
A Tutorial on Runtime Verification

Yliès FALCONE a, Klaus HAVELUND b,1 and Giles REGER c,2

a University of Grenoble I (UJF), Laboratoire d’Informatique de Grenoble, France
b Jet Propulsion Laboratory, California Institute of Technology, USA

c University of Manchester, UK

Abstract. This tutorial presents an overview of the field referred as to runtime ver-
ification. Runtime Verification is the study of algorithms, data structures, and tools
focused on analyzing executions of systems. The performed analysis aims at im-
proving the confidence in systems behavior, either by improving program under-
standing, or by checking conformance to specifications or algorithms. This chapter
focuses specifically on checking execution traces against requirements formalized
in terms of monitors. It is first shown on examples how such monitors can be written
using aspect-oriented programming, exemplified by ASPECTJ. Subsequently four
monitoring systems are illustrated on the same examples. The systems cover such
formalisms as regular expressions, temporal logics, state machines, and rule-based
programming, as well as the distinction between external and internal DSLs.

Keywords. Runtime verification, code instrumentation, temporal logic, regular
expressions, state machines, rule-based programming, DSL.

1. Introduction

The rise of ubiquitous, embedded, safety-critical systems introduces a requirement of
high-level confidence in their behavior. Numerous formal verification techniques provide
mathematical guarantees on the reliability of software models and systems. However,
reality is that the silver-bullet verification method does not exist yet. Proving millions
of lines of code is not yet feasible. Usually, two kinds of verification techniques can be
distinguished: static and dynamic analysis. Ideally, one would only have to apply static
analysis to verify the system behavior prior to its execution. Examples of such techniques
include model checking, theorem proving, and static analysis. However, these techniques
suffer from shortcomings. Model checking suffers from the state-explosion problem: as
the size of the system grows, the computational power required to verify systems grows
beyond the capabilities of state-of-the-art computers. Theorem proving requires manual
effort to carry out proofs (invariant discovery). Static code analysis scales well but the
expressiveness of the properties that can be checked is limited, and many interesting be-
havioral properties remain out of scope of this technique. Techniques based on dynamic
analysis inspect single executions of the system under scrutiny, and are thus incomplete
(yield false negatives). However, this incompleteness allows to face-off the limitations

1Part of the work described in this publication was carried out at Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration. The work
of this author was furthermore supported by AFOSR Grant FA9550-09-1-0481 and NSF Grant CCF-0926190.

2The work of this author was supported by EPSRC Grant EP/P505208/1.

1

of static verification methods, and, renders them interesting complementary verification
methods.

Runtime Verification (RV) is a dynamic analysis method aiming at checking whether
a run of the system under scrutiny satisfies a given correctness property3. The inputs to
an RV system are: (1) a system to be checked, and (2) a set of properties to be checked
against the system execution. The properties can be expressed in a formal specification
language (e.g., automata-based or logic-based formalism), or even as a program in a
general-purpose programming language. A runtime verification process typically con-
sists of the following three stages. First, from a property is generated a monitor, i.e., a
decision procedure for the property. This step is often referred as to monitor synthesis.
The monitor is capable of consuming events produced by a running system and emits
verdicts according to the current satisfaction of the property based on the history of re-
ceived events. Second, the system under scrutiny is instrumented. The purpose of this
stage is to be able to generate the relevant events to be fed to the monitor. This step is
often referred as to system instrumentation. Third, the system’s execution is analyzed by
the monitor. This analysis can occur either during the execution in a lock-step manner,
or after the execution has finished assuming that events have been written to a log. This
step is often referred as to execution analysis. Instrumenting the system and checking a
property over the execution induces overhead. The overhead depends on many factors,
including which program points are instrumented as well as data structures and algo-
rithms used in the monitor. Generally, the more expressive an RV domain-specific for-
malism is, the more costly (in terms of overhead) the monitoring is. A goal is to find a
balance between efficiency and expressiveness. Specification conciseness and elegance
is an additional dimension concerned with how easy specifications are to write and read.

This tutorial presents an overview of the of field runtime verification by first pro-
viding a theoretic framework, then by illustrating how program instrumentation can be
performed, and by subsequently illustrating five different notations for writing moni-
tors, including the use of the general-purpose programming language JAVA, and four
RV domain-specific languages. Compared to the original references introducing some
of these systems, we take the liberty to sometimes present concepts in a different way.
Section 2 introduces general mathematical preliminaries. Section 3 defines a unifying
theoretic framework for runtime verification. Section 4 introduces the through-going ex-
ample of a planetary rover platform written in JAVA, for which monitors shall be writ-
ten. Section 5 explains how one can instrument the rover software using ASPECTJ, an
aspect-oriented programming framework for JAVA, and Section 6 explains how to write
monitors in the general-purpose programming language JAVA, using ASPECTJ for in-
strumentation. Sections 7-10 present the RV frameworks TRACEMATCHES [3], JAVA-
MOP [10,15], RULER-lite [4,8], and TRACECONTRACT [7]. Each system is illustrated
by examples, as well as by presenting formal semantics and/or algorithm concepts.

Many important runtime verification frameworks have been left out of this tutorial
due to space limitations, including for example [4,18,17,16,9,5,11]. The interested reader
can also consult some previous attempts to overviewing runtime verification [13,14].
Moreover, the important question of monitorability, i.e., the issue of determining what
properties can be monitored at runtime is not discussed. The interested reader can con-
sult [11] for an extensive study.

3The field in fact is broader, and generally covers any technique used to analyze or explain program execu-
tions. Such techniques may for example include specification learning and trace visualization.

2

Figure 1. An overview of the runtime verification process.

2. Preliminaries

We introduce some mathematical notation that will be used in the chapter. We use X →
Y and X ⇁ Y to denote sets of total and partial functions between sets X and Y ,
respectively. A map (a partial function with finite domain) where variable xi is bound to
value vi, 1 ≤ i ≤ n, is noted [x1 7→ v1, . . . , xn 7→ vn]. The empty map is denoted by ⊥.
The domain of a map M : X ⇁ Y (subset of X) is noted dom(M). We will often refer
to maps as bindings. Given two maps A and B, the map override operator is defined as:

(A †B)(x) =

B(x) if x ∈ dom(B),
A(x) if x 6∈ dom(B) and x ∈ dom(A),
undefined otherwise.

Maps are partially ordered: M1 is a submap of M2, noted M1 vM2, if and only if:

dom(M1) ⊆ dom(M2) ∧ ∀x ∈ dom(M1) : M1(x) = M2(x).

3. A Unified Setting

This section presents a unified setting for runtime verification for use in this chapter.

3.1. The Runtime Verification Phases

Before giving formal definitions of runtime verification concepts, we give a brief
overview of the stages involved in monitoring a system, captured in Figure 1:

1. Monitor creation: A monitor is created, potentially from a formal property.
2. Instrumentation: The system is instrumented to generate events for the monitor.
3. Execution: The system is executed, generating events for the monitor.
4. Responses:

• The monitor produces for each consumed event a verdict indicating the status
of the property depending on the event sequence seen so far.

• The monitor sends feedback to the system - this may give further information
to the system, so that more specific corrective actions can be taken.

Each of these stages are discussed in further detail in the rest of this section.

3

True

False

True

?

False

True

Still True Still False

False

Figure 2. Possible verdict domains.

3.2. Events, Traces and Properties

The behaviour of a system for a given execution can be captured as a finite sequence of
events describing selected actions taken by the system, or selected states of the system.
In general, an event consists of a name and sequence of data values. We assume a set of
data values V , which will depend on the context of the runtime verification system.

Definition 1 (Events and traces) An event is a pair 〈e, v〉 where e is an event name
and v is a finite sequence of values in V . From here onwards we will write e(v) for the
event 〈e, v〉. Let Event be the set of all events. A trace is a finite sequence of events. Let
ε be the empty trace. Let Trace(A) be the set of all traces over a given set of events A.

In runtime verification it is common to consider only finite traces, as monitoring a con-
tinuously running systems can be considered as analyzing finite sequence snapshots. All
runs of a system can be described by a (possibly infinite) set of finite traces. In general, a
property is a syntactic object belonging to some particular logic or language, however in
this section we are interested in the abstract denotation (semantics) of the property. Here
we model properties as functions from traces to a given verdict domain.

Definition 2 (Property) Let Prop(A,D) = Trace(A) → D be the set of all properties
from traces over the set of events A to the verdict domain D.

Different runtime verification systems use different formalisms or logics, and thus can
express different sets of properties. We say that one system is more expressive than an-
other if the properties the first can express properly contain those the second can express.

3.3. Verdicts and Feedback

One advantage of verifying a system at runtime is that the system can take corrective
action if a property is violated, using the results of verification to steer itself towards more
desirable behaviors. To achieve this, monitors communicate with the system through
verdicts and feedback. Verdicts give the status of the monitored system with respect to a
property and feedback provides additional information to the monitored system.

A runtime verification system will return a verdict from some verdict domain D after
processing each event, or the whole trace. In the most simple case this verdict domain
would be B - either true or false. However, many runtime verification systems use verdict
domains containing three or more values to give a more fine-grained result as illustrated
in Figure 2 and described elsewhere [9]. The first step is to introduce a third value to
indicate that the system has not succeeded or failed yet. An alternative is to extend B
with two new values, which we call still true and still false here. These indicate that the
monitored system is currently succeeding/failing but its status may change in the future.

4

The area of feedback has not been widely explored within the context of runtime verifica-
tion. There are relations to automatic program repair, program steering, fault protection,
self-healing systems, planning, and runtime enforcement to mention just a few topics.

3.4. System Instrumentation

So far we have discussed traces, verdicts and feedback but have not considered how
these are communicated from and to the monitored system. In the runtime verification
process this is handled via instrumentation. It is a matter of discussion whether this
instrumentation forms part of the runtime verification system itself or not - some tools
intermix scripts defining instrumentation and properties, whereas others keep them firmly
separate. In the theoretical presentation given in this chapter we will separate the two,
however instrumentation is a key part of the runtime verification process.

The instrumentation approach used depends on the system being instrumented. A
majority of the tools discussed in this chapter target JAVA programs and therefore AS-
PECTJ, an aspect-oriented programming language for JAVA, is used. ASPECTJ can be
used directly as a runtime monitoring system, as discussed in Section 6. At the very least,
an interface should be defined between a runtime verification tool and monitored system.

3.5. Runtime Verification Systems

A runtime verification system defines a method for synthesizing monitors - objects which
consume events and produce verdicts. We do not include the notion of feedback - assum-
ing this is handled by some additional external system.

Definition 3 (Monitor) Let 〈D,A, Q, q0,∆,Γ〉 be a monitor where D is a (possibly in-
finite) verdict domain, A is a (possibly infinite) set of events, Q is a (possibly infinite)
set of monitor states, q0 is the initial monitor state, ∆ : (Q × A) → Q is a transition
function and Γ : Q → D is the verdict function. Let Monitor(D,A) be the set of all
monitors with verdict domain D for events in A.

At runtime we store a monitor’s current state and then process each event by computing
the next monitor state using ∆ and finding the verdict to return using Γ. We restrict ∆
to be deterministic to make it possible to know the exact next state whilst monitoring at
runtime - methods such as backtracking are not usually seen in runtime verification. We
can emulate non-determinism by defining a monitor state to be a set.

We let the set of events and verdict domain both be possibly infinite. For events this
makes sense as their parameters may be taken from an infinite data domain. However
the notion of an infinite verdict domain is not instantly straight-forward - previously we
mentioned only small fixed domains of truth values. But there has been some work on
monitoring logics that return statistics or probabilities as verdicts, for example [12].

A runtime verification system conceptually captures a verdict domain, a set of pos-
sible events, a set of possible properties, and a method for generating monitors from
properties.

Definition 4 (Runtime verification system) A runtime verification system is a tuple
〈D,A,P,G〉 where D is a (possibly infinite) verdict domain,A is a (possibly infinite) set
of possible events, P ⊆

⋃
B⊆A Prop(B,D) is a (possibly infinite) set of properties, and

G : P → Monitor(D,A) is a monitor-generation function.

5

A runtime verification system will typically provide a Domain-Specific Language (DSL)
for describing properties, the implementation of which will implicitly capture the
monitor-generation function G. The different approaches for defining a DSL may be cat-
egorized as follows [6]:

1. External. The DSL is a stand-alone language.

(a) Compilation. A property is parsed and translated into a program, representing
a monitor for that property, which is then executed.

(b) Interpretation. A property is parsed and translated into a data structure, rep-
resenting a monitor for that property, which is then interpreted.

2. Internal. The DSL is embedded in an existing General-Purpose Language (GPL)
and is therefore directly executable.

(a) Shallow. A property can make use of features in the GPL.
(b) Deep. A property is represented as a data structure in the GPL.

3.5.1. Getting Bindings from Events

Many runtime verification systems use so-called symbolic events in specifications, which
are then matched against events in the trace to produce bindings. We quickly introduce
some general concepts which will be used in later sections.

Definition 5 (Symbolic event) A symbolic event is a pair 〈e, s〉 where e ∈ Σ is an event
name and s ∈ (X ∪ V)∗ is a sequence of variables or values.

We will write symbolic events in the same way as we write events i.e., e(s). A symbolic
event in a specification is matched against an event in a trace to produce a binding.

Definition 6 (Matching) Given a symbolic event a = e(s1, . . . sn) and an event b =
e(v1, . . . , vn) then matches(a,b) is true if and only if there exists a binding θ such that
if si is a variable then θ(si) = vi, otherwise si = vi, for 1 ≤ i ≤ n. Let match(a,b)
denote the smallest such binding (with respect to v) if it exists and undefined otherwise.

3.6. Classifying Runtime Verification Approaches

We do not attempt to present a classification of runtime verification systems but for com-
pleteness we mention some dimensions which have been used previously:

• When monitoring occurs. This can either be online, monitoring occurs whilst the
system is running, or offline, monitoring occurs after the system has run - applied
to a log file.

• Where the monitor is placed. This can either be inline, the monitor is included in
the code of the system, or outline, the monitor exists as an external entity.

• When are verdicts returned. This can either be violation, when the monitored
property becomes false, or validation, when the monitored property becomes true.

3.7. A Quick Note on Usability

As runtime verification systems are intended as tools they must be usable. Here we briefly
discuss some aspects of runtime verification systems that will impact this. We believe
that there are three main aspects important to runtime verification systems.

6

Efficiency. For a tool to be practical it must work on large traces - not only should a
monitoring algorithm be fast, it should also scale with the trace size. Efficiency require-
ments depend on context - are we monitoring a running program or a log file produced
by one. In the former case it is likely that we would want an incremental monitoring al-
gorithm, that introduces minimal overhead with respect to memory and running time. In
the latter case it is likely that we are interested mostly in running time. Overhead depends
on the monitoring algorithm used, the complexity of the specification and the makeup of
the trace.

Expressiveness. What specifications can we write? This is defined by the specifica-
tion language of a particular system. Comparing the expressiveness of these languages
is not straightforward. Whilst there are well known results relating to language theory
(i.e. context-free languages are more expressive than regular languages) there are many
aspects here which complicate this issue, for example how events are specified.

Elegance. How easy is it to write a specification. The syntax and operations of a par-
ticular specification language may make certain specifications easier or harder to write
and/or read. Conciseness is an important measurable aspect of this.

4. A Rover System and its Requirements

In this section we briefly introduce a simple rover example, which will be referred to
throughout the paper, and for which we will formulate requirements and write monitors
in the various notations. The assumed programming language is JAVA. The example con-
cerns a planetary rover platform. The rover runs tasks that use resources. A scheduler
manages the task execution and resource allocation. A task may handle an instrument
on board of the rover, such as a camera. Tasks are commanded by the scheduler and re-
port back whether they succeed or fail. In addition, the scheduler manages resources (the
antenna for example), which can be requested by tasks, and granted if available and are
not in conflict with other granted resources. Tasks must eventually cancel (hand back)
resources they have been granted. Conflicting resources can have different priorities. A
request for a resource with a higher priority than an already granted resource causes the
lower priority resource to be rescinded (the task owning it is asked to cancel it). We shall
assume a class Res representing various resources. The following class models a task:

p u b l i c c l a s s Task {
p u b l i c i n t i d ;
void sendCommand (S t r i n g name , i n t number) { . . . }
void s e n d G r a n t (Res r e s) { . . . }
void s e n d R e s c i n d (Res r e s) { . . . }

}

A task can be commanded by the scheduler to perform a job by a call of the sendCom-
mand method on the task. A command is identified by a name and a running job number.
A task can be granted a resource, or asked to cancel it again (the resource is rescinded).
The following class models the scheduler:

7

Figure 3. Message sequence diagram illustrating a possible interaction between scheduler and two tasks.

p u b l i c c l a s s S c h e d u l e r {
void l o g S u c c e s s (S t r i n g name , i n t number) { . . . }
void l o g F a i l u r e (S t r i n g name , i n t number) { . . . }
void s e t C o n f l i c t (Res re s1 , Res r e s 2) { . . . }
void s e t P r i o r i t y (Res re s1 , Res r e s 2) { . . . }
void s e n d R e q u e s t (Task t a s k , Res r e s) { . . . }
void s e n d C a n c e l (Task t a s k , Res r e s) { . . . }
void s l e e p () { . . . }

}

Tasks report success or failure back to the scheduler, as well as request and cancel re-
sources. Two resources can be declared as being in conflict with each other. Furthermore,
one resource r1 can be declared as having higher priority than another conflicting re-
source r2. Finally, the scheduler can be put to sleep during the dark nights on the for-
eign planet. The message sequence diagram in Figure 3 illustrates a possible sequence
of communication events: the scheduler commands a task to perform a job, the task then
requests a resource r1 which has higher priority than a conflicting resource r2 already
granted to another task, the other task is therefore asked to rescind r2, which it does,
after which the resource r1 is granted to the first task, which subsequently after done job
then hands back the resource r1, and reports success. We will consider four properties
for which we will write monitors in the various notations. These are:

1. Exactly One Success: An issued command, identified by a name and a running
job number, shall eventually succeed exactly once, and must not fail before then.

2. Respect Conflicts: A resource should not be granted if it is in conflict with another
already granted resource.

3. Respect Priorities: If a resource r1 is requested that has a priority higher than an
already granted resource r2, and there is not another granted resource with yet
higher priority than r1, then r2 should be rescinded before r1 is granted.

4. Release Resource: If a resource is granted during the execution of a command
then it should be released before the command succeeds.

8

We will not write monitors for all four properties in each notation, but we need a range
of examples due to the varying expressiveness of the systems presented.

5. Instrumentation with ASPECTJ

ASPECTJ is an implementation of the aspect-oriented programming (AOP) paradigm for
the JAVA programming language. We present general principles and motivations of AOP
and provide a brief overview of ASPECTJ’s main features needed for our RV purposes.

5.1. Aspect-Oriented Programming

The main motivation for AOP arises from the following observation: in software systems,
some concerns (e.g., logging, policy enforcement, security management, profiling, trace
visualization, and verification) are typically not implemented in a modular fashion. Such
concerns are referred as to cross-cutting concerns because they affect several modules of
the system. Cross-cutting code suffers from:

• code scattering: similar code is distributed throughout many modules;
• code tangling: two or more concerns are implemented in the same module.

AOP aims at solving these issues by allowing cross-cutting concerns to be defined in a
special kind of cross-cutting modules called aspects. An “aspectized” software system
usually comprises of a main application, implementing the basic functionalities, written
using traditional modules (classes in the case of JAVA), and then a set of aspects imple-
menting cross-cutting concerns. Code instrumentation is a cross-cutting concern that can
be implemented as aspects. These aspects observe the execution of events of interest in
the target system. Observations of these events trigger the execution of code that updates
the state of monitors.

The main concepts of AOP are those of: join points, pointcuts, advice, and aspects.
A join point is a well-identified point in the execution of a program. For instance, it can
be a method call or the access to an attribute. A pointcut is used to select some join points
and access their execution context. For instance, a pointcut can select the calls of methods
used to perform a given operation of interest. An advice consists of a pointcut and a
body of code, i.e., the code to be executed when join points matching the pointcut are
reached during the execution of the program. Finally, an aspect is defined as a collection
of pointcuts and advice. Aspects can also contain fields and methods, similar to a class.

5.2. Pointcuts

The general syntax of a pointcut is (ignoring access modifiers):

p o i n t c u t p o i n t c u t n a m e ([a rgumen t s]) : p o i n t c u t e x p r e s s i o n

where pointcut name is the pointcut name being defined, and pointcut expression is the
actual pointcut that the name will denote, and which can take various forms depending
on the kinds of join points that must be selected by this named pointcut. When observing
system execution, we are for example often interested in method calls. ASPECTJ also
allows us to observe many other events in programs such as class initialization, read/write

9

accesses to attributes, exception handler executions, etc. Let us consider an example of a
pointcut:

p o i n t c u t com (S t r i n g name , i n t number , Task t a s k) :
c a l l (void Task . sendCommand (S t r i n g , i n t))

&& args (name , number) && t a r g e t (t a s k) ;

This pointcut, named com, has three parameters: name, number, and task. It selects join
points which are calls to methods matching the signature void Task.sendCommand (String, int),
i.e., calls to the (unique) method sendCommand of the class Task that has parameters
of type String and int, and does not return a value. The directive args(name,number) indi-
cates that the parameter runtime values should be bound to name and number, allowing
the values of parameters to be accessed at runtime. The directive target (task) binds the
object on which the selected methods are called to task. Conjunction and disjunction of
pointcuts is achieved using the operators && and || , respectively.

5.3. Advice and Aspects

Recall that an advice consists of a pointcut and a code snippet that is executed when a
join point matching the pointcut is reached. The general syntax of an advice is:

a d v i c e k i n d ([a rgumen t s]) : p o i n t c u t e x p r e s s i o n {
a d v i c e b o d y

}

where advice kind indicates when the advice body, a statement, should execute when
the pointcut is matched by a join point. There are three kinds of advice: a before (resp.
after) advice executes the advice body before (resp. after) the join point; while with an
around advice, the advice body replaces the join point. In this later case, it is possible to
use a proceed statement in the advice body to execute the selected join point (hence the
term around). Arguments of the advice (in advice kind([arguments])) should be those
selected by the pointcut. These parameters are used by the advice body.

An aspect is a collection of pointcuts, advice, and JAVA class body declarations. The
following aspect checks that command job numbers increase by one. It consists of the
com pointcut and a before-advice that executes before any call to the Task.sendCommand
method. It also declares and uses a variable current for keeping track of the last command
number seen. Pointcut parameters are retrieved by the advice and used in the code body
to check the condition, as an assertion, followed by an update of the variable current.

p u b l i c a s p e c t I n c r e a s i n g N u m b e r s {
i n t c u r r e n t = 0 ;

p o i n t c u t com (S t r i n g name , i n t number , Task t a s k) :
c a l l (void Task . sendCommand (S t r i n g , i n t))

&& args (name , number) && t a r g e t (t a s k) ;

b e f or e (S t r i n g name , i n t number , Task t a s k) : com (name , number , t a s k) {
a s s e r t (number == c u r r e n t + 1) :

” wrong j o b number f o r ” + name + ” (” + t a s k . i d + ”) ” ;
c u r r e n t = number ;

}
}

10

6. Designing Monitors with ASPECTJ and JAVA

This section illustrates the considerable amount of effort required to write monitors for
the properties Exactly One Success and Respect Priorities in JAVA, while instrumenting
the code with ASPECTJ.

6.1. Defining Pointcuts

There are many approaches and styles possible when writing monitors in an aspect-
oriented framework such as ASPECTJ. One approach is for each property to be mod-
eled as a single self-contained aspect, including pointcut definitions. This may, however,
require repetition of pointcuts across aspects. A second approach is to have aspects be
concerned with instrumentation only, and let them communicate with separate property
objects, which then check the properties. Each such property object can either have a
method declared for each relevant event, or it can have a single submit(Event event)
method, where different events are defined as sub-classes of an abstract Event class. In
the following we have chosen a third approach, namely to first define an abstract aspect
which only defines all the pointcuts of interest. One can imagine this as a result of an
individual activity of identifying all events of interest in the rover code. Each property is
then defined as an aspect that extends this aspect, referring to a subset of these pointcuts,
depending on the property. The following aspect defines the pointcuts of interest:

a b s t r a c t a s p e c t P o i n t c u t s ex tends M o n i t o r U t i l s {
p o i n t c u t com (S t r i n g name , i n t number , Task t a s k) :

c a l l (void Task . sendCommand (S t r i n g , i n t))
&& args (name , number) && t a r g e t (t a s k) ;

p o i n t c u t suc (S t r i n g name , i n t number) : . . . ;
p o i n t c u t f a i l (S t r i n g name , i n t number) : . . . ;
p o i n t c u t c o n f l i c t (Res re s1 , Res r e s 2) : . . . ;
p o i n t c u t p r i o r i t y (Res re s1 , Res r e s 2) : . . . ;
p o i n t c u t r e q u e s t (Task t a s k , Res r e s) : . . . ;
p o i n t c u t g r a n t (Res r e s , Task t a s k) : . . . ;
p o i n t c u t c a n c e l (Task t a s k , Res r e s) : . . . ;
p o i n t c u t r e s c i n d (Res r e s , Task t a s k) : . . . ;
p o i n t c u t end () : c a l l (void S c h e d u l e r . s l e e p ()) ;

}

6.2. Specifying Exactly One Success

The Exactly One Success property is modeled by the following aspect. It models a state
machine with four states: an initial state, and the states issued (the command has been
issued), succeeded (the command has succeeded), and failed (either the command failed,
or succeeded more than once). The class Command, not shown, models a command
identified by a name and a number. The field states maps each command to a monitor for
this particular command; more specifically: to the state the monitor is in. Any command
identity not mapped to a state is considered in the initial state. Each advice instruments
one of the events (method calls) relevant to this property and performs an action based
on the active state for the particular command.

11

a s p e c t E x a c t l y O n e S u c c e s s ex tends P o i n t c u t s {
enum S t a t e { i s s u e d , succeeded , f a i l e d } ;
Map<Commmand , S t a t e> s t a t e s = new HashMap<Commmand , S t a t e > () ;

a f t e r (S t r i n g name , i n t number) : com (name , number , ∗) {
Commmand command = new Commmand(name , number) ;
S t a t e c u r r e n t = s t a t e s . g e t (command) ;
i f (c u r r e n t == n u l l) s t a t e s . p u t (command , S t a t e . i s s u e d) ;

}

a f t e r (S t r i n g name , i n t number) : suc (name , number) {
Commmand command = new Commmand(name , number) ;
S t a t e c u r r e n t = s t a t e s . g e t (command) ;
sw i t ch (c u r r e n t) {

case i s s u e d : s t a t e s . p u t (command , S t a t e . s u c c e e d e d) ; break ;
case s u c c e e d e d :

e r r o r (”command s u c c e e d e d more t h a n once ” + command) ;
s t a t e s . p u t (command , S t a t e . f a i l e d) ;

d e f a u l t :
}

}

a f t e r (S t r i n g name , i n t number) : f a i l (name , number) {
Commmand command = new Commmand(name , number) ;
S t a t e c u r r e n t = s t a t e s . g e t (command) ;
sw i t ch (c u r r e n t) {

case i s s u e d :
e r r o r (”command f a i l e d : ” + command) ;
s t a t e s . p u t (command , S t a t e . f a i l e d) ;

d e f a u l t :
}

}

a f t e r () : end () {
f o r (Commmand command : s t a t e s . k eyS e t ()) {

S t a t e c u r r e n t = s t a t e s . g e t (command) ;
sw i t ch (c u r r e n t) {

case i s s u e d : e r r o r (”command n o t s u c c e e d e d ” + command) ;
d e f a u l t :

}
}

}
}

A com(name,number,task) event causes an entry to be inserted in states pointing to the
issued state (if in the initial state before). Note that in the pointcut com(name,number,*)
we ignore the task, indicated by a ∗. A suc(name,number) event will make a transition
from issued to succeeded, or from succeeded to failure. The end() event causes an error to
be issued for all commands that are in the issued state, which is considered as a non-final
state, modeling that they have not yet succeeded.

6.3. Specifying Respect Priorities

The Respect Priorities property is modeled by the following aspect using three fields
as internal state. The field priorities maps a resource to the set of resources that have

12

lower priority, and is updated at occurrence of a priority(res1,res2) event. The allocated

field is a set of resources currently granted to tasks, and is updated at the occurrence
of grant(res,task) and cancel(task,res) events. The field toRescind maps a resource r to
the set of resources that need to be rescinded before r can be granted, and is updated
at the occurrence of request(task, res) and rescind(res,task) events, and queried at the
occurrence of a grant(res,task) event.

p u b l i c a s p e c t R e s p e c t P r i o r i t i e s ex tends P o i n t c u t s {
MapToSet<Res , Res> p r i o r i t i e s = new MapToSet<Res , Res > () ;
Set<Res> a l l o c a t e d = new HashSet<Res > () ;
MapToSet<Res , Res> t o R e s c i n d = new MapToSet<Res , Res > () ;

a f t e r (Res re s1 , Res r e s 2) : p r i o r i t y (r e s1 , r e s 2) {
p r i o r i t i e s . g e t S e t (r e s 1) . add (r e s 2) ;

}

a f t e r (Res r e s) : r e q u e s t (∗ , r e s) {
Set<Res> l ower = new HashSet<Res>(p r i o r i t i e s . g e t S e t (r e s)) ;
l ower . r e t a i n A l l (a l l o c a t e d) ;
i f (! l ower . i sEmpty ()) {

boolean h i g h e r E x i s t s = f a l s e ;
f o r (Res r : a l l o c a t e d) {

i f (p r i o r i t i e s . g e t S e t (r) . c o n t a i n s (r e s)) {
h i g h e r E x i s t s = t rue ; break ;

}
}
i f (! h i g h e r E x i s t s) {

Set<Res> r e s c i n d s = t o R e s c i n d . g e t S e t (r e s) ;
r e s c i n d s . a dd Al l (lower) ;

}
}

}

a f t e r (Res r e s) : g r a n t (r e s , ∗) {
Set<Res> r e s c i n d s = t o R e s c i n d . g e t S e t (r e s) ;
i f (! r e s c i n d s . i sEmpty ()) e r r o r (r e s + ” g r a n t e d b e f o r e r e s c i n d s ”) ;
a l l o c a t e d . add (r e s) ;

}

a f t e r (Res r e s) : c a n c e l (∗ , r e s) { a l l o c a t e d . remove (r e s) ; }

a f t e r (Res r e s) : r e s c i n d (r e s , ∗) {
f o r (Res r : t o R e s c i n d . k eyS e t ()) t o R e s c i n d . g e t S e t (r) . remove (r e s) ;

}
}

The class MapToSet〈A, B〉 models a mapping from A to Set〈B〉, and defines a method
getSet(A x) that in case x is not defined updates the map with the empty set, which is
then returned.

13

7. TRACEMATCHES

7.1. Overview

In the previous section we saw how ASPECTJ could be used to write monitors using
pointcuts denoting single points in the execution. TRACEMATCHES [3] is an extension
of the ASPECTJ language, implemented in the abc compiler [2], giving users the ability
to write monitors involving the history of computation. Regular expressions are given
over pointcuts with free variables in events used to capture parameters.

7.2. Introductory Example

Let us use TRACEMATCHES to specify our running Exactly One Success requirement.
We use the pointcuts introduced in Section 6 to capture the events of interest, here re-
ferred to as symbols, and then specify a regular expression over these:

p u b l i c a s p e c t E x a c t l y O n e S u c c e s s ex tends P o i n t c u t s {
tracematch (S t r i n g name , I n t e g e r number)
{

sym com a f t e r : com (name , number , ∗) ;
sym suc a f t e r : suc (name , number) ;
sym f a i l a f t e r : f a i l (name , number) ;

com (f a i l | suc suc)
{

e r r o r (”Command ”+name+” wi th i d ”+number+” f a i l e d . ”) ;
}

}
}

The regular expression matches if any suffix of the trace matches the expression - we say
TRACEMATCHES is suffix-matching. Here this is whenever a command is followed by a
failure or two successes. This specification is parameterised with name and number -
we can consider these variables universally quantified.

Let us consider what suffix-matching means by considering an alternative example.
We might wish to specify that grant and cancel should alternative for a particular re-
source. To specify this in TRACEMATCHES we need to consider what the end of a bad
trace would look like - in this case this is where we see a grant next to a grant or a cancel
next to a cancel. Assuming grant and cancel symbols relating to the relevant pointcuts
we would specify this property using the following regular expression:

g r a n t g r a n t | c a n c e l c a n c e l

A trace matches this tracematch if the subtrace relevant to a particular resource has a
suffix which matches the regular expression, for example the trace

grant(wheels). cancel(wheels) . grant(camera) . cancel(camera). cancel(wheels)

would match on the last event, and would therefore violate the property.

14

7.3. Semantics

In this section we will briefly present both a declarative and operational semantics of
TRACEMATCHES.

7.3.1. Core Concepts

We begin by formalizing the components of a tracematch. The sym keyword introduces
symbolic events, note that here we deviate from the presentation given in [3]. Let P be
the regular expression in the tracematch, defined over the set of symbolic events S.

Given an event e(v1, . . . , vk) and a symbolic event e(n1, . . . , nk) we can compute
the constraint: n1 = v1 ∧ . . .∧ nk = vk. This constraint represents the fact that an event
has been observed with these bindings. Since many events can be observed over time, in
general there is a need to operate with disjunctions of such constraints. Hence the general
form of a constraint is a disjunction: C1 ∨ . . . ∨ Cm, where each Ci is a conjunction of
the form: E1 ∧ . . .∧En of (in)equalities of the form n = v or n 6= v for some parameter
n and value v. Let Constraint be the type of such constraints. Note that a constraint
captures a set of bindings (solutions), the set of bindings satisfying the constraint.

From the set of symbolic events S we can extract a function M : Matcher of
the type Matcher = SymbolicEvent → (Event → Constraint), that produces a
constraint from a symbolic event and an event. The generated constraint captures the
binding of the parameters of the symbol to the argument values in the event. For example,
with symbolic events com(n, x) and suc(n, x), we get a M satisfying:

M(com(n, x))(com(A,1)) = (n = A ∧ x = 1) (1)

M(com(n, x))(suc(A,1)) = false (2)

Note the relation between this matcher and the match function defined in Section 3.5.1 -
in both cases a structure to represent bindings is constructed from a symbolic event and
an event. A tracematch can be considered as denoting a tuple 〈P,M,C〉 consisting of a
regular expression P , a matcher M , and a code block C to be executed when P matches
an execution trace.

We can now define the constraint resulting from matching a sequence of symbolic
events (a word over the regular expression P) against a trace of events. Given a matcher
M , a sequence of symbolic events a1. . .am matched against a trace of events e1. . .en
results in the constraint defined by the following function:

matchM ([a1. . .am], [e1. . .en]) =

{∧
iM(ai)(ei) if m = n

false otherwise

Given a particular binding, the concept of a matcher can be further constrained to respect
that binding. Observe first that a binding (binding all of the tracematch’s parameters) can
be applied to a constraint to get a truth value (itself a constraint) e.g.,

[n 7→ A, x 7→ 1] ((n=A ∧ x=1) ∨ (n=B ∧ x=2)) = (A=A ∧ 1=1) ∨ (A=B ∧ 1=2)
= true ∨ false
= true

15

We can define a function that for a given constraint C yields the solutions (bindings) to
the constraint:

solutions(C) = {θ | θ(C) = true}

Given a matcherM , and a binding θ, we can now define the binding-constrained matcher:
Mθ : Matcher = λa.λe.θ(M(a)(e)).

7.3.2. Declarative Semantics

The objective of a declarative semantics of TRACEMATCHES is to determine for a given
trace of events τ (observed so far) what bindings of the tracematch’s parameters, if any,
make this trace satisfy the regular expression P . We start by defining which events are
relevant to a binding θ, given a matcher M :

relevantM (θ) = {e | ∃a ∈ S : θ(M(a)(e)) = true}

We can filter irrelevant events out of a trace, given a matcher M and a binding θ:

ε �Mθ = ε τe �Mθ

{
(τ �Mθ)e if e ∈ relevantM (θ)
(τ �Mθ) otherwise

We can now define a predicate satisfyPM (τ, θ) determining whether a trace τ satisfies a
tracematch 〈P,M,C〉, given a specific binding θ. Briefly this is the case if τ matches
with a word in L(P) and its last event is relevant. This last condition is important as
otherwise irrelevant events could cause matching:

satisfyPM (τ, θ) =
∨

σ∈L(P)

matchMθ (σ, τ �Mθ) ∧ last(τ) ∈ relevantM (θ)

We can now define the set of bindings generated from a trace τ , each of which will cause
execution of the code associated with the tracematch:

bindingsPM (τ) = {θ | τ ′ is a suffix of τ ∧ satisfyPM (τ ′, θ)}

The intention is that the function bindings is applied at each step during monitoring where
τ represents the current trace of events. If the set of bindings is empty in a particular
step no code will get executed. The above semantics is of course very inefficient (even
not computable as presented) and an equivalent operational more efficient semantics is
needed, as introduced in the following section.

7.3.3. Operational Semantics

Given tracematch 〈P,M,C〉, we shall construct a state machine labelled with constraints
that are updated as events are consumed. If a constraint labelling a final state has so-
lutions (bindings satisfying the constraint) then the code C will be executed for each
solution. The approach is to use P to generate a regular expression P+, which can be
used to construct the state machine. P+ should be such that, according to the declarative
semantics, a trace matches P+ if: (i) a relevant suffix of that trace matches P and (ii) the
last event of the trace is relevant. Formally P+ should satisfy the following equation:

16

bindingsPM (τ) = solutions(
∨

σ∈L(P+)

matchM (σ, τ))

This equation formalizes the idea that for a given trace τ , we follow each word through
the automaton for P+, and collect the solution(s) to the generated constraint. Note that
in contrast to the definition of bindingsPM (τ) in the declarative semantics, P+ takes care
of (i) and (ii) above. It is for example a regular expression on the full trace. To achieve
this, P+ is defined as follows:

P+ = U∗(P ‖ skip∗)︸ ︷︷ ︸
(i)

∩(Σ∗S)︸ ︷︷ ︸
(ii)

Where U is the set of all symbolic events, ‖ is the interleaving operation and skip is a
special symbolic event that matches irrelevant events. We define this special symbolic
event skip in terms of how it is interpreted by M , its main function is to ensure that we
do not skip relevant events. We will achieve this by making it produce a constraint that
will remove any existing constraints relevant to the event. Therefore, for a constraint to
remain on a state it must be reintroduced by an incoming transition. As n event is relevant
to constraint C iff ∃a ∈ S : (M(a)(e) ∧ C) 6= false we let skip be defined by:

M(skip)(e) =
∧
a∈S
¬M(a)(e)

This achieves our aim - if e is relevant to some constraint C then M(skip)(e) will
contradict C. For example M(skip)(com(A,1)) would be:

¬M(com(n, x))(com(A,1)) ∧ ¬M(suc(n, x))(com(A,1)) ∧ ¬M(fail(n, x))(com(A,1))
= ¬(n = A ∧ x = 1) ∧ ¬false ∧ ¬false
= (n 6= A ∨ x 6= 1)

Which contradicts (n = A ∧ x = 1). Note that if e is not in S this will be true.
Based on this operational semantics, we can consider an implementation which

would realise TRACEMATCHES. Firstly we construct an automaton for P+ - this adds
self-looping transitions for skip to P , except in the final states. We then associate a label
(of constraints) with each state and update this label for state i as follows:

labeli
′ =

∨
j
a→i

(labelj ∧M(a)(e))


As we have self-looping skip transitions on non-final states, the part of a state’s constraint
which is not relevant to e is kept. We also add (or ’move’) the relevant (to e) part of any
constraint labelling a state with a transition to i.

7.4. Worked Example

Let us consider the Respect Conflicts property. A trace should match if there is a conflict
between resource r1 and resource r2 and they are (at some point) granted at the same
time - note that cancel r2 is not defined here so the ordering matters.

17

1 2 3

4 5

conflict(r1, r2),
conflict(r2, r1)

skip,
conflict(r1, r2),
conflict(r2, r1)

grant 2(r2),
cancel 1(r1)

grant 1(r1) grant r2(r2)

grant 1(r1) cancel 1(r1)

grant 1(r1), skip

grant 2(r2),
cancel 1(r1),
skip

Figure 4. A finite state machine for the Respect Conflicts property.

Trace State constraints
Let C1 = (r1=w ∧ r2=c) and C2 = (r1=c ∧ r2=w)

1 2 3 4 5
true false false false false

conflict(w,c) true C1 ∨ C2 false false false
grant(w) true false C2 C1 false
cancel(w) true false C1 ∨ C2 false false
grant(c) true false C1 C2 false
grant(c) true false C1 false C2

Figure 5. Evaluating a trace for the Respect Conflicts example.

p u b l i c a s p e c t R e s p e c t C o n f l i c t s ex tends P o i n t c u t s {
tracematch (Res r1 , Res r2)
{

sym c o n f l i c t a f t e r : (c o n f l i c t (r1 , r2) | | c o n f l i c t (r2 , r1)) ;
sym g r a n t 1 a f t e r : g r a n t (r1 , ∗) ;
sym c a n c e l 1 a f t e r : c a n c e l (r1 , ∗) ;
sym g r a n t 2 a f t e r : g r a n t (r2 , ∗) ;

c o n f l i c t + (g r a n t 1 | c a n c e l 1 | g r a n t 2)∗ g r a n t 1 g r a n t 2
{

i f (r1 != r2)
e r r o r (” C o n f l i c t i n g r e s o u r c e s ”+ r1 + ” and ”+ r2 +” bo th g r a n t e d ”) ;

}
}

}

We first generate the state machine in Figure 4 and associate the true constraint to state
1 and false to every other state. Note that when extracting S from the tracematch the
sym command for conflict introduces two events as it is a disjunction (although we
can only refer to them together in P). Figure 5 then demonstrates how constraints are
updated for each state for a given trace dealing with the wheels (w) and camera (c).
Consider, for example, the evaluation of the second event. The constraint C1 is removed
from state 2 by skip as it is relevant to the event, it is also added to state 4 as

(C1 ∨ C2) ∧M(grant(r1))(grant(w)) = (C1 ∨ C2) ∧ (r1 = w) = C1

After evaluating the trace there exists a constraint, C2, labelling the accepting state 5. We
then execute the code for the solution to this constraint - the binding [r1 7→ c, r2 7→ w].

18

8. JAVAMOP

8.1. Overview

JAVAMOP [15,10,1] is a tool and an associated specification language from the
Monitoring-Oriented Programming (MOP) approach - an attempt to formalise the pro-
cess of monitoring programs as a programming methodology. JAVAMOP is packaged as
a stand-alone tool that compiles specifications into ASPECTJ aspects. Aspects can then
be directly weaved into the monitored system. JAVAMOP allows a user to embed code
(actions) into the specification, making feedback part of the system. In this section we
will see how JAVAMOP combines parametric trace slicing with logic plugins to give a
generic framework for parametric runtime monitoring.

8.2. Introductory Example

Let us consider our running Exactly One Success property. JAVAMOP does not allow
us to import pointcuts so we would have to expand those defined in Section 6 in the
following:

E x a c t l y O n e S u c c e s s (S t r i n g n , I n t e g e r x) {

event com a f t e r (S t r i n g n , I n t e g e r x) : com (n , x ,∗){}
event suc a f t e r (S t r i n g n , I n t e g e r x) : suc (n , x){}
event f a i l a f t e r (S t r i n g n , I n t e g e r x) : f a i l (n , x){}

/ / t h e s p e c i f i c a t i o n u s i n g some l o g i c p l u g i n
}

JAVAMOP provides different logic plugins to specify properties over the given events.
We can use regular expressions in the same way as TRACEMATCHES - describing the
behaviour leading to failure. By default this is matched against the whole trace, however
JAVAMOP can also run in suffix-matching mode to give the same behaviour as TRACE-
MATCHES. A code segment can be associated with the matching of a regular expression:

e r e : com (f a i l | (suc suc))
@match{ e r r o r (”Command (”+n+” , ”+x+”) f a i l e d ! ”) ; }

Here ere indicates that the ‘extended regular expression’ logic plugin is being used.
Alternatively, it is possible to define correct behaviour and look for deviations. In this
case we associate the code snippet with the failure to match a regular expression:

e r e : com suc
@fa i l{ e r r o r (”Command (”+n+” , ”+x+”) f a i l e d ! ”) ; }

Alternatively we can use the ‘finite state machine’ plugin to take remedial action on
command failure by keeping track of the current state of the property and associating
actions with each state:

19

fsm :
s t a r t [

com −> a c t i v e
]
a c t i v e [

suc −> done
f a i l −> f a i l e d

]
done [

suc −> twoSuccess
]
f a i l e d []
twoSuccess []

@fa i l{ e r r o r (n , x , ” u n e x p e c t e d a c t i o n ”) ; }
@act ive{ l o g . p r i n t (”Command (”+n+” , ”+x+”) i s s u e d . ”) ; }
@f a i l e d{

l o g . p r i n t (”Command (”+n+” , ”+x+”) f a i l e d , r e s e n d i n g . ”) ;
r e s e n d (n , x) ;

}
@twoSuccess{

l o g . p r i n t (”Command (”+n+” , ”+x+”) has s u c c e e d e d t w i c e . ”) ;
e r r o r (n , x , ” twoSucces s ”) ;

}

The fsm logic assumes that if no transition can be taken then a failure occurs, implicitly
‘completing’ the state machine to a hidden fail state (distinct from the failure state).

Let us now consider how we should interpret these specifications. To do this we must
understand how data values are dealt with. JAVAMOP uses the notion of parametric trace
slicing to slice the trace into a set of propositional traces, one for each set of parameters.
As an example, let us consider the following trace:

com(“move”,1).suc(“move”,1).com(“stop”,1).suc(“move”,1).

We have two bindings of the parameters and, in this simple example, we can easily
identify the propositional traces associated with each of them:

[name 7→ “move”, x 7→ 1] 7→ com.suc.suc
[name 7→ “stop”, x 7→ 1] 7→ com

A propositional ‘plugin’ can then be used to check each of these propositional traces.
Generally this involves constructing a state machine, directly or indirectly, from the
propositional specification and finding the state reached by the propositional trace. For
each binding, the appropriate action can then be selected based on this state.

8.3. The Underling Theory behind MOP

JAVAMOP consists of two parts. First, the parametric trace slicing technique slices a
parametric trace into a set of propositional traces, each associated with a binding. Second,
a logic plugin defines how to interpret each propositional trace. Furthermore, JAVAMOP
can run in different modes - changing how the specification should be interpreted.

20

The theory behind JAVAMOP is defined in terms of parameterized events, which are
distinct from the events introduced in Section 3.2. A parameterized event is a pair in the
set Σ×Binding , where Σ is a set of event names. To translate events into parameterized
events we introduce a function based on concepts introduced in section 3.5.1 to give the
unique binding for an incoming event. To ensure this binding is unique the set of sym-
bolic events S cannot contain two events with the same name. Given a set of symbolic
events S and an event e(v) we define the translation as follows:

match(S, e(v)) = e(match(a, e(v))) where a ∈ S and matches(a, e(v))

This restriction on S is limiting. Furthermore, in JAVAMOP one cannot define the events
grant r1 and grant r2 both related to the same pointcut (but with different vari-
ables), as we did with TRACEMATCHES, and we can therefore not specify the Respect
Conflicts example using JAVAMOP without resorting to programming (as in Section 5).

Let us introduce parametric trace slicing as an implementation of the function:

pts ∈ Trace(Event)× Binding → Trace(Σ).

For a given binding of variables, a trace ’slice’ (subtrace) is defined as the largest relevant
subtrace. An event e(θ′) is relevant to a binding θ if it only includes things mentioned in
θ, i.e., θ′ is a submap of θ. Therefore, we define our function as pts(τ, θ) = τ ↓θ where

ε ↓θ= ε e(θ′)τ ↓θ=
{
e(τ ↓θ) if θ′ v θ
τ ↓θ otherwise

Note the similarity with filtering in TRACEMATCHES on page 16.
The propositional traces produced by parametric trace slicing are then interpreted

by a logic plugin, which provides the following function for a given set of verdicts:

plugin ∈ Trace(Σ)→ Verdict

The logic plugins currently provided include: Finite State Machines (fsm), Extended
Regular Expressions (ere), Context Free Grammars (cfg), Linear Temporal Logic (ltl)
and String Rewriting Systems (srs).

Code snippets (actions) are associated with verdicts produced by the logic plugin -
match, fail or (sets of) states in a finite state machine. This code can contain variables
which need to be instantiated - which can be provided by a binding. Given a piece of
code γ we write its execution for binding θ as γ(θ). We define an action as follows:

Action = Verdict × (Code

We can then execute the appropriate code using the two functions previously introduced
to give a verdict for a trace given a binding and then determine the code to execute on
observing a parametric trace τ :

check ∈ Trace(Event)× Binding → Verdict = plugin ◦ pts
execute(τ) = act .snd(θ) for any θ where act ∈ Actions ∧ act .fst = check(τ, θ)}

Finally, JAVAMOP can be run in different modes. Let us discuss those modes which alter
the semantics. Firstly, two modes determine the traces passed into the system:

21

• suffix - Performs suffix matching rather than total matching.
• perthread - Constructs a separate trace per program thread.

Then three modes place filters on the set execute(τ) to contain:

• full-binding - Only bindings that bind all variables in the specification.
• maximal-bindings - Only bindings maximal in that set with respect to v.
• connected - Only connected bindings. A binding is connected if all bound

values are connected (transitively) by events.

The last mode is interesting as it allows us to define behaviors for objects related by
events. For example - for every resource used by some task.

8.4. A Basic Monitoring Algorithm
Input: a parametric trace τ
Output: Matching bindings
∆ : [Bind ⇁ State]; Θ : Bind ;1
∆← [⊥ → q0] ;2
foreach event e(v) ∈ τ in order do3
θ ← match(S, e(v));4
Θ← dom(∆);5
foreach θ′ ∈ Θ do6

if θ is consistent with θ′ then7
θmax ← θ′;8
foreach θalt ∈ Θ do9

if θmax v θalt v θ † θ′10
then θmax = θalt

∆(θ † θ′)← δ(∆(θmax), e)11

return {θ ∈ dom(∆) | ∆(θ) ∈ F}12

Figure 6.: A basic monitoring algorithm.

Figure 6 gives an algorithm for monitor-
ing a trace given a specification using a
set of symbolic events A and presented
as a finite state machine with transition
function δ and set of final states F . We
will consider only logic plugins which
can be translated to finite-state machines
(and give no details of this translation).
We will not consider alterations required
for different modes. These details are dis-
cussed in further details in [15].

A map ∆, from bindings to states
in the finite state machine is constructed,
first being initialised with the empty
binding (⊥) mapped to the initial state
(q0). Then, for each event in the trace, the
binding θ is extracted from the event (line
4) and each previously seen binding θ′ is examined. If θ′ is consistent with θ (they agree
on all shared variables) then we find the maximal existing consistent binding θm (lines 9
and 10) and use this to create an entry in ∆ (line 11). Note that if θ has been previously
seen then θm = θ. We consider this process further in the next section where we examine
a worked example.

8.5. Worked Example

Let us examine the Release Resource property. We define this property using the ere
logic plugin as follows:

R e l e a s e R e s o u r c e (S t r i n g n , i n t x , i n t t , Res r){

event com b e f or e (S t r i n g n , i n t x , i n t t) : com (n , x , t){}
event suc b e f or e (S t r i n g n , i n t x) : suc (n , x) { }
event g r a n t b e f or e (Res r , i n t t) : g r a n t (r , t) { }
event c a n c e l b e f or e (Res r , i n t t) : c a n c e l (r , t) { }

22

e r e : com (g r a n t c a n c e l)∗ g r a n t suc

@match{
System . e r r . p r i n t l n (” Resource ”+ r +” n o t r e l e a s e d b e f o r e command ”+n+” : ”

+x+” comple t ed by t a s k ”+ t) ;
}

}

The first step requires us to translate the regular expression into a finite state machine,
as given in Figure 7. Figure 8 illustrates monitoring of the trace using the algorithm in
Figure 6. Let us consider how ∆ is updated. To begin with, ∆ contains only the empty
binding mapped to the initial state. On receiving the first event, the extracted binding is
θ1 = [n 7→ A, x 7→ 1, t 7→ 10] and as the only existing binding is the empty binding
a new entry is created in ∆ for θ1, using the state associated with the empty binding.
On receiving the second event, the binding θ2 = [t 7→ 10, r 7→ Z] is extracted. By
considering the empty binding an entry for θ2 is added to ∆. The interesting step which
captures the main intuition behind this algorithm occurs when consider what happens
when we consider the existing binding θ1. The bindings θ1 and θ2 are consistent and the
maximal binding is θ1 - as demonstrated in the lattice on the right of Figure 8. Therefore
an entry is created for the binding θ2 † θ1 using the state associated with θ1. The rest
of the trace is processed as above and we reach an accepting state on the final event,
indicating that the specification has been violated.

1 2 3 4
com

grant

cancel

suc

Figure 7. A finite state machine for the regular expression used in the Release Resource property.

∆

Binding Trace

n x t r c
o
m

(A
,1

,1
0)

g
r
a
n
t

(1
0,

Z
)

g
r
a
n
t

(1
0,

Y
)

c
a
n
c
e
l

(1
0,

Y
)

s
u
c

(A
,1

)

- - - - 1 1 1 1 1
A 1 10 - 2 2 2 2 1
A 1 10 Z - 3 3 3 4
- - 10 Z - F F F F
A 1 10 Y - - 3 2 2
- - 10 Y - - F F F

(-,-,-,-)

(A,1,10,-) (-,-,10,Y)(-,-,10,Z)

(A,1,10,Z) (A,1,10,Y)

Figure 8. Monitoring a trace with the algorithm in Figure 6. The table on the left gives ∆ for each event. The
lattice on the right demonstrates the relationship between the bindings in ∆.

23

9. RULER-lite

9.1. Overview

In this section we introduce RULER-lite, a cut-down version of the RULER [8] system.
RULER is a highly expressive rule-based runtime verification system. It has its roots in
EAGLE [4] - a general-purpose, rule-based, temporal system for defining, or program-
ming, monitors for complex temporal behavioral patterns. The EAGLE logic was highly
expressive, yet an efficient monitoring algorithm remained elusive, partly due to the com-
plex constructs used in EAGLE’s logic. RULER was developed as a low-level system,
into which specifications written in languages such as EAGLE could be compiled. How-
ever, it became clear that the low-level formulation of rule systems was an intuitive and
powerful approach, and RULER became a runtime verification system in its own right.

RULER-lite is a cut-down version of RULER developed for this chapter. It removes
many of the powerful features of RULER, whilst remaining highly expressive. The main
features that are excluded are parameterization of rules with facts, multiple events in a
single step, run-to-completion evaluation and monitor combination (leading to a four,
rather than five valued logic as monitor combination can introduce an ’unknown’ result’).

9.2. RULER-lite by Example r u l e r E x a c t l y O n e S u c c e s s {
o b s e r v e s

com (s t r i n g , i n t) ,
suc (s t r i n g , i n t) ,
f a i l (s t r i n g , i n t) ;

always S t a r t (){
com (n : s t r i n g , x : i n t)
−> A c t i v e (n , x) ;

}
s t a t e A c t i v e (n : s t r i n g , x : i n t){

suc (n , x) −> Done (n , x) ;
f a i l (n , x) −> f a i l ;

}
s t a t e Done (n : s t r i n g , x : i n t){

suc (n , x) −> f a i l ;
}
i n i t i a l s S t a r t ;
forb idden A c t i v e ;

}

Figure 9.: RULER-lite specification for the Ex-
actly One Success property.

Figure 9 gives a RULER-lite specification for
our running Exactly One Success example
property. The specification consists of three
main parts - a list of event definitions, a list of
rules, and a list of verdict conditions.

We first introduce the three events that
can be observed with given parameter types.
Next, we have a list of rule definitions.
RULER-lite’s main idea is to use events to
rewrite sets of facts about the monitored sys-
tem, with verdicts based on the (non) exis-
tence of certain facts. Properties are captured
by a rule system, where a rule indicates how a
certain type of fact should be rewritten.

A rule system describes an infinite state
system - a set of facts is a state and an ob-
served event causes a state to be rewritten into
a new state. Figure 10 gives a partial unrolling of the system described by our property
i.e., Active(A,1) and Start are facts. This rewriting process may be non-deterministic - one
concrete event may lead to more than one state. Therefore a monitor stores the current
set of active states, called a frontier i.e., a monitor state is a set of states.

These facts either record past behaviour or introduce obligations of future behavior.
A rule consists of a name, a list of parameters and a list of rewrite rules of the form

c1 ∧ . . . ∧ cn → (o1 ∧ . . . ∧ oj) ∨ . . . ∨ (ok ∧ . . . ok+l)

24

{ Start }

{
Start,

Active(B,2)

}{
Start,

Active(A,1)

}
{. . .}


Start,

Active(A,1),
Active(B,2)


{

Start,
Done(A,1)

}{}

{. . .}{. . .}

com(A,1)

com(B,2)

. . .

fail(A,1)

suc(A,1) com(B,2) com(A,1)

. . .
. . .

Figure 10. Part of infinite state machine described by the Exactly One Success property as given in Figure 9.

Verdict Indicates Condition on frontier.
True Ultimate success An empty state or a state containing a success fact.
False Ultimate failure An empty frontier.
Still True Current success One state with non-forbidden facts.
Still False Current failure Otherwise - all states contain forbidden facts.

Table 1. An explanation of verdicts.

where ci is a condition and oi is an obligation. This can be read as if all conditions are
true in the present then the future must satisfy one set of obligations. Conditions and
obligations are written using facts and conditions can refer to the incoming event.

The last part of the specification gives the initial frontier, here the fact Start, and then
gives sets of rule names for deciding verdicts - there are three possible sets of rule names
- if a state contains a forbidden rule name then it is currently failing, if a state contains a
succeed rule name then it is completely successful and if a state doesn’t fire an asserted
rule on each step it is completely failing.

RULER-lite uses a four-valued verdict logic, summarized in Table 1, which is based
on the frontier. If a state is empty then all obligations have been met (the property cannot
fail). If the frontier is empty then no state met their obligations (the property cannot
succeed). If a state contains no forbidden facts then the property is currently being met -
but this is not final. If all states contain forbidden facts the property is currently failing,
but this is not final.

In the specification given in Figure 9 we return the verdict Still False if an issued
command has not yet succeeded, False if a command has failed or succeeded more than
once, and Still True otherwise. Still False is returned because of the forbidden command
and Fail because of the fail obligation in the Active and Done rules. The fail obligation
is one of two special obligations that can be added to a state - fail causes the state to be
removed from the frontier and ok causes the state to collapse, leaving an empty state.

Trace Frontier
{{Start }}

com(move,1) {{Start,Active(move,1)}}}
suc(move,1) {{Start,Done(move,1)}}
com(stop,2) {{Start,Done(move,1),

Active(“stop”,2)}}}
suc(move,1) { }

Table 2.: Processing a trace.

Let us consider how the rule system
in Figure 9 should be interpreted using the
example trace in Table 2. We consider this
process an event at a time. The initial fron-
tier consists of a single state containing a
Start fact - there is no non-determinism so
we will only be dealing with a single state.
For the first event, com(move,1), we con-

25

sider the only fact in the state - Start. We unify com(move,1) with com(n:string ,x: int) to
give us a binding [n 7→ move, x 7→ 1] and use this to add a new fact Active(move,1) to
the state. We add the Start fact back into the state due to its always-modifier. Each rule
has a modifier indicating what should happen to a fact of that kind when it fires. This can
be either step - only be active for a single step, state - active until ‘fired’, or always -
active until removed by negation. Therefore, in this case Active facts are removed when
fired, but the Start fact is never removed. Finally, we return the Still False verdict as there
is a forbidden Active fact in the state - we have a command that has not yet succeeded.
For the next observed event, suc(move,1), we check if each fact in the state can fire. By
applying the binding in the fact Active(move,1) we match the condition success (move,1) in
the Active rule’s first rewrite rule and add the fact Done(move,1) to the state. The state
modifier tells us to remove the Active(move,1) fact. We return the Still True verdict. The
third event is processed in the same way as the first, adding another fact to the state and
returning Still False. Finally, another suc(move,1) event is received. The Done rule is
the only active rule which fires, adding the fail obligation to the state, causing it to be
removed and leaving an empty frontier. As indicated in Table 1, an empty frontier rep-
resents failure and False is returned as the given trace violates our property - the move
command with id 1 succeeds twice.

9.3. Rule Systems

We present the objects described in the previous sections more formally. We assume a
set of rule names Name . As rules may refer to facts we introduce these first.

Definition 7 (Fact) A fact 〈r, ϕ〉 is a pair consisting of a rule name and a binding i.e.
Fact = Name × Binding .

Events and facts may appear in the conditions of rewrite rules with values, bound vari-
ables or free variables in their parameter lists. To capture free variables we introduce
introductions, for example com(n:string ,x: int) is an event introduction.

Definition 8 (Event and fact introductions) An introduction is a pair x : t where x is a
variable and t is a type. An event introduction is a pair 〈e, z〉 where e ∈ Σ and z is a list
of values, variables, or introductions. A fact introduction 〈n, ϕ,Γ〉 extends the concept
of a fact with a map from variables to introductions.

Conditions and obligations are statements over events and facts. Conditions may intro-
duce new variables, whereas obligations cannot.

Definition 9 (Conditions and obligations) An obligation is a (possibly negated) fact. A
condition may be either a (possibly negated) event or fact introduction, or a well-typed
boolean expression over variables.

A list of obligations os can be instantiated with a binding θ by replacing all variables in
os with their associated value in θ. We use conditions and obligations to build rules.

Definition 10 (Rule) A rule is a tuple 〈modifier,name, (x1 : t1, . . . xn : tn), R〉
where modifer ∈ {step, state,always} is a persistence modifier, name ∈ Name ,
(x1 : t1, . . . xn : tn) are the rule’s parameters and R is a set of rewrite rules of the form
cs → os1 ∨ . . . ∨ osk where cs is a condition list and osi is an obligation list.

26

Definition 11 (Rule system) A rule system is a map (partial function) from rule names
to rules i.e. RuleSystem = String ⇀ Rule .

Defining a rule system as a map from rule names to rules allows us to easily access the
rule associated with a given a fact. Facts are gathered together in states in a frontier.

Definition 12 (State and frontier) A state is a set of facts and a frontier is a set of states
i.e., State ⊂ Fact and Frontier ⊂ State.

There are a number of well-formedness conditions. A fact 〈n, ϕ〉 is well-formed iff
dom(ϕ) equals the parameters of the associated rule. A fact introduction 〈n, ϕ,Γ〉 is
well formed iff dom(ϕ) ∩ dom(Γ) = ∅ and dom(ϕ) ∪ dom(Γ) equals the parameters
of the associated rule. A condition list is well formed if an introduced variable is not
used before it is introduced. A rule 〈m,n, p,R〉 is well-formed if for each rewrite rule
cs → os1 ∨ . . .∨ osk ∈ R the non-introduced variables in cs are contained in p, and the
variables of each osi are contained in either p or the variables introduced in cs .

9.4. Monitoring Algorithm frontier : Frontier := initials ;1
RS : RuleSystem := rule system;2

foreach event ∈ trace do3
frontier := PROCESS(event);4
output CHECK(frontier)5

PROCESS(event):6
begin7

newF = ∅;8
foreach s ∈ frontier do9

P := ∅; N := { ∅ };10
foreach 〈n, θ〉 ∈ s do11
〈m,n, ,R〉 = RS(n);12
if m 6= step then13

P = P + 〈n, θ〉14

foreach (cs → Os) ∈ R do15
B :=16
UNIFY(θ, cs, s,event);
foreach θ′ ∈ B do17

N = {s′ ∪ os(θ′) |18
s′ ∈ N, os ∈ Os};19

if m=state then20
P := P - 〈n, θ〉21

if assert is not empty then22
N := {s′ ∈ N | ∃〈n, θ〉 ∈ s :23

n ∈ assert }24
newF ∪ = {P ∪ s′ | s′ ∈ N}25

return newF26
end27

Figure 11.: A monitoring algorithm.

Figure 11 gives a monitoring algorithm for
RULER-lite which takes a rule system and
computes a verdict for each event in a trace,
making use of algorithms given in Fig-
ures 12 and 13. The algorithm consists of
a main loop over the given trace and two
functions - one to process an event, and one
to check the frontier. The frontier is initial-
ized using the initials set.

The PROCESS function builds a new
frontier by rewriting each state in the old
frontier into a set of states. For each state
we use P to keep track of the persistent
facts from the previous state and N to build
up the new states to be added. A fact is per-
sistent if it is an always rule (lines 13-4) or
an unfired state rule (lines 13-4, 20-1).

For each fact in a state and each
rewrite rule in the associated rule, we use
the UNIFY function in Figure 13 to build
up a set of bindings which satisfy the con-
dition list of that rewrite rule (line 16), if
this set is empty then the condition cannot
be satisfied and the rule is not fired, oth-
erwise the rule is fired for each binding.
To fire a rule we use the bindings to in-
stantiate the rewrite rule’s obligations (line
18). The computed states are filtered for as-
serted rule names if given (lines 23-4) and
then combined with the persistent rules and added to the new frontier (line 25).

27

CHECK(frontier):1
begin2

frontier := collapse(frontier);3
if frontier= ∅ then return False;4
else if ∅ ∈frontier or s ∩ succeed 6= ∅5
then return True;6
else if ∀s ∈frontier. s ∩ forbidden 6= ∅7
then return Still False;
else return Still True;8

end9

Figure 12.: Computing a verdict.

The CHECK function imple-
ments Table 1. This introduces the
collapse function to resolve any
negated facts in a state - if ¬〈n, θ〉 ∈
s then all instances of 〈n, θ〉 and
¬〈n, θ〉 are removed from s. This
may cause a state to become empty,
and is the only way in which a fact
with always persistence is removed.

UNIFY(θ, cs, s ,event):1
if cs is empty then return {θ} else2

c := head(cs);3
if c is ¬c′ and UNIFY(θ,[c′],s ,event) = ∅ then return UNIFY(θ,tail(cs),s ,event)4
else if c is boolean expression ψ and θ |= ψ then return UNIFY(θ,tail(cs),s ,event)5
else if c is event introduction e(. . . , zi, . . .) and matches(e(. . . , yi, . . .), event) where6

yi =


v if yi is value v
θ(x) if yi is variable x
x if yi is introduction x : t

then

return UNIFY(θ † match(e(. . . , yi, . . .), event),tail(cs),s ,event)7

else if c is fact introduction 〈n, ϕ,Γ〉 then8
B := {[. . . , xi 7→ ϕ′(xi), . . .] | 〈n, ϕ′〉 ∈ s ∧ ϕ′ v θ † ϕ ∧ xi ∈ dom(Γ)}9
return

⋃
ϕ′∈B UNIFY(θ † ϕ′,tail(cs),s ,event)10

else return ∅11
Figure 13. Unify function

9.5. A Worked Example
r u l e r R e s p e c t P r i o r i t i e s {

o b s e r v e s
p r i o r i t y (obj , obj) ,
r e q u e s t (obj) , g r a n t (obj) ,
c a n c e l (obj) , r e s c i n d (obj) ;

always S t a r t (){
p r i o r i t y (x : obj , y : obj)

−> P (x , y) ;
g r a n t (x : obj) −> G(x) ;

}
s t a t e P (x : obj , y : obj){}
always G(x : obj){

c a n c e l (x) −> !G(x) ;
r e q u e s t (y : obj) , P (y , x)
{ :

P (z : obj , y) ,G(z) −> Ok ;
d e f a u l t −> Res (x , y) ;

:}
}
s t a t e Res (x : obj , y : obj){

r e s c i n d (x) −> Ok ;
g r a n t (y) −> F a i l ;
}
i n i t i a l s S t a r t ;

}

Figure 14.: Specifying the Respect Priori-
ties property.

Figure 14 gives the RULER-lite specification for
the Respect Priorities property. We show in Fig-
ure 15 how this rule system is used to rewrite an
initial state for a trace of events dealing with the
camera and wheel resources - we abbreviate these
to c and w respectively.

The first event causes P(c,w) to be added,
recording that the camera has higher priority than
the wheels, and the second event introduces G(w)
to record that the wheels have been granted. On
receiving the third event we satisfy the conditions
of a rewrite rule in the G rule. The {: A;B;. . . :}
notation is syntactic sugar for saying if A does not
fire try B and so on - note that we use a com-
mon condition prefix. Unifying request(c) with
request (x:obj) under [y 7→ c] gives us [x 7→ w, y 7→
c] so we check if the state contains P(c,w), which
it does. As we cannot find a fact in the state match-
ing P(z:obj,c) we fall through to the default be-
haviour of adding the fact Res(w,c) to the state.

28

{Start}
priority(c,w)
−→

{
Start,
P(c,w)

}
grant(w)
−→


Start,

P(c,w),
G(w)

 request(c)
−→


Start,

P(c,w),
G(w),

Res(w,c)


grant(c)
−→ {}

Figure 15. Rewriting a state for the Respect Priorities property.

The final event matches with the grant (y) condition in the Res rule, adding the fail obli-
gation and collapsing the state. The state is empty and the False verdict is returned.

10. TRACECONTRACT

10.1. Overview

In the previous sections we have seen three examples of DSLs (Domain-Specific Lan-
guages) for writing runtime monitors. These DSLs are so-called external in the sense
that they are stand-alone, usually small, languages (compared to a full programming lan-
guage), implemented with special parsers. An alternative is what is often referred to as
internal DSLs. An internal DSL is a suggested way of writing code in a general-purpose
programming language, the host language, specific for a particular domain. Usually an
internal DSL is implemented as an API. No parser is needed beyond that of the host
language. The advantages of an internal DSL include: (i) expressiveness due to access to
the host language, (ii) ease of development and maintenance/change, (iii) use of exist-
ing tools such as type checkers, IDEs, etc. The advantages of an external DSL include:
(i) it can be optimally succinct, easing writing and reading programs, (ii) it can be easy
to learn, (ii) programs can be analyzed more easily since we have access to the parse
trees. TRACECONTRACT [7] is an internal DSL for writing runtime monitors, an API in
the SCALA programming language. As we shall see, SCALA provides good support for
the creation of internal DSLs. TRACECONTRACT offers an experimental combination
of parameterized state machines with anonymous states, referred to as state logic, future
time linear temporal logic (LTL) - not further discussed in this section, and rule-based
programming; as well as free combinations of these forms.

10.2. Examples

Let us illustrate TRACECONTRACT by specifying the two through-going requirements
Exactly One Success and Respect Priorities. We first need to define the type of events to
be monitored by defining an abstract type Event, and defining each individual event type
as a sub-class (case-classes allow for pattern matching over objects of the class and do
not require use of the new keyword to generate objects):

abstract class Event
case class Command(name: String, number: Int) extends Event
case class Success(name: String , number: Int) extends Event
case class Fail (name: String , number: Int) extends Event
case class Priority (r1: Resource, r2: Resource) extends Event
case class Grant(r : Resource, t : Task) extends Event
case class Request(t : Task, r : Resource) extends Event
case class Rescind(r : Resource, t : Task) extends Event
case class Cancel(t : Task, r : Resource) extends Event

29

The monitor for the property Exactly One Success is shown below. The monitor, looking
very similar to the formalization of the same property in RULER-lite, is expressed as a
class ExactlyOneSuccess that sub-classes a class Monitor, which is part of the TRACE-
CONTRACT API. Class Monitor is parameterized with the event type and offers methods
needed for writing monitors. The monitor reads as follows: (always) require that when-
ever a command is observed, enter a hot Active state. A hot state has to be exited before
the end of the analysis, corresponding to forbidden states in RULER-lite. A success leads
to the Done state to become active, where we just watch that another success does not
occur. It is acceptable to be in a state at the end of the analysis (it is a final state).

class ExactlyOneSuccess extends Monitor[Event] {
require {

case Command(n, x) => Active(n, x)
}

def Active(name: String , number: Int) =
hot {

case Fail (‘name‘, ‘number‘) => error
case Success(‘name‘, ‘number‘) => Done(name, number)
}

def Done(name: String, number: Int) =
state {

case Success(‘name‘, ‘number‘) => error
}

}

The main observation to make here is that this monitor only uses four methods from the
DSL: require, hot, state and error. The remaining part of the monitor is standard SCALA

code. Specifically Active and Done are SCALA functions, and for example Active(n, x) is
a function call. The TRACECONTRACT functions require, hot, and state take as argument
a SCALA partial function: {case ... => ...} defined with pattern matching (one or more
case-statements). A quoted variable, such as ‘name‘ represents: match the value of the
variable rather than binding to it.

Since in this case the function definitions are not recursive, calls of these can be
inlined as shown in the temporal logic flavored version of the above monitor below:

class ExactlyOneSuccess extends Monitor[Event] {
require {

case Command(n, x) =>
hot {

case Fail (‘n ‘, ‘x‘) => error
case Success(‘n ‘, ‘x‘) =>

state {
case Success(‘n ‘, ‘x‘) => error
}

}
}
}

State logic is not capable of expressing past time properties. For this we introduce rule-
based programming, where facts are added to and deleted from a fact database, which can

30

then queried for contents. The property Respect Priorities is expressed in a combination
of state logic and rule-based programming:

class RespectPriorities extends Monitor[Event] {
case class P(r1: Resource, r2: Resource) extends Fact
case class G(r: Resource) extends Fact

require {
case Priority (x, y) => P(x, y).+;
case Grant(x,) =>

G(x).+;
always {

case Request(, y) if P(y, x).? &&
! factExists {case G(z) => P(z, y).?} =>
state {

case Rescind(‘x ‘,) => ok
case Grant(‘y ‘,) => error
}

} upto {
case Cancel(, x) => G(x) −
}

}
}

The monitor declares two facts: P(r1:Resource,r2:Resource), representing that resource r1
has priority over resource r2, and G(r:Resource), representing that resource r has been
granted. These classes are defined as sub-classes of the class Fact, defined in the Monitor
class. A fact can be added to the database by the suffix + operator, deleted by the −
suffix operator, or queried by the suffix ? operator. When a resource is granted, we record
that fact and then go into an always-state. Here, if we see a request for a new resource y,
which has higher priority than x (we see here the use of SCALA’s conditional if-patterns),
and if there does not exist a fact G(z) where z has higher priority than y, then we disallow a
grant of y before a rescind of x. The always-state is active upto a cancel of x is observed.

Monitors can be hierarchically composed, semantically equivalent to a conjunction:

class Requirements extends Monitor[Event] {
monitor(new ExactlyOneSuccess, new RespectPriorities)
}

As illustrated by the following program, a monitor can be fed events by repeated calls of
the verify (event : Event) method, optionally followed by a call of the end() method:

object TraceAnalysis extends Application {
val monitor = new Requirements
monitor. verify (Command(‘‘STOP DRIVING’’, 245))
monitor. verify (Success(‘‘STOP DRIVING’’, 245))
...

monitor.end()
}

Events can either be read from a log file or be generated by a running program properly
instrumented. A monitor returns a data structure with results, which can be examined by

31

trait Monitor[Event] extends RuleSystem {
private var formula: Formula = True
private var monitors: List [Monitor[Event]] = List ()

def property (f : Formula) {formula = f}
def monitor(monitorList : Monitor[Event]∗) {monitors ++= monitorList . toList }

trait Formula {
def apply(e: Event): Formula
...

}

def verify (e: Event) {
val formula = formula(e)
if (formula == False && formula != False) reportSafetyError ()
formula = formula
for (monitor <− monitors) monitor.verify (e)
updateFacts ()
}

def end() { ... }
...

}

Figure 16. TRACECONTRACT implementation of Monitor.

the calling program, including an error trace for each violated property, consisting of the
events that caused the error to occur.

10.3. Implementation

A monitor can contain one formula and a list of sub-monitors, updated with the
methods property and monitors respectively, as shown in Figure 16. Every formula
type is a sub-class of the type Formula4. On each Formula is defined a method
‘apply(e: Event): Formula’. Given a formula f , this notation allows us to write f(e) for a
given event as a shorthand for f.apply(e). For a given formula f and incoming event
e, the expression f(e) denotes the new formula obtained by rewriting f . If the formula
becomes false a violation has occurred.

The basic form of a formula is either True (also referred to as ok) and False (also
referred to as error), each of which stays unchanged when evaluated on a new event, as
shown in Figure 17. The more interesting formulas are the state logic formulas, which
include for example state, hot, and always, see Figure 18. Each state formula is modeled
as a case class, which as argument takes a partial function from events to formulas,
represented by the type Block. A block can be thought of as the set of transitions leading
out of the state. A partial function can be tested for defined-ness on an argument. We
furthermore introduce a short-hand for defining state logic properties:

def require (b: Block) = property (always(b))

4Formula is defined as trait, which is a form of abstract class, allowing undefined entities.

32

case object True extends Formula {def apply(e: Event) = this}
case object False extends Formula {def apply(e: Event) = this}

Figure 17. TRACECONTRACT implementation of True and False.

type Block = PartialFunction [Event,Formula]

case class state (b: Block) extends Formula {
def apply(e: Event): Formula = if (b. isDefinedAt (e)) b(e) else this
}

case class always(b: Block) extends Formula {
def apply(e: Event): Formula =

if (b. isDefinedAt (e)) And(b(e), this). reduce else this
}

Figure 18. TRACECONTRACT implementation of states.

def end() {
if (! isFinal (formula)) reportLivenessError ()
for (m <− monitors) m.end()
}

def isFinal (f : Formula): Boolean = {
f match {

case hot() => false
case state () | always() => true
case Or(f1 , f2) => isFinal(f1) | | isFinal (f2)
...

}
}

Figure 19. TRACECONTRACT implementation of end.

We finally need to define the function end, see Figure 19, called when a trace analysis ter-
minates. It determines whether there are any formulas that remain to be satisfied. These
represent (bounded) liveness properties.

It remains to explain how rule-based programming is implemented. Recall that a
user can define facts as objects of classes that sub-class a class Fact, and that these facts
can be added to or deleted from a database of facts, as well as queried for presence in the
database. The class RuleSystem shown in Figure 20 implements this functionality. The
variable facts contains the current set of facts; while toRecord and toRemove are used
to store facts to be added or to be removed while processing a single event. At the end
of processing an event, by a call of updateFacts, the variable facts is updated by adding
and removing these facts respectively. This ensures that rules do not interfere in a non-
deterministic manner. The implicit function fact2FactOps converts a fact to an object of
an anonymous class containing a collection of argument-less methods (suffix operators).
For example, if F is a fact, then F + will add F to the database.

33

trait RuleSystem {
trait Fact
private var facts : Set[Fact] = Set ()
private var toRecord: Set[Fact] = Set ()
private var toRemove: Set[Fact] = Set ()

implicit def fact2FactOps(fact : Fact) = new {
def + : Unit = { toRecord += fact }
def − : Unit = { toRemove += fact }
def ? : Boolean = facts contains fact
def ˜ : Boolean = !(facts contains fact)
}

def updateFacts () {
toRemove foreach (facts −=); toRecord foreach (facts +=)
toRecord = Set (); toRemove = Set()
}
}

Figure 20. TRACECONTRACT implementation of rule system.

11. Summary

The diversity of specification formalisms and their comparisons presented in this tutorial
suggests, not too surprisingly, that the silver-bullet specification formalism to express
properties for runtime verification does not exist. A specification formalism should com-
bine efficiency of the algorithms as well as expressiveness and elegance of the specifica-
tion formalism.

Concerning efficiency, the most optimal monitors (for JAVA code) can be hard-coded
in ASPECTJ, and carefully constructed aspects are usually used as gold-standards for
measuring the efficiency on RV systems. In this case the monitors are essentially pro-
grammed in JAVA. The most efficient of the mentioned RV specific systems is JAVAMOP,
followed by (in that order) TRACEMATCHES, RULER-lite, and TRACECONTRACT.

Concerning expressiveness, JAVAMOP appears to be less expressive than TRACE-
MATCHES as TRACEMATCHES allows several events to be generated by the same join
point, which is not the case for JAVAMOP. These systems again are less expressive than
RULER-lite and TRACECONTRACT, both of which are Turing complete, as is ASPECTJ.
It should be said that JAVAMOP allows code to be executed when events are received as
well as when monitors reach certain states. Similarly, TRACEMATCHES is an extension
of ASPECTJ, and hence allows code to be executed. In this sense both these systems are
Turing complete as well. Here we try to only compare the raw specification formalisms.

Concerning elegance, this is partly a subjective criterion, although it includes the
concept of conciseness of specifications, a concept that can be measured. JAVAMOP
and TRACEMATCHES are the most concise languages within their expressive power. In
some cases, however, we have found that “programming” in RULER-lite and TRACE-
CONTRACT can be easier although not as succinct. This is perhaps due to their simple to
understand execution models. TRACECONTRACT is an internal DSL, an API, extending
SCALA. As a consequence, a user can “dive into” SCALA and program monitors, should
the API be too weak for a particular problem. In our experience this is attractive to some
users, and has been the main reason for adoption in two real projects at NASA.

34

In addition to the three dimensions just mentioned, ease of implementation is impor-
tant. TRACECONTRACT likely has the simplest implementation of all the systems dis-
cussed. This means that user change requests can be reacted to quickly. The shortest path
to a trace analysis tool is likely an API in a high-level programming language, combined
with an instrumentation framework such as ASPECTJ.

Runtime verification as a field has several unsolved problems. We do not believe,
that there is consensus on what the right formalisms for trace analysis are. Monitoring
parameterized events adds complexity that requires existing logics to be adapted. Moni-
toring algorithms and data structures remain research topics. An interesting topic is how
specifications are created, for example how are these techniques integrated with require-
ments engineering? - how can learning techniques be applied to infer specifications from
traces? In general, how does runtime verification integrate with the other parts of the
software engineering process, such as for example unit testing.

References

[1] JAVAMOP website. http://fsl.cs.uiuc.edu/index.php/MOP.
[2] abc compiler website. http://www.sable.mcgill.ca/abc/.
[3] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor, D. Sereni,

G. Sittampalam, and J. Tibble. Adding trace matching with free variables to AspectJ. SIGPLAN Not.,
40:345–364, October 2005.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In VMCAI,
volume 2937 of LNCS, pages 44–57. Springer, 2004.

[5] H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files. Journal of Aerospace
Computing, Information, and Communication, 7(11):365–390, 2010.

[6] H. Barringer and K. Havelund. Internal versus external DSLs for trace analysis. In Proc. of the 2nd Int.
Conference on Runtime Verification (RV’11), volume 7186 of LNCS, pages 1–3. Springer, 2011.

[7] H. Barringer and K. Havelund. TraceContract: a Scala DSL for trace analysis. In Proc. of the 17th
international conference on formal methods, volume 6664 of LNCS, pages 57–72. Springer, 2011.

[8] H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring: from EAGLE to
RuleR. J Logic Computation, 20(3):675–706, June 2010.

[9] A. Bauer, M. Leucker, and C. Schallhart. The good, the bad, and the ugly, but how ugly is ugly? In
Proceedings of the 7th international workshop on runtime verification, volume 4839 of LNCS, pages
126–138. Springer, 2007.

[10] F. Chen and G. Roşu. Parametric trace slicing and monitoring. In Proceedings of the 15th international
conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’09), volume
5505 of LNCS, pages 246–261. Springer, 2009.

[11] Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime? J Software
Tools for Technology Transfer, 14(3):349–382, 2012.

[12] B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting statistics over runtime executions. In
Proceedings of the 2nd international workshop on runtime verification, pages 36–55. Elsevier, 2002.

[13] K. Havelund and A. Goldberg. Verify your runs. In Verified Software: Theories, Tools, Experiments,
VSTTE 2005, pages 374–383, 2008.

[14] M. Leucker and C. Schallhart. A brief account of runtime verification. Journal of Logic and Algebraic
Programming, 78(5):293–303, may/june 2008.

[15] P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP runtime verification
framework. J Software Tools for Technology Transfer, pages 1–41, 2011.

[16] V. Stolz. Temporal assertions with parametrized propositions. J. Log. and Comput., 20:743–757, June
2010.

[17] V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proceedings of the 5th international
workshop on runtime verification, volume 144, pages 109–124, Amsterdam, 2005. Elsevier.

[18] V. Stolz and F. Huch. Runtime verification of concurrent Haskell programs. In Proceedings of the
4th international workshop on runtime verification, volume 113, pages 201–216, Amsterdam, 2004.
Elsevier.

35

