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Abstract. The critical analysis of the Pythagorean theorem and of the problem of irrational 

numbers is proposed. Methodological basis for the analysis is the unity of formal logic and of 

rational dialectics. It is shown that: 1) the Pythagorean theorem represents a conventional 

(conditional) theoretical proposition because, in some cases, the theorem contradicts the formal-

logical laws and leads to the appearance of irrational numbers; 2) the standard theoretical 

proposition on the existence of incommensurable segments is a mathematical fiction, a 

consequence of violation of the two formal-logical laws: the law of identity of geometrical forms 

and the law of lack of contradiction of geometrical forms; 3) the concept of irrational numbers is 

the result of violation of the dialectical unity of the qualitative aspect (i.e. form) and quantitative 

aspect (i.e. content: length, area) of geometric objects. Irrational numbers represent a calculation 

process and, therefore, do not exist on the number scale. There are only rational numbers. 
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Introduction 

As is known, the Pythagorean theorem – a great discovery by scientists of Ancient East 

and of Ancient Greece – is one of the starting points and the basis of modern mathematics and of 

theoretical physics. It gave the key to the solution for many important science problems. At the 

same time, it spawned a number of unexpected problems, such as problems of 

incommensurability segments and irrational numbers [1-3]. The Pythagorean theorem is 

probably the unique proven theorem which spawned the problem of the proof: to date, there is a 

large number (approximately 400 [4, 5]) of proofs of the Pythagorean theorem in the scientific 

literature. In my opinion, this fact shows that the essence of the theorem is not completely clear 

until now. Conceptually, all proofs can be divided into a small number of classes [6]. The most 

famous of them are as follows: proofs of the area method, the axiomatic and exotic proofs (for 

example, using differential equations). However, the formal-logical proof which would be able 

to make fully clear the nature of the theorem is absent. 

In my view, the Pythagorean theorem cannot be considered as absolute truth if there is no 

formal-logical proof of this theorem. The purpose of this paper is to propose the critical analysis 

of the Pythagorean theorem, the problems of incommensurability of segments and irrational 

numbers within the framework of the correct methodological basis – unity of formal logic and of 

rational dialectics [7].  

 

1. The standard derivation of the Pythagorean formula 

The Pythagorean theorem read as follows: square of hypotenuse AB  of right-angled 

triangle ACB  is equal to the sum of the squares of the legs AC  and CB   (Figure 1): 

 

     222

CBACAB  . 
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As is well known, the idea of the proof of the theorem is formulated as follows: if one constructs 

the square whose sides are equal to the hypotenuse of the given right-angled triangle, then the 

calculation of the hypotenuse of the right-angled triangle can be reduced to the calculation of the 

side of the square. The proof of the theorem consists of two parts: first, the construction and 

integration of geometrical figures (i.e. composition of forms) using a ruler and a compasses; and, 

second, calculations of the areas of figures and lengths of segments. 

1) The construction and integration of geometrical figures (i.e. composition of forms) 

using a ruler and a compasses is carried out in the following way (Figure 1):  

a) one constructs a square ABEG whose sides represent the hypotenuses of the four identical the 

right-angled triangle ACB , BDE , EFG, GHA ; 

b) one constructs the square HCDF  whose sides are 

 

ACHAHC  ,  BDCBCD  ,  EFDEDF  , GHFGFH  . 

 

In this case, the square ABEG is inscribed in the square HCDF . The square HCDF  represents 

the result of integration (composition) of the square ABEG and four identical right-angled 

triangles ACB , BDE , EFG, GHA . However, the mathematical expression for the hypotenuse 

cannot be formulated within the framework of this composition. 

 

 

 

 

 

 
 

 

 

 

Figure  1. 

The square HCDF  as the union (composition) of the square 

ABEG and of the four identical right-angled triangles ACB , 

BDE , EFG, GHA . Hypotenuses of the triangles coincide with 

sides of the square ABEG . 
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2) Calculations of the areas of the geometrical figures and lengths of the segments are 

carried out with the help of decomposition of the square HCDF  into component forms in the 

following way (Figure 2): 

a) one designates sides of the triangle (lengths of the segments): aAC  , bCB  , cAB  ; 

b) one assumes that the segments a ,  b ,  c   have a single measure, but the measure is not 

defined; 

c) the square HCDF  is treated as the composition of the following geometric figures: the square 

HKOM  with sides a ; the square DLON  with sides b ; the rectangle KCNO  (made up of two 

identical right triangles); the rectangle MOLF  (made up of two identical right-angled triangles); 

the square DLON ; 

d) the area of the square HCDF  is 

 

  bababa 2222
 ; 

 

e) the sum of the areas of the two rectangles KCNO  and MOLF  (i.e. the sum of the areas of 

four identical right-angled triangles) is ba2 ; 

f) the sum of the areas of the squares HKOM  and DLON is  

 

  222
2 bababa  ; 

 

g) the sum of the areas 22 ba   of the squares HKOM  and DLON is the area of a geometric 

figure. One assumes (without ground) that the area of this figure is always equal to the area 2c  

of the square ABEG. (In my opinion, this assumption is not free of objections). In this case, one 

obtains the following relation: 

 
222 cba  . 

  

This relation represents a mathematical statement of the Pythagorean theorem; 

h) one assumes (without ground) that the quantity 22 ba   is always equal to the length of 

side of the square ABEG and, therefore, equal to the length of the hypotenuse c : 

 

cba  22 . 

 

(In my opinion, this assumption is not free of objections). 

Calculations by this formula show that the hypotenuse c  (i.e. the side of the square) takes 

rational or irrational values: for example, if 3a   and  4b ,  then 

5543 222 c ;  and if 1 ba ,  then 2c . This fact is the basis for the 

following standard statement: the lengths of the hypotenuse and the leg (i.e. the lengths of the 

diagonal and the sides of the square) are incommensurable quantities. 
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Figure 2. 

Decomposition of the square HCDF  into component figures 

(forms). The area of the square HCDF  and the areas of 

component figures are related by    bababa 2222
 . 

 

 

 

 

2. Analysis of the Pythagorean theorem 

The standard statement that the lengths of the hypotenuse and leg (i.e., the lengths of the 

diagonal and the side of the square) are incommensurable quantities seems plausible, but it is 

ungrounded. Formal-logical proof of falseness of the standard statement is based on the 

following arguments: 

a) the result of the squaring operation (i.e., raising to the second power) on any quantity c  – the 

result of the direct mathematical operation – is the area 2c  of the square. The result of the 

extraction of the square root of the area 2c  of the square – the result of the inverse mathematical 

operation –  is the length c  of the side of square; 

b) the result of the squaring operation (i.e., raising to the second power) on any quantity   ba   

– the result of the direct mathematical operation – is the area   2
ba   of the square. The result 

of the extraction of the square root of the area   2
ba   of the square – the result of the inverse 

mathematical operation –  is the length  ba   of the side of square; 

c) the square root of the area 
22 ba   of the geometric figure which have form of a square 

(Figure 2) represents the length 22 ba   of the segment which is the side of the square. This 

statement is the first aspect of the essence of the Pythagorean theorem; 

d) the square root of the area 
22 ba   of the geometric figure which does not have form of a 

square (Figure 2) represents the length 22 ba   of the segment which is the side of the 

square. This statement is the second aspect of the essence of the Pythagorean theorem; 
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e) the standard sense of the Pythagorean theorem is the following statement: sum 

   squarebbsquareaa SS    of the areas of the squares constructed on the sides a  and b  is always 

an area of some square; the area of this square is always equal to the area  squareccS   of the 

square built on the hypotenuse c : 

 

     squareccsquarebbsquareaa SSS   . 

 

Therefore, the standard mathematical relation between the areas of the squares HKOM , DLON , 

and ABEG has the following form (Figures 1 and 2): 

 
222 cba  . 

 

The vulnerability of this relation is that this relation does not lead to the statement that the 

geometrical figure having the area 22 ba   is identical with the square having the area 2c ; 

f) if two geometrical figures have the equal areas  SS   and the same form, then they are 

identical: these figures coincide with each other under superposition. And vice versa, if the 

figures coincide with each other under superposition (i.e., are identical), then they have the equal 

areas and the same form. 

g) the form (for example, triangular form or square form) is a qualitative  determinacy of 

geometrical figure. The area and extension (length of side) is a quantitative determinacy of the 

geometrical figure. From the formal-logical point of view, quantitative determinacy of 

geometrical object belongs to qualitative determinacy of geometrical object. In accordance with 

the logical law of identity, the left-hand side and the right-hand side of the mathematical 

(quantitative) relation must belong to one and the same qualitative determinacy of object. For 

example, the logical (qualitative) relation between forms, 

  

(square  form) = (square  form), 

  

expressing the logical law of identity requires that the left-hand and right-hand sides of the 

mathematical relation should describe one and the same form which is a square; 

h) the practice (i.e., the construction of figures) shows that the geometrical form having the area 

   squarebbsquareaa SS    can be transformed into a square form in some cases but can not be 

transformed to a square form in other cases; 

i) if the geometric form having the area    squarebbsquareaa SS    can be transformed into the 

square form whose area is equal to the area  squareccS   of another square, then the Pythagorean 

theorem, 

 

cba  22 , 

 

is true one. In this case, the Pythagorean theorem satisfies the logical law of identity of forms, 

 

(square  form) = (square  form), 

 

and logical the law of lack of contradiction of forms, 

 

(non-square  form)    (square  form). 

 

Consequently, in this case, the Pythagorean theorem is the correct expression of the law of 

identity of quantity: 
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(rational  number) = (rational  number). 

 

j) if the geometry figure has the area    squarebbsquareaa SS     equal to the area  squareccS   of 

another square but it cannot be transformed into a square form, then the Pythagorean theorem is 

not true, i.e.,   

 

cba  22 . 

 

In this case, the Pythagorean theorem is a quantitative expression of the following logical 

(qualitative) error: 

 

(non-square  form) = (square form), 

(irrational  number) = (rational  number). 

 

These arguments are sufficient grounds for the following conclusion which expresses the 

essence of the Pythagorean theorem: 

1) the Pythagorean theorem is true if the union (composition) of squares HKOM  and DLON  

can be transformed to a square which is identical with the square ABEG ; 

2) the Pythagorean theorem is a logical error and, therefore, leads to appearance of irrational 

numbers if the union (composition) of squares HKOM  and DLON  cannot be transformed to a 

square which is identical with the square ABEG; 

3) the correct formulation of the Pythagorean theorem is as follows: the square 2c  of the 

hypotenuse of right-angled triangle is equal to the sum 
22 ba   of the squares of the legs if the 

sum 
22 ba   represents the area of a square; if the sum 

22 ba   does not represent an area of a 

square, then  the relation 
222 cba   is not true and has only the nature of the approximate 

equality; 

4) the standard theoretical proposition that the lengths of the hypotenuse and the leg (in other 

words, the lengths of the diagonal and the side of the square) are incommensurable quantities 

should be substituted for the following correct statement: the theoretical proposition of the 

existence of incommensurable segments contradicts to the practice (i.e. construction); 

incommensurability of segments is a mathematical fiction, consequence of violations of the 

logical law of identity of forms. 

 

 

 

3. Analysis of the problem of irrational numbers 

In view of the fact that the Pythagorean theorem leads to the appearance of irrational 

numbers, it is necessary to expose the true sense of irrational numbers. As is well known, an 

infinite non-periodic decimal fraction is called an irrational number [8, 9]. For example: 

 

...4142136,12   ,     ...1415926535,3  ,     ...7182818284,2e   . 

 

In these expressions, the left-hand side is the symbol of mathematical operations, and the right-

hand side is the number with dots. Dots designate the continuing process of calculation. From the 

formal-logical point of view, irrational numbers are expressed with the law of identity of 

concepts as follows:  

 

(mathematical operation) = (calculation process) 
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where the left-hand side and right-hand side are identical concepts. The continuing process of 

calculation cannot be used as a number in practice because the mathematical process is not a 

number. This statement is expressed with the formal-logical law of lack of contradiction: 

 

(non-number)    (number). 

 

If the calculation process is stopped by operator, the result of the process (i.e. the result of the 

mathematical operation) can be written as follows: 4142136,12  , 1415926535,3 , 

7182818284,2e . The result of the mathematical process is a finite (rational) number which is 

used in practice. This statement expresses the requirement of the formal-logical law of identity: 

 

(number) = (number). 

 

The practical importance of rational numbers is that rational numbers are a result of 

measurements. Just these and only these numbers exist on number scale OX : if a straight line 

has the property of continuity, then any point on the line OX  corresponds only to a rational 

number which is called abscissa of this point, and vice versa. Irrational numbers do not exist on 

number scale  OX . 

An important example of irrational numbers is the number ...1415926535,3   also. 

This number is the corollary of a radian measurement of angles and arcs. In other words, this 

number appears as a result of comparison of the arc length and of the length of the radius of 

circle. Indeed, arc lengths of two circles and the lengths of their radii are in the ratio of 

 

2

1

2

1

R

R

l

l
    i.e.    

2

2

1

1

R

l

R

l
  

 

for one and the same central angle. If the angle contains A , then its radian measure   is equal 

to 

 





180




A
 . 

 

In accordance with it, the arc length and the length of circle are  Rl   and RL 2 , 

respectively. In this example, the irrational number ...1415926535,3  appears as a result of 

dialectical error: dissolution of the dialectical unity of qualitative determinacy (i.e. form) and of 

quantitative determinacy (i.e. content: length) of the line segment. The arc and the radius of the 

circle represent different forms of line: curvilinear form and rectilinear form, respectively. As the 

construction (i.e., practice) shows, two different forms are not coincided with each other and 

cannot be reduced to one another. From the point of view of formal logic and classical geometry, 

this implyies that different forms (i.e., qualities, concepts) can be defined genetically [7] (i.e., 

can be defined by means of the construction), but they cannot be compared with each other: 

 

(arc)   (radius). 

 

In accordance with the formal logic, mathematical (quantitative) relations must satisfy the law of 

identity of forms (concepts): 

 

(arc) = (arc)  and  (radius) = (radius). 
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It means that there is no correct mathematical relation between arc length and length of radius in 

classical geometry. Therefore, length of radius R  (for example, measured in centimeters) cannot 

be used as a measure of arc length l  (measured in centimeters).  

As is well known, the segments of qualitatively different lines have one common aspect: 

quantitative determinacy (i.e. length). Therefore, in accordance with the formal logic, the lengths 

of segments of qualitatively different lines can be compared with each other. However, this 

quantitative (mathematical) comparing segments of different forms is possible only by 

abstraction (segregation) of the quantitative aspect from of the qualitative aspects (i.e. by 

destruction of the dialectical unity of the qualitative and quantitative aspects). In this case, the 

length is considered to be an essential sign of the line, and the form is considered to be an 

inessential sign of the line: 

 

(length of arc) = (length of radius), 

i.e.  (length of line) = (length of line). 

 

This logical relation leads to the mathematical expression RL 2  which contains the number 

 . Thus, the number   is a corollary of violation of the dialectical unity of qualitative and 

quantitative aspects of objects in classical geometry. 

 

4. Discussion 

1. The problem of the criterion of truth is the central point of science. There are two 

criteria of truth of theory: the dialectical criterion, i.e. “criterion of external justification of 

theory” (Einstein); and the logical criterion, i.e. “criterion of internal perfection of theory” 

(Einstein). As is well known, practice represents “criterion of external justification of theory”: if 

a theory contradicts to the practice, then the theory is erroneous one. In geometry, it means that 

the calculations done within the framework of standard mathematical formalism should not 

contradict to constructions. Formal logic represents “criterion of internal perfection of theory”: if 

a theory contradicts to the formal-logical laws, then the theory is erroneous one. Therefore, the 

problem of truth of a geometrical theory should be solved within the framework of correct 

methodological basis – the unity of formal logic and of rational dialectics. The unity of formal 

logic and of rational dialectics represents theoretical generalization of practice. 

2. Indissoluble connection, reciprocal complementarity of constructions (practice) and 

calculations (theory) is a characteristic property (essence) of geometry [7]. It means that the 

mathematical theorems and proofs must consider not only the numerical values of quantities 

(i.e., quantitative determinacy), but also the form (i.e., qualitative determinacy) of geometric 

objects. The qualitative determinacy of objects is expressed in concepts (for example, in the 

concepts “straight line”, “angle”, “arc”, “triangle”, “square”, “form”). Consequently, in 

geometry, correct formation of a theory and comparison of theory with practice is not possible 

without the use of formal logic and of rational dialectics. There are two ways to define the 

concept in formal logic: definition by the nearest genus and specific difference; and genetic 

definition. The first way is as follows: one brings the defined (superprdinate) concept under the 

defining (generic) concept (i.e., under another, more general concept); then one indicates the sign 

which gives opportunity to differ the defined (superprdinate) concept from other concepts. The 

second way to define the concept is a genetic definition. The genetic definition is the special kind 

of definition which shows how given object or phenomenon arise. The genetic definition 

represents a practical method of definition. It represents the criterion of truth and is used in 

theoretical geometry [7]. 

3. The universal formalism of sciences is formal logic. Formal logic is a science of laws 

of correct thinking. The correct scientific thinking must be obeyed the four basic logical laws. 

The basic form of thought is a concept. Concepts are formed by logical methods such as analysis 

and synthesis, abstraction and generalization. Abstraction is a mental separation, a mental 

extraction of the individual, essential signs of the object or phenomenon from the object or 
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phenomenon and the abandonment of all other (non-essential) signs without consideration. The 

concept (for example, “straight line”, “angle”, “arc”, “triangle”, “square”, “form”) is a form of 

thought reflecting and fixing the essential signs of the objects and of phenomena of reality. The 

essential signs are called the signs which belong to objects of certain genus (for example, 

triangles) and distinguish them from objects of other genera (for example, quadrilaterals). Thus, 

the essential signs (for example, form) characterize the appropriate objects and give opportunity 

to cognize these objects. Inessential signs (for example, size) are called the signs which belong to 

some objects of given genus but do not characterize them, do not give opportunity to cognize 

these objects and to distinguish them from objects of other genera. Some of the signs of the 

given object can be essential signs in one respect (sense), and other signs can be essential signs 

in another respect (sense). 

4. Geometric figure is a system of bound elements. For example, a triangle is a system of 

three bound segments of straight line. The practical task of construction of a triangle has the 

exact solution: one can always draw the three intersecting straight lines through three arbitrary 

points of the plane, which do not lie on a straight line. Segments of these lines always have a 

common measure (measure is a philosophical category designating the unity of qualitative and 

quantitative determinacy): the segments can always be measured with any desired order of 

accuracy (for example, in centimeters, meters, etc.). In other words, the practice shows what the 

incommensurable segments of straight lines do not exist. However, it does not mean what length 

of segment of a certain line (for example, length of radius measured in centimeters) is always a 

measure of other segment of any line (for example, length of appropriate arc measured in 

centimeters, too). In the view of rational dialectics (systems analysis), explanation is that the 

properties of the system are not a consequence of the properties of elements of the system. (This 

knowledge was not available for ancient scientists). 

5. The concept of number is one of the basic concepts of mathematics. It originated in 

ancient time and was gradually widened   and generalized in connection with tasks of 

measurement of lengths, areas, volumes, mass, temperature, speed, strength, etc. The concept of 

quantity is a generalization of concrete concepts (length, area, mass, etc.). Choosing one of the 

quantities of given kind as unit, one can express the ratio of any other quantity of the same kind 

to the unit of measurement by a number. However, the measurement (or calculation) process is 

not expressed by numbers. A number always represents the result of the measurement (or 

calculation) process. It means that a number is always finite. Hence, irrational numbers (for 

example, ...4142136,12  , ...1415926535,3 , ...7182818284,2e ) as a result of the 

measurements (or calculations) do not exist. There are only rational numbers (for example, 

4142136,12  , 1415926535,3 ,  7182818284,2e ) as a result of the measurements or 

calculations (i.e., as a result of practice). 

 

Conclusion 

Thus, the critical analysis leads to the following results: 

1. The essence of the Pythagorean theorem is that 
222 cba   represents a conventional 

(conditional) theoretical proposition in general case: if the sum 
22 ba   is the area of the 

square, then the theorem is true one; and if the sum 
22 ba   is not the area of the square, then 

the theorem is erroneous one (because, in this special case, it contradicts to the formal-logical 

laws and leads to appearance of irrational numbers). 

2. The standard theoretical statement that the lengths of the hypotenuse c  and of the leg a  (in 

other words, the lengths of the diagonal and of the side of the square) are incommensurable 

quantities should be replaced by the following correct statement: the theoretical proposition of 

the existence of incommensurable segments contradicts to the practice (i.e., construction); 

incommensurability of segments is a mathematical fiction, the consequence of violations of the 

logical law of identity of forms and the law of  lack of contradiction.  
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3. The concept of irrational number arise as a result of violations of the dialectical unity of the 

qualitative aspect (i.e., form) and quantitative aspect (i.e., content: length, area) of geometric 

objects. Irrational numbers represent a mathematical process and, therefore, they do not exist on 

the number scale. There are only rational numbers. 
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