
Chapter 1

An Introduction to Mathematica

1.1 Introduction

This chapter contains a brief introduction toMathematica. The �rst few sections will help the reader
become familiar with the general syntax of this package. A glossary at the end of the chapter gives
a partial listing of the available commands with examples of their usage.

One of the most important aspects of any software package is how readily one is able to access
the information from the output of a command and redirect it as input to another. For example,
throughout the text we will make extensive use of the di�erential equation solver of Mathematica in
various applications, where monitoring the evolution of certain variables is key to our understanding
of a physical model. Typically, we would like to graph some or all of the variables we obtain from
solving a system of di�erential equations as time varies, or graph one variable versus another, or
integrate and di�erentiate the output in order to construct physical quantities that have natural
interpretations. This chapter is an introduction to how one can accomplish such tasks with simple
examples that are similar to the actual circumstances we encounter in the remainder of the text.

The material presented here is intended primarily to be used as reference for the exercises in the
upcoming chapters. As a result, during the �rst reading some of the mathematical language may be
unfamiliar. It is hoped that this chapter will become more useful to the reader as one proceeds with
the mathematical concepts of the future chapters but returns frequently here to review the relevant
syntax.

Using Mathematica one is able to

1. Determine roots of polynomials, sum series, and evaluate limits of sequences;

2. Integrate and di�erentiate symbolically rather complicated expressions;

3. Generate graphics in two and three dimensions;

4. Simplify trigonometric and algebraic expressions;

5. Solve linear and nonlinear di�erential equations;

6. Determine the Laplace and Fourier transforms of functions;

plus a variety of other mathematical operations. The notation we employ is directed at the usage of
Mathematica on a SUN workstation. This notation is applicable to other platforms as well, including
the Windows version for Personal Computers (PCs), after some minor changes that will be clear to
the reader.

5

1.2 A Session in Mathematica

There are generally two ways to have Mathematica up and running: Either as a stand-alone applica-
tion (available in DOS and on SUN workstations) or as a Notebook in conjunction with a Windows
application such as Windows 3.1 or with xwindows on SUN workstations. The stand-alone version
of Mathematica is initiated by executing math.exe (on PCs) or math at the UNIX prompt on a SUN
workstation, at which time the package responds with

In[1]:=

The program is expecting an input from the user. Commands are entered by typing at the terminal
and executed by pressing the Return (or Enter) key.

In the Notebook version of Mathematica one either selects the appropriate icon and executes the
application (this is the case on PCs and Apple computers) or enters

mathematica

at the system prompt, as is the case on SUN workstations. After some initialization, a window opens
in which one is allowed to enter commands. Commands are entered at the keyboard and executed
by pressing the Shift and Return (or Enter) keys simultaneously. After the �rst command is
executed In[1]:= will appear on the screen.

As mentioned earlier, commands are simply entered at the keyboard. For example, to �nd the
roots of the polynomial

f(x) = x2 � 4x+ 3;

type

Solve[x^2 - 4 x + 3 == 0,x]

The program will respond with

Out[1]=

{{x -> 1}, {x -> 3}}

that is, 1 and 3 are the roots of the polynomial.

Remark 1.2.1: Mathematica distinguishes between x = y and x == y. In the �rst expression,
x = y, x is assigned the value y, while in the second expression Mathematica checks to see if x and
y can be equal to each other, that is, it veri�es that x and y are compatible objects, and other than
that it does not take any action. We will use == to de�ne equations.

Remark 1.2.2: Multiplication in Mathematica can be entered either by leaving a blank space
between the operands (for example, a x represents ax) or by putting an asterisk between the terms
(that is, a*x). If a is a number, however, Mathematica interprets the combination of a number
adjacent to a variable as multiplication. For instance, 2x is understood as 2 times x. This convention
does not apply to symbols: the expression ax is interpreted as the variable whose name is ax and
not as the product of the variables a and x.

Remark 1.2.3: We will ignore the prompts In[]:= and Out[]:= for the rest of this discussion.

6

The �rst important feature of Mathematica is that this program is case sensitive; that is,
it distinguishes between solve and Solve in the �rst command that we entered. All functions
and programs that are internally known to Mathematica must be capitalized. Thus, Solve is a
subroutine inMathematica that is capable of �nding roots of polynomials, while solve does not have
a special meaning unless the user has de�ned it previously. Similarly, Mathematica understands that
Sin is the usual sine function while sin is a name of a variable that is unknown in this session.

Functions inMathematica are delimited by [] and not by (). So Sin[x] is the usual sine function
while Sin(x) is the variable Sin multiplied by the variable x. The operator Solve is an example
of a function with two arguments; the �rst is used to de�ne the equation whose solutions we are
interested in, and the second is the variable with respect to which the roots should be computed.
All of these arguments are grouped by []. To get a better understanding for the usage of arguments
in Mathematica let us try the following two examples:

b = Solve[x^2 - a x + 3 == 0, x]

and

c = Solve[x^2 - a x + 3 == 0, a]

Do the outputs make sense? In b the symbol x is the variable with respect to which the roots of the
polynomial are determined and a is just a parameter, while in c the roles of x and a are reversed.

The above examples show the most important attribute ofMathematica: its ability to do symbolic
manipulation. In b Mathematica does not need to know the value for a in order to �nd the roots
of the second-order polynomial. This is just one example among many in which Mathematica uses
its logical power and is able to �nd the answer to certain questions. There are limitations to this
ability, unfortunately. Try �nding the roots of the following polynomial on Mathematica:

x5 � ax4 + 3x3 + 2x2 + x� 1 = 0:

Mathematica's response is its way of saying that it does not know how to �nd symbolically the roots
of �fth-order polynomials. This answer is in agreement with a celebrated theorem in group theory
that con�rms our inability to write formulas for roots of general polynomials with degrees larger
than or equal to �ve. On the other hand, by simply drawing the graph of this �fth-order polynomial
for a �xed a, we recognize that it has some real roots. Mathematica is able to �nd these roots
numerically, that is, by approximate methods. To accomplish this one needs to furnish a concrete
value of the parameter a in the de�nition of the polynomial. Try

NSolve[x^5 - x^4 + 3 x^3 + 2 x^2 + x -1 == 0 ,x]

Mathematica �nds all �ve roots of this polynomial:

{{x -> -0.533065 - 0.563943 I},

{x -> -0.533065 + 0.563943 I}, {x -> 0.425529},

{x -> 0.820301 - 1.7971 I},

{x -> 0.820301 + 1.7971 I}}

7

NSolve is a program based on a numerical approximation technique that is capable of �nding solu-
tions to certain equations; in particular, it is capable of �nding roots of polynomials.

In addition to �nding roots of polynomials, both Solve and NSolve are capable of �nding zeros
of general functions as well as solutions to systems of simultaneous algebraic equations. Consider
the function f(x) = sin

p
x� 1

2 . Its curve shows that f has a zero in the interval (0; 2). We �nd its
value by using

Solve[Sin[Sqrt[x]]-1/2==0,x]

Mathematica �rst gives the warning

Solve::ifun:

Warning: Inverse functions are being used by

Solve, so some solutions may not be found

and then continues with the result

2

Pi

{{x -> ---}}

36

This function, of course, has in�nitely many zeros, as its graph shows. We �nd the solution to the
following system of algebraic equations

2x� 3y = a; 3x+ 2y = b;

by entering

Solve[{2 x - 3 y == a, 3 x + 2 y == b}, {x, y}]

It results in

Out[4]=

1 1

{{x -> -- (2 a + 3 b), y -> -- (2 b - 3 a)}}

13 13

Problems

1. Use ? (see the next section for more detail) with Solve and NSolve, and familiarize yourself
with the syntax of these commands.

2. Use Solve or NSolve to determine the roots or zeros of the following expressions.

(a) ax2 + bx+ c

(b) ax3 + bx2 + cx+ d

(c) x2 + 1

(d) x3 + 1

(e) x1=3 � x+ 1

8

(f) sinx� 1
3

(g) sin2 x� 1
3

(h) sinx2 � 1
3

(i) sinx � x. Familiarize yourself with the syntax of the FindRoot command by using ?.
Then use FindRoot in this problem.

3. Determine the solution of the following equations using Solve, NSolve or FindRoot.

(a) tanx� 3x+ 1

(b) The system of algebraic equations

i. 3x� 2y = 2; x+ y = 7

ii. ax� y = 0; x+ ay = 1

iii. x2 � y2 = 1; x2 + y2 = 4

iv. x3 � y3 = 1; x2 � 3xy + y2 = 8

v. ax+ y + z = 1; x� y + 2z = 0; 2x+ 3y � z = 2

vi. 3x2 � 4y2 + 3z = 1; x+ y + z = 0; z3 � x2y = �1

1.3 The Help Command in Mathematica

The help command in Mathematica is

?<command>

For example, to gain information about the internal function Solve enter

?Solve

Mathematica responds with (this is the response of version 2.2 of Mathematica on a SUN platform)

Solve[eqns, vars] attempts to solve an equation or set of equations for the

variables vars. Solve[eqns, vars, elims] attempts to solve the equations for

vars, eliminating the variables elims.

In response to

?Sol*

Mathematica, which treats the asterisk as a wild character, returns

SolutionOf Solve SolveAlways SolveDelayed

which is a list of all of the commands that have Sol as their beginning characters. We can now
obtain more information about each command by using the full name with ?. The command

??<string>

provides even more detailed information about string than ?string does, including the syntax of
options that sometimes are not accessed through ?string. For instance,

??Solve

9

returns

Solve[eqns, vars] attempts to solve an equation or set of equations for the

variables vars. Solve[eqns, vars, elims] attempts to solve the equations for

vars, eliminating the variables elims

Attributes[Solve] = {Protected}

Options[Solve] =

{InverseFunctions -> Automatic, MakeRules -> False,

Method -> 3, Mode -> Generic, Sort -> True,

VerifySolutions -> Automatic, WorkingPrecision -> Infinity}

The double query ?? is particularly helpful when the user becomes more familiar with the inner
workings of Mathematica, since it provides a list of options that one can manipulate in order to
obtain a better and more customized output.

1.4 Factoring and Simpli�cation

Some of the elementary operations that Mathematica is capable of performing include expanding,
factoring, and simplifying expressions. For instance, the command for expanding

(a+ b+ c)3

is

Clear[a, b, c];

Expand[(a+b+c)^3]

The �rst command clears any previous values assigned to a, b, and c. Mathematica responds with

3 2 2 3 2 2 2 2 3

a + 3 a b + 3 a b + b + 3 a c + 6 a b c + 3 b c + 3 a c + 3 b c + c

We can now factor the above expression (assuming that it is stored in Out[4] of the present session)
by entering

Factor[Out[4]]

thereby recovering the original expression. We note that, in place of Factor[Out[4]], we could use

Factor[%]

to reach the same result if the expression on which Factor acts is the latest output of the session.
The operations of Expand, Factor, and Simplify are very useful when we wish to prove the type

of identities commonly encountered in elementary algebra. For example, recall the identity

(a+ b)2 � (a� b)2 = 4ab

for any two parameters a and b. To verify this identity on Mathematica we enter

Clear[a,b];

Expand[(a+b)^2 - (a-b)^2]

10

If we repeat the above command but replace Expand with Factor, we obtain the same result. Now,
let us try the previous three commands on

a2 � 2ab+ b2:

Factor and Simplify give us the appropriate alternative expression for a2� 2ab+ b2, while Expand
leaves the expression unchanged. Next, we apply these three commands to the expression

1

x+ t
� 1

x� t

to get a better sense for the range of capabilities of each the above internal functions: Expand returns
the original expression whereas Factor returns

2 t

(t - x) (t + x)

while Simplify gives us

2 t

2 2

t - x

Mathematica is also capable of manipulating trigonometric functions. For example,

Simplify[Sin[x+y]-Sin[x-y]]

returns the result we expect from elementary trigonometry. To get a sense for the power of Mathe-

matica's Simplify command let us try

Simplify[((Sin[2 x])^2+(Cos[2 x])^2)^2]

Does the answer make sense?
We note that

Simplify[Sin[x + y]]

returns the same expression as its output, since Sin[x + y] is already in its simplest form. However,

Simplify[Sin[x + y] - Sin[x] Cos[y] - Sin[y] Cos[x]]

returns the value we expect from this identity.

Problems

1. Verify the following identities in Mathematica.

(a) sin 2x = 2 sinx cosx

(b) cos 2x = 2 cos2 x� 1

(c) sin 3x = 4 sin3 x� 3 sinx

(d) tan(x+ y) = tanx+tany
1�tanx tan y

11

2. Use Mathematica to discover an identity among the given functions.

(a) cot(x+ y), cotx, and cot y

(b) sin(4x), sinx, and cosx

(c) cosx and cos x
2

(d) tan 2x and cosx

3. Simplify the following expressions.

(a) cos(x + y) + cos(x� y)

(b) cos(x + y)� cos(x� y)

(c) cos(x + y) + sin(x+ y)

(d) cos2 2x� sin2 2x

(e) cos2 ax� sin2 ax

(f) cos3 x� sin3 x (Try Factor followed by Simplify.)

1.5 Function De�nition

We often need to communicate to Mathematica that x in f(x) is a variable and should be viewed
as such when we wish to determine the function's zeros, plot it, di�erentiate, or integrate it. The
mechanism for de�ning x as a variable or a placeholder is provided by the underscore character _.
This character is typed immediately after the letter x the �rst time x is encountered in the de�nition
of f ; the underscore character is not used in the subsequent referrals to f . For instance, the function

f(x) = x sin2 x (1.1)

is de�ned by

Clear[x, f];

f[x_] = x (Sin[x])^2

Once f(x) is de�ned in Mathematica we may refer to it by name in subsequent operations. For
example,

Solve[f[x]==0,x]

requests that Mathematica �nd the roots of (1.1). Its response shows that f has a triple zero at
x = 0. To see that the argument of f is a dummy variable, let us try

Solve[f[t]==0,t]

which leads to the same conclusion.
It is also possible to de�ne functions of more than one variable in Mathematica. For example,

the second-order polynomial g(x) = x2 � ax+ 3 is de�ned by

Clear[a,x,g]

g[x_,a_] = x^2 - a x + 3

and the operation of �nding its roots is accomplished by entering

12

Solve[f[x,a] == 0, x]

Many internal functions in Mathematica take as input expressions that involve functions. We
have already seen the example of f in (1.1) and the internal function Solve. Another example arises
with FindRoot, a variant of the Solve command. This internal function computes roots of functions
numerically and is preferable to Solve in cases where the function f is rather complicated and one
must resort to approximate methods to seek its roots. Its syntax requires specifying an initial guess
for a root. For instance,

FindRoot[f[x], {x, 3}]

determines a root of f by applying a root-�nding algorithm to f , based on Newton's method, starting
the algorithm at the point x = 3. Mathematica returns

{x -> 3.141069642608009}

a good (although not a very good) approximation to the exact value �. There are, however, two
options available to FindRoot that render the approximate value much closer to the exact value (try
?? FindRoot for the list of options). They are MaxIterations and WorkingPrecision. When we
try

FindRoot[f[x], {x, 3}, MaxIterations->50, WorkingPrecision->25]

we end up with

{x -> 3.141592637631423933486203408029469154`25}

which is accurate to eight digits. Some of the trailing digits in the above answer may di�er on your
machine. The above calculation was performed on a SUN workstation and PC 486 using version 3.0
of Mathematica.

The reader may recall that Newton's method is based on the tangent vector approximation of
f , which requires di�erentiating f . In cases where it is cumbersome to compute the derivative of
f , the secant method, which replaces the tangent vector with a chord passing through two points
on the graph of f , is preferable. One of the options in FindRoot allows for specifying two starting
points, at which time a variant of the secant method is called upon. For example,

FindRoot[f[x] == 0, {x, 3, 4}]

uses function evaluations at x = 3 and x = 4 to start the approximation algorithm.

Problems

1. De�ne the following functions in Mathematica and evaluate them at the speci�ed points.

(a) f(x) = 1�x
1+x : x = 0; 0:5, and �

(b) f(x) = log(x+
p
1� x2) : x = 0; 0:1; 0:2; and 0:3

2. Consider the function f de�ned in (1.1). Use FindRoot to determine an eight-digit accurate
approximation to its root at x = 0. Start with an initial guess at x = 1.

3. f(x; t; !) = sin(x�!t). Use FindRoot and �nd a root of f(1; t; 4) starting with t = 0. Repeat
with t = 1.

13

4. Use FindRoot to �nd a root of the function f . Experiment with di�erent initial guesses and
report on whether the value of the root depends on the initial guess.

(a) f(x) = x� 2
x

(b) f(x) = x2 � 2
x

(c) f(x) = x2�1
x�2 + x

(d) x sinx+ cosx

1.6 Di�erentiation and Integration

Mathematica is able to di�erentiate and integrate functions symbolically. The derivative of a function
such as x sin2 x is found by

D[x Sin[x]^2,x]

while its integral is determined by entering

Integrate[x Sin[x]^2,x]

The D and Integrate commands of Mathematica use the basic properties of the di�erentiation and
integration operators, such as the linearity property, to reduce complicated computations to a series
of simpler ones. These properties are then combined with elaborate tables of known derivatives
and integrals that allow this software to reach its goal successfully. The power of this software is
particularly noticed in the case of integration, where we recall from elementary calculus that we
often have to resort to methods such as partial fractions, or special substitutions, or integration by
parts to reduce the integrand to a manageable expression. For example, to evaluate the integralZ

1

1 + x4
dx

using standard tables, we must �rst note that 1 + x4 factors into

(1�
p
2x+ x2)(1 +

p
2x+ x2)

and apply the method of partial fraction before using the table of integration. On the other hand,

Simplify[Integrate[1/(1+x^4),x]]

yields

(-2*ArcTan[1 - Sqrt[2]*x] + 2*ArcTan[1 + Sqrt[2]*x] -

Log[-1 + Sqrt[2]*x - x^2] + Log[1 + Sqrt[2]*x + x^2])/

(4*Sqrt[2])

The de�nite integral Z 1

0

1

1 + x4
dx (1.2)

is determined in a similar fashion:

Simplify[Integrate[1/(1+x^4), {x, 0, 1}]]

14

which results in

(-2 ArcTan[1 - Sqrt[2]] + 2 ArcTan[1 + Sqrt[2]] -

Log[2 - Sqrt[2]] + Log[2 + Sqrt[2]]) / (4 Sqrt[2])

To get a decimal approximation to the above value, we apply the N operation to it:

N[%]

recalling that % stands for the previous output. The new output is

0.8669729873399109

Mathematica is also capable of performing numerical integration. The internal function NIntegrate
returns an approximate value of the function on which it operates. For example, to evaluate (1.2)
numerically we enter

NIntegrate[1/(1 + x^4), {x, 0, 1}]

in Mathematica, which compares well with the result of the numerical value we obtained after
evaluating this integral exactly.

In spite our best e�ort, it is fair to say the class of functions whose anti-derivative we are able to
write down explicitly is rather small. If we just started to list functions at random, we could quickly
generate functions whose anti-derivatives are either cumbersome to evaluate or actually impossible
to express in terms of elementary functions of calculus. Many functions in mathematical physics
fall in the latter category, among them e�x

2

, sin(x2), and 1p
1�m sin2 x

. As a result of e�orts of

many mathematical analysts in the past few hundred years, properties of such anti-derivatives are
tabulated, which are now generally available in most computer algebras, including in Mathematica.
For example, the function

f(x) =

Z x

0

e�t
2

dt

can be accessed as

f[x_] = Integrate[Exp[-t^2], {t, 0, x}]

Mathematica responds with

(Sqrt[Pi]*Erf[x])/2

The internal function Erf[x] is called the error function. It appears prominently in probability
theory, among other branches of mathematics. We can now manipulate f just like any other function
de�ned in Mathematica. Another example is

g(x) =

Z x

0

sin t2 dt:

When we enter

g[x_] = Integrate[Sin[t^2], {t, 0, x}]

we get

Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*x]

15

where the function FresnelS is called the Fresnel Integral, which has applications in the theory of
light di�raction. A third example is

h(x) =

Z 1

0

1p
1� x sin2 t

dt: (1.3)

This time when we try

h[x_] = Integrate[1/Sqrt[1 - x Sin[t]^2], {t, 0, 1}]

we get

EllipticF[1, x]

the answer being given in terms of the Elliptic Function of the First Kind . We can obtain
numerical values and graphical data from this function as before. For example, let us try

h[0.1]

Mathematica responds with

1.014120373414132

where a numerical approximation to the integral in h is obtained.

Remark 1.6.1: The function h de�ned in (1.3) appears naturally in the context of the period
of vibration of a nonlinear pendulum.

Let us proceed a bit further with the last example. Since h de�nes a function in Mathematica,
we should be able to di�erentiate it with respect to x. Let i(x) = h0(x), which we evaluate by

i[x_] = D[h[x], x]

The output is

-EllipticE[1, x]/(2*(-1 + x)*x) - EllipticF[1, x]/(2*x) +

Sin[2]/(4*(-1 + x)*Sqrt[1 - x*Sin[1]^2])

To evaluate i at x = 0:1:

i[0.1]

which results in

0.1462958973937115

Mathematica is capable of determining partial derivatives as well as multiple integrals. Because we
will address these topics in detail later in the text, we postpone their treatment in Mathematica at
this time.

Problems

16

1. Di�erentiate the following functions.

(a) f(x) = log x
x+1

(b) f(x) = sin3 4x cos5 7(x2 � 2x+ 1)

(c) f(x) = xx�1

2. Combine the di�erentiation operation with FindRoot and determine the extreme points (the
maxima and minima) of f(x) = x sin2 x. Begin by �rst de�ning g(x) to be the derivative of
this function and then use FindRoot to �nds its roots.

3. Integrate the following functions.

(a) f(x) = x
x�1

(b) f(x) = x sinx

(c) f(x) = x2 sinx

(d) f(x) = x10 sinx

(e) f(x) = ex sinx (ex is Exp[x] in Mathematica)

(f) f(x) = sin2 x

(g) f(x) = sin(x2)

(h) f(t) = tet
2

(i) f(s) = es
2

4. Determine the following inde�nite integrals.

(a)
R1
�1

1
1+x2 dx (Ans: Integrate[1/(1+x^2), {x, -Infinity, Infinity})

(b)
R1
0 e�t

2

dt

(c)
R1
0

e�at
2

dt, a is a parameter

(d)
R1
0 e�st sin t dt (This is the Laplace transform of sin t.)

5. De�ne the function f by

f(x) =

Z x

0

1

x+ t5
dt:

Use Mathematica to determine f 0(12). (Ans: �0:0779959)
6. De�ne the function f by

f(x) =

Z 1

0

sin(xt3) dt:

Determine f 0(12). (Ans: 0.237662)

7. Verify the Fundamental Theorem of Calculus in Mathematica:Z b

a

f 0(t) dt = f(b)� f(a);
d

dx

Z x

0

f(t) dt = f(x):

8. Verify the Leibniz's rule of di�erentiation in Mathematica:

d

dx

 Z b(x)

a(x)

f(x; t) dt

!
= f(x; b(x)) � f(x; a(x)) +

Z b(x)

a(x)

@f

@x
dt:

17

1.7 Two-Dimensional Graphics

To plot the graph of a function whose de�nition is explicitly known, say f(x) = sin(x) on the interval
[0; 2�], we give the command

Plot[Sin[x], {x, 0, 2Pi}]

Mathematica draws a graph of this function and scales it automatically. There are many options
associated with Plot that would enable one to customize the graph. Among these options are
AxesLabel, PlotLabel, and Axes. For instance,

Plot[Sin[x], {x, 0, 2Pi}, AxesOrigin -> {Pi/2,0},

PlotLabel -> "Graph of Sine", AxesLabel -> {"x","y"}]

creates a graph with the proper labels.
In applications we often need to plot several graphs on the same screen. For instance, as we will

see in the later chapters, the set of functions f(x) = sinnx represents a set of basic functions in
terms of which we expand Fourier series of a large class of functions. Each sinnx, with n a positive
integer, represents a mode of oscillation with period 2�

n . By graphing these functions one sees how
the di�erent modes compare to one another. There are several ways to draw the graphs of sinnx,
with n = 1, 2 and 3 on the same screen. One way is to draw the graphs of each mode separately,
and then to combine them by using Show:

a1 = Plot[Sin[x], {x, 0, 2Pi}];

a2 = Plot[Sin[2 x], {x, 0, 2Pi}];

a3 = Plot[Sin[3 x], {x, 0, 2Pi}];

Show[a1, a2, a3]

Each one of the �rst three lines draws a separate graph. The last line combines the three graphs on
a new screen.

A second way of getting the same result is to use the following syntax:

Plot[Evaluate[Table[Sin[n x], {n, 1, 3}]], {x, 0, 2Pi}]

Figure 1.1 shows the output.

To obtain a hardcopy of any graph we produced in Mathematica, we need to take into account
the speci�c features of the software and the platform on which it is installed. For example, to get
a hardcopy of the above graph in a Notebook session, we must �rst highlight the cell containing
the graph and then select Print from the File Menu. On the other hand, when the stand-alone
version of Mathematica is accessed on a SUN workstation, the command PSPrint will do the job.
For example, assuming that the above graph is stored in Out[24], try

PSPrint[Out[24]]

or, simply,

PSPrint[%]

if the graph is the latest output.
Another way to draw the graphs of sinnx is by using GraphicsArray:

Show[GraphicsArray[{{a1}, {a2}, {a3}}]]

Now, the above three graphs are plotted separately but on the same screen (cf. Figure 1.2). This
form of graphics is useful for displaying wave motion.

18

1 2 3 4 5 6

-1

-0.5

0.5

1

Figure 1.1: The output for Plot[Evaluate[Table[Sin[n x], {n, 1, 3}]], {x, 0, 2 Pi}].

1 2 3 4 5 6

-1

-0.5

0.5

1

1 2 3 4 5 6

-1

-0.5

0.5

1

1 2 3 4 5 6

-1

-0.5

0.5

1

Figure 1.2: The output of the Show[GraphicsArray[...]] command.

19

1.7.1 Curves in the Plane

Curves are the geometric manifestations of particle motions in a domain. Typically in this text
curves represent motions of
uid particles in force �elds and therefore, are parametrized by time.
The position of a particle at time t is represented by a vector r(t) whose endpoint denotes the
location of the particle at t. For example,

r(t) = h2 sin t; 2 cos ti
de�nes a curve in the plane R2, where the x and y components of each point are 2 sin t and 2 cos t,
respectively. Since x2 + y2 = 4, this curve is a circle of radius 2. To draw its graph, we apply
ParametricPlot to r:

a=ParametricPlot[{2 Sin[t], 2 Cos[t]}, {t, 0, 2Pi}]

One of the options of Show is AspectRatio. Hence,

Show[a, AspectRatio -> Automatic]

displays a circle with the 1:1 aspect ratio. We have the option of combining the above two commands
into one as follows:

ParametricPlot[{2 Sin[t], 2 Cos[t]}, {t, 0, 2Pi}, AspectRatio -> Automatic]

ParametricPlot has several options, among them PlotPoints and PlotStyle. The PlotPoints
option is particularly useful when the curve's domain is highly oscillatory because this option des-
ignates the number of points at which the parametrization r is to be evaluated. The default value
of PlotPoints is 25. Compare the outputs of

ParametricPlot[{t, 1/(t+1)+Sin[30 t]}, {t, 0, 2Pi}]

and

ParametricPlot[{t, 1/(t+1)+Sin[30 t]}, {t, 0, 2Pi}, PlotPoints->50]

We will come back to parametrization and ParametricPlot in more detail when we review
curves, and the concepts of velocity and acceleration, in the context of vector calculus.

Problems

1. Plot the graphs of the following functions.

(a) f(x) = sin(5x). What is the period of this function; that is, what is the smallest value of
T > 0 for which f(x+ T) = f(x)?

(b) g(x) = sin(2x) + 3 sin(3x). What is the period of this function?

(c) h(x) = sinx + sin
p
2x. Draw the graph of this function on the intervals (0; 5), (0; 10),

and (0; 50). Do these graphs give any indication as to whether h is periodic or not? Why?

2. Let f(x) = xn. Draw the graph of f for n = 0; 1; 2; 3; :::; 10 for x 2 (0; 2) on the same screen.

3. Consider the function f(x) = e�x
2

with x 2 (�5; 5).
(a) Plot the graph of this function. Use the option PlotRange -> All with Plot to get the

entire range of the function.

20

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

Figure 1.3: A graphics output using the Frame and GridLines options.

(b) Compare this graph to the graphs of the functions g(x) = f(x + 4) and h(x) = f(x
0:5)

over the same domain. Is there a scale change among these three graphs?

(c) Draw on the same screen the graph of

1

2
(f(x� 2t) + f(x+ 2t)) (1.4)

for t ranging between 0 and 2 at increments of 0.25. Do this part by �rst de�ning (1.4)
as a new function g(x; t) and then using

a=Plot[Evaluate[Table[g[x, t], {t, 0, 2, 0.25}]], {x, -5, 5}]

to draw all of the graphs on the same screen. Experiment with the options GridLines
and Frame until you obtain a �gure similar to Figure 1.3. Is there a scale change in these
graphs?

Expression (1.4) is the formula for the way a wave travels in a string of a guitar when the
string is plucked in the shape of f(x

0:5) at time zero. Notice that the original \disturbance"
(that is, f(x

0:5)) is broken into two parts, each having amplitude half as much as the original
wave and propagating to the left and to the right. Determine the speed of propagation, that
is, �nd how long it takes for the maximum at x = 0 at t = 0 to reach x = 1 and x = �1.

4. Plot the graphs of the following curves.

(a) r(t) = hsin2 t; cos2 ti; t 2 (0; 2�)

(b) r(t) = hsin5 t; cos5 ti; t 2 (0; 2�)

(c) r(t) = hsin3 t; cos2 ti; t 2 (0; 2�)

(d) r(t) = hsin3 t; cos 2ti; t 2 (0; 2�)

(e) r(t) = hsin5 t; cos(1 + 2t)i; t 2 (0; 2�)

21

1.8 Three-Dimensional Graphics

The syntax for plotting graphs of surfaces in three dimensions is very similar to two-dimensional
graphics. For instance,

Plot3D[Sin[x]Cos[y], {x, 0, Pi}, {y, 0, Pi}]

produces the surface of the function f de�ned by f(x; y) = sinx cos y in the domain (0; �)� (0; �).
Similar to Plot, Plot3D has several options, which we examine in the context of the graph of a
\sombrero": The mathematical equation that describes this surface is

f(x; y) =
sin r

r
; where r =

p
x2 + y2:

First, we de�ne the polar radius r:

Clear[r, x, y];

r=Sqrt[x^2+y^2]

and then plot the function f by

Clear[a];

a=Plot3D[Sin[r]/r, {x, -10, 10}, {y, -10, 10}]

We now take two steps to improve the picture on the screen. First, we use PlotRange to force
Mathematica to show us the entire range of the plot:

Show[a, PlotRange -> All]

The second step is to use PlotPoints with Plot3D to require Mathematica to use more points on
the x� and y� axes in its plotting routine:

Plot3D[Sin[r]/r, {x, -10, 10}, {y, -10, 10},

PlotRange -> All, PlotPoints -> 30]

The ParametricPlot3D is the analogue of ParametricPlotParametricPlot for curves whose range
is in the three-dimensional space R3. For example, the graph of a helix whose parametrization is

r(t) = hsin 3t; cos 3t; ti;

with t 2 (0; 2�), is obtained from

ParametricPlot3D[{Sin[3 t], Cos[3 t], t}, {t, 0, 2 Pi}]

One can set the aspect ratio of the graph to any desired value using the AspectRatio option with
either ParametricPlot3D or Show.

We can also plot the graphs of surfaces with ParametricPlot3D. The parametrization of a surface,
by de�nition, requires two independent parameters. For example, the surface whose equation is given
by z = x2 + y2 within the domain (x; y) 2 (�2; 2)� (�2; 2) can also be viewed as the set of points
(x; y; x2 + y2). Here, the two independent parameters are x and y, each of which takes on values in
the interval (�2; 2). ParametricPlot3D's syntax for displaying this surface is

ParametricPlot3D[{x, y, x^2 + y^2}, {x, -2, 2}, {y, -2, 2}]

22

-10

-5

0

5

10 -10

-5

0

5

10

-1

-0.5

0

0.5

1

-10

-5

0

5

10

Figure 1.4: The graph of the \sombrero."

The surfaces we have considered thus far have the property that one could write down an explicit
formula that relates one of the coordinates of the set of points on the surface to the remaining two.
For example, the set of points (x; y; x2 + y2), with (x; y) 2 (a; b) � (c; d), can be expressed by the
relation z = x2 + y2. The function f(x; y) = x2 + y2 is the argument we pass to Plot3D in order to
draw the graph of this set of points. We now consider examples of surfaces that cannot be readily
expressed as z = f(x; y). Many familiar geometric surfaces, among them cylinders, spheres, and
tori, are examples of such surfaces. Let us begin with the example of a sphere of radius 1, whose
equation is given by

x2 + y2 + z2 = 1: (1.5)

It is easy to see that (1.5) is equivalent to

z = �
p
1� x2 � y2: (1.6)

We can now use the two functions in (1.6) with Plot3D and combine the resulting surfaces with
Show. One complication arises because of the domain in (1.6). When we try

Plot3D[Sqrt[1-x^2-y^2], {x, -1, 1}, {y, -1, 1}]

Mathematica complains about the complex numbers associated with certain values in the domain
(such as x = y = 1) but still produces a relatively reasonable graph of part of the sphere.

Equations (1.6) describe the surface of the sphere in rectangular coordinates, a coordinate system
that is not natural or convenient for plotting the sphere. Instead, we look for the description of this
surface in spherical coordinates. In this new coordinate system a point whose rectangular coordinates
are x, y, and z is represented by (r; u; v) where

x = r sinu cosv; y = r sinu sin v; z = r cosu; (1.7)

23

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Figure 1.5: The graph of the sphere of radius 1.

where u and v are the standard spherical angles. After substituting (1.7) into (1.6), we note that
the equation for the sphere takes the simple form

r = 1: (1.8)

Equations (1.7) and (1.8), when combined with ParametricPlot3D, produce the plot of the unit
sphere:

ParametricPlot3D[{Sin[u]Cos[v], Sin[u]Sin[v], Cos[u]},

{u, 0, Pi}, {v, 0, 2Pi}]

The output of the above line is shown in Figure 1.5.
Many of the familiar shapes and surfaces that we study in mathematics are already programmed

in Mathematica and are available as built-in functions. To access them we must �rst enter

<< Graphics`Shapes`

and read the special library of shapes into our session of Mathematica. To get, for example, the
graph of a torus, we enter the command

Show[Graphics3D[Torus[]]]

while

Show[Graphics3D[MoebiusStrip[2,1,80]]]

draws the surface of the Moebius Strip with inner radius 1 and the outer radius 2 using 160 polygons.

Mathematica is capable of rendering animation. In many applications it is possible, and often
desirable, to produce a sequence of graphs and put them in motion. For example, consider the

24

snapshots of a \vibrating string" de�ned by

u(x; t) = sinx cos t;

with x 2 (0; �). For each �xed t, the graph of the function u(�; t) is a snapshot of the string. Let us
�rst generate a sequence of these snapshots:

Clear[u, x, t];

u[x_, t_] = Sin[x] Cos[t];

Table[Plot[u[x, t], {x, 0, Pi}, PlotRange -> {-1, 1}], {t, 0, 2 Pi, 0.25}]

The PlotRange option plots all the snapshots over the same vertical range. The period of vibration
is 2� (the period of cos t); hence, we let t vary from 0 to 2�, at increments of 0:25. When using
Mathematica's Notebook version in Windows 3.1 or on a SUN workstation, we animate the above
sequence of graphs by selecting �rst the cell that contains all of the graphs; next we choose Cell

from the top menu, from which we select Animate Selected Graphics.
The animation of a sequence of surfaces is accomplished in a similar manner. Consider, for

example, the function u de�ned by

u(x; y; t) = sin 3�x sin 2�y cos�t; (x; y) 2 (0; 1)� (0; 1):

Such a function often represents the displacement of an elastic membrane whose boundaries (that
is, x = 0; 1 and y = 0; 1) are constrained not to move. To render an animation of u, �rst we generate
a sequence of its snapshots as follows:

Table[Plot3D[Sin[3 Pi x] Sin[2 Pi y] Cos [Pi t], {x, 0, 1}, {y, 0, 1},

PlotRange -> {-1, 1}], {t, 0, 1, 0.05}]

The output is put into animation as before, by �rst selecting the cell that contains all of the individual
snapshots and then selecting Animate Selected Graphics from Cell.

Problems

1. Draw the graph of the following curves in the speci�ed domain.

(a) r(t) = ht; t; ti; t 2 (0; 1)

(b) r(t) = h t
12 ;

t
4 ;

1
2+sin t i; �2� < t < 2�

(c) r(t) = he� t

4 sin 3t; e�
t

4 cos 3t; t
12 i; t 2 (0; 4�) (use the PlotPoints option of ParametricPlot3D

to get a graph with better resolution)

(d) r(t) = hsin t; cos t; 1p
t2+1

i; t 2 (0; 2�)

(e) r(t) = hsinh t
6 ; sin(4t); cosh

t
6 i; 0 < t < 4�

(f) r(t) = ht+ sin 3t; 1
t2+1 i; t 2 (�2�; 2�)

2. Draw the graph of each of the following curves.

(a) A circle of radius 2 centered at the origin and located in the xy-plane

(b) A circle of radius 2 centered at the origin and located in the z = 1 plane

(c) The ellipse located in the xy� plane centered at the origin with major and minor axes of
3 and 2, respectively

25

(d) The curve of intersection of x2 + y2 = 1 and z = x

3. Draw the graph of the following surfaces.

(a) z = x2 + y2, with (x; y) 2 (�3; 3)� (�3; 3)
(b) z =

p
x2 + y2, with �3 < x < 3 and �3 < y < 3

(c) z = 3x2 + 4y2, in (�3; 3)� (�3; 3)
(d) z = sin(x2 + y2), with x 2 (��; �) and y 2 (��; �)
(e) z = sin(

p
x2 + y2), in (��; �)� (��; �)

(f) z = sin(x2 + y2) cos(x), in (��; �)� (��; �)
(g) z = sin(x2 + y2) cos(y), in (��; �)� (��; �)
(h) z =

sin
p
x2+y2p

x2+y2
, in (��; �)� (��; �)

4. Plot the graph of a unit sphere centered at (1;�1; 0).
5. Plot the graph of a sphere of radius 2 centered at (�1; 1; 0). Combine this graph with the

sphere in the previous problem on the same screen.

6. Draw the graph of a cylinder of height 2 and radius 3. (Hint: A cylinder of height h and radius
a may be parametrized as r(u; v) = ha cosu; a sinu; vi, where 0 < u < 2� and 0 < v < h.)

7. Draw the graph of a \dumbbell," that is, two spheres connected to a cylinder.

8. Draw the graph of the surface given by

z2 + 9
p
x2 + y2 = 9

for z > 0.

9. Animate the sequence of curves or surfaces. In each problem t represents time. Find the period
of vibration in each case and generate a sequence of snapshots of the curve or surface over an
entire period.

(a) u(x; t) = sin 3x cos t; x 2 (0; �)

(b) u(x; t) = 2 sin 3x cos t� 3 sinx cos 2t; x 2 (0; �)

(c) u(x; y; t) = sin 3�x sin 2�y cos�t; (x; y) 2 (0; 1)� (0; 1)

(d) The graph of a sequence of spheres whose radii at time t are described by cos 2�t

1.9 Solving Di�erential Equations

Mathematica has two internal functions, DSolve and NDSolve, that are capable of solving special
classes of ordinary di�erential equations. DSolve is primarily used to �nd the exact solution to
�rst-order (nonlinear) equations or linear equations with constant coe�cient equations. Here are
some examples. Consider the initial value problem

v0 + v2 = 0; v(0) = 1:

To �nd a solution to this equation, we enter

26

Clear[a, v, t];

a=DSolve[{v'[t] + v[t]^2 == 0, v[0] == 1}, v[t], t]

The reason for the label a will become clear shortly. The output is

1

{{v[t] -> -----}}

1 + t

This output is interpreted as a replacement rule, that is, a rule that replaces v[t] with

1

1 + t

whenever a is called upon. For example,

v[t] /. a/. t -> 2

results in

1

{-}

3

while

Plot[v[t] /. a, {t, 0, 3}]

plots the graph of v. If more than one solution is stored in a, Plot displays the graph of all solutions.
It is often convenient to de�ne a function v using a:

v[t_] = v[t] /. a[[1]]

we can now manipulate the function v just like any other function. Assuming v represents the
velocity of a particle of unit mass, we determine its kinetic energy during the time interval t 2 (0; 3)
by

1/2*Integrate[v[t]^2, {t, 0, 3}]

Similarly, the acceleration of the particle is obtained by di�erentiating v[t] once

D[v[t], t]

Remark 1.9.1: The inclusion of the independent variable t in v[t] is not optional. For example,

DSolve[{v' + v^2 == 0, v[0] ==1}, v, t]

does not lead to the correct solution of this equation. Also, the operand == cannot be replaced by
=. Here v0 + v2 = 0 is an equation and not an assignment; hence, it is necessary to use ==.

Next, let us consider the di�erential equation

mv0 + kv = �mg; v(0) = 0:

Here v represents the velocity of an object of mass m falling under the action of gravity and being
resisted by a linear frictional force. From

27

Clear[b, v, t];

b=DSolve[{m v'[t] + k v[t] == - m g, v[0] == 0}, v[t], t]

we receive

(k t)/m

-(g m) + E g m

{{v[t] -> -(---------------------)}}

(k t)/m

E k

Assuming k and m are positive, it is clear from the above expression that the terminal (limiting)
velocity of the object is �mg

k . With m = 70, k = 10, and g = 9:8, we de�ne

v[t_] = v[t] /. b[[1]] /. {m -> 70, k -> 10, g -> 9.8}

and determine v's terminal velocity by

Limit[v[t], t -> Infinity]

Mathematica returns

-68.59999999999999

DSolve is an e�ective tool for solving linear higher order di�erential equations with constant
coe�cients. Consider the initial value problem

x00 + 3x0 + 2x = 0; x(0) = 1; x0(0) = 0:

The exact solution of this problem is found by

Clear[x, t];

DSolve[{x''[t] + 3 x'[t] + 2 x[t] == 0, x[0] == 1,x'[0] == 0}, x[t], t]

whose output is

Out[36]=

t

-1 + 2 E

{{x[t] -> ---------}}

2 t

E

The command DSolve works equally well with systems of equations. Consider the initial value
problem

x0 = 2x+ 3y; y0 = x; x(0) = �2; y(0) = 2:

We input

b=DSolve[{x'[t] == 2 x[t] + 3 y[t], y'[t] == x[t],

x[0] == -2, y[0] == 2}, {x[t], y[t]}, t]

into Mathematica and obtain the output

28

Out[38]=

-2 2

{{x[t] -> --, y[t] -> --}}

t t

E E

In the applications where systems of equations appear, the solution pair (x(t); y(t)) is often the
parametrization of the path of a
uid particle. To get the graph of this path we enter

ParametricPlot[{x[t], y[t]}/. b[[1]], {t, 0, 3}]

Methamatica �rst gives the warning

ParametricPlot::ppcom:

Function {x[t], y[t]} /. b[[1]]

cannot be compiled; plotting will proceed with

the uncompiled function.

and then proceeds to graph the particle path. To work with compiled functions, �rst we apply the
Evaluate command to the solution pair x[t], y[t] and then plot the result

ParametricPlot[Evaluate[{x[t], y[t]} /. b], {t, 0, 3}]

Alternatively, we de�ne a function f as the solution pair x[t], y[t] and then plot f:

Clear[f];

f[t_] = {x[t], y[t]} /. b[[1]]

ParametricPlot[Evaluate[f[t]], {t, 0, 3}]

The second command in Mathematica that is capable of determining solutions of di�erential
equations is NDSolve. This program uses a numerical algorithm (based on the standard Runge{
Kutta scheme) and solves linear as well as nonlinear systems of di�erential equations. Consider the
forced nonlinear pendulum equation

x00 + 0:1x0 + sinx = 0:02 cos t; (1.9)

with initial conditions
x(0) = 0; x0(0) = 1:

We have the option of giving (1.9) as a second-order equation to Mathematica or as a �rst-order
system. In the �rst case the syntax is

Clear[c, x];

c=NDSolve[{x''[t] + 0.1 x'[t] + Sin[x[t]] == 0.02 Cos[t],

x[0] == 0, x'[0] == 1}, x, {t, 0, 5}]

Mathematica responds with

{{x -> InterpolatingFunction[{0., 5.}, <>]}}

which states that it has successfully obtained an approximate solution to the above di�erential
equation and has interpolated a curve through the data points (ti; xi), where ti 2 (0; 5) are the
discretized values chosen by the Runge{Kutta algorithm. We now de�ne a function x by

29

x[t_] = x[t] /. c[[1]]

To get the graph of the solution x of (1.9), we enter

Plot[x[t], {t, 0, 5}]

Its value at a point such as t = 2:15 is evaluated by

x[2.15]

which results in 0:8674379209871004. The pair (x(t); x0(t)) is plotted by

ParametricPlot[Evaluate[{x[t], x'[t]}], {t, 0, 5}]

The last statement brings up the point of solving the second-order di�erential equation (1.9) as
a �rst-order system so that information about x and x0 is available simultaneously. To reduce this
equation to a �rst-order system, let x0 = y, form which we deduce that y0 = �0:1y�sinx+0:02 cos t.
Thus, (1.9) is equivalent to

x0 = y; y0 = �0:1y� sinx+ 0:02 cos t; x(0) = 0; y(0) = 1: (1.10)

We are now able to determine the approximate solution of (1.9) and plot its particle path in the
following manner:

sol = NDSolve[{x'[t] == y[t],

y'[t] == - 0.1 y[t] - Sin[x[t]] + 0.02 Cos[t],

x[0] == 0, y[0] == 1},

{x, y}, {t, 0, 10}];

ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, 0, 10}]

We �rst receive the output

{{x -> InterpolatingFunction[{0., 10.}, <>],

y -> InterpolatingFunction[{0., 10.}, <>]}}

The particle path is then graphed, as shown in Figure 1.6.
NDSolve has several important options that help considerably with solving nonlinear di�erential

equations accurately. One of these options is MaxSteps. This parameter sets the number of steps
that the Runge{Kutta algorithm is allowed to take in discretizing the domain t 2 (0; T). If T is too
large, then the value of MaxSteps (whose default value is 500) must be increased.

Problems

1. Use DSolve to solve the following di�erential equations.

(a) x0 + 3x = 0

(b) x0 + tx = 3e�t
2

; x(1) = 2

(c) x0 + x3 = 0

(d) y00 + y = 0; y(0) = 0; y0(0) = 1

(e) x000 + x0 + x = 0

30

-0.75 -0.5 -0.25 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

Figure 1.6: The phase plane diagram of the solution to x00 + 0:1x+ sinx = 0:02 cos t.

(f) y00 + y = 0; y(0) = 1; y(1) = �1
(g) x00 + x = sin 2t

(h) y00 + y = sin t

2. Use NDSolve and draw the trajectories of the following di�erential systems. Unless otherwise
speci�ed, in each case choose a suitable �nal value for t.

(a) x00 + x = 0; x(0) = 0; x0(0) = 1

(b) y00 + 0:1y0 + sin y = 0; y(0) = 0; y0(0) = 1

(c) y00 + 0:1y0 + sin y = 0; y(0) = 0; y0(0) = 3

(d) x00 + 0:1x+ sinx = 0:02 cos t; x(0) = 0; x0(0) = 1, t 2 (0; 100)

3. Solve each system of di�erential equations for two sets of initial data (x(0); y(0)) = (1; 1);
(x(0); y(0)) = (2; 2). Plot the solutions on the same screen.

(a) x0 = y; y0 = �x
(b) x0 = y; y0 = �x� 0:1y

(c) x0 = y; y0 = �x� y

(d) x0 = y; y0 = �x� y2.

4. Consider the system

x0 = y; y0 = � 1

(1 + �x)2
;

with initial data x(0) = 0, y(0) = 1, and t 2 (0; 3). Solve this system with � = 0; 0:1; 0:2, and
1. Plot the graphs of the solutions (x�(t); y�(t)) on the same screen. What seems to be the
e�ect of � on the solutions?

31

1.10 Vectors, Matrices, and Lists

In Mathematica vectors and matrices are entered as lists. For example, the vector a = h�2; 1; 3i is
entered as

a = {-2, 2, 3}

Similarly, the matrix

B =

2
4 1 �1 2

0 1 0
�1 5 1

3
5

is entered as

B = {{1, -1, 2}, {0, 1, 0}, {-1, 5, 1}}

We can write B in matrix form by invoking the MatrixForm command. Thus,

MatrixForm[B]

gives

1 -1 2

0 1 0

-1 5 1

Elements of a list are accessed by putting the subscript of the element between the delimiters
[[...]]. For example, the �rst entry of a is a[[1]] while the (1,2)-entry of B is B[[1,2]]. Also,
B[[1]] returns

{1, -1, 2}

which is the �rst row of B.
The length of a list is the number of elements in the list. For example, the vector a and the

matrix B both have lengths equal to 3 as can be checked from Length[a] and Length[B].
The standard matrix multiplication is carried out inMathematica by placing a period (.) between

the matrices. Thus, to compute the product A1A2 of the matrices

A1 =

2
4 2 �1

�3 4
1 �1

3
5 ; A2 =

�
3 0 2
1 1 1

�

we enter

A1 = {{2, -1}, {-3, 4}, {1, -1}};

A2 = {{3, 0, 2}, {1, 1, 1}};

prod1 = A1 . A2;

Now

MatrixForm[prod1]

results in the 3� 3 matrix

32

5 -1 3

-5 4 -2

2 -1 1

Similarly, to determine the product A2A1 we enter

prod2 = A2 . A1;

MatrixForm[prod2]

which results in the 2� 2 matrix

8 -5

0 2

Mathematica will return an error message if the dimensions of the matrices being multiplied are
not compatible. For example,

Clear[a,b];

a={{1,2}, {3,4}};

b={1,2,3};

a . b

returns

Dot::dotsh:

Tensors {{1, 2}, {3, 4}} and {1, 2, 3}

have incompatible shapes.

Matrix and vector multiplication are carried out in the same manner. If c is the column vector

c =

2
4 1

3
9

3
5 ;

then, after de�ning it as

Clear[c];

c = {1, 3 , 9}

we compute the product of B (de�ned earlier) and c by

B . c

which results in

{16, 3, 23}

Also the product of the column vector cT with B is determined by

c . B

whose output is

33

{-8, 47, 11}

We note that the vector c could also have been de�ned as a 3� 1 matrix:

Clear[c];

c={{1}, {3}, {9}};

Now B . c returns

{{16}, {3}, {23}}

while c . B returns the error message

Dot::dotsh:

Tensors {{1}, {3}, {9}} and

{{1, -1, 2}, {0, 1, 0}, {-1, 5, 1}}

have incompatible shapes.

On the other hand, Transpose[c] . B returns

{{-8, 47, 11}}

There is a second way of multiplying lists in Mathematica, using the � operand. This operation
between two lists A and B of equal lengths returns a list whose entries are the product of individual
entries of A and B. For example,

Clear[A, B];

A = {-1, 2}; B = {{1, 2,3 }, {3}};

A * B

returns

{{-1, -2, -3}, {6}}

Here both A and B have length 2. On the other hand, the product

Clear[A, B];

A = {{-1, 2}}; B = {{1, 2,3 }, {3}};

A * B

returns

Thread::tdlen:

Objects of unequal length in

{{-1, 2}} {{1, 2, 3}, {3}} cannot be combined.

The Append command appends information to the end of a list. For example,

B = {{1, 2, 3}, {-1, 0, 1}, {3, 4, 5}};

c = Append[B, {1, 1, 1}]

returns the 4� 3 matrix with B as its �rst three rows and h1; 1; 1i as its fourth row. This command
is particularly useful when, in the course of a calculation, new entries are being computed and this
information must be added to a variable and stored for later processing.

34

The commands Det, Inverse, Eigenvalues, and Eigenvectors operate on lists, when applica-
ble, with the standard mathematical results that their names suggest. For example, consider the
matrix f

f(a) =

2
4 1 a 1

�2 0 a

�3a 1 a

3
5 :

De�ne this matrix in Mathematica by

f[a_] = {{1, a, 1}, {-2, 0, a}, {-3a, 1, a}}

Now

Det[f[a]]

returns

2 3

-2 - a + 2 a - 3 a

while

Inverse[f[a]]

leads to

2

a 1 - a

{{-(--------------------), --------------------,

2 3 2 3

-2 - a + 2 a - 3 a -2 - a + 2 a - 3 a

2

a

--------------------},

2 3

-2 - a + 2 a - 3 a

2

2 a - 3 a 4 a

{--------------------, --------------------,

2 3 2 3

-2 - a + 2 a - 3 a -2 - a + 2 a - 3 a

-2 - a

--------------------},

2 3

-2 - a + 2 a - 3 a

2

35

-2 -1 1 2

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1.7: The output of ListPlot.

2 -1 - 3 a

{-(--------------------), --------------------,

2 3 2 3

-2 - a + 2 a - 3 a -2 - a + 2 a - 3 a

2 a

--------------------}}

2 3

-2 - a + 2 a - 3 a

Similarly, Eigenvalues[f[1]] and Eigenvectors[f[2]] return the appropriate outputs, respec-
tively. The command Eigensystem combines the outputs of Eigenvalues and Eigenvectors.

We often need to plot a set of ordered pairs of numbers. The command ListPlot is the appro-
priate tool for this task. For example, consider the following four ordered pairs:

(1; 0:1); (2; 0:2); (�1; 0:3); (�2; 0:4):

To plot them, �rst we de�ne a list that contains the four pairs and then apply ListPlot to it:

c = {{1, 0.1}, {2, 0.2}, {-1, 0.3}, {-2, 0.4}};

ListPlot[c, PlotJoined -> True]

The output is shown in Figure 1.7.

The above discussion touches on only a small portion of what is available in Mathematica con-
cerning lists, matrices, and linear algebra. The reader is encouraged to consult [1] and [2] for more
detail on this subject.

36

Figure 1.8: A mass-spring system.

1.10.1 Lists and Di�erential Equations

In certain problems where a large number of unknowns are present, we often end up writing down a
system of ordinary di�erential equations that contains the information about the coupling between
the variables. A typical example in engineering arises in the context of a set of masses and springs
connected to each other in a series. The objective is to determine the oscillation of all masses in
terms of the spring constants, the initial data, and any external forcing that may be present. We
now give a simple example of such a system and outline how one proceeds to �nd the solution. We
will use the concept of lists and present an algorithm that is nearly independent of the number of
masses and springs present in the system.

Consider the mass{spring system in Figure 1.8.

Art Work ch1.1 (n masses, n+1 springs)

The governing system of di�erential equations is (see Chapter 7 in regards to the derivation of this
system of equations)

m1x
00
1 = �k1x1 + k2(x2 � x1)

m2x
00
2 = �k2(x2 � x1) + k3(x3 � x2)

m3x
00
3 = �k3(x3 � x2) + k4(x4 � x3)

::: =

::: =

mnx
00
n = �kn(xn � xn�1) + kn+1xn:

In matrix notation, the above system is equivalent to

Mx00 = Ax (1.11)

where

M =

2
66664

m1 0 0 ::: 0
0 m2 0 ::: 0
::: ::: ::: ::: :::

::: ::: ::: ::: :::

0 ::: ::: 0 mn

3
77775

and

A =

2
6666664

�(k1 + k2) k2 0 ::: 0
k2 �(k2 + k3) k3 ::: 0
0 k3 �(k3 + k4) ::: 0
::: ::: ::: ::: :::

0 0 ::: �(kn�1 + kn) kn
0 0 ::: kn �kn

3
7777775
:

System (1.11) is supplemented with the initial data

x(0) = x0; x0(0) = x1: (1.12)

37

Let us consider the concrete example of three unit masses attached to four identical springs with
spring constants 10. The matrix M reduces to the identity matrix and A becomes

A =

2
4 �20 10 0

10 �20 10
0 10 �20

3
5 : (1.13)

We consider the initial data

x0 =

2
4 0

0
1

3
5 ; x1 =

2
4 1

�1
2

3
5 : (1.14)

Our goal is solve (1.13) - (1.14) in Mathematica using NDSolve. We begin a new session of this
program and introduce the number of variables num by

num = 3

and a list representing the solutions xi(t) by

vars = Table[x[i][t], {i, num}]

Next, we de�ne the matrix A as

A = {{-20, 10, 0}, {10, -20, 10}, {0, 10, -20}}

We refer to the right-side of (1.11) by rightside and generate it by

rightside = A . vars

Next, we de�ne the set of equations in (1.11) as the list

eqns = Table[x[i]''[t] == rightside[[i]], {i, num}]

The initial data (1.14) is stored in initdata directly:

initdata = {x[1][0] == 0, x[2][0] == 0, x[3][0] == 1,

x[1]'[0] == 1, x[2]'[0] == -1, x[3]'[0] == 2}

Since NDSolve requires the di�erential equations and the initial data as one list, we use Join on
eqns and initdata:

eqnsANDinit = Join[eqns, initdata]

We are now ready to apply NDSolve:

sol = NDSolve[eqnsANDinit, vars, {t, 0, 3}]

Mathematica responds with

{{x[1][t] -> InterpolatingFunction[{0., 3.}, <>][t],

x[2][t] -> InterpolatingFunction[{0., 3.}, <>][t],

x[3][t] -> InterpolatingFunction[{0., 3.}, <>][t]}}

To plot the three displacements on the same screen, we enter

38

0.5 1 1.5 2 2.5 3

-0.5

0.5

1

Figure 1.9: The output of the mass-spring system of di�erential equations.

Plot[Evaluate[Table[x[i][t] /. sol, {i, num}]], {t, 0, 3}]

Figure 1.9 shows the output. We have taken special care in implementing the various parts of (1.13)
- (1.14) in such a way that only a few changes need be made in the above procedure when a di�erent
set of parameters is supplied to this system. This is particularly useful when Mathematica is being
used in its Notebook setting, where the cut- and paste-mode o�ers a handy tool for introducing or
altering parameters or de�nitions. Later in this chapter we will discuss how to write a program in
Mathematica to reduce the number of changes one needs to make in order to analyze a problem such
as (1.11) - (1.12) when the physical parameters are allowed to vary.

Problems

1. Let A and B be de�ned by

A =

� �1 1
1 3

�
; B =

� �3 4
7 5

�
:

Compute A+B, A�B, AB, BA, 6A, and 3A+ 2B.

2. Consider the matrix

A =

�
a b

b c

�
;

where a, b, and c are constants. Find all values of these parameters for which the determinant
of A vanishes.

3. Let A be the matrix

A =

2
4 a �a b

�a b a

b a 2a

3
5 :

39

Find all values of a and b for which the determinant of A vanishes.

4. Let A be the matrix

A =

�
a b

b a

�
:

(a) Compute A5 and A10 (use MatrixPower).

(b) Use Exp and MatrixExp with A. Why are the results di�erent?

5. Consider the matrix

A =

� �1 1
1 3

�
:

Let s(n) be the nth partial sum of the Taylor series expansion of eA, that is,

s(n) = I +

nX
i=1

1

i!
Ai;

where I is the 2 � 2 identity matrix. Find s(2), s(5), and s(10). Compare these matrices to
the output of MatrixExp[A].

6. Start a session in Mathematica and generate Figure 1.9.

7. Generate the analogue of Figure 1.9 in the following settings. All masses are assumed to be
one.

(a) k1 = k2 = 10, k3 = 20; x1(0) = 0; x2(0) = �1; x3(0) = 1, x01(0) = 0; x02(0) = 0; x03(0) =
0; t 2 (0; 3)

(b) k1 = k2 = k3 = k4 = 10; x1(0) = 0; x2(0) = 0; x3(0) = 0, x4(0) = 1, x01(0) = 0,
x02(0) = 0, x03(0) = 0, x04(0) = 0; t 2 (0; 5)

8. Consider the mass{spring system in Figure 1.8 containing �ve equal masses with mi = 5,
i = 1; :::; 5, and six springs with spring constants ki = 3, i = 1; :::; 6. While all other masses
are kept stationary, we perturb this system from its equilibrium by displacing the third mass
one unit to its right and releasing it. Find the displacement of all of the masses for t 2 (0; 10).

9. Consider the mass{spring system in Figure 1.8 consisting of three unequal masses m1 = 1,
m2 = 3, and m3 = 5. Four identical springs with spring constants k = 20 are attached to
these masses. Assuming that the initial disturbance in this system is caused by displacing the
�rst mass one unit to its left and then releasing it, generate the analogue of Figure 1.9 for
t 2 (0; 10).

10. Consider the mass{spring system consisting of two identical masses m1 = m2 = 1, attached to
three identical springs with spring constant k. Let x1(0) = 1, x2(0) = 0, and x01(0) = x02(0) = 0.
Let xi(t; k) denote the displacement of the ith mass at time t. Use NDSolve to �nd the value
for x1(3; k) as k takes on values from 1 to 10 at increments of 0.1. Let S be the list containing
the ordered pairs (k; x1(3; k)). Use ListPlot and graph S. Compare your graph with Figure
1.10. (Hint: One way to get Figure 1.10 is make the following changes to the process discussed
in Section 1.10.1. Besides the necessary modi�cations to prepare for the above two-dimensional
system, de�ne the matrix A in terms of k, that is

A = {{-2 k, k}, {k, -2k}};

40

2 4 6 8 10

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

Figure 1.10: The graph of x1(3; k).

Next, enhance the de�nition of sol to allow for the dependence on the spring constant:

sol[j_] := NDSolve[eqnsANDinit/. k -> j, vars, {t, 0, 3}];

(the signi�cance of using := as opposed to = is discussed in the next section). Finally, generate
the points for the graph by

points = Table[{k, First[x[1][t] /. sol[k]/. t->3]}, {k,1,10,0.1}];

)

1.11 The =, :=, ==, ->, /. Operators

The operation = has the same standard de�nition in Mathematica as in many other computer lan-
guages. The expression

a = b

means that the value stored in b replaces the value stored in a and becomes the current value of
that symbol. In particular, = should not be used when de�ning an equation, as we have seen in
the discussion of Solve and DSolve, among other internal functions of Mathematica. Also, the
expression

t = t + h

does not imply that h = 0; it simply states that the old value of t is added to the current of h, and
the result becomes the current (new) value of t. This expression is the common way of updating a
variable in a recursive process, as we will see in the next section.

41

The operator := denotes delayed evaluation and is most useful in de�nitions where we are not
yet ready to use an assignment. Compare the output of

t = 3;

f[t_] = Sin[t];

f[4]

with the output of

t = 3;

g[t_] := Sin[t];

g[4]

In the �rst case we see that Sin[3] is the output, since the value of t is passed to the argument of
f as soon as its de�nition is executed. In the second case, where the output is Sin[4], the function
Sin[t] is assigned to g, but nothing is executed until the next time g is called upon.

We have already encountered == on many occasions. This operation performs the task of testing
for equality and de�ning equations. For instance,

x == y

tests to see whether x and y are equal to each other. Try

Clear[x,y];

x = 4; y = 5; x == y

== is also used in de�ning equations as in

DSolve[x''[t] + x'[t] == 0, x[t], t]

The operations /. and -> are used together for the purpose of replacement by the rule(s) de�ned
by ->. For example,

Clear[x];

x^2 - 4*x + 3 /. x -> -2

results in the evaluation of the quadratic polynomial at x = 2. Similarly,

Integrate[f[t], {t, 0, 1}] /. f[t_] -> Exp[t]

computes
R 1
0
et dt. It is also possible to use -> with multiple rule assignments:

Clear[a,x,b,y];

a x^2 + b y^2 /. {a->1, b->-3, x->2, y->-1}

or

Clear[a,x,b,y,c,d,e,f];

Solve[{a x + b y == c, d x + e y == f/. a -> 1/. c -> -1}]

Problems

42

1. Determine the outcome of the following statements.

(a) t == 3

(b) t = 3; f[t_] = Sin[t] Cos[t]; f[Pi]

(c) t = 3; f[t_] := Sin[t] Cos[t]; f[Pi]

(d) Sin[a t + b] /. a -> Pi /. b -> 0 /. t -> 1/2

(e) Solve[x^2 - a == 0 /. a -> 3, x]

(f) Solve[x^2 - a == 0, x] /. a -> 3

(g) D[Sin[t] /. t -> 3, t]

(h) D[sin[t], t] /. t -> 3

2. Find the syntax errors in the following statements.

(a) Dsolve[x^2 - 4 = 0, x]

(b) Integrate[f[t] = t^ 2, {t, 0, 1}]

(c) D[Sin[t], t /. t -> 3]

(d) DSolve[x'[t] + x[t] == -1, x[0] = 2, x[t], t]

1.12 Loops and the Do Command

In many numerical applications we need to perform an operation repeatedly while a few parameters
may change with each iteration. The Do command in Mathematica is the right tool for such a task.
As a �rst example, consider the sum

S =

100X
i=1

1

i2
:

One can �nd an approximate value for S using Do via

S = 1.;

Do[S = S + 1/i^2, {i, 2, 100}];

S

Mathematica returns 1.63498. (Try the last program with S = 1 replacing the �rst line. How are
the outputs di�erent?) We also get the same result from Sum:

Sum[N[1/i^2], {i, 1, 100}]

A di�erent context in which Do is useful is in carrying out the type of iterations that arise
naturally in the discretization of di�erential equations. A simple example of this type of application
appears in the numerical scheme that produces the Euler approximation of the solution of a �rst-
order di�erential equation. Consider the �rst-order di�erential equation

dy

dx
= f(x; y); y(x0) = y0:

The Euler approximation of the solution y(x) seeks a sequence (xn; yn) that satis�es the di�erence
equation

yn+1 = yn + hf(xn; yn);

43

with xn+1 = xn+h , where h is a �xed small positive number. The following program shows how to
generate this sequence and plot the approximate solution using ListPlot. This program is written
for f(x; y) = �y + sinx, x0 = 0, y0 = 1, h = 0:01, and n = 10.

Clear[f, x, y];

f[x_, y_] = -y + Sin[x];

x0 = 0; y0 = 1;

h = 0.01;

n = 10;

x = x0; y = y0;

output = {{x, y}};

Do[y = y + h*f[x, y]; x = x + h;

output = Append[output, {x, y}], {i, 1, n}];

ListPlot[output, PlotJoined -> True]

The function of Do in the above program is to perform y = y + h*f[x, y] repeatedly, while up-
dating the value of x and appending the result of x and y to output.

Do is also quite useful in �nding �xed points of functions: A �xed point of a function f is a
point x such that f(x) = x. For example, x = 0 is a �xed point of the sine function. One way to
approximate a �xed point of a function is to generate the sequence

x0 = initial guess; x1 = f(x0); x2 = f(x1);

and in general
xn = f(xn�1):

If fxng converges to a, and if f is a continuous function, then a is a �xed point of f . This algorithm
is rather easy to implement using Do (the following program is written for f(x) = 2 sinx, with
x0 =

1
2):

Clear[f, x];

f[x_] = 2 Sin[x];

x = 0.5;

Do[y = N[f[x]]; Print[{x, y}]; x = y, {i, 20}]

Its output is

{0.5, 0.958851}

{0.958851, 1.63706}

{1.63706, 1.99561}

{1.99561, 1.82223}

{1.82223, 1.93711}

{1.93711, 1.86731}

{1.86731, 1.91272}

{1.91272, 1.88422}

{1.88422, 1.90257}

{1.90257, 1.89093}

{1.89093, 1.89838}

{1.89838, 1.89364}

{1.89364, 1.89667}

{1.89667, 1.89474}

44

{1.89474, 1.89597}

{1.89597, 1.89519}

{1.89519, 1.89569}

{1.89569, 1.89537}

{1.89537, 1.89557}

{1.89557, 1.89544}

Problems

1. Use Do and sum the following series.

(a)
P20

i=0 i

(b)
P10

i=1
1
i2

(c)
P100

i=1
1
i2 . First sum the series using exact arithmetic and then using
oating point arith-

metic (that is, use the decimal representation of 1
i2).

(d)
P1000

i=1
1
i . What is the exact value of the sum? Find its forty decimal point approximation

(use N[number, 40]). Compare this value with the value of the sum when the decimal
representation of 1

i is used.

2. Find the �xed points of the following functions. Experiment with the number of iterations to
get a sense of whether the iteration process converges or not.

(a) f(x) = sin 2x; x0 =
1
2

(b) f(x) = sin 2x; x0 =
3
2

(c) f(x) = � sin 2x; x0 =
1
2

(d) f(x) =
p
x+ 1; x0 = 1

(e) f(x) = sin
p
x+ 1; x0 = 1

(f) f(x) = 1
x2+1 ; x0 = 1. Compare the result with the output of

Clear[x];

FindRoot[1/(x^2+1) == x, {x, 1}]

(g) f(x) = ln 2x; x0 =
1
2

3. Use Do to determine the �rst ten iterations of

f1(x) = sinx; fi(x) =

Z x

0

e�tfi�1(t) dt:

1.13 Examples of Programming in Mathematica

On several occasions in this chapter we have encountered situations where the process of answering
questions in a problem set requires repeated execution of a series of instructions in Mathematica

in which only a few parameters change. With the Notebook interface of this software we could
reduce the amount of typing by cutting and pasting input lines already present in a session. We

45

now introduce an alternative method that is quite e�cient and works especially well with projects
that require a large number of input statements.

A useful feature of Mathematica is that it allows one to input lines of commands from an external
�le. Using this feature and combining a series of internal functions, we can construct new functions
that are speci�cally customized for certain objectives. We give an example of such a \program" in
the context of di�erential equations. Its task is to solve a system of di�erential equations and plot
the solution to an initial value problem.

Let us consider the system of di�erential equations

dx

dt
= f(x; y; t);

dy

dt
= g(x; y; t) (1.15)

subject to the initial data
x(0) = x0; y(0) = y0; (1.16)

where
f(x; y; t) = x� y + sin t; g(x; y; t) = x+ y + cos t (1.17)

and
x0 = 0:1; y0 = 1:2: (1.18)

We wish to plot the solution of this system over the interval (0; 3). The following lines are saved in
a �le called ode.m:

Clear[x,y,tfinal,sol];

f[x_, y_, t_] = x - y + Sin[t];

g[x_, y_, t_] = x + y + Cos[t];

x0 = 0.1; y0 = 1.2; tfinal = 3;

sol = NDSolve[{x'[t] == f[x[t], y[t], t],

y'[t] == g[x[t], y[t], t],

x[0] == x0, y[0] == y0},

{x, y}, {t, 0, tfinal}];

output = ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, 0, tfinal}]

Remark 1.13.1: When using a word processing software (such as WordPerfect) to create �les for
use in Mathematica, it is a good habit to save the �les as text-only.

Then, after initiating Mathematica, we input ode.m by entering

<<ode.m

Clearly, if we intend to solve a di�erent set of di�erential equations we only need to alter the lines
in ode.m that de�ne f and g and input the new ode.m program to Mathematica.

An alternative to re-editing the �le ode.m for each set of di�erential equations is to construct a
function from the block of instructions in ode.m, whose input would be the functions f and g (and
other parameters, if we wish), and whose output is the graph of the solution through the initial data.
The Block command is the appropriate tool for this task. Additionally, we are often interested in
the phase plane diagram of the system (1.15), that is, a graph that contains plots of solutions of
this system through several typical initial data. We will use the internal function Flatten for this
purpose. This function acts on lists and
attens out nested lists. For example,

46

Flatten[{{1,2}, {3,4}}]

returns

{1, 2, 3, 4}

Also, Flatten[list, n]
attens list to level n. With these remarks in mind, the following is the
listing of the program odesolver.m. It takes the parameters

f, g, data, tfinal

and delivers the phase diagram of (1.15) as output:

odesolver[f_, g_, data_, tfinal_] := Block[{x, y},

solution=Table[NDSolve[{x'[t]==f[x[t],y[t],t],

y'[t]==g[x[t],y[t],t],

x[0]==data[[i]][[1]],

y[0]==data[[i]][[2]]},

{x,y},{t,0,tfinal}],

{i,1,Length[data]}];

solution=Flatten[solution,1];

OutPut=ParametricPlot[Evaluate[{x[t],y[t]}/.solution],{t,0,tfinal}];

Print["The graph is stored in OutPut"];

]

To illustrate the utility of odesolver.m, we now plot the graphs of approximate solutions to the
system

x0 = y; y0 = �y + sinx;

which pass through the following three initial points

(1; 1); (2; 2); and (3; 3):

Start a new session of Mathematica and enter

<< odesolver.m

At the prompt, enter the right-side of the system of di�erential equations

f[x_, y_, t_] = y; g[x_, y_, t_] = -y - Sin[x];

and the initial data and tfinal

tfinal = 10; data = {{1,1}, {2,2}, {3,3}};

Next, enter

odesolver[f, g, data, tfinal]

Mathematica now goes to work, plots the graph of the three trajectories, and returns

The graph is stored in OutPut

47

1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

Figure 1.11: The output of odesolver.m for the system x0 = y; y0 = �y � sinx.

(see Figure 1.11). The symbol OutPut now contains all of the information about the phase plane.
We could apply Show, PSPrint, or AspectRatio to OutPut, if we wish. It is also possible to make
the entire process of entering the functions f and g and the initial data an interactive process. The
Input command in Mathematica is quite useful in these circumstances. The following program,
which we call myode.m, has this interactive feature built into it.

Block[{x,y,f,g,data},

f[x_, y_, t_] = Input["This program integrates x' = f(x,y,t), y' = g(x,y,t)

\n

Enter f (for example x + y + Sin[t])

\n"];

g[x_,y_,t_]=Input["\n

Input g (for example x - y - Cos[t])

\n"];

data=Input["\n

Enter the initial data (for example {{0, 1}, {-1, 2}}

\n"];

tfinal=Input["\n

Enter the length of integration in t (for example, 3)

\n"];

sol=Table[NDSolve[{x'[t]==f[x[t],y[t],t],

y'[t]==g[x[t],y[t],t],

x[0]==data[[i]][[1]],

y[0]==data[[i]][[2]]},

{x,y},{t,0,tfinal}],

{i,1,Length[data]}];

solution=Flatten[sol,1];

48

OutPut=ParametricPlot[Evaluate[{x[t],y[t]}/.solution],{t,0,tfinal}];

Print["The graph is stored in OutPut"];

]

Let us apply myode.m to

x0 =
@H

@y
; y0 = �@H

@x
: (1.19)

Such a system is often called a Hamiltonian system of di�erential equations, and H is called a
hamiltonian or a stream function of the system. Such systems are prevalent in
uid dynamics,
where the ordered pair (x(t); y(t)) represents the position of a
uid particle at time t. Among them
is the system of equations of motions of particles of
uid that pass a cylinder, where H is explicitly
known to be

H = y � y

x2 + y2
:

We now use myode.m and plot the particle paths of the
uid particles that are initially located at

(�3; 0:1i); i = 1; :::; 5:

Start a new session of Mathematica. First, de�ne H by

H = y - y/(x^2 + y^2)

Next, call up myode.m:

<<myode.m

When prompted for f and g enter

D[H, y]

and

- D[H, x]

respectively, Next, enter the initial data

Table[{-3, 0.1 i}, {i, 1, 5}]

Finally, choose tfinal to be 5. Figure 1.12 shows the output that is stored in OutPut.

Problems

1. Use an editor and create the �les ode.m, odesolver.m, and myode.m. Study the logic of each
program carefully. Run these programs separately in Mathematica, and generate Figures 1.11
and 1.12.

2. Use ode.m to plot the trajectories of the following systems of di�erential equations.

(a) x0 = y; y0 = �x; x(0) = 2, y(0) = �3; 0 < t < 4

(b) x0 = 2x� y; y0 = x+ y; x(0) = �1, y(0) = 1; 0 < t < 3

(c) x0 = yp
x2+y2

; y0 = � xp
x2+y2

; x(0) = �2, y(0) = 2; 0 < t < 4

(d) x0 = e�ty; y0 = �x+ e�3t; x(0) = 1, y(0) = �1; 0 < t < 1.

49

-3 -2 -1 1 2

0.2

0.4

0.6

0.8

1

1.2

Figure 1.12: The output of myode.m for the
ow past cylinder.

3. Execute odesolver.m or myode.m to generate the phase plane diagram for each of the following
systems. In each experiment with the initial data and the value of tfinal.

(a) x0 = y, y0 = �0:1y � sin y

(b) x0 = y, y0 = �y � y3

(c) x0 = x+ y(1� x2 � y2), y0 = y � x(1� x2 � y2)

1.14 Glossary of Useful Commands

1. PSPrint

This command is used primarily in the stand-alone version ofMathematica. The entry PSPrint[Out[x]],
where x marks the output you wish to print, creates a postscript hardcopy of the graphics cre-
ated and stored in Out[x]. In the Notebook interface version of Mathematica, the Print

command in the menu performs this task.

2. Table

The Table command creates a list of objects. Its syntax is

Table[expr, {i, n}, {j, m}]

where a list of copies of expr are generated as i and j vary from 1 to n and m, respectively.
For example,

Table[i*j, {i, 1, 3}, {j, 1, 4}]

50

returns

{{1, 2, 3, 4}, {2, 4, 6, 8}, {3, 6, 9, 12}}

3. Plot, Plot3D, ParametricPlot, and ParametricPlot3D

The commands Plot, Plot3D, ParametricPlot, and ParametricPlot3D draw graphs of vari-
ous two- and three-dimensional representations of functions. For example,

Plot[Sin[x], {x, 0, 2 Pi}]

draws the graph of f(x) = sinx over the interval (0; 2�), while

ParametricPlot[{t, Sin[t]}, {t, 0, 2 Pi}]

accomplishes the same task using a typical parametrization of the same curve. The commands
Plot3D and ParametricPlot3D have similar syntax:

Plot3D[Sin[x] Cos[y], {x, 0, 6 Pi}, {y, 0, 6 Pi}];

and

ParametricPlot3D[{x, y, Sin[x] Cos[y]}, {x, 0, 6 Pi}, {y, 0, 6 Pi}]

yield the same results.

4. Solve and FindRoot

Solve and FindRoot �nd solutions of equations. Typical examples are

Solve[x^2 + 2 x + a == 0, x]

and

FindRoot[x^2 + 2 x + 1 == 0, {x, 3}]

5. DSolve and NDSolve

DSolve and NDSolve �nd solutions to ordinary di�erential equations. Their syntax follows the
pattern

DSolve[equations, dependent variables, independent variable]

and

NDSolve[{equations, initial data}, dependent variables, independent variable]

For example,

DSolve[{x''[t] + 2 x[t] == 0, x[0] == 1, x'[0] == 2}, x[t], t]

and

51

NDSolve[{x''[t] + 2 Sin[x[t]] == 0, x[0] == 1, x'[0] == 2}, x[t], {t, 0, 3}]

6. LaplaceTransform and InverseLaplaceTransform

The package that enables Mathematica to compute the Laplace transform of a function is
Calculus`LaplaceTransform`. It should be entered in Mathematica at the beginning of a
session as

<<Calculus`LaplaceTransform`

Typical commands for computing the Laplace transform and inverse transforms of functions
are

LaplaceTransform[t Sin[t], t, s]

and

InverseLaplaceTransform[(s-3)/(s^2 + 2s +9), s, t]

References

[1] Wolfram, Stephen, Mathematica, 3rd Edition, Addison - Wesley Publishing Co., Reading,
MA, 1996.

[2] Blachman, Nancy, Mathematica: A Practical Approach, Prentice-Hall, Englewood Cli�s, NJ,
1992.

52

