
Deep Learning Based Caching for Self-Driving Car
in Multi-access Edge Computing

Anselme Ndikumana, Nguyen H. Tran, Member, IEEE, and Choong Seon Hong, Senior Member, IEEE

Abstract—Once self-driving car becomes a reality
and passengers are no longer worry about it, they
will need to find new ways of entertainment. However,
retrieving entertainment contents at the Data Center
(DC) can hinder content delivery service due to high
delay of car-to-DC communication. To address these
challenges, we propose a deep learning based caching
for self-driving car, by using Deep Learning approaches
deployed on the Multi-access Edge Computing (MEC)
structure. First, at DC, Multi-Layer Perceptron (MLP)
is used to predict the probabilities of contents to be
requested in specific areas. To reduce the car-DC delay,
MLP outputs are logged into MEC servers attached to
roadside units. Second, in order to cache entertainment
contents stylized for car passengers’ features such as
age and gender, Convolutional Neural Network (CNN)
is used to predict age and gender of passengers. Third,
each car requests MLP output from MEC server, and
compares its CNN and MLP outputs by using k-means
and binary classification. Through this, the self-driving
car can identify the contents need to be downloaded
from the MEC server and cached. Finally, we formulate
deep learning based caching in the self-driving car
that enhance entertainment services as an optimization
problem whose goal is to minimize content downloading
delay. To solve the formulated problem, a Block Succes-
sive Majorization-Minimization (BS-MM) technique is
applied. The simulation results show that the accuracy
of our prediction for the contents need to be cached in
the areas of the self-driving car is achieved at 98.04%
and our approach can minimize delay.

Index Terms—Deep learning based caching , deep
learning, self-driving car, multi-access edge computing

I. Introduction
A. Background and Motivations
According to road traffic accident statistics, in 2016,

235,532 people were killed, and 6,648,078 people were
injured in traffic accidents [1]. Furthermore, US National
Highway Traffic Safety Administration (NHTSA) data in
2015 shows that, in Georgia, 94% of car accidents caused
by human errors and bad decisions [2]. Therefore, in order
to save lives, prevent human errors and bad decisions, and
releasing human from stressful tasks of controlling car,
many research projects for the autonomous car have been
introduced [3].

Anselme Ndikumana and Choong Seon Hong are with the
Department of Computer Science and Engineering, Kyung Hee
University, Yongin-si, Gyeonggi-do 17104, Rep. of Korea,
E-mail:{anselme, cshong}@khu.ac.kr

Nguyen H. Tran is with the School of Information Technologies,
The University of Sydney, Sydney, NSW 2006, Australia, E-mail:
{nguyen.tran}@sydney.edu.au

Recently, the automobile industries have made remark-
able improvements by creating autonomous cars that
can drive themselves with human driver intervention.
Some companies, such as Google, Uber, Samsung, Tesla,
Mercedes-Benz, Baidu, etc., have already started to focus
on the next stage of autonomous driving called “self-
driving”, where cars can drive themselves without human
driver intervention [4]. Therefore, self-driving cars will have
full driving automation in all situations. Furthermore, in
order to make the self-driving car more intelligent, the self-
driving car needs to be equipped with smart sensors and
analytics tools that collect and analyze heterogeneous data
related to people on-board, pedestrian, and environment
in real time, in which deep learning plays significant roles
[5].

Even though a self-driving car has On-Board Unit (OBU)
that can handle Computation, Communication, Caching,
and Control (4C), we still consider the self-driving car’s
resources for 4C to be limited, and requires assistance from
the remote clouds [6]. For effective self-driving car’s data
analytics, there is a strong need for low-latency and reliable
computations. However, reliance on a cloud can hinder the
performance of the self-driving car’s data analytics, due to
the associated end-to-end delay. Therefore, to reduce end-
to-end delay, we consider Multi-access Edge Computing
(MEC) [7] as a suitable technology that can support
self-driving cars for edge analytics [8]. MEC has been
recently introduced by the European Telecommunications
Standards Institute (ETSI) to supplement cloud computing,
where MEC servers are deployed at the edge of the network
for 4C [9]. In this work, MEC servers are deployed at
RoadSide Units (RSUs) for edge analytics and content
caching in close proximity to the self-driving cars.
We focus on self-driving cars for public transport such

as buses, because in the future, self-driving buses are
expected to roll down in smart cities [10]. Furthermore,
with deep learning and 4C features in the self-driving
car, passengers will no longer be limited to onboard radio
and TV, instead spending more time on watching media,
playing games, and social networks. However, retrieving
these contents from Data Centers (DCs) can make content
delivery service worse, due to the associated end-to-end
delay, and consumed backhaul bandwidth resources. As
an example, watching a video in a car requires three
components, namely video source, screen, and a sound
system. Therefore if the source of the video is not in the
car, the car needs to download it from DC. Assuming the
DC is distantly located, then in-car services will incur high

ar
X

iv
:1

81
0.

01
54

8v
1

 [
cs

.N
I]

 3
 O

ct
 2

01
8

delay, caching in self driving car will play an important
role to enhance the users’ experience.

B. Challenges for Caching in Self-Driving Car
• For traveling people, the self-driving car will be a new

entertainment place. Therefore, content providers and
game developers need to grasp this new opportunity
by providing high-quality of entertainment contents.
However, there is still lack of literature on how caching
for entertainment contents in self-driving can be
performed.

• The self-driving car could deliver more heterogeneous
entertainment contents such as movies, TV, music,
and games as well recent emerging platforms such as
Virtual Reality (VR) [11]. However, the self-driving
car’s resources for 4C are limited. Therefore, self-
driving cars need to be supported by MEC servers.

• The self-driving car is sensitive to delay. Therefore, to
reduce car-DC delay and save backhaul bandwidth,
communication and caching resources utilization in
MEC servers and self-driving cars needs to be rein-
forced and optimized.

As related works, content caching at BSs, and RSUs has
gained significant attention in [9], [12]–[15]. In addition, in
[16], [17], the authors proposed deep learning approaches
for edge caching (at BS, RSUs, and user equipment). Still,
in these works, content caching in the self-driving car was
not addressed thoroughly. In [18], the authors proposed
the cloud-based vehicular ad-hoc network, where both
vehicles and RSUs participate in content caching. However,
introducing the cloud-based controller in vehicle caching
can increase content retrieval delay. Other alternatives
have also been proposed in [19], where the authors con-
sidered two levels of caching at edge servers (BSs) and
at autonomous cars. In this proposal, the edge server
injects contents to some selected cars that have enough
influences to share these contents with other cars. However,
in a realistic network environment, BSs and cars may
belong to the different entities. Therefore, without incentive
mechanism, there are no motivations for car owners to allow
BS operator(s) to inject the contents in their cars and
participate in content sharing. Finally, in [20], self-driving
car caching forum was introduced by GEOCACHING in
March 2018, but still, there is no proposal on how caching
in self-driving car can be implemented.

C. Contributions
In order to address the aforementioned challenges, we

propose improving entertainment services in self-driving
cars using deep learning based caching and 4C approaches
in MEC. The main contributions of this paper are summa-
rized as follows:
• People have different content flavor, in which their

choices depend on ages and genders [21]. To fulfill the
demands of passengers in self-driving car, we use a
Convolutional Neural Network (CNN) approach to
predict their ages and genders via facial recognition.

Specifically, CNN outputs are used by self-driving car
for the purpose of deciding on which entertainment
contents, such as music, video, and game data, are
appropriate for passengers and thus need to be cached.

• To get the appropriate entertainment content for
passengers, the self-driving car needs to be supported
by MEC and DC. At DC, we propose a Multi-
Layer Perceptron (MLP) framework to predict the
probability of content to be requested in a specific
area of self-driving car. Then, the MLP prediction
outputs are deployed at MEC servers (at RSUs) in
close proximity to the self-driving car. During off-
peak hours, each MEC server uses MLP outputs to
download and then cache the contents that have high
probabilities for being requested. We choose MLP over
other prediction methods such as AutoRegressive (AR)
and the AutoRegressive Moving Average (ARMA)
models, because MLP has the capability to cope with
both linear and non-linearly prediction problems [22].

• For the contents need to be cached, the self-driving
car downloads MLP outputs from MEC server, which
is then compared with the CNN outputs. For the
comparison, we combine k-means and binary classifi-
cation. We choose k-means and binary classification
over other clustering algorithms due to their compu-
tational efficiencies and elegant simplicities in their
implementation [23], [24].

• We formulate caching in a self-driving car for enter-
tainment services using deep learning exploiting 4C
components in MEC to minimize content-downloading
delay. To solve the formulated problem, we use Block
Successive Majorization-Minimization (BS-MM) tech-
nique [25]. We choose BS-MM over other optimization
techniques because BS-MM is a new technique that
allows decomposing problem into small subproblems
by partitioning the formulated problem into blocks.

Specifically, the novelties of our proposal over related
works in [9], [12]–[20] are: to the best of our knowledge,
we are the first to investigate self-driving car caching for
entertainment contents, where caching decisions are based
on MLP, CNN, and available communication, caching, and
computation resources.

The rest of the paper is organized as follows. We discuss
system model in Section II, and present our proposal in
Section III. In Section IV, we discuss about the problem
formulation and solution. We present performance evalua-
tion in Section V. Finally, we conclude the paper in Section
VI.

II. System model
The system model is depicted in Fig. 1:
• At Data Center (DC): Typically, DC hosts dataset

from data market for prediction purpose. In the DC,
we use MLP described in section III-A1 for predicting
the probabilities of contents to be requested in specific
areas. In order to reduce communication delay between
the self-driving car and DC, the outputs of the MLP

Figure 1: Illustration of our system model.

are deployed at MEC servers attached to RSUs based
on their locations. We use N = {1, 2, . . . , N} to denote
the set of geographic locations, where each location
n ∈ N has one MEC server.

• At RoadSide Unit (RSU): We consider that each
RSU r ∈ R has access to DC via a wired backhaul
of capacity ωr,DC , where R is the set of R RSUs.
Furthermore, we consider V as a set of V self-driving
cars, in which each RSU r ∈ R can provide broadband
Internet service to V self-driving cars via wireless link
of capacity ωv,r at each time slot. In addition, each
RSU has one MEC server. Unless stated otherwise,
we use also the terms “RSU”, and “MEC server”
interchangeably. Furthermore, each MEC server r ∈ R
has cache storage of capacity cr and computational
resource of capacity pr.
During off-peak hours, by using backhaul communica-
tion resources, based on the MLP outputs, each MEC
server can download and cache predicted contents
with high probabilities of being requested in its region.
We use I to denote a set of I contents, where each
content i ∈ I has a size of S(i) Mb. In addition, based
on demands for content, each cached content can be
served as it is or after being computed. Therefore,
we use i to denote the content before computation,
and i′ to denote the content after computation. As
an example, content i′ with format .avi may be not
available in the cache storage of MEC server. Instead,
the cache storage may have content i with format
.mpeg of the same content. Therefore, for satisfying
the demand, by using the computational resource,
MEC server can convert i to i′.

• At self-driving car: We consider that the self-driving
car has an OBU that can handle 4C with MEC
to support caching of entertainment contents for
passengers. Each self-driving car v ∈ V has cache
storage of capacity cv and computation capability pv.
Furthermore, to decide which entertainment content

Table I: Summary of key notations.

Notation Definition

V Set of self-driving car, |V| = V
I Set of contents, |I| = I
Ir(n) Set of contents need to be cached in area n

of RSU r, |Ir(n)| = Ir(n)
U Set of consumers of contents, |U| = U
R Set of RSUs, |R| = R
x Input of MLP
ỹ Output of MLP
y Ground truth for MLP
M The number of inputs features
N The number of geographic areas
cr Caching capacity of each RSU r ∈ R
pr Computation capability of RSU r ∈ R
cv Caching capacity of each car v ∈ V
pv Computation capability of car v ∈ V
kv

0 Input image of passenger in car v ∈ V
τTot

u (q,h,%) Total delay experienced by each passenger u ∈ Uv

Rv
u Data rate for each passenger u via IWR of car v

to request and cache in the self-driving car, we use
CNN approach presented in III-A2 to predict age and
gender of car passengers, where each self-driving car is
equipped with a camera system for capturing incoming
passenger. After CNN prediction, the self-driving car
can request its nearest RSUs the MLP prediction.
Then, by using k-means and binary classification
presented in III-A3, self-driving car compares its CNN
prediction with the predicted outputs from MLP. This
helps to identify the entertainment contents which are
appropriate to the passengers. Finally, the self-driving
car downloads and caches the identified contents.

III. Deep Learning Based Caching in Self-Driving
Car

As described in the previous section, for caching contents,
the self-driving car needs to compare its CNN prediction
with MLP prediction. Here, we discuss deep learning and
recommendation model in Section III-A, where the output
of the recommendation model is the contents that should to
be cached in the self-driving car. Furthermore, for request-
ing and downloading the recommended contents, the self-
driving car requires communication resources. Therefore,
in Section III-B, we will discuss the communication model.
For caching downloaded contents, we present the caching
model in Section III-C. Based on demands, cached contents
can be converted or transcoded to the different formats by
using computational resources, where computation model
is described in Section III-D.

A. Deep Learning and Recommendation Model
1) Multi-Layer Perceptron (MLP): As depicted in Fig. 1,

at DC, we use MLP, where green circles represent neurons of
input and output layers, while red circles represent neurons
of hidden layers.
For predicting the probabilities of contents to be re-

quested in specific areas, we use a demographical dataset
that will be described in Section V. The inputs and outputs
are described as follows:

• Inputs: In the dataset, we have entertainment content
names, rating, viewer’s age, gender, and locations as
the inputs of MLP. We use x = (x1, x2, . . . xM)T to
denote the input vector, where the subscripts are used
to denote the features.

• Outputs: From the inputs, MLP tries to predict ỹ =
(ỹ1, ỹ2, . . . ỹN)T as the output vector and the subscripts
are used to denote the geographical areas. In addition,
in the output layer, each area n ∈ N corresponds to
one neuron and predicts the probabilities of contents
require to be cached in that area. Furthermore, for
predicting the ranking of entertainment contents over
time, long short-term memory (LSTM) described in
[26] can be used. However, we consider LSTM for
predicting content rating to be outside of the scope of
this paper.

Before presenting the MLP, let us start with a simple
artificial neural network (ANN) of one layer, where we
consider the outputs as the weighted sum of the inputs.
We use wnm to denote weight from input xm to output ỹn.
Therefore, the output yn can be expressed as follows:

ỹn = f

(∑M

m=1
wnmxm + bn

)
, (1)

where f(.) is the activation functiona and bn is the bias
added with a linear combiner (

∑M
m=1 wnmxm).

As an extension to the above simple ANN, we consider
MLP as an ANN which has more hidden layers, where
each hidden layers has more units called neurons. For MLP,
we use l to denote the the number of hidden layers, x for
input vector, b(1), . . . , b(l) for bias vectors, W (1), . . . ,W (l)

for the weight matrices at each hidden layer, and ỹ for
output vector. ỹ can be expressed as follows:

ỹ = f(W (l) . . . f(W (2)f(W (1)x + b(1)) + b(2)) · · ·+ b(l)).
(2)

The above equation (2) shows that each neuron received
the output from the previous layer and after processing, it
sends output to the next neurons of the next layer. In our
MLP, we use Rectified Linear Unit (ReLU) as the activation
function in all the layers except at the output layer. The
ReLU can be mathematically expressed as follows:

ỹm = max(0, xm),∀m. (3)

We choose ReLU over other activation function, because
it solves the vanishing gradient problem experienced by
MLP during the training process [27]. Furthermore, in the
output layer j, we use softmax function as an activation
function. The purpose of softmax function is to squeeze
the output vector ỹ into a set of probability values, where
softmax function is defined as:

softmax(ỹ)(l) = eỹl∑N
n=1 e

ỹn

, for l = 1, . . . , N. (4)

The output layer has N neurons that correspond to the
number of geographical locations, where the cache-enable
RSU will be used for caching the contents.

The aims of our MLP is to compute the output ỹ for
each input x. Therefore, during the training of our MLP,
we need to adjust our w such that the correct output ỹ can
be obtained for each input x. In other words, we need to
adjust the network weights w such that the error function is
minimized. As described in [27], weight adjustment can be
done through a series of gradient descent weight updates
in a backward manner from the output layer, and this
technique is called backpropagation.

For error function, we choose cross entropy error function
overs other error functions as our MLP aims to classify the
contents needs to be cached in N geographical areas. This
problem can be considered as classification problem, where
we interpret the outputs as probabilities of the contents to
be cached in specific geographical area. The cross entropy
error function A(y, ỹ) can be expressed as follows:

A(y, ỹ) = −
∑N

n=1
yn log ỹn. (5)

The above cross entropy error function A(y, ỹ) penalizes
large deviations from the desired caching locations. Tech-
nically, A(y, ỹ) calculates the cross-entropy between the
estimated class probabilities ỹ and the ground truth y.

Finally, in order to reduce communication delay between
the self-driving car and DC, as DC may be located in a
far distance from the self-driving car, the outputs of MLP
are sent to MEC servers attached to RSUs based on their
geographical locations/areas.
2) Convolutional Neural Network (CNN): We use CNN

for automatic age and gender extraction from facial images.
This problem has been extensively studied in [28]. We
consider that features like age and gender will play an
important role in entertainment content consumption.
Once the facial image of passenger is captured via the
camera of self-driving car, we can extract features such
as location, size, eyes, nose, mouth, chin, etc., and use
them for classifying the face into different age and genders
classes by using CNN VGG16 described in [29]. We describe
CNN workflow for automatic age and gender extraction as
follows:
• Inputs: In the self-driving car, we consider kv0 as

the input image of incoming passenger(s) with three
dimensions space: height, width, and the number of
color channels (red, green, and blue).

• Convolution layer: Convolution layer applies filters
to input regions and computes the output of each
neuron. Each neuron is connected to local regions of
inputs and by using dot products between weight and
local regions, convolution layer comes out with feature
map kvj . We use kvj to denote the feature map after
convolution layer j in self-driving car v ∈ V.

• RELU layer: In this layer, we apply ReLU max(0,kvj)
as an elementwise activation function. The ReLU keeps
the size of its associated convolution layer j unchanged.

• Max pooling layer: After Convolution and RELU layers,
we have a high dimensional matrix. Therefore, for
dimension reduction, we apply maxing pooling layer
as downsampling operation.

• Fully-connected layer: This layer is fully connected to
all previous neurons and is used to compute the class
scores that a face could potentially belong to. Here,
we have 2 classes for gender (male and female) and 101
classes of age (from 0 to 101). In other words, we use
two fully-connected layers, one for age and another
one for gender classification.

• Softmax layer: In this layer, for each facial image,
we need to interpret output as probability values that
indicate the classes for gender and age that a face could
potentially belong to. To achieve this, the softmax
activation function is applied to the outputs of the
fully-connected layers.

3) Recommendation Model: Once the self-driving car is
connected to RSU, it downloads MLP output. Then, it
uses the CNN prediction and MLP output to decide the
contents that need to be downloaded and cached in its
cache storage. The workflow of the recommendation model
for the self-driving car is described as follows:
• Step 1: Each self-driving car v ∈ V downloads MLP

output from MEC server (attached to RSU).
• Step 2: By using the k-means algorithm for age-based
grouping and binary classification for gender-based
grouping on MLP output, each self-driving car v ∈ V
makes clusters of consumers of contents and generates
an initial recommendation for the contents that need
to be cached and have high requested probabilities.

• Step 3: For each new passenger u ∈ U , the self-driving
car uses CNN for automatically predicting its age and
gender. We assume that the self-driving car trains
CNN once by using dataset, saves the model, and uses
it for predicting age and the gender without always
training the model again.

• Step 4: The self-driving car uses these passenger’s
features to calculate the similarity of passenger u ∈
U with the existing classified people (consumers of
contents). From the result of similarity calculation,
the passenger u ∈ U will be assigned to a cluster.

• Step 5: After clustering of passenger(s), self-driving
car v ∈ V updates the recommendation for the content
that the self-driving car needs to be downloaded and
cached.

• Step 6: Finally, self-driving car v ∈ V downloads the
recommended contents via RSUs and caches them in
its cache storage cv.

Let us describe in detail how to use k-means algorithm and
binary classification in the recommendation model at each
geographical location n ∈ N of self-driving car v ∈ V . For k-
means algorithm, first, we use age as numerical data points.
We denote ỹn as MLP output at each geographical location
n ∈ N and X = ỹn as inputs of k-means algorithm. The
k-means seeks to partition data points X = {x1, . . . , xU}
into K clusters X1, . . . ,XK and X1∪X2∪· · ·∪XK = X . In
k-means, people are grouped into clusters based on category
of their age, where we choose the number of clusters K
equals to the number of age categories. In addition, clusters
are disjoint Xi ∩ Xj = ∅, i 6= j. The goal of k-means is to

assign data points to the cluster’s centroid such that the
below objective function is minimized:

min
{Xj}K

j=1

K∑
j=1

∑
xu∈Xj

‖xu − x̃j‖2, (6)

where x̃j is the centroid of cluster Xj , which is defined as
follows:

x̃j =
∑
xu∈Xj

xu

|Xj |
. (7)

In addition to the age, people in the same cluster can have
different gender. Furthermore, as shown in the processed
YouTube demographic dataset from Next Analytics [21],
based on gender, people have different choices for contents.
Therefore, in each cluster, we need to group data points
based on gender. For gender-based grouping, we apply
binary classification described in [24] which results in
formation of two groups, one group for females (denoted
Gfemale
j) and another group for males (denoted Gmale

j),
where Xj = Gfemale

j ∪ Gmale
j and Gfemale

j ∩ Gmale
j = ∅.

Since downloading both MLP outputs and top recom-
mended contents requires communication resources, we
propose communication model that is described in below
subsection.

B. Communication Model
During off-peak hours, based on the MLP outputs, each

MEC server downloads recommended contents by using
fiber backhaul link of capacity ωr,DC . The transmission
delay for downloading contents from DC to the MEC server
r is expressed as:

τDC
r =

∑
i∈Ir(n) q

DC→r
i S(i)

ωr,DC
, (8)

where Ir(n), n ∈ N , denotes the set of predicted contents
via MLP that need to be cached in region n of RSU r and
qDC→r
i is a decision variable that indicates whether or not
MEC server r downloads recommended content i ∈ Ir(n)
from DC, such that:

qDC→r
i =


1, if MEC server r downloads content i

from DC,
0, otherwise.

(9)
In self-driving car, downloading the top recommended
contents requires communication resources. We consider
each self-driving car v ∈ V moves in region covered by
macro base stations (BSs) and RSUs. In addition, we
assume that in each route of self-driving car v, there can
be many RSUs, where some of them are cache-enabled.
Therefore, before the self-driving car starts its journey, it
can select RSUs that will be used to download the top
recommended contents and the speed that will be used
for having less variation in time for downloading contents.
Therefore, to discover cache-enabled RSUs located in a
route of each self-driving car, Access Network Discovery
and Selection Function (ANDSF) implemented in cellular

network [30] can be utilized. To get RSU information (their
coordinates and coverages), the self-driving car sends a
request to ANDSF server via BS. In the request includes
self-driving car geographic location, speed, and direction.
The ANDSF server’s response includes coordinates and
coverage radius all RSUs available in the direction of the
self-driving car.

Each self-driving car v computes the following distance
d̃rv between each RSU r and its route:

d̃rv = grvsinα
r
v, (10)

where αrv is the angle between the trajectory of movement
of self-driving car v and the straight line originating from
RSU r physical location, and grv is geographical distance
between self-driving car v and cache-enabled r. αrv and grv
can be obtained via Global Positioning System (GPS) [31].
In addition, each self-driving car v computes the following
distance dvr remaining to reach each area covered by cache-
enabled RSU r ∈ R:

dvr = grvcosα
r
v. (11)

As described in [31], we defined ρrv as a probability that
cache-enabled RSU r ∈ R will be selected as a source
of contents required to be cached in self-driving car v as
follows:

ρrv =


1, if d̃rv = 0,
d̃r

v

γr
if 0 < d̃rv < γr,

0, otherwise,
(12)

where γr is the radius of area covered by RSU r ∈ R.
The equation (12) ensures that once the self-driving car
v reaches in area covered by cache-enabled RSU r ∈ R,
it immediately starts downloading recommended contents.
Therefore, we define qrv as decision variable that indicates
whether or not self-driving car is connected to RSU r ∈ R
as follows:

qrv =
{

1, if ρrv > 0 and dvr = 0,
0, otherwise.

(13)

We consider each RSU r has wireless channel of capacity
ωv,r and each self-driving car v ∈ V can use one channel
at each time slot. The channel is shared via time-division
multiplexing fashion. As described in [32], at each time slot
t, we assume that the channel is not changing. Therefore,
ωv,r can be expressed as follows:

ωv,r = qrvBr log2
(
1 + ϕr|Grv|2

)
, ∀v ∈ V, r ∈ R, (14)

where Br is the authorized bandwidth for car to RSU
communications, Grv is the channel gain between RSU r and
self-driving car v, and ϕr is the scalar factor that represents
the transmission power of RSU r. Therefore, based on
channel capacity, the transmission delay for downloading
content i from MEC server to self-driving car v is expressed
as:

τ rv =
∑
ĩf ,̃im∈Ir(n) q

r
v

(
S(̃if)) + S(̃im)

)
ωv,r

, (15)

where ĩf ∈ Gfemale
j is the most requested content by

consumers of the gender female and ĩm ∈ Gmale
j is the

most requested content by consumers of the gender male
in each cluster j, i.e., ĩm, ĩm ∈ Ir(n).
We consider trv as a time required by self-driving car

v ∈ V to leave an area covered by RSU r as follows:

trv = 2qrvγr
µv

, (16)

where µv is the speed of self-driving car v. When τ rv < trv,
the self-driving doesn’t need to reduce µv for having more
time to download the recommended contents in the region
of RSU r. However, when τ rv ≥ trv, without endangering
other cars and breaking minimum speed limit allowed in
its lane, the self-driving car can reduce µv for having more
time to download more contents and cache them.
We consider that each self-driving car v has Integrated

WiFi Router (IWR) on board, and it can provide WiFi
connectivity to passengers. The IWR channel resources
are shared to the passengers via contention-based model
described in [33]. Therefore, the instantaneous data rate
for each passenger u via IWR of self-driving car v is given
by:

Rvu = qvuϕvR̃
v
uξ
v
u(|Uv|)

|Uv|
,∀u ∈ Uv, v ∈ Vv, (17)

where ϕv is WiFi throughput efficiency factor, and |Uv| is
the number of passengers that be connected simultaneously
to IWR of self-driving car v, where Uv ⊂ U . ϕv is used to
determine overhead related to MAC protocol layering such
as header, DIFS, SIFS, and ACK. Furthermore, R̃vu is the
maximum theoretical data rate that IWR can handle, which
is assumed to be protocol depended and apriori known [33].
Furthermore, ξvu(|Uv|) is channel utilization function [33],
which is a function of number of passengers connected
simultaneously to IWR. ξvu(|Uv|) is used to determine
impact of contention over WiFi throughput. In addition,
we use qvu as a decision variable that indicates whether
or not passenger u is connected to WiFi of self-driving v,
specifically:

qvu =
{

1, if passanger u is connected to WiFi of car v,
0, otherwise.

(18)
For each passenger u ∈ Uv, based on its instantaneous

data rate Rvu, the transmission delay τvu for downloading
content i via or from self-driving car v is given by:

τvu =
∑
i∈Ir(n) q

v
u

(
S(̃if)) + S(̃im)

)
Rvu

. (19)

C. Caching Model
The aim of caching contents in the self-driving car is to

reduce the delay experienced by passengers in downloading
content. This helps in improving Quality of Experience
(QoE) for consumers (passengers) and quality of service
for Content Providers (CPs).

We assume that the cache storage cv for each self-driving
car v is limited. Therefore, the sizes of the recommended

contents need to be downloaded from MEC server v and
cached must satisfy cache resource constraint, which is
expressed as follows:

qrv

K∑
j=1

 ∑
ĩf∈Gfemale

j

o
ĩf
v S(̃if)) +

∑
ĩm∈Gmale

j

oĩmv S(̃im)

 ≤ cv,
(20)

where, in each cluster j, we let oĩfv ∈ {0, 1} be the decision
variable that indicates whether or not self-driving car v
has to cache content ĩf ∈ Gfemale

j , where oĩfv is given by:

o
ĩf
v =

{
1, if self-driving car v caches the content ĩf ,
0, otherwise.

(21)
On the other hand, we let oĩmv ∈ {0, 1} be the decision
variable that indicates whether or not self-driving car v
has to cache content ĩm ∈ Gmale

j , where oĩmv is given by:

oĩmv =
{

1, if self-driving car v caches the content ĩm,
0, otherwise.

(22)
Furthermore, for analyzing cache storage utilization, which
is based on cache hit and cache miss, we assume that ĩf
and ĩm are cached in the same cache storage cv. Therefore,
we omit the subscript and superscript on content, and use
i to denote any content ĩf or ĩm.

We use hu→vi ∈ {0, 1} to denote the cache hit indicator
at self-driving car v for content i ∈ Ir(n) requested by
customer u ∈ U :

hu→vi =


1, if content i requested by consumer u

is returned from self-driving car v,
0, otherwise.

(23)
In case of cache miss (hu→vi = 0), the self-driving car

needs to forward demand for content i to its associated
MEC server. Based on MLP output at RSU, we consider
that the MEC server caches the contents that has high
probabilities of being request in its region n, where cache
allocation has to satisfy the following constraint:∑

i∈Ir(n)

oirS(i) ≤ cr, (24)

where oir is a decision variable that indicates whether or
not MEC server r has to cache content i ∈ Ir(n), defined
as follows:

oir =
{

1, if MEC server r caches content i ∈ Ir(n),
0, otherwise.

(25)
Furthermore, we use hr→vi ∈ {0, 1} to denote the cache

hit indicator at MEC server for content i ∈ Ir(n) requested
by self-driving v ∈ V:

hr→vi =


1, if the content i requested by self-dring

car v is cached at MEC server r,
0, otherwise.

(26)

Due to the limited cache capacity, when the cache storage
is full, the self-driving car or MEC server replaces the
contents by using Least Frequently Used (LFU) cache
replacement policy [34] [35].
However, when MEC server does not have content i in

its cache storage, MEC server forwards the demand for
content i to DC via wired backhaul link.

D. Computation Model for Cached Content
In the self-driving car, a passenger may request a content

format (e.g., avi), which is not available in the cache storage
cv. Instead, the cache storage may have other content
formats (e.g., mpeg) of the same content which can be
transcoded to the desired format.

Therefore, in order to adopt this process of serving cached
content after computation, we define the following decision
variable:

hv→ui′ =


1, if content i′ requested by consumer u

is returned by car v after computation,
0, otherwise.

(27)
In order to make sure that self-driving car v returns only

one format of content, the following constraint has to be
satisfied:

hu→vi + hv→ui′ ≤ 1. (28)

We assume that converting content i ∈ Ir(n) to content
i′ requires to use computation resource pv of self-driving
car v, where computational resource allocation pi→i

′

v is
given by:

pi→i
′

v = pv
hu→vi %i→i

′

v zi→i
′∑

u∈U
∑
i∈I h

u→v
i zi→i′

, ∀v ∈ V, (29)

where zi→i′ is the computation workload or intensity in
terms of CPU cycles per bit required for converting cached
content i to i′, while %i→i′v is computation decision variable
which is expressed as:

%i→i
′

v =


1, if the cached content i is converted to

desired format i′ in self-driving car v.
0, otherwise.

(30)
In (29), for computational resources allocation, we use

weighted proportional allocation, because it is simple
to implement in practical communication systems such
Vehicular Ad-hoc Networks (VANETs), 4G and 5G cellular
networks [9], [36]. In weighted proportional allocation,
each transcoding task receives a fraction of computational
resources based on its computation workload requirement.

Furthermore, we assume that the computational resource
pv to be limited, and computation allocation must satisfy
the following constraint:

U∑
u=1

Ir(n)∑
i=1

hu→vi %i→i
′

v pi→i
′

v ≤ pv. (31)

In addition, converting content i to content i′ involves the
executing time. Therefore, in self-driving car v, as defined
in [37], the execution time τ i→i′v is given by:

τ i→i
′

v = hu→vi %i→i
′

v zi→i
′
S(i)

pi→i′v

. (32)

When constraint (31) cannot be satisfied due to insuffi-
cient computational resource for converting content i into
requested content i′, self-driving car forwards the demand
for content i′ to MEC server.

At MEC server, to convert cached content i into content
i′, it requires execution time τ i→i′r . Thus, the execution
time at MEC server is given by:

τ i→i
′

r = (1− %i→i
′

v)
(
qrvh

r→v
i %i→i

′

r zi→i
′
S(i)

pi→i′r

)
, (33)

where %i→i′r is a computation decision variable, which is
expressed as:

%i→i
′

r =


1, if the cached content i is converted to

desired format i′ at MEC server,
0, otherwise,

(34)
where the computational resource allocation pi→i′r at RSU
r for converting cached content i to content i′ can be
calculated as follows:

pi→i
′

r = pr
(1− %i→i′v)

(
%i→i

′

r hr→vi zi→i
′
S(i)

)
∑
v∈V

∑
i∈I %

i→i′
r hr→vi zi→i′S(i) , ∀r ∈ R.

(35)
In addition, we assume that computation resource at MEC
server to be limited, where computation allocation has to
satisfy the following constraint:

V∑
v=1

Ir(n)∑
i=1

qrvp
i→i′
r ≤ Pr. (36)

We define hr→vi′ as a decision variable that indicates whether
or not MEC server returns requested content i′ to self-
driving car v after computation, where hr→vi′ is given by:

hr→vi′ =


1, if content i′ requested by car v is returned

by MEC server r after computation,
0, otherwise.

(37)
Therefore, in order to ensure that converting i to i′ is
executed only at one location and MEC server r returns
only one format of content, we impose the following
constraints:

qvu(hu→vi + hv→ui′) + qrvηv(hr→vi + hr→vi′) ≤ 1 (38)
%i→i

′

v + qrv(1− %i→i
′

v) ≤ 1 (39)

where ηv = 1− (hu→vi + hv→ui′). However, when the MEC
server does not have enough computation resources to
satisfy the above constraint (36), it forwards the demand
for content i′ to DC via backhaul wired link.

IV. Problem Formulation and Solution
To join aforementioned deep Learning, communication,

and computation approaches, we formulate an optimization
problem in Section IV-A. Finally, we propose a solution of
our optimization problem in Section IV-B.

A. Problem Formulation
We formulate a novel deep learning based caching scheme

in self-driving car that exploits 4C components of MEC as
an optimization problem. The problem aims at minimizing
total delay, where total delay τTot

u (q,h,%) for retrieving
contents is given by:

τTot
u (q,h,%) = τvu + hv→ui′ τ i→i

′

v + (1− (hu→vi + hv→ui′))(
(τ rv + τ i→i

′

r hr→vi′) + (1− (hr→vi + hr→vi′))τDC
r

)
. (40)

Therefore, for minimizing delay τTot
u (q,h,%), the optimiza-

tion problem can be expressed as follows:

minimize
q,h,%

U∑
u=1

τTot
u (q,h,%) (41)

subject to:
V∑
v=1

qrv ≤ 1, ∀r ∈ R, (41a)

qrv

k∑
j=1

(
∑

ĩf∈Gfemale
j

o
ĩf
v S(̃if)) +

∑
ĩm∈Gmale

j

oĩmv S(̃im)) ≤ cv,

(41b)
U∑
u=1

Ir(n)∑
i=1

qvuh
u→v
i %i→i

′

v pi→i
′

v ≤ pv, ∀v ∈ V, (41c)

qvu(hu→vi + hv→ui′) + qrvηv(hr→vi + hr→vi′) ≤ 1, (41d)
qvu%

i→i′
v + qrv(1− %i→i

′

v) ≤ 1. (41e)

The constraint in (41a) ensures that the communication
resource allocation for self-driving cars has to be less or
equal to the total available communication resources of
RSU r ∈ R. The constraints in (41b) and (41c) guarantee
that caching and computational resource allocations have to
be less or equal to the available caching and computational
resources of the self-driving car. The constraint in (41d)
ensures that self-driving car or MEC server returns only
one format of the requested content. The constraint (41e)
ensures that converting i to i′ is only executed at one
location, either at MEC server r or at self-driving car v.

The formulated optimization problem in (41) has a non-
convex structure, which makes it complicated to solve.
Therefore, in order to make it convex and solve it easily,
we use a Block Successive Majorization-Minimization (BS-
MM) [25] and rounding technique [38], [39] described below
in the Section IV-B.

B. Proposed Solution
We solve (41) by using BS-MM. The BS-MM belongs to

a family of algorithms called Majorization-Minimization

(MM) algorithms described in [25]. We choose BS-MM over
other MM algorithms because BS-MM allows partitioning
problem into blocks and applies MM to one block of
variables while keeping the values of other block fixed.
To ensure that all blocks are utilized, we can use selection
rules such as Cyclic, Gauss-Southwell, and Randomized
described in [9], [25]. Therefore, with BS-MM, each subprob-
lem can be solved separately using parallel computation.
Furthermore, in order to use BS-MM in (41), we consider
Q , {q :

∑U
u=1 q

v
u + qrv ≥ 1, qvu, qrv ∈ [0, 1]}, H ,

{h :
∑U
u=1(hu→vi + hv→ui′) + (1− (hu→vi + hv→ui′)) (hr→vi +

hr→vi′) ≤ 1, hu→vi , hv→ui′ , hr→vi , hr→vi′ ∈ [0, 1]}, and P , {% :∑
i,i′∈I %

i→i′
v + (1 − %i→i′v)%i→i′r ≤ 1, %i→i′v , %i→i

′

r ∈ [0, 1]}
as non-empty and closed sets of relaxed q, h, and %,
respectively. Therefore, to simplify our notation, we use
F(q,h,%) to denote (41), where F(q,h,%) is expressed as
follows:

F(q,h,%) =
U∑
u=1

τTot
u (q,h,%). (42)

To solve (42) by using BS-MM, we apply MM steps
summarized below:
• Step 1: In the first step, called majorization, we need to

find a convex surrogate function denoted by Fj(q,h,%)
which is the upper-bound of (42).

• Step 2: In the second step, called minimization, instead
of minimizing (42) which is intractable, we need to
minimize the convex surrogate function Fj(q,h,%).

The success of BS-MM relies on choosing the surrogate
function Fj(q,h,%). Therefore, a surrogate function that
is easy to solve and follows the shape of the objective
function (42) is preferable. To achieve this, in majorization
step, we use proximal minimization technique described in
[25] and make the surrogate function Fj(q,h,%) by adding
quadratic term (%j

2 ‖(qj − q̃)‖2) to (42). Therefore, the
convex surrogate function Fj(q,h,%) can be expressed as
follows:

Fj(qj , q(t),h(t),%(t)) ..= F(qj , q̃, h̃, %̃) + αj
2 ‖(qj − q̃)‖2,

(43)
where q̃, h̃, %̃ are a given initial feasible points. Further-
more, the surrogate function in (43) can be applied to other
vectors h and %. Due to its quadratic term (αj

2 ‖(qj− q̃)‖2),
Fj(q,h,%) is convex optimization problem.
In minimization step, we minimize surrogate function

Fj(q,h,%), which is convex and upper-bound of the
objective function in (42). Therefore, as the surrogate
function in (43) can be divided into blocks, we consider
J t as set of indexes, where at each iteration t and j ∈ J t,
αj is used to denote a positive penalty parameter.
For minimizing the surrogate function Fj(q,h,%), we

propose Algorithm 1, where we can obtain solution of (43)
by solving the below optimization problems at each each
iteration t+ 1:

q
(t+1)
j ∈ min

qj∈Q
Fj(qj , q(t),h(t),%(t)), (44)

h
(t+1)
j ∈ min

hj∈H
Fj(hj ,h(t), q

(t+1)
j ,%(t)), (45)

%
(t+1)
j ∈ min

%j∈P
Fj(%j ,%(t), q

(t+1)
j ,h

(t+1)
j). (46)

For the obtained solution by using the relaxed vectors qj ,
hj and %j that take values in [0, 1], we need to ensure that
qj , hj and %j are vectors of binary variables. In order to
achieve this, we apply the rounding techniques described in
[38]. As an illustration example, for a solution qr∗v ∈ q

(t+1)
j ,

we define rounding threshold ϕ ∈ (0, 1), where enforced
binary value of qr∗v is given by:

qr∗v =
{

1, if qr∗v ≥ ϕ,
0, otherwise.

(47)

As highlighted in [9], [39], the rounding technique may
violate communication, caching, and computation resource
constraints. Therefore, as proposed in [9] and [39], to
overcome this issue, we solved Fj in the form Fj + βv∆v

by updating the constrains in (41a), (41b), and (41c) as
follows:

V∑
v=1

qrva
r
v ≤ 1 + ∆va , ∀r ∈ R, (48)

U∑
u=1

Ir(n)∑
i=1

qvuh
u→v
i %i→i

′

v pi→i
′

v ≤ pv + ∆vp
,∀v ∈ V, (49)

qrv

k∑
j=1

(
∑

ĩf∈Gfemale
j

o
ĩf
v S(̃if)) +

∑
ĩm∈Gmale

j

oĩmv S(̃im)) ≤ cv + ∆vc ,

(50)
where, in self-driving car, we use ∆v = ∆va

+ ∆vp
+ ∆vc

as maximum violation of communication, caching, and
computation resource constraints and βv as the weight
parameter of ∆v. Furthermore, the values of ∆va , ∆vp ,
and ∆vc

are given by:

∆va = max{0,
V∑
v=1

qrva
r
v − 1}, ∀r ∈ R, (51)

∆vp
= max{0,

U∑
u=1

Ir(n)∑
i=1

qvuh
u→v
i %i→i

′

v pi→i
′

v − pv}, ∀v ∈ V,

(52)

∆vc
= max{0, qrv

k∑
j=1

((
∑

ĩf∈Gfemale
j

o
ĩf
v S(̃if))+

∑
ĩm∈Gmale

j

oĩmv S(̃im))− cv}. (53)

In order to evaluate the quality of our rounding technique,
we use the integrality gap defined and proved in [38].
Therefore, for given problems Fj + βv∆v and Fj , the
integrality gap is expressed as follows:

φj = min
q,h,%

Fj
Fj + βv∆v

. (54)

For Fj , the solution is obtained by using relaxed vectors
qj , hj and %j . On other hand, for Fj + βv∆v, the solution

Algorithm 1 : Distributed optimization control algorithm
for deep learning based caching.
1: Preconditions: MLP outputs are deployed to the

RSUs;
2: Input: U : A vector of passengers; V : A vector of

self-driving cars, R: A vector of RSUs, ωDC
r : A vector

of backhaul capacities, ωr
v: A vector of wireless link

capacities, ỹ: MLP outputs, X : Vector of recommended
contents for self-driving car v, Rvu pv, cv, pr and cr;

3: Output: q∗, h∗, %∗;
4: Initialize t = 0;
5: Find initial feasible points (q(0), h(0), %(0));
6: repeat
7: Choose index set J t;
8: Let q

(t+1)
j ∈ min

qj∈Q
Fj(qj , q(t),h(t),%(t));

9: Set qt+1
k = qtk,∀k /∈ J t and solve

min
qj∈Q

Fj(qj , q(t),h(t),%(t));

10: For getting h
(t+1)
j and %

(t+1)
j , restart from step 4,

salve (45) and (46);
11: t = t+ 1;
12: until lim

t→∞
inf

q,h,%
‖F (t+1)

j −F (t)
j ‖2 = 0;

13: By rounding technique, enforce q
(t+1)
j , h

(t+1)
j , and

%
(t+1)
j to be vectors of binary variables;

14: Solve Fj + βv∆v, and compute φj ;
15: Then, consider q∗ = q

(t+1)
j , h∗ = h

(t+1)
j , and %∗ =

%
(t+1)
j as a solution.

is obtained by enforcing the vectors qj , hj and %j to be the
vectors of binary variables. Therefore, the best rounding is
achieved, when φj ≤ 1 (φj = 1 for the feasible solution).
1) Proposed Algorithm: We propose a Distributed

optimization control algorithm for deep learning based
caching in the self-driving car (Algorithm 1), which is
based on BS-MM [25].
In Algorithm 1, we assume that the MLP are already

deployed at RSUs. We consider vector of passengers, vector
of self-driving cars, vector of RSUs, vector of backhaul
capacities, vector of wireless link capacities, vector of
MLP outputs for recommended contents that need to be
cached at RSU in each region n, vector of recommended
contents that need to be cached in self-driving car v, Rvu,
pv, cv, pr, and cr as the inputs. First, the Algorithm
1 finds the initial feasible points q̃ = q(0), h̃ = h(0),
and %̃ = %(0). Then, the Algorithm 1 starts an iterative
process by choosing index set J t at iteration t. After
that, the solution of (43) is computed and updated by
solving the optimization problems (44), (45), and (46)
until lim

t→∞
inf

q,h,%
‖F (t+1)

j − F (t)
j ‖2 = 0. Therefore, as our

caching technique is based on content prefetching, in (44),
we assume that self-driving car needs to be connected to
the RSU first for downloading contents. After establishing
connection by solving (45), we can download and serve
cached contents based on demands. Based on desired format

Table II: The route for self-driving bus.
Route Distance (Km) Maximum speed (Km/h) RSUs
1 218.49 109.016 1− 2
2 215 107.34 2− 3
3 216.19 108.17 3− 4
4 211.10 105.38 4− 5
5 222.66 111.33 5− 6

of the contents, we can solve the problem in (46) related to
computation of cached contents. We enforce the solution
x

(t+1)
j , y

(t+1)
j , and w

(t+1)
j to be vector of binary variables

via the rounding technique (47), then the Algorithm 1
solves Fj + βv∆v, and compute φj . Finally, the Algorithm
1 considers q∗ = q

(t+1)
j , h∗ = h

(t+1)
j , and %∗ = %

(t+1)
j as a

solution.
For the converge of the proposed algorithm, based on

converged of MM defined and proved in [25], we can make
the following remark:

Remark 1 (Convergence of the proposed algo-
rithm). The proposed Algorithm 1 for deep learning based
caching in self-driving car, which based on BS-MM algo-
rithm, converges to minimum points called coordinate-wise
minimum, when the vectors qj, hj and %j reaches points,
where they cannot find a better minimum direction, i.e.,
lim
t→∞

inf
q,h,%
‖F (t+1)

j −F (t)
j ‖2 = 0.

V. Simulation Results and Analysis
In this section, we present the performance evaluation of

the proposed deep learning based caching in the self-driving
car. We use Google Maps Services [40] for self-driving car
mobility analysis, and Keras with Tensorflow [41] for deep
learning simulation.

A. Simulation Setup
To predict the probability of contents to be requested in

specific areas, we use MLP described in Section III-A1 and
a well-known dataset called Movie-Lens Dataset [42]. In this
dataset, we have movies with their related information such
as movie titles, release dates, and type of movies. However,
the dataset doesn’t have movie sizes and formats. Since, our
deep learning based caching scheme is based on content size,
we generate a random size S(i) for each movie i in the range
from S(i) = 317 to S(i) = 750 Mb and assign randomly
each movie i the format (.avi or .mpg). In addition, we
have users information such as age, gender, their rating
for the movies, and ZIP codes. We convert ZIP codes into
longitude and latitude coordinates and deploy RSUs to the
specific areas based on the location of the consumers of
the contents. With departure time and location of RSUs,
Google Maps Service provides distance and duration to
reach each RSU r ∈ R, where the duration is based on
traffic condition between source and destination. Based on
distance (in terms of km) and duration (in terms of hours),
we can calculable the speed (in terms of km/h) of the
self-driving car and finds the RSU that the self-driving car
could potentially connect to for downloading the content.

Figure 2: Cache-enabled RSUs deployment.

Figure 3: Cross entropy loss function for videos need to be
cached at RSUs (acc: 0.9804).

However, based on Google Maps Services [40], we realize
that the distances between RSU units are very high. Then,
we update the RSU locations and make a routing table
summarized in Table II, where the self-driving car starts
its journey from RSU 1 and ends it to RSU 6. We set each
RSU r ∈ R to be connected to DC with wired backhaul
of capacity in the range from ωr = 60 to ωr = 70 Mbps.
We consider that each RSU r ∈ R has the bandwidth of
ωv,r = 10 MHz. On the other hand, each MEC server ∈ R
has CPU of capacity pr = 3.6 GHz, while cache capacity
is the range from cr = 100 to cr = 110 terabytes (TB).
For self-driving car v ∈ V, we consider one self-driving

bus with |Uv| = 37. The self-driving car has a bandwidth
of 160 MHz (802.11ac) with maximum theoretical data
rate of R̃vu = 3466.8 Mbps. Furthermore, the computation
capacity of self-driving car is set to pv = 3.6 GHz, while
cache capacity is set to pv = 100 TB.

B. Evaluation Results
Before starting using MLP, based on video watching

counts and location information, we select six areas to
deploy cache-enabled RSUs by using the k-means algorithm.
In these six areas depicted in Fig. 2, we predict the
probabilities of contents to be cached in these regions by
using MLP of 3 layers with 2 hidden layer. As shown in Fig.
3, we minimize Cross entropy loss function, an accuracy of
98.04% is achieved for predicting movies that need to be
cached at RSUs.
For the videos that need to be cached at RSUs, each

RSU v ∈ V caches them by starting the ones who have

Figure 4: Videos need to be cached at RSUs (RSU 1).
.

Figure 5: Age based clustering by using k-means.

high probabilities to be requested in its area in descending
order until the cache storage becomes full or there are no
more videos required to be cached. As an example, the Fig.
4 demonstrates the video needs to be cached at the RSU 1
with their predicted probabilities by using MLP.

Caching at RSUs is based on location. However, in
addition to location, caching in the self-driving car is
based on age and gender. Therefore, when the self-driving
car is connected to RSU, it downloads the MLP outputs
from the RSU. Then, it groups the MLP outputs based
on age by using k-means algorithm and gender by using
binary classification described in Section III-A1. Fig. 5
show the age-based clustering in the self-driving bus by
using k-means. Even if the self-driving bus can have many
passengers, we assume that it starts the journey with 37
passenger on board. The CNN can be used for predicting
age and gender of passengers and then self-driving car
uses k-means and binary classification for classifying the
passengers. The Fig. 6 shows the results of both k-means
and binary classification. In other words, each age-based
cluster has two sub-clusters: male and female. From both
joined MLP and CNN outputs via k-means and binary
classification, we infer a recommendation of the contents
that require to be cached in the self-driving car. The top
recommended contents and their caching order are shown
in Fig. 7.

Based on demands of passengers, fig. 8 shows the normal-
ized cache hits for the self-driving car, where the videos not

Figure 6: Gender and age of passengers in self-driving bus.

Figure 7: Recommended videos to cache in self-driving bus.

cached in self-driving (cache misses) require to be retrieved
at RSU or DC. The results in this figure demonstrate that
the cache hits increase with Zipf parameter, i.e., the videos
which have high demands are characterized with high cache
hit rates.
Fig. 9 shows the solution of surrogate function (43),

where (43) minimizes total delays (transmission delay and
transcoding delay). In the beginning, the self-driving car
and its passengers need to experience with high delay
in downloading the contents (video). Once the contents
are cached inside the cars, the delay can be minimized
and converged to a stationary point. In other words, at
stationary point, the problem (43) cannot find a better
minimum direction. However, as shown in this figure, the
choice of αj has an impact on size and convergence speed
of surrogate function Fj(q,h,%).

VI. Conclusion
In this paper, we proposed a novel framework that uses

deep Learning for content caching in the self-driving car.
In the proposed framework, at DC, we proposed Multi-
Layer Perceptron (MLP) for predicting the probabilities of

Figure 8: Normalized cache hits for the self-driving bus.

Figure 9: Total delay minimization problem (seconds).

contents to be requested in specific areas. Then, outputs
are deployed in MEC servers (at RSUs) in close proximity
to the self-driving car, where each MEC server downloads
and caches the contents that have high probabilities of
being requested in its area of coverage. Furthermore,
for a self-driving car, in order to cache entertainment
contents that are appropriate to the age and gender of
passengers, we proposed convolutional neural network
(CNN) for predicting age and gender. Then, the self-driving
car downloads MLP output from MEC server and compares
its CNN and MLP outputs by using k-means and binary
classification for identifying the required contents to be
downloaded and cached. Therefore, we formulated deep
learning based caching problem as an optimization problem
that aims at minimizing content-downloading delay. The
simulation results demonstrate that our approach can
minimize delay and be easily implemented in the self-
driving environment.

References

[1] Icebike, “Real time traffic accident statistics,” https://www.
icebike.org/real-time-traffic-accident-statistics/, [Online; ac-
cessed July. 11, 2018].

[2] Southsideinjuryattorneys, “Georgia personal
injury blog,” http://southsideinjuryattorneys.
com/lawyer/2016/07/21/Personal-Injury/
New-Data-Shows-94-Percent-of-Car-Accidents-Caused-by-Human-Error_
bl25860.htm, [Online; accessed July. 11, 2018].

[3] M. Daily, S. Medasani, R. Behringer, and M. Trivedi, “Self-
driving cars,” Computer, vol. 50, no. 12, pp. 18–23, 2017.

[4] Business Insider, “These 19 companies are racing to put driver-
less cars on the road by 2020,” https://www.businessinsider.

https://www.icebike.org/real-time-traffic-accident-statistics/
https://www.icebike.org/real-time-traffic-accident-statistics/
http://southsideinjuryattorneys.com/lawyer/2016/07/21/Personal-Injury/New-Data-Shows-94-Percent-of-Car-Accidents-Caused-by-Human-Error_bl25860.htm
http://southsideinjuryattorneys.com/lawyer/2016/07/21/Personal-Injury/New-Data-Shows-94-Percent-of-Car-Accidents-Caused-by-Human-Error_bl25860.htm
http://southsideinjuryattorneys.com/lawyer/2016/07/21/Personal-Injury/New-Data-Shows-94-Percent-of-Car-Accidents-Caused-by-Human-Error_bl25860.htm
http://southsideinjuryattorneys.com/lawyer/2016/07/21/Personal-Injury/New-Data-Shows-94-Percent-of-Car-Accidents-Caused-by-Human-Error_bl25860.htm
https://www.businessinsider.com/companies-making-driverless-cars-by-2020-2016-8

com/companies-making-driverless-cars-by-2020-2016-8, [Online;
accessed September. 4, 2018].

[5] A. Ferdowsi, U. Challita, andW. Saad, “Deep learning for reliable
mobile edge analytics in intelligent transportation systems,”
arXiv preprint :1712.04135, 12 Dec. 2017.

[6] S. M. Tornell, S. Patra, C. T. Calafate, J.-C. Cano, and
P. Manzoni, “A novel on-board unit to accelerate the penetration
of its services,” in Proceedings of IEEE 13th Consumer Com-
munications & Networking Conference (CCNC), 9-12 Jan. 2016
(Las Vegas, NV, USA), pp. 467–472.

[7] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young,
“Mobile edge computing a key technology towards 5G,” ETSI
White Paper, vol. 11, no. 11, pp. 1–16, 5 Sep. 2015.

[8] A. Ndikumana, S. Ullah, T. LeAnh, N. H. Tran, and C. S. Hong,
“Collaborative cache allocation and computation offloading in mo-
bile edge computing,” in Proceedings of IEEE 19th Asia-Pacific
Network Operations and Management Symposium (APNOMS),
27-29 Sept. 2017 (Seoul, South Korea), pp. 366–369.

[9] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad,
D. Niyato, and C. S. Hong, “Joint communication, computation,
caching, and control in big data multi-access edge computing,”
arXiv preprint:1803.11512, 30 Mar. 2018.

[10] BUSBUD, “Will driverless buses be a reality?” https://
www.busbud.com/blog/will-driverless-buses-reality/, [Online;
accessed August. 11, 2018].

[11] Hollywood Reporter, “Why Hollywood could
make billions from self-driving cars,” https:
//www.hollywoodreporter.com/behind-screen/
why-driving-cars-could-be-hollywoods-next-big-thing-1031554,
[Online; accessed July. 11, 2018].

[12] S. Zhang, N. Zhang, X. Fang, P. Yang, and X. S. Shen, “Cost-
effective vehicular network planning with cache-enabled green
roadside units,” in Proceedings of IEEE International Conference
on Communications (ICC), 21-25 May 2017 (Paris, France), pp.
1–6.

[13] Z. Hu, Z. Zheng, T. Wang, L. Song, and X. Li, “Roadside unit
caching: Auction-based storage allocation for multiple content
providers,” IEEE Transactions on Wireless Communications,
vol. 16, no. 10, pp. 6321–6334, 2017.

[14] F. Chen, D. Zhang, J. Zhang, X. Wang, L. Chen, Y. Liu, and
J. Liu, “Distribution-aware cache replication for cooperative road
side units in vanets,” Peer-to-Peer Networking and Applications,
pp. 1–10, 2017.

[15] A. Ndikumana, N. H. Tran, T. M. Ho, D. Niyato, Z. Han, and C. S.
Hong, “Joint incentive mechanism for paid content caching and
price based cache replacement policy in named data networking,”
IEEE Access, vol. 6, pp. 33 702–33 717, 2018.

[16] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn
to cache: Machine learning for network edge caching in the big
data era,” IEEE Wireless Communications, vol. 25, no. 3, 2018.

[17] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and
computing for connected vehicles: A deep reinforcement learning
approach,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 1, pp. 44–55, 2018.

[18] J. Ma, J. Wang, G. Liu, and P. Fan, “Low latency caching
placement policy for cloud-based vanet with both vehicle caches
and rsu caches,” in Proceedings of IEEE Globecom Workshops
(GC Wkshps), 4-8 Dec. 2017 (Singapore), pp. 1–6.

[19] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, “Toward
efficient content delivery for automated driving services: An edge
computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86,
2018.

[20] Geocaching, “Self Driving Car Caching,” https:
//forums.geocaching.com/GC/index.php?/topic/
347757-self-driving-car-caching/, [Online; accessed July.
11, 2018].

[21] Next Analytics, “Why Hollywood could make billions
from self-driving cars,” https://www.nextanalytics.com/
excel-youtube-analytic-insights-and-data-mining/page/4/,
[Online; accessed July. 11, 2018].

[22] A. Azzouni and G. Pujolle, “Neutm: A neural network-
based framework for traffic matrix prediction in sdn,” arXiv
preprint:1710.06799, 2017.

[23] J. J. Whang, I. S. Dhillon, and D. F. Gleich, “Non-exhaustive,
overlapping k-means,” in Proceedings of the 2015 SIAM Interna-
tional Conference on Data Mining. SIAM, 30 Apr-2 May, 2015
(British Columbia, Canada, pp. 936–944.

[24] J. Martineau, T. Finin, A. Joshi, and S. Patel, “Improving binary
classification on text problems using differential word features,”
in Proceedings of the 18th ACM conference on Information and
knowledge management. ACM, 2009, pp. 2019–2024.

[25] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization
algorithms in signal processing, communications, and machine
learning,” IEEE Transactions on Signal Processing, vol. 65, no. 3,
pp. 794–816, 2017.

[26] E. Erdem, “Predicting movie rating based on
tags using machine learning and deep learning,”
https://github.com/AdvRegProj/MovieLens-ML-LSTM/blob/
master/Movie%20Rating%20Prediction%20using%20GloVe%
20Word%20Embeddings%20and%20Deep%20Learning.ipynb,
[Online; accessed August. 8, 2018].

[27] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, M. Hasan,
B. C. Van Esesn, A. A. S. Awwal, and V. K. Asari, “The history
began from alexnet: A comprehensive survey on deep learning
approaches,” arXiv preprint:1803.01164, 2018.

[28] G. Levi and T. Hassner, “Age and gender classification using
convolutional neural networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops,
2015, pp. 34–42.

[29] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arXiv
preprint:1409.1556, 2014.

[30] V. Shaw and S. Dowlatkhah, “Network edge based access network
discovery and selection,” Apr. 18 2017, US Patent 9,629,076.

[31] E. Ndashimye, N. I. Sarkar, and S. K. Ray, “A novel network
selection mechanism for vehicle-to-infrastructure communica-
tion,” in Proceedings of IEEE 14th Intl. Conf. on Pervasive
Intelligence and Computing, 2nd Intl. Conf. on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), 8-12 Aug.
2016 (Auckland, New Zealand), pp. 483–488.

[32] T. Wang, L. Song, and Z. Han, “Coalitional graph games for
popular content distribution in cognitive radio vanets,” IEEE
Transactions on Vehicular Technology, vol. 62, no. 8, pp. 4010–
4019, 2013.

[33] N. Cheng, N. Lu, N. Zhang, X. Zhang, X. S. Shen, and J. W.
Mark, “Opportunistic wifi offloading in vehicular environment:
A game-theory approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 7, pp. 1944–1955, 2016.

[34] K. Shah, A. Mitra, and D. Matani, “An o (1) algorithm for
implementing the lfu cache eviction scheme,” Technical report,
2010.

[35] A. Ndikumana, K. Thar, T. M. Ho, N. H. Tran, P. L. Vo,
D. Niyato, and C. S. Hong, “In-network caching for paid contents
in content centric networking,” in Proceedings of IEEE Global
Communications Conference (GLOBECOM), 4-8 Dec. 2017
(Singapore), pp. 1–6.

[36] S. Mosleh, L. Liu, and J. Zhang, “Proportional-fair resource allo-
cation for coordinated multi-point transmission in lte-advanced,”
IEEE Transactions on Wireless Communications, vol. 15, no. 8,
pp. 5355–5367, 2016.

[37] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp.
2322–2358, 2017.

[38] U. Feige, M. Feldman, and I. Talgam-Cohen, “Oblivious rounding
and the integrality gap,” in LIPIcs-Leibniz International Proceed-
ings in Informatics, vol. 60. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[39] N. Zhang, Y.-F. Liu, H. Farmanbar, T.-H. Chang, M. Hong,
and Z.-Q. Luo, “Network slicing for service-oriented networks
under resource constraints,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 11, pp. 2512–2521, 2017.

[40] Google, “Python client library for google maps api web services,”
https://github.com/googlemaps/google-maps-services-python,
[Online; accessed August. 12, 2018].

[41] Keras, “Keras: The Python Deep Learning library,” https://
github.com/udacity/self-driving-car-sim, [Online; accessed July.
20, 2018].

[42] F. M. Harper and J. A. Konstan, “The movielens datasets: His-
tory and context,” ACM transactions on interactive intelligent
systems, vol. 5, no. 4, p. 19, 2016.

https://www.businessinsider.com/companies-making-driverless-cars-by-2020-2016-8
https://www.busbud.com/blog/will-driverless-buses-reality/
https://www.busbud.com/blog/will-driverless-buses-reality/
https://www.hollywoodreporter.com/behind-screen/why-driving-cars-could-be-hollywoods-next-big-thing-1031554
https://www.hollywoodreporter.com/behind-screen/why-driving-cars-could-be-hollywoods-next-big-thing-1031554
https://www.hollywoodreporter.com/behind-screen/why-driving-cars-could-be-hollywoods-next-big-thing-1031554
https://forums.geocaching.com/GC/index.php?/topic/347757-self-driving-car-caching/
https://forums.geocaching.com/GC/index.php?/topic/347757-self-driving-car-caching/
https://forums.geocaching.com/GC/index.php?/topic/347757-self-driving-car-caching/
https://www.nextanalytics.com/excel-youtube-analytic-insights-and-data-mining/page/4/
https://www.nextanalytics.com/excel-youtube-analytic-insights-and-data-mining/page/4/
https://github.com/AdvRegProj/MovieLens-ML-LSTM/blob/master/Movie%20Rating%20Prediction%20using%20GloVe%20Word%20Embeddings%20and%20Deep%20Learning.ipynb
https://github.com/AdvRegProj/MovieLens-ML-LSTM/blob/master/Movie%20Rating%20Prediction%20using%20GloVe%20Word%20Embeddings%20and%20Deep%20Learning.ipynb
https://github.com/AdvRegProj/MovieLens-ML-LSTM/blob/master/Movie%20Rating%20Prediction%20using%20GloVe%20Word%20Embeddings%20and%20Deep%20Learning.ipynb
https://github.com/googlemaps/google-maps-services-python
https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim

	I Introduction
	I-A Background and Motivations
	I-B Challenges for Caching in Self-Driving Car
	I-C Contributions

	II System model
	III Deep Learning Based Caching in Self-Driving Car
	III-A Deep Learning and Recommendation Model
	III-A1 Multi-Layer Perceptron (MLP)
	III-A2 Convolutional Neural Network (CNN)
	III-A3 Recommendation Model

	III-B Communication Model
	III-C Caching Model
	III-D Computation Model for Cached Content

	IV Problem Formulation and Solution
	IV-A Problem Formulation
	IV-B Proposed Solution
	IV-B1 Proposed Algorithm

	V Simulation Results and Analysis
	V-A Simulation Setup
	V-B Evaluation Results

	VI Conclusion
	References

