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Foreword

The Masterclass series of eBooks brings together pedagogical articles on single broad top-

ics taken from Resonance, the Journal of Science Education, that has been published monthly

by the Indian Academy of Sciences since January 1996. Primarily directed at students and

teachers at the undergraduate level, the journal has brought out a wide spectrum of articles in

a range of scientific disciplines. Articles in the journal are written in a style that makes them

accessible to readers from diverse backgrounds, and in addition, they provide a useful source

of instruction that is not always available in textbooks.

The fourth book in the series, ‘A Miscellany of Mathematical Physics’, is by Prof.

V. Balakrishnan. A distinguished theoretical physicist, Prof. Balakrishnan worked at TIFR

(Mumbai) and RRC (Kalpakkam) before settling down at IIT Madras, from where he retired

as an Emeritus Professor in 2013, after a stint lasting 33 years. Prof. Balakrishnan is widely

renowned, in India and abroad, as a stimulating and inspiring teacher at all levels, undergradu-

ate to doctoral. He has also contributed pedagogical articles regularly to Resonance, and a

selection of these articles, substantially reworked in many cases, comprise the present book.

Prof. Balakrishnan is well known for his research contributions to the areas of stochastic

processes, quantum dynamics, non-linear dynamics and chaos. The book, which will be avail-

able in digital format, and will be housed as always on the Academy website, will be valuable to

both students and experts as a useful handbook on diverse topics in theoretical physics, ranging

from the rotations of vectors and matrices to the many avatars of the Dirac delta function.

Amitabh Joshi

Editor of Publications

Indian Academy of Sciences

February 2018
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About the Author

Prof V. Balakrishnan – universally abbreviated to Bala or Balki – needs no introduction

to professional physicists of his generation – and indeed many later generations, especially

those who are theoretically inclined. He also needs no introduction to almost any student who

has passed through the Indian Institute of Technology, Madras in the last thirty years, being

something of a legend there. Indeed, many would-be engineers were attracted to physics by

his courses. Thanks to NPTEL and the internet, his lectures have now reached an even larger

constituency, namely engineering and physics students all over the country and ouside. He has

thus been an inspiring figure in the research and teaching community for decades.

The target audience of this Masterclass, however, includes young readers who will be en-

countering him for the first time. The bare facts of his career and achievements have already

been mentioned in the preface, so a more personal note may be appropriate here.

I come from roughly one academic generation – five years – after Bala. Long before I

heard him in person, research students of the 1969 batch at the Tata institute of Fundamental

Research in Mumbai wrote to me in faraway Bangalore of how Bala had made a course on

special functions come alive in the complex plane. I later read his research papers in Pramana,

the journal of physics of the Indian Academy of Sciences. Unlike most such papers, these were

written as if they were meant to be read aloud, combining originality with context, motivation,

and lucid exposition. When I eventually met him face to face, our discussions initially centred

on statistical physics, but as I soon realized, there was very little in any branch of theoretical

physics that he had not thought about very deeply.

Bala has a first-hand perspective: the mathematics and physics in any discussion with him

is served fresh. This is the hallmark of the best teachers, and of people who have thought and

worked long and hard and reconstructed their subjects for themselves. These perspectives go

well beyond physics: Bala’s sharp insights into events around him, both academic and non-

academic, have always been a delight to listeners – as much for what is said as for how it is

expressed. All this might leave the reader with a picture of an armchair critical academic but it

could not be more wrong. I was fortunate to see another side of Bala at close quarters, when

serving under his chairmanship on the board of a charitable trust. His handling of difficult,

people, situations and decisions was balanced, humane and principled and I am sure this would

have characterized his functioning in numerous other roles as well.

This collection of articles written originally for Resonance at various points during the past

twenty or so years (but now considerably revised and enhanced) has been woven into chapters.

It takes a deceptively relaxed and informal approach to a formidable subject, and serves as a

gateway to deeper study. Bala has written and lectured extensively on mathematical methods

used by physicists in various forums, and for a beginning student there is no better place to

start than this Masterclass.

Rajaram Nityananda

Azim Premji University, Bengaluru
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Preface

This book is based on eight articles that were written for Resonance. Needless to say, the

material has been rearranged, revised, and considerably expanded in some directions, so as to

have a degree of cogency. The articles themselves grew out of the notion that the mathematical

tools and techniques required by the students of physical sciences can, and should, be intro-

duced to them in a more ‘user-friendly’ style than is generally the case. The initial introduction

should be heuristic, with adequate motivation. The development of the subject matter should

help the student not only to learn the techniques, but also to gain insight and the ability to

recognise interconnections. Attention should be paid to the natural unfolding of the subject

matter; one thing should lead to another. While correctness can never be sacrificed, formal

rigour and exactitude need not be at the forefront.

In this book, we take a walking tour — or a casual stroll — through a variety of topics,

such as vectors, reciprocal vectors, spherical and hyperspherical coordinates, Cartesian tensors,

the true meaning of a vector, linear vector spaces, ket and bra vectors, infinitesimal rotation

generators, the finite rotation formula, rotation matrices, the orthogonal group S O(3) and its

parameter space, Pauli matrices, the unitary group S U(2) and its parameter space, the Dirac

delta function, Green functions, the wave equation, its Fourier transform, and its fundamental

solution in spaces of different dimensions. One thing leads to another!

V. Balakrishnan
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What can the answer be?∗

V. Balakrishnan

Scientific problems are very often first solved by a combination of analogy, educated guess-

work and elimination – in short, ‘insight’. The refinements that come later do not make this

earlier process less important. Rather, they generally serve to highlight its value.

There is no graded set of lessons by which one progressively gains insight. However, a

profitable line of approach is to ask, at each stage, what the answer to a problem could pos-

sibly be, subject to the conditions involved. Techniques such as dimensional analysis, scaling

arguments and order-of-magnitude estimates, as well as checks based on limiting values or

limiting cases are part of the armoury in this mode of attack. Elementary vector analysis offers

a convenient platform to illustrate this approach.

An example from algebra

To set the stage, let us begin with an example in elementary algebra. Consider the determinant

∆(x1, x2, x3) =

∣∣∣∣∣∣∣∣∣

1 1 1

x1 x2 x3

x2
1

x2
2

x2
3

∣∣∣∣∣∣∣∣∣
. (1)

It is straightforward, of course, to find ∆ explicitly by expanding the determinant. But the point

I wish to make here is that ∆ can be evaluated almost by inspection, if we note the following

facts:

(i) Multiplying each of x1, x2 and x3 by some number λ multiplies the value of ∆ by λ3.

Thus ∆ is a homogeneous function of degree 3.

(ii) ∆ vanishes if any two of the x’s are equal. Therefore, regarded as a function of x1, ∆ is

quadratic with factors (x1 − x2) and (x1 − x3); and similarly for x2 and x3.

(iii) ∆ changes sign if any two of the x’s are interchanged.

Combining these points, we conclude that ∆ must be given by

∆(x1, x2, x3) = C(x1 − x2)(x2 − x3)(x3 − x1) (2)

where C is some numerical constant.

∗Based on Resonance, Vol. 1, No.8, pp.8-15, 1996.
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V. Balakrishnan

• In order to find the constant C, we have only to look at a simple special case, e.g.,

x1 = 0, x2 = 1. It is now trivial to simplify the determinant in eq. (1) directly. The result

is

∆(0, 1, x3) = x3(x3 − 1). (3)

On the other hand, eq. (2) gives

∆(0, 1, x3) = Cx3(x3 − 1). (4)

It follows at once that C must be equal to 1. (Alternatively, match the term + x2x2
3

obtained by

multiplying together all the diagonal elements of the determinant with the corresponding term

+C x2x2
3

on the right in eq. (2).) Finally, therefore, we have

∆(x1, x2, x3) = (x2 − x1)(x3 − x1)(x3 − x2). (5)

The factors on the right-hand side of eq. (5) have been written in such a way that selecting the

first term in each bracket yields the product of the diagonal elements of the determinant with

the correct sign.

What is important is that our chain of reasoning permits us to generalize this result to the

case of the (n × n) determinant (called the Vandermonde determinant)

∆(x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

x1 x2 · · · xn

...
...

. . .
...

xn−1
1

xn−1
2

· · · xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (6)

where n is any integer ≥ 2. We can now see that ∆ must simply be a product of the n(n − 1)/2

distinct factors (x j− xk) that can be formed from the variables x1, . . . , xn. The diagonal element

+ x2 x2
3

x3
4
· · · xn−1

n indicates that the sign of each term in ∆ is taken care of if we always maintain

j > k in each factor of (x j − xk). We may therefore deduce the general result

∆(x1, . . . , xn) =
∏

1≤k≤ j≤n

(x j − xk) (7)

without going through a tedious calculation. This is the spirit in which we shall approach the

problems that follow.

Some vector identities

Let us now go on to vector analysis. As the first example, we consider the derivation of the

well-known identity for the triple cross-product, namely,

a × (b × c) = (a · c)b − (a · b)c (8)

where a,b and c are three arbitrary vectors (in the familiar three-dimensional space). We

would like to avoid the ‘brute force’ method of writing out components, etc., in some particular

coordinate system. We therefore proceed as follows. Let a × (b × c) = d.

# 2
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What can the answer be?

• If a,b and c are three general non-planar vectors in three-dimensional space, any ar-

bitrary vector can be uniquely written as a linear combination of these three vectors.

(They serve to define a set of ‘oblique’ axes). But d cannot have any component along

a, because it is a cross product of va with another vector. Therefore, in general, d must

necessarily be expressible as

d = βb + γc (9)

where β and γ are scalars. Note that this argument is valid even in the case of oblique

axes, i.e., b and c are not required to be perpendicular to a.

• d is of first order in each of the vectors a,b and c: that is, multiplying any one of them

by a constant multiplies the answer by the same constant; further, d vanishes if any of

these three vectors is zero. Therefore β must be proportional to (a · c) and γ to (a · b),

respectively, as these are the only first-order scalars that can be formed from (a, c) and

(a,b) respectively. Hence

d = λ(a · c)b + µ(a · b)c (10)

where λ and µ are absolute constants – dimensionless pure numbers – that are indepen-

dent of a,b and c.

• But d changes sign if b and c are interchanged, because c × b = −b × c. Therefore

−d = λ(a · b)c + µ(a · c)b. (11)

Comparison with eq. (10) gives µ = −λ, so that

d = λ[(a · b)c − (a · c)b]. (12)

• Having nearly solved the problem, we may now determine λ by looking at an appropriate

simple special case because eq. (12) is valid for all a,b, c. Thus, setting a = i, b = i, c =

j (for instance), we get d = −j by direct evaluation of a × (b × c), while the right-hand

side of eq. (12) gives d = −λ j. Hence λ = 1. We thus obtain the general formula quoted

in eq. (8).

The arguments used above can be repeated to tackle numerous other cases. Let us consider,

for instance, the scalar product (a × b) · (c × d), where a,b, c,d are four arbitrary vectors. We

again make the following observations:

• The expression is of first order in each of the four vectors.

• The presence of the cross products (a × b) and (c × d) implies that there can be no terms

proportional to (a · b) and (c · d) in the result. Hence the answer must be of the form

(a × b) · (c × d) = λ(a · c)(b · d) + µ(a · d)(b · c) (13)

where λ and µ are pure numbers.

# 3
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V. Balakrishnan

• As before, since the answer changes sign if a and b are interchanged, we get λ = −µ.

• Finally, the overall constant factor is fixed by looking at a special case, e.g., a = c =

i , b = d = j . This gives λ = 1. We thus obtain the familiar formula

(a × b) · (c × d) = (a · c)(b · d) − (a · d)(b · c). (14)

The formulas (8) and (14) are, of course, well known, and several different proofs of their

validity can be given. My aim has been to bring out the fact that general considerations of

linearity, symmetry (or antisymmetry), dimensionality, homogeneity, etc. practically determine

the final answer in such problems. This is brought home even more convincingly by the exam-

ple that follows.

Evaluation of an integral

We will first evaluate the surface integral

I4(a,b, c,d) =

∫
dΩ (er · a) (er · b) (er · c) (er · d), (15)

where the unit vector er varies over the surface of a sphere of unit radius centred at the origin.

Here a,b, c,d are four arbitrary constant vectors, which is why I have used the notation I4.

(Such integrals occur in several contexts in physical calculations – for example, in the theory of

collisions of particles.) A brute force approach to the evaluation of I4(a,b, c,d) is a formidable

task, but there is a very ‘physical’ way of tackling the problem. We may try to simplify the

task by choosing spherical polar coordinates with the polar axis along one of the given vectors,

say a. But this does not help much, because there are three other vectors pointing in arbitrary

directions. Instead, we note that I4(a,b, c,d) (i) is a scalar, (ii) is of first order in each of the

four vectors a,b, c,d and vanishes if any one of them is zero, and (iii) is totally symmetric

under the interchange of any of these vectors among themselves. Therefore I4(a,b, c,d) must

necessarily be of the form

I4(a,b, c,d) = λ [(a · b)(c · d) + (a · c)(b · d) + (a · d)(b · c)] , (16)

where λ is a pure number. The plus signs and the common overall constant λ follow from

(iii) above. [I have also used the fact that (a · b)(c · d) = (c · d)(a · b), as well as the property

(a·b) = (b·a).] Likewise, combinations such as (a×b)·(c×d) are not allowed by this symmetry.

(iv) The constant λ is now determined by going over to the special case a = b = c = d = k (the

unit vector along the polar or z-axis). In that case, since er · k = cos θ, the integral reduces by

direct evaluation to

I4(k,k,k,k) =

∫ 1

−1

d(cos θ)

∫ 2π

0

dϕ cos4 θ =
4π

5
, (17)

# 4
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What can the answer be?

on the one hand; on the other hand, eq. (16) gives I4(k,k,k,k) = 3λ. Hence λ = 4π/15,

yielding the final answer

I4(a,b, c,d) = (4π/15) [(a · b)(c · d) + (a · c)(b · d) + (a · d)(b · c)] . (18)

A generalization

A generalization of the result just derived is tempting and possible! We see at once that all

the odd numbered integrals I1, I3, I5 . . . must vanish identically, because there is no way that

we can form a scalar from an odd number of vectors a,b, c, . . . that satisfies both (ii) and (iii)

listed above. What about the corresponding general integral of even order,

I2n(a1, a2, . . . , a2n) =

∫
dΩ

2n∏

j=1

(er · a j), (19)

involving the 2n arbitrary vectors a1, a2, . . . , a2n? The arguments given earlier now lead us to

conclude that the value of the integral must be given by

I2n(a1, a2, . . . , a2n) = λ
∑

perm

′ (a j1 · a j2) (a j3 · a j4) · · · (a j2n−1
· a j2n

), (20)

where λ is a constant, yet to be determined, and { j1, j2, . . . , j2n} is a permutation of {1, 2, . . . ,
2n}. (The prime on the summation sign will be explained shortly.) Now, we know that there are

(2n)! permutations of the set {1, 2, . . . , 2n}. However, the number of terms in the summation in

eq. (20) is smaller than (2n)!, because of the following restrictions:

(i) (a j · ak) and (ak · a j) are not to be counted as two distinct quantities.

(ii) The order of the n individual factors in a quantity of the form (a j1 ·a j2) · · · (a j2n−1
·a j2n

) does

not matter. Each such product must appear only once, although there are n! permutations

of the factors in each case.

These restrictions bring down the number of terms in the summation in eq. (20) from (2n)! to

(2n)!/(2nn!). The prime on the summation sign in eq. (20) is meant to indicate this restricted

summation.

Next, we determine the constant λ by directly evaluating I2n from its defining integral (19)

in a simple special case. The most convenient choice is obviously a1 = a2 · · · = a2n = k. The

integral may then be done by choosing the polar axis to lie along k, so that er · k = cos θ.

Therefore

I2n(k,k, . . . ,k) = 2π

∫ 1

−1

d(cos θ) (cos θ)2n =
4π

2n + 1
. (21)

Equation (20), on the other hand, gives

I2n(k,k, . . . ,k) = λ
∑

perm

′ (k · k) =
(2n)! λ

2n n!
. (22)

# 5
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V. Balakrishnan

Comparing the two expressions, we get

λ =
2n+2πn!

(2n + 1)!
. (23)

Thus, we arrive at the result

I2n(a1, a2, . . . , a2n) =
2n+2πn!

(2n + 1)!

∑

perm

′ (a j1 · a j2) (a j3 · a j4) · · · (a j2n−1
· a j2n

). (24)

You may check that the result derived earlier, eq. (18), is recovered correctly on setting n = 2.

A further generalization; hyperspherical coordinates

A further generalization of the result just derived that suggests itself (and which may indeed

occur in actual calculations) is the following. What is the value of the integral

In,d(a1, a2, . . . , an) =

∫
dΩ (er · a1) . . . (er · an) (25)

where er varies over the surface of a unit hypersphere in Euclidean space of d > 3 dimensions?

The evaluation of this integral gives us an opportunity to introduce and use spherical polar

coordinates in dimensions d > 3. These coordinates are called hyperspherical coordinates.

It is obvious that, regardless of the value of d, the integral continues to be (i) a scalar, (ii) of

first order in each of the vectors a1, a2, . . . , an, and (iii) a totally symmetric function of these n

vectors. A moment’s thought then shows that In,d must vanish identically if n is an odd number,

for the same reason as before. We are then left with the task of evaluating

I2n,d(a1, a2, . . . , a2n) =

∫
dΩ

2n∏

j=1

(er · a j). (26)

As in the case d = 3, the answer must necessarily be of the form given by eq. (20), namely,

I2n,d(a1, a2, . . . , a2n) = λ
∑

perm

′ (a j1 · a j2) (a j3 · a j4) · · · (a j2n−1
· a j2n

), (27)

where the summation over the permutations of {1, 2, . . . , 2n} is subject to the same conditions

as before. Once again, it is convenient to determine the value of λ by (i) setting each a j equal

to the same unit vector, denoted by k. The result is precisely eq. (22), as before. The argument

used to compute the number of terms in
∑′

perm is not affected by the dimensionality of the space

concerned.

We must now evaluate the integral

I2n,d(k,k, . . . ,k) =

∫
dΩ (er · k)2n (28)

# 6
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What can the answer be?

over the surface of a hypersphere of unit radius in d-dimensions. For this purpose we must

specify hyperspherical coordinates in d dimensions, generalizing the familiar spherical polar

coordinates of 3-dimensional space. Let x1, x2, . . . , xd be the Cartesian coordinates of any point

with position vector r in the space. The hyperspherical coordinates of r are given by

r = (r, θ1, θ2, . . . θd−2, ϕ), (29)

where r is the radial distance of the point from the origin of coordinates. The ranges of the

hyperspherical coordinates are

0 ≤ r < ∞, 0 ≤ θk ≤ π (1 ≤ k ≤ d − 2), 0 ≤ ϕ < 2π. (30)

That is, there are d − 2 ‘polar’ angles θk and a single ‘azimuthal’ angle ϕ. These coordinates

are related to the Cartesian coordinates of r according to

x1 = r cos θ1

x2 = r sin θ1 cos θ2

x3 = r sin θ1 sin θ2 cos θ3

· · · = · · · · · · · · · · · · · · · · · · · · · · · ·
xd−1 = r sin θ1 sin θ2 . . . sin θd−2 cos ϕ

xd = r sin θ1 sin θ2 . . . sin θd−2 sin ϕ.



(31)

The solid angle element dΩ can be shown to be

dΩ = (sin θ1)d−2 (sin θ2)d−3 · · · (sin θd−2) dθ1 dθ2 · · · dθd−2 dϕ. (32)

The next step is to choose k in the most convenient manner. Clearly, it is simplest to choose

it to be the unit vector along the x1-direction. (This is the analogue of choosing the polar or

z-axis along k in the 3-dimensional case.) Then (er · k) is just cos θ1. Equation (28) gives

I2n,d(k,k, . . . ,k) = 2π

∫ π

0

dθ1 (sin θ1)d−2(cos θ1)2n

×
d−2∏

k=2

∫ π

0

dθk (sin θk)d−k−1. (33)

The definite integrals involved are standard integrals whose values are tabulated. (I shall not

digress into the derivation of those results here.) Using these known values and simplifying

the expressions obtained in eq. (22) enables us to determine λ. Inserting the result in eq. (27),

we arrive at the answer for λ. It is most compactly expressed in terms of the so-called gamma

function, and is given by

λ =
πd/2

2n−1Γ
(
n + 1

2
d
) . (34)

# 7

7



V. Balakrishnan

In simpler terms, this formula reduces to the following: for even values of d, we have

λ =
πd/2

2n−1
(
n + 1

2
d − 1

)
!
. (35)

For odd values of d,

λ =
π(d−1)/22n+d

(
n + 1

2
(d − 1)

)
!

(2n + d − 1)!
. (36)

Insertion of these expressions in eq. (27) completes the solution.

# 8
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Oblique axes, reciprocal basis, kets and bras∗

V. Balakrishnan

In this chapter, we shall see how concepts such as reciprocal basis vectors, dual spaces and

co-vectors can be motivated from simple considerations starting from well-known identities in

elementary vector analysis.

Resolution of a vector along oblique axes

Let us begin with the resolution of an ordinary vector v in three-dimensional (Euclidean) space,

according to

v = i vx + j vy + k vz . (1)

What are vx , vy and vz in terms of v? Clearly, vx = i · v, vy = j · v, and vz = k · v. Therefore,

if we introduce the projection operator Px = ii (note that there is no dot or cross in between

the two vectors !), and ‘operate’ with it on the arbitrary vector v by taking the dot product, the

result is precisely ii · v = i(i · v) = ivx, the component or part of v that lies along the unit vector

i. Similarly, we have projection operators Py = jj and Pz = kk. The unit operator (the operator

that leaves any vector v unchanged) is clearly just the sum of all the projection operators,∗∗

namely,

I = Px + Py + Pz = ii + jj + kk. (2)

This is called the resolution of the identity operator. Thus eq. (1) expresses the fact that

v = I v = i(i · v) + j(j · v) + k(k · v). (3)

We now ask: what is the counterpart of eq. (3) in the case of oblique axes defined by three

arbitrary, non-coplanar vectors a,b and c, instead of the rectangular axes defined by i, j and k?

Once again, we can arrive at the answer by figuring out what the answer can possibly be.

Writing

v = α a + β b + γ c, (4)

we observe that the coefficient α cannot involve any overlap‡ of v with either b or c; β cannot

involve any overlap of v with either c or a; and γ cannot involve any overlap of v with either a or

b. This assertion is more or less obvious when the vectors a,b and c are mutually perpendicular.

As we are dealing here with oblique axes, however, some elaboration is required. Suppose we

∗Based on Resonance, Vol. 1, No.10, pp. 6-13, 1996.
∗∗You are familiar with the dot product a · b (also called the scalar product) of two vectors a and b, as well as the

cross product a× b (also called the vector product) of the two vectors. The object ab is called the tensor product of

the two vectors. In the present context, it is an operator that acts on a vector to produce another vector.
‡‘Overlap’ here refers to the dot or scalar product (also called the inner product) of the vectors concerned.
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keep α fixed at some value, and let β and γ vary. The varying part of v then is then restricted

to a plane parallel to the plane formed by the vectors b and c. All vectors in this plane have

the same value of α, but their projections on the plane formed by b and c vary. Hence α cannot

depend on that projection for any given v. It can only depend on the projection of v onto a

vector normal to the plane formed by b and c, i.e, onto the vector b × c. Therefore α must be

proportional to
[
(b × c) · v

]
. Similar conclusions hold good for the coefficients β and γ. Hence

v = λ a
[
(b × c) · v

]
+ µb

[
(c × a) · v

]
+ ν c

[
(a × b) · v

]
, (5)

where the scalar factors λ, µ and ν are yet to be determined. The equivalence of all directions

in space (“the isotropy of space”) implies that λ, µ and ν must be equal to each other. Setting

v = a,b and c in turn, we find immediately that λ = µ = ν = 1/
[
(a × b) · c

]
.§ Therefore

v =
a
[
(b × c) · v

]
+ b

[
(c × a) · v

]
+ c

[
(a × b) · v

]
[
(a × b) · c

] . (6)

Before discussing the properties of this expansion, let us consider another, equally instruc-

tive, way to arrive at it. We begin with the well-known vector identity

u × (b × c) = b (u · c) − c (u · b). (7)

(Recall that a proof of eq. (7) based on general arguments was given in ch. 1.) Now suppose u

itself is of the form u = v × a . Substitution in eq. (7) gives

(v × a) × (b × c) = b
[
(v × a) · c

]
− c

[
(v × a) · b

]
. (8)

The vector representing the quadruple cross product on the left-hand side is thus a linear com-

bination of the vectors b and c. It therefore lies in the plane formed by these two vectors.

However, we could as well have written b × c = d, in which case

(v × a) × (b × c) = (v × a) × d

= a (v · d) − v (a · d)

= a
[
v · (b × c)

]
− v

[
a · (b × c)

]
. (9)

The same vector is therefore a linear combination of the two vectors a and v, and thus lies in

the plane formed by them. As the four vectors v, a,b and c may be chosen quite arbitrarily,

this appears to be paradoxical. However, we must now recall that these are vectors in three-

dimensional space, in which no more than three vectors of a given set of vectors can be linearly

independent, i.e., non-coplanar. In other words, if the vectors a,b and c are a linearly indepen-

dent set, the fourth vector v must be expressible as a linear combination of these, precisely by

equating the expressions found in eqs (8) and (9) and solving for v. The result, after using once

again the cyclic symmetry of the scalar triple product and some rearrangement, is precisely

eq. (6). This is the counterpart of the resolution in eq. (3) of an arbitrary vector v in a basis of

orthogonal axes.

§Here we have used the cyclic symmetry of the scalar triple product, namely, (a×b) · c = (b× c) · a = (c× a) ·b.
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c

b

a

Figure 1: The volume of the parallelepiped formed by the vectors (a,b, c) is the magnitude of

their scalar triple product.

The reciprocal basis

The answer to the problem of resolving a vector v in an arbitrary basis {a,b, c} is thus

v = a(A · v) + b(B · v) + c(C · v), (10)

where

A =
b × c

V
, B =

c × a

V
, C =

a × b

V
, (11)

and V = (a×b) ·c. The symbol V has been used because |V | is the volume of the parallelepiped

formed by the vectors a,b and c (see Figure 1). The set of vectors {A, B, C} forms the so-

called reciprocal basis. The terminology is most familiar in crystallography: if a,b, c are the

primitive basis vectors of a lattice, then A,B,C are the basis vectors of the ‘reciprocal’ lattice.

It is immediately verified that

A · a = B · b = C · c = 1, (12)

which helps explain why the term ‘reciprocal basis’ is used. Further,

A · b = A · c = B · a = B · c = C · a = C · b = 0 . (13)

In fact, the reciprocal basis is defined in books on crystallography by eqs (12) and (13): they

can be solved for A,B and C, to obtain precisely the expressions in eq. (11). It is easy to check

that the general formula of eq. (10) reduces to eq. (3) in the special case of an orthogonal basis.

In what space does the reciprocal basis (A,B,C) ‘live’? If the original basis vectors a,b

and c have the physical dimensions of length, eqs (11) show immediately that A,B and C have

the physical dimensions of (length)−1. In crystallography and lattice dynamics this fact is used

to define a ‘reciprocal lattice’ in wavenumber space, in which (A, B, C) are the primitive lattice

vectors. Why does one do this ? It is not my intention to go into lattice dynamics or crystal

physics here, but two good reasons (among several others) may be cited.
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(i) In crystal physics, we have very frequently to deal with periodic functions, i.e., functions

that satisfy f (er) = f (er + R) where R is any lattice vector. That is,

R = ma + nb + pc, (14)

where m, n and p take on integer values. Such a function can be expanded in a Fourier series

of the form

f (er) =
∑

G

fG ei G·er . (15)

Here, the sum over G runs over the vectors of the reciprocal lattice, i.e.,

G = hA + kB + lC, (16)

where (h , k , l) are integers.

(ii) The second noteworthy point is that the Bragg condition for diffraction (of X-rays, elec-

trons, neutrons, etc.) from a crystal is expressible in a very simple form in terms of G, namely,

2k ·G = G2, where k is the wave vector of the incident beam). Likewise, the Laue conditions

for diffraction maxima reduce to just G · a = h, G · b = k, G · c = l. These relations follow

directly from eqs (12), (13), and (16).

Ket vectors and bra vectors

We are now at a point where the concepts of ket and bra vectors can be introduced naturally.

Going back to eq. (1), we note the following. Any vector v in three dimensions can be repre-

sented in the form of a column matrix according to

v =



vx

vy

vz

 =



1

0

0

 vx +



0

1

0

 vy +



0

0

1

 vz. (17)

(Here and in what follows, I freely use the ‘=’ symbol between an abstract quantity and its

representation in any form.) To save space, let us write (1 0 0)T for the (3 × 1) column matrix

with elements 1, 0, 0. (T stands for ‘transpose’.) In this way of representing vectors, therefore,

i =
(
1 0 0

)T
, j =

(
0 1 0

)T
, k =

(
0 0 1

)T
. (18)

We could also identify these with unit ket vectors denoted by |e1〉 , |e2〉 and |e3〉 respectively.

Operating on a general vector v = (vx vy vz)
T , the projection operator Px = ii introduced below

eq. (1) must yield the component i vx = (vx 0 0)T . This is achieved if we identify Px with the

(3× 3) matrix (1 0 0)T (1 0 0). In other words, the i on the left in ii really stands for the column

vector (1 0 0)T or the ket vector |e1〉, while the i on the right stands for the row vector (1 0 0)

— which it is now natural to identify with the bra vector 〈e1|. The operator Px is therefore
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|e1〉 〈e1|. Similarly, Py = |e2〉 〈e2| and Pz = |e3〉 〈e3|. The resolution of the identity, eq. (2), now

reads

|e1〉 〈e1| + |e2〉 〈e2| + |e3〉 〈e3| = I. (19)

The component vx, which we saw was simply the scalar or dot product i · v, is now writ-

ten as the ‘inner product’ 〈e1|e2〉 where we have used the ket vector |v〉 to denote the vector

v = (vx vy vz)
T . We can then go on to generalize this idea of ket vectors and their adjoint

bra vectors to n-dimensional Euclidean spaces, and then to infinite-dimensional Hilbert spaces.

The whole treatment provides an admittedly heuristic, but easily digested, method of introduc-

ing the machinery of linear vector spaces (e.g., for quantum mechanics) to students of physics

whose background in this regard comprises little more than some familiarity with elementary

matrix analysis — the situation most commonly encountered.

Let us now translate our findings for oblique axes to this language of ket and bra vectors.

Writing a,b and c as the ket vectors |a〉 , |b〉 and |c〉 respectively, eq. (12) suggests at once that

the reciprocal basis vectors A,B and C are in fact to be identified with bra vectors 〈A|, 〈B|
and 〈C|, respectively. Equation (12) is the statement that the corresponding inner products are

normalized to unity, i.e.,

〈A|a〉 = 〈B|b〉 = 〈C|c〉 = 1. (20)

The expansion of an arbitrary vector v in eq. (10) reads, in this language,

|v〉 =
(
〈A|v〉

)
|a〉 +

(
〈B|v〉

)
|b〉 +

(
〈C|v〉

)
|c〉. (21)

In other words, the resolution of the identity given by eq. (19) for orthogonal coordinates is

now replaced by

|a〉 〈A| + |b〉 〈B| + |c〉 〈C| = I. (22)

The space spanned by the reciprocal basis vectors A,B and C (more generally, by bra

vectors) may be regarded as a kind of dual of the original space spanned by the vectors a,b and

c.¶ It turns out that we can prove that the dual space is actually isomorphic to the original space,

provided the latter is finite-dimensional (in our case, it is three-dimensional). ‘Isomorphic

to’ does not mean ‘identical with’, of course, but it does mean that the properties of the two

space are essentially the same. This isomorphism between a linear vector space and its dual

space may sometimes be valid even for infinite-dimensional spaces. A common but nontrivial

example in physics occurs in elementary quantum mechanics: the position-space wave function

of a particle moving in one spatial dimension is a member of the linear vector space of square-

integrable functions of a real variable x ∈ R. Its Fourier transform has a physical interpretation

as the corresponding wave function in momentum space. This is also square integrable, and is

a member of an isomorphic linear vector space of square-integrable functions of a real variable

p ∈ R.

¶This statement is a bit loose and glosses over certain technical details, but is quite acceptable at the present

level of rigour.
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We have seen how ‘reciprocal’ vectors (in a ‘dual’ vector space) arise naturally if we work

with an oblique set of axes. The distinction between the original space and its dual space exists

in any case, but it may be blurred in the case of an orthogonal basis set like {i, j,k) in a real

vector space because the reciprocal basis appears to coincide with the original basis. When

faced with a non-orthogonal basis set, the usual practice in quantum mechanics is to construct

an orthogonal basis by, say, the Gram-Schmidt procedure. In crystallography, however, the

structure of the lattice may force us to stick to the non-orthogonal basis as the natural and more

useful one, supplemented, as we have seen, by the reciprocal basis. It must be remembered

that we have been working in three-dimensional Euclidean space for the greater part. What

if the number of dimensions we have to deal with is not equal to three ? (For one thing, the

‘cross product’ of two vector is a vector only in three dimensions ! ) What if the space itself

is curved? Do vectors and reciprocal or bra vectors (living in the dual vector space) have

anything to do with the distinction between contravariant and covariant vectors, (or ‘upstairs’

and ‘downstairs’ indices), tangent and cotangent spaces, and maybe even the Lagrangian and

Hamiltonian formalisms in classical mechanics? The answer is “yes”, implying that some

profound aspects of the physical world are lurking behind the simple geometrical questions we

have been discussing. We shall touch upon these matters in the sequel.
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things∗
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In the preceding chapter, we saw how dual vectors arose very naturally even in elementary

vector analysis. At the end of that chapter, I mentioned that dual vectors and the reciprocal

basis were very far-reaching concepts. They appear in many different contexts, some of which

will be described below. We begin with a situation that might appear to be simpler than the

three-dimensional case already worked out – but we are in for a surprise!

Reciprocal basis in two dimensions (2D)

Let us recall briefly the essential result derived in ch. 2: Given any three non-coplanar, i.e.,

linearly independent vectors {a,b, c} in the familiar three-dimensional (3D) Euclidean space,

the reciprocal basis comprises three vectors {A,B,C} such that

A · a = B · b = C · c = 1 (1)

and, further,

A · b = A · c = B · a = B · c = C · a = C · b = 0. (2)

The vectors {A,B,C} satisfying these conditions are found to be

A =
b × c

V
, B =

c × a

V
, C =

a × b

V
, (3)

where V = (a × b) · c. Its magnitude is the volume of the parallelepiped formed by a,b and c.

The expressions in (3) have a pleasing cyclical symmetry.

We now ask: what about the simpler case of two dimensions, i.e., a plane? We now have

two vectors a and b that are not parallel or antiparallel to each other. We want to find two other

vectors A and B in the same plane such that

A · a = B · b = 1, while A · b = B · a = 0. (4)

This is easily done if we regard a and b as defining the directions of a pair of oblique axes in

the plane. Then A and B must necessarily be linear combinations of the form

A = α1 a + β1 b, B = α2 a + β2 b. (5)

∗Based on Resonance, Vol.2, No.5, pp.8-14, 1997.
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The four constants α1, β1, α2 and β2 can now be found by taking the dot products of A and B

with a and b in turn, and imposing the conditions in (4). This involves solving four simultane-

ous equations, which is a bit tedious, although quite straightforward. Is there a simpler, shorter

way? One might be tempted to use the following argument:

“Since A · b = 0, A must be perpendicular to b. Similarly, B · a = 0, so that B ⊥ a. Hence A

cannot have a part proportional to b, i.e., β1 = 0. Likewise, α2 = 0. This leaves only the two

constants α1 and β2 to be determined.”

But this argument is incorrect! It is only valid if a and b are perpendicular to each other. If

they are not, then the condition A · b = 0 does not imply that A is directed along the other axis,

i.e., along a. Since a itself has a non-zero projection along b, the vector A cannot be directed

exclusively along a. It must also have a compensating piece proportional to b, so that its net

perpendicular projection on b is zero.

There is, however, a way to find A and B by solving just two equations, rather than four.

Any arbitrary vector v in the plane can be expanded in the form

v = c1 a + c2 b. (6)

Now recall from ch. 2 that the tensor products a A and b B also serve as projection operators

that add up to the unit operator, i.e., a A + b B = I. Hence

v ≡ I · v = a (A · v) + b (B · v). (7)

In other words, c1 = A · v and c2 = B · v. Take the dot product of both sides of eq. (6) with a

and b in succession, to get two simultaneous equations for c1 and c2. Solve them to obtain c1

and c2. You can then simply read off A and B from the expressions for c1 and c2, using the fact

that c1 = A · v and c2 = B · v. The final result is

A =
b2a − (a · b)b

a2b2 − (a · b)2
and B =

a2b − (a · b)a

a2b2 − (a · b)2
(8)

where a2 ≡ a · a and b2 ≡ b · b, as usual.

Although these expressions are not too complicated, they are not too simple, either. Nor

do they have the elegant cyclically symmetrical form of the expressions in the 3D case, eqs

(3). This is quite surprising, because we should expect the answer in 2D to be actually simpler

than that in 3D. In particular, the denominator a2b2 − (a · b)2 in (8) is of second order in a and

b, while the denominator in V in (3) is of first order in a,b and c. In 3D, |V | is the volume

of the parallelepiped formed by the set {a,b, c}. Its analogue in 2D is the area |a × b| of the

parallelogram formed by the set {a,b}. We might therefore expect this area to appear in the

denominator in the formulas for A and B. The problem, however, is that the cross product of

two vectors in 2D space, i.e., of two vectors living strictly in a plane, is not a vector! More

precisely: if (a1, a2) and (b1, b2) are the Cartesian components of the 2D vectors a and b, their

‘cross product’ a×b has only one component, a1 b2 − a2 b1, instead of the two needed to make

a 2D vector. This is the root of the difficulty.
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But an interesting observation now comes to our aid. The square of a1b2 − a2b1 is just

a2 b2 − (a · b)2, remembering that a2 = a2
1
+ a2

2
and b2 = b2

1
+ b2

2
. And if A and B are written

out component-wise, a factor a1b2 − a2b1 cancels out in each case, and we get

A1 =
b2

a1b2 − a2b1

, A2 =
−b1

a1b2 − a2b1

,

B1 =
−a2

a1b2 − a2b1

, B2 =
a1

a1b2 − a2b1

. (9)

These expressions do show (at last!) a sort of cyclic symmetry. Let us compare them with what

happens in 3D, eqs (3). In that case we have

A1 =
(b2c3 − b3c2)

V
, A2 =

(b3c1 − b1c3)

V
, A3 =

(b1c2 − b2c1)

V
, (10)

where

V = a · (b × c)

= a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1), (11)

and similar expressions for the components of B and C. What is the common feature of the

denominators in eqs (9) and (10)-(11)? A moment’s thought shows that, in each case, what we

have is just the determinant formed by writing out the basis vectors in component form, one

after the other, i.e.,

∣∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣∣ in 2D, and

∣∣∣∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣∣
in 3D. (12)

This is the vital clue – the hidden pattern is now sufficiently revealed for us to guess the com-

plete answer in an arbitrary number of dimensions! To do that, it is necessary to introduce,

first, an important symbol and a convenient bit of notation.

The Levi-Civita symbol and Einstein’s summation convention

We shall use the subscripts i, j, k, . . . to denote the various components of a vector. Thus,

ai stands for the ith component of the vector a. Here the subscript or index i can take on the

values 1, 2, . . . , d in d dimensions.

Now consider the set {ǫi j} of 22 = 4 quantities in 2D, defined as follows: ǫ12 = +1, ǫ21 =

−1, and ǫ11 = ǫ22 = 0. Its counterpart in 3D is ǫi jk, defined as follows :

ǫi jk =



+1, if i jk is an evenpermutation of 123

−1, if i jk is an oddpermutation of 123

0, in all other cases.

(13)
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Here, a permutation of the natural order 123 is said to be even [respectively, odd] if it is made

up of an even [resp., odd] number of interchanges or transpositions of two indices at a time.

Thus, of the 33 = 27 quantities ǫi jk,

ǫ123 = ǫ312 = ǫ231 = +1,

ǫ213 = ǫ321 = ǫ132 = −1,
(14)

and the remaining 21 components are equal to 0. It is evident that ǫi jk = 0 is zero whenever

at least two of the indices take on the same value, such as ǫ112 or ǫ333. The generalization to d

dimensions is immediate! In d dimensions, each of the indices i, j, k, l, . . . can take on values

from 1 to d. Then

ǫi jkl... =



+1, if i jkl · · · is an even permutation of 1234 · · · d
−1, if i jkl · · · is an odd permutation of 1234 · · · d
0, whenever any two indices are equal.

(15)

ǫi jkl... is called the Levi-Civita (or totally antisymmetric) symbol in d dimensions. Its great

utility will become clear shortly. But first, a remark:

Remark: In the special case of 3D, and only in this case, is the definition of Levi-Civita symbol

given in (13) entirely equivalent to the following definition, found in many textbooks:

ǫi jk =



+1, if i jk are in cyclic order of 123

−1, if i jk are in anticyclic order of 123

0, in all other cases.

(16)

While (16) is correct, it can be misleading, because it cannot be extended as it stands to any

other dimension, including 2D (ǫ12 = +1, but ǫ21 = −1 although 21 is a cyclic permutation of

12). The correct general definition for any d ≥ 2 is that given in (15).

Tullio Levi-Civita (1873–1941), mathematician

Abraham Pais, in his superb biography of Einstein (Subtle is the Lord), from which the

quotations here are taken, speaks of “a noble line of descendence” in the works of Gauss,

Riemann, Christoffel, Ricci and Levi-Civita, one of whose culmination points was Ein-

stein’s General Theory of Relativity (GTR). In 1917, Levi-Civita introduced in a math-

ematically rigorous manner the concept of parallel transport, a fundamental notion in

tensor calculus and differential geometry. His correspondence with Einstein early in 1915

helped Einstein in his final formulation of GTR later that year – he was “happy to have

finally found a professional who took a keen interest in his work”, and in a grateful letter

to Levi-Civita, said, “. . . It is therefore doubly gladdening to get to know better a man like

you.”
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Among other uses, the Levi-Civita symbol helps us write down the volume of the paral-

lelepiped formed by the basis vectors a,b, . . . in any number of dimensions, i.e., the value of

the determinant formed by the components of the vectors. We see at once that in 2D, this is

(a1b2 − a2b1) =

2∑

i=1

2∑

j=1

ǫi j ai b j . (17)

Similarly, in 3D,

V = a · (b × c) =

3∑

i=1

3∑

j=1

3∑

k=1

ǫi jk ai b j ck . (18)

The notation is simplified considerably if we adopt a convention: if an index is repeated (i.e., if

it appears twice in any expression), it is automatically summed over all the values it can take.

This summation convention was introduced by Einstein himself in 1916. Besides significantly

reducing the ‘clutter’ in mathematical expressions, it has a great advantage. It gives us a way

of making an important consistency check on calculations involving tensors:

(i) Every index symbol that appears once on the left-hand side of any equation must do so

on the right-hand side as well. (This is called a free index.)

(ii) Any index symbol that appears twice in an expression is a dummy index, and is to be

summed over all its possible values.

(iii) No index symbol can appear in any expression more than twice. If it does so, there’s

a mistake somewhere! (In particular, if an expression requires the use of two or more

dummy indices, you must use distinct symbols for the purpose.)

Taking a cue from the 2D and 3D cases, we have the following result: In d dimensions, the

volume of the hyperparallelepiped formed by the basis vectors a,b, c,d, . . . is simply

Vd = ǫi jkl... ai b j ck dl · · · , (19)

where each subscript must be summed over from 1 to d. Note that this formula is also applica-

ble in the cases d = 2 (i.e., in 2D) and d = 3 (i.e., in 3D), as you have already seen in eqs (17)

and (18).

Finally, here is another important special property of three dimensions: It is only in 3D

that the cross product of two vectors is itself a vector! (I will qualify this remark in Ch. 4,

in the interests of technical accuracy.) It is easy to check that the kth component of the vector

formed by the cross product of two vectors a and b in 3D is just ǫi jk ai b j. This quantity has

precisely one free index (namely, k), as required for a vector. On the other hand, in 2D the cross

product ǫi j ai b j, which has no free index left at all, and is thus a scalar rather than a vector. In

d > 3, the cross product is ǫi jkl... ai b j. But this quantity has two or more free indices (k, l, . . . ),

and hence denotes a tensor of rank 2 or more — to be precise, of rank d − 2. Since any two
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(non-collinear) vectors define a plane, a geometrical way of saying all this is as follows : in d-

dimensional space, we have d independent mutually orthogonal directions and dC2 = d(d−1)/2

independent orthogonal planes. Only in 3D are these two numbers equal to each other! This is

one of the main reasons why 3D is so special.

We have now set up all the machinery needed to find the reciprocal basis in an arbitrary

number of dimensions. This will be our first task in the next chapter.

The importance of good notation

I end this chapter with a few lines on an apparently trivial, but in reality quite important, matter.

Mathematical notation is generally regarded as a rather irrelevent or unimportant. It is often

so – and yet, proper notation is so essential for clear understanding! Moreover, there are many

striking instances when adopting a good notation has helped vitally in the development of the

subject. Newton, when he invented the differential calculus, which he originally called fluxions,

used ẏ, ÿ, . . . to denote successive derivatives. It is easy to see that this notation rapidly leads to

problems with higher-order derivatives, partial derivatives, and so on. In contrast, to quote E.T.

Bell in Men of Mathematics, “· · · the more progressive Swiss and French, following the lead of

Leibniz, and developing his incomparably better way of merely writing the calculus, perfected

the subject”, and thus made it “· · · a simple, easily applied implement of research · · · ”.

Two other instances readily come to mind in which a happy choice of notation even acts

as an automatic check against mistakes: Dirac’s bra and ket notation for linear vector spaces,

which was introduced in ch. 2, and the Einstein summation convention in tensor analysis. (If

an index symbol appears twice in an expression, it is to be summed over all its allowed values.

If it appears more than twice, there’s a mistake somewhere!) Einstein himself appears to have

been pleased with his innovation, for he jested to a friend that he had “made a great discovery

in mathematics; we have suppressed the summation sign every time that the summation must

be made over an index that appears twice · · · ”.

At an even more fundamental level, we have instances where notation is crucial to the very

existence of a subject — consider, for example, the place-value system of writing numbers

(including fractions and irrational numbers), introduced in ancient India. Going further on

the same trail, consider the idea of exponents, that lets us handle numbers of arbitrarily large

or small magnitudes in a very compact and efficient manner. Can one even imagine where

mathematics would be, if it were not for these examples of ingenious ‘good notation’?
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Reciprocal basis in d dimensions

In the preceding chapters, we have posed and solved the problem of finding the reciprocal basis

corresponding to any given basis set of vectors in 2-dimensional (2D) and 3-dimensional (3D)

space. We are ready, now, to tackle the problem of finding a reciprocal basis in Euclidean

space of d dimensions (dD). Consider a set of d vectors a,b, c, . . . that form a basis in dD. This

means that the set satisfies two distinct properties (i.e., neither of them implies the other):

(i) They are linearly independent. That is, none of them can be written as a linear combina-

tion of the rest of the set.

(ii) They span the space. That is, any arbitrary vector in the space can be written as a linear

combination of the vectors a,b, c, . . . .

Note that we do not require the vectors a,b, c, . . . to be mutually perpendicular, nor do we

require each of the vectors to be a unit vector.∗∗ In other words, we have a general set of

oblique axes in the space. The task is to find the corresponding reciprocal basis, i.e., the set of

d vectors A,B,C, . . . such that

A · a = B · b = C · c = · · · = 1, (1)

and all other scalar products of a vector from the reciprocal basis and a vector from the original

basis vanish. That is,

A · b = A · c = · · · = 0, B · a = B · c = · · · = 0, etc. (2)

Recall the corresponding solutions in 2D and 3D, respectively. These have been derived in

chapters 2 and 3. The Levi-Cita symbol and the summation convention help us express the

solutions in very compact form. Repeating them for ready reference, the components of the

vectors of the reciprocal basis are given by

Ai =
ǫi j b j

ǫpq ap bq

, B j =
ǫi j ai

ǫpq ap bq

in 2D, (3)

∗Based on Resonance, Vol.2, No.7, pp.20-26, 1997.
∗∗If those two conditions are also satisfied, we have an orthonormal basis, as you know.
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and by

Ai =
ǫi jk b j ck

ǫpqr ap bq cr

, B j =
ǫi jk ai ck

ǫpqr ap bq cr

, Ck =
ǫi jk ai b j

ǫpqr ap bq cr

in 3D. (4)

You can easily verify that these expressions satisfy the requirements in eqs (1) and (2). It is

now straightforward to see that that the answer in any dimension d is simply

Ai =
ǫi jkl... b j ck dl · · ·

ǫpqrs... ap bq cr ds · · ·
, B j =

ǫi jkl... ai ck dl · · ·
ǫpqrs... ap bq cr ds · · ·

, Ck =
ǫi jkl... ai b j dl · · ·

ǫpqrs... ap bq cr ds · · ·
, · · · (5)

and so on down the line, for each of the d vectors A,B,C, . . . . Once again, it is easy to

check that the conditions (1) and (2) are met by these solutions. Recall, also, that the de-

nominator in each of the expressions above is just Vd, whose magnitude is the volume of the

(hyper)parallelepiped formed by the basis vectors a,b, c, . . . .

I have already mentioned in ch. 2 that the notion of a reciprocal basis is a fundamental one

in crystallography. You are now ready to begin the study of crystallography in d dimensions!

Crystal classes in d dimensions

Crystallography involves a fascinating branch of mathematics, the theory of discrete

groups. The total number of crystallographic space groups (which is related to the kinds

of crystalline symmetry possible) is 17 in 2D and 230 in 3D. The corresponding quantity in

d > 3 dimensions is of interest in group theory and in certain applications of mathematical

physics. It is 4894 in 4D, and increases very rapidly as d increases.

The Gram determinant

We noted in ch. 3 that, in 2D, (a1b2−a2b1)2 = a2b2− (a ·b)2. But this is the same as saying

that ∣∣∣∣∣∣
a1 a2

b1 b2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
a1 a2

b1 b2

∣∣∣∣∣∣

∣∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣∣ =
∣∣∣∣∣∣

a · a a · b
b · a b · b

∣∣∣∣∣∣ . (6)

Note how the square on the left-hand side has been written as the product of a determinant and

its transpose. It is immediately clear that a similar relationship is valid in d ≥ 3 dimensions as

well.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 · · · ad

b1 b2 b3 · · · bd

c1 c2 c3 · · · cd

...
...

...
. . .

...

· · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 · · · ·
a2 b2 c2 · · · ·
a3 b3 c3 · · · ·
...

...
...

. . .
...

ad bd cd · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a · a a · b a · c · · · ·
b · a b · b b · c · · · ·
c · a c · b c · c · · · ·
...

...
...

. . .
...

· · · · · · .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (7)
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The quantity on the left-hand side is of course V2
d
. The determinant on the right-hand side,

formed by taking the scalar products of the d vectors a,b, c, . . . among themselves, is called

the Gram determinant Gd. Since Gd = V2
d
, it follows that Gd ≥ 0. The equality sign is valid if

and only if Vd = 0. But that would imply that the vectors a,b, . . . are not linearly independent

of each other, which cannot be the case for a set of vectors forming a basis in the space.

More generally, let v1, v2, . . . , vr be an arbitrary set of r vectors in a space of dimensionality

d. Let Gr be their Gram determinant. Then:

• Gr ≥ 0.

• The vectors of the set are linearly independent if and only if Gr , 0. That is, the non-

vanishing of their Gram determinant is a necessary and sufficient condition for linear

independence.

• If r > d, Gr = 0, i.e., the vectors cannot be linearly independent.

• If r = d and Gr , 0 (so that the vectors are linearly independent), the set can form a basis

in the space.

• If r < d, the set cannot form a basis in the space even if Gr , 0, because the vectors do

not span all of the space.

Let v1 and v2 be any two vectors (in a space of dimensionality d), and let θ be the angle

between them. Let v1 and v2 be the magnitudes of the two vectors. We then have

(v1 · v1)(v2 · v2) − (v1 · v2)2 = v2
1 v2

2 (1 − cos2 θ) ≥ 0, (8)

because | cos θ| ≤ 1 for any angle θ. The second equality sign in (8) applies if and only if

v1 and v2 are collinear. When extended to any two vectors in what is called a general linear

vector space, (8) is known as the Cauchy–Bunyakovsky–Schwarz inequality. This important

inequality is useful, for instance, in establishing the Heisenberg uncertainty relation between

two observables in quantum mechanics. The corresponding extension of the inequality Gr ≥ 0

to a general linear vector space is thus a generalization of the Cauchy–Bunyakovsky–Schwarz

inequality to an arbitrary number of vectors. The way we have arrived at it here brings out its

geometrical interpretation.

What is a vector?

In all the foregoing, I have used the terms scalar and vector without formal definition, in

the common or usual sense familiar to us from high school: a scalar only has a numerical

value, while a vector has both a magnitude and a direction. This is not a very satisfactory

definition even in high school! Direction with respect to which set of coordinate axes? If the

answer is, ‘Some given, fixed set of axes’, then why is it that this set is never specified right

at the beginning of each book dealing with vectors? And how is it that the same equation,
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say F = ma, makes sense whether it is written down in Mumbai or Mogadishu, although it

is unlikely that the orientations of the coordinate frames chosen in the two cases will be the

same?

The correct way to define scalars, vectors, tensors, etc. is via their transformation prop-

erties under changes of coordinate frames. Once this is done, any equation or relationship

involving only those quantities whose transformation properties are specified is guaranteed to

remain the same in form (form-invariant) for two users who use different coordinate frames.

That is why books dealing with vector equations do not bother to specify any special set of

coordinate axes right in the beginning! Even this definition is not adequate. What sort(s) of

coordinate transformations are we talking about?

The usual (high school!) scalars and vectors that we have considered are actually defined

with respect to the set of rotations of the coordinate axes. The value of a scalar thus defined

(e.g., the distance of a point from the origin of coordinates) does not change at all under such a

rotation. A vector comprises a set of numbers (called its components) that do change under a

rotation of the coordinate axes – but they do so in precisely the same manner as the coordinates

of any point themselves change. Indeed, this is the very definition of a vector of the usual kind.

Tensors of higher rank (2, 3, . . . ) are defined in an analogous manner; they have (slightly) more

involved transformation properties under rotations of the coordinate axes. In technical terms:

the scalars and vectors I have used so far (except for the general cases mentioned briefly on

occasion) are actually scalars and vectors under the group of proper rotations in d-dimensional

Euclidean space. Now that we have become quite familiar with scalars and vectors of this kind,

the statement just made should be much easier to digest. As my whole aim has been to provide

a simple, heuristic approach to some aspects of vector analysis, we have preferred to mention

these issues at this stage, rather than to open the discussion with them. I have also glossed

over many mathematical technicalities wherever these have not been directly relevant to the

point being made. For instance, I have not made a careful distinction between the elements of

a linear vector space and those of the dual vector space, i.e., between vectors and co-vectors,

or – in a different language – between vectors and one-forms. Nor have I presented a rigorous

version of the somewhat loose statement that the cross-product of two vectors is itself a vector

in (Euclidean) 3D space. While there has admittedly been a lack of mathematical rigour in this

sense, I believe that the treatment given suffices for our present purposes.

Extensions and generalizations

The elementary concepts I have tried to describe in this chapter and the preceding ones have

wide-ranging extensions and generalizations, with remarkably diverse applications. I can only

mention some of these here.

The form invariance of physical laws from one coordinate frame to another is a cornerstone

of all modern physics. In a vastly generalized and extended form, it is, in fact, the prime

guiding principle in all modern physics! (Examples include the general theory of relativity

and quantum field theories describing the interactions of elementary particles, but we shall not
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go into this here.) This means that the laws of physics must be specified in terms of quantities

whose transformation properties are prescribed – e.g., scalars, vectors, tensors, etc. – quantities

which carry their own dictionaries, so to speak, so that different users related to each other by

these transformations can simultaneously and unambiguously use the same laws. This is why

we write Newton’s second law of motion, or Maxwell’s equations of electromagnetism, for

instance, in terms of vectors.‡

We can see immediately, now, that it might be both necessary and possible to have scalars,

vectors, . . . (or their equivalents) under other sets of transformations than just rotations of the

coordinate axes, and in spaces that are more complicated than the Euclidean spaces we have

used in the foregoing. We believe, for instance, that in regions where space-time is essentially

flat, i.e., in the absence of very intense gravitational fields that give space-time a significant

curvature, the laws of physics are form invariant under Lorentz transformations (which include

rotations of the spatial coordinate axes), rather than just rotations of the axes. Moreover, the

space-time geometry is not strictly Euclidean. We must therefore deal with scalars, vectors

and other such objects defined with respect to the set (more specifically, the group) of Lorentz

transformations in what is known as a non-Euclidean 4D space-time manifold. In the presence

of gravitational fields, this manifold itself becomes curved in a specific mathematical sense.

The set of transformations under which physical laws are required to remain form invariant is

now even more general. The distinction between vectors and their corresponding dual vectors

is now non-trivial, and not just a matter of using oblique axes in a flat (Euclidean) space.

To help keep this in mind, the indices are written as superscripts for vectors and subscripts

for their dual counterparts. In tensor analysis, the traditional names for these quantities are

contravariant vectors and covariant vectors. In mathematics, they are simply vectors and co-

vectors, which is much better terminology.

In classical dynamics, too, vectors and co-vectors play a crucial role. In the Lagrangian

formalism, we describe a system in terms of a set of generalized coordinates and the cor-

responding generalized velocities. In the Hamiltonian formalism, the latter are replaced by

generalized momenta. Roughly speaking, the shift from velocities to momenta corresponds

to going from a vector space to its dual vector space. Pursuing this further, we arrive at the

modern mathematical description of Hamiltonian dynamics, using differential geometry and

topology. But that is another story.

In quantum mechanics, as already mentioned already in ch. 2, we describe a system by a

state vector or ket vector |ψ〉 in a particular kind of linear vector space called a Hilbert space.

(The corresponding dual is the bra vector 〈ψ|.) It turns out, however, that the multiplication

of |ψ〉 by any complex number of the form eiθ (where θ is any real number) does not lead to

a new state, so that |ψ〉 and eiθ |ψ〉 describe the same state. In terms of the corresponding bra

vectors, this means that 〈ψ| and 〈ψ| e−iθ are equivalent. Consequently, the appropriate vector

space in quantum mechanics is a so-called projective Hilbert space rather than the original

‡And not because each vector equation stands for three equations (one for each component), thus saving space

in books!
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Hilbert space itself, and the descriptor of a state is the object |ψ〉〈ψ| rather than the ket |ψ〉 or

bra 〈ψ| by itself. (In this combination, the factors eiθ and e−iθ cancel each other out.) By now,

we can recognise an object like |ψ〉〈ψ|. Like the tensor product aA, it is an operator. Its formal

name in quantum mechanics is the density operator. The most general descriptor of a quantum

mechanical system is its density operator ρ (which does not, in the general case, have the form

|ψ〉〈ψ|). The evolution of the system with time is governed by the so-called Liouville equation

for ∂ρ/∂t. This, too, is another story.

These remarks are meant merely to give an idea of the generality of the concepts of the

reciprocal basis and dual vectors, and to whet your appetite for more!
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Introduction

In the preceding chapters, we have seen how very general arguments such as linearity, ho-

mogeneity and symmetry can be used to derive a number of results in elementary vector and

tensor analysis. Moreover, generalizations of many of these results to an Euclidean space of an

arbitrary number of dimensions could be made quite readily. Some of the special features of

three dimensions (3D) were also brought out. Most notably, the cross-product of two vectors

is again a vector only in 3D. As I have already emphasized, this property is connected to the

fact that the number of independent, mutually orthogonal planes through the origin, given by
dC2 = d(d − 1)/2, is equal to the number of independent axes, d, if and only if d = 3. In

this chapter, we shall see how this fact can be exploited to deduce, in a simple way, an explicit

formula for the action of an arbitrary rotation of the coordinate frame upon any given vector.

This formula is of fundamental importance, because of the very definition of a vector: it is

a quantity whose components transform, under a rotation of the axes, in precisely the same

manner as the position coordinates of an arbitrary point transform.

The approach will again be of the ‘What can the answer possibly be?’ type. The only

place where the argument needs to be supported by a more detailed calculation will be pin-

pointed. Even this is instructive, as it highlights a very basic property of rotations. The entire

argument is quite short, but I will describe it somewhat elaborately for the sake of clarity and

ease of understanding. The formula to be deduced is called the finite rotation formula. In

the next chapter, a more formal treatment of rotations will be given, involving the generators

of infinitesimal rotations. As a by-product, that approach will enable us to derive the finite

rotation formula rigorously.

Numerous physical quantities (velocity, linear momentum, acceleration, force, electric

field, angular momentum, . . .) are vectors in the elementary sense of the term: like the po-

sition vector of a point in space, they have a magnitude and a direction. The numerical values

of these, namely, the values of the components of a vector, naturally depend on the particular

coordinate frame chosen. However, as I have explained in ch. 4, the whole point of writing

relationships between physical quantities in the form of a vector (more generally, tensor) equa-

tions is as follows: These relations are independent of the particular coordinate frame one may

choose. Their form is the same in all frames obtainable from each other by rotations of the set

of axes by arbitrary amounts, in arbitrary directions. A general formula that connects a vector

in a given frame to its transformed version in a rotated frame is therefore rather useful. Note

that the formula is applicable to any vector quantity, regardless of its physical dimensions in

terms of M, L and T (mass, length and time).

∗Based on Resonance, Vol.4, No.10, pp.61-68, 1999.
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Rotating a coordinate frame in 3D

Suppose S and S ′ are two coordinate frames related to each other by a rotation about the

origin in S . It is obvious that the same point remains the origin in S ′. Let A denote a vector as

described in S , and A′ its counterpart in S ′. Given A, we want to find A′.
The most common context in which such a problem arises is that of the rotational dynamics

of a rigid body. In that case, one has a fixed reference frame called space-fixed axes (which we

may identify with S ), and another reference frame attached to the rigid body, called body-fixed

axes (which we may identify with S ′). The orientation of the rigid body at any instant of time

is then specified by the orientation of the body-fixed axes relative to the space-fixed axes. In

turn, this is quantified by the rotation needed to put the set of axes in S into coincidence with

those in S ′, i.e., the rotation that ‘takes’ S to S ′.
A standard way of describing or implementing such a rotation proceeds in three successive

steps via the use of three Euler angles α, β and γ, as follows.

(i) Rotate the frame S about its z-axis by an angle α.

(ii) Rotate the resulting frame about its (new) x-axis by an angle β.

(iii) Rotate the resulting frame about its (new) z-axis by an angle γ.

It can be shown that any orientation of S ′ with respect to S , no matter what it is, is guaranteed

to be reached in this manner by suitable choices of the angles α, β and γ. The sequence of

rotations, however, is not unique: there are other sequences of three rotations that will take

S to any given S ′.∗∗ Although the specification of a rotation via a set of Euler angles is very

useful in practice, especially in engineering mechanics, it is not very convenient for our present

purposes.

There is an alternative way to specify a rotation of the coordinate frame about the origin of

coordinates, also discovered by Euler. (It is called Euler’s Theorem in rigid body dynamics.)

This description of a general rotation has a direct physical interpretation. According to Euler’s

Theorem, any orientation S ′ can be reached by rotating the frame S through an angle ψ about

a direction given by a unit vector n (see Figure 1). That is, the axis of rotation is n, while the

amount of rotation (in the plane normal to n) is ψ. Now, any unit vector n is itself specified by

two angles in S : a polar angle θ and an azimuthal angle φ. Therefore the rotation as a whole

is again specified by three angles (θ, φ, ψ), instead of three Euler angles (α, β, γ). Let us denote

the corresponding rotation operator that is to act on vectors by R(n, ψ). In other words, R acts

on any vector A (specified in S ) to produce another vector A′, according to the formal equation

A′ = R (n, ψ) A. (1)

The task is to derive an explicit formula for A′.

∗∗There are, in fact, 12 different Euler angle conventions possible.
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Figure 1: A rotation of the coordinate frame about the origin is specified by the axis of rotation

n and the angle of rotation ψ.
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Figure 2: The position vector r ′ of a point in the rotated frame must be a linear combination of

its original position vector r, the axis of rotation n, and the vector r × n.

What can A′ possibly be?

It is obvious that A′ will be a function of ψ,n and of course A itself. The only vectors on which

A′ can depend are A and n. We may therefore expect A′ to have components along each of

these two vectors. Moreover, A and n together determine a certain plane, and the vector (A×n)

is normal to this plane. Therefore A′ might have a component in this direction as well. In other

words, A,n and (A×n) form a triad in general, i.e., a set of oblique axes, along which A′ can be

resolved. (Figure 2 depicts this triad in the case when A = r, the position vector of an arbitrary

point.) Thus A′ must be a linear combination of the three vectors A, n and (A × n). Moreover,

each term in the expansion must be linear in A (equivalently, in physical terms: each term must

have the same physical dimensions as A). This implies that the part along n must actually be
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proportional to (n · A)n, which is the portion of A along n. Therefore A′ must be of the form

A′ = f A + g (n · A) n + h (A × n), (2)

where f , g and h are scalar quantities, yet to be determined.

Now, the effect on a vector A of rotating the coordinate frame S about the axis n through an

angle ψ is the same as that of leaving the frame fixed, but rotating the vector about the same axis

through an angle −ψ, as follows.The tips of the vectors A and A′ lie on the rim of a cone whose

axis is along n. The magnitudes of A and A′ are equal, i.e., |A| = A = |A′|. The angle between

n and A is equal to the angle between n and A′. (This is the half-angle of the cone.) Hence

n ·A = n ·A′. The angles ∡(n,A) and ψ are the only two angles in the problem. The scalars f ,

g and h can only depend on these angles. But a rotation is a linear transformation when it acts

on any vector A, as implied by eq. (1). This means that f , g and h cannot themselves have any

sort of dependence on the particular vector A on which the rotation acts. It follows that f , g

and h can only depend on ψ. Equation (2) therefore reduces to

A′ = f (ψ) A + g(ψ) (n · A) n + h(ψ) (A × n). (3)

We can go a little farther. It is clear, intuitively, that a rotation is a continuous transformation:

that is, a rotation about the axis n through an angle ψ can be implemented by a succession of

infinitesimal rotations about the dame axis. f , g and h must therefore be continuous, differen-

tiable functions of ψ. Moreover, a rotation about any axis by a multiple of 2π clearly brings S

back its original orientation. A′ must coincide with A in this case. Hence f (ψ), g(ψ) and h(ψ)

must be periodic functions of ψ with a period of 2π, i.e.,

f (ψ + 2π) = f (ψ), g(ψ + 2π) = g(ψ), h(ψ + 2π) = h(ψ). (4)

We conclude that f , g and h are continuous, differentiable functions of cos ψ and sin ψ.

Determination of f (ψ), g(ψ) and h(ψ)

We note first that A will remain unaltered if the axis of rotation is along A itself, whatever

be the value of ψ. (Any vector along the axis of rotation is obviously left unchanged by the

rotation.) In this situation (n · A) n = A, and n × A = 0. Therefore we must have

A = [ f (ψ) + g(ψ)] A (5)

for every vector A, i.e., f (ψ) + g(ψ) = 1 in general. Equation (3) reduces to

A′ = f (ψ) A + [1 − f (ψ)] (n · A) n + h(ψ) (A × n). (6)

But the vector A must remain unchanged if ψ = 0 (no rotation occurs at all), whatever be n.

Hence

A = f (0) A + [1 − f (0)] (n · A) n + h(0) (A × n). (7)
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Once again, this must hold good for any arbitrary direction n and any vector A, which is

possible only if

f (0) = 1 and h(0) = 0. (8)

Now square each side of eq. (6), and recall that |A| = |A′| = A. Using the identities

A · (A × n) = n · (A × n) = 0,

(A × n) · (A × n) = A2 − (A · n)2, (9)

we get

A 2 =
{
f 2(ψ) + h2(ψ)

}
A2 +

[
1 −

{
f 2(ψ) + h2(ψ)

}]
(n · A)2. (10)

This relation can be valid for all n and A if and only if

f 2(ψ) + h2(ψ) = 1. (11)

Equations (4), (8) and (11) suggest strongly‡ that

f (ψ) = cos ψ and h(ψ) = ± sin ψ. (12)

To decide whether h(ψ) = + sin ψ or − sin ψ, it is convenient to look at the special case when

n is perpendicular to A and, moreover, the angle of rotation is an infinitesimal one, δψ. Then

cos (δψ) ≈ 1 and sin (δψ) ≈ δψ, to first order in the infinitesimal δψ. From Figure 2, we see

that

A′ − A = −(n × A) δψ ≈ (A × n) sin (δψ), (13)

so that

A′ = A + (A × n) sin (δψ). (14)

From this we deduce that h(ψ) = sinψ in general, because a finite rotation ψ may be regarded

as being built up of a succession of incremental angles δψ.

With the functions f (ψ) = cos ψ and h(ψ) = sin ψ at hand, we are ready to write down the

general formula for the transformation of an arbitrary vector A under rotation of the coordinate

frame about an axis n, through an angle ψ:

A′ = R(n, ψ) A = (cosψ) A + (1 − cosψ) (n · A) n + (sinψ) (A × n). (15)

This is the finite rotation formula§ for a vector.

At this stage, it is necessary to point out the weak link in this admittedly non-rigorous

derivation of the formula. I have stated that eqs (4), (8) and (11) suggest strongly the solutions

cos ψ and sin ψ for the functions f (ψ) and h(ψ), respectively. Obviously, these are not unique

solutions. For instance, the functions

f (ψ) = cos (sin ψ), h(ψ) = sin (sin ψ) (16)

‡The phrase ‘suggest strongly’ requires some elaboration. This follows shortly.
§Also called Rodrigues’ rotation formula.
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or the functions

f (ψ) = cos

[
1

3
(sin ψ + sin 2ψ)

]
, h(ψ) = sin

[
1

3
(sin ψ + sin 2ψ)

]
(17)

also satisfy the same conditions, as do an infinite number of other possibilities. The functions

cos ψ and sin ψ are merely the simplest of these possibilities. They also happen to be the

correct solutions, as we shall show by a proper derivation of the finite rotation formula in ch.

6. The rigorous derivation of the results f (ψ) = cos ψ, h(ψ) = sin ψ depends on the only

property of rotations that we have not fully exploited so far — namely, that a rotation through

a finite angle ψ can be achieved by a succession of n rotations through infinitesimal angles δψ

such that, in the limit n → ∞ and δψ → 0, the product n δψ → ψ. (In technical language, ‘a

proper rotation is continuously connected to the identity transformation’.) All other properties

of rotations in 3D have been used in the simple step-by-step derivation just described: first and

foremost, the existence of an axis of rotation n corresponding to any arbitrary rotation; next,

the linear and homogeneous nature of the transformation (every term on the right in eq. (2) is

linear in A); its distance-preserving nature (|A| = |A′|); and finally, the fact that a rotation by a

multiple of 2π is equivalent to no rotation at all as far as scalars and vectors are concerned.

Remarks on rotations in dimensions d , 3

The formula in eq. (15) gives an explicit representation of the rotation operator R(n, ψ) in 3D

in the form in which it acts on an arbitrary vector. Symbolically,

R(n, ψ) = (cosψ) I + (1 − cosψ) n n · −(sinψ) n× (18)

Any vector on which R acts is to be inserted to the right of the operator on the right-hand side.

The symbol I stands for the unit operator. Any vector on which it acts is left unchanged. n n· is
a projection operator of the kind introduced in ch. 2. When it acts on a vector A from the left,

it yields n (n · A).¶ An explicit representation such as this for the action of finite (as opposed

to infinitesimal) transformations is obviously very useful, but is not as readily available for

rotations in dimensions d , 3.

Consider, first, a rotation about the origin of coordinates in 2D, i.e., in a plane. The rotation

takes place about a point. There is no axis about which the rotation of the coordinate frame

occurs. The effect of a rotation of the (Cartesian) axes by an angle ψ is easily deduced. Using

elementary trigonometry, we find that the position vector r = (x, y) of an arbitrary point is

transformed to r ′ = (x ′, y ′), where

x ′ = x cos ψ + y sin ψ, y ′ = −x sin ψ + y cos ψ. (19)

I have already emphasised that a vector is defined as a quantity that transforms (under a rota-

tion of the coordinate frame) in precisely the same way as the position coordinates transform.

¶Objects like I and n n are sometimes referred to as dyads, especially in the older literature on vector analysis.
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Therefore, given any vector A, eqs (19) specify the components (A ′x, A
′
y) of the transformed

vector A′ in terms of the components (Ax, Ay) of the original vector A. However, there is no

way of writing A′ in vector form in a manner analogous to eq. (15). This is because in 2D there

is no vector like the unit vector n in 3D characterizing the rotation. We can, however, invoke

the antisymmetric Levi-Civita symbol ǫi j defined in ch. 3, and express the components of A′ in

the form

A ′i = (cos ψ) Ai + (sin ψ) ǫi j A j, (20)

where the indices i and j run over the values 1 and 2, and a summation over the repeated index

j is implied. The analogous formula in 3D is, from eq. (15),

A ′i = (cos ψ)Ai + (1 − cosψ) ni n j A j + (sin ψ) ǫi jk A j nk. (21)

One might be tempted to jump to the following conclusion: In 2D, a rotation leaves a

point (dimension = 0) unchanged; in 3D, it leaves a line or axis (dimension = 1) unaffected.

By extrapolation, one might imagine that in d-dimensional space, an arbitrary rotation would

leave a subspace of dimensions (d− 2) unchanged, thus affecting only some plane in the space.

But this is incorrect, as the following argument shows.

Any rotation in d dimensions can be expressed as the result of successive ‘planar’ rotations,

i.e., linear, homogeneous, distance-preserving transformations, each of which acts on just two

of the coordinates, leaving the others unchanged. In d dimensions, the coordinate axes taken

pairwise define d(d − 1)/2 different orthogonal planes. A rotation in d dimensions is specified

by d(d − 1)/2 angles (analogous to the three Euler angles in 3D). However, a general rotation

in d ≥ 4 dimensions cannot be reduced to a rotation in some single ‘tilted’ plane in space,

leaving a (d − 2)-dimensional subspace unaltered. It is easy to see why: If the latter were

possible, such a rotation would be specifiable by just d parameters: namely, (d − 1) parameters

to specify the unit vector normal to the plane concerned, together with 1 angle to specify the

angle through which the plane is rotated. But when d > 3, this is less than the actual number of

parameters [d(d − 1)/2] it takes to specify a general rotation in the space. Therefore a general

rotation is not reducible to a rotation in some plane in the space. As a consequence, formulas

as simple as those of eqs (20) and (21) are thus not available for these transformations in spaces

of dimensions greater than 3. There are, however, many interesting properties of rotations in

d > 3 that have been established by mathematicians. For instance, every rotation in d = 4 can

be implemented in at least one way by rotations in 2 different mutually orthogonal planes in

the space.

Another interesting fact is worth pointing out. We may ask whether a general rotation in

d ≥ 3 leaves at least a direction (a 1-dimensional subspace) unchanged: in other words, can

we associate an axis with every rotation? The answer reveals a deep and profound difference

between even and odd dimensional spaces. It is ‘no’ if d is even, and ‘yes’ if d is odd. For

example, let xi (i = 1, 2, 3, 4) be the cartesian coordinates in 4D. Consider a rotation in the

(x1, x2) plane by an angle α1, followed by a rotation in the (x3, x4) plane by an angle α2. We
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are then guaranteed that the net rotation leaves no nonzero vector unchanged, i.e., no axis of

rotation exists for this particular rotation.

There is an easy way to see how this general result comes about. A (‘proper’) rotation R

in d dimensions can be implemented (represented) by a (d × d) real orthogonal matrix with

determinant equal to +1. All d eigenvalues of such a matrix must lie on the unit circle in the

complex plane, in complex conjugate pairs. The product of all the eigenvalues must be equal to

+1, the determinant of the matrix. (In the example given above, the eigenvalues of R are e±iα1

and e±iα2 .) If d = 2k+1, there are in general k such pairs e±iα1 , . . . , e±iαk , and a final eigenvalue

+1. Hence there must be at least one non-zero vector n in the space, such that R n = 1 n. That

is, there is an axis of rotation for every rotation in any odd-dimensional space. A moment’s

thought shows that this axis is unique when d = 3, i.e., exactly one eigenvalue is equal to +1

for every rotation matrix in this case.

In the next chapter, we will return to rotations in 3-dimensional space, and derive an ex-

pression for the matrix representing an arbitrary rotation. As a by-product, this will yield a

rigorous derivation of the finite rotation formula.
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Recall that a rotation of the coordinate frame about the origin in 3-dimensional space can

be specified by an axis of rotation, n, and an angle of rotation, ψ, as shown in Figure 1, ch. 5.)

The rotation, denoted by R(n, ψ), acts on the position vector r of any arbitrary point to yield

the position vector r ′ = R(n, ψ) in the rotated coordinate frame. As emphasised in preceding

chapters, any arbitrary vector A also transforms, by definition, in precisely the same way: that

is, A′ = R(n, ψ)A. In ch. 5, I have described an heuristic way of arriving at an expression for

A′ (the finite rotation formula). In this chapter, we shall derive this formula rigorously. On the

way, we will discuss the generators of rotations, the algebra satisfied by these generators, and

other related matters.

Generators of infinitesimal rotations

Let us write the position vector r of a point in the form of a (3×1) column matrix with elements

x1, x2, x3 (the Cartesian coordinates of the point concerned). R(n, ψ) is then represented by a

(3 × 3) matrix with elements R jk(n, ψ), where the indices j and k run over the values 1, 2 and

3. This is called a rotation matrix. Our focus will be on the set of (3 × 3) rotation matrices,

parametrized by n and ψ. This set of matrices forms the so-called standard representation of the

3-dimensional rotation group. As we shall see, the matrices will turn out to be orthogonal (i.e.,

RRT = I3 where T stands for the transpose and I3 is the (3× 3) identity matrix) and unimodular

(i.e., the determinant of R is equal to +1). Such matrices comprise the special orthogonal group

in 3 dimensions, S O(3). More will be said about this group in the sequel.

Let (i, j,k) denote the unit vectors along the three Cartesian axes, as usual. We begin by

writing down the rotation matrix corresponding to a special case: a rotation about k (i.e., a

rotation in the (x1, x2) plane) by an angle ψ. This leaves the coordinates of points on the x3 axis

unchanged. As you know from elementary coordinate geometry, we have in this case

R(k, ψ) =



cos ψ sinψ 0

− sin ψ cos ψ 0

0 0 1

 . (1)

By cyclic permutation, the rotation matrices corresponding to rotations about i and j are easily

written down. They are

R(i, ψ) =



1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

 (2)
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and

R(j, ψ) =



cos ψ 0 − sin ψ

0 1 0

sin ψ 0 cos ψ

 . (3)

You can easily check that RRT = I3 and det R = 1 in each of these cases.

The next step is to show that each of these rotation matrices is the exponential of another

matrix, being generated as the limit of a succession of infinitesimal rotations about the same

axis. This is easy to do because we already have the closed-form expressions for finite rotations

in eqs (1)–(3). Take, for instance, R(k, ψ). This rotation can be achieved by n successive

rotations through an infinitesimal angle δψ about the x3-axis, such that n δψ = ψ. R(k, δψ) is

easy to write down, because cos δψ ≃ 1 and sin δψ ≃ δψ correct to first order in δψ. Taking

out the (3× 3) unit matrix, which corresponds to the identity transformation (i.e., no rotation at

all), we get, to first order in δψ,

R(k, δψ) = I3 + i J3 (δψ), (4)

where

J3 =



0 −i 0

i 0 0

0 0 0

 . (5)

Note that the elements of the matrix J3 are pure numbers that are independent of the angle of

rotation. A factor i has also been separated out in the definition of J3 in order to ensure that J3

is a hermitian matrix, i.e., J3 = J
†
3

(its complex conjugate transpose).

The matrix corresponding to rotation about the x3-axis by a finite angle ψ is then given by

the n-fold product of R(k, δψ) with itself, i.e.,

R(k, ψ) = [R(k, δψ)]n =
[
I3 + i J3 (δψ)

]n
. (6)

Now set δψ = ψ/n and let n→ ∞. Then

R(k, ψ) = lim
n→∞

(
I3 +

i J3 ψ

n

)n

= ei J3 ψ. (7)

Note that the exponential of any square matrix M of finite order has exactly the same power

series expansion as the exponential of any complex number: that is,

eM =

∞∑

n=0

Mn/n! (8)

Repeating the foregoing procedure for R(i, ψ) and R(j, ψ), we get

R(i, ψ) = ei J1 ψ where J1 =



0 0 0

0 0 −i

0 i 0

 (9)
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and

R(j, ψ) = ei J2 ψ where J2 =



0 0 i

0 0 0

−i 0 0

 . (10)

The hermitian matrices J1, J2 and J3 are called the generators of infinitesimal rotations about

the x1, x2 and x3 axes, respectively. Exponentiating them as in eqs (9), (10) and (7) yields the

corresponding matrices for rotations by a finite angle ψ. I leave it as an exercise for the reader

to start with (9), (10) and (7), use the expansion in eq. (8) for the exponential of a matrix, and

recover eqs (2), (3), and (1).

The most important property of these generators is as follows. Recall that the commutator

of two square matrices A and B of the same order is defined as

[A, B] ≡ AB − BA. (11)

It is easily checked (do so!) that the generators satisfy the commutation relations

[J1, J2] = i J3, [J2, J3] = i J1, [J3, J1] = i J2. (12)

Using ǫklm, the Levi-Civita symbol in 3 dimensions (defined in ch. 3), these relations can be

written more compactly as

[Jk , Jl] = iǫklm Jm, (13)

where the indices run over the values 1, 2 and 3, and a summation over the repeated index m

is implied. Equation (13) is called the angular momentum algebra. The reason for this name

lies in quantum mechanics, where hermitian matrices (more generally, hermitian operators) are

associated with physical observables. The generators of infinitesimal rotations are the matrices

associated with the components of the angular momentum.

The general rotation matrix: formal expression

We have seen that the matrices corresponding to rotations about the three Cartesian axes can

be written as exponentials of the corresponding infinitesimal generators. What about a general

rotation by an angle ψ, about an axis n pointing in an arbitrary direction in space?

A problem arises now. Rotations through finite angles about two different axes do not com-

mute with each other! The final orientation of a coordinate frame after two successive rotations

about different axes of rotation depends on the order in which the rotations are performed. This

is easy to visualize physically.∗ In mathematical terms, the corresponding rotation matrices do

not commute with each other. For example,

R(i, α)R(j, β) , R(j, β)R(i, α), (14)

∗For instance, rotate a cube by 1
2
π about two mutually perpendicular axes in succession. Now carry out the

rotations in the opposite order, and observe that the final orientation of the cube is different in the two cases.
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precisely because J1J2 , J2J1. On the other hand, infinitesimal rotations about different axes

do commute with each other, correct to first order in the infinitesimal angles. If (n1, n2, n3) are

the Cartesian components of the unit vector n, then

R(n, δψ) ≃ (I3 + iJ1n1 δψ)(I3 + iJ2n2 δψ)(I3 + iJ3n3 δψ)

≃
[
I3 + i(J1n1 + J2n2 + J3n3) δψ

]

≡ I3 + i (J · n)δψ. (15)

This statement requires elaboration. First, the order of the brackets in the right-hand side of

the first equation in (15) does not matter, correct to first order in δψ. Second, the generators

(J1, J2, J3) have been treated like the components of a vector J in the final equation in (15).

This is more than mere notation, as you will see later on, in ch. 7. With this result at hand, it

follows that

R(n, ψ) = lim
n→∞

(
I3 +

i (J · n)ψ

n

)n

= ei (J·n)ψ. (16)

Thus, the rotation matrix for any arbitrary rotation is also expressible as the exponential of a

linear combination of the three generators.

The general rotation matrix: explicit form

The next task is to examine whether this expression can be simplified to yield an explicit (3×3)

rotation matrix whose elements are functions of n and ψ. It is not immediately clear that this

can be done, because

ei (J1n1+J1n1+J1n1)ψ
, ei J1n1 ψ ei J2n2 ψ ei J3n3 ψ. (17)

Now, there is no closed-form expression for the exponential of a general (3 × 3) matrix, unlike

the case of a general (2×2) matrix. The matrix M ≡ i(J ·n), however, is a rather special kind of

matrix. It has a form that enables the matrix R(n, ψ) = eMψ to be computed fairly easily. Using

the expressions in eqs (9), (10) and (5) for the generators, we find

M = i Jknk =



0 n3 −n2

−n3 0 n1

n2 −n1 0

 . (18)

The general element of M is given by

Mi j = ǫi jk nk . (19)

A bit of ‘index manipulation’ now follows! The general element of the square of M is given

by

(
M2

)
i j
= Mik Mk j = ǫikl nl ǫk jm nm
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= −ǫkil ǫk jm nl nm = (δim δ jl − δi j δlm) nl nm

= ni n j − δi j. (20)

I have used here the well-known identity that relates the product of two Levi-Civita symbols

with one common (‘contracted’) index to a combination of Kronecker deltas. With eqs (19)

and (20) at hand, we get
(
M3

)
i j
= (ni nk − δik) ǫk jl nl = −ǫi jl nl. (21)

Note that the term ǫk jl ni nk nl vanishes identically, because ǫk jl is antisymmetric in the indices

k and l, while ni nk nl is symmetric in these two indices.∗∗

Equation (21) implies that M3 = −M. Therefore M4 = −M2, M5 = M, and so on. It

follows at once that eMψ can be written as a linear combination of the matrices I3, M and M2.

We get

eMψ = I3 + M

(
ψ − ψ

3

3!
+ · · ·

)
+ M2

(
ψ2

2!
− ψ

4

4!
+ · · ·

)

= I3 + M sin ψ + M2 (1 − cos ψ). (22)

This is the formula sought for the general rotation matrix R(n, ψ) = eMψ. Putting in the expres-

sions in eqs (19) and (20) for the matrix elements of M and M2, the final result is the following.

The matrix element of a general rotation matrix R(n, ψ) is given by

Ri j(n, ψ) = δi j cos ψ + ni n j (1 − cos ψ) + ǫi jk nk sin ψ. (23)

The simplicity and elegance of this formula are striking! It is convenient, on occasion, to

express the direction cosines n1, n2 and n3 in terms of the spherical polar angles θ and ϕ of the

unit vector n, according to

n1 = sin θ cos ϕ, n2 = sin θ sin ϕ, n3 = cos θ. (24)

The finite rotation formula for a vector follows directly from eq. (23). If A is a vector

with components Ai (i = 1, 2, 3) in the original coordinate frame, and A′ is the same vector in

the rotated frame, the components of the transformed vector are given in terms of the original

components by

A ′i = Ri j(n, ψ) A j

= Ai + (1 − cos ψ)(A j n j) ni + (sin ψ) ǫi jk A j nk. (25)

Recognising that A j n j = A · n and that ǫi jk A j nk is just the ith component of the vector A × n,

we have recovered the finite rotation formula written down in ch. 5: namely,

A′ = A + (1 − cos ψ) (A · n) n + (sin ψ) (A × n). (26)

∗∗The antisymmetric factor changes sign under the interchange of the dummy or contracted indices k and l, while

the symmetric part does not do so. Hence the term is the negative of itself, implying that it must be identically equal

to zero.
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Properties of the rotation matrix

We are ready, now, to deduce numerous properties of rotation matrices, and hence those of

rotation transformations themselves.

(i) R is an orthogonal matrix. This can be established in many ways. Here is a simple one.

Since ǫi jk = −ǫ jik, M is an antisymmetric matrix, i.e., MT = −M. Therefore

RT =
(
eMψ

)T
= eMTψ = e−Mψ = R−1. (27)

Thus, RTR = I3, so that (RTR) jk = δ jk. The orthogonality of R(n, ψ) ensures that distance

of any point from the origin is preserved under a rotation of the coordinate axes: we have

x ′i x ′i = Ri j x j Rik xk = RT
ji Rik x j xk

= (RTR) jk x j xk = δ jk x j xk = x j x j. (28)

(ii) R is a unimodular matrix. Since RTR = I3, we have (det R)2 = 1. Hence det R = ±1.

We have been concerned with proper rotations throughout, i.e., rotations that are contin-

uously connected to the identity transformation. In other words, the final orientation of

the coordinate frame can be attained by continuously rotating the original frame from its

starting orientation. For such rotations, det R = +1.‡ The physical significance of the

property | det R| = 1 is that volume elements are unchanged under the transformation.

The physical significance of the property det R = +1 is that the handedness of the co-

ordinate axes is preserved by the transformation. That is, a right-handed (respectively,

left-handed) triad of coordinate axes remains right-handed (respectively, left-handed) af-

ter the rotation.

(iii) Every R(n, ψ) has an inverse transformation. As you have seen, RT(n, ψ) = R−1(n, ψ). It

is evident, both physically and analytically, that R−1(n, ψ) = R(n,−ψ). (It is obvious that

a rotation can be ‘undone’ by rotating the frame in the opposite sense through the same

angle, about the same axis.)

(iv) A unique axis of rotation can be associated with every rotation. In fact, we started

with this premise (it is part of Euler’s rotation theorem). In mathematical terms, this

means that every rotation matrix R(n, ψ) has an eigenvalue equal to +1, the corresponding

eigenvector being n. This is easily checked: from eq. (23), it follows easily that Ri j n j =

n j.

‡When det R = −1, we have an improper rotation. Such a transformation involves an odd number of reflections

over and above a possible proper rotation.
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(v) The eigenvalues of a rotation matrix are easily determined. All you have to do is to find

the eigenvalues of M, and use the fact that, if λ is an eigenvalue of M, then eλψ is an

eigenvalue of R. One of the eigenvalues of M is 0, corresponding to the eigenvalue +1

of R (as we have already found). The other two eigenvalues of M are ±1, corresponding

to the eigenvalues e±iψ of R. (Check it out!) This result is in accord with a general result:

all the eigenvalues of a real orthogonal matrix (more generally, a unitary matrix) must

lie on the unit circle in the complex plane.

The parameter space of the rotation group

We come now to an important aspect of rotation matrices in 3 dimensions, i.e., the set of

unimodular, real, orthogonal, (3 × 3) matrices. These matrices comprise a group, because they

satisfy the properties required of the elements of a group:

(i) Each matrix in the set has an inverse.

(ii) There is an identity element in the set, the unit matrix I3, corresponding to no rotation at

all.

(iii) The product of two matrices in the set is again a matrix of the same kind: for, if R1 and

R2 are unimodular orthogonal matrices, then

det (R1 R2) = (det R1)(det R2) = 1. (29)

Moreover,

(R1R2)T = RT
2 RT

1 = R−1
2 R−1

1 = (R1R2)−1. (30)

(iv) Matrix multiplication is, of course, associative:

R1(R2R3) = (R1R2)R3. (31)

The set of matrices therefore constitutes a group, the special orthogonal group S O(3).

The elements of the group are parametrized (that is, its elements are labelled) by a unit

vector n and an angle ψ. Now, a unit vector has two independent parameters, since its compo-

nents must satisfy the constraint n2
1
+ n2

2
+ n2

3
= 1. Alternatively, we may specify the spherical

polar coordinates of the (tip of) the unit vector n, namely, (1, θ, ϕ), involving once again two

independent parameters, θ and ϕ. The angle of rotation, ψ, is another independent param-

eter. Each R(n, ψ) is therefore specified by three independent parameters, making S O(3) a

3-parameter group. The parameters are continuous variables, making it a continuous group.

Finally, the group elements are analytic functions of the parameters, owing to the exponential

form R(n, ψ) = ei Jk nk ψ. S O(3) is therefore a 3-parameter Lie group, generated by the three

generators J1, J2, J3 that satisfy the Lie algebra given by eq. (13). The natural question that

arises now is: what sort of space is the 3-dimensional space spanned by these parameters?
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All the group parameters of S O(3) are bounded, being direction cosines and angles: for

instance, each |ni| ≤ 1, and 0 ≤ ψ < 2π. The parameter space is therefore a bounded space.

Imagine a solid sphere (in mathematical terminology, a ball), which is a 3-dimensional object.

Let the centre of the ball represent the identity element of S O(3). Any other point of the ball

is specified by a direction and a distance from the origin. The direction can be specified by the

unit vector n, while the value of the angle ψ can specify the distance from the origin. As the

range of ψ is given by 0 ≤ ψ < 2π, you might expect that the parameter space of S O(3) is the

interior of a solid ball of radius 2π. Each point in this ball represents an element of S O(3), i.e.,

a rotation in 3-dimensional space.

Surprisingly, this argument is incorrect! Refer to Figure 1 of ch. 5 once more. Observe the

following:

(i) One half of the plane normal to the axis n is covered by rotations about n as ψ ranges

from 0 to π.

(ii) The other half of this plane is covered by rotations about the oppositely directed axis −n

as ψ ranges over the same interval, 0 to π.

(iii) Finally, substituting the value ψ = π in the general formula (23), we find

Ri j(n, π) = δi j + 2ni n j = Ri j(−n, π). (32)

(iv) In other words, it suffices to let ψ run from 0 to π. Moreover, it is a fundamental property

of 3-dimensional space that a rotation of the coordinate frame about any axis n through an

angle π leads to the same final orientation of the frame as a rotation about the oppositely-

directed axis through an angle π.

This seemingly trivial fact§ has profound consequences. To start with, it has a drastic effect on

the nature of the parameter space of S O(3). This space is now a solid sphere (or ball) of radius

π, rather than 2π. Further, every point on its surface is identified with, or mathematically the

same as, its antipodal point! It is as if an invisible wire connected and ‘short-circuited’ every

pair of antipodal points on the surface of the ball. The mathematical name for this space is the

real projective space RP3.

Figure 1 is a partial depiction of the space. It does not (cannot!) show that each point on

the surface of the ball is identical to its antipodal point. It is not possible to make an actual

model of such a space in the 3-dimensional space in which we live. That is, RP3 cannot be

embedded in 3-dimensional Euclidean space.¶ In the next chapter, I will consider another way

of representing rotations in 3-dimensional space, and show how it is related it to S O(3) and

its parameter space. I will also indicate the deep physical consequences of these mathematical

§Check it out using, say, a cube or a brick-shaped object.
¶You will need a Euclidean space of at least 5 dimensions to do so. Further elaboration of this point is well

beyond the scope of the present discussion.
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considerations, in order to highlight how important this topic is for our understanding of the

physical universe.

Q

P

(n,ψ)

Q �

O

P �

n
�

n

ψ

Figure 1: The ball of radius π representing the parameter space of S O(3). The antipodal points

P and P ′ on the surface of the ball represent a single point in the parameter space. Likewise,

the antipodal points Q and Q ′ represent a single point in the space.
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More fun with the rotation group

V. Balakrishnan

Introduction

In the preceding chapter, you have seen that the group of rotations of the coordinate frame in

3 dimensions can be represented by unimodular, orthogonal, (3 × 3) matrices, the Lie group

S O(3). At a deeper level, these matrices actually comprise the defining representation of the

abstract group of rotations, which is isomorphic to, and conveniently denoted by, S O(3). The

abstract group of rotational transformations in 3 dimensions has many (in fact, an infinite num-

ber of) representations. Unimodular orthogonal (3 × 3) matrices comprise just one (albeit a

very ‘prominent’ one) of these representations. In this chapter, I will introduce and discuss an-

other, equally important, way of representing the rotation group. This representation involves

another group of matrices: unimodular, unitary (2 × 2) matrices, comprising the group S U(2).

This group is intimately related to the notion of spin 1
2

in quantum mechanics. (This is, as you

know, the spin quantum number of electrons, protons, neutrons and quarks.) The relationship

between S U(2) and S O(3), and that between their respective parameter spaces, is of funda-

mental importance in physics. It underlies integer and half-odd-integer spin quantum numbers,

the existence of bosons and fermions, and so on. It is not my intention to consider these matters

in detail here, or to go into group representations per se. What follows is a discussion of the

essential aspects in simple terms.

Pauli matrices

When we write a general (2 × 2) matrix as

M =

(
a b

c d

)
, (1)

what, exactly, do we mean? (2 × 2) matrices constitute a linear vector space. Regarded as an

element of this space, eq. (1) stands for the expansion

M = a

(
1 0

0 0

)
+ b

(
0 1

0 0

)
+ c

(
0 0

1 0

)
+ d

(
0 0

0 1

)
. (2)

The four matrices on the right-hand side constitute the so-called natural basis in the linear

vector space (2 × 2) matrices. There is, however, another basis that is, in many ways, more

convenient than the natural basis. This alternative basis consists of the (2 × 2) unit matrix I2

and the three Pauli matrices, defined as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (3)
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A general (2 × 2) matrix like M can then be written as a linear combination

M = α0 I2 + α1 σ1 + α2 σ2 + α3 σ3 . (4)

The simplest way to establish this assertion is to compare (4) with (1). This yields a set of

four equations expressing a, b, c, d as linear combinations of α0, α1, α2, α3. These are trivially

solved to obtain unique solutions for the latter as linear combinations of the former.

The Pauli matrices σk (k = 1, 2, 3) have some remarkable properties:

(i) σk is hermitian (σk = σ
†
k
).

(ii) Trσk = 0 (σk is traceless), det σk = −1.

(ii) σ2
k
= I2, the (2 × 2) unit matrix. Hence σ−1

k
= σk.

(iii) σk has eigenvalues 1 and −1, with normalized eigenvectors
(

1
0

)
and

(
0
1

)
.

(iv) σk σl = i ǫklmσl.

(v) It follows from (v) that the anticommutator

[σk , σl]+ = σk σl + σl σk = 0 (k , l). (5)

(vi) It also follows that the commutator

[σk , σl] = σk σl − σl σk = 2 i ǫklm σm. (6)

Therefore, setting Jk =
1
2
σk, we have the commutation relations

[Jk , Jl] = i ǫklm Jm. (7)

But these commutation relations are exactly the relations satisfied by the infinitesimal genera-

tors of the rotation group in 3 three dimensions, as you have seen in ch. 6. (This is the reason

I have used the same symbol, Jk, in both cases.) Previously, those generators were represented

by three hermitian (3 × 3) matrices. Now, we find that the same ‘angular momentum algebra’

is satisfied by the three Pauli matrices multiplied by 1
2
. This suggests strongly that the matrices

1
2
σk (k = 1, 2, 3) also generate a representation of the rotation group S O(3), this time in terms

of (2 × 2) matrices. We will see, shortly, how this comes about.

Representing rotations by (2 × 2) matrices

It is helpful to recapitulate, in brief, what was established in ch. 6. Let the position vector

of a point be written as a column vector whose elements are the Cartesian components of r.

Consider a proper rotation of the coordinate axes in 3-dimensional space, about an axis along
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the unit vector n, and through an angle ψ. Then, the effect of the rotation is to transform r to

r ′ = R(n, ψ) r, where R(n, ψ) is a (3 × 3) matrix. This matrix has the form R(n, ψ) = ei (J·n)ψ,

where J = (J1, J2, J3) is the set of generators of infinitesimal rotations about the three Cartesian

axes. They are certain (3 × 3) hermitian matrices that satisfy the angular momentum algebra

[Jk , Jl] = i ǫklm Jm . Exponentiating them produces the rotation matrix R(n, ψ). Owing to the

special form of the matrix i(J · n) = iJk nk, the exponential ei (J·n)ψ can be computed in closed

form to yield R(n, ψ) explicitly as a function of the rotation parameters n and ψ. The rotation

R(n, ψ) turns out to be a unimodular, orthogonal matrix. Its action on r gives the finite rotation

formula for r ′. The same transformation rule under a rotation of the coordinate frame is valid

for any vector, by definition. The set of rotation matrices {R(n, ψ)} constitutes the special

orthogonal group S O(3).

We have now found that the generators of infinitesimal rotations can also be represented

by the matrices 1
2
σk. In ch. 6, we saw how a finite rotation could be built up by a sequence

of infinitesimal rotations, leading to the exponentiation of the generators. This argument is

independent of the actual representation of the generators. In analogy with the notation J =

(J1, J2, J3), let us define

σ = (σ1, σ2, σ3). (8)

The (2 × 2) matrix

U(n, ψ) = ei (σ·n)ψ/2 (9)

must then represent a rotation about n through the angle ψ. The symbol U has been used in

order to distinguish this matrix from the (3 × 3) matrix R(n, ψ), and also to remind us of the

kind of matrix it is, as will be seen shortly. The exponential on the right-hand side if eq. (9) can

be computed even more easily than the way we simplified exponential ei(J·n)ψ in ch. 6. Note,

first, that

(σ · n)2 = σ2
1n2

1 + σ
2
2n2

2 + σ
2
3n2

3 = I2, (10)

because of the properties (iii) and (vi) of the Pauli matrices together with the fact that n is a

unit matrix. Therefore

(σ · n)2n = I2, while (σ · n)2n+1 = (σ · n). (11)

It follows that

U(n, ψ) = I2

1 −
( 1

2
ψ)2

2!
+

( 1
2
ψ)4

4!
− · · ·

 + i (σ · n)


( 1

2
ψ)

1!
−

( 1
2
ψ)3

3!
+ · · ·



= I2 cos
(

1
2
ψ
)
+ i (σ · n) sin

(
1
2
ψ
)
. (12)

This is not an orthogonal matrix! But the Pauli matrices are hermitian. Therefore

U†(n, ψ) = I2 cos

(
1

2
ψ

)
− i (σ · n) sin

(
1

2
ψ

)
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= e−i (n·σ)ψ/2 = U−1(n, ψ). (13)

Thus UU† = U†U = I2. That is, U(n, ψ) is a unitary matrix, rather than an orthogonal one.

Writing out the expression in eq. (12) explicitly as a matrix, we get

U(n, ψ) =


cos 1

2
ψ + in3 sin 1

2
ψ (n2 + in1) sin 1

2
ψ

(−n2 + in1) sin 1
2
ψ cos 1

2
ψ − in3 sin 1

2
ψ

 . (14)

Remembering that n2
1
+ n2

1
+ n2

1
= 1, it is easy to check that

det U(n, ψ) = 1. (15)

Thus, U(n, ψ) is also an unimodular matrix, just like R(n, ψ). It is sometimes useful to write

U(n, ψ) in terms of the spherical polar coordinates (1, θ, ϕ) of the unit vector n. Equation (14)

becomes

U(n, ψ) =


cos 1

2
ψ + i cos θ sin 1

2
ψ i e−iϕ sin θ sin 1

2
ψ

i eiϕ sin θ sin 1
2
ψ cos 1

2
ψ − i cos θ sin 1

2
ψ

 . (16)

We have now found a possible representation of rotations in 3-dimensional space by a

(2 × 2) unimodular, unitary matrices. But there remain several basic questions. How can a

(2× 2) matrix like U act on 3-component vectors? How general is the foregoing representation

of rotations in 3-dimensional space? Is (14) the most general kind of (2 × 2) unimodular,

unitary matrix? Does every matrix of this kind represent a rotation in 3-dimensional space?

Conversely, is every rotation represented by a unique matrix of this kind? Let us now take up

these questions one by one.

Action of U(n, ψ) on a 3-vector

We must find the rule according to which U(n, ψ) acts on the coordinates (x1, x2, x3) of any

point r in 3-dimensional space. This rule must correctly reproduce the finite rotation formula

for r ′ = R(n, ψ) r derived in ch. 6, namely,

r ′ = (cos ψ) r + (1 − cos ψ) (r · n) n + (sin ψ) r × n. (17)

Only then can we assert that U(n, ψ) does indeed represent a rotation in 3-dimensional space.

Here is how this is done. Instead of representing the Cartesian coordinates of any point r

as a column vector, consider the (2 × 2) matrix

r · σ = x1 σ1 + x2 σ2 + x3 σ3 =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (18)

The action of U(n, ψ) is then as follows. If r 7→ r ′ under the rotation, the transformation rule

for r · σ is

r · σ 7→ r ′ · σ = U(n, ψ) (r · σ)U†(n, ψ). (19)
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Verifying that this transformation law leads to the finite rotation formula requires a bit of alge-

bra. I will outline the steps, leaving it to the reader to fill in the rest. Use the last equation in

(12) for U and the first equation in (13) for U† in the right-hand side of eq. (19), and simplify

the resulting expression. Doing this component by component is tedious. It is helpful to use,

instead, a couple of identities involving the Pauli matrices. (Again, I leave it to the reader to

derive these relations from the properties of Pauli matrices listed earlier.) Let a and b denote

ordinary 3-dimensional vectors. Then

(a · σ) (b · σ) = (a · b) I2 + i (a×) · σ (20)

[(a · σ) , (·σ)] = 2i (a×) · σ (21)

After simplification, we arrive at the result

r ′ · σ = (cos ψ) (r · σ) + (1 − cos ψ) (r · n) (n · σ)

+(sin ψ) (r × n) · σ (22)

This is precisely the relation obtained if we take the dot product of both sides of the finite

rotation formula (17) with σ. Equation (22) also holds good, of course, if r is replaced by

any vector A. We conclude that any rotation of the coordinate frame about the origin in 3-

dimensional space can be represented by a matrix like U(n, ψ).

U(n, ψ) is the most general matrix of its kind

Recall that R(n, ψ) is a unimodular, orthogonal matrix with real elements. It involves 3 param-

eters, the unit vector n and the angle ψ. This is the number of parameters required to specify

any rotation of the coordinate frame in 3 dimensions.

The (2 × 2) matrix U(n, ψ) also involves the same three parameters. It is unimodular, but

not orthogonal. Its elements are complex numbers, and it is a unitary matrix. The question is

whether it is the most general matrix with those properties.

To answer this question, you must start with a general (2×2) matrix with complex elements,

say

W =

(
α β

γ δ

)
. (23)

Since each of the elements is a complex number in general, W has 8 independent real parame-

ters. The hermitian conjugate of W is

W† =

(
α∗ γ∗

β∗ δ∗

)
. (24)
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Imposing the unitarity condition WW† = I2 yields the four relations

|α|2 + |β|2 = 1,

|γ|2 + |δ|2 = 1,

α γ∗ + β δ∗ = 0,

α∗ γ + β∗ δ = 0.



(25)

Imposing the condition of unimodularity gives one more relation,

det W = αδ − βγ = 1. (26)

Hence there are 5 relations between the 8 parameters in W, leaving 3 independent parameters.

This is precisely the number of parameters possessed by an element of the rotation group in 3

dimensions. You can use eqs (25) and (26) to eliminate γ and δ in favour of α and β. The result

is the most general form of a (2 × 2) unimodular, unitary matrix. I will now call it U instead of

W. It is given by

U =

(
α β

−β∗ α∗

)
, where |α|2 + |β|2 = 1. (27)

Writing it out even more explicitly in terms of the real and imaginary parts of α = α1 + iα2 and

β = β1 + iβ2, we have, finally,

U =

(
α1 + iα2 β1 + iβ2

−β1 + iβ2 α1 + iα2

)
, (28)

where

α2
1 + α

2
2 + β

2
1 + β

2
2 = 1. (29)

But the general rotation matrix U(n, ψ) in Eq, (14) is precisely of this form! We conclude

that every (2 × 2) unimodular, unitary matrix represents a rotation of the coordinate frame in

3-dimensional space. This is the converse of the conclusion stated at the end of the preceding

section.

The three rotation generators themselves form a vector

I have used the boldface symbol J for the triad (J1, J2, J3) of (3 × 3) matrices generating the

rotation matrix R(n, ψ), as if Jk itself was a component of a vector. Likewise, I have used σ

for the triad of Pauli matrices (σ1, σ2, σ3) which generates (when multiplied by 1
2
) the rotation

matrix U(n, ψ). I stated in ch. 6 that this was more than mere convenient notation. It is now

time to explain why the notation is justified.

But first, a word regarding representations (of the elements of a group, or of the generators

of a continuous group). We have seen that the group of rotations in 3-dimensions can be gen-

erated by the matrices (J1, J2, J3) defined in ch. 6, as well as by the matrices
(1

2
σ1,

1
2
σ2,

1
2
σ3

)
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introduced in this chapter. The common feature is that both sets of matrices satisfy the same

algebra, the angular momentum algebra. In general, the generators of a group of transforma-

tions, and hence its elements, can have an infinite number of different representations. Which

representation one uses depends on the nature of the objects on which the transformations act.

The representation can even be infinite-dimensional: this is required, for example, when we

consider transformations of the state vector of a quantum mechanical system in an infinite-

dimensional Hilbert space.

Returning to the case of interest to us here, the rotation group S O(3), let us (for simplicity

of notation) denote its generators by (J1, J2, J3) and elements by U(n, ψ), regardless of any

particular representation. Consider, for instance, a quantum mechanical system. A rotation of

the coordinate axes about the direction n through an angle ψ then induces a unitary transfor-

mation U(n, ψ) = eiJknkψ that acts on the state vector of the system. In general, Jk (and hence

U) are operators that act on the vectors in the Hilbert space of the system. The dimensionality

of the representation used for Jk (and hence U) depends on the dimensionality of the Hilbert

space of the system.

We need to show that J is a vector under rotations of the coordinate axes, independent of

any particular representation for J1 , J2 and J3. This means that the only input we can use

is the algebra satisfied by the three operators, namely, [Jk , Jl] = i ǫklm Jm. Moreover, J is

not an ‘ordinary’ vector. It is an operator-valued vector, i.e., each Jk is an operator. The

transformation law applicable to it is not the direct counterpart of r ′ = R(n, ψ) r, namely,

J ′ = R(n, ψ) J. The transformation rule (under a rotation of the spatial coordinate frame) for

any operator W is

W 7→ W ′ = U†(n, ψ) W U(n, ψ)

= e−i (J·n)ψ W ei (J·n)ψ. (30)

Applying this rule to the operator Jk, we have

J ′k = e−i (J·n)ψ Jk ei (J·n)ψ

= e−i Jlnl ψ Jk ei Jmnm ψ. (31)

We must now simplify the expression on the right-hand side of (31), paying attention to the

fact that Jk and Jl do not commute with each other when k , l. At first sight, this appears to be

a formidable task. But an important operator identity called Hadamard’s Lemma comes to our

aid. Let X and Y be two operators (acting on the same space, and with the same domain and

range), and let [X,Y] = C1. Define the nested commutators

Cr+1 = [X,Cr], r = 1, 2, . . . . (32)

Hadamard’s Lemma then states that, if λ is any constant,

eλX Y e−λX = Y +

∞∑

r=1

Cr λ
r

r!
. (33)
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The proof of this lemma is not difficult, but I will not give it here. Apply the lemma to the final

expression in (31), with the identifications

λ = −iψ, X = Jlnl = Jmnm, Y = Jk. (34)

Now use the generator algebra [Jk , Jl] = i ǫklm Jm repeatedly, to show that

C1 = C3 = · · · = i ǫklm Jm, (35)

and

C2 = C4 = · · · = Jk − nk nl Jl. (36)

You can now sum the infinite series in Hadamard’s lemma easily. The result is

J ′k = (cos ψ) Jk + (1 − cos ψ) (Jl nl) nk + (sin ψ) ǫklm Jl nm. (37)

In vector form, this is

J ′ = (cos ψ) J + (1 − cos ψ) (J · n) + (sin ψ) J × n. (38)

But this is identical in form to the finite rotation formula for the coordinate r of a point in

three-dimensional space, eq. (17). This proves the assertion that the generators of infinitesimal

rotations in 3-dimensional space themselves constitute (equivalently, transform like) a vector.

In short, denoting (J1, J2, J3) by J is more than mere notation.

The parameter spaces of SU(2) and SO(3)

We have seen that the set of (3 × 3) unimodular, orthogonal matrices with real elements con-

stitutes a 3-parameter Lie group, the special orthogonal group S O(3). Similarly, the set of

(2 × 2) unimodular, unitary matrices with complex elements constitutes a 3-parameter group,

the special unitary group S U(2). Since the dependence on the parameters is analytic in nature,

S U(2) is also a Lie group. Its general element is a matrix of the form given by eqs (28) and

(29). Alternatively, in the context of the (2 × 2) matrix representation of the group of rotations

in 3-dimensional space, the general element of S U(2) is a matrix of the form U(n, ψ) as given

by eq. (14).

Consider, now, the parameter space of S U(2). Equation (29) is one constraint among

the four parameters α1, α2, β1 and β2. As you know, the equation x2
1
+ x2

2
= 1 specifies the

circumference of a unit circle in a 2-dimensional plane, while x2
1
+ x2

1
+ x2

1
= 1 is the equation

to the surface of a unit sphere in 3-dimensional space. By analogy, eq. (29) is the ‘surface’ of

a ball of unit radius in 4-dimensional Euclidean space. It is a 3-dimensional space called the

3-sphere, denoted by S 3. In mathematics, S d denotes the d-dimensional sphere or d-sphere. It

is the d-dimensional ‘surface’ of a ball of unit radius in (d + 1)-dimensional Euclidean space.∗

∗Thus, the circumference of a unit circle in a plane is the 1-sphere S 1. The surface of an ordinary ball of unit

radius in our familiar 3-dimensional space is the 2-sphere S 2. (The unit radius condition is not necessary as far as

topology is concerned.) The embedding of these spaces in a higher-dimensional Euclidean space helps us visualise

these spaces, but it is not necessary. The spaces can be studied in their own right.
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The space S d (for any d ≥ 1) is connected: that is, you can start at any point in the space and

trace a continuous path to any other point in the space without leaving the space. The space S d

(for any d ≥ 2) is simply connected. That is, any closed path or loop lying entirely in the space

can be shrunk continuously to a point without leaving the space.∗∗ This property of simple

connectedness makes the space topologically simple in a certain sense.

Let us turn to the real orthogonal group S O(3). We have seen in ch. 6 that the parameter

space of S O(3) is the real projective space RP3. This is a ball of radius π with antipodal points

on its surface identified: that is, every pair of antipodal points on the surface of the ball is

actually a single point in the space. (Recall Figure 1, ch. 6.) This fact complicates the topology

of the parameter space. It can be shown that the RP3 is connected, but not simply connected.

It is doubly connected. The proof will not be given here, but a heuristic way of seeing this is

as follows. It is clear that one can trace a loop that lies entirely inside the ball, and that every

such loop can be shrunk continuously to a point. On the other hand, consider the following

path (refer again to Figure 1, ch. 6). Start at the origin O of the ball and move out along a

continuous line to the point P on its surface. Re-enter the ball from the antipode P ′ of the point

P (remember that P and P ′ are supposed to be a single point of the parameter space). Move

inward along a continuous line from P ′ to O. The result looks like a directed line from P ′ to

its diametrically opposite point P, passing through the centre O of the ball. But this is, in fact,

a closed path in the parameter space! If you attempt to move P into the ball, the loop breaks.

If you attempt to move it on the surface towards P ′ in an attempt to ‘close’ the path and shrink

it, P ′ moves away, always remaining antipodal to the position of P. The only way to shrink the

closed path O → P → P ′ → O is to trace out another such loop, say O → Q → Q ′ → O, and

then performing suitable deformations of the pair of closed paths. Further details would take

us too far afield.

How are the groups SO(3) and SU(2) related?

Finally, we turn our attention to the relationship between the special orthogonal group S O(3)

and the special unitary group S U(2). Each of these matrix groups provides a representation of

the group of rotation transformations in 3-dimensional space.

Let us go back to eq. (19), which tells us that the effect of a rotation of the coordinate frame

on any vector A in 3 dimensional space is to transform it to another vector A′, such that

A′ · σ = U(n, ψ) (A · σ) U†(n, ψ). (39)

Here U(n, ψ) is an element of S U(2), i.e., it is a (2×2) unimodular, unitary matrix. But the form

of eq. (39) shows that we have some freedom in choosing the transformation matrix U(n, ψ).

Suppose we replace the matrix U(n, ψ) with the matrix eiγ U(n, ψ), where γ is a real constant.

Then U†(n, ψ) gets replaced by e−iγ U†(n, ψ). It is obvious that (A′ ·σ), and hence A′, remains

unaffected.

∗∗Interestingly enough, S 1 is not simply connected. In fact, its connectivity is infinite, in a certain specific sense.

I will not digress into this aspect here.
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But we have found that any (2 × 2) matrix that represents a rotation in 3 dimensions must

be unitary. Since U is already unimodular, we must have

det
[
eiγ U(n, ψ)

]
= e2iγ det U = e2iγ = 1. (40)

Therefore eiγ = ±1. The implication is that there are two different matrices, U(n, ψ) and

−U(n, ψ), both of them belonging to S U(2), corresponding to every rotation matrix R(n, ψ)

belonging to S O(3). Several important consequences follow, which I will merely state. What

follows should also help you to become familiar with some mathematical terminology, as it is

introduced here in the setting of the specific example of the rotation group.

(i) For every set of parameters {n, ψ}, the pair of S U(2) elements {U(n, ψ),−U(n, ψ)} is

mapped to the S O(3) element R(n, ψ). The pair of S U(2) elements {I2,−I2} is mapped

to I3, the identity element of S O(3).

(ii) There is a 2-to-1 mapping or homomorphism of the group S U(2) to the group S O(3).

(iii) The set whose general element is the pair {U(n, ψ), −U(n, ψ)} constitutes a group called

the quotient group S U(2)/Z2.‡

(iv) There is a 1-to-1 mapping or isomorphism of this quotient group to S O(3), which is

written as

S U(2)/Z2 ∼ S O(3). (41)

In the local neighbourhood of their respective identity elements, the groups S U(2) and S O(3)

‘look alike’: their generators satisfy the same angular momentum algebra. In technical terms,

they have the same Lie algebra of generators. But globally, the two groups are quite different

from each other. The topologies of their parameters spaces are different. S U(2), with its

simply-connected parameter space, is the so-called universal covering group of S O(3).

The mathematical properties that I have touched upon here have a bearing on several fun-

damental physical phenomena. Among these are the quantization of angular momentum, in-

teger and half-odd-integer spin quantum numbers, and the existence of bosons and fermions

that satisfy (owing to the spin-statistics theorem of quantum field theory) Bose–Einstein and

Fermi–Dirac statistics, respectively. Is it not remarkable that all this, and more, originates in

the study of rotations of the coordinate axes in 3-dimensional space?

‡This is read as “S U(2) modulo Z2”.
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A filter for continuous functions

Suppose f (x) is a function that is defined, say, for all values of the real variable x, and that it

is finite everywhere. Can we construct some sort of filter or ‘selector’ that, when operating on

this function, singles out the value of the function at any prescribed point x0? In other words,

how can we filter out just the quantity f (x0)?

A hint is provided by the discrete analogue of this question. Suppose we have a sequence

(a1, a2, . . . ) = {a j| j = 1, 2, . . . }. How do we select a particular member ai from the sequence?

By summing over all members of (i.e., scanning!) the sequence with a selector called the

Kronecker delta, denoted by δi j and defined as

δi j =

{
1 if i = j

0 if i , j.
(1)

It follows immediately that ∑

j=1

δi j a j = ai . (2)

Further, we have the ‘normalization’
∑

j δi j = 1 for each value of i, and also the symmetry

property δi j = δ ji .

Reverting to the continuous case, we must replace the summation over j by an integration

over x. The role of the specified index i is played by the specified point x0 . The analogue of the

Kronecker delta is written like a function, retaining the same symbol δ for it. (Presumably, this

was Dirac’s reason for choosing this notation for the delta function.) So we seek a ‘function’

δ(x − x0) such that ∫ ∞

−∞
dx δ(x − x0) f (x) = f (x0) . (3)

Exactly as in the discrete case of the Kronecker delta, we impose the normalization and sym-

metry properties

∫ ∞

−∞
dx δ(x − x0) = 1 and δ(x − x0) = δ(x0 − x) . (4)

The requirements in eqs (3) and (4) may be taken to define the Dirac delta function. The form of

eq. (3) suggests that δ(x− x0) is more like the kernel of an integral operator than a conventional

function. We will return to this aspect subsequently.

∗Based on Resonance, Vol.8, No.8, pp.48-58, 2004.
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What can δ(x − x0) possibly look like? A naive way of answering this question is as

follows. Take a rectangular window of width 2ε and height 1/(2ε), so that the area of the

window is unity. Place it with its bottom edge on the x axis and slide it along this axis, as

shown in Figure 1.

(2ε)
−1

0−εx + εx
0

0

window

0x

f(x)

x

Figure 1 The rectangular window tends to δ(x − x0) as ε→ 0.

When the window is centred at the chosen point x0, the integral of f (x) multiplied by this

window function is simply (1/2ε)
∫ x0+ε

x0−ε
dx f (x) . This does not quite select f (x0) alone, of

course. But it will do so if we take the limit ε → 0. In this limit, the width of the window be-

comes vanishingly small. Simultaneously, its height becomes arbitrarily large, so as to capture

all of the ordinate in the graph of f (x), no matter how large the value of f (x0) is. A possible

explicit form for the Dirac delta function δ(x − x0) is therefore given by

δ(x − x0) =


lim
ε→0

1/(2ε) , for x0 − ε < x < x0 + ε

0 , for all other x .
(5)

This cannot be a stand-alone definition. If it is taken literally, then, formally, δ(x − x0) must

be zero for all x , x0, while it must be infinite for x = x0 . An explicit form such as eq. (5)

for the delta function must be interpreted in the light of eq. (3). The delta function is always

to be understood as something that makes sense when it occurs in an integral like eq. (3), i.e.,

when it acts on ordinary functions like f (x) and an integration is carried out. It is immediately

clear that the so-called Dirac delta function cannot be a function in the conventional sense. In

particular, δ(x− x0) must be singular (formally infinite) at x = x0, that is, at the point where its

argument is zero.

Mathematically, an explicit form for the Dirac delta function is properly given in terms of a

sequence or family of conventional functions, rather than the window representation in eq. (5).

It can then be arranged that, in a suitable limit, the sequence approaches a quantity that has

all the properties desired of the delta function. An infinite number of such sequences may be

constructed. For instance, take a family of functions φε(x − x0) parametrized by a positive

constant ε , and with the following properties: each member of the family
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(i) has a peak at x0,

(ii) is symmetric about the point x0, and

(iii) has a definite integral from −∞ to∞ whose value is unity.

Matters are arranged such that, as the parameter ε is made smaller and smaller, the height of

the peak in φε(x) increases while its width simultaneously decreases, always keeping the total

area under the curve equal to unity. Then lim
ε→0

φε(x− x0) represents the delta function δ(x− x0) .

Let us now write down the simplest choices for such sequences. For ease of writing, let us set

x0 = 0. One of the simplest possibilities is the family of Lorentzians, given by

φε(x) =
ε

π(x2 + ε2)
. (6)

Then lim
ε→0

φε(x) is a representation of the Dirac delta function δ(x), with the properties specified

in eqs (3) and (4). Some other popular choices for φε(x) are the following:

e−|x|/ε

2ε
,

e−x2/4ε

2
√
πε

,
sech2(x /ε)

2ε
,

sin(x/ε)

πx
, · · · (7)

It is instructive to sketch these functions schematically, and to check out what happens as

smaller and smaller values of ε are chosen. As an amusing exercise, think up your own se-

quence of functions that leads to the delta function as a limiting case.

What is the point of all this? Before going on to answer this question, it is helpful to

re-write the last of the functions in (7) as follows. Putting ε = 1/L, we get

δ(x) = lim
L→∞

sin (L x)

π x
=

1

2π
lim

L→∞

∫ L

−L

dk eikx

=
1

2π

∫ ∞

−∞
dk eikx. (8)

This turns out to be perhaps the most useful way of representing the delta function. Since

|eikx| = 1, it is obvious that the last integral in eq. (8) is not absolutely convergent. Nor is

the integral well-defined in the ordinary sense, because sin kx and cos kx do not have definite

limits as k → ±∞. These are just further reminders of the fact that the delta function is

not a conventional function, as I have already emphasized. If you are familiar with Fourier

transforms, you will recognize that the last equation above seems to suggest that the Fourier

transform of the Dirac delta function is just unity. This is indeed so. It suggests, too, that one

way of defining singular functions like the delta function might be via their Fourier transforms:

for example, we could define δ(x) as the inverse Fourier transform of a constant – in this

case, just unity. The Fourier avatar of the Dirac delta function (and its higher-dimensional

generalizations) is one of its most familiar manifestations.
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A brief history of the δ-function

The Dirac delta function has quite a fascinating history. The book by Lützen, cited in the Bib-

liography, is an excellent source of information. The delta function seems to have made its first

appearance in the early part of the 19th century, in the works of Poisson (1815), Fourier (1822),

and Cauchy (1823, 1827). Poisson and Cauchy essentially used arguments that implied that

the Lorentzian representation of the delta function, namely, eq. (6), had the selector property

stated in eq. (3). Fourier, in his fundamental work Théorie Analytique de la Chaleur, showed

(in connection with Fourier series expansions of periodic functions) that the series

1

2π
+

1

π

∞∑

n=1

cos n(x − x0)

had precisely this sort of selector property, i.e., it was a representation of δ(x − x0) in the

fundamental interval (x− x0) ∈ [−π, π]. His arguments essentially amount to the last of the rep-

resentations in (7) for δ(x). These early works did not aim at mathematical rigour in the current

sense of the term. Subsequently, Kirchhoff (1882, 1891) and Heaviside (1893, 1899) gave the

first mathematical definitions (again non-rigorous, by modern standards) of the delta function.

Kirchhoff was concerned with the fundamental solution of the three-dimensional wave equa-

tion, while Heaviside introduced the function in his Operational Calculus. He pointed out that

δ(x) could be regarded as the derivative of the Heaviside or unit step function θ(x), defined as

θ(x) =


1, for x > 0

0, for x < 0.
(9)

After Heaviside, the delta function was freely used – in particular, in connection with Laplace

transforms, especially by electrical engineers (e.g., Van der Pol, 1928). Dirac (1926, 1930)

introduced it in his classic and fundamental work on quantum mechanics, essentially as the

continuous analogue of the Kronecker delta.∗∗ He also wrote down a list of its important

properties – much the same list that standard textbooks now carry. Over and above eqs (3) and

(4), the delta function has the properties

x δ(x) = 0, δ ′(−x) = −δ ′(x),

x δ ′(x) = −δ(x), δ(ax) = (1/|a|) δ(x)

 (10)

where a is any real number, and so on. Again, these equations are to be understood as valid

when multiplied by suitable smooth functions and integrated over x. Dirac also listed the useful

but not immediately obvious property

∗∗P. A. M. Dirac, The physical interpretation of the [sic] quantum mechanics, Proc. Roy. Soc. A 113, 621-641

(1926). So heady was the progress in that incredible period marking the birth of the subject that the definite article

preceding ‘quantum mechanics’ was presumably no longer needed by 1930, as the title of the book P.A.M. Dirac,

The Principles of Quantum Mechanics, Oxford University Press, 1930 (original edition) shows!
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δ
(
x2 − x2

0

)
=
δ(x + x0) + δ(x − x0)

2|x0|
(11)

where x0 is any real number.

The use of the delta function became more and more common after the appearance of

Dirac’s work. Other singular functions also made their appearance, as early versions of quan-

tum field theory began to take shape in the works of physicists such as Jordan, Pauli and

Heisenberg. Around the same time, mathematicians began attempts to define such singular

quantities in a rigorous manner. The delta function and other such singular objects were recog-

nized to be what are called generalized functions or distributions, rather than functions in the

conventional sense. The first rigorous theory was given by Bochner in 1932. Soon afterwards,

Sobolev (1935) gave the rigorous definition of distributions as functionals, and the way had

been paved for a definitive mathematical theory. This was achieved by Schwartz (1945-50),

and comprehensively treated in his Théorie des Distributions, Vol. 1 (1950) and Vol. 2 (1951).

For lack of space, we will not go further into these aspects, other than to repeat that we now

have a completely rigorous mathematical theory of distributions.‡

Why does the δ-function appear in physical problems?

We can now turn to the question of why the delta function appears so naturally in physical

problems. Consider, for example, the basic problem of electrostatics: given a static charge

density ρ(r) in free space, what is the corresponding electrostatic potential φ(r) at any arbitrary

point r = (x, y, z)? From Maxwell’s equations, we know that φ satisfies Poisson’s equation,

namely,

∇2φ(r) = −ρ(r)/ǫ0 , (12)

where ǫ0 is the permittivity of the vacuum. What does one do in the case of a point charge q

located at some point r0 = (x0, y0, z0)? A point charge is an idealization in which a finite amount

of charge q is supposed to be packed into zero volume. The charge density must therefore be

infinite at the point r0, and zero elsewhere. The delta function comes to our aid. We may write,

in this case,

ρ(r) = q δ(x − x0) δ(y − y0) δ(z − z0) ≡ q δ(3)(r − r0), (13)

where the three-dimensional delta function δ(3) is short-hand for the product of the three delta

functions in the equation above. It is easy to verify that this expression for ρ(r) has all the

properties required of a point charge at the point r0 . This illustrates how (and why) the delta

function frequently appears on the right-hand side of fundamental equations in mathematical

‡A very accessible source of information is M. J. Lighthill, Introduction to Fourier Analysis and Generalized

Functions (see the Bibliography). Originally published in 1958, this little classic has been reprinted several times.

The book’s dedication is as succinct as its text, and says: “To Paul Dirac, who saw that it must be true, Laurent

Schwartz, who proved it, and George Temple, who showed how simple it could be made”.
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physics. It turns out that it also appears as the singular part of fundamental solutions to basic

equations such as the wave equation.

It is worth noting that representations of higher-dimensional delta functions like δ(3) are

easily written down. For instance, the three-dimensional counterpart of eq. (8) above is just

δ(3)(r) =
1

(2π)3

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

∫ ∞

−∞
dk3 ei (k1 x+k2y+k3z)

≡ 1

(2π)3

∫
d3k ei k·r. (14)

The notation used in the final equation is self-explanatory.

Why did Dirac need the delta function?

The delta function appeared in Dirac’s work on quantum mechanics in an avatar somewhat

different from the ones mentioned in the foregoing.

Recall the notions of a linear vector space, basis vectors, etc., introduced in chapters 2–4.

Ordinary three-dimensional (Euclidean) space is a linear vector space (LVS). Any vector in it

can be expanded uniquely as a linear combination of the three unit vectors i, j and k. This is

because these three vectors are linearly independent of each other, and they span the space:

i.e., they form a basis in the LVS. Moreover, i · i = 1, i · j = 0, etc. In other words, this is an

orthonormal basis. Using the superior notation (e1, e2, e3) for (i, j, k), all these relations can

be compressed into the relation ei ·e j = δi j (i, j = 1, 2, 3) in terms of the Kronecker delta. This

can be generalized to any d-dimensional LVS: an orthonormal basis {ei} satisfying

ei · e j = δi j (orthonormality) (15)

where i, j = 1, 2, . . . , d can always be found in the LVS.

What happens if the dimensionality d → ∞? Some subtleties arise. But the preceding dis-

cussion goes through, provided care is taken to ensure that certain desirable properties survive

– e.g., the vectors in the LVS must have finite magnitudes, and the triangle inequality must be

satisfied by the magnitudes (or norms) of any two vectors and their sum or resultant vector.

Function spaces provide simple examples of such infinite-dimensional LVS’s – for instance,

the space of all square-integrable functions of x in some interval [a, b]. Naturally, the basis is

then an infinite set of suitable functions. A common example is the set of Legendre polynomi-

als {Pℓ(x)} where x ∈ [−1, 1] and ℓ = 0, 1, . . . ad inf. The notion of the dot product or inner

product of two vectors must also be generalized appropriately. I shall not go into this detail

here.

But a new possibility arises when the dimensionality of an LVS is infinite. The vector space

may have a basis that is uncountably infinite, i.e., a so-called continuous basis. Instead of a set

{ei} where i is a discrete index, we have a set {e(ξ)} where ξ is a continuous variable, taking

values in some range. It is convenient to use a more abstract notation here, namely, Dirac’s bra
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and ket notation, because the vectors of the LVS may be quite different in nature than ordinary

vectors in two- or three-dimensional Euclidean space. For instance, they may be functions,

or matrices of finite or infinite order. (Recall that the bra and ket notation has already been

introduced briefly in ch. 2.) Thus, the vector e(ξ) is simply written as | ξ 〉. The corresponding

dual vector, or bra vector, is 〈 ξ |. Passing over some technical details, the orthonormality

condition for a continuous basis formally reads

〈 ξ | ξ ′ 〉 = δ(ξ − ξ ′) (orthonormality). (16)

Thus, the Dirac delta function replaces the Kronecker delta.

This is the context in which Dirac required the delta function.§ In quantum mechanics, a

system is described by its so-called state vector. This is an element of a certain LVS called the

Hilbert space of the system. The classical dynamical observables of the system are replaced

by operators that act on the elements of its Hilbert space. It turns out to be convenient to

choose the eigenstates of (a subset of) these physical operators as the possible basis sets in

the Hilbert space. Moreover, the system gets into these eigenstates when measurements of

the corresponding physical observables are made. Certain fundamental operators such as the

position operator or linear momentum operator of a particle moving in a given force field turn

out to have continuous sets of eigenvalues. Their eigenstates then constitute continuous basis

sets, with the orthonormality condition as in eq. (16). An example is provided by the case

of a particle moving in one dimension under the influence of a constant force. Its energy E

can then be shown to have a continuous set of possible values. The state | E 〉 of the particle

corresponding to a definite value E of its total energy is a member of a continuous basis set of

states, satisfying the orthonormality condition 〈 E, | E ′ 〉 = δ(E − E ′). Likewise, the position

basis and momentum basis for a quantum mechanical particle moving in three-dimensional

space satisfy the respective orthonormality relations

〈 r | r ′ 〉 = δ(3)(r − r ′) and 〈p |p ′ 〉 = δ(3)(p − p ′). (17)

The delta function and the unit operator

The orthonormality relation in a continuous basis, eq. (16), leads naturally to another important

aspect of the delta function: its relation with the unit operator in function space.

Consider a linear vector space (LVS) with a continuous basis {| ξ 〉} labelled by a real vari-

able ξ ∈ R. In addition to the orthonormality condition (16), the basis vectors satisfy another

relation. Recalling the notion of a projection operator introduced in ch. 2, the object | ξ 〉〈 ξ |
is a projection operator corresponding to the label ξ. The sum of all the projection operators

§Dirac’s formulation of quantum mechanics is arguably an intellectual achievement on par with Newton’s laws

of motion and Einstein’s theory of general relativity. The biography of Dirac by G. Farmelo, cited in the Bibliogra-

phy, makes fascinating reading.
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in the basis must be equal to the unit operator. Since ξ is a continuous variable, the sum is

replaced by an integral. Hence

∫ ∞

−∞
dξ | ξ 〉〈 ξ | = I (completeness). (18)

This property is called completeness (of the basis). It is a consequence of the fact that the basis

vectors span the LVS.

The notion of a continuous basis {| ξ 〉} leads to an interpretation of what a function like f (ξ)

stands for. Let | f 〉 be any vector in the LVS. Then, operating on | f 〉, the two sides of eq. (18)

give

| f 〉 = I | f 〉 =
∫ ∞

−∞
dξ | ξ 〉 〈 ξ | f 〉 =

∫ ∞

−∞
dξ f (ξ) | ξ 〉, (19)

where

f (ξ) ≡ 〈 ξ | f 〉. (20)

In other words, the function f (ξ) is just a convenient notation for the coefficient in the expansion

of a vector | f 〉 in the continuous basis labelled by ξ!

The orthonormality relation (18) also leads to yet another interpretation of the Dirac delta

function. Consider the general ‘matrix element’ of the unit operator by sandwiching it between

the bra 〈 ξ1 | and the ket | ξ2 〉. The result is

〈 ξ1 | I | ξ2 〉 = 〈 ξ1 | ξ2 〉 = δ (ξ1 − ξ2). (21)

That is, the Dirac delta function is simply the representative (or matrix element) of the unit

operator in function space – precisely as the Kronecker delta δi j is the (i j)th matrix element of

the unit matrix in the discrete case!

Finally, the completeness relation shows us what the inner product of two vectors | f 〉 and

| g 〉 belonging to the LVS looks like. Sandwich the operators in eq. (18) between 〈 f | and | g 〉.
Then, since f (ξ) = 〈 ξ | f 〉 and g(ξ) = 〈 ξ | g 〉, we have

〈 f | g 〉 =
∫ ∞

−∞
dξ 〈 f | ξ 〉 〈 ξ | g 〉 =

∫ ∞

−∞
dξ f ∗(ξ) g(ξ). (22)

In the final equation, we have used the property 〈 f | ξ 〉 = 〈 ξ | f 〉∗ of the inner product in a

complex LVS. (The asterisk denotes the complex conjugate.)

The foregoing brief account should convince you of the power and usefulness of both the

Dirac delta function and the Dirac bra-and-ket notation.

The delta function and Green functions

We have seen that the delta function is essentially the representation of the unit operator in a

continuous basis (or a function space). This fact has a direct bearing on the Green function
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method for the solution of linear differential (and partial differential) equations. This is a good

place to discuss this aspect in brief. What follows is a ‘bare essentials’ sketch, without any

of the necessary conditions, qualifying clauses, etc. It is meant merely to convey the general

idea. For simplicity of notation, I shall revert to the case of a single independent variable, say

x, ranging over some interval [a, b]. Extension to several independent variables (e.g., r, or r

and t) is straightforward.

Consider a linear inhomogeneous differential equation of the form

Dx f (x) = g(x), (23)

where g(x) is a given function and Dx is some differential operator in x, i.e., it is some function

of x, d/dx, d2/dx2, . . . . It is required to find the unknown function f (x). Clearly, a formal

solution is f (x) = D−1
x g(x), where D−1

x denotes the inverse of the operator Dx (provided the

inverse exists, etc.). But this is not the most general solution of eq. (23). The homogeneous

equation Dx h(x) = 0 may have one or more linearly independent solutions hi(x), where i =

1, 2, . . . . These can be added to the solution of the inhomogeneous equation in any linear

combination. The general solution of eq. (23) is therefore

f (x) = D−1
x g(x) +

∑

i

ci hi(x), (24)

where the coefficients ci are constants. It is trivially verified that eq. (23) is recovered on

applying the operator Dx to both sides of eq. (24). You will recognise the first term on the

right-hand side of (24) as the particular integral, and the second term as the complementary

function. The constants ci are determined by imposing the boundary or initial conditions, as

the case may be.

In the present context, it is the PI that is of interest to us. Let us therefore focus on this part

of the solution. What can it be, in general? You might guess that the inverse of a differential

operator is an integral operator of some sort: namely, that D−1
x g(x) is of the form

D−1
x g(x) =

∫ b

a

dx ′G(x, x ′) g(x ′), (25)

where the function G(x, x ′) is yet to be found. Applying the operator Dx to both sides of

eq. (25), we get

g(x) =

∫ b

a

dx ′ Dx G(x, x ′) g(x ′). (26)

This equation must hold good for any g(x). This is only possible if G(x, x ′) itself satisfies the

differntial equation

Dx G(x, x ′) = δ(x − x ′). (27)

G(x, x ′) is called the Green function of the operator Dx.

# 63

63



V. Balakrishnan

But we know that δ(x − x ′) is just the matrix element 〈 x | I | x 〉 of the unit operator. Equa-

tion (27) is therefore a relation between corresponding matrix elements of operators. Hence, it

represents a relation between the operators themselves. What is this relation? The differential

operator Dx is the representation, in the continuous basis labelled by x, of an abstract operator

D that acts on vectors in the LVS. This means that Dx and D are related as follows. If | f 〉 is

any element of the LVS, then

〈 x |D | f 〉 = Dx 〈 x | f 〉 ≡ Dx f (x). (28)

Similarly, there exists an operator G that acts on vectors in the LVS, such that

〈 x |G | x ′ 〉 = G(x, x ′). (29)

It follows at once that eq. (27) expresses the fact that

〈 x |DG | x 〉 = 〈 x | I | x 〉. (30)

Since this is true for all x and x ′ in [a, b], we must have

D G = I, or G = D
−1. (31)

This is the precise sense in which the Green function of a differential operator is just its inverse.

In Chs. 9 and 10, we will derive the fundamental Green function of the wave operator in

d + 1 dimensions (d spatial dimensions and 1 time dimension), and discuss its properties for

different values of d.

The Poisson-Dirac connection

I have mentioned earlier that Poisson was responsible for what was perhaps the first recogniz-

able use of the Dirac delta function. Poisson and Dirac seem to be linked in more ways than

one. The most profound of these links is this: Dirac showed that Poisson brackets in classi-

cal dynamics become the commutators of the corresponding operators in quantum mechanics,

divided by the constant factor i~. It is therefore appropriate to end this chapter with another

fascinating link between the names of Dirac and Poisson. There is a very useful and remarkable

result in Fourier analysis called the Poisson summation formula. In its simplest form, this says

that if f̃ (k) is the Fourier transform of f (x), then

∞∑

n=−∞
f (n) =

∞∑

n=−∞
f̃ (2πn) . (32)

A very elegant and simple way of deriving this formula makes use of the so-called Dirac comb:

an array of Dirac delta functions located at the integers. It can be shown that

∞∑

n=−∞
δ(x − n) =

∞∑

n=−∞
e2πnix , (33)

# 64

64



The many avatars of the Dirac delta function

i.e., the Dirac comb is identically equal to a sum of exponentials! The latter can be reduced to

the expression 1 + 2
∑∞

1 cos (2πnx). The cosines in the sum interfere destructively with each

other, leaving behind just the sharp δ-function spikes at integer values of x. With the help of

eq. (33), the Poisson summation formula is established quite easily. We have thus come full

circle, moving from Poisson to Dirac and returning to Poisson with the help of Dirac!
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Signal Propagation: 1. Solution of the Wave
Equation∗

V. Balakrishnan

The best of all possible worlds

In Voltaire’s classic satire Candide, the preceptor Pangloss is an unquestioning optimist who

keeps insisting that we live in ‘the best of all possible worlds’, in spite of the most harrowing

adversities he and his companions face. Pangloss’ unbridled optimism is foolish, if not dan-

gerously stupid, in the light of the events that take place – so much so, that ‘panglossian’ has

come to describe a hopelessly idealistic view held in spite of direct evidence to the contrary.

At a more decidable level, however, we may ask whether the physical universe in which

we live is, at least in some limited sense, ‘the best of all possible worlds’. But this sense must

be specified more precisely, because it is not my intention to discuss any version of the so-

called Anthropic Principle here. It is therefore necessary make the question sharper and our

objective much more modest. Is there an attribute of the physical universe that is optimal in

some fundamental respect?

In this chapter and the next, we shall see that the three-dimensional nature of space is

such an attribute. It will be shown that it is impossible to send sharp signals in one- and two-

dimensional spaces, in contrast to three-dimensional space. This result, sometimes referred to

as the strict form of Huygens’ Principle, means that the very possibility of communication, and

hence the transmission of information from one location to another, is sensitively dependent on

the dimensionality of space. In this sense, we are indeed fortunate to live in a space of three

dimensions.∗∗

Propagation of a sharply pulsed signal

For the sake of definiteness, I choose a specific mathematical model of signal propagation.

Even though it is a ‘bare minimum’ sort of model, it is general enough to establish the primary

result. And this result remains unaffected in essence by the addition of various details and

modifications. Substantiating the last statement would lead us into lengthy digressions, and so

we shall not attempt to do so here.

The signal we would like to transmit is a sharp pulse that has a definite beginning and a

definite end in both space and time: in technical terms, it must be localized in space and time.

This is essential for us to make out unambiguously that it emanated at this place at this time, and

reached that place at that time. Let us denote the signal (or rather, some observable property

∗Based on Resonance, Vol.9, No.6, pp.30-38, 2004.
∗∗Although some may feel that mobile phones have made this a mixed blessing, at best!
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of the signal, such as its amplitude) by u(r, t). The propagation of the signal in space-time is

governed by the wave equation

(
1

c2

∂2

∂t2
− ∇2

)
u(r, t) = ρ(r, t) (1)

where ρ(r, t) is a specified function of space and time that represents the source of the signal,

and c is the speed of the signal. The differential operator on the LHS is called the wave opera-

tor or the d’Alembertian. It is the analogue, in space-time, of the Laplacian operator in space.

In writing down eq. (1), I have in mind an electromagnetic signal propagating in free space or

vacuum. To keep matters as simple as possible, I assume that the signal is described by a single

scalar function u rather than the electric and magnetic field vectors that an actual electromag-

netic signal would comprise. It is also assumed that the space in which the signal propagates

is ordinary Euclidean space of infinite extent. This helps us avoid complications arising from

boundary conditions. As the objective is to analyse and compare signal propagation in spaces

of different dimensions, the symbol d will be used for the number of spatial dimensions: d may

be 1, 2 or 3. Subsequently, we shall also take a look at what happens for d > 3.

In order to focus on the essentials, we consider a sharply pulsed point source of unit strength

that is switched on at some point r0 at the instant of time t0. We want to find the resulting

signal u(r, t) at an arbitrary point r at an arbitrary instant of time t. Here r0 and r stand for

d-dimensional position vectors. (When d = 1, r reduces to a single coordinate, x.) u(r, t) is

then a solution of the equation

(
1

c2

∂2

∂t2
− ∇2

)
u(r, t) = δ(d)(r − r0) δ(t − t0) . (2)

Here δ denotes the Dirac delta function, and δ(d) its generalization to d dimensions, as

defined in ch. 8. The natural boundary condition on u(r, t) is simply u(r, t) → 0 as r → ∞,

where r stands for |r|, as usual. Moreover, as there is no disturbance anywhere before the

source is switched on, we have u(r, t) = 0 and ∂u(r, t)/∂t = 0 for all t < t0 , at all points. This

requirement is called causality, which means that the effect cannot precede its cause. It implies

that the solution u(r, t), which is naturally also dependent on t0 and r0 , must necessarily have

a particular form. This is given by

u(r, t) = θ(t − t0) K(r, t ; r0, t0) , (3)

where θ(t − t0) denotes the unit step function (= 1 and 0, respectively, for t > t0 and t < t0.)

Owing to the presence of the step function, it is clear that the quantity K(r, t ; r0, t0) is in fact

left unspecified for t < t0 . But then this is irrelevant for the physical, causal, solution we

seek here. In fact, causality imposes an even stronger constraint, as we shall see. Since the

disturbance propagates with a finite speed c, we expect that the signal cannot reach a point r

before the instant t0 + |r − r0|/c , because |r − r0|/c is the time it takes to propagate from r0 to

r. This property, too, will emerge automatically in the solution.
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Jean le Rond d’Alembert (1717–1783)

The French mathematician, natural philosopher and encyclopaedist Jean le Rond

d’Alembert was among the first to understand the significance of, and study in some detail,

several important differential equations of mathematical physics. Among other results, he

showed that the general solution of the one-dimensional wave equation

1

c2

∂2u

∂t2
− ∂

2u

∂x2
= 0

is of the form

u(x, t) = f1(x + ct) + f2(x − ct).

This corresponds to the superposition of two different waveforms or pulses moving, re-

spectively, to the left and right with speed c. It is the forerunner of the method of char-

acteristics for a class of partial differential equations, the so-called hyperbolic partial dif-

ferential equations. D’Alembert’s name is associated with many other discoveries as well,

such as d’Alembert’s Principle in Mechanics, d’Alembert’s scheme in games of chance

such as roulette, and d’Alembert’s paradox: he showed that, in the streamlined, irrota-

tional flow of a non-viscous fluid past a solid obstacle, the net drag force on the solid

vanishes, contrary to what one would guess off-hand.

D’Alembert (along with the philosopher Denis Diderot) spent a good deal of time and

effort on a massive project, the great French Encyclopaedia. (Speaking of Diderot, there is

no evidence for the veracity of the hilarious popular story about the great mathematician

Euler confounding Diderot with his spoof of a ‘mathematical proof’ for the existence of

God!) D’Alembert seems to have been a ‘straight shooter’; according to W. W. Rouse

Ball, “d’Alembert’s style is brilliant but not polished, and faithfully reflects his character,

which was bold, honest and frank. · · · with his dislike of sycophants and bores it is not

surprising that during his life he had more enemies than friends.”

From our discussion in ch. 8, you will recognise readily that eq. (2) is precisely the equation

satisfied by the Green function corresponding to the wave operator. The specific solution u(r, t)

in which we are interested here is the retarded or causal Green function corresponding to this

operator, together with the natural boundary condition already stated. The function K is called

the causal propagator.

We now have a well-defined mathematical problem. Although its solution is a standard ex-

ercise, it does involve a rather surprising number of subtleties – especially in the incorporation

of the conditions that enable us to arrive at a physically acceptable solution. These finer (but

important) points are so often slurred over or misrepresented in otherwise respectable texts,

that it seems to be worthwhile to spell them out with some care, at the risk of appearing to

dwell on technicalities.
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Fourier transform

To proceed, we could substitute in eq. (2) the form given in eq. (3) for u(r, t), and work with

the resulting partial differential equation for K. But it is just as convenient to work directly

with eq. (2). We note that the variables t − t0 and r − r0 merely represent shifts of t and r by

constant amounts, for any given t0 and r0. This suggests immediately that we change variables

from r and t to R ≡ r − r0 and τ ≡ t − t0, respectively. Equation (2) becomes

(
1

c2

∂2

∂τ2
− ∇2

R

)
u = δ(d)(R) δ(τ). (4)

I have used the obvious notation ∇2
R

for the Laplacian operator with respect to R. The causality

condition is u = 0 and ∂u/∂τ = 0 for all τ < 0−. The boundary condition is u→ 0 for R→ ∞,

where R ≡ |R|. It is evident that, under these circumstances, u(r, t) is in fact a function of R

and τ. In anticipation of this, we have retained the symbol u for the unknown function in eq.

(4). Note that in a region of finite extent, in the presence of boundary conditions at finite values

of r, the dependence of u on r and r0 cannot be reduced in general to a dependence on the

difference r − r0 = R alone.

Now, the Fourier transform of u(R, τ) with respect to both R and τ is defined as

ũ(k, ω) =

∫
ddR

∫ ∞

−∞
dτ e−i(k·R−ωτ) u(R, τ). (5)

Here. ddR is the volume element in the space of the variable R. Since R is just a shift of

the vector r by a constant vector r0, it is clear that ddR = ddr, the volume element in the

d-dimensional physical space Rd. The integration is over all of this space. The inverse Fourier

transform that yields u(R, τ) in terms of ũ(k, ω) is given by

u(R, τ) =

∫
ddk

(2π)d

∫ ∞

−∞

dω

2π
ei(k·R−ωτ) ũ(k, ω). (6)

Here ddk denotes the volume element dk1 dk2 . . . dkd in the space Rd of the d-dimensional

vector k. Again, the integration is over all of this space. Using the Fourier representation of the

δ-function (i.e., the fact that the Fourier transform of the delta function is just unity), we have

δ(d)(R) δ(τ) =

∫
ddk

(2π)d

∫ ∞

−∞

dω

2π
ei(k·R−ωτ). (7)

Now substitute eqs (6) and (7) in eq. (4). But

∇2
R eik·R = −k2 eik·R and

∂e−iωτ

∂τ2
= −ω2e−iωτ, (8)
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where k stands for |k| as usual. We then get

∫
ddk

(2π)d

∫ ∞

−∞

dω

2π
ei(k·R−ωτ) {(ω2 − c2k2) ũ(k, ω) + c2} = 0, (9)

The set of functions ei(k·R−ωτ), where each Cartesian component of k and τ can take on all real

values, forms a complete orthonormal basis‡ in the space of integrable functions of R and τ.

The left-hand side in eq. (9) can therefore only vanish if the coefficient of ei(k·R−ωτ) for each

value of k and ω, i.e., the expression in curly brackets, itself vanishes. We thus arrive at the

solution for ũ(k, ω), namely,

ũ(k, ω) = − c2

ω2 − c2k2
(10)

for all k and ω. The idea behind the introduction of the Fourier transform should now be obvi-

ous now: it converts the partial differential equation for u(R, τ) into a trivially-solved algebraic

equation for ũ(k, ω).

Putting this expression for ũ(k, ω) back in Eq. (6), we have the formal solution

u(R, τ) = −c2

∫
ddk

(2π)d
eik·R

∫ ∞

−∞

dω

2π

e−iωτ

(ω2 − c2k2)
. (11)

But this does not make sense as it stands, because the integral over ω diverges owing to the

vanishing of the denominator of the integrand at ω = −c|k| and again at ω = c|k|. The dilemma

is resolved by invoking the physical requirement of causality, as we shall see now.

The causal solution

The trick is to carry out the integration over ω in eq. (11) by adding a well-chosen zero to the

integral, so as to convert it to an integral over a closed contour in the complex ω-plane. The

latter is then evaluated by applying Cauchy’s Residue Theorem.

Let Ω be a large positive constant. Consider a closed contour comprising a straight line

from −Ω to +Ω along the real axis in the ω-plane, and a semicircle of radius Ω that takes us

back from +Ω to −Ω in either the upper or lower half-plane. The limit Ω → ∞ is to be taken

after the contour integral is evaluated. If the contribution from the semicircle vanishes in the

limit Ω → ∞, the original line integral from −∞ to +∞ over ω is guaranteed to be precisely

equal to the integral over the closed contour.

Now, for τ < 0, this semicircle must lie in the upper half-plane in ω (the region in which

Imω > 0), because it is only in this region that the factor exp (−iωτ) in the integrand vanishes

exponentially as Ω→ ∞. The addition of the semicircle to the contour would then simply add

a vanishing contribution to the original line integral that we want to evaluate. Therefore, if no

singularities of the integrand lie on the real axis or in the upper half-plane in ω, the contour

‡Recall the notion of a basis set and related aspects introduced in earlier chapters.
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integral is guaranteed to vanish identically for τ < 0. But this is precisely what causality

requires: namely, that u(r, t) remain equal to zero for all t < t0, that is, for all τ < 0.

On the other hand, for τ > 0, i. e., for t > t0 , we do expect to have a signal that does not

vanish identically. But now the semicircle closing the contour must lie in the lower half-plane

(i.e., the region in which Imω < 0), because it is only then that the contribution from the

semicircle to the contour integral vanishes as Ω → ∞. Therefore, if all the singularities of the

integrand are in the lower half-plane, all our requirements are satisfied.

This is ensured by displacing each of the poles of the integrand at ω = −ck and ω = +ck

by an infinitesimal negative imaginary quantity −iǫ where ǫ > 0, and then passing to the limit

ǫ → 0 after the integral is evaluated. In general, of course, each of the two poles of the

integrand can be displaced so as to lie in the upper or lower half-plane. This leads to four

possible ways of making the divergent integral finite. It is easy to see that any two of these

are linearly independent solutions, the other two being linear combinations of the former pair.

The particular way of displacing the poles (called an ‘iǫ-prescription’) that I have used above

is tailored to ensure that the correct causal solution is picked up from among the set of possible

solutions.

• In general, such iǫ-prescriptions are a way of incorporating boundary conditions (here,

initial conditions) into the solutions of differential equations.

The causal solution to eq. (2) or (4) is therefore given by the modified version of eq. (11) that

reads

u(R, τ) = −c2 lim
ǫ↓0

∫
ddk

(2π)d
eik·R ×

∫ ∞

−∞

dω

2π

e−iωτ

(ω + ck + iǫ)(ω − ck + iǫ)
. (12)

But, as discussed above,

∫ ∞

−∞

dω

2π

e−iωτ

(ω + ck + iǫ)(ω − ck + iǫ)
= lim
Ω→∞

∫ Ω

−Ω

dω

2π

e−iωτ

(ω + ck + iǫ)(ω − ck + iǫ)

= lim
Ω→∞

∫

C±

dω

2π

e−iωτ

(ω + ck + iǫ)(ω − ck + iǫ)
, (13)

where C± denotes the closed contours shown in Figure 1. As explained above, we must use C+
for τ < 0 and C− for τ > 0. However, C+ does not enclose any singularity of the integrand.

Hence the corresponding integral vanishes, precisely as we want it to. In the case of C−, the

integral is −(2πi) times the sum of the residues of the integrand at the two poles enclosed: the

extra minus sign arises because C− is traversed in the clockwise sense. We thus obtain, after

simplification,
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Im ω

Re ω

Contour C
+

Im ω

Re ω

Contour  C
−

ΩΩ−

− ck − i  ε ck − i   ε

ΩΩ−

ck − i−   ε ck − i   ε

Figure 1 The closed contours C+ and C− for evaluating the integral in eq. (13).

u(R, τ) = c θ(τ)

∫
ddk

(2π)d

sin cτk

k
eik·R . (14)

Note how the factor θ(τ) required by causality has emerged automatically in the solution for

u(R, τ).

For completeness, I mention in passing that solutions corresponding to the other possible

iǫ-prescriptions mentioned earlier do play a role in physics – for instance, in the so-called

Feynman propagator in quantum field theory.

Returning to the causal solution of interest to us, it remains to compute the integral in

eq. (14). It becomes necessary, now, to distinguish between the solutions obtained for different

values of d. The solution will therefore be written henceforth as u(d)(R, τ) instead of u(R, τ).

In the next chapter, we shall deduce and analyse the explicit form of u(d)(R, τ) for individual

values of d, to bring out the special features of the solution in each case.

# 73

73



# 74



Signal Propagation: 2. Effect of dimensionality∗

V. Balakrishnan

In the preceding chapter, we have shown that the fundamental, causal solution to the wave

equation (
1

c2

∂2

∂t2
− ∇2

)
u(d)(r, t) = δ(d)(r − r0) δ(t − t0) (1)

that vanishes as r → ∞ is given by

u(d)(R, τ) = c θ(τ)

∫
ddk

(2π)d

sin cτk

k
eik·R , (2)

where d is the number of spatial dimensions, R ≡ r − r0 and τ ≡ t − t0. This solution is, as

we know, the causal Green function of the wave operator in infinite d-dimensional space. We

now simplify and analyse the solution for different values of d. It follows from eq. (1) that the

physical dimensions of u(d) are L2−d T−1. This serves as a useful check on the solutions for

different values of d.

The case d = 1

The case of a single spatial dimension is somewhat distinct from the others, and simpler, too.

Recall that the symbol k in the factor sin (cτk)/k in eq. (2) stands for |k|. In the case d = 1,

therefore, we should remember to write |k| instead of just k in this factor. But sin (cτ|k|)/|k| =
sin (cτk)/k. Further, k · R is just kX in this case, where X = x − x0. Therefore

u(1)(X, τ) =

∫ ∞

−∞

dk

2π

sin cτk

k
eikX . (3)

It is clear from this expression that u(1)(−X, τ) = u(1)(X, τ), i. e., that u(1)(X, τ) is in fact a

function of |X|. (This fact will become explicit in the solution to be derived, eq. (8) below.)

Using eikX = cos kX + i sin kX , we see that the contribution from the sin kX term vanishes

because the corresponding integrand is an odd function of k. Thus

u(1)(X, τ) = c θ(τ)

∫ ∞

0

dk

πk
sin (cτk) cos (kX)

= c θ(τ)

∫ ∞

0

dk

2πk

{
sin (cτ + X)k + sin (cτ − X)k

}
. (4)

∗Based on Resonance, Vol.9, No.7, pp.8-17, 2004.
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We now need the standard integral

∫ ∞

0

dk
sin bk

k
=
π

2
ε(b) (5)

where b is any real number, and ε(b) is the (discontinuous) signum function

ε(b) =
b

|b|
=

{
+1 for b > 0

−1 for b < 0.
(6)

Equation (4) then yields

u(1)(X, τ) =
c

4
θ(τ)

{
ε(cτ + X) + ε(cτ − X)

}
. (7)

Simplifying the expression in the curly brackets, we find that it vanishes for X < −cτ and for

X > cτ, and is equal to 2 when −cτ < X < cτ. Therefore

u(1)(X, τ) =
c

2
θ(τ) θ(cτ − |X|) . (8)

(u1 has the correct physical dimensions, LT−1.) The step function θ(cτ − |X|) ensures that the

signal does not reach any point x until time t0+ |x−x0|/c, as required by causality. The presence

of this step function makes the other step function, θ(τ), redundant from a physical point of

view. However, it is present in the formal mathematical solution for the quantity u(1)(X, τ).

There is another noteworthy aspect of the solution. Although an observer at an arbitrary

point x starts receiving the signal at time t0 + |x − x0|/c, he does not receive a pulsed signal,

even though the sender sent out such a signal. In fact, the signal received persists thereafter for

all time, without diminishing in strength! This last feature is peculiar to d = 1. Let us now see

what happens in higher dimensions.

The case d = 2

It is helpful to take note, first, of an important feature of u(d)(R, τ) when d ≥ 2. The expression

in eq. (2) is a scalar: by this we mean that it is unchanged under rotations of the spatial

coordinate axes about the origin. This remains true for all integer values of d ≥ 2. This

assertion may seem to be more-or-less obvious, because k · R is, after all, a scalar product of

two d-dimensional vectors. But it must be proved properly. I leave the proof to the reader, after

pointing out that two factors play a role in such a proof. (i) The region of integration in eq. (2)

is all of k-space, and this is invariant under rotations of the coordinate axes in that space. (ii)

The volume element d(d)k also remains unchanged under rotations of the axes.

As a result of this rotational invariance, u(d)(R, τ) is actually a function of R (≡ |R|) and τ.

The consequence of this is that we can choose the orientation of the axes in k-space according

to our convenience, without affecting the result.
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Turning now to the d = 2 case, it is evidently most convenient to work in plane polar

coordinates (k, ϕ), choosing the k1-axis along the vector R. Then, setting d = 2 in eq. (2),

u(2)(R, τ) = c θ(τ)

∫ ∞

0

k dk

(2π)2

sin cτk

k

∫ 2π

0

dϕ eikR cos ϕ. (9)

The definite integral over ϕ is a known function. It is 2π times J0(kR), the Bessel function of

the first kind and order 0. Hence

u(2)(R, τ) = c θ(τ)

∫ ∞

0

dk

2π
sin (cτk) J0(kR). (10)

The final integral over k is again a known integral. It is equal to (c2τ2 − R2)−1/2 provided

c2τ2 > R2, and zero otherwise. Since we are concerned here with the physical region in which

both τ and R are non-negative, the solution is given by

u(2)(R, τ) =
c θ(τ)

2π

θ(cτ − R)
√

c2τ2 − R2
. (11)

(u(2) has the physicsl dimensions T−1, as required.) The signal thus reaches any point r only

at time t0 + |r − r0|/c, in accordance with causality and the finite velocity of propagation of

the disturbance. But once again, the signal is no longer a sharply pulsed one: it persists for all

t > t0 + |r − r0|/c, with a strength that slowly decays like 1/t at very long times (τ ≫ R/c).

The case d = 3

In stark contrast to the cases d = 1 and d = 2, something entirely different happens in 3-

dimensional space. Setting d = 3 in eq. (2), we have

u(3)(R, τ) = c θ(τ)

∫
d3k

(2π)3

sin cτk

k
eik·R . (12)

As you would expect by now, the integral is evaluated by exploiting rotational invariance. It is

clear that we must use spherical polar coordinates (k, θ, ϕ) in k-space, and, moreover, choose

the polar axis along the vector R. This immediately enables us to carry out the integration over

the azimuthal angle ϕ, obtaining a factor 2π. It is instructive to write out all the subsequent steps

in this instance, because they (or their variants) appear in more than one context in physical

applications.

u(3)(R, τ) =
c θ(τ)

(2π)2

∫ ∞

0

dk k2 sin cτk

k

∫ 1

−1

d(cos θ) eikR cos θ

=
2c θ(τ)

(2π)2R

∫ ∞

0

dk sin (cτk) sin (kR)
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=
c θ(τ)

(2π)2R

∫ ∞

0

dk {cos (cτ − R)k − cos (cτ + R)k}

=
c θ(τ)

2(2π)2R

∫ ∞

−∞
dk {cos (cτ − R)k − cos (cτ + R)k}

=
c θ(τ)

2(2π)2R
Re

∫ ∞

−∞
dk

{
ei(cτ−R)k − ei(cτ+R)k

}

=
c θ(τ)

4πR
Re {δ(cτ − R) − δ(cτ + R)} . (13)

But the delta functions are real quantities. Moreover, we are concerned with the region in

which both τ and R are non-negative. The term δ(cτ + R) therefore drops out, and the solution

reduces to

u(3)(R, τ) =
c θ(τ) δ(cτ − R)

4πR
=
θ(τ) δ(τ − R/c)

4πR
. (14)

Thus, almost miraculously, the signal remains a delta function pulse that reaches (and passes)

an observer at any point r at precisely the instant t0 + |r − r0|/c. There is no after-effect that

lingers on, unlike the situation in d = 1 and d = 2.

The solution (14) has the physical dimensions L−1T−1, as required. The amplitude of the

pulse drops with distance like 1/R, exactly the way the Coulomb potential drops off. In fact, this

is yet another unique feature of the solution in d = 3. Formally, if the limit c → ∞ is taken in

eq. (1), the wave operator reduces to the negative of the Laplacian operator. We might therefore

expect the solution for u(r, t) to reduce to the corresponding Green function for −∇2. In three

dimensions, this is precisely 1/(4πR). This fact is very familiar to you from electrostatics. The

potential φ(r) due to a point charge q located at r0 satisfies the corresponding Poisson equation

−∇2φ(r) = ρ(r)/ǫ0 = (q/ǫ0) δ(3)(r − r0). (15)

With the boundary condition φ → 0 as r → ∞, the solution to this equation is just Coulomb’s

Law, namely, φ(r) = −q/(4πǫ0R) where R = |r−r0|. This reduction of the fundamental solution

of the inhomogeneous wave equation to that of Poisson’s equation in the limit c→ ∞ does not

occur in d = 1 or d = 2.

Dimensions d > 3

Now that we have uncovered a very important feature of three-dimensional space that is absent

in 1 and 2-dimensional spaces, it is natural to ask if this feature is unique to d = 3. Surprisingly,

it is not: the propagation of sharp signals is possible in all odd-dimensional spaces with d ≥ 3,

while it fails for all even values of d. In other words, the signal received at any point r lingers

on for all t > t0 + |r − r0|/c in d = 2, 4, . . . , while it is sharply pulsed, arriving and passing on

at time t0 + |r − r0|/c with no after-effect, in d = 3, 5, . . . . There is, however, one feature that
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is absolutely unique to d = 3: this is the only case in which the original δ-function pulse is

transmitted without any distortion, namely, as a δ-function pulse.

One way to establish these results is to start with eq. (2), and to use hyperspherical coordi-

nates in d dimensions.∗∗ Then

k = (k, θ1, θ2, . . . , θd−2, ϕ), (16)

where

0 ≤ k < ∞, 0 ≤ θi ≤ π, 0 ≤ ϕ < 2π. (17)

Once again, we may choose the k1 axis to lie along the vector R, which permits us to carry out

the integrations over θ2, . . . , θd−2 and ϕ. The result is

u(d)(R, τ) = (const.) θ(τ)

∫ ∞

0

dk kd−2 sin (cτk) ×
∫ π

0

dθ1 (sin θ1)d−2 eikR cos θ1 , (18)

where the constant‡ depends on d. But this is clearly a laborious method of finding u(d)(R, τ),

especially as the integrations over θ1 and k have yet to be carried out.

There is a more elegant and powerful way to solve the problem. This is based on the

relativistic invariance of the wave operator and the solution sought. A detailed account of

this would take us too far afield. I shall therefore restrict myself to a short description of this

approach, to enable you to get some feel for the underlying mechanism responsible for the basic

difference between the cases of even and odd d. The discussion will not be fully rigorous, as I

shall not elaborate on certain technical details that warrant a more careful examination.

The wave operator (1/c2) ∂2/∂t2 − ∇2 can be verified to be invariant (i.e., unchanged in

form) under Lorentz transformations in (d + 1)-dimensional space-time.§ As a consequence

of this invariance, the specific solution we seek can also be shown to be Lorentz-invariant. In

the present context, this means that we can always evaluate the integrals involved in eq. (2)

by first transforming to an inertial frame in which the four-vector (cτ,R) has only a time-like

component, i.e., it is of the form (cτ ′, 0), where c2τ2 −R2 = c2τ ′ 2. This can only be done for a

so-called time-like four vector, i.e., one for which c2τ2 − R2 > 0. It cannot be done for a light-

like four-vector (i.e., when c2τ2−R2 = 0) or a space-like four-vector (i.e., when c2τ2−R2 < 0).

(This is the technical point I gloss over, with the remark that our conclusions will not be affected

by it.) After the integrals required are evaluated, we can transform back to the original frame by

replacing cτ ′ with (c2τ2 −R2)1/2. It must also be mentioned that τ > 0 implies τ ′ > 0, because

the sign of the time component of a four-vector remains unchanged under the set of Lorentz

transformations with which we are concerned.¶ Denoting the corresponding signal by u(d)(τ ′),
eq. (2) simplifies to on carrying out all the angular integrations in d-dimensional space. The

∗∗Recall that hyperspherical coordinates have been introduced and discussed in ch. 1.
‡You can calculate this constant using the expression for the solid angle in d dimensions (see ch. 1). The answer

is 2π(d−1)/2/Γ
( 1

2
(d − 1)

)
, where Γ denotes the gamma function.

§That is, d space dimensions and 1 time dimension.
¶Once again, this is only true for a time-like or light-like four-vector, but not a space-like one.
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constant on the right-hand side in the last equation depends on d. This representation shows us,

in very clear fashion, how the cases of odd and even d differ from each other. When d is odd,

the integrand is an even function of k, and hence the integral can be converted to one that runs

from −∞ to ∞. The result can then be shown to be essentially a derivative of a certain order

of the delta function δ(c2τ ′ 2), i.e., a sharply em localized, pulsed signal. (The order of the

derivative increases with increasing d.) On the other hand, when d is even, this cannot be done,

and the integral leads to an extended function of c2τ ′ 2. This dissection lays bare the precise

mathematical distinction that lies at the root of the physical differences in signal propagation

in odd and even dimensional spaces, respectively. In fact, the formal solution for u(d)(τ ′) can

be shown to be essentially the derivative of order (d − 3)/2 of δ(c2τ ′ 2) in all cases. When d is

even, this is a so-called fractional derivative, which is a non-local object — in physical terms,

an extended function.

u(d)(τ ′) = c θ(τ ′)

∫
ddk

(2π)d

sin cτ ′k

k

= (const.) θ(τ ′)

∫ ∞

0

dk kd−2 sin (cτ ′k), (19)

The form of the result in eq. (19) suggests even more. Since the second derivative of the

sine function is again a sine function (apart from a minus sign), it follows that the solution in

(d + 2) spatial dimensions can be obtained from that in D space dimensions by a simple trick.

We find

u(d+2)(τ ′) = − 1

2πc2d

∂2 u(d)(τ ′)

∂τ ′ 2
. (20)

This shows how the solutions in d = 5, 7, . . . can be generated from that in d = 3, while those

in d = 4, 6, . . . can be generated from that in d = 2. The detailed working out of these solutions

is left to the interested reader.

A final remark, before we pass on to more general considerations. How widely applicable

are the conclusions at which we have arrived? Basically, there are two important additional

aspects of wave or signal propagation that can be adjusted so as to modify the basic result. The

first is dispersion. Sinusoidal waves of different wavelengths will, in general, propagate with

different speeds in a medium. The precise manner in which the frequency and wavelength of

waves in a medium are related to each other is called a dispersion relation. Such relations can

be quite complicated. The second aspect is nonlinearity. The simple wave equation we have

used, eq. (1), is linear in u(d). On the other hand, physical situations often call for nonlinear

equations. The interplay between dispersion and nonlinearity can be extremely intricate and

interesting, and a vast variety of new phenomena can arise as a result. Among these are the

so-called solitary waves and propagating solitons, which represent very robust pulsed distur-

bances.
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General remarks on dimensionality

I conclude this discussion with a few remarks of a very general nature about the dimensionality

of space.

We have seen how 3-dimensional space has some special properties that are not shared by

a space of any other dimensionality. Are there other such properties? Answers to this question

can be given at many levels. Here is a general observation: One- and two-dimensional spaces

are, in some sense, too ‘simple’ for anything too complicated to be possible; on the other hand,

four- and higher-dimensional spaces are again too ‘roomy’ for anything very complicated to

occur. In even more general terms, this roominess permits the undoing of complications like

knots, for instance. From the point of view of topology, 3 and 4 dimensions permit com-

plexities that are not shared by spaces of other dimensions. ‘Low-dimensional topology’ is a

branch of mathematics in its own right! The famous Poincaré Conjecture regarding compact

3-dimensional manifolds, made in 1904, stood unproved for about a hundred years till it was

settled, although its higher dimensional counterparts were established many decades earlier.‖

Finally, it must be recognized that our sensory organs and the information-processing hard-

ware and software in our brains are designed so specifically for (3+1)-dimensional space-time,

that we literally take this dimensionality to be a fundamental and self-evident fact of nature.

In actuality, however, there are very deep unanswered questions about the nature of space and

time. These questions are connected to questions about quantum mechanics, general relativity

and the origin of the universe. We do not know for sure whether, at the very smallest time

scales and length scales, the number of space dimensions is three or more; whether the number

of dimensions is itself a dynamic, ‘emergent’ property of the universe; whether space-time co-

ordinates must be supplemented with certain other kinds of variables to specify a point in the

‘true’ arena in which phenomena occur; and even whether space-time is ultimately continuous

or discrete (granular). One thing does appear to be fairly certain, though:

• It is very probable that, sooner or later, our long-standing ideas and preconceptions about

the nature of space and time will have to be revised significantly at the most fundamental

level.

‖For a semi-popular account of the Poincaré Conjecture and its resolution, see the book by D. O’Shea cited in

the Bibliography.
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