Biomedical

Photonics
HANDBQOOK

Editor-in-Chief

Tuan Vo-Dinh

CRC PRESS

Boca Raton London New York Washington, D.C




Cover Art: Field of Lights. oil painting by Kim-Chi Le Vo-Dinh. Reproduced with permission of the artist.

Library of Congress Cataloging-in-Publication Data

Biomedical photonics handbook / edited by Tuan Vo-Dinh.
p- cm.
Includes bibliographical references and index.
ISBN 0-8493-1116-0
1. Optoelectronic devices— Handbooks, manuals, ete. 2. Biosensors—Handbooks,
manuals, etc. 3. Diagnositic imaging — Handbooks, manuals, etc. 4. Imaging systems in
medicine — Handbooks, manuals, etc. 1. Vo-Dinh, Tuan.

R857.06 B573 2002
610".28 —dc21 2002034914

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific
clients, may be granted by CRC Press LLC, provided that $1.50 per page photocopied is paid directly to Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923 U.S.A. The fee code for users of the Transactional Reporting Service
is ISBN 0-8493-1116-0/03/$0.004%1.50. The fee is subject to change without notice. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Bivd.. Boca Raton, Florida 33431

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crepress.com

© 2003 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1116-0
Library of Congress Card Number 2002034914
Printed in the United States of America 1 2 3 4 56 78 90
Printed on acid-free paper



21

Functional Imaging
with Diffusing Light
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21.1 Introduction

Many materials are visually opaque because photons traveling within them are predominantly scattered
rather than absorbed. Some common examples of these highly scattering media include white paint,
foam, mayonnaise, and human tissue. Indeed, anyone who has held a flashlight up to his or her hand
will notice some of this light is transmitted, albeit after experiencing many scattering events. Light travels
through these materials in a process similar to heat diffusion.

What does it mean to say light transport is diffusive? Consider a simple experiment in which an optical
fiber is used to inject light into a highly scattering material such as paint or tissue. Microscopically, the
injected photons experience thousands of elastic scattering events in the media. A few of the photons
will be absorbed by chromophores and will be lost. The remaining photons travel along pathways that
resemble a random walk. These individual trajectories are composed of straight-line segments with
sudden interruptions where the photon propagation direction is randomly changed. The average length
of the straight-line segments is called the random walk steplength of the traveling photon. By summing
all trajectories one can compute the photon concentration or photon fluence rate as a function of time
and position within the media.

It is then straightforward to show that the collective migration of photon concentration is described
by a diffusion equation. In practice one can carry out a variety of measurements to confirm the diffusive
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nature of light transport. For example, if a short pulse of light is injected into the medium and a second
optical fiber is used to detect transmitted photons, then, when the transport is diffusive, the most probable
arrival times for the detected photons will scale with the square of the source-detector separation divided
by the random walk steplength.

Diffuse light imaging and spectroscopy aims to investigate tissue physiology millimeters to centimeters
below the tissue surface.'> The cost of this goal is that we must abandon traditional optical spectroscopies
and traditional microscopy because traditional methodologies require optically thin samples. In addition,
light penetration must be large in order to reach tissue located centimeters below the surface. Fortunately,
a spectral window exists within tissues in the near-infrared from 700 to 900 nm, wherein photon transport
is dominated by scattering rather than absorption. The absorption of hemoglobin and water is small in
the near-infrared, but elastic scattering from organelles and other microscopic interfaces is large. These
are precisely the conditions required for application of the diffusion model. The recognition and wide-
spread acceptance that light transport over long distances in tissues is well approximated as a diffusive
process has propelled the field. Using this physical model it is possible to separate tissue scattering from
tissue absorption quantitatively, and to incorporate the influence of boundaries, such as the air-tissue
interface, into the transport theory accurately. The diffusion approximation also provides a tractable
basis for tomographic approaches to image reconstruction using highly scattered light. Tomographic
methods were not employed in early transillumination patient studies, and are crucial for recovery of
information about tissue optical property heterogeneity.

Even though absorption in the near-infrared is relatively small, the spectra of major tissue chro-
mophores, particularly oxy- and deoxyhemoglobin and water, differ significantly in the near-infrared.
As a result, the diffuse optical methods are sensitive to blood dynamics, blood volume, blood oxygen
saturation, and water and lipid content of interrogated tissues. In addition, one can induce optical contrast
in tissues with exogenous contrast agents, for example, chemical species that occupy vascular and
extravascular space and preferentially accumulate in diseased tissue. Together these sensitivities provide
experimenters with access to a wide spectrum of biophysical problems. The greater blood supply and
metabolism of tumors compared to surrounding tissues provides target heterogeneity for tissue maps
based on absorption.** Similar maps can be applied for studies of brain bleeding??* and cerebral oxygen
dynamics associated with activation by mental and physical stimulation.>#! Other applications of the
deep tissue methods include the study of mitochondrial diseases,>* of muscle function and physiol-
ogy,** and of photodynamic therapy.*’="'

Biomedical applications for diffusing near-infrared light probes parallel the application of nuclear
magnetic resonance to tissue study. Generally, the categories of measurement can be termed spectroscopy
and imaging. Spectroscopy is useful for measurement of time-dependent variations in the absorption
and scattering of large tissue volumes. For example, brain oximetry (hemoglobin spectroscopy) of the
frontal, parietal, or occipital regions can reveal reduced brain perfusion caused by head injury. Imaging
is important when a localized heterogeneity of tissue is involved, for example, an early breast or brain
tumor, a small amount of bleeding in the brain, or an early aneurysm. Images enable one to identify the
site of the trauma and differentiate it from background tissue. Imaging is also important because it
improves the accuracy of a spectroscopic measurement. Typically, spectroscopic methods employ over-
simplified assumptions about the scattering media. Imaging relaxes some of these assumptions, usually
at the cost of a more complex experimental instrument and computation, and ultimately improves the
fidelity of the gathered optical property information.

The purpose of this chapter is to discuss functional imaging with diffusing photons. Our emphasis
will be on imaging rather than spectroscopy, but it will be necessary to briefly review the basics of diffuse
optical spectroscopy. This chapter is intended as a tutorial about what can be done with diffuse optical
imaging, how to do it, and how to understand it. We intend to give a tutorial snapshot of the field with
selected examples, but not a comprehensive review of research in the field. The remainder of this tutorial
consists of sections on theory, instrumentation, and imaging examples, and a discussion about limitations
and compromises associated with the technique.
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21.2 Theory

21.2.1 Diffusion Approximation

Many researchers (e.g., References 52 through 56 and others) have shown that the photon fluence rate,
®i(r, t) (photons/[cm? - 5]}, obeys the following diffusion equation in highly scattering media:

'i-’-D{r]‘ff’(ﬂr.:}-mu{r]¢{r.r_]+v5{r..'}=atp;:’ﬂ. (21.1)

P(r.1) is proportional to the photon number density Ulr, t) (photonsicm?), i.e., @(r, t) = vU(r, t). The
turbid medium is characterized by a speed of light, v, an absorption coefficient p, (i.e., the multiplicative
inverse of the photon absorption length), and a photon diffusion coefficient, D = v/3(p] + ) = v/3(! );
the dependence of D on p, is a subject of recent debate,™ % but the latter relation follows in most
tissues wherein p) >> f,. The medium’s reduced scattering coefficient is defined as i = (1 -g) y, and
represents the multiplicative inverse of the photon random walk steplength, I*, Here p, is the reciprocal
of the photon scattering length, [, and g = <cos#> is the ensemble-averaged cosine of the scattering angle
6 associated with a typical single scattering event in the sample; g accounts for the fact that light is more
typically scattered in the forward direction, so that many scattering events are required before the initial
photon propagation direction is truly randomized. S(r, t) is an isotropic source term that gives the number
of photons emitted at position r and time ¢ per unit volume per unit time,

The right-hand side of Equation 21.1 represents the rate of increase of photons within a sample volume
element. This rate equals the number of photons scattered into the volume element per unit time from
its surroundings, minus the number of photons absorbed per unit time within the volume element, plus
the number of photons emitted per unit time from any sources in the volume element.

The diffusion equation is based upon the Pl approximation of the linear transport equation,
is valid when the reduced albedo @’ = p! /(i + 1! ) is close to unity, Le., the reduced scattering coefficient
is much greater than the absorption coefficient (U >>p,.). The near-infrared (NIR) spectral window
{commonly called the “therapeutic” window) of biological tissue lies between the intense visible absorp-
tion bands of hemoglobin and the NIR absorption band of water. In this window the reduced scattering
coefficient is often 10 to 1000 times greater than the absorption coefficient,” for example, i} = 10 cm™!
and p, = 0.03 cm' at 800 nm in human breast tissues. Of course tissues are not homogeneous, but they
can be accurately divided into domains of piecewise homogeneous turbid media, each obeying Equation
21.1. Measurements are accomplished using sources and detectors arranged on the surfaces of or
embedded within the tissue. Strictly speaking, it is also important for the source-detector scparation to
be of order three photon random walk steps (i.e., 31*) or larger; otherwise the photon scattering angles
will not be sufficiently randomized at the point of detection for rigorous application of the diffusion
approximation.’"

@ Iy

21.2.2 Sources of Diffusing Photons

Three types of sources are commonly emploved in diffusive light measurements (see Figure 21.1). The
simplest and easiest method to use is the continuous-wave (CW) device. In this case the source amplitude
is constant, and the transmitted amplitude is measured as a function of source-detector separation or
wavelength. The second method is the pulsed-time or time-resolved technigue. In this scheme a short,
usually subnanosecond light pulse is launched into the medium, and the temporal point spread function
of the transmitted pulse is measured, The third method is the intensity modulated or frequency-domain
technique. In this case the amplitude of the input source is sinusoidally modulated, producing a diffusive
wave within the medium. The amplitude and phase of the transmitted diffuse light wave are then
measured. These methods are related; the time-resolved and frequency-domain approaches are Fourier
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FIGURE 21.1 Three source-detector schemes are generally employed in the phaton migration field. On the far left
we illustrate a typical remission geometry: (1) continuous-wave, called CW spectroscopy; (2) time-pulsed or time-
resalved technique (often called TRS); (3] intensity amplitude modulation, ie., often referred to as the frequency-
domain method.

transformations of one another, and the CW approach is a special case of the frequency-domain approach
wherein the modulation frequency is zero, Fach of these approaches has strengths and weaknesses.

Briefly, the CW scheme is inexpensive and provides for rapid data collection. However, because it
measures amplitude only, it lacks the capability for characterizing simultaneously the absorption and
scattering of even a homogeneous medium from a measurement using only a single source-detector pair.
The more expensive time-resolved scheme collects the full temporal point spread function, which is
equivalent to a frequency domain measurement over a wide range of modulation frequencies. In this
case, when the medium is homogeneous, j1,and 1] can be obtained simultaneously from a single source-
detector separation. The photon counting, however, can be slow and the technique is often limited by
shot noise. The frequency domain technique is a compromise between CW and time-resolved techniques,
with respect to cost and speed. [t concentrates all the light energy into a single modulation frequency. It
measures amplitude and phase, which ideally enable us to obtain u and ! for a homogeneous medium
using a single source-detector separation. In practice all of these methods benefit significantly from use
of many source-detector pairs and many optical wavelengths. In this chapter we focus on frequency
domain sources, but the results can be applied to time-resolved and CW methods,

21.2.3 Diffuse Photon Density Waves in Homogeneous Turbid Media

Consider a light source at the origin with its intensity sinusoidally modulated at a modulation frequency
f. e.t., the source term in Equation 21.1 is 5(r.t) = (M, + M_e™) 8(r), where @ = 2n fis the angular
source modulation frequency, M, and M,_are the source strengths of the DC and AC source components.
The diffusion equation continues to be valid for light derived from these highly modulated sources as
long as the modulation frequency wis significantly smaller than the scattering frequency vit'; that is,
photons must experience many scattering events during a single modulation period. Photons leaving the
source and traveling along different random walk trajectories within the turbid medium will add inco-
herently to form a macroscopic scalar wave of photon concentration or fluence rate.

The total fluence rate consists of a DC and an AC component, i.¢., @, (rt) = Ppclr) + @ (r, 1). We
focus on the AC component @, (rf) = ®(rle™, The photon fluence will oscillate at the source of
modulation frequency @. Plugging the AC source term into Equation 21.1 we obtain the following
Helmholtz equation for the oscillating part of the photon fluence:

v? +‘f:}¢[r}=—[ "’E“' ]E-fr] : (21.2)

We refer to this disturbance as a diffuse photon density wave (DPDW)."*"® The DPDW has wavelike
properties; for example, refractive,” diffractive,” and dispersive™ behaviors of the DPDW have been
demonstrated.
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[he photon density wave has a simple spherical wave solution for an infinite homogeneous highly
scattering medium of the form:

PR T |
D, ()= Il o

= |expﬂrkr_|equ—.-:-u]. (21.3)
nlr |

The diffuse photon density wave wavenumber is complex, & = k + ik, and ¥ = (—vp, + i)/, The
real and imaginary parts of the wavenumber are:

| o ||
=3 ‘|I+ _ -]
\ 2D ) i v | |
(21.4)
. vaf - _III."' -I'
(2] [ 22 )]

V20 ) (L v, )

In Figure 21.2 the measured wave is demonstrated within a tank of homogeneous highly scattering
Intralipid. Constant-phase contours are shown in 207 intervals about the source at the origin. We see
that the wave contours are circular and that their radii can be extrapolated back to the source. In the
inset we exhibit the phase shifi and a simple function of the wave amplitude plotted vs. the source-
detector separation. From the slopes of these linear position-dependent measurements, one can deduce
the wavelength of the disturbance, as well as the absorption and scattering factors of the homogeneous
turbid medium via Equations 21.3 and 21.4.
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FIGURE 21.2 (A} An aguarium used for model EXpeTiments, The ._|\||,|.||;i|_|.'1| is filled with |'||[|';_'|'|||!i|,':.. 1 [‘ll.'l]'l.'-u‘|i'ipl_"r'i.l."
emulsion whose absorption and scattering coefficients in the NIR region can be adjusted to approximate those of
tissue, (B) Constant-phase contours of diffuse photon-density waves in the homogeneous sample of Intralipid. The
source for this measurement is a 1-mW laser diode operating at 780 nm and modulated at 200 MHz. Inset: Measured
phase-shift and a dimensionless (logarithmic) function of the amplitude as a function of source-detector separation.
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FIGURE 21.3 Schematic of the experimental fiber configuration showing the relative positions of surface boundary
(z = 1), extrapolated boundaries, r,(p) and rp) as defined in Equations 21.5, 21.6a, and 21.6b.

For homogeneous media in more complex geometries, one can still derive a set of phase and am plitnde
curves as a function of source-detector separation. The functional relationships may not be linear, but
it is still readily possible to derive the average absorption and scattering factors of the underlying media
by fitting to this data.

21.2.4 Spectroscopy of Homogeneous Turbid Media

The absorption factor, |1,, depends on the chromophore concentrations, and their extinction coefficients,
The predominant endogenous absorbers in tissues are oxy- and deoxyhemoglobin, and water. The
scattering factor, i, depends on other tissue properties such as organelle (e.g., mitochondria) concen-
tration and the index of refraction of the background fluids. If the medium is sufficiently homogenous,
then by measuring the absorption and scattering coefficients as a function of light wavelength, one
generates a set of simultancous equations that can be solved to yield the concentrations of the tissue
chromophores.

The simplest and most commonly used physical model for tissue spectroscopy treats the sample as a
semi-infinite medium. In this case the sources and detectors are placed on the “air side” of the tissue
surface (see, for example, Figure 21.3). Emission and detection take place through optical fibers placed
flush with the surface. The quantity measured in practice at position r, time #, and along the direction
n is the radiance integrated over the collection solid angle. Within the diffusion approximation, the
radiance consists of an isotropic fluence rate (@(rt)) and a directional photon flux (J(rt)) that is
proportional to the gradient of .

Diffusion theory for semi-infinite media predicts the reflectivity R(p; 1, ;) as a function of p, where
p is the source-detector separation along the sample surface. R(p; W, ;) is derived from photon flux
and fluence rate at the boundary™*

R(psi, ;) =C@{p)+CJ.[p) (21.5)

where

IR exp(—4,1(p)) _expl-1yn(p) (21.6a)

“anp| rlp) re

and
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Lp)= L{[p ¥ L]*"‘P{_'“vf_’_-_“’})

4wy, nip) r(p)
(21.6b)
e i
| Lazg, [+ 1..] "P{‘f‘f_@*!_?__}
I, nlp) r(p)

Here, u, = p + p', and pg = [3p(u, + 1')|'~ C, and C, are constants that depend on the relative
refractive index mismatch between the tissue and the detector fiber, and the numerical aperture of the
detection fibers. The parameters r,(p) are defined in Figure 21.2. Briefly, r,(p] is the distance from the
point of contact of the detector fiber on the tissue surface to the effective source position in the tissue
located 1/, directly beneath the source fiber; ry(p) is the distance between the point of contact of the
detector fiber and a point located 1/u, + 2z, directly above the source; z, 15 the extrapolated boundary
length above the surface of the medium. Here the z-direction has been taken normal to the tissue surface
(located at z = (), so that J, is the directional lux normal to the surface,

The tissue optical properties at a fixed wavelength are derived from the measured reflectance by fitting
with Equation 21.5. Many schemes have been developed to search for the optimal parameters;®** their
relative success depends on the measurerment signal-to-noise ratio and the accuracy of the physical model,
When everything works, one obtains a best estimate of the absorption factor and scattering factor at one
or more optical wavelengths. We then decompose the absorption coefficient into contributions from
different tissue chromophores, i.e.,

J“;f:"-]EZ_;E.{l] £ (21.7)

Here the sum is over the different tissue chromophores; £,(A) is the extinction coefficient as a function
of wavelength for the ith chromophore and ¢, is the concentration of the #th chromophore, The ¢, are
unknowns to be reconstructed from the wavelength-dependent absorption factors. Three unknowns
require measurements at a minimum of three optical wavelengths (generally more, because tissue scat-
tering is also an unknown),

Orxy- and deoxyhemoglobin concentrations (e.g., G0, G Tespectively) along with water concentra-
tion are the most significant tissue absorbers in the NIR. They can be combined to obtain blood volume
(which is proportional to total hemoglobin concentration ([¢y, + €u,]) and blood oxygen saturation
(e [eupo, /6, + Gy, )| % 100}, which in turn provide useful physiological information. The same
schemes are often extended to derive information about exogenous agents such as photodynamic therapy
(PDT) drugs, indocyanine green (ICG), etc.; in such cases the effect of these other chromophores is
accounted for by adding their contribution to the sum in Bquation 21.7.

21.2.5 Imaging in Heterogeneous Media

21.2.5.1 Brief History

Tissue is often quite heterogeneous, so it is natural to contemplate making images with the diffusive
waves. While high spatial resolution is desirable (e.g., a few millimeters), resolutions of about | cm are
useful for many problems. A simple example of the utility of imaging is the early localization of a head
injury that causes brain bleeding or hematomas. Tumors are another tvpe of structural anomaly that one
wants to detect, localize, and classify. The diffuse optical methods probe a variety of properties associated
with tumer growth: larger blood volume resulting from a larger number density and volume fraction of
blood vessels residing within the tumor; blood deoxvgenation arising from relatively high metabolic
activity within the tumer; increased concentration of the intracellular organelles necessary for the energy
production associated with rapid growth; and the accumulation of highly scattering calcium precipitates,
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Some of these properties may prove helpful in classifying tumors as benign or malignant. In the long
term it should be possible to design contrast agents that respond to specific tumor properties. Other
types of tissue of interest for functional imaging include the neonatal brain and a variety of animal
models. For example, physiological studies of hemodynamics in relation to the oxygen demand probe
important changes in the functional brain, especially during mental activity. In Section 21.4 we describe
current research that investigates many of the clinical issues just outlined.

Optical characterization of the heterogeneous tissues has been attempted since 1929* when the term
diaphanography was applied to shadowgraphs of breast tissue. This class of transillumination measure-
ment was renewed in the early 1980s.5-* Even in the region of low tissue absorption, however, the high
degree of tissue scattering distorted spectroscopic information and blurred optical images as a result of
the large distribution of photon pathways through the tissue. Widebeam transillumination proved largely
inadequate for clinical use because the two-dimensional “photographic” data were poorly suited for image
reconstruction. The mathematical modeling of light transport in tissues was not developed sufficiently
for optical tomography to be readily employed.

The diffusion approximation now provides a tractable basis for tomographic approaches to image
reconstruction using highly scattered light. Tomographic methods crucial for recovery of information
about breast heterogeneities were not employed in the early transillumination patient studies. Several
approaches have been developed for diffuse optical tomography; these include: backprojection meth-
ods,®* diffraction tomography in k-space,”'" perturbation approaches,'”'"" the Taylor series expan-
sion approach,’® 1Y gradient-based iterative techniques,'™ elliptic systems method (ESM),'*!* and
Bayesian conditioning,"”” Backprojection methods, borrowed from CT, produce images quickly and use
few computational resources. However, they lack quantitative information and rely on simple geometries,
Perturbation approaches based on Born or Rytov approximations can use analytic forms or iterative
techniques based on numerical solutions. The analytic forms are relatively fast, but require the use of
simple boundary conditions and geometries, and generally underestimate the properties of the pertur-
bations. The numerical solutions are relatively slow and computationally intensive; however, in principle,
realistic boundaries present no significant limitations for these methods.

21.2.5.2 Formulation of the Imaging Problem

In this section we formulate the imaging problem in the frequency domain. The starting point of this
analysis is the time-independent form of the diffusion equation {Equation 21.1), where we have divided
out all of the ¢ dependencies:

V-D{r)V(r) (v (r) - io)d(r) = ~vS(r.0) . (21.8)

The problem is difficult because the diffusion coefficient and the absorption coefficient vary with spatial
position. We write D(r) = I, + 8D(r), and p,(r) = p_, + 81, (r); here DD, and p_, are constant, “background”
optical properties. The source can have any form, but typically we assume point sources of the form
AB(r-r).

The goal of diffuse optical imaging is to derive D{r) and p (r) from measurements of ®(r} on the
sample surface. Two common forms are used for ®(r} in the formulation of the inversion problem. The
Born-type approach writes @(r) = @ (r} + ®,(r); traditionally one can view @,(r) as the incident wave
and ®,_(r) as the wave produced by the scattering of this incident wave off the absorptive and diffusive
heterogeneities. The Rytov approach writes @(r) = @,(r) exp[®, (r)]. We will focus on the Born approx-
imation for our analysis, and indicate when possible the corresponding Rytov results.

We next substitute D(r), i, (r), and ®{r) = @, (r) + ®_(r) into Equation 21.8 to obtain a differential
equation for @_(r) with general solution:

m,{:,,:,]:j["’s"T:{r} F‘r‘.r}ﬁr,rj}drdrj[aﬂrj J?G{rd,r:]-?d){r,rs]dr o (A1)
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Here r, is the source position, r, is the detector position, r is a position within the sample. The integration
is over the entire sample volume. G(r,r') is the Green's function associated with Equation 21.8. Exami-
nation of Equation 21.9 reveals some of the intrinsic challenges of the inverse problem. In a typical
experiment one measures @ on the sample surface and then extracts @, on the surface by subtracting
@, from ®. The problem of deriving 8u,(r) and 8D(r) from @ is intrinsically nonlinear because @ and
G are nonlinear functions of &u, (r) and &D{r).

The Linearized Problem

The simplest and most direct route to inverting Equation 21.9 starts by replacing @ by @, and G by G..
Here @, and G, are solutions of the homogeneous version of Equation 21.8 with D{r) = D, and u (r) =
U, This approximation is good when @, << ®, and when the perturbations are very small compared
to the background. It is also important that we have accurate estimates of D, and i, In this case, Equation
21.9 is readily discretized in Cartesian coordinates and written in the following form:

NV

¢'-={*J*“«}“Z[W,.fﬁi-l;(f.)’fwi.,ﬁ[—‘{f,]]~ (21.10)

j=l

The sum is taken over NV volume elements (i.e., voxels) within the sample; the absorption and scattering
weights are, respectively, W, ;= G (r,r) @ (r.rs) (—vAx Ay Az/D,), and W,; = VG (r,r) - V@ (r.r) (Ax
Ay Az/D,). In any practical situation there will be NS sources and ND detectors, and so there will be up
ta NM = N5 x ND measurements of @ on the sample surface, For the multisource-detector problem
one naturally transforms Equation 21.10 into a matrix equation, i.e.,

e, o o0f) = ) -

Here, the index i refers to source-detector pair, and the index j refers to position within the sample,
The perturbation vector {8u,(r,), 8D(r,)}" is 2NV in length, the measurement vector {®_(r,r,)} is NM
in length, and the matrix [W] has dimensions NM = (2NV). In the Rytov scheme, the formulation in
the weak perturbation limit is almost exactly the same, except that W, = G (r,r) @ (r.r)(-vAx Ay Az/
B(rer) D)W, = VG (rur)) - VO (r.r,) (Ax Ay Az/®,(r,r,) D), and the vector {®_(r,r,),} is set equal
to {In|®(r,r )/ @, (r,r )]} rather than [[@(r,r,) = D,ir,r,)] | The Rytov scheme has some experimental
advantages because it is intrinsically normalized (the Born scheme, however, can be modified so that it
is normalized in essentially the same way); the major approximations of the Rytov scheme are associated
with the gradients of @, in particular that (V@ )* is small relative to the perturbation terms in Equation
21.9. Thus both Born and Rytov approaches give rise to an inverse problem of the form [W] (x| = |b};
the unknown vector [x} can be determined from this set of linear equations by a number of standard
mathematical techniques. The numerical elements in [W] are often assigned in simple geometries using
analytic forms of G, and @, (e.g., Equation 21.3 and variants), or more generally by numerically solving
Equation 21.8 and its Green's function analog for @, and G..

The Nonlinear Problem
The linear formulation described above works well when perturbations are small and isolated, and when
the background media are relatively uniform. However, Equation 21,9 is intrinsically nonlinear because
P and G are alse functions of the variables we are trying to determine by inversion, The most broadly
useful image reconstruction schemes are iterative. These approaches follow similar algorithms: (1) the
optical properties (. and [} are initialized; (2) the forward problem is solved; (3) a chi-squared is
calculated and convergence is checked; (4) the inverse problem is set up; (5) the inverse problem is solved;
(6) the optical properties are updated and a return to step 1 occurs,

The forward problem is defined as calculating the diffuse photon density, ® (r.r,), for each source
position r, and is typically found using finite elements or finite difference methods using Equation 21.8,
The boundary conditions are defined as:
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R4 is the effective reflection coefficient and can be approximated by: Ry = —1.440m + 0.710n8°" + 0.668
+ 0.0636n, n = n,/n,, the relative index of refraction.® The chi-squared (y’) is generally defined as:

2

=Y (Mi].‘l."_c““] _ (21.13)
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Here NM = number of measurements, M = measured, C = calculated, r; is the ith detector position,

and &' is the ith measurement error. By comparing %* to some defined €, a convergence criterion is defined

and checked.

We then need a way of updating the optical properties from their previous values. A standard Taylor
method expands @, about its assumed optical property distribution, which is a perturbation away from
another distribution presumed closer to the true value, In particular we set the measured photon density
wave for each source-detector pair equal to the calculated photon density wave at the corresponding
source-detector pair plus the first-order Taylor series perturbation expansion terms in p, and D, ie,
@, =D+ (bl ) Ap, + (db JdDIAD.

The inverse problem is defined from this relationship:

[, A0} =~{@,(r,)-®(r,)} (21.14)

Here []] = [a,/a,, oD, /2D)] is called the Jacobian. The Jacobian matrix will have the following entries:

[gihl =%@:y‘hﬁ{wn}¢r (5m.) (21.15a)
{%L: %ﬂﬂzvﬂ['ﬂwﬂ)'“”c{rﬂﬂ-]« (21.15b)

It is illuminating at this point to compare Equation 21.14 with Equation 21.11. The two expressions
are essentially the same if we associate ®,, with ®, @, with @, Ay, with Sy, AD with 8D, and if we use
the true Green's function G rather than G The same set of substitutions in the Rytov formulation gives
a Rytov version of the nonlinear inversion scheme. Thus the iterative formulation of the inverse problem
is based on the same underlying integral relationship (Equation 21.9), and one readily sees that each step
of the “nonlinear” iteration process is a linear inverse problem of the form N {x} = ibl.

21.2.5.3 Methods for Solving the Inverse Problem

The inverse problem may be solved using a wide range of methods (an excellent review of these methods
was given by Arridge!"). The solution method chosen depends in part on the determination of the implicit
or explicit Jacobian. For the explicit Jacobian two methods are commaonly employed: the MNewton-Raphson
and the conjugate gradient techniques. It is also possible to combine these methods with Bayesian
conditioning or regularization to improve reconstruction. For the implicit Jacobian, the methods of
choice are the gradient-based iterative technique and ART (algebraic reconstruction technique).

There are essentially two ways to construct the Jacobian, [J] explicitly: direct and adjoint. The direct
approach explicitly takes the derivative of the forward problem (Equation 21.8) with respect to the optical
properties to determine the Jacobian. For example, suppose [A]{ @] = {S] is the forward problem; here
|A] is the operator on the left side of Equation 21,8 and {5} is the source on the right side of Equation 21.8.



