
Virginia Commonwealth University
VCU Scholars Compass

Theses and Dissertations Graduate School

2014

Stochastic Differential Equations and Numerical
Applications
Matthew Rajotte
Virginia Commonwealth University

Follow this and additional works at: http://scholarscompass.vcu.edu/etd

Part of the Physical Sciences and Mathematics Commons

© The Author

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/etd/3383

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/gradschool?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/etd/3383?utm_source=scholarscompass.vcu.edu%2Fetd%2F3383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

© Matthew Rajotte 2014
All Rights Reserved

Stochastic Differential Equations and Numerical Applications

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science, Virginia Commonwealth University at Virginia Commonwealth University.

by

Matthew Rajotte
Master of Science, Virginia Commonwealth University

Director: Angela Reynolds, Assistant Professor
Department of Mathematics and Applied Mathematics

Virginia Commonwealth University
Richmond, Virginia

May 2014

ii

Acknowledgment

I would like to thank my family and friends for all their support and patience during the
course of my thesis. I am grateful to have had the chance to work with my advisor Dr.
Angela Reynolds who provided exemplary guidance and help throughout this process, as
well as Dr. Cheng Ly, Dr. Rebecca Segal and Dr. Rebecca Heise for graciously serving on
my committee.

iii

Contents

Abstract v

1 Introduction 1
1.1 Mathematical Principles and Brownian Motion 2
1.2 Itô Calculus . 7

2 Numerical Methods of SDEs 14
2.1 Application . 16

3 Low Dose Anthrax Model 24

Bibliography 33

Appendices 34

A Euler-Maruyama Method 34

B Exact Solution for Population Growth Model 36

C Averages of Population Growth Model 38

D Histograms for Euler-Maruyama Method of Logistic Equation 40

E Fokker-Planck BVP for the Logistic Growth Model 43

F Low Dose Anthrax Codes–Original Transport Code 45

G Low Dose Anthrax Codes – Sporefate 50

H Low Dose Anthrax Codes – Modified Transport 58

4 Vita 64

iv

List of Figures

2.1 Three independent runs of the stochastic model for population growth. . . . 17
2.2 Runs for basic population model averaged and compared 18
2.3 Three runs of the logistic growth model using the Euler-Maruyama approxi-

mation . 19
2.4 Histograms of Eulers method . 20
2.5 Euler Histograms vs Analytic Fokker-Planck 22
2.6 Euler Histogram and Fokker-Planck BVP 23

3.1 Single run of transport model . 26
3.2 Average Total Spores . 27
3.3 Plot of spores arriving . 28
3.4 Average Arrival . 29
3.5 Polynomial Fit for Averaged Arriving Spores 30
3.6 Averaged Euler-Maruyama Plot . 31

Abstract

STOCHASTIC DIFFERENTIAL EQUATIONS AND NUMERICAL APPLICATIONS

By Matthew Rajotte, Master of Science, Virginia Commonwealth University.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science, Virginia Commonwealth University at Virginia Commonwealth University.

Virginia Commonwealth University, 2014.

Director: Angela Reynolds, Assistant Professor, Department of Mathematics and Applied
Mathematics.

We will explore the topic of stochastic differential equations (SDEs) first by developing

a foundation in probability theory and Itô calculus. Formulas are then derived to simulate

these equations analytically as well as numerically. These formulas are then applied to a

basic population model as well as a logistic model and the various methods are compared.

Finally, we will study a model for low dose anthrax exposure which currently implements

a stochastic probabilistic uptake in a deterministic differential equation, and analyze how

replacing the probablistic uptake with an SDE alters the dynamics.

1

Introduction

Stochastic differential equations (SDEs) are differential equations where stochastic processes

represent one or more terms and, as a consequence, the resultant solution will also be

stochastic.

For example, a simple model for population growth is given by

dN(t)
dt

= a(t)N(t)

where N(t) is the given population at time t and a(t) is the growth rate.

As is, this is just an ordinary differential equation which can be solved using normal methods.

But in nature, a(t) may be subject to some random environmental noise and inputs that are

unknown. Thus we can express a(t) as

a(t) = r(t)+σ(t)· "noise".

The ordinary differential equation becomes an SDE expressed by

dN(t)
dt = N(t)r(t)+N(t)σ(t)· "noise".

The subject of Stochastic Differential Equations lets us make sense of this equation and

allows us to derive a solution.

In addition to stochastic analogs of classic differential equations, SDEs are important in

filtering problems, stochastic approaches to deterministic boundary value problems, optimal

stopping, stochastic control, and mathematical finance [1].

2

1.1 Mathematical Principals and Brownian Motion

To understand the dynamics of most SDEs and their solutions, it is important to have some

knowledge of probability theory as well as some mathematical/statistical principles. Here is

a brief introduction to some of these concepts.

Probability Spaces

A σ -algebra, F, on a given set Ω is a collection of subsets on Ω where the following

properties hold:

(i) /0 ∈ F

(ii) If A ∈ F, then AC ∈ F, where AC is the complement of A

(iii) If A1,A2, . . . ∈ F, then
∞⋃

k=1
Ak ∈ F.

The pair, (Ω ,F), of a set and a σ -algebra is called a measurable space. A function

P : F→ [0,1] is a probability measure on (Ω ,F) such that

(i) P(/0) = 0, P(Ω) = 1

(ii) If A1,A2, . . . ∈ F, then P(
∞⋃

k=1
Ak)≤

∞

∑
k=1

P(Ak)

(iii) If A1,A2, . . . ∈ F and are disjoint (Ai∩A j = /0 for i 6= j), then P(
∞⋃

k=1
Ak) =

∞

∑
k=1

P(Ak) [1]

[3].

The triple of the set, a σ -algebra, and the probability measure, (Ω ,F,P), is called a

probability space. Also, the subsets F of Ω that belong to F are called events and P(F) is

interpreted as the probability that the event F will occur.

A random variable X is defined to be a real valued function defined on a sample space

[2] and can be classified as either discrete or continuous. A collection of random variables

3

X(t)|t ≥ 0 is known as a stochastic process and the mapping t 7→ X(t,ω) for each ω ∈Ω is

known as a sample path. One of the main characteristics of stochastic processes is that if

multiple experiments were run, different sample paths would be observed [1][3].

A discrete random variable is one which can take on at most a countable number of

possible values. For example, let X be defined as the sum of two fair dice. Then X would be

a discrete random variable since it can only take on integer values between 2 and 12.

A probability mass function, p, is defined to be the function that describes the probability

that a discrete random variable, X , is exactly equal to some value, say a. This is generally

written as

p(a) = P{X = a}.

p(a) is positive for at most a countable number of a values. In other words, if X were to

assume one of the values x1,x2, . . ., then p(xi)> 0 for i = 1,2, . . . and p(x) = 0 for any other

value of x. Since X must be one of the values of xi, then

∞

∑
i=1

p(xi) = 1.

X is said to be continuous if there exists a non negative function f (x), known as the

probability density function (PDF) of the random variable X , defined for all real x that has

the property

P{X ∈ B}=
∫
B

f (x)dx

for any set of real numbers, B. In other words, to find the probability that X will be in a

4

set, one would integrate the probability density function over that set. For example, if one

wanted to find the probability that a≤ X ≤ b or X ∈ [a,b] then the equation becomes

P{a≤ X ≤ b}=
b∫

a

f (x)dx

This property also implies that for a continuous random variable, the probability that X

equals a specific point a is P{ X = a}=
a∫
a

f (x)dx = 0. Also, because X must assume a real

value, f (x) has the result

P{X ∈ (−∞,∞)}=
∞∫
−∞

f (x)dx = 1.

One of the most popular continuous random variable, and one that will be mentioned

in the properties of Brownian motion and Wiener processes, is known as a normal random

variable, denoted N(µ,σ2) which means that it has a normal (or Gaussian) distribution with

mean µ and variance σ2. The corresponding PDF is:

f (x) =
1√

2πσ
e
(x−µ)2

2σ2 .

Expected Value and Variance

The expected value (or expectation) and variance are two important quantities of a

random variable.

The expectation, or expected value, of a random variable (denoted E[x]) is just as the

name suggests. It is the value one would expect in a given experiment. For a discrete

5

random variable, the expected value is the average of the possible outcomes weighted by the

probabilities that X would assume that specific value:

E[X] = ∑
x:p(x)>0

xp(x).

Similarly, for a continuous random variable with probability density function f (x) the

expected value can be calculated by

E[X] =

∞∫
−∞

x f (x)dx.

Now consider a function of a random variable, say g(X). Since this is simply just another

random variable , an expected value can be calculated via:

E[g(X)] = ∑
x:p(x)>0

g(x)p(x)

for discrete X , and

E[g(X)] =

∞∫
−∞

g(x) f (x)dx

for continuous X .

Two random variables, X and Y , are said to be independent if E[XY] = E[X]E[Y] pro-

vided that both E[X]< ∞ and E[Y]< ∞.

The variance of a random variable is essentially a value that measures how the probability

distribution is spread out. This can be calculated using the expected value by

6

Var(X) = E[(X−E[X])2]

It can be shown that this equation can be put into a useful identity, namely [2]

Var(X) = E[X2]− (E[X])2.

Brownian Motion

In 1828, Scottish botanist Robert Brown observed random and irregular motion of grains of

pollen suspended in liquid. This motion was later described the grains randomly colliding

with the molecules of the liquid and is referred to as Brownian motion. In 1923, American

mathematician Norbert Wiener laid down the mathematical foundation for Brownian motion

as a stochastic process, called the Wiener process.

Brownian motion is the basic model for the cumulative effects of pure noise and is

denoted as B(t), which indicates the position of a particle at time t. Brownian motion is a

stochastic process and has the following properties:

1. For t > s, B(t)−B(s) is independent of the past. This is also referred to as indepen-

dence of increments

2. B(t)−B(s) has a normal distribution with mean 0 and variance t− s. In other words,

Brownian motion has normal increments

3. B(t), t ≥ 0 are continuous functions of t.

The initial position in not necessarily defined. A Wiener process is often defined as the

standard Brownian motion, which means that those three properties still hold, but now the

7

initial position is defined to be W(0)=0. From property 2 it can be seen that, if s is taken to

be 0 it implies that W (t)−W (0) has N(0, t) distribution (or a normal distribution with mean

0 and variance t).

One more important concept that comes from a Wiener process is the idea of white noise.

This is usually denoted ξ (t), and is defined formally as the time derivative of a Wiener

process:

ξ (t) =
dW (t)

dt
=W ′(t).

White noise is typically what one would see as the noise term in an SDE due to the

properties of a Wiener process and Itô integrals (which will be discussed later) [4].

1.2 Itô Calculus

With some of the basics of probability theory presented, stochastic calculus can be introduced.

Looking back at the noisy equation for population growth introduced earlier

dN(t)
dt = N(t)r(t)+N(t)σ(t) "noise"

or in the more general form

dX
dt = b(Xt , t)+σ(Xt , t)·"noise"

for a random variable X and some functions b, σ . The noise term is represented by a

white noise process, ξ (t). Using dX
dt =

Xk+1−Xk
dt and the definition of the white noise process

stated earlier, the equation can be rewritten as

Xk+1−Xk = b(Xk, tk)∆ tk +σ(Xk, tk)ξ (t)∆ t = b(Xk, tk)∆ tk +σ(Xk, tk)∆Wt

8

where Wt is Brownian motion, or a Wiener process. Extrapolating to Xk from X0 gives:

Xk = X0 +
k−1

∑
j=0

b(X j, t j)∆ t +
k−1

∑
j=0

σ(X j, t j)∆Wj.

Now, using integral notation, this becomes

Xt = X0 +

t∫
0

b(Xs,s)ds+
t∫

0

σ(Xs,s)dWs.

For a more rigorous proof that
t∫

0
f (w,s)dWs(w) does, in fact, exist in a certain sense, see

Chapter 3 in Oksendal [1].

The first integral term is deterministic and can be solved using normal calculus rules.

The question now becomes how to make mathematical sense of the integral with respect to

Brownian motion,
t∫

0
σ(Xs,s)dWs. Naturally, one would assume that it is the limit defined by

lim
|π|→0

n−1

∑
k=0

σtk(Wπk+1−Wπk)

where 0 = π0 < π1 < .. . < πn = t is a partition of [0, t] and |π| := maxk(πk−1− πk)

represents the refinement of this partition. For deterministic functions, this represents the

Riemann Integral and the choice for tk does not matter as |π| → 0. Though due to the

properties of Brownian motion, this is not the case for stochastic functions. For example,

consider
∫

WtdWt and take tk = πk+1, the limit becomes

lim
|πk+1−πk|→0

n−1

∑
k=0

Wπk+1(Wπk+1−Wπk) = lim
|πk+1−πk|→0

n−1

∑
k=0

W 2
πk+1
−Wπk+1Wπk .

Letting tk = πk, the limit is

9

lim
|πk+1−πk|→0

n−1

∑
k=0

Wπk+1Wπk−W 2
πk
.

Subtracting this form the first one with tk = πk+1

lim
|πk+1−πk|→0

n−1

∑
k=0

W 2
πk+1
−2Wπk+1Wπk−W 2

πk
= lim
|πk+1−πk|→0

n−1

∑
k=0

(Wπk+1−Wπk)(Wπk+1−Wπk)

and taking the expectation

E[lim
|πk+1−πk|→0

n−1

∑
k=0

(Wπk+1−Wπk)(Wπk+1−Wπk)] =
n−1

∑
k=0

(πk+1−πk) = t.

Therefore, regardless of how refined the partition becomes, the difference between the

two will have a constant expectation. This means the choice of tk matters and the classic

Riemann integral cannot be used. This also implies that Wt is nowhere differentiable.

To avoid this problem, for Xt continuous, E
[

T∫
0

X2
t dt
]
< ∞, and Xt non-anticipating

(meaning for every realization and n, Xn is known at time n), the Itô integral defines
∫

XtdWt

as the limit of

Sπ =
n−1

∑
k=0

Xtk(Wπk+1−Wπk)

but not a limit in a normal sense, but rather saying the random variable S =
∫

XtdWt satisfies

E[|S−Sπ |2]
|π|→0−−−→ 0.

In other words, the Itô integral is defined by:

10

∫
XtdWt :=

n−1

∑
k=0

Xtk(Wtk+1−Wt)

where tk is taken to be the left endpoint.

It is worth noting another popular stochastic integral called the Stratonovich integral.

This is where Xtk is replaced with the midpoint, X tk+tk+1
2

. The main reason the Stratonovich

integral may be used is because it demonstrates that it obeys the traditional rules of integra-

tion, under quite relaxed conditions. Even with this, the Itô integral is typically favored more

since it is non-anticipatory (the Stratonovich integral is not) and it preserves the Martingale

property (which is for a sequence of random variables X1, . . . ,Xn, E(Xn+1) = Xn).

Also, another notable outcome is that both Xt and
∫

XtdWt can be seen as Hilbert spaces

and the integration is just a mapping from one to another. Therefore, the following is known

as the Itô isometry [5]

E

 t∫
0

X2
s ds

= E

(t∫
0

XsdWs)
2

 .

Itô Formula

Although there is a definition for the Itô integral, it is a hassle to go through the whole

limit process. Therefore, it is much more convenient to use what is known as the Itô formula.

Let Xt be an Itô process defined by

dXt = udt + vdWt

11

and let g(x, t) be twice differentiable. Then Yt = g(Xt , t) is also an Itô process:

dYt =
∂

∂ t
g(Xt , t)dt +

∂

∂x
g(Xt , t)dXt +

1
2

∂ 2

∂x2 g(Xt , t) · (dXt)
2

where (dXt)
2 = (dXt) · (dXt) is computed by the rules dt ·dt = dt ·dWt = dWt ·dt = 0

and dWt ·dWt = dt.

To see an example of this, consider the integral
t∫

0
WsdWs. Take Xt =Wt and g(x, t) = 1

2x2
t .

Then Yt =
1
2W 2

t and by the Itô formula

dYt =
∂g
∂ t

dt +
∂g
∂x

dWt +
1
2

∂ 2g
∂x2 (dWt)

2 = 0+WtdWt +
1
2

dW 2
t =WtdWt +

1
2

dt.

Therefore

d(W 2
t) =WtdWt +

1
2

dt

and integrating both sides from [0, t] with some arithmetic gives

t∫
0

WsdWs =
1
2

W 2
t −

1
2

t.

There is also a way to define "integration by parts" for a stochastic integral using the Itô

formula which is defined as

t∫
0

f (s)dWs = f (t)Wt−
t∫

0

Wsd fs

where in this case it is important that f is bounded as well as continuous for this to hold. [1]

12

Application

Recall the model for population growth

dNt

dt
= atNt

where at = rt +αWt , Wt is white noise, and α , rt = r are constants. The model now becomes

equivalent to

dNt = rNtdt +αNtdWt (1.1)

by the Itô interpretation where, in this case, σ(t,x) = αx. This can further be rewritten as

dNt
Nt

= rdt +αdWt .

Therefore

t∫
0

dNs

Ns
= rt +αWt . (1.2)

To calculate
t∫

0

dNs
Ns

, the Itô formula is implemented with g(t,x) = ln(x). This yields

d(ln(Nt)) =
1
Nt

dNt−
1

2N2
t
(dNt)

2. (1.3)

Using (1.1) for dNt and the properties that say dt ·dt = dt ·dWt = 0 and dWt ·dWt = dt,

(dNt)
2 can be written as

(dNt)
2 = r2N2

t dt2 +2rαN2
t dtdWt +α

2N2
t dW 2

t = α
2N2

t dt.

Now (1.3) becomes

13

d(ln(Nt)) =
dNt

Nt
− 1

2N2
t

α
2N2

t dt =
dNt

Nt
− α2

2
dt.

or

dNt

Nt
= d(ln(Nt))+

α2

2
dt

Now this equation can be integrated from 0 to t and can be set equal to (1.2). Doing this

gives us

ln
(

Nt

N0

)
+

α2

2
t = rt +αWt

Solving for Nt , the final solution to the stochastic population model is defined as

Nt = N0e(r−
α2
2 t+αWt). (1.4)

This section was adapted from Oksendal [1].

14

Numerical Methods of SDEs

Euler-Maruyama

Generally speaking, explicit solutions for initial value problems of ordinary differential

equations are impossible to find. One of the most popular ways to approximate the solutions

to these problems is to use the Euler method. This method takes a differential equation in

the form, ẋ = f (t,x) with initial condition x(0) = x0 and approximates it using the formula

yi+1 = yi + f (ti,yi)∆ t

for a time discretization t0 < t1 < t2 < .. . < tn. Where y0 = x0 and ∆ ti = ti+1− ti or simply

the time step being used for the approximation.

Due to the stochastic nature of SDEs, the Euler method cannot be used directly, though

there is a stochastic analog of Euler’s method which is known as the Euler-Maruyama

method [6]. The steps to derive this method are similar to the way one would derive the non

stochastic Euler method.

For an SDE in the form dXt = a(t,Xt)dt + b(t,Xt)ξ (t), where ξ (t) represents white

noise, the goal is to find a formula that will approximate the solution at the next time step,

Xn+1, given that the previous time step, Xn, is known.

First, dXt can be defined as

dXt =
∆Xt

∆ t

15

which implies

∆Xt = dXt∆ t.

The original equation, dXt = a(t,Xt)dt +b(t,Xt)ξ (t), can be substituted in for dXt . This

then yields

∆Xt = (a(t,Xt)dt +b(t,Xt)ξ (t))dt.

Using ∆Xt = Xn+1−Xn and the fact white noise is defined as ∆W
dt where ∆W =Wn+1−

Wn is a Wiener increment . This gives the final formula of

Xn+1 = Xn +a(tn,Xn)∆ t +b(t,Xn)∆Wt

for a time discretization t0 < t1 < t2 < .. . < tn and initial condition X0. Here since

Brownian motion is normally distributed with variance t, ∆Wt will have standard deviation

of
√

dt and can be represented as just rn(
√

dt), where rn is a random number from a normal

distribution [6].

Fokker-Planck Equation

Another useful equation for numerical applications of SDEs is the Fokker-Planck (or

Kolmogorov forward) equation. This takes an SDE in the form

dXt = h(Xt , t)dt +
√

2g(Xt , t)dWt

where h(Xt , t) is the drift term and g(Xt , t) is the diffusion coefficient, and gives a formula

for the derivative with respect to time of the PDF, f (x, t), of the random variable Xt :

∂

∂ t
f (x, t) =

∂ 2

∂x2 [g(x, t) f (x, t)]− ∂

∂x
[h(x, t) f (x, t)].

16

This equation is for the one-dimensional random variable but can be extended to a

multi-dimensional case defined by

dXt = h(Xt, t)dt +b(Xt, t)dWt

in which case Xt is an n-dimensional random variable and Wt is an m-dimensional Wiener

process.

The Fokker-Planck equation is now given by

∂

∂ t
f (x, t) =−

n

∑
i=1

∂

∂xi
[hi(x) f (x, t)]+

1
2

n

∑
i=1

n

∑
j=1

∂

∂xi∂x j
[Di j(x) f (x, t)]

where Di j(x, t) = 1
2

m
∑

k=1
bik(x, t)b jk(x, t) is the diffusion tensor.

The Fokker-Planck equation is commonly used for variables describing a macroscopic

but small subsystem. For example, position and velocity for the Brownian motion of a

particle, a current in an electrical circuit, and the electrical field of a laser [7].

2.1 Application

Population Growth Model

Recalling, again, the stochastic model for population growth, dNt = rNtdt +αNtdWt , sim-

ulations can be run using the Euler-Maruyama method and then compared to the exact

solution (1.4) which was obtained using the Itô formula.

For Figures 2.1 and 2.2, MATLAB was used to run simulations of the exact solution and the

Euler-Maruyama approximation on the equation

dNt = 0.3Ntdt +0.2NtdWt

17

Figure 2.1: Three independent runs of the stochastic model for population growth.

over the time interval [0,10] with dt=0.01 and X0 = 10. The parameter values, r = 0.3 and

α = 0.2, were arbitrarily chosen to run simulations.

In Figure 2.1, three separate runs of the exact solution, Nt = N0e
(
(0.3− 0.22

2)t+0.2Wt

)
, are

graphed together. It can be seen that due to the stochastic nature of the model that separate

runs with the same parameter values can produce very different results. Due to this, it is

generally beneficial to run simulations numerous times and average it to get an overall view

of how the system behaves. This is shown in Figure 2.2 where averages were taken after each

10, 100, and 1000 runs of both the exact solution and the Euler-Maruyama approximation

and with more runs, the averages of the two converge.

Logistic Growth Model

Another differential equation that looks at how a population changes over time but takes

into account the carrying capacity is the logistic growth model. The simplest form of this

18

Figure 2.2: Runs for basic population model averaged and compared

equation is:

dN
dt

= rN
(

1− N
k

)
+σξ (x)

where r is the growth rate, k is the carrying capacity, and the σξ (x) term is the additive

white noise term that makes this equation an SDE.

Using the arbitrary values r = 1 and k = 4, this equation without noise would rise to

a steady state value of N = 4. But as shown in Figure 2.3, when the noise is taken into

account, the solution for N will rise to N = 4 and then "bounce" around that solution, and

the level of the noise will determine how severity of this bounce.

A closer look can be taken at the equations after a long time period, say t = 15000.

At this point, the equation would be in the noisy steady state for a generous amount of

19

Figure 2.3: Three runs of the logistic growth model using the Euler-Maruyama approxima-
tion

time. Figure 2.4 looks at one of these long time runs, after which the different values that N

achieves are binned and plots a histogram that essentially is the steady state of the probability

density function (PDF) of N

The Fokker-Planck equation can now be used to get an equation of how this PDF changes

in time. Doing this yields

∂ f
∂ t

=
σ2

2
∂ 2

∂x2 f (x)− ∂

∂x

(
(x− x2

4
) f (x)

)
.

To be able to compare this to the histograms in Figure 2.4 which are the PDF at a steady

state, ∂ f
∂ t is set to equal 0. Doing this and integrating both sides with respect to x, the

equation becomes

2
σ2 K =

d
dx

f (x)− 2
σ2 (x−

x2

4
) f (x)

20

Figure 2.4: Histograms of Eulers method
These histograms are effectively PDFs of the steady state, so integrating over an interval
will give the probability of being in that interval. Top left: Histogram of ’steady state’ with
σ = 0.75. Top right: Histogram of ’steady state’ with σ = 0.5. Bottom left: Histogram of
’steady state’ with σ = 0.25. Bottom right: All combined

for some constant K. An integrating factor of

e
(− 2

σ2

x∫
0

rs− s2
4)

= e−
2

σ2

(
x2
2 −

x3
12

)

is used to get a solution to this new first order, ordinary differential equation. Multiplying

and integrating both sides will now give

2
σ2 K

∫
e−

2
σ2

(
x2
2 −

x3
12

)
+C = f (x)e−

2
σ2

(
x2
2 −

x3
12

)

where C is a new integrating constant. The solution is now solved with K set equal to 0.

This eliminates
∫

e−
2

σ2

(
x2
2 −

x3
12

)
which does not have an analytic solution. The final equation

left for the PDF of this SDE at the steady state is:

21

f (x) =Ce
2

σ2

(
x2
2 −

x3
12

)

where C is the constant that would make the property
∫

f (x) = 1 hold.

Considering the case when σ = 0.5, the equation becomes f (x) =Ce4x2− 2
3 x3

. To find the

correct value for the constant, one would numerically integrate this function and determine

the C value that ensure
∫

f (x) = 1 to holds. But because of the x2 and x3 in the exponential

term, numerical integration techniques seemed to be unstable. In order to "stabilize" this

some manipulation was done to the constant. C was split into the product of two constants,

say C1 and C2, and C2 was subtracted in the exponent. Thus the equation turned into

f (x) =C1e
2

σ2

(
x2
2 −

x3
12

)
−ln(1

C2
)
.

This allowed for ln(1
C2
) to be chosen as some value to help produce a stabilized approxi-

mation to the integral. Since there is already a graph to compare to, the value for C2 can be

chosen as anything that would help and any difference in C2 would only affect C1, but would

not end up affecting the product of the two. After this, it is determined that the original

constant had the value C ≈ 6.0888× 10−9. Figure 2.5 plots this equation for f (x) along

with the histogram for σ = 0.5 that was plotted in Figure 2.4. As, expected, the two match

very well.

Analytic solutions to the Fokker-Planck equation, like the Itô SDE, are impossible to

calculate, in general. An equivalent mathematical formulation of the steady-state Fokker-

Planck equation is a boundary value problem (BVP). Once again using σ = 0.5, the Fokker-

Planck equation after setting ∂ f
∂ t = 0 becomes

22

Figure 2.5: Euler Histograms vs Analytic Fokker-Planck
Again, both of these functions represent the PDF of the steady state. Comparison of the
histogram taken from the long run of the Euler-Maruuyama method and the steady-state
PDE given by the Fokker-Planck equation.

0 =
1
8

d2

dx2 f (x)− d
dx

((
x− x2

4

)
f (x)

)
or equivalently,

0 =
1
8

d2

dx2 f (x)−
[(

x− x2

4

)
f ′(x)+

(
1− 1

2
x
)

f (x)
]

when a simple chain rule is used for the second term on the right hand side. Now this second

order equation can be converted to a system of first order equations by setting some variable

y = f ′(x), therefore y′ = f ′′(x). The equivalent system is now in the form

 f ′(x)

y′

=

 0 1

8−4x 8x−2x2


 f (x)

y



23

. with boundary conditions that represent a no flux scenario of 0 = 8y− x(1− x
4) f (x) at the

boundaries. From the histograms in Figure 2.4 the boundaries are taken to be x= 1 and x= 6.

The solution of this BVP was calculated in XPP and exported to MATLAB so the integral

could be scaled to 1. Figure 2.6 shows the plot of the scaled solution and compares again

to the histogram of the steady state of the long run Euler-Maruyama method. As expected,

figure shows that both methods of finding this steady state PDF produce the same results.

Figure 2.6: Euler Histogram and Fokker-Planck BVP
Comparison of the solution to the Fokker-Planck BVP and the histogram from Figure 2.4

24

Low Dose Anthrax Model

In this chapter, a model for low dose anthrax absorption, which is a component of Dr.

Reynold’s research on low dose exposure to anthrax, is analyzed to see if numerical appli-

cations of SDEs can be applied. Contribution to this project is being made by considering

the effects that are made by replacing the current rules which implements a stochastic

probabilistic uptake into a deterministic differential equation with one that uses a noisy term

in the differential equation, thus making it an SDE.

Preliminaries and Original Model

When a person breaths in anthrax spores, the spores are dispersed throughout the lung

where antigen presenting cells (APCs) uptake the spores and transport them to the lymph

node. The main role of these cells are to present insults to the immune system and trigger a

larger immune response. While inside the APCs spores can germinate, releasing bacteria in

the cell, which replicate and can cause the APCs to lysis (break open) and release bacteria

into the blood.

A set of differential equation is used to model the dynamics during the transportation

from the lung to the lymph node for the APCs. We assume that both macrophages and

dendritic cells can uptake the spores. Therefore we model the dynamics for spores that are

internalized by macrophages and dendritic cells as separate variables (Sm and Sd , respec-

tively). We assume that spores are more likely to enter a macrophage and that dendritic

25

cells hold fewer spores than the macrophages. Additionally, dendritic cells do not phagocyte

(kill/destroy) as well as macrophages. If the spores germinate and cause the cell to lysis, we

increase the extra cellular bacteria, Be.

The differential equations that model the number of spores in each the dendritic cells

and macrophages, as well as the amount of extracellular bacteria, are:

S′d =−µdSd− k1Sd

S′m =−µmSm− k1Sm

B′e = k1nb(Sm +Sd)+gBe(1−Be/Bemax)

where µd and µm are the destruction of the spores by the dendritic and macrophage cells,

respectively, k1 is the rate at which cells lysis, nb is the scaling factor for bacteria to spore

ratio, g is the growth rate of the bacteria, and Bemax is the carrying capacity for bacteria.

Each time the probabilistic rules are called, they determine the uptake of each external

spores and whether internalized spores leave the lung changing the levels of Sm and Sd

variables. The fate of the spores in the lung are determined by these rules every 3000 time

steps (where dt = 1
360000).

Figure 3.1 shows the resultant plot of the number of total spores in the system where the

total time is taken to be 200 hours and the fate of the spores were added to Sm and Sd every

3000 time steps.

These rules are such that the following hold:

26

Figure 3.1: Single run of transport model
The plot for the total spores in the system for both macrophages and dendritic cells for a one
run simulation.

• The macrophages are closer to the cells, therefore they are more likely to find a given

spore than the dendritic cells. Thus for each external spore, it is determine if it will be

picked up, and if so, which individual cell gets that spore.

• A max load is determined for each APC at the beginning of the simulation. Dendritic

cells have a max load that is lower than the macrophages max load. For these

simulations, it is assumed that there are the same number of each cell type, but this

can be changed.

• A cell is more likely to leave the lung when it is full, but they can leave before they

are full.

• All the spores leaving the lung at a given time window are summed for each APC

group and become the increases in Sm and Sd .

Adaptations to the Model

Figure 3.2 shows the same equation with the same parameters averaged over 500 runs. It

27

Figure 3.2: Average Total Spores
This figure shows the average of the total spores model after 500 runs.

can be seen that this graph somewhat exhibits some of the properties one would see from

the average graph of an SDE.

To try and explain this behavior, a closer look is taken at the dynamics of stochastic

uptake of the external spores due to the equations that determine a spores fate in the cells.

Figure 3.3 shows, in essence, a scatter plot of the spores arriving into the system. At first

look, there seems no pattern to these incoming spores, but looking at the average of these

arriving spores over 1000 runs (Figure 3.4) it becomes quite clear there is some pattern

emerging.

The next step is to somehow express this average as a continuous function. Since the

fate of the spores are determined every 3000 time steps, this means that the points in Figure

3.4 do not represent the amount of spores arriving at that instantaneous time, but rather the

total amount arriving over the 3000 time steps. To account for this, one can just divide all

the points by 3000 and this will yield an approximation for the amount of spores arriving

28

Figure 3.3: Plot of spores arriving
These plots show the stochastic input of spores arriving into the differential. Left: spores
arriving from macrophage. Right: spores arriving from dendritic cells

at that exact time only. After that is done, a polynomial can be fitted to the data and a

continuous function that represents the amount of spores coming into the system can be

obtained. Figure 3.5 shows just that, a 4th degree polynomial representing the amount of

spores at any given time fitted to this data.

Creation of SDE

With an equation for the mean of the spores, and the average standard deviation, an SDE

model can be implemented. The differential equations for Sm and Sd with the addition of a

noise term results in:

S′d =−µdSd− k1Sd +σ1(Sd, t)ξ (t)

S′m =−µmSm− k1Sm +σ2(Sm, t)ξ (t)

29

Figure 3.4: Average Arrival
The average at a given time step of 1000 runs are plotted and a pattern emerges.

where σ1 and σ2 are functions that have the mean of there respective 4th order polyno-

mial and average standard deviation found in Figure 3.4, and ξ (t) is white noise which is

used so that the Euler-Maruyama method can be used to do simulations.

Recalling the formula for the Euler-Maruyama method

Xn+1 = Xn+a(tn,(Xn)∆ t +b(t,Xn)∆Wt,

in this case, the function a is just the original differential equation with no noise. Unfortu-

nately, the equation for the noise, or b in the formula, is not explicitly known. But mean and

standard deviation of this function are known and can be taken into account essentially in

the ∆Wt "term."

Since ∆Wt is a Wiener increment (Brownian motion) it has a normal distribution of mean

0 and a standard deviation of
√

dt. Thus normally, when implementing the Euler-Maruyama

30

Figure 3.5: Polynomial Fit for Averaged Arriving Spores
After the points from Figure 3.4 were divided by 3000, they were plotted along with their
standard deviation. Then a polynomial of degree 4 was fit to the data representing the mean.

method in MATLAB for example, one would code this as (randn·
√

dt). To adjust the mean

of this, one would just add the desired mean to this (randn·
√

dt) and adjust the standard

deviation by multiplying (randn·
√

dt) by th new standard deviation. So now focusing on

the equation of S′m, the way one would "code" this using what is known of the mean and

standard deviation would be

Smn+1 = Smn +(−µmSmn− k1Smn)dt +(P4(t)+ γ· randn ·
√

dt)

where P4(t) is the 4th order polynomial that represents the mean and γ represents the

average standard deviation.

Figure 3.6 shows these simulations for both Sm and Sd on t ∈ [0,200] averaged over

500 runs and compared to the average obtained from the original equation in Figure 3.2.

It can be seen that this SDE adaptation for this problem produces a good fit to the data

generated by the original equation that just had a stochastic probabilistic uptake into a

31

Figure 3.6: Averaged Euler-Maruyama Plot
Averages form Figure 3.2 compared with the averages of the Euler-Maruyama simulations.

deterministic differential equation. The SDE method would prove to be useful when the

model is being used for lower doses. In this scenario, the variance of the deterministic

method (the spikes and valleys in Figure 3.2) would become problematic. That is the case

because these transport equations will eventually feed into equations that model the response

of the immune system and the variance being a high percentage of the overall number of

spores will cause problems getting a consistent response over time.

It is important to note that these simulations and comparisons were done with a certain

set of parameters. So if any were to changes to these initial conditions, the whole process

would have to be repeated to obtain the polynomial describing the average as well as the

standard deviation. Future work on these equations could include finding out how all the

initial conditions affect the mean representing polynomial or even finding a formula for

quicker derivation of it.

33

Bibliography

[1] Bernt Oksendal, Stochastic Differential Equations, 6th ed, Springer-Verlag, 2013

[2] Sheldon Ross, Introduction to Probability Models, 10th ed, Elsevier, 2010

[3] Lawrence Evans An Introduction to Stochastic Dif-
ferential Equations, 2011. Web. Retrieved from
http://www.math.uh.edu/ torok/math_6397_SDE/Evans_SDE.course_v1.2_2011.08.pdf

[4] Fima Klebaner, Introduction to Stochastic Calculus with applications, 3rd ed, Imperial
College Press, 2012

[5] Xin Tong, A Crash Course for Stochastic Calculus, NYU, 2013. Web, Retrieved from
http://www.cims.nyu.edu/ chennan/CrashCourseonStochasticCalculus.pdf

[6] Peter Kloeden, Numerical Solutions to Stochastic Differential Equations, Springer-
Verlag, 1992

[7] H. Risken, The Fokker-Planck Equation: methods of solution and applications,
Springer-Verlag, 1989

34

Appendix A

Euler-Maruyama Method

%This MATLAB function impletents the Euler-Maruyama method on an SDE %

function [Xt] = eulersde(x0, t0, tf, dt, f, g)

% x0 -- initial value of random variable

% t0 -- start time

% tf -- end time

% dt -- time increment

% f -- function associated with the deterministic part of the SDE

% g -- funciton associated with the stochastic part of the SDE

t=t0:dt:tf; %sets time interval

n=max(size(t)); %determines number of iterations

sqrtdt=sqrt(dt);

35

Xt=zeros(n,1); %initializes vector and sets the initial condition

Xt(1)=x0;

for i=1:n-1

Xt(i+1)=Xt(i)+f(Xt(i))*dt+g(Xt(i))*randn*sqrtdt;

end

end

36

Appendix B

Exact Solution for Population Growth Model

%This MATLAB function computes sample run of the exact solution of the

%population growth model that was found using the Ito formula

function [Nt] = exactsde(x0, t0, tf, dt, r, alpha)

t=t0:dt:tf; %sets time interval

n=max(size(t)); %determines number of iterations

sqdt=sqrt(dt);

Bt=zeros(n,1); %Bt is a vector representing Brownian motion (random walk)

Nt=zeros(n,1); %Nt is the random variable vector

Nt(1)=x0; %Sets the initial value (Note: initial value for Bt is 0)

for i=1:n-1

Bt(i+1)=Bt(i)+sqdt*randn;

37

Nt(i+1)=Nt(1)*exp((r-(1/2*(alpha)^2))*t(i)+alpha*Bt(i+1));

end

end

38

Appendix C

Averages of Population Growth Model

%This MATLAB script creates Figure 2.2 which averages the exact solution

%and the Euler-Maruyama approximation of the population growth model.

sum=0; %Initializes sums that will be used to average

sum1=0;

dt=.01; % Sets time step and iterations

n=10/dt;

for i=1:n

s=eulersde(10,0,10,dt,@(x) 0.3*x,@(x) .2*x);

sum=sum+s; %Runs and stores in a single vector of

%both the exact and E-M approximation

s1=exactsde(10,0,10,dt,0.3,.2);

sum1=sum1+s1;

if i==10 %Produces and plots average after 10 runs

39

z=sum/10;

z1=sum1/10;

subplot(2,2,1)

plot(t,z,t,z1,’r’)

end

if i==100 %Average and plots after 100 runs

z=sum/100;

z1=sum1/100;

subplot(2,2,2)

plot(t,z,t,z1,’r’)

end

end

t=0:dt:10;

y=sum/n;

y1=sum1/n; %Plots final average (1000 in this case)

subplot(2,2,3)

plot(t,y,t,y1,’r’)

40

Appendix D

Histograms for Euler-Maruyama Method of Logistic Equation

%This MATLAB script runs the long term Euler-Maruyama approximation for

%the logistic growth model and creates a histogram

dt=.01;

r=1;

k=4; %Parameters for the specific equation

x0=4;

t0=0;

tf=15000; %Set initial conditions and final time

hold on

for i=1:3

sigma=.75-.25*(i-1); %Changes the noise level for different runs

f=@(x) r*x*(1-(x/k));

g=@(x) sigma; %Sets deterministic and stochastic equations

41

s1=eulersde(x0,t0,tf,dt,f,g); %Runs approximation

x1=linspace(1,6,101);

N=histc(s1,x1); %Sets and bins N values

n=sum(N);

if i==1

subplot(2,2,1)

bar(x1,N/n*20) %Creates histogram and nomalizes integral to 1

subplot(2,2,4)

bar(x1,N/n*20)

elseif i==2

subplot(2,2,2)

bar(x1,N/n*20,’g’)

s2=s1;

subplot(2,2,4)

bar(x1,N/n*20,’y’)

elseif i==3

42

subplot(2,2,3)

bar(x1,N/n*20,’r’)

subplot(2,2,4)

bar(x1,N/n*20,’r’)

end

end

43

Appendix E

Fokker-Planck BVP for the Logistic Growth Model

This is the input for XPP for the Fokker-Planck BVP of the logistic

#equation with addictive noise

define the 2 parameters, a,b

par a=1,b=6

now do the right-hand sides

F’=Y

Y’=(8-4*t)*F+(8*t-2*t^2)*Y

and finally, boundary conditions

First we want V(0)-V0=0

bdry 8*Y-t*(1-t/4)*F

We also want aV(1)+bVX(1)=0

bdry 8*Y’-t*(1-t/4)*F’

Note that the primes tell XPP to evaluate at the right endpoint

@ total=5, bell=0

45

Appendix F

Low Dose Anthrax Codes–Original Transport Code

%This MATLAB function is the actual model being used by Dr. Reynolds in

%her low dose anthrax research that simulates the number of spores being

%transported

function [data,NewIC, total_Sd, total_Sm, Si, Se, d, m ,full_D, full_M]

=transport(Se, ic, t0,tfinal, total_d, total_m,

maxload_d, maxload_m)

%tic

% set numerical timestep

h=(tfinal-t0)/360000;

%initialize variables and plot vectors

x(1,:)=ic;

xoutput(1,:)=ic;

t(1)=t0;

toutput(1)=t0;

46

s=2; %counter for plotting

% determine the total iterations of forward euler needed.

n=(tfinal-t0)/h;

%intialize the total number of spore within macrophages and dendritic

%cells released from the lung each call to sporefate

%(Sm and Sd, respectively) and total realesed for each cell

%population to zero.

Sm=0;

Sd=0;

total_Sd=0;

total_Sm=0;

% initilizing full vectors. These store the total spore instead "full"

% dendrite and macrophage cells

full_D=[];

full_M=[];

% call function to create dmload vector- this contains the max

%spore uptake

% for each cell. For each dendritic cells (there are total_d

%dendritic cells

% available to consume spores) a random integer is chosen between

47

%1 and

% maxload_d and stored in dmload. For each macrophage (there are

%total_m

% macrophages available to consume spores) a random integer is

%chosen between 1 and

% maxload_m and stored in dmload.

dmload=create_dmload(total_d, total_m, maxload_d, maxload_m);

% setup the initial vector of internal spores- all macrophages and

% dendritic cells are initialized to contain zero.

Si=zeros(1,length(dmload));

% initial d (the counter for remaining dendritic cells) to the total

% dendricit cells initial in the system (total_d).

d=total_d;

for i=2:n

if mod(i,3000)==0

[Se, Si, dmload, d, Sd, Sm, full_D, full_M]

=sporefate(Se,dmload,Si,full_D, full_M, d);

x(i-1,1)=x(i-1,1)+Sd;

total_Sd=total_Sd+Sd;

48

x(i-1,2)=x(i-1,2)+Sm;

total_Sm=total_Sm+Sm;

end

% input of underfilled macrophages and dendrite cells

% add probabilty of release a function of load

%determine right hand sides of the differential equations

r=dxtransport(t(i-1),x(i-1,:));

%forward Euler method

i

x(i,:)=x(i-1,:)+h*r’;

t(i)=t(i-1)+h;

%update vectors for plotting

if mod(i,10)==0

xoutput(s,:)=x(i,:);

toutput(s)=t(i);

s=s+1;

end

end

49

toutput=toutput’;

%plot output of the numerical approx.

plot(toutput,xoutput(:,1),’-’);ylabel(’Sd Total’);xlabel(’time’);figure;

plot(toutput,xoutput(:,2),’-’);ylabel(’Sm Total’);xlabel(’time’);figure;

plot(toutput,xoutput(:,3),’.’);ylabel(’Extracellular Bacteria’);

xlabel(’time’);

%plot(toutput,xoutput(:,6),’*’);ylabel(’TA’);xlabel(’time’);

% setup up output and sets NewIC to be the final output so they can

%easily be used to continue the sim.

data=[toutput,xoutput];

NewIC=xoutput(end,:);

m=length(dmload)-d;

50

Appendix G

Low Dose Anthrax Codes – Sporefate

function [Se, Si, dmload, d, Sd,Sm, full_D, full_M]

=sporefate(Se,dmload,Si,full_D, full_M, d)

%Given the extracelluar spore count (Se), load of each macrophage and

%dendritic cells (dmload, a vector of available spore spots with in the

%D and M population), Si (a vectore which contains the number of already

%internalized spores in each D and M cell), and the number of Dendritic

%cells, d, this function determines the number of Spores reamoved from

%the lung via

%dendritic cells (Sd) and macrophages (Sm) at each call. It always

%return the new adjusted Se, Si, dmload and d.

%Si=zeros(1,length(dmload))

%d=5;

pi=.999999; %1-pi is the probablity that an individual spore meets

with a Dendritic cell or a Macrophage

p_leave=.01; % probabilty an occupied leaves before it is full

51

p_leave_full=.5; % probabilty full cell leaves

Sd=0; % Initialize Sd for each step

Sm=0; % Initialize Sm for each step

Se_removed=0; % Initialize Se_removed for each step, this will determine

%the total spores lost local during each run

% We check whether each spore is taken up.

pref_m=4;%strength of the preference for macrophages, must be an integer

for i=1:Se % We check whether each spore is taken up.

Pi=1-pi^(length(dmload));%the more total cells (length(dmload))

the more likely the spore is consumed.

r1=rand(1);

if r1<Pi % if the spore is taken up we determine whether it enters a

D or M cell and if this causes that cell to meet in

max capacity.

r2=randi([1,d+pref_m*(length(dmload)-d)],1); % determines which

%cell it enters and uploads dmload and Si for the associated

%component.

52

if r2>d

r2=mod(r2, length(dmload)-d)+d+1;

end

dmload(r2)=dmload(r2)-1;

%dmload

Si(r2)=Si(r2)+1;

Se_removed=Se_removed+1;

r3=rand(1); %random number used to determine if full cells leave

if dmload(r2)==0

% if the cell reaches max the spores and may move from the Si

%component to either Sd (if component r2 is less than d)

%or Sm (otherwise) and that cell is removed from the cells

%capable of update.

if r2<=d

full_D=[full_D Si(r2)];

Si(r2)=0;

d=d-1;

53

elseif r2>d

full_M=[full_M Si(r2)];

Si(r2)=0;

else

error(’error in extending your full_cell vectors’)

end

% adjust dmload and Si when a Cell becomes full

for k=r2:length(dmload)-1

dmload(k)=dmload(k+1);

Si(k)=Si(k+1);

end

dmload=dmload(1:end-1);

Si=Si(1:end-1);

end

end

end

Se=Se-Se_removed; % update the Se population

%Check to see if unfilled cells are leaving

r4=rand(1,length(dmload));

54

Sd_not_max=0;

Sm_not_max=0;

i=1;

while i<=length(r4)

if (r4(i)<p_leave && Si(i)~=0)

if i<=d

Sd=Sd+Si(i);

Sd_not_max=Sd_not_max+Si(i);

d=d-1; % remove one D cell from the local population

else

Sm=Sm+Si(i);

Sm_not_max=Sm_not_max+Si(i);

end

% adjust dmload and Si when a Cell leaves the local

population

for k=i:length(dmload)-1

dmload(k)=dmload(k+1);

Si(k)=Si(k+1);

55

r4(k)=r4(k+1);

end

dmload=dmload(1:end-1);

Si=Si(1:end-1);

r4=r4(1:end-1);

end

i=i+1;

end

%Check to see if filled cells are leaving, info stored in

full_cells_M and full_cells_D

r5=rand(1,length(full_D));

r6=rand(1,length(full_M));

j=1;

while j<=length(r5)

if r5(j)<p_leave_full

Sd=Sd+full_D(j);

56

% adjust dmload and Si when a Cell leaves the

local population

for k=j:length(full_D)-1

full_D(k)=full_D(k+1);

r5(k)=r5(k+1);

end

full_D=full_D(1:end-1);

r5=r5(1:end-1);

end

j=j+1;

end

ji=1;

while ji<=length(r6)

if r6(ji)<p_leave_full

Sm=Sm+full_M(ji);

% adjust dmload and Si when a Cell leaves the

local population

for k=ji:length(full_M)-1

57

full_M(k)=full_M(k+1);

r6(k)=r6(k+1);

end

full_M=full_M(1:end-1);

r6=r6(1:end-1);

end

ji=ji+1;

end

end

58

Appendix H

Low Dose Anthrax Codes – Modified Transport

%This MATLAB function is a slghtly modified version of Dr. Reynold’s

%transport equation that only focuses on only the macrophages and

%dendretic

%cells and allows for simulations to be run multiple times and averages

%and standard deviations to be obtained

%For more detials of the parts that are similar, see the original.

for k=1:1000

k

Se=10000; %reintialize total number of spores

% set numerical timestep

h=(tfinal-t0)/360000;

%initialize variables and plot vectors

x(1,:)=ic;

59

xoutput(1,:)=ic;

t(1)=t0;

toutput(1)=t0;

s=2; %counter for plotting

% determine the total iterations of forward euler needed.

n=(tfinal-t0)/h;

Sm=0;

Sd=0;

total_Sd=0;

total_Sm=0;

% initilizing full vectors. These store the total spore instead "full"

% dendrite and macrophage cells

full_D=[];

full_M=[];

dmload=create_dmload(total_d, total_m, maxload_d, maxload_m);

% setup the initial vector of internal spores- all macrophages and

% dendritic cells are initialized to contain zero.

Si=zeros(1,length(dmload));

60

% initial d (the counter for remaining dendritic cells) to the total

% dendricit cells initial in the system (total_d).

d=total_d;

j=1;

for i=2:n

if mod(i,3000)==0

[Se, Si, dmload, d, Sd, Sm, full_D, full_M]

=sporefate(Se,dmload,Si,full_D, full_M, d);

x(i-1,1)=x(i-1,1)+Sd;

total_Sd=total_Sd+Sd;

x(i-1,2)=x(i-1,2)+Sm;

total_Sm=total_Sm+Sm;

SdArrive(j,k)=Sd; %adds current run of arriving spores to a

SmArrive(j,k)=Sm; %matrix containing all of the previous runs

if k==1

tArrive(j)=t0+h*i; %determines time spores arrive

end

61

j=j+1;

end

%determine right hand sides of the differential equations

r=dxtransport1(t(i-1),x(i-1,:));

%forward Euler method

x(i,:)=x(i-1,:)+h*r’;

t(i)=t(i-1)+h;

%update vectors for plotting

if mod(i,10)==0

xoutput(s,:)=x(i,:);

toutput(s)=t(i);

s=s+1;

end

end

end

SmAvg=mean(SmArrive’);

SdAvg=mean(SdArrive’);

SmActual=SmAvg/3000;

62

SdActual=SdAvg/3000; %Calculates average and standard dev and

%estimates actual continuous arrival of spores

SmDev=std(SmArrive’);

SdDev=std(SdArrive’);

SmDevP=SmActual+(SmDev/3000);

SmDevN=SmActual-(SmDev/3000);

SdDevP=SdActual+(SdDev/3000);

SdDevN=SdActual-(SdDev/3000);

toutput=toutput’;

c1=polyfit(tArrive,SmActual,4); %finds a polynomial fit for the

c2=polyfit(tArrive,SdActual,4); %arriving spores

f_Sm=@(x) c1(1)*x.^4+c1(2)*x.^3+c1(3)*x.^2+c1(4)*x+c1(5);

f_Sd=@(x) c2(1)*x.^4+c2(2)*x.^3+c2(3)*x.^2+c2(4)*x+c2(5);

tfit=0:.01:200;

Smfit=f_Sm(tfit);

Sdfit=f_Sd(tfit);

%plot output of the numerical approx.

plot(tArrive,SmAvg,’o’)

63

plot(tArrive,SdAvg,’o’)

plot(tArrive,SmActual,’o’,tArrive,SmDevP, ’--’,tArrive,SmDevN,’--’,

tfit,Smfit,’r’)

plot(tArrive,SdActual,’o’,tArrive,SdDevP, ’--’,tArrive,SdDevN,’--’,

tfit,Sdfit,’r’)

64

Vita

Matthew David Rajotte was born July 24, 1989 in Warwick, Rhode Island. He graduated

from Ocean Lakes High School in Virginia Beach, Virginia in 2007. He received his

Bachelor of Science in Mathematics from Virginia Polytechnic Institute and State University

in 2011.

	Virginia Commonwealth University
	VCU Scholars Compass
	2014

	Stochastic Differential Equations and Numerical Applications
	Matthew Rajotte
	Downloaded from

	Copyright
	Titlepage
	Acknowledgment
	Table of Contents
	List of Figures
	Abstract
	Introduction
	Mathematical Principles and Brownian Motion
	Itô Calculus

	Numerical Methods of SDEs
	Application

	Low Dose Anthrax Model
	Bibliography
	Appendices
	Euler-Maruyama Method
	Exact Solution for Population Growth Model
	Averages of Population Growth Model
	Histograms for Euler-Maruyama Method of Logistic Equation
	Fokker-Planck BVP for the Logistic Growth Model
	Low Dose Anthrax Codes–Original Transport Code
	Low Dose Anthrax Codes – Sporefate
	Low Dose Anthrax Codes – Modified Transport
	Vita

