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Abstract—Modern scientific discovery is driven by an in-
satiable demand for computing performance. The HPC com-
munity is targeting development of supercomputers able to
sustain 1 ExaFlops by the year 2020 and power consumption
is the primary obstacle to achieving this goal. A combination of
architectural improvements, circuit design, and manufacturing
technologies must provide over a 20× improvement in energy
efficiency. In this paper, we present some of the progress NVIDIA
Research is making toward the design of Exascale systems by
tailoring features to address the scaling challenges of performance
and energy efficiency. We evaluate several architectural concepts
for a set of HPC applications demonstrating expected energy
efficiency improvements resulting from circuit and packaging
innovations such as low-voltage SRAM, low-energy signaling,
and on-package memory. Finally, we discuss the scaling of these
features with respect to future process technologies and provide
power and performance projections for our Exascale research
architecture.

I. INTRODUCTION

Modern scientific discoveries in areas such as genetics,
drug discovery, and particle physics rely heavily on large-
scale simulation and modeling. The demand for expanding
computational capability drives the creation of increasingly
higher-performance supercomputers. A continuation of histor-
ical scaling would predict that exascale supercomputers (i.e.
able to sustain 1 ExaFlops = 1018 Flops) will start to appear
by the year 2020 [1]. One of the main challenges in achieving
this goal is power consumption, which a range of HPC system
operators have suggested be limited to 20 MW for a full
exascale-capable system to mitigate cost of ownership and new
power delivery infrastructure costs [2]. The current generation
of energy-efficient supercomputers rely heavily on general
purpose Graphic Processing Units (GPUs) to scale up their
floating point throughput [3]. GPUs have a large energy effi-
ciency advantage with respect to conventional CPUs because
they are designed to exploit high levels of data and thread level
parallelism for performance rather than extracting instruction-
level parallelism from a small number of threads [4]. For
highly parallel workloads, GPUs can be up to 10×more energy
efficient than CPUs within the same area and power budget [5].

Exascale designers are facing a “power wall” when trying
to design future systems capable of sustaining 50 GFlops
per Watt (GF/W) on dense codes such as Linpack [6]. The
current Titan supercomputer at Oak Ridge National Laboratory
consists of 18,688 nodes, each containing one NVIDIA Tesla
K20X GPU. On the Linpack benchmark, this system achieves
17.59 PetaFlops while requiring 8.2 MW of power – delivering
2.14 GF/W [7]. To enable exascale systems in the future,

energy efficiency must improve by a factor of over 20× to
reach the 50 GF/W target. To achieve such a large improvement
in energy efficiency will require many contributions beyond
process technology scaling [8]. Process technology improve-
ments alone will only provide approximately 4.3× of the
required improvement in energy efficiency. An additional 1.9×
can be extracted from circuit improvements, enabling operation
at lower VDD. A further 2.5× contribution to energy efficiency
must come from additional architectural and circuit techniques,
as well as a system level design and interconnect that allow
efficient scale-up of node-level performance.

At NVIDIA Research, we are developing an integrated
set of technologies spanning architecture, circuits, and co-
designed HPC applications targeting these performance and
energy goals. While we recognize the resilience and program-
ming systems are also important to exascale, this paper focuses
solely on the power challenges. Because no single silver bullet
will enable exascale level performance and energy efficiency,
it is critical for designers to understand the opportunities for
improvement provided by each area alongside the predicted
process technology scaling. This paper aims to quantify the
contributions of different technologies on the road to exascale
and project performance and energy consumption of a 2020
exascale system on a suite of DoE HPC proxy applications [9],
[10]. We expect that exascale applications, like the proxy-
apps that represent them, will exhibit highly varied execution
profiles when compared to Linpack. Consequently, exascale
systems must be able to efficiently handle these variations and
not be over-optimized for dense matrix multiplication. This
paper builds upon the earlier Echelon project by expanding
upon and extending these research concepts with quantitative
analysis of application-level power and performance through
a variety of future technology nodes [11]. This paper makes
the following contributions:
• We summarize and explain the behavior of a suite

of DoE Proxy applications on a modern GPU-based
supercomputer.

• We propose an energy-efficient node and system ar-
chitecture, combining new architectural and circuit
innovations.

• We compare the power and performance of our pro-
posed design to currently available GPUs in a 28nm
process technology and quantify the contributions of
the architecture and circuit-level features as technol-
ogy scales down to 7nm.

• We estimate application-level power/performance for
exascale systems by combining node level simulation
with a scaling model derived from scalability mea-
surements taken on modern supercomputers.SC14, November 16-21, 2014, New Orleans
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To our knowledge, no prior work has delivered a single
comprehensive overview of the future applications, challenges,
and features to provide exascale-level performance and power
estimates for future HPC systems.

This paper is organized as follows. Section II describes the
application used in this study. Section III presents the overall
system architecture. Section IV presents the methodology used
in our studies. Section V presents the power and performance
results at node, comparison with a modern GPU, discusses
scaling at full system level. Section VI presents related work
focusing on architecture, circuit features, and technology scal-
ing studies. Finally Section VII concludes the paper.

II. SCIENTIFIC APPLICATIONS

While ultra-dense workloads, such as Linpack, are often
the benchmark by which HPC systems are measured, real
supercomputing applications are rarely as regular. As a result,
machines that are over-optimized for these dense workloads
tend to have poor real-world utilization when other applications
are ported to them. To encourage the design and development
of balanced high performance supercomputers, the DoE has
funded the development of proxy applications (proxy-apps) for
workloads they view as important to scientific computing in
the next 10 years [9], [10]. These proxy-apps are designed to
be simplified, but representative, versions of these workloads
suitable for public sector research and development. To ensure
maximum portability, the proxy-apps consist of Fortran/C/C++
code using MPI for intra-node communication. Parallelism
within the node is typically exposed with threading libraries
such as POSIX threads or OpenMP pragma directives. For
this work, NVIDIA helped develop GPU implementations of
the proxy-apps using numerically equivalent CUDA kernels or
OpenACC compiler directives injected into the original code.

In this section we describe the proxy-apps used in this
study, focusing on the particular characteristics each appli-
cation presents and the challenges it introduces for building
a well-balanced exascale architecture. At the compute-node
level, we focus on aspects such as the desired bytes to Flops ra-
tio, memory intensity, control flow divergence, and CPU/GPU
work partitioning. At the system level, we discuss scale-out
properties for the application such as the communication to
computation ratio and communication overlap opportunities to
hide latency overheads. All of these application properties are
integrated into our performance and power model for exascale
computing which we discuss in Section IV-B.

A. CoMD

CoMD is a proxy-app for molecular dynamics simula-
tions which represent a significant fraction of the DoE work-
loads [12]. CoMD solves Newton’s laws of motion for individ-
ual atoms for short-range inter-atomic potentials. CoMD uses
the Embedded Atom Model (EAM) potential as an approxima-
tion for describing the energy between two atoms. EAM is a
widely-used model of atomic interactions in metallic systems.
At each discrete time-step, this model requires evaluation of
the two-body force and embedded energy contribution. The
core algorithm behind the computations is the neighboring
atoms traversal within a cutoff radius to accumulate forces
or energy for each atom.

The parallelization scheme divides the 3D domain into
sub-boxes which are assigned to MPI ranks. After receiving
the force and position information of the neighboring sub-
boxes from the previous time-step, each MPI rank can compute
forces and positions at the current time-step for the atoms
assigned. Because of the short-range potential calculation and
the relatively short cutoff radius, larger sub-boxes result in
more computation and less communication. The computation
of forces, which can take up of 95% of the total time, can
be separated among internal-to-internal atoms and external-
to-internal atoms interactions. This approach enables overlap
of intra-node communication with internal-to-internal force
calculation if the problem size is sufficiently large.

B. LULESH

LULESH represents a typical hydrodynamics modeling
application which describes the motion of materials relative to
each other when subject to forces [13]. LULESH is a simplified
application implemented to only solve a simple Sedov blast
problem with analytic answers but represents the numerical
algorithms, data motion, and programming style typical in
production codes. LULESH approximates the hydrodynamics
equations discretely by partitioning the spatial problem domain
into a collection of volumetric elements defined by a mesh.
A node on the mesh is a point where mesh lines intersect.
LULESH uses a regular mesh, but to retain unstructured data
proprieties, the data structures make use of indirection arrays
to index into the mesh.

At scale, the parallelization consists of assigning a subset of
elements to each MPI rank. Because the amount of data com-
municated among MPI ranks is proportional to the number of
surface elements while computation is proportional to the vol-
ume of assigned elements, communication becomes relatively
inexpensive with respect to computation for sufficiently large
problem sizes. Because communication overhead has minimal
performance impact, it is not anticipated that LULESH-like
workloads will need to implement communication and com-
putation overlapping to enable good weak-scaling on exascale
systems. Within the node, the GPU executes a total of 9
kernels of which kinematic and volume force calculations are
the most time consuming (about 50% of the total application
time). These two functions are latency limited on current GPU
hardware and do not sustain high utilization of compute or
memory systems. The remaining 7 kernels are fully memory
bandwidth bound.

C. MiniFE

MiniFE is a proxy-app that mimics the finite element
generation, assembly, and solution of an unstructured grid
problem [14]. The physical domain is a 3D box with con-
figurable dimensions. The domain is decomposed using a
recursive coordinate bisection (RCB) approach and the ele-
ments are simple hexahedra. The problem is linear and the
resulting matrix is symmetric, so a standard conjugate gradient
algorithm is used with a general sparse matrix data format
and without preconditioning. At scale, hexahedral elements are
partitioned across MPI ranks, with communication occurring
on the contacting faces, edges, or corners, causing each MPI
rank to communicate with at most with 26 neighbors (6 faces,
12 edges and 8 corners). With a sufficient number of MPI



ranks (128 in our experiments), communication bandwidth
between neighbors becomes nearly uniform, resulting in near
ideal load balancing across MPI ranks. The communication
can be easily overlapped with the sparse-matrix vector product
(SpMV) computation, which takes more than 80% of the
total execution time. SpMV is fully memory bound, requiring
up to 28 bytes of streaming loads for each double-precision
operation. To represent the sparse matrices, different data
structures can be used. Typically, Compressed Sparse Row
(CSR) representation results in simpler code while ELLPACK
matrix format (ELL) results in higher performance [15]. We
find that on our research architecture, the presence of large
caches makes this performance difference negligible; we use
the CSR format to ease programmer burden.

D. SNAP

SNAP is a proxy-app that models a modern discrete ordi-
nates neutral particle transport application, used to solve the
linear Boltzmann transport equation (TE) [16]. The Boltzmann
TE is a governing equation for determining the number of
neutral particles (e.g., neutrons and gamma rays) in a multi-
dimensional space. The solution to the time-dependent TE is a
“flux” function of seven independent variables: three spatial
(3D spatial mesh), two angular (set of discrete ordinates,
directions in which particles travel), one energy (particle
speeds binned into groups), and one temporal. The iterative
strategy consists of two nested loops which are performed at
each sequential time-step of the simulation. The outer iterative
loop involves solving for the flux over the energy domains
(typically tens to hundreds of domains) while the inner loop
involves sweeping across the entire 3D mesh along each
discrete direction of the angular domain.

Within the node, a single kernel consumes 95% of intra-
node execution time, calculating the energy for the mesh’s
cells. At scale, the 3D mesh is spatially decomposed and
mapped on a 2D domain of MPI ranks using the KBA
method [17]. Due to the wavefront propagation method used
in the algorithm, each MPI rank receives data from at most 3
upstream MPI ranks and sends data to 3 downstream MPI
ranks following the wave propagation. For this reason, an
MPI rank can start computation only after its inputs arrive
in the propagating wavefront. This in turn limits weak scaling
efficiency, although absolute performance still increases with
system size. Given tens or hundreds of energy domains, the
compute kernel can be executed in two ways: (1) starting as
many energy groups as possible in parallel or (2) working on a
few energy groups at a time as fast as possible. Depending on
which strategy is used, application scaling behavior changes
dramatically. At scale, we have observed that working on
a few energy groups as fast as possible results in better
scalability and overall shorter execution time even if single
node performance is not maximized.

E. CNS

CNS is an application developed by the DOE ExaCT co-
design center to serve as a proxy for the dynamical core
computation of a combustion code [18]. CNS is a stencil-based
computation used to integrate the Compressible Navier Stokes
(CNS) equations with constant viscosity and thermal conduc-
tivity. Because each updated element in a stencil requires

Fig. 1. Key characteristics of DoE proxy-apps on current HPC systems.

a large amount of data from neighboring points (dependent
on the radius of the stencil), stencil computation is typically
memory bandwidth bound. A third order TVD Runge-Kutta
scheme is used to integrate a set of PDEs with 5 unknowns:
density, three momenta, and energy. Eighth order stencils are
used to compute discrete spatial derivatives. The process can
be viewed as computing various derivatives and combining
them to produce outputs. Both first and second derivatives
need to be computed. Furthermore, second derivatives include
mixed derivatives in addition to axis-aligned derivatives. Mixed
derivatives are computed in two passes in both the CPU and
GPU codes. This application has reduced arithmetic intensity
due to the majority of time being spent in stencil computation
for derivatives. For example, a first derivative computation
requires 64 bytes of data for 11 arithmetic operations. Thus, it
is imperative to exploit spatial data locality to reduce pressure
on memory bandwidth.

Within the node, the computation is performed almost
entirely by the GPU in nine different kernels, while the CPU
coordinates execution and handles communication. The full
domain is a large grid regularly decomposed in sub-domains
among MPI ranks, each of which is a regular 3D grid. For
proper time-stepping, these sub-domains must exchange the
halos with variables that are being integrated. A given sub-
domain can have up to 26 neighbors for halo exchange. How-
ever, halo data exchange becomes negligible or completely
overlapped by the computation if the problem size is large
enough.

F. XSBench

The XSBench proxy-app models the most time-consuming
part of the OpenMC Monte Carlo neutronics application, the
calculation of macroscopic material cross sections [19]. This
kernel accounts for up to 85% of the total runtime of OpenMC
when running the Hoogenboom and Martin reactor bench-
mark. Typical scaling of Monte Carlo simulations consists
of executing many separate instances of the same code (with
different initial conditions) followed by a reduction to obtain
the final results. XSBench is primarily focused on intra-node
performance characteristics. The cross section calculation in



OpenMC is a memory intensive operation because neutron en-
ergy is handled continuously, i.e. it is not quantized. XSBench
models the two main Hoogenboom and Martin problem size
variants: small and large. The only difference between these
variants is the number of nuclides represented in the fuel.
In both benchmarks, the Flop to byte ratio is approximately
0.2, with the large case using much more data in the fuel.
Since the additional data is only in the fuel (responsible for
approximately 14% of lookups), large amounts of execution di-
vergence is experienced. However, the proxy-app performance
will be dominated by memory bandwidth on future exascale
machines, not floating-point throughput.

As XSBench models node-level behavior for the larger
OpenMC application, it is not scaled directly. However, the
behavior of an individual node on XSBench models the
expected behavior of each node within a system at scale,
each operating on independent data and ultimately bound by
memory bandwidth.

G. Applications Summary

Figure 1 summarizes the application characteristics relevant
to the performance and power studies presented in the remain-
der of this work. These metrics represent average efficiency
and utilization for some of the resources for a system like
the Titan supercomputer at Oak Ridge National Labs (ORNL
Titan). Figure 1 shows the following metrics:

• GPU: IPC Efficiency. The average percentage of IPC
achieved versus the maximum theoretical capability
of the GPU. IPC is limited by stalls due to memory
access latency, resource conflicts, and control diver-
gence.

• GPU: Warp Convergence. The average execution path
convergence of threads within a warp. A value of
100% indicates that all threads within a warp execute
the same instruction every cycle (full convergence). A
value of 50% indicates that, on average, only half of
the threads within a warp are executing on a given
instruction.

• GPU: Mem BW Utilization. The average percentage
of peak GPU memory bandwidth used.

• GPU: DP-Utilization. The average utilization of the
double-precision floating-point units in the GPU with
respect to maximum theoretical utilization.

• CPU: Utilization. The average utilization of the CPU
(across all cores).

• Network: Utilization. The utilization of the network
calculated as a percentage of the achieved bandwidth
with respect to maximum bandwidth.

• Weak Scaling Efficiency. The ability of the application
to scale across nodes as problem size increases. A
value of 100% indicates that the time to solve a
problem of size S×N on N nodes is identical to the
time to solve a problem of size S on 1 node. A value
of 10% indicates that execution takes 10× longer than
perfect scaling efficiency (100%).

The GPU node-level data are measured on real hardware,
with results weighted by the relative execution times of the
kernels in each application. When possible, network and CPU
utilization have been measured on the largest number of nodes
feasible and scaled with analytical models to a full system of
18,688 nodes to match the maximum size of ORNL Titan.
A more detailed description of the scaling methodology is
presented in Section IV-C. While Figure 1 does not provide
a comprehensive evaluation of the behavior of the proxy-app
suite for every dataset, configuration, and system, it provides
high level information about the typical behavior of these
applications on a modern GPU-based supercomputer.

Figure 1 shows that the behavior of the studied applications
vary widely. For example, XSBench and MiniFE are largely
bottlenecked on main memory bandwidth, while SNAP and
CoMD use very little. SNAP is much more network-limited
than the other applications due to its wave-propagation imple-
mentation at the system level. CoMD and XSBench both ex-
hibit significant control divergence, making ultra-wide SIMD
designs inefficient, while the other applications benefit from
very wide designs. CNS and LULESH are somewhat similar
in many of these metrics but CNS uses more CPU cycles while
LULESH requires more network bandwidth. While many
applications exhibit favorable weak scaling efficiency, SNAP
scaling is limited. In contrast to the ubiquitous Linpack, these
proxy-apps represent a diverse suite of applications to drive the
design of a well-balanced exascale-class system architecture.
Such a system should be balanced to perform well on a wide
range of supercomputing applications; over-optimization on
any individual axis could result in poor performance for many
real-world applications.

III. EXASCALE SYSTEM ARCHITECTURE

To achieve the goal of more than 20× improvement in
energy efficiency to reach exascale will require contributions
from technology scaling, low-voltage operation, and architec-
ture and circuit innovations. We estimate that process scaling
will provide only 4.3× from 28nm to 7nm and low-voltage
operation will provide only about 1.9×. The remaining 4.3×
must come from energy efficient architecture and circuits.
Section II identified application characteristics which are im-
portant to address when designing a future exascale machine.
This section describes technologies and architecture capabil-
ities that aim to deliver that efficiency for the representative
exascale applications. We first describe the components of an
exascale system, including node architecture, network, system
architecture, and programming model. We also describe circuit
technologies necessary to achieve the energy efficiency. This
research system targets a peak performance of 1.3 double-
precision ExaFlops (EF) at a peak of 23 MW and sustained
performance over 1 ExaFlops on Linpack with a target of 80%
efficiency. As no application could simultaneously use all of
the resources of the machine, application-level power will be
less than 20 MW.

A. Node and System Architecture

Figure 2 shows the high-level system architecture, high-
lighting the logical design of a single node and the hierar-
chical system-level organization. A single node consists of
a processor chip integrating many energy-efficient throughput



Fig. 2. Proposed exascale system architecture.

optimized cores (TOCs), a small number of latency optimized
cores similar to traditional CPUs (LOCs), memory controllers
(MCs), a network interface (NIC), and on-chip memory (L2)
all connected via a network-on-chip (NoC) [20]. The processor
chip communicates directly with on-package DRAM stacks,
off-package DRAM DIMMs, and the cabinet-level intercon-
nect. At a TOC target frequency of 1GHz, the 8,192 double-
precision multiply-add units (DFMA) produce a peak node-
level performance of 16 TeraFlops (TF) with a thermal design
point (TDP) power envelope of 230 Watts per socket including
processor, memory, and voltage regulation. The per node
power budget increases to 300 Watts when including system
infrastructure such as network, cooling, and power distribution.
Scaling to a large cabinet containing 384 of these nodes has
more than 6 PetaFlops (PF) and 200 cabinets of those are able
to to achieve a peak performance of 1.3 ExaFlops (EF). Table I
summarizes the proposed configuration of a single node within
broader system architecture. As the LOC is intended to provide
support for the computations of the TOCs, it can be a fairly
generic CPU; we do not describe the microarchitectural details
of the LOCs in this paper.

B. Throughput Optimized Core Architecture

Figure 3 shows a detailed diagram of a TOC. Similar
to contemporary GPUs, threads are organized into groups
called warps that can be executed in a synchronized or
lock-step fashion by hardware when the threads all take the
same control flow path. Current hardware implements a warp
size of 32, while our TOC is based on narrower 4-wide
warps which reduce the impact of control flow divergence
and helps improve power efficiency for control-flow divergent
applications. Our architecture exploits converged warps, when
all threads are simultaneously executing the same instruction
(the same program counter), to build more efficient hardware
with the SIMT (single instruction multiple thread) execution
model [21]. When warps diverge, wide spatial SIMT hardware
in current GPUs suffers reduced hardware utilization due to
disabled lanes of execution. Our proposed architecture applies
the SIMT model temporally such that threads in a warp
execute sequentially within a single lane in the TOC, rather
than spatially across many lanes as in existing GPUs [11].
With temporal SIMT (TSIMT), the hardware can amortize

TABLE I. THROUGHPUT OPTIMIZED CORE AND EXASCALE MODEL
PARAMETERS.

Node Configuration
Technology 7nm
Number of TOCs 512
Number of LOCs 8
LOC Maximum IPC 3.0
DP ALU per TOC 16
DP ALU Total 8,192
L2 per TOC 256 KB
Total L2 128 MB
Memory Controllers 64
Total Memory BW 4 TB/s
NIC Bandwidth 100 GB/s
LOC Frequency 2 GHz
TOC Frequency 1 GHz
TOCs Total DP Perf. 16 TFlops
Processor Area 650 mm2

Processor peak power 230 W

Exascale System Configuration
Number of Cabinets 200
Nodes per Cabinet 384
Number of Nodes 76,800
Number of Network Slices 4
Total Router Count 19,200
Peak DP PetaFlops 1,258
Max Node Power 300 W
Max System Power 23 MW

instruction fetch and decode overheads across all of the threads
in a warp and can reduce divergence penalties by eliminating
lane idle cycles. TSIMT simply collapses the bubbles that exist
within the diverged warp and immediately begin executing the
next scheduled warp with no need to clock or power gate
individual lanes.

To optimize energy efficiency, our TOC applies scalariza-
tion within the temporal SIMT model [22]. While TSIMT
execution amortizes the cost of the instruction fetch and
decode across multiple threads, scalarization takes this energy
optimization one step further by factoring out identical work
performed across threads. With TSIMT, the first thread in the
warp can execute the instruction once on behalf of all of the
threads in the warp. Subsequent threads reuse the scalarized
instruction result rather than re-executing the instruction. For
example, loop counters or base address pointers may be com-
mon across many threads within a warp. Rather than storing
and updating a copy per-thread, a copy can be maintained
per-warp and stored in a shared register, saving storage space
and energy by removing redundant computation and copies of
identical data.

In addition to instruction pipeline optimizations such as
temporal SIMT and scalarization, a large fraction of GPU
chip area and power is spent maintaining the large register file
required to feed all of the execution pipelines. To improve on
the register energy efficiency, we adopt a compiler controlled
hierarchical register file implementation [23], [24]. In our
design, the operand register file (ORF) contains just 8 entries
per thread, while each thread may have 32-256 registers in the
main register file (MRF). Movement of data between the ORF
and MRF is coupled with computation instructions to eliminate
excess instruction fetch.

To further improve upon the energy efficiency of our
register file and caching sub-system, we recognize that future
HPC applications are likely to have varying needs for register
file versus cache capacity to achieve optimal efficiency. We
implement a malleable memory system proposed by Gebhart
et al. that allows flexible use of on-chip SRAM to optimize
energy efficiency [25]. Rather than having a fixed pool or
registers per thread and cache-capacity per thread or compute
cluster, malleable memory allows the compiler to identify and
expose the number of registers that will be needed for any
given kernel execution. If the number of registers is small,
the remaining SRAM capacity can be used to expand the



Fig. 3. Architecture of throughput optimized core (TOC).

reach of the data caches. If the compiler identifies that a large
number of registers are needed for a thread’s working set, the
processor can decrease the capacity of the caches accordingly.
By flexibly moving on-chip SRAM resources between data
caches and register file usage, malleable memory helps ensure
that resources are not being wasted due to a fixed provisioning
of capacity.

C. Cabinet and System Interconnect

Our system supports multiple network topologies, includ-
ing Dragonflies [26] which are used in this work, Flattened
butterflies [27], and folded Clos (a.k.a. fat-trees) directly out
of the on-die NIC within each node. Of these, the Dragonfly
topology offers the lowest network diameter. The network is
designed specifically to minimize the number of long network
cable traversals that a packet must take and thus the total
network cost to sustain a given amount of global network
bandwidth. A packet can route between any nodes in the
system with just three router-to-router hops: one within the
local group/slice, one global hop to the target group, and one
within the target group to the recipient node. This network
configuration results in low cost, regular wiring within groups,
high bandwidth configurability, and extreme scalability. Total
network bandwidth can be configured by varying the number
of nodes within a network slice/group. For this work we
assume a single slice is able to provide 25 GB/s of injection
bandwidth. With 64 port routers and a 3-hop diameter, the
network can be scaled up to 262,144 nodes, well above our
anticipated node count to reach exascale.

D. Programming Model

For the applications in this work, the overall system is
programmed with a combination of MPI and CUDA. Node-
level code is implemented in CUDA, and MPI orchestrates
the communication across the system. This model matches the
way that existing GPU-accelerated supercomputers are pro-
grammed. While we recognize and appreciate that innovation
in programming models may be required for exascale systems,
such an investigation is beyond the scope of this paper.

E. Circuit and Packaging Technologies

In addition to microarchitectural innovations, several circuit
and packaging innovations will be crucial to meet exascale
energy efficiency requirements.

Reduced-voltage operation: While Dennard voltage scal-
ing has largely come to an end, voltage reduction remains
one of the most effective approaches power reduction. Circuit
techniques to reduce the effects of voltage noise, such as on-die
voltage regulators [28] and voltage-adaptive clocking [29], can
reduce voltage and timing margins. We expect some natural re-
duction in voltage with technology scaling from 0.9V in 28nm
down to 0.7V in 7nm, as shown in Table II. Further voltage
scaling will require circuit innovations; however because of
the severe increase in gate delay, we do not expect that near-
threshold voltage approaches will be viable for HPC systems.

While reduced voltage does not present challenges to the
logic gates, SRAM circuits begin to fail as voltage drops [30].
We see two promising approaches to enable voltage scaling of
on-chip RAM arrays. First are latch-based RAM designs which
use area-optimized standard cell latches in place of SRAM. In
certain capacities, these latch arrays can be area-competitive
with SRAMs as SRAMs typically require additional support
circuitry [31]. Second, we are investigating read-assist and
write-assist circuits that enable SRAMs to operate at voltages
below their natural stability point [32], [33].

Energy-efficient signaling: We have developed new sig-
naling circuits targeting both on-package and off-package com-
munication, called ground-referenced signaling (GRS) [34].
Initial silicon measurements from a 28nm test chip demon-
strates 20Gb/s operation at 0.54pJ/bit over 4.5mm channels at
a nominal 0.9V power supply voltage. By comparison, compet-
ing signaling techniques operate at around 5pJ/bit. We include
these circuits in our analysis to reduce on-package DRAM sig-
naling energy. While most on-chip wiring for processor chips
is performed using full-swing CMOS circuits, moving to low-
swing circuits provides the opportunity for substantial energy
reduction. Ho et al. demonstrated a 10x energy/bit reduction
in 180nm by using low-swing differential signaling, ultimately
reaching 100fJ/bit-mm at a 650mV transmitter voltage [35].
In contemporary technology, we expect that the voltage levels
could be reduced further an obtain perhaps 30fJ/bit-mm. Such
wires are ideal for processor level network-on-chip or long
wires in DRAM chips.

Stacked memory technology: We expect that the biggest
improvement in memory energy will come from integrating
DRAM onto the same package as the processor chip. This
approach not only improves the available bandwidth with much
denser and wider interfaces to memory, but it also reduces
the length and capacitance of the memory IOs resulting in
improved power efficiency. This technology enables memory
interfaces with thousands of bits and memory bandwidths
above 1 TB/s depending on the configuration. Current off-chip
DDR memory systems require in excess of 15pJ/bit to obtain
a per-pin bandwidth of 3.2Gbps. On-package memory, such
as High-Bandwidth Memory [36], eliminates the expensive
I/O drivers, termination resistors and DLLs found in DDR
DRAMs, thus reducing the energy of access to 9pJ/bit at
3.2Gbps.



IV. METHODOLOGY

We rely on three major infrastructure components for
simulating and projecting the power and performance of
our exascale research architecture: (1) an execution-driven
architectural simulator and associated compilation toolchain,
capable of running CUDA-based applications; (2) a detailed
event-driven energy model integrated with the architectural
level simulator; and (3) a large scale system scaling model
for performance and power.

A. Simulation and Toolchain

To evaluate our proposed node-level architecture, we have
developed an execution-driven simulator to model our through-
put oriented cores (TOCs) and their memory system. The
simulator executes real CUDA applications using the NVIDIA
production compiler with customized code generation for our
research ISA, allowing us to compare CUDA applications
that run on our research architecture against current hardware.
Simulated architectural pieces are implemented as a collection
of interconnected component models. A machine definition file
allows dynamic configuration of models with varying fidelity
and organizations, enabling rapid design space exploration.
The simulator provides a detailed, cycle-accurate microarchi-
tectural model of the proposed throughput processor, including
key architectural features such as temporal SIMT pipelines
with narrow warps, scalarization, a hierarchical register file,
and a flexible primary memory hierarchy as described in Sec-
tion III. The memory system consists of cache L2 tiles, NoC
interconnect, memory controllers (MCs), and DRAM. The
cache hierarchy supports hardware coherence between TOCs
as well as programmer controlled cache bypassing. Off-chip
DRAM models are parameterized for bandwidth and latency
to match the characteristics of targeted memory technologies.

The simulator model has been verified functionally via
both directed tests and comparison of program output and
memory state against functional emulation and real hardware.
In addition, we have correlated expected performance for
key benchmarks and microbenchmarks against real hardware.
Default latencies and timings are configured for components
such as datapath elements and caches based on VLSI analysis
and experimental RTL implementations of components, scaling
or correcting for expected process technology improvements
as necessary. We have configured the simulator to approximate
the feeds, speeds, and capacities of a contemporary commercial
GPU.

B. Energy and Area Modeling

To evaluate application-level power consumption for the
proposed architecture, we developed an area model and an
event-based energy model which accounts for a wide range
of architectural and technological features and variations. Our
model builds up a representation of the underlying architecture
from individual components (such as ALUs, register files, and
wires) to an entire chip and its off-chip memory system. For
example, the model for a register file includes its area, the
energy to access it (read and write), and the energy to send
a bit across several mm of on-chip wires using a particular
signaling technology. The model parameters are based on
microarchitectural components implemented in 28nm which
can be validated against current generation GPUs.

TABLE II. TECHNOLOGY SCALING FACTORS FROM 28NM TO 7NM.

28nm 20nm 14nm 10nm 7nm
Cg scaling factor 1.0 0.75 0.56 0.42 0.31
Ewire scaling factor 1.0 0.89 0.75 0.62 0.46
Area scaling factor 1.0 0.63 0.39 0.24 0.15
Leakage/mm2 scaling factor 1.0 0.85 0.80 0.75 0.70
Nominal voltage 0.90V 0.85V 0.75V 0.725V 0.70V
Low voltage 0.85V 0.80V 0.70V 0.675V 0.65V

The modeling environment provides a menu of circuit
implementation options, including low-voltage SRAM with
write assists, high-density latch arrays, and optimized on-
chip and off-chip signaling, as well as various memory tech-
nologies, including conventional DDR and on-package stack-
able memories such as the emerging JEDEC high-bandwidth
memory (HBM) standard. Using performance counters and
energy costs, the model calculates the total energy required,
including both static leakage and dynamic energy based on the
simulated machine configuration at a given frequency, voltage,
and operating temperature. Our energy and area model also
provides estimates for future manufacturing processes beyond
28nm.

Our strategy for estimating chip capabilities in future pro-
cess generations uses the expected scaling properties predicted
by the International Technology Roadmap for Semiconduc-
tors (ITRS) and other proprietary sources. We assume gate
capacitance (Cg) scaling of 0.75 times per generation and
fixed-length wire energy (Ewire) scaling at between 0.75×
and 0.9× per generation. Overall, we anticipate technology
scaling from 28nm to 7nm (without any circuit or architecture
modification) to provide about 4.3× improvement in energy
efficiency. We assume area scaling of 1.8× across technology
nodes instead of the optimistic 2.0× typically assumed by
squaring the ratio of gate lengths (e.g. (20nm/14nm)2). We
expect circuit design enhancements to enable a further scaling
factor of 1.9× via enabling lower VDD. This effects result in a
combined overall energy efficiency scaling factor of about 8×
from 28nm to 7nm. Table II summarizes the key technology
scaling factors and parameters we use in our model.

C. Large Scale System Modeling

To estimate the performance and power at scale of a
contemporary system, we built analytical weak scaling perfor-
mance models for each application studied and correlated them
with actual experimental measurements taken on the largest
systems available to us, including ORNL Titan.

For each proxy-app, our models incorporate various pa-
rameters such as problem size, memory footprint, number of
nodes, network bandwidth, and single-node execution time.
For power modeling, we have collected data on ORNL Titan
for statistics such as CPU, memory, and network utilization,
instruction mix, and GPU power consumption. CPU and
memory dynamic power is computed using maximum TDP
and utilization factors. Network power consumption instead
is largely workload insensitive and assumed static regardless
of the application. Similarly, fans are typically run near peak
RPM and consume roughly the same power regardless of the
workload. Finally, we combine all power contributions with the
weak scaling performance model to estimate the behavior of a
particular system size. The model has been validated against



numbers publicly available on the Top500/Green500 lists and
other smaller machine data points collected on real hardware.
This model has been used to produce the results in Section V-C
for a system similar to ORNL Titan.

Our exascale system-level performance estimation is per-
formed using weak scaling with much larger problem sizes
than what could run on ORNL Titan. As per-node Flops ca-
pacity and node count for our exascale system increase ∼10×
and ∼5× respectively, the average problem size is increased by
a factor of ∼50×. To estimate the performance of our proposed
exascale design, we expect performance scaling for each
application to be directly proportional to today’s scaling factors
adjusted by different possible ratios of node peak performance,
obtained via our node level simulation model, to network
injection bandwidth. Under this model, an exascale system
with the same node level PeakGFlops/NetworkBandwidth
ratio of today’s system (provided enough memory is available
to work on a proportionally larger problem) will have similar
weak scaling performance. This model neglects differences in
system-level network latencies, expected to be significantly
smaller in our proposed design due to the use of high-radix
routers.

For estimating power at exascale, we use the model de-
scribed previously in Section IV-B to estimate power for the
TOCs, MCs and NoC. We augment this model with power
estimates for the LOCs based on projected utilization factor
and maximum TDP. For the system network components,
including interconnect cabling, we model expected costs in the
exascale time frame. In our proposed exascale network design,
in contrast to today’s networks, the power consumption of the
electrical portion of the network (with the exception of the
SerDes circuits) consumes energy proportionally to utilization.
The overall network power at full bandwidth is 56W per node.
For the integrated NIC, we estimate full utilization at 10W and
idle power of 7W. Our router chip is estimated to consume
around 20W at full utilization and 10W at idle. Finally, we
assume 20W of active cooling (fans) per node and voltage
regulator efficiency of 95%.

V. RESULTS

This section presents the performance and power results on
the proxy-apps described in Section II. First, we evaluate the
proxy-apps in the context of several key architectural features.
Next, we examine the independent effects of architecture inno-
vations, circuits innovations, and technology scaling on node
level power consumption. Finally, we provide projections for
application scaling, performance, and power on our proposed
exascale system.

A. Architectural Feature Evaluation

As described in Section II, our HPC applications have a
variety of differing execution patterns as compared to a dense
linear algebra code such as Linpack. This section examine two
properties, control divergence and scalarization, to demonstrate
the effectiveness of two key microarchitectural innovations that
we expect will be necessary for exascale-level power efficiency
on HPC workloads.

Warp size and divergence: Existing SIMD style GPU-
based systems excel at dense, regular parallel problems com-
mon in HPC. However, applications with irregular control flow

Fig. 4. Impact of warp width on control divergence in our TOC architecture.

can suffer from control-flow divergence, reducing hardware
utilization. For these irregular applications, using a smaller
warp size will reduce control divergence by decreasing the
probability that any given warp will diverge based on control
flow. At the limit, a warp width of one will never diverge, but
sacrifices the opportunity for energy efficiency due to re-use
of instruction fetch and decode.

Figure 4 shows the fraction of instructions each application
executes while diverged, as a function of warp width (2 to
32). Contemporary GPUs typically employ a warp width of
32 or 64 threads, which is ideal for dense regular application
such as CNS and LULESH that exhibit no control divergence.
However, the divergence in applications such as CoMD, SNAP,
and XSBench can result in 50% or more of instructions to be
issued from diverged warps. For these applications, not only
do wider warps not improve performance on current GPU’s
but they actually reduce throughput due to lanes sitting idle.
In the march to exascale, we expect that warp width choices
will reverse direction and trend back down to just 4 or 8-wide
to provide a balance of performance and energy efficiency on
both dense and irregular HPC workloads.

Scalarization: As described in Section III, scalarazation
can improve energy consumption by eliminating redundant
instruction execution, unnecessary register reads and writes,
and duplicate memory accesses. Identifying shared scalar val-
ues also reduces register file pressure, increasing the effective
available register pool per thread. Static scalarization relies
upon the compiler to detect instruction redundancy and pro-
duce functionally correct code that has a reduced operand and
instruction footprint. Unfortunately, the compiler only has lim-
ited knowledge of program execution, which makes identifying
all scalarization opportunities difficult. Alternatively, dynamic
hardware scalarization can detect duplicate operations with
perfect runtime information, but has a high implementation
overhead and is not as efficient as static scalarization at saving
register file capacity.

Figure 5 shows the effect of scalarization on the proxy-
apps. The first bar shows the fraction of instructions executed
while converged for our 4-wide warp architecture; warps must
be converged for instructions to be statically identified as
scalarizable. The second bar shows the dynamically identified
scalar opportunity present for each application. This runtime
identification of scalar opportunities sets the upper bound on
what our static compiler-based implementation could possibly



Fig. 5. Opportunity and effectiveness of compiler-based scalarization.

achieve. The third, fourth, and fifth bars show the fraction
of instructions, register file reads, and register file writes that
can be eliminated via static scalarization. Across the range
of applications, compiler-directed scalarization is able to save
5-15% of instructions, 7-21% of register reads, and 4-13% of
register writes. While our static compiler based implementation
does not currently come close to the dynamic scalarization
oracle, there is almost no downside to implementing static
scalarization as it simply recaptures energy efficiency that has
been left on the floor by current SIMT style architectures.

B. Node-Level Energy Efficiency

To compare the power efficiency of our proposed architec-
ture, we modeled a chip-level 28nm configuration (XGPU28)
of our design with characteristics similar to a contemporary
GPU (CGPU28) as shown in Table III. These two architectures
have similar features such as peak DP floating-point capability,
memory bandwidth, and chip size but have large differences
in the memory hierarchy organization. CGPU28 has a large
register file (almost 4MB for the entire chip) that is used to
hold the state for all the threads. XGPU28 uses malleable
memory and configures the same SRAM structure for use both
as L1 cache and storage of the main register file.

Figure 6 compares the energy efficiency the XGPU28
design normalized to the contemporary CGPU28 design across
the suite of proxy-apps. The XGPU28 bars represents our
baseline architecture defined in Table III while the remaining
columns progressively add the architecture and circuit features
described in Section III. Comparing the baseline CGPU28 and
XGPU28 architectures, energy efficiency is similar when the
workloads have little or no divergence, a result that is not
surprising given that the machines have a similar level of
peak floating-point performance. For those applications that
have significant divergence, XGPU28 substantially outpaces
CGPU28 due in large part to increased machine utilization
enabled by the narrow warp width described in Figure 4.

As we add architectural and circuit level improvements
on top of the baseline XGPU28 architecture, individual im-
provement per application may have a small or large affect
on energy efficiency. The hierarchical register file design is
most effective for computationally intense applications that
have significant short-term value reuse that is exploitable
(CoMD), but less effective for applications that uniformly

TABLE III. PROPOSED 28NM RESEARCH XGPU28 COMPARED TO A
CONTEMPORARY 28NM GPU CGPU28.

GPU Resources CGPU28 XGPU28
Process Technology 28nm 28nm
Voltage 0.9V 0.9V
Clock frequency 744 MHz 1000 MHz
Area 551 mm2 542 mm2

Units 15 SMs 48 TOCs
SP ALUs per SM (or TOC) 128 32
DP ALUs per SM (or TOC) 64 16
SP ALUs Total 1920 1536
DP ALUs Total 960 768
Peak SP performance 4.29 TF 4.60 TF
Peak DP performance 1.43 TF 1.53 TF
ORF capacity - 192 KB
MRF capacity 3840 KB -
Malleable Memory (MRF + L1) - 9216 KB
L1 capacity 1680 KB -
L2 capacity 1536 KB 6144 KB
Warp size 32 4
Off-chip Memory BW 288 GB/sec 250 GB/sec

touch large numbers of registers. Scalarization provides small
but measurable benefit to all applications by reducing the
cost of redundant calculations and data. Scalarization’s overall
improvement is hampered by our design choice of a very nar-
row warp width. If we chose 8-wide warps instead of 4-wide
warps improvement from scalarization would nearly double
across all applications. The circuit level optimizations that
enable lower power supply voltage reduce chip-level power
quadratically and have a significant effect on all applications.
The increased bandwidth and more efficient IO drivers used
when accessing stacked DRAM provides a large improvement
to memory intensive applications. Finally, using more efficient
wire signaling techniques like GRS [34] reduces the cost of
off-chip signaling for all applications.

Most importantly, Figure 6 shows that across this range of
diverse applications there is no single magic bullet that can
dramatically improve the energy efficiency of all workloads.
Reducing warp width is the single largest improvement to help
the energy efficiency of irregular applications and is evidence
that optimizing HPC architectures for dense codes such as
Linpack can sacrifice performance on real-world scientific
applications. While none of the features in isolation provides
the energy efficiency improvements required to reach exascale,
in aggregate all of the applications see improvements ranging
from 1.5–4.2x without yet applying the gains from technology
scaling or voltage improvements due to aggressive circuit
optimizations.

C. System Level Scaling: Performance and Power

This section projects the power and performance for the
proxy-apps presented in Section II using the methodology
described in Section IV-C. Table IV shows the performance,
power, and energy efficiency of the proxy-apps on a baseline
system sized similar to the ORNL Titan system using the
CGPU28 node configuration. Table V presents the antici-
pated performance of these same proxy-apps on our projected
exascale-class system, which consists of 76,800 7nm nodes
and includes all of the architecture and circuit improvements
discussed in Section III. For both tables, “Ops” is defined as
any math (including floating-point), load/store, or control-flow
operation. The tables show that Linpack PetaFlops throughput,



Fig. 6. Relative energy efficiency of single XGPU28 compared to a
contemporary design CGPU28.

typically used as the measure of supercomputer sizing, is an
incomplete metric for projecting the performance of future
HPC applications. Actual applications use the machine in very
different ways from Linpack and in general require less power.
Much of the difference in power consumption is that the proxy-
apps have far lower processor and network utilization than
Linpack (Figure 1).

Table V shows that utilization of machine resources varies
dramatically across the applications. On Linpack, our pro-
jections show that an exascale machine is possible within a
power budget of 20MW. While Linpack pushes the total power
consumption of the exascale system, the power consumption
of the remaining applications ranges from 14-16MW. If pro-
visioned for expected application power, rather than Linpack
power, the machine could include 15% more nodes and deliver
15% more performance on real applications. As a result, we
believe future systems would be better served by using more
conservative real-world workloads when making provisioning
decisions or by using application-specific performance metrics
such as Figure of Merit (FOM) when making sizing decisions
for performance targets [37].

Figure 7 shows the improvement in energy efficiency
(GF/W, GOps/W) of our 7nm exascale machine normalized to
the Titan-like machine configuration. The two horizontal lines
show (1) the energy efficiency goal required to meet exascale
level performance (estimated at 25×, rounded up from the
23.4× improvement required over Titan’s 2.14 GF/W to reach
50 GF/W) and (2) the portion of the improvement that we
can expect to receive if we simply allowed technology scaling
to take its course through 2020 (4.3×). Linpack does in fact
achieve the energy efficiency improvement goals, while also
meeting the performance target set for an exascale system
within a 20MW power budget. Of the remaining applications,
the computationally dense but control divergent applications
show the most improvement, even exceeding the relative
improvement of Linpack, though their total Flop throughput
is typically one third or less than that of Linpack.

Both SNAP and XSBench fail to reach our energy effi-
ciency targets. For SNAP, this is due to low scaling efficiency.
Achieving the energy efficiency goal for SNAP will likely
require a more efficient wave-front propagation algorithm used
at the MPI level to improve overall node-level utilization.
For XSBench, there simply is not enough memory band-

TABLE IV. PERFORMANCE, POWER, AND ENERGY EFFICIENCY FOR A
SUPERCOMPUTER SIMILAR TO ORNL TITAN.

APPS PetaFlops PetaOps MWatts GFlops/W GOps/W
CNS 4.61 9.95 5.25 0.88 1.89
CoMD 1.65 13.93 5.32 0.31 2.62
LULESH 4.41 7.82 5.16 0.85 1.51
MiniFE 0.33 4.71 5.08 0.06 0.93
SNAP 0.54 9.15 5.20 0.10 1.76
XSBench 0.52 5.52 5.02 0.10 1.10
LINPACK 17.56 21.95 8.20 2.14 2.68

TABLE V. PERFORMANCE, POWER, AND ENERGY EFFICIENCY OF A
TARGET 7NM EXASCALE MACHINE.

APPS PetaFlops PetaOps MWatts GFlops/W GOps/W
CNS 369.94 1065.98 16.71 22.13 63.78
CoMD 140.43 1158.51 15.12 9.29 76.61
LULESH 370.57 394.47 16.09 23.04 24.52
MiniFE 21.89 470.73 15.57 1.41 30.23
SNAP 22.02 251.66 16.58 1.33 15.18
XSBench 23.91 179.31 14.81 1.61 12.11
LINPACK 1019.22 1223.06 18.43 55.30 66.36

width compared with the compute resources available, limiting
improvement. As XSBench is severely memory bandwidth
bound and generates random lookups, it consumes all available
bandwidth. While bandwidth utilization is high, bandwidth
efficiency can potentially be improved in software or even in
hardware with smaller cache lines. Simply providing additional
memory bandwidth in the overall system design would help
XSBench but hurt the energy efficiency of other applications,
reinforcing our assertion that thoughtful trade-offs are required
to realize a well-balanced HPC machine.

VI. RELATED WORK

Contemporary high-performance computing systems are
based on parallel accelerators to meet performance and power
efficiency targets. Among the most popular high performance
compute accelerators today are GPU-based architectures, such
as NVIDIA Kepler GPGPUs [4], CPU-based architectures
such as Intel Xeon Phi coprocessors [38], or other custom
architectures such as IBM Blue Gene [39].

Multiple research architectures have been proposed tar-
geting the energy efficiency and throughput objectives for
future exascale systems. The X-Caliber project developed a
heterogeneous architecture that combines latency optimized
cores and compute-near-memory units using 3D die-stacking
technology [40]. The Ansgtrom project explored universal
technologies for exascale computing, such as a self-aware
computational model and distributed factored architecture [41].
Runnemede is designed to achieve maximal energy efficiency
unconstrained by the need to support existing programming
models or backward compatibility [42]. Its energy-centric ap-
proach combines hierarchical simple cores, dedicated hardware
for runtime and application code, and near-threshold circuit
techniques. NVIDIA Echelon is a GPU-inspired heterogeneous
computing architecture that addresses energy-efficiency and
memory bandwidth challenges, along with features to facilitate
programming of scalable and parallel systems [11].

Substantial work has also been done on workload character-
ization using HPC proxy applications on existing architectures
[9], [10], [12], [13], [14], [15], [16], [18]. Additional research
efforts have targeted specific software and architectural co-
design for future exascale systems. Balaprakash et al. analyzed



Fig. 7. Expected relative energy efficiency improvements for the proxy-apps.

a broad set of exascale proxy applications and created an
application property database [43]. Based on this database
the authors develop a statistical exascale computing workload
model which is as a function of problem size. This exascale
workload was used to to evaluate the proposed processor under
memory architecture (PUM). Chan et al. explored hardware
software co-design and performance optimization for improved
performance of combustion simulation codes by introducing
ExaSAT, which is a compiler-driven static analysis and per-
formance modeling framework [18]. The authors showed how
such framework can provide an essential speed advantage over
simulators while helping with decisions regarding the most
suitable cache and memory architectures.

VII. CONCLUSIONS

The future of scientific discovery depends on the continued
expansion of computing capability. From a hardware perspec-
tive, the most substantial barrier to achieving cost-effective
exascale is energy efficiency. In this paper we have examined
how architecture, circuits, packaging, and process technology
scaling can all contribute to improving HPC system-level
energy efficiency by the necessary factor of 20 between now
and 2020. Technology scaling can still provide a substantial
fraction of the target (4.3×), but other sources must account
for at least an additional 5×. Our results show that depending
on the application, the node level architecture can contribute
as much as 3.55× (avg. 1.96×) in energy efficiency, circuits
(including aggressive voltage scaling) can contribute as much
as 2.5× (avg. 2.2×), and memory packaging technologies can
contribute as much as 1.30× (avg. 1.13×).

Our simulation and modeling-based projections show that
Linpack can reach exascale at about 20MW, resulting in
energy efficiency of 50GFlops/W. The other applications in
our suite of HPC proxy-apps show wide variation in their
energy-efficiency improvements; SNAP is on the low end with
10-15x improvement and MiniFE is on the high end with
20-25x improvement. In general, real applications will only
achieve a fraction of performance of Linpack due to factors
including a high fraction of integer operations (CNS and
CoMD), memory bandwidth limits (MiniFE and XSBench), or
scaling efficiencies (SNAP). Pushing the performance of these
applications will require further innovations in algorithms and
architecture to improve memory locality, better scaling, and
integer execution efficiency.
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