.26) for the z -component of the momentum about S  is 
then 
 
 

  
(LS , i )z = rS ,⊥ , i Δmi vi = Δmi (rS ,⊥ , i )

2ω z . (19.5.28) 
 
The z -component of the angular momentum of the system about S  is the summation 
over all the elements, 
 

  
LS , z

sys = (LS ,i )z =
i
∑ Δmi(rS ,⊥ ,i )

2ω z
i
∑ . (19.5.29) 

 
For a continuous mass distribution the summation becomes an integral over the body, 
 
 

  
LS , z

sys = dm (rdm )2ω z
body
∫ , (19.5.30) 

 
where  rdm  is the distance form the fixed z -axis to the infinitesimal element of mass dm . 
The moment of inertia of a rigid body about a fixed z -axis passing through a point S  is 
given by an integral over the body 
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IS = dm (rdm )2

bo dy
∫ . (19.5.31) 

 
Thus the z -component of the angular momentum about S  for a fixed axis that passes 
through S  in the z -direction is proportional to the z -component of the angular velocity, 

 ω z ,  

 
  
LS , z

sys = IS ω z . (19.5.32) 
 
For fixed axis rotation, our result that torque about a point is equal to the time derivative 
of the angular momentum about that point, 
 

 
    


τS

ext =
d
dt

LS

sys , (19.5.33) 

 
can now be resolved in the z -direction, 
 

 
  
τ S ,z

ext =
dLS , z

sys

dt
= d

dt
(IS ω z ) = IS

dω z

dt
= IS

d 2θ
dt2 = IS α z , (19.5.34) 

 
in agreement with our earlier result that the z -component of torque about the point S  is 
equal to the product of moment of inertia about SI , and the z -component of the angular 
acceleration,  α z . 
 
Example 19.6 Circular Ring 
 
A circular ring of radius r , and mass m  is rotating about the z -axis in a plane parallel to 
but a distance h  above the   x-y  plane. The z -component of the angular velocity is  ω z  
(Figure 19.19). Find the magnitude and the direction of the angular momentum    


LS  along 

at any point  S  on the central z -axis.  
 

 
 

Figure 19.19 Example 19.6 
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Solution: Use the same symmetry argument as we did in Example 19.5. The ring can be 
thought of as made up of pairs of point like objects on opposite sides of the ring each of 
mass  Δm . Each pair has a non-zero z-component of the angular momentum taken about 
any point  S  along the z -axis, 

    

LS ,pair =


LS ,1 +


LS ,2 = 2Δmr 2ω zk̂ . So summing up over all 

the pairs gives 
     


LS = mr 2ω zk̂ . (19.5.35) 

 
Recall that the moment of inertia of a ring is given by 
 
 

  
IS = dm (rdm )2

body
∫ = mr 2 . (19.5.36) 

 
For the symmetric ring, the angular momentum about  S  points in the direction of the 
angular velocity and is equal to 
     


LS = ISω zk̂  (19.5.37) 

 
19.8 Principle of Conservation of Angular Momentum 
 
Consider a system of particles. We begin with the result that we derived in Section 19.7 
that the torque about a point  S  is equal to the time derivative of the angular momentum 
about that point  S , 

 
    


τSS

ext =
d

LS

sys

dt
. (19.5.38) 

 
With this assumption, the torque due to the external forces is equal to the rate of change 
of the angular momentum 

 
    


τSS

ext =
d

LS

sys

dt
. (19.5.39) 

 
Principle of Conservation of Angular Momentum 
 
If the external torque acting on a system is zero, then the angular 
momentum of the system is constant. So for any change of state of the 
system the change in angular momentum is zero  

 
 

    
Δ

LS

sys ≡ (

LS

sys ) f − (

LS

sys )i =

0 . (19.5.40) 

 
Equivalently the angular momentum is constant 
 

 
    
(

LS

sys ) f = (

LS

sys )i . (19.5.41) 
 



 19-22 

So far no isolated system has been encountered such that the angular momentum is not 
constant so our assumption that internal torques cancel is pairs can be taken as an 
experimental observation. 
 
Example 19.7 Collision Between Pivoted Rod and Object 
 
An object of mass m  and speed 0v  strikes a rigid uniform rod of length l  and mass 

rm that is hanging by a frictionless pivot from the ceiling. Immediately after striking the 
rod, the object continues forward but its speed decreases to   v0 / 2  (Figure 19.20). The 
moment of inertia of the rod about its center of mass is 2(1/12)cm rI m l= . Gravity acts 
with acceleration g  downward. (a) For what value of 0v  will the rod just touch the 
ceiling on its first swing? You may express your answer in terms of g , rm , m , and l . 
(b) For what ratio    mr / m  will the collision be elastic? 
 

 
Figure 19.20 Example 19.7 

 
Solution: We begin by identifying our system, which consists of the object and the 
uniform rod. We identify three states; state 1: immediately before the collision, state 2: 
immediately after the collision, and state 3: the instant the rod touches the ceiling when 
the final angular speed is zero. We would like to know if any of our fundamental 
quantities: momentum, energy, and angular momentum, are constant during these state 
changes, state 1 →  state 2, state 2 →  state 3. 
 
We start with state 1 →  state 2. The pivot force holding the rod to the ceiling is an 
external force acting at the pivot point  S . There is also the gravitational force acting on 
at the center of mass of the rod and on the object. There are also internal forces due to the 
collision of the rod and the object at point  A  (Figure 19.21).  
 
The external force means that momentum is not constant. The point of action of the 
external pivot force is fixed and so does no work. However, we do not know whether or 
not the collision is elastic and so we cannot assume that mechanical energy is constant. If 
we choose the pivot point  S  as the point in which to calculate torque, then the torque 
about the pivot is  
 

    

τS

sys = rS ,S ×

Fpivot +

rS ,A ×

Fr ,o +

rS ,A ×

Fo,r +

rS ,cm ×

Fg ,r  . (19.5.42) 
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Figure 19.21 Free-body force diagrams on elements of system 
 
The external pivot force does not contribute any torque because 

    
rS ,S =


0 . The internal 

forces between the rod and the object are equal in magnitude and opposite in direction, 

    

Fr ,o = −


Fo,r  (Newton’s Third Law), and so their contributions to the torque add to zero, 

    
rS , A ×


Fo,r +

rS , A ×

Fr ,o =


0 . If the collision is instantaneous then the gravitational force is 

parallel to 
    
rS ,cm  and so 

    
rS ,cm ×


Fr ,g =


0 . Therefore the torque on the system about the pivot 

point is zero,     

τS

sys =

0 . Thus the angular momentum about the pivot point is constant, 

 
     (


LS

sys )1 = (

LS

sys )2 .  (19.5.43) 
 
In order to calculate the angular momentum we draw a diagram showing the momentum 
of the object and the angular speed of the rod in (Figure 19.22). 

 
 

Figure 19.22 Angular momentum diagram 
 
The angular momentum about  S  immediately before the collision is  
 

    
(

LS

sys )1 =
rS ,0 × m1

v0 = l(− ĵ) × m1v0 î = lm1v0k̂ . 
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The angular momentum about  S  immediately after the collision is  
 

    
(

LS

sys )2 =
rS ,0 × m1

v0 / 2 + Is


ω 2 = l(− ĵ) × m1(v0 / 2)î =

lm1v0

2
k̂ + Isω2k̂ . 

 
Therefore the condition that the angular momentum about  S  is constant during the 
collision becomes 

   
lm1v0k̂ =

lm1v0

2
k̂ + Isω2k̂ . 

 
We can solve for the angular speed immediately after the collision 
 

  
ω 2 =

lm1v0

2Is

. 

 
By the parallel axis theorem the moment of inertial of a uniform rod about the pivot point 
is  
   IS = m(l / 2)2 + Icm = (1/ 4)mrl

2 + (1/ 12)mrl
2 = (1/ 3)mrl

2 .  (19.5.44) 
 
Therefore the angular speed immediately after the collision is 
 

 
  
ω 2 =

3m1v0

2mrl
.  (19.5.45) 

 
For the transition state 2 →  state 3, we know that the gravitational force is conservative 
and the pivot force does no work so mechanical energy is constant.  
 

  
Em,2 = Em,3  

 

 
Figure 19.23 Energy diagram for transition from state 2 to state 3. 
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We draw an energy diagram in Figure 19.23, with a choice of zero for the potential 
energy at the center of mass. We only show the rod because the object undergoes no 
energy transformation during the transition state 2 →  state 3. The mechanical energy 
immediately after the collision is 
 

  
Em,2 =

1
2

ISω 2
2 + 1

2
m1(v0 / 2)2 . 

 
Using our results for the moment of inertia  IS  (Eq. (19.5.44)) and  ω 2  (Eq. (19.5.45)), we 
have that 

                  
  
Em,2 =

1
2

(1/ 3)mrl
2 3m1v0

2mrl
⎛

⎝⎜
⎞

⎠⎟

2

+ 1
2

m1(v0 / 2)2 =
3m1

2v0
2

8mr

+ 1
2

m1(v0 / 2)2 .   (19.5.46) 

 
The mechanical energy when the rod just reaches the ceiling when the final angular speed 
is zero is then 

  
Em,3 = mr g(l / 2)+ 1

2
m1(v0 / 2)2 . 

 
Then the condition that the mechanical energy is constant becomes 
 

 
  

3m1
2v0

2

8mr

+ 1
2

m1(v0 / 2)2 = mr g(l / 2)+ 1
2

m1(v0 / 2)2 .  (19.5.47) 

 
We can now solve Eq. (19.5.47) for the initial speed of the object 
 

 
  
v0 =

mr

m1

4gl
3

.  (19.5.48) 

 
We now return to the transition state 1 →  state 2 and determine the constraint on the 
mass ratio in order for the collision to be elastic. The mechanical energy before the 
collision is 

 
  
Em,1 =

1
2

m1v0
2 .  (19.5.49) 

 
If we impose the condition that the collision is elastic then 
 
   

Em,1 = Em,2 .  (19.5.50) 
 
Substituting Eqs. (19.5.46) and (19.5.49) into Eq. (19.5.50) yields 
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1
2

m1v0
2 =

3m1
2v0

2

8mr

+
1
2

m1(v0 / 2)2 . 

This simplifies to 

  

3
8

m1v0
2 =

3m1
2v0

2

8mr

 

 
Hence we can solve for the mass ratio necessary to ensure that the collision is elastic if 
the final speed of the object is half it’s initial speed 
 

 
  

mr

m1

= 1.  (19.5.51) 

 
Notice that the mass ratio is independent of the initial speed of the object. 
 
19.9 External Angular Impulse and Change in Angular Momentum 
 

Define the external angular impulse about a point  S  applied as the 
integral of the external torque about  S  
 

 
    


JS

ext ≡

τS

ext dt
ti

t f

∫ . (19.5.52) 

 
Then the external angular impulse about  S  is equal to the change in angular momentum 
 

 
    


JS

ext ≡

τS

ext dt
ti

t f

∫ =
d

LS

sys

dt
dt

ti

t f

∫ =

LS , f

sys −

LS ,i

sys . (19.5.53) 

 
Notice that this is the rotational analog to our statement about impulse and momentum, 
 

 
    


IS

ext ≡

Fext dt

ti

t f

∫ =
dpsys

dt
dt

ti

t f

∫ = psys, f −
psys,i . (19.5.54) 

 
Example 19.8 Angular Impulse on Steel Washer 
 
A steel washer is mounted on the shaft of a small motor. The moment of inertia of the 
motor and washer is   I0 . The washer is set into motion. When it reaches an initial angular 
speed  ω0 , at   t = 0 , the power to the motor is shut off, and the washer slows down until it 
reaches an angular speed of  ω a  at time  ta . At that instant, a second steel washer with a 
moment of inertia  Iw  is dropped on top of the first washer. Assume that the second 
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washer is only in contact with the first washer.  The collision takes place over a time 

  Δtint = tb − ta . Assume the frictional torque on the axle is independent of speed, and 
remains the same when the second washer is dropped. The two washers continue to slow 
down during the time interval   

Δt2 = t f − tb  until they stop at time  
t = t f . (a) What is the 

angular acceleration while the washer and motor are slowing down during the interval 

  Δt1 = ta ? (b) Suppose the collision is nearly instantaneous,    Δtint = (tb − ta )  0 . What is 

the angular speed  ωb  of the two washers immediately after the collision is finished (when 
the washers rotate together)?   

 
Now suppose the collision is not instantaneous but that the frictional torque is 
independent of the speed of the rotor. (c) What is the angular impulse during the 
collision? (d) What is the angular velocity  ωb  of the two washers immediately after the 
collision is finished (when the washers rotate together)? (e) What is the angular 
deceleration  α2  after the collision?  
 
Solution: a) The angular acceleration of the motor and washer from the instant when the 
power is shut off until the second washer was dropped is given by 
 

 
  
α1 =

ω a −ω0

Δt1
< 0 . (19.5.55) 

 
(b) If the collision is nearly instantaneous, then there is no angular impulse and therefore 
the  z -component of the angular momentum about the rotation axis of the motor remains 
constant 

   
0 = ΔLz = Lf ,z − L0,z = (I0 + Iw )ωb − I0ω a . (19.5.56) 

 
We can solve Eq. (19.5.56) for the angular speed  ωb  of the two washers immediately 
after the collision is finished 

 
  
ωb =

I0

I0 + Iw

ω a . (19.5.57) 

 
(c) The angular acceleration found in part a) is due to the frictional torque in the motor.  
 

 
 

Figure 19.24 Frictional torque in the motor 
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Let 

    

τ f = −τ f k̂  where  

τ f  is the magnitude of the frictional torque (Figure 19.24) then 
 

 
  
−τ f = I0α1 =

I0 (ω a −ω0 )
Δt1

. (19.5.58) 

 
During the collision with the second washer, the frictional torque exerts an angular 
impulse (pointing along the  z -axis in the figure), 
 

 
  
Jz = − τ f dt

ta

tb∫ = −τ f Δtint = I0 (ω a −ω0 )
Δtint

Δt1
. (19.5.59) 

 
(d) The  z -component of the angular momentum about the rotation axis of the motor 
changes during the collision, 

 
   

ΔLz = Lf ,z − L0,z = (I0 + Iw )ω b − I0ω a .  (19.5.60) 
 
The change in the  z -component of the angular momentum is equal to the  z -component 
of the angular impulse 
  Jz = ΔLz . (19.5.61) 
 
Thus, equating the expressions in Equations (19.5.59) and (19.5.60), yields 
 

 
  
I0 (ω a −ω0 )

Δtint

Δt1

⎛

⎝⎜
⎞

⎠⎟
= (I0 + Iw )ωb − (I0 )ω a . (19.5.62) 

 
Solve Equation (19.5.62) for the angular velocity immediately after the collision, 
 

 
  
ωb =

I0

(I0 + Iw )
(ω a −ω0 )

Δtint

Δt1

⎛

⎝⎜
⎞

⎠⎟
+ω a

⎛

⎝
⎜

⎞

⎠
⎟ . (19.5.63) 

 
If there were no frictional torque, then the first term in the brackets would vanish, and the 
second term of Eq. (19.5.63) would be the only contribution to the final angular speed. 
 
(e) The final angular acceleration  α2  is given by 
 

 
  
α2 =

0 −ωb

Δt2

= −
I0

(I0 + Iw )Δt2

(ω a −ω0 )
Δtint

Δt1

⎛

⎝⎜
⎞

⎠⎟
+ω a

⎛

⎝
⎜

⎞

⎠
⎟ . (19.5.64) 

 
 


