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Virtual sensing technology aims to estimate difficult to measure, expensive, or new 

quantities by using multifarious mathematical models along with non-invasive and low-

cost measurements. Such embedded intelligence is a key to improving the performance of 

building systems in terms of functionality, safety, energy efficiency, environmental 

impacts, and costs.  Considering the progress that has been achieved over many various 

fields (e.g., process controls, automobiles, avionics, autonomous  robots, telemedicine) 

within the last two decades, numerous intelligent features have been incorporated and 

enabled that would otherwise not be possible or economical. 

To identify the potential opportunities and research/development needs of virtual 

sensing technology in building systems,  

First, this thesis reviews the major milestones of virtual sensing development in other 

emerging fields and its formulation of development methodologies.   

Second, the state-of-the-art in virtual sensing technology in building systems is 

summarized as a starting point for its future developments and applications.  

After that, a cost-effective virtual supply airflow (SCFM ) meter for rooftop air-

conditioning units (RTUs)  is created by using a first-principle model in combination 

with accurate measurements of virtual or virtually calibrated temperature sensors (a 

virtual mixed air temperature sensor and a virtually calibrated supply air temperature 



 

 

sensor) as a supplementary example. Modeling of the virtual meter, uncertainty analysis, 

and experimental evaluation are performed through a wide range of laboratory testing in 

the development.  The study reveals that the first-principle based virtual SCFM meter 

could accurately predict SCFM values for RTUs (uncertainty is ± 6.9%). This innovative 

application is promising with a number of merits, such as high cost-effectiveness, ease-

of-implementation, long-term availability after one-time development, and generic 

characteristics for all RTUs with gas heating.  

Significant research and developments are needed before virtual sensors become 

commonplace within buildings. It is believed a wealth of virtual sensing derived 

applications would facilitate the sustainable management and optimize the advanced 

controls in building systems.  It is hoped that this study can provide a resource for future 

developments. 
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NOMENCLATURE 

Roman Letter Symbols 

A area, ft
2 

(m
2
) 

a,c empirical coefficient 

C discharge coefficient, specific heat, Btu/(lbm·°F) (kJ/(kg·K));  

Cmin     the smaller of Cg and Ca, Btu/(hr·°F) (kW/K) 

Cmax    the bigger of Cg and Ca, Btu/(hr·°F) (kW/K) 

Cr    a capacity ratio as Cmin /Cmax 

D  duct diameter, in (m); discharge dew point temperature, °C (°F) 

e  error between SATlab,meas and SATmfr,meas (°F, °C) 

eC,eva  relative error between meas,CV


and elmod,CV


 

eeva  error between SATmfr,cal and SATexp,eva (°F, °C) 

eH  error between SATth,pred and SATmfr,meas (°F, °C) 

eH,eva  relative error between meas,HV


and elmod,HV


 

EAT  exhaust air temperature (°F, °C) 

ET entering air temperature, °C (°F) 

h enthalpy, kJ/kg (Btu/lbm), heat transfer coefficient, Btu/(h·ft
2
·°F) 

(kW/(m
2
·K)) 

H height, ft (m); pump head, fan head, inch H2O (Pa) 

Hstage                  heating stage status 

h1  enthalpy of air before the thermal equipment Btu/lbm (kJ/kg) 
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h2  enthalpy of air after the thermal equipment Btu/lbm (kJ/kg) 

k slope of the best-fit line geometry constant, thermal conductivity, 

Btu/h·ft·°F (kW/(m·K)) 

L length, ft (m)  

LMTD logarithmic mean temperature difference 

m mass of charge, lbm(kg) 



m  mass flow rate, lbm/min (kg/s) 

MAT mixed air temperature, °C (°F) 

0
wbMAT   

critical point of the mixed air wet bulb temperature, °F (°C)  

MOAT  measurement of the manufacturer-installed OAT sensor, ºF (ºC) 

MRAT  measurement of the manufacturer-installed RAT sensor, ºF (ºC) 

MSAT   measurement of the manufacturer-installed SAT sensor, ºF (ºC) 

n the number of right angle bends 

N number of suction strokes per unit time 

NTU    number of transfer units 

Nu    Nusselt number 

OARH outside air relative humidity 

OAT outside air temperature, °C (°F) 

OADst  

  

outside air damper position 

P pressure 

Pr                          Prandtl number 



Q  capacity, Btu/hr (kW) 
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Q volumetric flow rate, m
3
/s 

RAT return air temperature, °C 

Re  duct Reynolds number 

S suction dew point temperature, °C (°F) 

SHR sensible heat ratio 

SAT Supply air temperature, °C (°F) 

T temperature, °C (°F) 

U   heat transfer coefficient, Btu/(hr·°F·ft²) (kW/(m2·K)) 

v specific volume, ft
3
/lb (m

3
/ kg), kinematic viscosity, ft

2
/s  (m

2
/s) 

V displacement volume, cfm (m
3
), linear velocity, ft/s (m/s) 



V                         
supply airflow rate, cfm (m3/s) 

w humidity ratio, speed 

W width, m 

W


   
compressor power consumption, Btu/h (kW) 

X mass flow rate, power consumption, current, coefficient of 

performance or compressor volumetric efficiency 

ZARH zoon air relative humidity 

ZAT zoon air temperature, °C (°F) 

∆P pressure drop 

∆Tfan                               supply fan temperature rise, ºF (ºC) 

∆Toa-ra                               difference between outdoor and return-air temperature 

Greek symbols 

β    outside fresh air ratio 
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    heat exchanger effectiveness 

η efficiency 

μ  dynamic viscosity of air, lbm/ft·s (N·s/m
2
) 

ρ  density, lb/ft
3
 (kg/m

3
) 

Subscripts 

a air 

aie air stream in the inlet of evaporator 

aic air stream in the inlet of condenser 

amb ambient 

aoe air stream in the outlet of evaporator 

aoc air stream in the outlet of condenser 

B bypasing 

c cooling 

ca condenser air 

cal calibration  

ch charge 

comp compressor 

cond condenser 

cycle refrigerant cycle 

d design 

db dry bulb 

dis discharge 

down downstream 
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error bias error 

eva   evaluation 

evap evaporator 

exp    experimental 

fan   supply air fan 

g gas 

G    grid  

i inlet 

lab    lab-installed 

ll liquid line 

loss heat loss 

LCV leaky check valve 

LRV leaky reversing valve 

mfr    manufacturer 

max maximum 

meas measured 

min minimum 

model modeling 

normal normal condition 

o outlet 

P constant pressure 

pred predicted 

pump heat pump 
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r ratio 

ref refrigerant 

s supply air, sensible 

sc subcooling 

sh superheat 

sp set point 

suc Suction line 

th   theoretical 

total total value 

rated nominal value at rated conditions 

up upstream 

v volumetric 

vir  virtual 

wb    wet bulb 

wb wet bulb 

 

Abbreviations 

AHU Air handling unit 

ANN Artificial Neural Networks 

ARMAX auto-regressive moving-average time-series model 

BF bypass factor 

CAV Constant air volume 

COP coefficient of performance 
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DDC direct digital control 

DF  decoupling feature 

DX                        direct expansion  

EMCS energy management control system 

EER energy efficiency ratio 

FDD fault detection and diagnoses  

FP First principle 

FXO fixed orifice 

HVAC Heating, ventilation and air-conditioning system 

IAQ indoor air quality 

MLP Multi-layer Perceptron 

NTU number of transfer units
 

PAFM physical airflow meter 

PCA Principle Component Analysis 

RTU rooftop air conditioning unit 

SCFM                  supply airflow rate 

SVM Support Vector Machine 

TXV thermal expansion valve 

TXV thermostatic expansion valve 

VAV variable air volume  

VHC virtual heating capacity 
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Chapter 1 INTRODUCTION 

1.1 Background on virtual sensing technology in building systems 

Embedded intelligence is a key to improving the performance of systems in terms of 

functionality, safety, energy efficiency, environmental impacts, and costs.  Consider the progress 

that has been achieved with automobiles within the last two decades. Modern automobiles 

incorporate many intelligent features, including anti-lock brakes, electronic stability control, tire 

pressure monitoring, and feedback on fuel efficiency and the need for service.  If a car is in need 

of service, then a technician has access to on-board diagnostic information.  In many cases, these 

advanced features have been enabled through the development of virtual sensors.  A virtual 

sensor estimates a difficult to measure or expensive quantity using one or more mathematical 

models along with lower cost physical sensors. Fifty years ago, most automobiles provided fuel 

level and some warning lights using four physical sensors, on average.   Today, about 40 

relatively low-cost embedded physical sensors are employed along with virtual sensors to 

optimize driving performance, safety, functionality, and reliability of vehicles (Healy, 2010).  

In contrast, building systems rarely provide feedback on energy efficiency or the need for 

service and generally do not provide optimized controls.  In fact, typical information provided to 

a building owner and occupants, even with a direct digital control (DDC) energy management 

control system (EMCS), is not significantly better than what was provided 50 years ago.  

Although the energy efficiency of individual building components has improved significantly 

(e.g., the rated efficiency of new residential cooling equipment has nearly tripled), the operating 

efficiency is typically degraded by 20% to 30% due to improper installation/commissioning and 

inadequate maintenance/repair (CEC, 2008).  

One of the reasons that building applications are slower to adopt more automation and 

intelligent features than automobiles may be that they are not mass produced in factories.  For 
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automobiles, automated features are part of an integrated design and their development costs can 

be spread out over millions of vehicles.   For buildings, the cost threshold for advanced features is 

much higher because buildings tend to be individually engineered.  Also, building systems can be 

very large and complex, serving hundreds of zones with individual controllers and often requiring 

thousands of sensors to adequately characterize and monitor performance.  Therefore, a key to 

realizing more intelligent features in buildings should be to reduce the cost threshold.  Lowering 

the cost of sensing through the availability of virtual sensors helps in attacking this problem with 

the potential for providing high level performance monitoring information (e.g., energy 

efficiency) at significantly less cost.  It would also make sense if advanced features were 

embedded within individual manufactured devices (air handling units, compressors, etc.) rather 

than being engineered within the control system during the building design phase.  In order to 

realize widespread application, advanced features should be commodities rather than individual 

engineering projects.  

Practically every device within a building could serve as a virtual sensor in addition to 

providing its intended function.  For instance, a fan/motor package could incorporate a model that 

provides virtual sensing for air flow rate and power consumption using only measurements of 

static pressure difference and inlet temperature.  A compressor could incorporate a map for 

refrigerant flow rate and input power using physical measurements of inlet and outlet pressure, 

along with inlet temperature.  Valves or dampers could also output flow measurements based on 

differential pressure and inlet temperature measurements.  A ―smart‖ lighting fixture could 

provide power, lighting, and heat gain outputs based on the input control signal.   A ―smart‖ 

window could provide estimates of heat gain and even solar radiation based on low-cost 

measurements and a model.   

The availability of a rich set of high value sensor information would enable a level of 

building optimization and improvement not previously possible.  Virtual sensors for capacity and 

power consumption at the device level would allow real-time monitoring of device, subsystem, 
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and whole-building efficiencies.  This information could be used along with other virtual sensors 

to enable diagnosis, tracking, and economic impact evaluation of specific faults.  The virtual 

sensor outputs and embedded models could also be employed within a control optimizer that 

determines setpoints that minimize operating costs at each operating condition.  If all devices 

incorporated embedded intelligence then there would undoubtedly be a significant amount of 

redundant information that could use to diagnose sensor faults (e.g., faults within devices 

providing virtual sensor outputs).   

Some might argue that all of the data necessary to provide monitoring, diagnostics, and 

optimal control could be provided more reliably and robustly using physical sensors.  However, 

virtual sensors have several advantages in addition to lower cost.  For example, virtual sensors 

could be more easily added as retrofits in a number of important applications, such as 

measurement of refrigerant flow rate or pressure.  A physical sensor for refrigerant mass flow 

would require opening up the system, recovering the refrigerant, installing the sensors, and then 

recharging the system.  The installation of refrigerant pressure sensors would require access to 

threaded service ports on the equipment, which can cause refrigerant leakage over time (Li and 

Braun, 2009a).   The same refrigerant-side sensor information could be obtained using non-

invasive surface mounted temperature sensors along with models.    

In some cases, it is very difficult to install physical sensors that can accurately measure a 

desired quantity.  For example, it is very difficult to obtain accurate mixed air temperature 

measurements at the inlet of cooling coils or evaporators because the compactness of the mixing 

chamber creates highly non-uniform flow and temperature characteristics.  However, an accurate 

effective mixed air temperature is readily obtained using a model and measurements obtained at 

other more uniform locations (e.g., coil outlet and/or return and ventilation air streams).  In other 

cases, it can be impossible to measure some quantities directly. For example, it is currently not 

possible to directly measure the amount of refrigerant charge within an air conditioner or heat 

pump. 
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Virtual sensors have been developed in other fields to obtain measurements indirectly in 

a cost-effective, non-invasive or/and practical manner, but are only recently the subject of 

development for building systems.  There is no widely accepted definition of virtual sensing. In 

the context of this thesis, virtual sensing is considered to include any indirect method of 

determining a measureable quantity that utilizes outputs from other physical and/or virtual 

sensors along with process models and/or property relations.  The primary goals of this thesis are 

to review the state-of-the-art in virtual sensing in other fields and as applied to building systems, 

to newly develop a virtual supply air flow (SCFM) meter in rooftop air-conditioning units 

(RTUs), and to provide some perspective regarding open issues and possible next steps as a 

starting point for future development and implementation. First, this chapter reviews the major 

milestones of virtual sensing development in other emerging fields and its formulation of 

development methodologies. 

1.2 Major milestones in virtual sensing development 

There has been a rapid development of virtual sensing technology over the past decade 

within a  number of different domains, including avionics, autonomous robots, telemedicine, 

traffic, automotive, nature and building monitoring and control (Dorst, et al.1998; Hardy and 

Ahmad, 1999; Hardy and Maroof, 1999; Oosterom and Babuska, 2000; Kestell, et al. 2001; 

Oza,et al 2005; Srivastava, et al. 2005; Gawthrop 2005; Kabadayi, et al. 2006; Bose, et al. 2007; 

Ibarg¨uengoytia, et al. 2008; Said, et al. 2009; Raveendranathan, et al. 2009; et al.). In particular, 

virtual sensing has found widespread applications in process controls and automobiles, so here 

focuses on these two fields in providing a brief history of notable developments.   

1.2.1  Virtual sensing in process controls 

―Virtual sensors‖, also termed ―soft sensors‖, have found widespread applications in 

process control engineering since the early 1980s. Researchers in process control engineering 

(Venkatasubramanian et al., 2003a, 2003b, 2003c; Fortuna et al, 2007; Kadlec et al., 2009) use 
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the term virtual sensors to characterize software that includes several interacting measurements of 

characteristics and dynamics that are processed (fused) together to calculate new quantities that 

need not be measured directly. Under this definition, well-known software algorithms that are 

considered to be soft sensors include Kalman filters and state observers or estimators such as 

electric motor velocity estimators. In process control engineering, virtual sensing is focused on 

estimating system dynamics or state variables through construction of state observers. 

Accordingly, virtual sensor development involves representing the whole control system using a 

mathematical transient model through ordinary or partial differential equations, and then 

constructing state observers or estimators to estimate non-measured states using mathematical 

transformation techniques.  The transformed estimators or observers are considered to be virtual 

sensors. 

1.2.2 Virtual sensing in automobiles 

There have been a large number of virtual sensing developments for automobiles during 

the past decade. Unlike applications in process control engineering where system dynamics or 

transient states are of primary interest, the focus for virtual sensing in automobiles has primarily 

been on determination of steady-state variables. The methods for constructing virtual sensors 

have been more fragmented and component-oriented. Steady-state models represented by 

algebraic equations are often used to relate the quantity that is not measured directly to one or 

more quantities that are directly measured using physical sensors. These steady-state models can 

be considered to be virtual sensors. 

Figure 1 depicts a vehicle that employs ten virtual sensors that have been developed in 

the past decade to provide increased functionality, safety, and reliability.  Table 1 describes the 

corresponding physical sensor and references for each virtual sensor.  For example, virtual 

sideslip angle and velocity of the centre of gravity sensors play important roles in reducing the 

potential dangers associated with loss of control of a vehicle. These quantities would be difficult 
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and expensive to measure directly and are estimated using a hyperbolic tangent switching 

function (Zhang, et al. 2009; Shraim, et al. 2006) that combines available vehicle information 

(e.g. mass of vehicle, friction coefficient). Another example is the virtual tire pressure sensor. 

Conventionally, tire air pressure is measured directly using a pressure responsive element located 

within the tire. However, this construction is complicated and costly. There have been a number 

of different developments related to tire pressure indication, reflected in more than 40 patents 

(Gustafsson et al. 2001; Yoshihiro 1998; Takeyasu 1997). A widely studied approach utilizes a 

Kalman filter to estimate tire pressure in a simple model that uses wheel speed and road friction 

that are also sensed using virtual observers (Zhang, et al. 2009; Shraim, et al. 2006; Gustafsson, 

1997; 1998; 2001).  On-vehicle sensors alone do not provide sufficient quality and quantity of 

information to fulfill all of the evolving vehicle requirements (Röckl, et al. 2008). Virtual sensors 

have also been developed that utilize car-to-car communication within an intelligent automotive 

system for a variety of purposes, including cooperative collision and traffic jam warnings. The 

convergence of multiple virtual sensors has significantly upgraded the intelligence of automobiles 

over time.  

VTirePS

VTireFoS

VTransFoS

VRoadFrS
VSideAS

VVelS

VC2CS

VMotorTS

VLightCS

VStabCS

1. Monitor and estimate

    vehicle and driving status

2. Indirectly track road conditions

3. Backup or replace expensive,

    hard to install or easy to break

    physical sensors and accessories

4. Improve car quality while

    lowering primary costs

5. Avoid  extra maintenance

    services and potential risks

Advantage and Significance

VTirePS-Virtual vehicle  tire-air  pressure sensor

VTireFoS-Virtual vehicle tire-road forces sensor

VTransFoS-Virtual vehicle transversal forces sensor

VRoadFrS-Virtual vehicle road friction sensor

VSideAS-Virtual vehicle sideslip angle sensor

VVelS-Virtual vehicle velocity sensor

VC2CS-Virtual vehicle car-2-car communication sensor

VMotorTS-Virtual motor combustion timing sensor

VLightCS-Virtual vehicle enhanced  lighting preview control sensor

VStabCS-Virtual vehicle stability control sensor

 

Figure 1: A virtual sensing systemized vehicle 
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Table 1: Virtual sensing developments in vehicles 

Domain Title of Virtual Sensor Counterpart Reference 

A
u

to
m

o
ti

v
e
: 

V
e
h

ic
le

 

Virtual vehicle  tire-air  pressure 

sensor 

Pressure sensor, such as 

piezoelectric 

(Gustafsson et al. 2001); (Yoshihiro 1998); (Takeyasu 1997) 

et al. (more than 40 patents) 
patents. Virtual vehicle tire-road forces 

sensor 

Force sensor, such as strain 

gauge 
(Doumiati, et al. 2009); etc. 

Virtual vehicle transversal forces 
sensor 

Force sensor, such as strain 
gauge 

(Stephant, et al. 2004b) 

Virtual vehicle road friction sensor 
Force sensor, such as strain 

gauge 
(Gustafsson, 1997; 1998); (Gustafsson, et al. 2001); etc 

Virtual vehicle sideslip angle 

sensor 

without a corresponding 

physical sensor 

(Zhang, et al. 2009); (Milanese , et al. 2007); (Stephant, et 

al. 2004a, 2004b, 2007); etc 

Virtual vehicle velocity sensor 
Speed sensor, originally 

developed as virtual sensors 
(Zhang, et al. 2009) ,(Shraim, et al. 2006); etc 

Virtual vehicle car-2-car 

communication sensor 

without a corresponding 

physical sensor 

(Röckl, et al. 2008) 

Virtual motor combustion timing 

sensor 
(Holmberg and Hellring 2003) 

Virtual vehicle enhanced  lighting 

preview control sensor 
(Lauffenburger 2007) 

Virtual vehicle stability control 

sensor 
(Canale, et al. 2008a, 2008b); (Wenzel, et al. 2007); etc 

 

1.2.3 Use of virtual sensing in other emerging fields 

Virtual sensing techniques are penetrating other emerging fields in recent years, including 

wireless communication, sensor networks, active noise control, and data fusion 

(Raveendranathan, et al. 2009; Kestell, et al. 2001; Said, et al. 2009). Similar to applications in 

automobiles, the primary focus for virtual sensing developments in these emerging fields has 

been on estimating steady-state variables. However, transient-state variables are also utilized in 

many virtual sensing schemes, notably in active noise control which uses mechanistic models 

similar in nature to the process control field.   Data-driven modeling methods are more frequently 

used in the fields of wireless communication, sensor networks and data fusion because the 

amount of data and information in these fields are very rich.  Also, researchers in these fields are 

more accustomed to applying data processing techniques and less skilled in developing physical 

models.  

Another emerging area for adoption of virtual sensing is the building industry. The 

development of virtual sensors for building components has lagged other fields, probably because 

of the fragmented nature of the industry and the emphasis on initial costs.  In fact, the concept and 

http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Holmberg%2C+U.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ASMEDL&possible1=Hellring%2C+M.&possible1zone=author&maxdisp=25&smode=strresults&pjournals=AMREAD%2CJAMCAV%2CJBENDY%2CJCNDDM%2CJCISB6%2CJDSMAA%2CJEPAE4%2CJERTD2%2CJETPEZ%2CJEMTA8%2CJFEGA4%2CJFCSAU%2CJHTRAO%2CJMSEFK%2CJMDEDB%2CJMDOA4%2CJMOEEX%2CJPVTAS%2CJSEEDO%2CJOTRE9%2CJOTUEI%2CJVACEK%2CJTSEBV&aqs=true
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potential for ―virtual sensing‖ has only recently been considered for building applications leading 

to some initial developments (Li and Braun, 2007a; 2007b; 2009a; 2009b).  

1.3 Formulation of development methodology for virtual sensing  

Virtual sensors are the embodiment of virtual sensing techniques. For the sake of 

simplicity, the term virtual sensor is used interchangeably with virtual sensing to present 

development methodology.  Although many different types of virtual sensors have been 

developed, there is no widely accepted definition and no systematic virtual sensing development 

methodology.  It is useful to categorize virtual sensors before attempting to describe general 

approaches for their development. 

1.3.1 Categorization of virtual sensors  

Virtual sensors can be categorized, as shown in Figure 2, according to three interrelated 

criteria that affect development approaches: 1) measurement characteristics, 2) modeling 

methods, and 3) application.  

Modeling

methods

-based

Measurements

characteristics

-based

Virtual sensors

Application

purposes

-based

Transient-state

 data -based

First-principle

(model-driven)

For backup

/replacement

Steady-state

 data -based

Black-box

(data-driven)
Grey-box

For

observing

Layer

-based

Basic

virtual sensor

Derived

virtual sensor

 

Figure 2: A categorization scheme for virtual sensors  

The measurement characteristic category refers to whether the desired virtual sensor 

outputs are transient or steady-state variables.  A transient virtual sensor incorporates a transient 

model to predict the transient behavior of an unmeasured variable in response to measured 

transient inputs.  This type of sensor would be necessary for feedback control or if transient 

information were useful in fault identification.  For performance monitoring or fault identification 
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it is often adequate and/or desirable to assume that the modeled process is quasi-static.  In this 

case, steady-state models (i.e., with no dynamic terms) are utilized.  This modeling is appropriate 

when the measured input quantities change slowly or the modeled process responds very 

―quickly‖ to changes in inputs.  Many processes in the food and biochemistry industry, like 

fermentation processes, utilize transient-state virtual sensors (Rotem, et al. 2000; Kampjarvi, et al. 

2008).  Transient-state virtual sensors are also very common in the specialty chemistry field 

(Bonne and Jorgensen 2004).  However, steady-state virtual sensors represent the majority of the 

applications in different fields (Qin 1997; Casali, et al. 1998; Park and Han 2000; Jos de Assis 

and Maciel Filho 2000; Meleiro and Finho 2000; Radhakrishnan and Mohamed 2000; 

Devogelaere, et al. 2002; James, et al. 2002.et al.). 

With respect to modeling methods, virtual sensors can be divided into three types: first-

principle (model-driven), black-box (data-driven), and grey-box virtual sensors. First-principle 

(physical or white-box) virtual sensors are most commonly derived from fundamental physical 

laws and have parameters with some physical significance. For example, DeWolf et al. (1996) 

developed a virtual slurry polymerization reactor sensor based on a Kalman filter and Prasad, et al. 

(2002) applied a multi-rate Kalman filter to the control of a polymerization process.  For the same 

application, Doyle (1998) utilized a non-linear observer method.  In contrast to first-principle 

virtual sensors, black-box (data-driven) approaches utilize empirical correlations without any 

knowledge of the physical process. Examples include multivariate Principle Component Analysis 

(Gonzalez, 1999; Warne et al. 2004), Partial Least Squares (Frank and Friedman, 1993; Kourti, 

2002), Artificial Neural Networks (Poggio and Girosi, 1990;  Bishop, 1995) and so on. A grey-

box virtual sensor utilizes a combination of physical and empirical models in estimating the 

output of an unmeasured process (Casali et al. 1998; Meleiro and Finho 2000; James, et al. 2002). 

According to application, virtual sensors can be divided into backup/replacement and 

observing virtual sensors. Backup/replacement virtual sensors are used either to back up or 
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replace existing physical sensors. A backup virtual sensor can provide a check on the accuracy of 

an installed sensor and even enable virtual calibration.   For example, the reliability of 

temperature sensors is affected by incorrect installation, hostile environmental conditions, or 

natural drift (ASHRAE, 2009).  A replacement application is dictated by cost and reliability 

considerations, such as the virtual tire-air pressure sensor studied for automobiles (Gustafsson, et 

al. 2001; Yoshihiro 1998; Takeyasu 1997; et al.). A physical pressure sensor located within the 

tire is expensive and exposed to high rotational speeds and vibration which over time can lead to 

unreliable measurements and failure. Within automotive applications, the majority of the existing 

virtual sensors either back up or replace physical counterparts. In contrast, observing virtual 

sensors estimate quantities which are not observable (or measurable) directly using existing 

physical sensors. For example, typically there is no physical sensor to directly determine engine 

performance. Mihelc and Citron (1984) proposed a virtual engine-performance monitor for 

determining the relative combustion efficiencies of each cylinder within a multiple cylinder 

internal combustion engine using available information (e.g. the position of engine crankshaft). 

This performance index allows evaluation of test engine fuel distribution stem and ignition 

system control strategies.  

Either backup/replacement or observer sensors can be used for a variety of end-use 

applications, including performance monitoring, control, and fault detection and diagnostics 

(FDD).  FDD virtual sensors allow flagging of a fault and ―measurement‖ of the fault severity.  

For instance, a virtual air flow sensor could be a cost-effective replacement for a physical sensor 

and be used to directly identify a fan or heat exchanger fouling fault.  Alternatively, diagnostic 

fault indicators could be energy rates or other variables that have no physical sensor counterpart. 

Since the early 1990s, a number of FDD virtual sensors have been studied, such as FDD virtual 

sensors for a turbo generator (Gomez, et al. 1996) and an ethylene cracking process (Kampjarvi, 

et al. 2008). 
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1.3.2 Approaches for developing virtual sensors 

Transient-state virtual sensors are typically developed using measurements associated 

with responses to rapid control changes (e.g. system shut-down or turn-on).   The models could 

be physical, grey-box, or black-box models.  Transient physical or grey-box models could be sets 

of linear or non-linear ordinary differential equations or time-series equations.  System 

identification techniques are employed to determine model order and estimate parameters.  

Neural networks are sometimes employed as a black-box modeling approach for transient 

representations, requiring time series data as inputs.  A significant amount of training data is 

typically required to train a transient neural network model.  Transient training approaches need 

to handle batch-to-batch data variations (Nomikos and MacGregor, 1995) that account for the 

finite and varying duration of the processes, the time variance of the particular batches described 

by the batch trajectory, the often high batch-to-batch variance, and the starting conditions of the 

batches (Champagne, et al. 2002).   An example of a grey-box transient model is an auto-

regressive moving-average time-series model with deterministic input terms (ARMAX).   An 

ARMAX model was proposed by Casali et al. (1998) for characterizing particle size in a grinding 

plant. Meleiro and Finho (2000) presented a grey-box transient virtual sensor that is part of a self-

tuning adaptive controller of a fermentation process and that utilizes a Multi-layer Perceptron 

(MLP) approach which is trained using simulated data based on a phenomenological model. 

Steady-state virtual sensors are developed using measurements collected while a system 

is running in an uninterrupted, continuous way.  Steady-state virtual sensors use algebraic 

equations rather than differential or time-series equations and respond instantaneously to time-

varying inputs to provide quasi-steady outputs.  This is appropriate for many applications and can 

be combined with steady-state detectors so that the outputs are only utilized under appropriate 

operating conditions.  Steady-state virtual sensors can use physical, grey-box, or black-box 

models.   Steady-state first principle models might incorporate mass balances, force balances, 
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energy balances, and/or rate equations that describe a mechanical, thermal, or chemical process.  

Black-box models are often multi-variable polynomials or neural networks.  An example of a 

grey-box virtual sensor is a biomass concentration sensor developed for a biochemical batch 

process (James, et al. 2002) that combines a physical model of a portion of the process with an 

artificial neural network model. 

Black-box models have the potential to provide a more accurate representation than a 

physical or grey-box model because they have several degrees of freedom to map the measured 

behavior.  However, they require significantly more training data and generally do not extrapolate 

well beyond the range in which they were trained.  There are a number of statistical tools that can 

be used during the development of black-box models for any application, including Principle 

Component Analysis (PCA), or more precisely on Hotelling’s T2 (Hotelling, 1931) and Q-

Statistics (Jackson and Mudholkar, 1979).  PCA is one of the most popular tools for developing 

black-box models for virtual sensors (Jolliffe, 2002). Another popular method is the Self 

Organizing Maps or Kohonen Map (Kohonen, 1997), which is a type of artificial neural network. 

Specific examples of black-box virtual sensors that have been developed include single or multi-

regression models (Kresta, et al.1994; Park and Han, 2000), Partial Least Squares (Wold, et al. 

2001), Artificial Neural Networks (ANN) (Qin and McAvoy, 1992; Bishop, 1995; Radhakrishnan 

and Mohamed, 2000; Principe, et al. 2000; Hastie, et al. 2001), Neuro-Fuzzy Systems (Jang,et al. 

1997; Lin and Lee, 1996) and Support Vector Machines (SVMs) (Vapnik, 1998).  

1.3.3 General steps in developing virtual sensors 

A number of studies have been done to define procedures for developing virtual sensors 

(Park and Han, 2000; Han and Lee, 2002; Warne et al., 2004).  In general, the process can be 

defined in terms of three steps as illustrated in Figure 3 and described in the following paragraphs: 

(i) data collection and pre-processing, (ii) model selection and training and (iii) sensor 

implementation and validation.   
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Figure 3: General steps in developing virtual sensors 

Proper data collection and pre-processing (pre-filtering or data outliers) is fundamental in 

the development of accurate and reliable virtual sensor models.  The type and range of test data 

depends on the modeling approach.  Transient sensors require transient test data, whereas 

transient data should be filtered for steady-state modeling approaches.  A ―steady-state detector‖ 

may be used as a pre-processor (Li and Braun 2003b, Wichman and Braun 2009) to eliminate 

transient data.  For black-box models, Principle Component Analysis is a popular approach for 

pre-processing data in order to aid in the model selection (Serneels and Verdonck, 2008, 

Stanimirova, et al. 2007 and Walczak and Massart, 1995).  

Model selection and training are the most difficult and critical steps in the process of 

developing a virtual sensor.  There are many model types to choose from and each requires a 

process of determining the proper model order, estimating parameters, and then redefining the 

model selection/order.  The previous section provided an overview of possible modeling 

approaches.  However, there is a bit of an art involved in identifying an appropriate model.  

A virtual sensor could be implemented as part of a control or monitoring system or as a 

standalone sensor with its own hardware, embedded software, and input/output channels.  In 

either case, the virtual sensor implementation needs to be tested in both laboratory and in-situ 

studies to validate performance and evaluate robustness (e.g., error analysis).  Statistical 

approaches can be used to validate accuracy (e.g., student’s t-test Gosset, 1908). It is important to 

assess the performance using independent data (Hastie et al., 2001; Weiss and Kulikowski, 1991). 
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With the review of virtual sensing technology development and formulization 

accomplished above, the state-of-the-art in virtual sensing technology in building systems are 

studied in Chapter 2 as a starting point for its future developments and applications in building 

systems. In the meantime, a first-principle (FP) based virtual supply airflow (SCFM) meter for 

RTUs is created using a white-box model in combination with accurate measurements of low-cost 

virtual or virtually calibrated temperature sensors (virtually calibrated supply air temperature 

sensor and a virtual mixed air temperature sensor) as a supplementary example of the study. 

1.4 Background on development of a virtual SCFM meter in RTUs 

RTUs are widely used for air conditioning retail, residential and industrial premises, 

covering from small to medium sizes of spaces.  The U.S. Department of Energy estimates that 

RTUs including unitary air-conditioning equipments account for about 1.66 quads of total energy 

consumption for commercial buildings in the United States (Westphalen and Koszalinski 2001).  

Knowledge of SCFM through RTUs is certainly of great importance for a number of reasons.  For 

instance, low SCFM directly impairs temperature distribution and causes poor indoor air quality 

(IAQ).  ASHRAE standard 62.1-2007 specifies ventilation and circulation airflow rate based on 

the occupancy and floor area.  In some cases, low SCFM across the RTUs makes the heating 

equipment to run on the high temperature limit, leading to intensive heating cycling and energy 

losses.  

In the last two decades, a number of studies have focused on finding good solutions for 

measuring SCFM (e.g., ASHRAE 41.2, 1987; Howell and Sauer. 1990a, 1990b; Riffat. 1990, 

1991; ASHRAE 110, 1995; Palmiter and Francisco, 2000; etc). In terms of physical airflow 

measuring and monitoring devices, the most popular techniques are based on air dynamic 

pressure measurements by using a pitot traverse or on air velocity by vane anemometer.  

However, in general 

 A physical airflow monitoring meter (PAFM) is fragile 
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The main disadvantage of PAFM is its flimsy reliability.  Periodical calibration is 

required but rarely followed in real applications.  Credibility of measurements would be 

compromised dramatically after long-term use in adverse duct work surroundings. 

 Implementing and maintaining a PAFM are expensive 

PAFMs are costly in the regards of procurement and installation, ranging from hundreds 

to thousands dollars.  Much more expenses emerge along for maintenance, repair or rebuild, due 

to the hostile operating environment. 

 Additional pressure loss is incurred 

In order to get accurate measurement, a high air velocity across the instrument is desired 

for a spread of different airflow rate.  To achieve this, a piece of duct work is throttled and it 

causes additional pressure loss to the fan. 

Besides, installing PAFMs in RTUs is even more unrealistic, 

 It is hard to install a PAFM in RTUs. 

RTUs usually have compact structure and duct work.  The originally efficient 

configuration leaves barely any space for a physical meter.  PAFMs require more space than is 

available to measure the true value of SCFM. 

 Relative price of PAFMs over RTUs is high 

The majority of light commercial RTUs falls in the range of 5 tons to 15 tons of cooling 

capacity and only cost several thousand dollars.  However, a decent air flow station plus 

installation could cost up to one thousand dollars per unit and eat up the cost advantage of RTUs. 

Despite the importance of SCFM, it is tough to justify installation of PAFMs in RTUs.  

To beat the costly and vulnerable PAFMs, a low-cost but accurate virtual SCFM meter is highly 

needed to solve the dilemma for RTUs.  In fact, the SCFM values by indirectly using equipment 

capacity in combination with temperature change across equipment (an energy balance) have 
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been of great concern over the past decades (ACCA, 1995). However, this method is known to be 

problematic. For gas furnaces, erratic temperature measurement errors in the supply plenum exist 

due to non-uniform temperature distribution and intensive thermal radiation, with the resulting 

estimate of SCFM having a big potential spread (Wray et al. 2002; Yu et al. 2011). Instead, this 

study develops the virtual SCFM meter which utilizes newly developed low-cost virtual or 

virtually calibrated temperature sensors to access accurate SCFM values. The primary merit of 

the proposed virtual SCFM meter is its cost-effectiveness and long-standing accuracy and 

stability. 

Utilizing the virtual SCFM meter as an innovative automated FDD application to enhance 

the real-time monitoring, control and diagnosis of RTUs is promising.  Badly maintained, 

degraded, and improperly controlled equipment wastes about 15% to 30% of energy used in 

commercial buildings (Katipamula and Brambley 2005).  Based on economic evaluations (Li and 

Braun 2003a) by applying the automated FDD technique for RTUs to a number of California 

sites, significant savings: around 70% of the original service cost savings and $5 to $51/kW·year 

operating cost savings, were observed.  What is more, the payback period of the automated FDD 

technique mainly derived from low-cost temperature sensors is less than one year (Li and Braun 

2007a, 2007b).  

1.5 Outline of the thesis 

The introductory part, Chapter 1, gives the background on virtual sensing technology in 

building systems.  Major milestones of its notable developments in other fields and the 

formulation of virtual sensor development are included.  After that, background about the general 

steps in developing a virtual SCFM meter in RTUs is addressed. 

In Chapter 2, unique opportunities for virtual sensing in buildings are elaborated firstly.  

The state-of-the-art in virtual sensing technology in building systems are presented herein 

covering over thirty virtual sensors for building mechanical systems, building envelope, and 
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occupied zones as a starting point for its future developments and applications in building 

systems. 

A newly developed virtual SCFM meter for RTUs is studied in Chapter 3. The basic 

mechanism of a virtual SCFM meter is briefly described at first.  Modeling of the virtual meter, 

uncertainty analysis, and experimental evaluation are then systematically conducted for both 

cooling- and heating-based approaches by using a wide span of laboratory testing data.  

Comparisons of the two approaches are made based on the involved measurements and 

calculations. It reveals that the latter one excels the former one in several aspects.  After that, 

detailed implementation issues incorporating measuring and processing the parameters and a 

graphical implementation flowchart of the heating-based virtual SCFM meter are provided.  The 

study concludes that the non-intrusive virtual SCFM meter can accurately predict the SCFM for 

RTUs with high robustness. 

Chapter 4 provides some perspective regarding open issues of implementation and 

maintenance of virtual sensing technology in buildings. Meanwhile, future steps of developing an 

improved virtual SCFM meter are illustrated including improving the virtual calibration method 

of a SAT sensor in RTUs. After that, conclusions about the virtual sensing technology in 

buildings and the virtual SCFM meter in RTUs is made. 



 

35 

 

 

Chapter 2 VIRTUAL SENSING TECHNOLOGY IN 

BUILDING SYSTEMS 

2.1 Unique opportunities for virtual sensing in building systems 

Within a building’s life cycle, the majority of the human effort (~90%) is placed on initial 

design, selection and purchase whereas the majority of the costs (more than 75%) occur during 

operation.  Problems that develop during operation are often ignored as long as comfort is 

satisfied, leading to inefficient operation (Cisco, 2005).  According to CEC (2008), the 

widespread lack of quality system installation and maintenance can increase the actual HVAC 

system energy use by 20% to 30%. A number of other investigations have shown energy penalties 

from 15% to 50% due to faults or non-optimal operations (Katipamula, 2005; Liu et al. 2004). In 

addition, up to 70% reduction in service costs have been estimated for improved maintenance 

scheduling (Li and Braun 2007c).  

One current approach for improving operational performance is to utilize a manual 

process of ―continuous commissioning‖.  However, this approach has disadvantages compared to 

continuous monitoring and automated fault detection and diagnostics. First, it is very costly in 

that it entails bringing specialized engineers to the field to perform inspection, measurement, and 

evaluation. Second, it is not continuous and is only performed periodically (e.g., every 3-5 years).   

There has been an increasing trend towards remote monitoring of building systems.  However, 

these monitoring systems do not include intelligence that could provide automated continuous 

commissioning with automated diagnoses of faults and reports for building operators or service 

contractors with recommendations and priorities for fixing problems.   
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Most of the approaches that have been developed for automated diagnostics require a 

number of measurements that are typically not available within existing monitoring systems or 

not accurate.  For example, for light commercial RTUs with economizers, only zone temperature, 

outdoor air temperature (and humidity for enthalpy economizers), discharge air temperature, and 

return air temperature sensors are installed which is not sufficient for typical diagnostic methods 

(Rossi and Braun, 1997; Li and Braun, 2003b).  Furthermore, the return and outdoor air 

temperature sensors are not typically very accurate and often result in faulty operation of the 

economizer.  The requirement for additional and more accurate sensors has limited the 

deployment of automated diagnostics because of the additional costs.   

Virtual sensing techniques could facilitate the development of more cost-effective and 

robust diagnostic systems and optimal control.  Recently, Li and Braun (2007a, 2007b) proposed 

some virtual sensors for vapor compression cycle equipment for use as part of fault detection and 

diagnosis methods. The virtual sensors use low-cost temperature sensors together with 

manufacturers’ rating data to derive measurements which otherwise would be either very 

expensive or impractical/impossible to obtain directly.  The following section provides a review 

of these virtual sensors along with examples of other developments for buildings that can be 

considered to be virtual sensors. 

2.2 State-of-the-art in virtual sensing in buildings 

Table 2 presents a summary of virtual sensor developments with each sensor classified 

according to the categories previously presented and organized regarding the type of building 

system component.  All of these virtual sensor developments are based on steady-state models 

using either first-principle or grey-box approaches.   In many cases, the authors did not explicitly 

utilize the terminology virtual sensor, but the models were well developed and meet the criteria 

for virtual sensors.  

Table 2: Virtual sensors in buildings 
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Building 

Systems 

Category 

Title of Virtual Sensor 
Measurement 

Characteristics 

Modeling 

Methods 
Application Layer Reference 
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Virtual refrigerant charge sensor 

Steady-state 

Grey-box Observing 

Basic 

(Li and Braun 

2009a) 

Virtual liquid line pressure sensor 

First-

principle 

Replace 

/backup 

(Li and Braun 

2009b) 

Virtual suction line pressure sensor 

Virtual evaporator pressure sensor 

Virtual condensing pressure sensor 

Virtual compressor discharge pressure 

sensor 

Virtual refrigerant flow rate sensor 

First-

principle 

and Grey-
box 

Replace 

/backup 
Derived 

Li (2004), (Li and 

Braun 2007a), (Li 
and Braun 2007b) 

Virtual compressor power 
consumption sensor 

Grey-box 

Replace 
/backup 

Basic 

Virtual equipment energy ratio sensor 
First-

principle 
Derived 

Virtual compressor coefficient of 

performance sensor 

Virtual supply air humidity sensor 
First-

principle 

Replace 

/backup 
Basic 

C
h
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le

r 

Virtual overall condenser heat loss 

coefficient 

Steady-state 

First-

principle 
Observing 

Basic 

(Wang and Cui. 

2006; Mclntosh , 
et al. 2000; 

(Reddy 
2007a,2007b) 

Virtual overall evaporator heat loss 
coefficient 

 
Virtual polytropic efficiency of the 

compressor 

 
Virtual reduced evaporator water flow 

detector 

 

First-

principle 
Observing 

Virtual reduced condenser water flow 

detector 
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 Virtual check valve  leakage for fixed 

orifice expansion (FXO) device 
indicator 

Steady-state 
First-

principle 
Observing 

Derived 

(Li and Braun. 

2009c) 

Virtual check valve leakage for 

thermal expansion valve (TXV)device 
indicator 

Basic 

Virtual reversing valve leakage 

indicator 
Derived 
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General Virtual mixed air temperature sensor Steady-state Grey-box 
Replace 

/backup 
Basic 

(Wichman and 

Braun 2009) 
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Virtual DX cooling coil capacity 

sensor 

Steady-state Grey-box Observing Basic 
(Yang and Li, 

2010) 

Virtual DX cooling coil sensible heat 

ratio 

Virtual DX cooling coil sensible 

cooling capacity 

Filter 
Virtual filter efficiency sensor 

Steady-state Grey-box Observing Basic 
(Ward and Siegel 

2005) Virtual filter bypass low drop sensor 

F
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 Virtual supply fan airflow meter 
Steady-state 

First-

principle 
Observing 

Basic 

(Liu, et al. 2007a) 
Virtual return fan airflow meter 

Other Virtual pump water flow meter Steady-state 
First-

principle 
Observing (Joo, et al. 2007) 
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http://www.engineeringvillage2.org.leo.lib.unomaha.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bWard%2C+Matthew%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.leo.lib.unomaha.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSiegel%2C+Jeffrey%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.leo.lib.unomaha.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSiegel%2C+Jeffrey%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
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2.2.1 Virtual sensors used in building mechanical systems 

2.2.1.1 Virtual sensors for vapor compression air conditioners 

Li and Braun (2007a, 2007b, 2009a, and 2009b) introduced the concept of virtual sensing 

for application to buildings. Eleven virtual sensors were developed and validated for vapor 

compression air conditioners with the main purpose of reducing costs for a fault detection and 

diagnostic method. Figure 4 depicts an air conditioner that employs these eleven virtual sensors.  

For the most part, the virtual sensors are organized according to the four major components of a 

typical vapor compression system: compressor, condenser, evaporator and expansion valve.  In 

addition, there is piping between these components, including a discharge line between the 

compressor and condenser, a liquid line connecting the condenser to the expansion device, and a 

suction line between the evaporator and compressor.  The expansion device is usually located in 

close proximity to the evaporator with small feeder tubes that distribute refrigerant to individual 

evaporator flow circuits. The following subsections provide brief descriptions of the development 

and application of the virtual sensors depicted in Figure 4.   
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Pdis-discharge pressure
Px-expansion device upstream pressure

Taoe-evaporator outlet air temperature
haoe-evaporator outlet air humidity
Tdown-expansion device down stream pressure
Tsuc-suction temperature

Tsc-sh-charge level feature
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Figure 4: Intelligent air conditioner enabled through multiple virtual sensors 

Virtual refrigerant charge sensor 
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 Proper refrigerant charge level is critical for a vapor compression system to operate 

efficiently and safely. A number of studies conducted by separate investigators (Proctor and 

Downey1995; Cowan 2004) have concluded that more than 50% of the packaged air-conditioning 

systems in the field have improper refrigerant charge due to improper commissioning, service, or 

leakage. There is no direct measurement of refrigerant charge besides removing all of the charge 

and weighing it.  Charge tuning is typically accomplished in the field using manufacturers’ 

charge tables that are expressed in terms of measured superheat at the evaporator outlet (Tsh) and 

sub-cooling at the condenser outlet (Tsc).  However, these specifications are not applicable when 

faults are present (e.g., low indoor airflow) or under certain operating conditions (e.g., low or 

high ambient and high or low mixed-air wet-bulb temperatures).  In addition, these approaches 

typically specify utilization of compressor suction and discharge measurements (Psuc and Pdis) to 

indirectly determine Tsh and Tsc.  This requires the installation of gauges or transducers, which for 

a permanent installation could be a potential source of refrigerant leakage.  

Empirical coefficients: ksc, ksh

Input Output

Measurements:

Tcond,Tll,Tevap,Tsc,mtotal,rated

Refrigerant
charge level

V1-

Virtual

refrigerant

charge sensor

User specifications:

mtotal,rated

 

Figure 5: Virtual refrigerant charge sensor 

To allow continuous monitoring of refrigerant charge using non-invasive measurements, 

Li and Braun (2009a) proposed a virtual sensor (depicted in Figure 5) that uses four surface 

mounted temperature measurements (condensing, liquid-line, evaporating, and suction-line 

temperature) that are obtained while the system is operating at steady state. The algorithm for 

estimating refrigerant charge from temperature measurements is given in equations 1 and 2: 
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m
k                                                                           (2) 

Where mtotal is the total refrigerant charge, the subscript rated denotes rating operating conditions, 

ksc is a constant that depends on the condenser geometry, and ksh is a constant that depends on the 

evaporator geometry. The constants ksc and ksh can be estimated using a small amount of 

experimental data.  

The virtual refrigerant charge sensor algorithm has been validated for a range of different 

systems and over a wide range of operating conditions with and without other faults.  In general, 

the charge predictions are within about 8% of the actual charge.  The algorithm could be easily 

implemented at relatively low cost as part of a permanently installed control or monitoring system 

to indicate charge level and/or to automatically detect and diagnose low or high levels of 

refrigerant charge. 

Virtual refrigerant pressure sensors  

Refrigerant pressures are useful for monitoring, control and diagnostics in a vapor 

compression system. For several diagnostics algorithms, refrigerant pressures are used to 

determine evaporating and condensing temperatures, liquid line sub-cooling, and suction line 

superheat.  However, both the hardware and installation are expensive for permanent installations.  

Installation requires a brazed connection. For field installations, the refrigerant has to be 

evacuated and recharged, which is costly. Moreover, if the connection is made using available 

threaded service ports on the compressor, then it is likely that refrigerant will leak over time. 

Virtual refrigerant pressure sensors (Li and Braun, 2009b) have significantly lower hardware and 

installation costs and are non-invasive.  
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Measurements:
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Empirical coefficients
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discharge dew-point
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Figure 6: Virtual refrigerant pressure sensors 

Figure 6 shows the inputs and outputs for the virtual sensors.  The only physical 

measurements that are required are saturation temperatures in the evaporator and condenser.  

These measurements should be located in the middle of these heat exchangers where the 

refrigerant is two-phase at all expected operating conditions.  The sensors could be attached to 

return bends and insulated.  Virtual pressure measurements for these locations are determined 

using refrigerant property relations.  Virtual sensors for refrigerant pressures at the inlets and 

outlets to the heat exchangers are then determined using models for pressure drop.  Therefore, the 

development of virtual pressure sensors requires testing to identify the appropriate locations for 

saturation temperature measurements and to develop specific correlations for pressure drop.  

Extensive laboratory data has been collected for a range of different systems to validate the 

accuracy of virtual refrigerant pressure sensors.   Typically, virtual pressure sensor outputs are 

within an uncertainty of ±4.4 % when properly calibrated.  

Virtual pressure sensor outputs can be used in combination with other virtual sensors to 

provide a wealth of information for monitoring and diagnostics.  For instance, virtual suction and 

discharge pressure sensors can be used along with suction temperature and compressor maps to 

estimate compressor flow rate and power.  This information can be used to estimate real-time 

capacity and COP information.   

Virtual refrigerant flow rate sensor  
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Refrigerant flow rate is a very valuable measurement for performance monitoring and 

diagnostics.  However, it is too expensive to measure directly and can be unreliable when the 

condenser exit condition is a two-phase mixture. Li and Braun (2007a) proposed two approaches 

for estimating refrigerant flow rate from other measurements that are part of the virtual sensor as 

illustrated in Figure 7.   

Input

Measurements:
Psuc,Pdis,Tamb,Tsuc

V7-

Virtual

refrigerant

flow rate

sensor

Output
Refrigerant
flow rate

User specification:
equation information

Method(2):Using

energy balance

Measurements:
compressor

power consumption;
Tdis,TsucPdis,Psuc

Method(1):Using

compressor map

Empirical coefficients
 

Figure 7: Virtual refrigerant flow rate sensor 

The method 1 illustrated in Figure 7 uses data from a compressor manufacturer to 

determine a correlation for volumetric efficiency and uses it to determine mass flow rate 

according to:  

suc
vnormal,ref

v

NV
m 


                                                                         (3) 

Where N is the number of suction strokes per unit time, V is the displacement volume, vsuc is the 

suction line refrigerant specific volume, and ηv is volumetric efficiency.  Li and Braun (2002) 

proposed the following empirical form for correlating volumetric efficiency 
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aa                                                   (4) 

Where the a’s are empirical coefficients, Psuc and Pdis are suction pressure and discharge pressure 

that can be measured using virtual refrigerant pressures, Tsuc is suction temperature, Tamb is 

compressor ambient temperature. Additionally, Taoc (when the compressor is located in the 
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condenser outlet air stream) or Taic (when the compressor is not directly in the condenser outlet air 

stream) can be used to replace Tamb, if it is not directly measured.   

Mass flow rate determined using a compressor map is only valid if the compressor is 

working properly.  However, a redundant mass flow measurement can be determined using the 

following energy balance on the compressor (method 2) 

sucdis

loss
ref

hh

QW
m









                                                                           (5)
 

Where lossQ is compressor heat loss rate (J/kg) is, W  is measured compressor power consumption 

(kW), hdis (Tdis, Pdis) and hsuc (Tsuc, Psuc) are the discharge line and suction line refrigerant enthalpy 

(J/kg).  This method was shown to work well for both normal and faulty compressor operation.   

The map-based method is more accurate when the compressor is operating normally and 

can be used to calibrate the energy-balance method.  If a fault is identified for the compressor, 

then the energy-balance approach can be used.  Neither approach will work well if a two-phase 

refrigerant condition exists at the inlet to the compressor. 

Virtual compressor power consumption sensor  

Compressor power consumption is a very useful index in monitoring, control and 

diagnostics for vapor compression cycle systems. However, physical measurements for it would 

be expensive.  Figure 8 depicts a virtual compressor performance sensor that only requires 

temperature measurements.  

Input

Measurements:
suction dew

point temperature,
discharge dew

point temperature

V8-Virtual

compressor power

consumption sensor

Output

Empirical
coefficients

Compressor
power consumption  

Figure 8: Virtual compressor power consumption sensor 
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According to ANSI/ARI Standard 540-1999, compressor manufacturer’s map can be 

represented as a 10-coefficient polynomial equation in the form of 

              
3
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9
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8
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2

65
2

4321 DcSDcDScScDcSDcScDcSccX                    (6)
                          

Where the c’s are empirical coefficients, S is suction dew point temperature, D is discharge dew 

point temperature, and X can be mass flow rate, power consumption, current, coefficient of 

performance (COP) or compressor volumetric efficiency (ηv).   

These compressor map models are developed with the compressor operating under fault-

free conditions. However,  Li and Braun (2007a) found that the predictions of compressor power 

consumption using this model format match measurements within ± 5% even in the presence of 

multi-faults (e.g. compressor leakage, condenser fouling, evaporator fouling). This model can be 

used as a virtual compressor power consumption sensor. 

Virtual system performance sensors 

The evaluation of system performance degradations using energy efficiency ratio (EER) 

or coefficient of performance (COP) is crucial. However, so far, no such physical ―efficiency‖ 

sensor has been developed and produced.  Li (2004) proposed a method to obtain EER and COP 

using virtual sensors illustrated in Figure 9. 

Input

Measurements:
discharge temperature,
suction temperature,

mass flow rate;
electrical power consumption

Virtual system

performance sensors

Output

V10-Virtual coefficient
of performance (COP) sensor

V9-Virtual equipment
efficiency ratio (EER) sensor  Equipment

efficiency ratio/coefficient
of performance

 

Figure 9: Virtual system performance sensors  

EER and COP are equivalent parameters that differ by a unit conversion factor, with 

either quantity expressed as  



 

46 

 


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EER

sucdisrefc                                                                        (7) 

Where 
cQ



 is equipment cooling load that is determined using measurements of refm


, Tdis and Tsuc, 

and 


W is the equipment electrical consumption.  The quantities refm


 and 


W can be determined 

using the virtual mass flow rate sensor and virtual compressor power consumption sensor 

described previously. Both virtual sensors work very well (Li 2004; Li and Braun 2007a) under 

most realistic conditions.    

Virtual supply air humidity sensor  

Supply air humidity is rarely measured in building applications but is useful in estimating 

coil latent loads and as input for fault detection and diagnostic methods.  Li and Braun (2007a) 

presented a virtual supply air humidity senor that is based on the use of a simple bypass factor 

model.   Figure 10 shows an input/output flow diagram for the sensor.  

InputsMeasurements:
Tdis, Tsuc,

Ts,evap,waie,

V11-Virtual

supply air

humidity sensor

Output Evaporator
outlet air

(supply air) humidity
 

Figure 10: Virtual supply air humidity sensor 

The bypass factor, BF, is defined as follows 

evp,saie

evp,saoe

evp,saie

evp,saoe

ww
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hh

hh
BF









                                                                  (8) 

Where haoe, haie, and hs,evap are evaporator outlet air (supply air) enthalpy, evaporator inlet air 

(mixed air) enthalpy and saturated air enthalpy at the evaporator surface temperature (Ts,evap), 

respectively; waoe, waie, and ws,evap are supply air humidity ratio, evaporator inlet air (mixed air) 

humidity ratio and saturated air humidity ratio at the evaporator surface temperature (Ts,evap), 

respectively. Figure 11 illustrates the bypass factor analysis on a psychrometric chart. It can be 

shown that, 
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Where Taoe and Taie are supply air temperature and mixed air temperature, respectively. 

Substituting Equation (9) into (8), 
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                                                                          (10) 

With measurements of Taoe, Taie, and Ts,evap, BF can be calculated for wet coil conditions 

using Equation (10) and then outlet humidity ratio can be estimated according to: 

evap,sevap,saieaoe w)ww(BFw 
                                                           (11) 

Where waie is measured and ws,evap is derived from a measurement of evaporator surface 

temperature Ts,evap . 

Generally, evaporator inlet (mixed) air humidity sensors tend not to be permanently 

installed in building mechanical systems because of issues of cost, accuracy, and reliability. 

Direct measurements of a mixed air humidity can  be very inaccurate due to non-uniform air 

conditions caused by mixing within a small chamber of return and ventilation air that are at very 

different conditions.  In addition, humidity sensors are sensitive to dust and dirt and can often fall 

out of calibration.  As a result, there is a need for a virtual sensor for mixed air humidity.  

Wichman and Braun (2009) presented a virtual mixed air temperature sensor (described later in 

this study) that could be the basis for the development of a virtual mixed air humidity sensor.   
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Figure 11: Illustration of bypass factor analysis 

2.2.1.2 Virtual sensors for chillers 

A number of independent studies (Wang and Cui. 2006; Mclntosh , et al. 2000; Reddy 

2007a,2007b; et al. ) have focused on identifying common faults occurring in chillers using low-

cost measurements. A number of virtual sensors were developed that are listed in Figure 12.   

Input

Output
Overall condenser

heat transfer conductance
Virtual overall condenser
heat transfer conductance

Virtual overall evaporator
heat transfer conductance

Virtual polytropic
efficiency of the compressor

Virtual sensors for chillers

Virtual reduced evaporator
 water flow detector

Virtual reduced condenser
water flow detector

Overall evaporator
heat transfer conductance

Polytropic
efficiency of the compressor

an index of the ratio of
Tevap,current and Tevap, predict

an index of the ratio of
Tcond,current and Tcond, predict

Measurements:
Twic,Twoc, Twie, Twoe

Tsrc,Tsre,

mcond,mevap

P1,v1,h1, P2, v2, h2

User specifications

 

Figure 12: Virtual sensors for chillers 

The sensor outputs could be useful for monitoring and as part of a fault diagnoses scheme.  

For instance, the evaporator and condenser heat transfer conductances could be used to monitor 

overall performance of the heat exchangers.  In order to utilize these indices for fault 

identification, it would be necessary to correlate normal conductance values in terms of 

operational conditions (e.g., flow rates) and to establish thresholds for faulty performance.  For 

water side fouling, virtual indices for relative reduction in water flow could be used directly to 

indicate a change from normal performance.  Compressor performance could be monitored using 
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a virtual polytropic efficiency determined from inlet and outlet state measurements.  However, in 

order to utilize this performance index in a fault detection scheme, it would be unnecessary to 

correlate normal performance and set appropriate thresholds.  There are many more opportunities 

to develop virtual sensors and related fault detection and diagnosis schemes for chillers.   

2.2.1.3 Virtual sensors for heat pumps 

Virtual sensors that have been developed for air conditioners (Li and Braun, 2007a, 

2007b, 2009a, 2009b) generally apply to heat pumps and can be used to diagnosis faults.  

However, there are some additional faults that are exclusive to heat pumps, such as reversing 

valve leakage and check valve leakage that require unique virtual sensors. Li and Braun (2009c) 

proposed and tested virtual sensors (shown in Figure 13) for identifying these two faults.  

Equation (12) represents a virtual check valve leakage sensor for systems that incorporate a fixed 

orifice expansion (FXO) device,  

1
)PP(]CA[

m
DF

downupFXO

cycle

LCV,FXO 







                                             (12) 

Where DFLCV,FXO is the ratio of the leaky check valve opening to the FXO opening,  C is a 

discharge coefficient, AFXO is the FXO throat area, ALCV is the opening of the leaky check valve, 

cyclem


 is the refrigerant mass flow rate which can be measured using a virtual refrigerant mass 

flow rate sensor , ρ is refrigerant density, Pup is the upstream pressure, and Pdown is the 

downstream pressure.  

For systems having a thermal expansion valve (TXV), Equation (13) applies for 

determining a check valve leakage indicator.   
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Where DFLCV,TXV is a unique function of the check valve leakage fault level and can be calculated 

using a measurement of Tsh and manufacturer’s information for Tsh,sp. 

A reversing valve leakage indicator can be estimated using Equation (14). 

     
comp,succomp,dis

comppcoil,discomp,discoil,succomp,suc
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                   (14)                            

Where compm


is the mass flow rate through the compressor which can be estimated using a virtual 

sensor, Cp is the refrigerant vapor specific heat, Tdis,coil is the reversing valve high-side outlet 

temperature to the cycle (to the condenser), Tsuc,coil is the low-side inlet temperature from the 

cycle (from the evaporator), Tdis,comp is the high-side inlet temperature from the compressor, T 

suc,comp is the temperature of the low-side outlet to the compressor, and LMTD is a logarithmic 

mean temperature difference calculated by 
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                                        (15) 

The different leakage indicators (DFLCV,FXO, DFLCV,TXV, DFLRV) can be used to identify 

faults through comparison to appropriate predefined thresholds.   

Virtual sensors for

heat pump reversing and

check valve leakage faults

OutputVirtual leaky check valve indicator
for a heat pump with a fixed

orifice expansion device (FXO)

Virtual leaky check valve indicator
for a heat pump with a thermal

expansion valve (TXV)

Virtual leaky reversing
valve indicator

Ratio of leaky check valve
for a system with FXO

Ratio of leaky check valve
for a system with TXV

Ratio of leaky reversing
valve indicator

Measurements: Pup,Pdown,Pdis,com,mcycle

User specifications: the FXO throat area

Empirical coefficient:discharge coefficient

Input

Measurements: Tevap,Tsuc

User specifications: Superheat set point

Measurements: Tsuc,coil,Tdis,coil,Tsuc,comp,
Tdis,comp,Psuc,comp,Pdis,comp,Tamb,mcomp

User specifications: UA

 

Figure 13: Virtual sensors for heat pump reversing and check valve leakage faults 

Some laboratory evaluations were performed to evaluate diagnostic performance using 

these leakage indicators in heating mode and it was found that faults could be identified before 
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heating capacity degraded more than 5% for a system with an FXO and 3% for the same system 

retrofit with a TXV.   

2.2.1.4 Virtual sensors for air handling units 

Virtual mixed air temperature sensor  

Mixed air temperature (MAT) is a useful measurement for control and diagnostics for 

economizers and vapor compression cycles. However, it can be very difficult to accurately 

measure MAT because of space constraints and the use of small chambers for mixing outdoor and 

return air in packaged ACs. Highly non-uniform temperature and velocity distributions at the inlet 

to the evaporator can cause significant bias errors when employing single-point and averaging 

temperature sensors (Avery 2002; Carling and Isakson 1999; Robinson 1999).  The mixing 

process changes significantly as the damper position varies with economizer operation.  Wichman 

(2007) suggested that a measurement grid of at least four temperature sensors mounted 

symmetrically on the duct centerline provides reasonable estimates under most conditions.  

However, this is a costly approach.  Lee and Dexter 2005 and Tan and Dexter (2005, 2006) 

proposed a method for correcting the bias error associated with a single-point sensor using CFD 

simulations.  However, this is also costly and difficult to implement in practice.    

Input Output
Measurements:

outside air damper position,
RAT, OAT,

MAT(from a single inaccurate
mixed air temperature sensor)

Mixed air
temperature

Virtual mixed

air temperature

 

Figure 14: Virtual mixed air temperature sensor 

 Wichman and Braun (2009) proposed and demonstrated a scheme for adjusting a single-

point measurement of MAT (virtual MAT sensor) that is based on in-situ measurements and self 

calibration.  The approach is based on correlating the bias error in terms of damper control signal 

and difference between outdoor and return-air temperature. The correlation could be determined 

using a self-calibration procedure with only four temperature measurements: mixed, outdoor, 
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return, and supply air temperatures.  A system was tested in a laboratory over a wide range of 

outdoor conditions and damper positions in a typical air-side economizer and mixing chamber 

integrated within a small commercial rooftop air conditioner.  The scheme involves determining 

mixed air temperature using 

errormeas MATMATMAT                                                                  (16) 

Where MATmeas is measured mixed air temperature, and MATerror is bias error corresponding to 

different damper control signals (OADst) and difference between outdoor and return-air 

temperature (∆Toa-ra), 

( , )error oa raMAT f OADst T                                                                  (17) 

The virtual MAT sensor proposed by Wichman and Braun (2009) overcomes a typical 

technical barrier of using costly measurement grids or simulation software.   

Virtual sensors for AC sensible and total cooling capacity  

Figure 15 presents a model proposed by Yang and Li (2010) for estimating cooling coil 

total and sensible capacity that is based on manufacturers’ rating data. The model covers all the 

operating conditions of the cooling system and requires four measurements (evaporator entering 

wet bulb temperature, evaporator entering dry bulb temperature, ambient temperature and supply 

air flow rate) as illustrated in Equation (18).   
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Where 
CQ



 is cooling capacity, 
SQ



 is sensible cooling capacity, SHR is sensible heat ratio, ETwb 

is entering wet bulb temperature, 0
wbET is critical point of the entering wet bulb temperature (Yang 
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and Li 2010), ETdb is entering dry bulb temperature,  OAT is ambient temperature and 


V is 

supply air flow rate, which can be measured using a virtual air flow rate sensor.  

Input

Measurements:
ETdb,ETwb,

OAT,Airflow

Output

Cooling capacity

Empirical
coefficients

Sensible cooling capacity

Sensible heat ratio
Virtual DX cooling coil

sensible heat ratio

Virtual sensors for

AC with DX cooling coil

Virtual DX cooling coil
capacity sensor

Virtual DX cooing coil
 sensible cooling capacity

 

Figure 15: Virtual sensors for AC cooling coil 

The performance of the virtual sensors has been evaluated using a wide range of data.  

Overall predictions of cooling capacity are within 10% for both wet-coil and dry-coil conditions.  

Additional work is necessary to evaluate accuracy when faults are present.  

Virtual sensor for filters  

Filtration in HVAC systems is often used for prevention of airborne diseases (Ottney et 

al.1993) and to protect coils from fouling (Braun, 1986). There are several standards associated 

with HVAC filtration efficacy, such as ASHRAE Standard 52.1, Gravimetric and Dust-Spot 

Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing 

Particulate Matter (ASHRAE 1992) or ASHRAE Standard 52.2, Method of Testing General 

Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size (ASHRAE 1999). 

Most of the previous studies related to filtration have focused on testing of filter media, rather 

than on systems having installed filtration devices. A few investigators have attempted to 

establish models and test methods for determining in-situ filter efficiency that are based on 

ignoring filter bypass, the air that circumvents filters due to gaps around the filter pan or filter 

housing. Recently, Ward and Siegel (2005) proposed models for monitoring overall filter 

efficiency (a virtual filter efficiency sensor) and the air flow bypassing the filter (virtual filter 

bypass flow sensor) that are depicted in Figure 16.  

http://www.engineeringvillage2.org.leo.lib.unomaha.edu/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSiegel%2C+Jeffrey%7d&section1=AU&database=1&yearselect=yearrange&sort=yr
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Input
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Filter size,geometry of the gap

Virtual sensors

for filters

Output
filter bypass flow
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airflow rate;pressure drop

filter efficiency

Virtual filter bypass
flow drop sensor

Virtual filter
efficiency sensor

 

Figure 16: Virtual sensors for filters 

The virtual filter sensors require specification of the size and geometry of the gaps around 

the filter and measurements of air flow rate and pressure drop.   The flow bypassing the filter is 

estimated according to 

)
HW

P)n5.1(2
(

]
HW

P)n5.1(2
)

W H

L12
(

W H

L12
[

Q

22

22

2

33

B 








                                                       (19) 

Where QB is the flow rate of air bypassing the filter, ∆P is the pressure drop across the filter 

which can be measured, μ is the dynamic viscosity of air, and ρ is the density of the air, L is the 

length of the crack longitudinal to the flow, W is the width of the crack perpendicular to flow, H 

is the height of the crack, n is the number of right angle bends in the path of bypass flow.    

The method of estimating bypass flow has only validated using simulation for a variety of 

common filters.  Additional work is necessary to perform experimental validation using 

laboratory and field studies. 

Virtual water flow rate sensor 

Liu et al. (2007a) proposed a pump water flow station (virtual water flow rate meter) 

depicted in Figure 17 that uses pump head (Hpump), pump speed (wpump), and empirical 

coefficients to determine pump performance according to  
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Input
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pump head, pump speed

Virtual chiller
efficiency sensor

Output

Pump water
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User specifications:
pump performance curve

Cooling energy
consumption

Chiller
efficiency

Pump
efficiency

Virtual pump
efficiency sensor

Virtual chiller energy
consumption sensor

Virtual pump water

flow rate sensors

Virtual pump
water flow meter

 

Figure 17: Virtual pump water flow rate sensor 

The virtual sensor could be used along with other measurements to estimate pump 

efficiency, cooling energy consumption and chiller efficiency and used within a building energy 

management and control system.  A case study was performed in a building having a chilled 

water system and demonstrated that the low-cost virtual sensor can accurately measure water 

flow rate and be used along with other measurements to monitor energy consumption.  In addition 

to performance monitoring, the virtual flow meter could be applied for optimized pump speed 

control (Liu, et al. 2007b).  However, the method described in this paper is not applicable for all 

pump characteristics.   More work is needed to generalize the approach. 

Virtual fan air flow rate meter  

Joo et al. (2007) proposed a fan flow station (virtual fan air flow rate meter) for 

measuring supply and/or return fan air flows and that is illustrated in Figure 18.  The model for 

flow rate is similar to the approach used for the pump flow sensor and is expressed as 
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                                    (21) 

Where Hfan is fan head, wfan is fan speed, and the a’s are empirical coefficients that are determined 

using regression applied to a fan performance curve provided by the manufacturer.  The 

algorithm was shown to provide accurate estimates of supply and return fan air flow rate for a 

variable-air-volume (VAV) system.   
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Input
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Output
Supply fan
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airflow rate

Virtual return
fan airflow meter

Virtual fan air

flow rate meter
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fan airflow meter

 

Figure 18: Virtual fan air flow rate meter 

Virtual air flow measurement could be used along with other measurements to determine 

real-time air-side capacity measurements.  In addition, they could be used for building pressure 

control based on supply and return air fan flow rate tracking.  In this application, a positive 

building pressure is maintained by setting a return air fan flow rate setpoint slightly lower than 

the supply flow. The virtual air flow sensor was only applied to VAV AHUs. However, constant-

air-volume (CAV) AHUs are very popular in light commercial buildings.  It is anticipated that the 

method could be readily adapted to CAV RTU systems.  

2.2.2 Virtual sensors for building envelopes and occupied zones 

Virtual occupant complaint sensor  

Federspiel (2000) developed a model for estimating the frequency of occupant 

complaints due to zone temperature deviations from normal setpoints.  The model was derived 

from complaint histories and coincident time histories of zone temperature measurements.   As 

depicted in Figure 19, the model predicts frequency of hot and cold complaints using 

measurements of zone air temperature and thresholds for the high-temperature and low-

temperature levels at which a hot and cold complaints occur. The mathematical model was 

developed using level-crossing theory of stochastic processes. The predictions of virtual 

frequency of complaints can be combined with labor rates associated with responding to 

complaints and then used to estimate cost impacts.  This type of virtual sensor for occupant costs 

could be integrated within energy management and control systems in order to optimize setpoints 

to minimize complaints.   
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Figure 19: Virtual occupant complaint sensor 

Virtual sensor for solar radiation  

Solar radiation is an important measurement for use in models that predict building loads.  

However, it is expensive to measure on site and is rarely available.  Recently, Seo, et al. (2008) 

evaluated a number of different models for estimating solar radiation from other available 

measurements and identified some simplifications that result in reasonable performance.  

Performance was statistically evaluated using measured solar radiation for several locations 

around the world.  Figure 20 depicts virtual sensors for total, direct normal, and diffuse solar 

radiation sensor based on the simplified model.  The algorithms are empirical and only require 

inputs of hourly cloud cover information, dry bulb temperature, relative humidity, and wind speed. 

Input

Virtual sensors

for solar radiation
Output

Solar
radiation

Measurements:

solar altitude,sun position, cloud cover,

 relative humidity, wind speed,

 dry-bulb temperature difference

Empirical coefficients
Virtual diffuse solar

radiation sensor

Virtual direct solar
radiation sensor

Virtual solar
radiation sensor

Diffuse solar
radiation

Direct solar
radiation

 

Figure 20: Virtual sensor for solar radiation 
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Chapter 3 DEVELOPMENT OF A VIRTUAL SCFM METER 

IN RTUS 

The supply airflow in RTUs accompanies energy transmission from thermal components 

to the air.  According to ASHRAE handbook of fundamental 2009, for a typical air-conditioning 

process shown in Figure 21, an energy balance exists across an air-handling unit in steady-flow 

conditions: 

    
)( 12 hhmQ 


                                                   (22) 

 

Where 


Q  = rate of heat flow in Btu/hr (kJ/s), 


m = mass flow rate in lbm/hr (kg/s), h1, h2 = 

enthalpy of air before and after the thermal equipment in Btu/lbm (kJ/kg). 

Damper Filter Cooling coil

Supply air fan

Heating coil

m

QC QH

h1 h2

 

Figure 21: A typical air-conditioning process 

With constant specific volume of conditioned air, SCFM can be calculated based on the 

mass flow rate: 

    
vmV



                              (23)
 

 Where 


V = supply airflow rate in cfm (m3/s), v = specific volume of air in ft3/lbm (m3/kg).
 

By combining Equations (22) and (23), the value of SCFM can be obtained as, 

v
hh

Q
V
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




                                        (24) 
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To avoid using expensive measurements such as relative humidity, only sensible capacity 

across the cooling or heating coil is adopted in the development of a virtual SCFM meter.  

Equation (25) thus can be represented by and a virtual SCFM meter prototype is obtained as, 

s

p

Q
V v

C SAT MAT





 

                      (25) 

Where 
s

Q


= sensible capacity in Btu/hr (kJ/s), SAT = supply air temperature in ºF (ºC), and 

MAT= mixed air temperature in ºF (ºC) 

For a typical RTU, cooling and heating are two opposite energy transmissions related to 

SCFM and air status change.  Accordingly, there are two approaches (cooling mode- and heating 

mode-based approaches) to obtain the sensible capacity in Equation (25). The reliable values of 

s
Q


, which may involve other implicit variables, and SAT, MAT are needed in the cooling or 

heating process to make the virtual SCFM meter work. 

The remaining challenge is to evaluate the two candidates (cooling mode- and heating 

mode-based approaches) and develop an implementation method which satisfies the following 

features of a feasible virtual SCFM meter: (1) using a simple while reliable mechanism; (2) 

characteristic of small uncertainty and robust against faults; and (3) easy-to-obtain parameters 

or measurements.   

Without the presence of simultaneous cooling and heating, individual cooling mode- and 

heating mode-based approaches are studied in the next two subsections.  The inputs and basic 

measurements are verified and adopted from the referred literature.  The critical measurements 

are reiterated in detail in the section of implementation issues. 
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3.1 Modeling and evaluations of cooling-based approach  

3.1.1 Modeling of cooling-based approach 

To simplify the analysis of air-conditioning components and reduce the cost for model 

development, certain studies have attempted to develop generic models as virtual sensors by 

using rating data from manufacturers.  For example, as reviewed previously, Yang and Li (2010) 

proposed a generic rating-data-based virtual cooling capacity sensor for direct-expansion (DX) 

coils with four parameters (mixed air wet bulb temperature MATwb, MAT, OAT and SCFM) in 

Equation (18). The detailed calculation procedure of virtual cooling capacity sensor and its 

calculation case is provided in the Appendix A (Yang and Li 2010).  Since this virtual cooling 

capacity sensor has been demonstrated to be very simple and accurate, it is utilized in this study 

for obtaining cooling capacity.  

The model can be rearranged as one expression for the gross sensible cooling capacity: 

C,, ( , , V )wbC s CQ Q SHR f OAT MAT MAT
  

                                        (26) 

Besides, considering the effect of supply fan heat loss in cooling mode, the energy 

balance expressed in Equation (25) can be reduced to 

 ,

( )

C s
C

p fan

Q
V v

C MAT T SAT






  

    (27) 

Where ∆Tfan = supply fan temperature rise in ºF (ºC).  

By combining Equations (26) and (27), the cooling-based approach formulation for a 

virtual SCFM meter can be expressed as 

)T,SAT,MAT,MAT,OAT(fV fanwbelmod,C 


                                     (28) 
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Observed from Equation (28), to develop a cooling-based SCFM meter 
elmod,CV


, four dry 

bulb temperatures (OAT, MAT, SAT, ∆Tfan) and one wet bulb temperature (MATwb) should be 

used. 

3.1.2 Evaluations of cooling-based approach 

3.1.2.1 Experiment preparation of cooling-based SCFM meter 

System description: Experiments for evaluating the cooling-base virtual SCFM meter 

were performed in a 7.5 ton RTU equipped with two constant speed compressors in an 

environmental chamber. Figure 22 illustrates the basic setting (Yu et al., 2011) in the lab. The 

nominal supply airflow rate is 2,400 cfm (1.13 m
3
/s) with standard speed option.  Together with 

another RTU outside of the building, artificial indoor and outdoor air physical conditions can be 

created and maintained.  

 

Figure 22: Illustration of machine layout in the lab 

Experimental designs: Data used for evaluation here are adopted from the study by 

Yang and Li (2010).  About 110 sets of tests plotted in Figure 23 were performed with OADst at 

30%, cooling running stage at 2, and a wide span of OAT (70.0~110.0 ºF [21.1~43.3ºC]) and 

measured SCFM 
measV


(about 1800~2600 cfm [0.76~1.23 m

3
/s]) to cover the most real operation 

combinations.  Each test was conducted around 20 minutes preparation, followed by 10 to 15 

minutes steady status data. Average readings of each test were collected and utilized in the 

evaluation.  All temperature sensors have been tuned within ± 1.0 ºF (0.6ºC) accuracy in the lab. 
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Figure 23: Experimental settings in the cooling mode 

Experimental results: The involved direct measurements and indirect results for 

evaluating the cooling-based SCFM meter are elaborated below. 

 Direct measurements 

 

Figure 24: Lab sensors’ layout 
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Outside air temperature (OAT) It is found, the manufacturer-preinstalled OAT (MOAT) sensor 

in Figure 24 is fixed beside the evaporator coils, and the measurements are not reliable due to improper 

heat gain and poor temperature distribution.  To supplement it for an accurate OAT, another air 

temperature sensor with ± 0.1 ºF (0.6ºC) uncertainty is mounted at the RTU outside air inlet (Figure 24).  

In this experiment, average reading of the lab-installed OAT sensor instead of MOAT sensor is used. 

Supply air temperature (SAT) Based on the study by Yu et al. (2011), an manufacturer-

preinstalled SAT (MSAT) sensor (Figure 24) in RTUs could predict the true values in cooling mode. 

Therefore, average reading of the MSAT sensor with ± 0.1 ºF (0.6ºC) uncertainty is adopted here. 

Return air temperature (RAT) In order to calculate MAT accurately, obtaining the true value of 

RAT is also important.  In the lab, a RAT sensor with ± 0.1 ºF (0.6ºC) uncertainty installed right at the 

return air duct outlet (Figure 24) is utilized to verify the accuracy of the manufacturer-preinstalled RAT 

(MRAT) sensor.  In the case, average reading of the lab-installed RAT sensor is proved trustable and then 

used. 

Outside air relative humidity (OARH), zone air relative humidity (ZARH) and zone air 

temperature (ZAT)  Besides, in an attempt to calculate the parameter of MATwb, average readings of lab-

installed OARH sensor in the outdoor chamber (Figure 22), ZARH and ZAT sensors in the indoor 

chamber are collected accordingly.  

Measured SCFM (
measV


) An airflow station (pressure transducer) offering ± 1% full scale 

accuracy is permanently mounted in supply air duct in the lab. The airflow station was calibrated by the 

manufacturer before it was installed. It serves as the airflow reference 
measV


 in this study.  

 Indirect results 

Virtual mixed air temperature (MATvir) Since there is no pre-installed physical MAT sensor 

available in our study, we adopted the method proposed by Yang and Li (2011) with an acceptable 

uncertainty of ±1.0ºF (0.6ºC). The specific details are provided in Section 3.4.2 about measuring and 

processing MAT. 
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Virtual mixed air wet bulb temperature (MATwb,vir) Since mixed air wet bulb temperature could 

not be metered directly, an mass balance equation by using the direct measurements of OAT, OARH, 

ZAT, ZARH and a correlated virtual outside air ratio sensor β (Yang and Li 2011) is computed to obtain 

the values , namely, MATwb,vir with an uncertainty of ±1.0ºF (0.6ºC) in this study. 

Supply fan temperature rise (∆Tfan) Additionally, the supply fan temperature rise ∆Tfan is 

calculated using the heat loss from the fan and checked with actual measurements using the method 

presented by Wichman and Braun (2009) under conditions where neither mechanical cooling nor heating 

is operating. The result of it in the lab is 1.7 ºF (0.9 ºC) with an uncertainty of ±0.2 ºF (0.1ºC).  Since it is 

a CAV RTU, the uncertainty of the fan temperature rise is relatively small. 

Based on the experimental results acquired from the extensive laboratory testing, uncertainty 

analysis is thereby performed at the first place, and then experimental evaluation is conducted to evaluate 

the effectiveness of the cooling-based approach. 

3.1.2.2 Uncertainty analysis of cooling-based SCFM meter 

The root sum square method of uncertainty calculation is applied to the variables of OAT, 

MATvir, MAT wb,vir, SAT and ∆Tfan.  The random uncertainty is expressed as Equation (29): 
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              (29)                 
 

Where δOAT , δMATvir, δMATwb,vir, δSAT and δ∆Tfan are inputs uncertainties. 

The 110 sets of extensive laboratory tests for the 7.5 ton RTU in cooling mode collected by Yang 

and Li (2010) are used in the analysis. Table 3 summarizes the uncertainties of independent variables as 

inputs, as well as the calculated uncertainties of 
elmod,CV


 as outputs.  Uncertainties of temperature 

measurements are ±1.0ºF (0.6ºC). It is found that, due to the complex cooling process and multiple 

variables, the absolute uncertainty of 
elmod,CV


 can be up to 13.8%.   
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 In field applications, the best practice of a physical airflow meter could have a theoretical 

accuracy close to ±1%, but the actual uncertainty of the meter might be enlarged to some extent, owing to 

a variety of practical factors, such as uneven air distribution, gradual drifting, faulty installation, or 

adverse duct work surroundings. In general, ±10% uncertainty of airflow measurement can be regarded 

good for most thermal control applications in HVAC, while a better uncertainty is always desired. The 

uncertainty (±13.8%) of a cooling-based virtual SCFM meter is slightly high. 

Table 3: Uncertainty analysis of cooling-based SCFM meter 

Variables
 

Inputs
 

Output
 

OAT,ºF (ºC) MATvir,ºF (ºC) 
MATwb,vir,ºF 

(ºC) 
SAT,ºF (ºC) ∆Tfan,ºF (ºC) 

elmod,CV


 

Uncertainty
 

±1.0 (0.6) ±1.0 (0.6) ±1.0 (0.6) ±1.0 (0.6) ±0.2(0.1) ±13.8% 

3.1.2.3 Experimental evaluation of cooling-based SCFM meter 

Direct SCFM measurements acquired from the 110 sets of cooling tests (Yang and Li 2010) are 

also used to evaluate the accuracy of the cooling-based SCFM meter.  The relative error eC,eva between the 

measured SCFM 
measV


 and 

elmod,CV


 is defined as follows, 

meas

measelmod,C
eva,C

V

VV
e






                                                                (30) 

In Table 4, results show that the maximum relative error is as high as 16.4%, and the minimum 

low to -16.2%. The absolute average of these errors is 7.8% with a standard deviation 8.9%. It can  be 

seen that these actual errors are a little bit higher than those values obtained from prior uncertainty 

analysis, which is fully anticipated, because in the prior uncertainty analysis,  the uncertainty from the 

model regression of gross sensible cooling capacity in Equation (18) which is about 5% (Yang and Li 

2010), was not considered.  These factors lead to certain difficulty (complex cooling process and multiple 

variables), and slight inaccuracy (uncertainty is ±13.8% and relative error is -16.2~16.4%) in developing 

the virtual SCFM meter for cooling mode. 

Table 4: Experimental evaluation of cooling-based SCFM meter 
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eC,eva
 

Maximum Minimum Absolute average Standard deviation 

16.4% -16.2% 7.8% 8.9% 

 

3.2 Modeling and evaluations of heating-based approach  

In heating mode, gas burnt in furnace transmits heat into conditioned air and causes air 

temperature to increase.  An obvious advantage of utilizing heating energy transmission is that the process 

generally doesn’t have mass transfer involved across the furnace.  The measurement of conditioned air 

energy change relies purely on the air dry bulb temperature.  The modeling and evaluation of the heating-

based approach are explored in the following subsections. 

3.2.1 Modeling of heating-based approach 

Referring to ASHRAE handbook of fundamental 2009 Chapter 4, for heat exchangers, to 

calculate the heating transfer rate, mean temperature difference analysis and number of transfer units 

(NTU)-effectiveness (ε) analysis are used.  The former method involves trial-and-error calculations unless 

inlet and outlet fluid temperatures are known for both fluids.  NTU-ε method is adopted in the study. 
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Figure 25: Heat transfer of a heat exchanger 
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Figure 25 shows the configuration of a counterflow heat exchanger.  Ti,a and To,a are the air 

temperature at the inlet and outlet of heat exchanger respectively.  Ti,g and To,g are the flue gas 

temperatures of inlet and outlet of heat exchanger.  The maximum possible heat transfer rate 

max,HQ


occurs when the hot fluid enters at Ti,g and leaves at the entering temperature of the cold fluid Ti,a: 

                 
)TT(CQ a,ig,iminmax,H 



                                             (31) 

Where Cmin= min (Cg,Ca), Cmax= max (Cg,Ca), wherein Cg [ gP )Cm( 


] and  Ca [ aP )Cm( 


] are fluid capacity 

rates, Btu/(hr·ºF) (kW/K). 

The actual heating capacity HQ


 can be calculated as: 

               



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d

d,H
max,HH

Q
QQ                                                     (32)

 

According to NTU-ε method, in a counterflow heater, ε is determined by, 
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Where Cr = Cmin/Cmax as a capacity ratio. 

Therefore, by combining Equation (32) and (33), HQ


can be expressed as, 
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Observed from Equation (14), the intermediate variables Cr and NTU are required to make 
HQ


 

work. The following four steps are thus needed in order to analyze the heating capacity and capture the 

heating-based virtual SCFM meter. Data from a 7.5 ton RTU is adopted for illustration purposes. 

Step 1: Determination of Cr 

To determine Cr, the knowns and assumptions are listed below: 

http://dict.youdao.com/search?q=lj%3Aintermediate+variable+%E4%B8%AD%E9%97%B4%E5%8F%98%E9%87%8F&keyfrom=dict.top
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 The design heating capacity and design heat exchanger effectiveness are: 
d,HQ


 = 130,000 Btu/hr (38.1 

kW); d = 80%.  

 The design airflow rate and design flue gas flow rate are: d,aV


 = 144,000 ft
3
/hr (2400 cfm; 1.13m

3
/s), 

gV


 

= 1,800 ft
3
/hr (30.0 cfm; 0.014m

3
/s). 

 The density and specific heat of air are:  ρa = 0.070lb/ft
3 
(1.200 kg/m

3
); CP,a =0.240 Btu/(lbm·ºF) (1.005 

kJ/(kg·K)). 

 It is a sufficient combustion process in the gas furnaces. The density and specific heat of flue gas are:  ρg = 

0.077lb/ft
3 
(1.240 kg/m

3
); CP,g =0.295 Btu/(lbm·ºF) (1.230 kJ/(kg·K)). 

Since with similar specific heat on both sides the flow rate on the air side is several degrees of 

magnitude higher than that on the flue gas side, Cg<<Ca, then according to Cmin and Cmax definition, we 

have Cmin equals Cg  and Cmax equals Ca. 

(1) Cmin = Cg . With flue gas flow rate known, the value of Cg can be obtained as,  

               
gg,Pgg VCC



                                                        (35)
 

In this case, Cg is 40.36 Btu/(hr·ºF) (0.021 kW/K) as calculated. 

 (2) Cmax = Ca .  With design airflow rate known, Ca can be derived from Eq. (16):  

 
d,aa,Paa VCC



                                                        (36)                               
 

The result is Ca = 2419 Btu/(hr·ºF) (1.423 kW/K) under design conditions.  

Since Ca is significantly greater than Cg, the assumption holds for wide range airflow rate and we 

have, 
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C                                                           (37)                                  

 

Step 2: Correlating NTU 
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As shown in Table 5, based on ASHRAE handbook of fundamental 2009, with the knowns of 
aV


 

and 
gV


, the NTU of a heat exchanger can be applied through Equation (38) to (47). 

Table 5: Calculation of NTU of a heat exchanger  

Equations   

NTU UA, Cmin ha←Nua←Rea←Va← aV


;  hg←Nug←Reg←Vg← gV

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Symbols

 A = area, ft2 (m2) Pr = Prandtl number 

C = heat air capacity rate, Btu/(hr·ºF) (kW/K) Re = duct Reynolds number 

D = duct diameter, in (m) U = heat transfer coefficient, Btu/(hr·ºF·ft²) (kW/(m2·K)) 

k = thermal conductivity, Btu/(h·ft·ºF) (kW/(m·K)) v = kinematic viscosity, ft2/s(m2/s) 

L = duct length, ft (m) V = linear velocity, ft/s(m/s) 

NTU = number of transfer units 

V = flow rate, ft3/s (m3/s) 

Nu = Nusselt number ρ = density, lbm/ft3(kg/m3)  

μ = absolute viscosity, lbm/ft·s ((N·s)/m2) 

 

Step 3: Obtaining 
HQ


  

With the intermediate parameters Cr (Cg, Ca) and NTU obtained, for different operations, 
HQ


 then 

can be calculated through Equation (34). However, observed from  the calculation of Cg (Equation (35)), 
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Ca (Equation (36)) and NTU, it is found that 
HQ


 is essentially derived from and mainly effected by two 

parameters, the air side flow rate 
aV


and the flue gas flow rate 

gV


.  Therefore, fundamentally, we 

determine the 
HQ


 as Equation (48) in this study, 

)V,V(fQ gaH



                                                             (48)
 

Step 4: Modeling heating-based virtual SCFM meter 
elmod,HV


 

Besides, considering the effect of supply fan heat loss in heating mode and no moisture related 

mass change in the air, the energy balance expressed in Equation (24) can be reduced to Equation (49) in 

heating mode,  

  
v

)TMATSAT(C

Q
V
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H
H
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    (49) 

Combining Equation (48) and (49), we could formulate the heating-based SCFM meter as follows,  

)MAT,SAT,T,V(fV fangelmod,H 


                                              (50) 

It can be seen from Equation (50) that the heating-based approach requires reliable values of 
gV


and 

three air temperature inputs to get SCFM, wherein 
gV


 and ΔTfan are nearly constant. 

gV


 possess a low 

uncertainty of ±1% because the natural gas regulator holds a high accuracy of pressure control (ASHRAE 

handbook of fundamental 2009).  ΔTfan has also a low uncertainty of ±0.2 ºF (0.1ºC) in a constant air 

volume (CAV) RTU (Yu et al. 2011).  Therefore, the uncertainty of 
elmod,HV


is mainly determined by the 

uncertainty of two temperature measurements (SAT and MAT). 
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3.2.2 Evaluations of heating-based SCFM meter 

3.2.2.1 Experiment preparation of heating-based SCFM meter 

System description: Experiments for evaluating the heating-base virtual SCFM meter were also 

performed in the 7.5 ton RTU in Figure 22 equipped with two-stage gas heating. The design total heating 

capacity is 130,000 Btu/hr (38.1kW) and the first stage is 84,500 Btu/hr (24.8kW).   

Experimental designs: Data used for evaluation here are adopted from the study by Yu et al. 

(2011).  Table 6 collects experimental configurations and results.  Sixteen tests named with different 

scenario ID were performed with different heating running stages (1 and 2), OADst (0% and 30%), a 

wide span of OAT (34.1~50.0 ºF [1.3~10.0ºC]) and measured SCFM (1829~2272 cfm [0.86~1.07 m
3
/s]) 

to cover the most real operation combinations.  Similarly to the cooling mode, each test was conducted 

around 20 minutes preparation, followed by 10 to 15 minutes steady status data.  Average readings of 

each test were collected and utilized in the evaluation. All temperature sensors have been tuned within ± 

1.0 ºF (0.6ºC) accuracy. 

Table 6: Experimental designs and results of heating-based SCFM meter 

Scenario 

ID 

Running 

Mode 
Hstage OADst 

OAT, 

ºF(ºC) 

RAT, 

ºF(ºC) 
measV


, 

cfm(m
3
/s) 

SAT, 
ºF(ºC) 

SATmfr,cal,  

ºF(ºC) 

MATvir,  

ºF(ºC) 

H-1 Heating 2 0% 36.0(2.2) 59.1(15.1) 1848(0.87) 120.1(48.9) 108.0(42.2) 54.2(12.3) 

H-2 Heating 2 0% 42.9(6.1) 63.9(17.7) 2045(0.97) 120.0(48.9) 108.3(42.4) 59.5(15.3) 

H-3 Heating 2 0% 44.1(6.7) 58.4(14.7) 1857(0.88) 121.5(49.7) 108.9(42.7) 55.4(13.0) 

H-4 Heating 2 0% 50.0(10.0) 59.4(15.2) 1829(0.86) 124.0(51.1) 111.8(44.3) 57.4(14.1) 

H-5 Heating 2 30% 34.4(1.3) 55.5(13.1) 2076(0.98) 99.9(37.7) 93.0(33.9) 44.9(7.2) 

H-6 Heating 2 30% 44.3(6.8) 60.7(15.9) 2269(1.07) 104.5(40.3) 96.7(35.9) 52.5(11.4) 

H-7 Heating 2 30% 43.3(6.3) 57.0(13.9) 2037(0.96) 106.1(41.2) 99.2(37.3) 50.2(10.1) 

H-8 Heating 2 30% 49.1(9.5) 58.6(14.8) 2040(0.96) 109.9(43.3) 102.7(39.3) 53.8(12.1) 

H-9 Heating 1 0% 35.6(2.0) 65.6(18.7) 1853(0.87) 99.4(37.4) 94.7(34.8) 59.3(15.2) 

H-10 Heating 1 0% 45.9(7.7) 65.0(18.3) 2051(0.97) 98.1(36.7) 93.2(34.0) 61.0(16.1) 

H-11 Heating 1 0% 44.4(6.9) 65.3(18.5) 1849(0.87) 100.8(38.2) 96.4(35.8) 60.9(16.1) 

H-12 Heating 1 0% 49.2(9.6) 65.6(18.7) 1831(0.86) 102.6(39.2) 99.6(37.6) 63.7(17.6) 

H-13 Heating 1 30% 34.1(1.2) 63.1(17.3) 2081(0.98) 82.6(28.1) 80.4(26.9) 48.6(9.2) 

H-14 Heating 1 30% 42.9(6.1) 62.9(17.2) 2272(1.07) 83.2(28.4) 82.1(27.8) 52.9(11.6) 

H-15 Heating 1 30% 43.1(6.2) 63.8(17.7) 2059(0.97) 87.5(38.3) 85.5(29.7) 53.4(11.9) 

H-16 Heating 1 30% 48.4(9.1) 64.4(18.0) 2046(0.97) 90.8(32.7) 88.7(31.5) 56.4(13.6) 
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Experimental results: Experimental results for evaluating the heating-based virtual SCFM meter 

are collected in Table 6 respectively.  The methods to obtain the direct measurements (OAT, RAT, and 

measV


) and the indirect results (MATvir and ∆Tfan ) are the same as the cooling mode, excepting the SAT 

values: 

Calibrated MSAT (SATmfr, cal) Based on the study by Yu et al. (2011), direct measurements of an 

MSAT sensor are incorrect in heating mode with gas furnaces equipped in RTUs. There exists 

unacceptable erratic measurement errors (e.g., in a 7.5 ton RTU, the errors are from 1.0 ºF [0.6ºC] to 

12.6ºF [7.0ºC]) due to severe temperature stratification and high thermal radiation.  The traditional 

calibration method can hardly overcome the defect. The methodology of virtual calibration of an MSAT 

sensor is innovated with good accuracy by Yu et al (2011). This method is adopted in this study and 

MSAT is calibrated as SATmfr, cal in Table 4 with uncertainty ± 1.2 ºF (0.7ºC).  For more information 

about the virtual calibration of an MSAT sensor in RTUs, please refer to the section 3.4.2. 

Based on the experimental results in the 7.5 ton RTU in the heating mode, uncertainty analysis 

and experimental evaluation are thereby conducted to evaluate the effectiveness of the heating-based 

approach. 

3.2.2.2 Uncertainty analysis of heating-based SCFM meter 

Based on Equation (50), uncertainty of heating-based approach calculation is conducted with the 

independent variables of 
gV


, ΔTfan, SATmfr,cal and MATvir. The root sum square is used as Equation (51): 
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     (51)   
          

Where δ
gV


, δΔTfan, δSATmfr,cal and δMATvir are inputs uncertainties. 

The results of sixteen experiments in heating mode preformed in the 7.5 ton RTU are used to 

analyze the uncertainty of heating-based approach. As shown in Table 7, 
gV


is 30.0 cfm (0.014m

3
/s) for 
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the testing RTU with an uncertainty of ±1%.  ΔTfan is 1.7 ºF (0.9 ºC) obtained in the CAV RTU with an 

uncertainty of ±0.2 ºF (0.1ºC). The uncertainties of SATmfr,cal and MATvir are ±1.2ºF (0.7ºC) and ±1.0ºF 

(0.6ºC), respectively. It is found that uncertainty of heating-based SCFM meter is within ±6.9%.  This 

means we are 93.1% confident with the true value of SCFM in heating mode.  

Table 7: Uncertainty analysis of heating-based SCFM meter 

Independent variables
 

Inputs Uncertainty 

Flue gas flow rate, 
gV


 , cfm (m3/s) 30.0 (0.014) ±1% 

Supply fan temperature rise, ΔTfan, ºF (ºC) 1.7 (0.9) ±0.2(0.1) 

Supply air temperature, SATmfr,cal, ºF (ºC) The results of SATmfr,cal in Table 4 ±1.2(0.7) 

Mixed air temperature, MATvir, ºF (ºC) The results of MATvir in Table 4 ±1.0(0.6) 

Dependent variable Uncertainty of heating-based approach, elmod,HV


 
Scenario ID H-1 H-2 H-3 H-4 H-5 H-6 H-7 H-8 

Uncertainty ±3.6% ±4.0% ±3.7% ±3.6% ±4.1% ±4.4% ±4.0% ±4.0% 

Scenario ID H-9 H-10 H-11 H-12 H-13 H-14 H-15 H-16 

Uncertainty ±5.7% ±5.8% ±6.3% ±6.9% ±6.3% ±6.3% ±5.7% ±5.8% 

3.2.2.3 Experimental evaluation of heating-based SCFM meter 

Experimental evaluation of the heating-based virtual SCFM meter by using the sixteen sets of lab 

tests is given in this section.  The relative error eH,eva between the measured SCFM 
measV


 and 

elmod,HV


 is 

defined as follows, 

meas

measelmod,H
eva,H

V

VV
e






                                                           (52) 

As shown in Table 8, it is found the maximum absolute relative error eH,eva is 7.6%.  This 

demonstrates the virtual SCFM meter in heating mode accurately predicts the true value of SCFM in the 

RTU.  

Table 8: Experimental evaluation of heating-based SCFM meter 

Scenario ID 
elmod,HV


, 

cfm(m3/s) 

measV


 , 

cfm(m
3
/s) 

eH,eva Scenario ID 
elmod,HV


, 

cfm(m3/s) 

measV


 , 

cfm(m
3
/s) 

eH,eva 

H-1 1854(0.87) 1848(0.87) 0.3% H-9 1896(0.89) 1853(0.87) 2.3% 

H-2 2076(0.98) 2045(0.97) 1.5% H-10 2123(1.00) 2051(0.97) 3.5% 



 

74 

 

H-3 1866(0.88) 1857(0.88) 0.5% H-11 1890(0.89) 1849(0.87) 2.2% 

H-4 1834(0.87) 1829(0.86) 0.3% H-12 1969(0.93) 1831(0.86) 7.6% 

H-5 2174(1.03) 2076(0.98) 4.7% H-13 2204(1.04) 2081(0.98) 5.9% 

H-6 2399(1.13) 2269(1.07) 5.7% H-14 2443(1.15) 2272(1.07) 7.5% 

H-7 2125(1.00) 2037(0.96) 4.3% H-15 2181(1.03) 2059(0.97) 5.9% 

H-8 2132(1.01) 2040(0.96) 4.5% H-16 2164(1.02) 2046(0.97) 5.7% 

 

To here, both cooling- and heating-based approaches to develop a virtual SCFM meter are 

presented.  Finally, the comparisons and conclusions of the two approaches are explored in the next 

subsection.   

3.3 Comparisons and conclusions of cooling- and heating-based approaches 

Comparing the cooling and heating-based approaches, we could reach the following conclusions: 

 Uncertainty of 
elmod,CV


 is much higher than the uncertainty of 

elmod,HV


  

elmod,HV


 is correlated with the inputs of 
gV


,ΔTfan, SATmfr,cal and MATvir, wherein 

gV


and ΔTfan 

are quite stable with very low uncertainties. Uncertainty of 
elmod,HV



 
is low, within ±6.9%.  In contrast, 

elmod,CV


is calculated by five parameters of OAT, MATvir, MATwb,vir , SAT and ΔTfan with more 

difficulties of implementation and higher risk of uncertainties (±13.8 %, in this case).  The heating-based 

SCFM meter, with the feature of "less uncertainty", is considered simple, stable and could accurately 

predict the SCFM in RTUs.  

 The relative error eC,eva between 
measV


 and 

elmod,CV


 is high, while eH,eva in heating mode is low 

Owing to the uncertainty generated by the model regression of 
sens,CQ


 in Equation (18), as well as 

the uncertainty associated with the multiple measurements of 
elmod,CV


in Equation (28), the relative errors 

eC,eva between  
measV


 and elmod,CV


 are high (-16.2~16.4%, in this case).  However, 

elmod,HV


, with simple 

and reliable inputs,  is much close to 
measV


 as evaluated through laboratory tests.  

 Robustness of 
elmod,HV


 is better than 

elmod,CV

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Although the manufacturer-data based cooling capacity model proposed by Yang and Li (2010) 

could work well when the system operates normally or only air side faults are present (e.g. improper 

supply airflow rates), it could not work in the presence of  the faults developed at refrigerant side (e.g. 

low refrigerant charge). However, it is notorious that the refrigerant side of RTUs is plagued by various 

common degraded faults due to its complexity (Proctor and Downey, 1995; Cowan, 2004; Li and Braun 

2007a, 2007b, 2009a). This fact causes more difficulties and limitations when implementing and 

accurately monitoring the cooling-based SCFM meter in practice. However, in heating mode, the gas side 

is simple and its gas flow rate is accurately controlled by a sophisticated gas regulator. Although the gas 

side could fail occasionally, degraded faults associated with the gas side have been rarely reported. It is 

easy to identify complete failure and thus to avoid using the flow meter. With the good-fault free property, 

heating-based SCFM meter performs robustly most of the time. 

 Relative humidity measurement of inlet air is required for cooling mode, but not for heating mode 

According to Equation (28), MATwb is critical to calculate the SCFM for cooling mode.  Installing 

relative humidity sensor is needed to collect the measurement of wet bulb temperature.  However, no 

measurement on the air humidity is required in the heating-based approach.  Only easy-to-obtain 

measurements (dry bulb temperatures) are left in Equation (50) as unknown dependent variables.  As we 

know, RTUs may not have relative humidity sensors mounted by manufacturers. Comparing to 

temperature sensors, relative humidity sensors are costly. Additional costs entail with procurement, 

installation and maintenance of relative humidity sensors. Moreover, a relative humidity sensor is 

notorious for its accuracy drifting and saturation under high humidity levels.   

The above comparisons between cooling- and heating-based approaches reveals that utilizing heating 

mode to develop a virtual SCFM meter is worthy of confidence. Therefore, the implementation issues of a 

heating-based virtual SCFM meter, covering detailed measuring and processing the parameters and an 

implementation flowchart, are introduced in the following section.   
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3.4 Implementation issues  

This part is dedicated to provide an instruction of using this virtual SCFM meter in practice.  

Except for the stable input of gV


 of the heat exchanger, implementation issues of three temperature 

measurements SAT, MAT and ∆Tfan, are described. 

To ensure the robustness and reliability of this virtual meter, a steady-status detector presented by 

Li and Braun (2003b) is referred to filter out the transient data of all temperature measurements related to 

Equation (38). 

3.4.1 Measuring and processing SAT 

3.4.1.1 Background of direct measurements of SAT in RTUs  

Accurate SAT measurements would directly influence the performance of the virtual SCFM 

meter.  In the field, there is a manufacturer-preinstalled SAT sensor (MSAT) widely used in most light 

commercial RTUs and it is not difficult to collect the readings.  However, a common practice by RTU 

manufacturers is to pre-install the MSAT sensor right after the gas-fired heating coil in a compact 

chamber. Owing to the following two inherent problems under this arrangement, the accuracy and 

reliability of the MSAT sensor are notoriously difficult to attain in heating mode (ASHRAE fundamental, 

2009): 

 Poor air temperature distribution  

With gas-fired heating coil mounted in a crowded housing, RTUs have an extremely uneven air 

temperature distribution where the onboard SAT temperature sensor is located.  According to ASME PTC 

19.3-1974, aspiration method involving passing a high-velocity stream of air over the temperature sensor 

is improbable to be applied.   

 Intensive thermal radiation of gas heating 

The MSAT sensor is bathed in an adverse hot air chamber.  Measurements can be affected by 

radiation from surrounding surfaces (ASHRAE fundamental, 2009).  Strong thermal radiation from gas 
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burners causes a dramatic rise in air temperature measurement.  Even with the shielding suggested by 

Parmelee and Huebscher (1946), the radiation impact on the MSAT sensor can hardly be eliminated.  

Meanwhile, the RTU’s compact structure makes it improper for shielding. 

Consequently, manufacturers recommend that the MSAT sensor should be relocated to the supply 

air duct on site, particularly if the supply air temperature control functions were used (Lennox, 2007). 

However, relocating the MSAT sensor would run into a series of problems. 

First of all, repositioning the MSAT sensor to the supply air duct could be very costly in a 

situation where all other installations of a system are completed. It is greatly in excess of the original 

budget planned for an economy packaged unit. Second, RTUs are usually set up right upon the roof of the 

served zones in light commercial buildings (e.g., big-box retail stores), the supply air duct, if there is one, 

is too short to meet the minimum requirements by manufacturers or to achieve a balanced air temperature 

distribution.    

As a result, a lot of building operators either do not bother to relocate the MSAT sensor, which 

will cause unreliable supply air temperature related control functions, or completely disable the MSAT 

sensor related functions.  

Instead of repositioning the MSAT sensor to supply air duct or directly using the MSAT 

measurements, we proposed an innovative virtual calibration method to solve the dilemma (Yu et al. 

2011).  The main merit of this method is that a general linear model to offset the MSAT errors is created 

through a one-time algorithm development.  This virtual calibration technique is very cost-effective, 

accurate, stable, easy-to-use and generic for all RTUs with similar construction of gas furnaces and can be 

implemented for long-term use.   

The study begins with the evaluation of two groups of direct measurements: the single onboard 

MSAT sensor-based measurement and further a measuring grid-based measurement.  It is found neither 

method can provide the real time true value of SAT.  There are unstable changing errors in both of them, 

which rules out the possibility of using regular calibration.  Then, a virtual calibration algorithm for the 

MSAT sensor is proposed based on lab data, and also the modeling and implementation procedures are 
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summarized for easy-to-use implementation.  Uncertainty analysis and additional experimental evaluation 

are carried out over a wide range of controlled tests later on.  The study concludes that the virtually 

calibrated MSAT sensor can accurately predict the true value and is adopted to develop a virtual SCFM 

meter in RTUs. 

3.4.1.2 Evaluation of direct measurements of SAT in RTUs 

Direct measurements are conventionally used for air temperature in all kinds of forced air 

systems.  In this section, the 7.5 ton RTU equipped with gas heating is evaluated in terms of direct SAT 

measuring of two methods: the MSAT sensor-based measurement and a measuring grid-based 

measurement.   

The assessment starts with the single onboard MSAT sensor under both cooling and heating 

mode.  To further understand the nature of inaccuracy in direct measurement, an additional method, 

termed multi-sensor measuring grid, is applied.  The measurements for them are performed 

simultaneously in the same experimental series to ensure the consistency and comparability of the results.  

To keep it simple, only the necessary experimental results and the deduction are debriefed right below.   

 MSAT sensor-based measurement  

A group of parametric tests are implemented to the two-stage cooling and two-stage gas heating 

7.5 ton RTU for the evaluation of the MSAT sensor derived measurements.  Both cooling and heating 

mode are offered with stage 1 and 2.  OADst is modulated at 0% and 30% for the different runs, since in 

cooling and heating mode, RTUs bring in minimum outside air flow for ventilation and 30% is usually 

the upper limit for a minimum damper position (ASHRAE Standard 62.1, 2007). Besides the data point 

given in the section 3.1.2.1 and 3.2.2.1, there is an additional lab-installed SAT sensor (SATlab,meas) to 

verify the MSAT measurement in the lab. Each experiment assigned a scenario ID is conducted around 20 

minutes for preparation, and followed by 10 to 15 minutes under steady status (Li and Braun 2003b).  

Instant readings for each sensor are sampled every 15 seconds and the mean of the samples is then used to 

represent the corresponding measurement result. 
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In Table 9, experiment settings and results are provided.  The error e accounts for the difference 

between the average measurements of the MSAT sensor (SATmfr,meas) and the additional lab-installed SAT 

sensor (SATlab,meas): 

                                                         meas,mfrmeas,lab SATSATe                                                   (53)                                                        

From the results, we can see, 

 In cooling mode, the direct measurements are considered reliable with e less than 2.0 °F (1.1°C). 

 However, in heating mode, direct measurements with both sensors lose credibility since e widely 

varies from 21.0 °F (11.7 °C) to 34.6 °F (19.2 °C). 

Therefore, further analysis to evaluate the MSAT sensor-based measurement in heating mode is 

carried out by comparing SATmfr,meas to the predicted theoretical true value of SAT (SATth,pred) as eH: 

                                                   pred,thmeas,mfrH SATSATe                                               (54) 

Where SATth,pred  is derived from an energy balance shown as Equation (55). 

fan
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pred,th TMATv
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






                                       (55) 

The procedures of measuring the parameters in Equation (54) to (55) are addressed in detail in the 

section 3.1.2.1.  As given in Table 9, eH is found unstable with the MSAT sensor-based measurement.  It 

alters in a wide range from 1.0 °F (0.6 °C) to 12.6°F (7.0 °C) when test condition varies.  It is obviously 

improper to directly use SATmfr,meas in heating mode as the true value of SAT in the RTU.  The results 

also demonstrate that a regular calibration with a fixed offset based on the MSAT sensor-based direct 

measurement would fail. 

Table 9: Evaluation of direct SAT measurement under both cooling and heating mode 

Running Mode Running Stage OADst Scenario ID SATlab,meas,°F(°C) SATmfr,meas,°F(°C) e ,°F(°C) 

Cooling 2 0% C-1 48.2(9.0) 46.2(7.9) 2.0(1.1) 

Cooling 2 0% C-2 38.8(3.8) 36.8(2.7) 2.0(1.1) 

Cooling 2 30% C-3 51.2(10.7) 49.4(9.7) 1.8(1.0) 

Cooling 2 30% C-4 50.4(10.2) 48.4(9.1) 1.9(1.1) 

Cooling 1 0% C-5 62.3(16.8) 61.3(16.3) 1.0(0.6) 

Cooling 1 0% C-6 56.4(13.6) 55.8(13.2) 0.5(0.3) 
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Cooling 1 30% C-7 66.4(19.1) 65.9(18.8) 0.5(0.3) 

Cooling 1 30% C-8 66.0(18.9) 64.6(18.1) 1.4(0.8) 

Running 

Mode 

Running 

Stage 
OADst 

Scenario 

ID 

SATlab,meas 

,°F(°C) 

SATmfr,meas , 

°F(°C) 
measV


, 

cfm(m3/s) 

SATth,pred , 

°F(°C) 

MAT, 

°F(°C) 

eH , 

°F(°C) 

e , 

°F(°C) 

Heating 2 0% H-1 151.4(66.3) 120.1(48.9) 1848(0.87) 108.0(42.2) 54.2(12.3) 12.1(6.7) 31.3(17.4) 

Heating 2 0% H-2 151.3(66.3) 120.0(48.9) 2045(0.97) 108.3(42.4) 59.5(15.3) 11.7(6.5) 31.3(17.4) 

Heating 2 0% H-3 152.5(66.9) 121.5(49.7) 1857(0.88) 108.9(42.7) 55.4(13.0) 12.6(7.0) 31.0(17.2) 

Heating 2 0% H-4 155.1(68.4) 124.0(51.1) 1829(0.86) 111.8(44.3) 57.4(14.1) 12.2(6.8) 31.1(17.3) 

Heating 2 30% H-5 134.4(56.9) 99.9(37.7) 2076(0.98) 93.0(33.9) 44.9(7.2) 6.9(3.8) 34.5(19.2) 

Heating 2 30% H-6 138.5(59.2) 104.5(40.3) 2269(1.07) 96.7(35.9) 52.5(11.4) 7.8(4.3) 34.1(18.9) 

Heating 2 30% H-7 140.5(60.3) 106.1(41.2) 2037(0.96) 99.2(37.3) 50.2(10.1) 7.0(3.9) 34.4(19.1) 

Heating 2 30% H-8 144.4(62.4) 109.9(43.3) 2040(0.96) 102.7(39.3) 53.8(12.1) 7.2(4.0) 34.6(19.2) 

Heating 1 0% H-9 120.4(49.1) 99.4(37.4) 1853(0.87) 94.7(34.8) 59.3(15.2) 4.6(2.6) 21.1(11.7) 

Heating 1 0% H-10 119.1(48.4) 98.1(36.7) 2051(0.97) 93.2(34.0) 61.0(16.1) 4.9(2.7) 21.0(11.7) 

Heating 1 0% H-11 122.1(50.1) 100.8(38.2) 1849(0.87) 96.4(35.8) 60.9(16.1) 4.3(2.4) 21.4(11.9) 

Heating 1 0% H-12 124.1(51.2) 102.6(39.2) 1831(0.86) 99.6(37.6) 63.7(17.6) 3.0(1.7) 21.4(11.9) 

Heating 1 30% H-13 106.1(41.2) 82.6(28.1) 2081(0.98) 80.4(26.9) 48.6(9.2) 2.2(1.2) 23.5(13.1) 

Heating 1 30% H-14 106.4(41.3) 83.2(28.4) 2272(1.07) 82.1(27.8) 52.9(11.6) 1.0(0.6) 23.3(12.9) 

Heating 1 30% H-15 111.0(43.9) 87.5(38.3) 2059(0.97) 85.5(29.7) 53.4(11.9) 2.0(1.1) 23.5(13.1) 

Heating 1 30% H-16 114.8(46.0) 90.8(32.7) 2046(0.97) 88.7(31.5) 56.4(13.6) 2.1(1.2) 24.0(13.3) 

 

 Measuring grid-based measurement 

A measuring grid in the inlet of supply air duct and right out of the RTU is also constructed for 

the experiments.  Since the grid is not located in the chamber, the radiation influence from the gas burner 

can be attenuated to some extent.  The multi-point measurements employed in a measuring grid are also 

supposed to improve the overall measurement accuracy with less stratification impact.  Eight temperature 

sensors are positioned in the duct work after the RTU, as depicted in Figure 26.  With eight sensors the 

duct section representative locations are well covered.   
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Figure 26: Illustration of measuring grid and numbered sensors 

Average values of each sensor from 1 to 8 (SATG,C for cooling mode and SATG,H for heating 

mode), the MSAT sensor-based SATmfr,meas, and the calculated SATth,pred, are plotted in Figure 27 for 

comparison.  The horizontal axis is for different sensor ID and the vertical axis is for air temperatures in 

Fahrenheit and Celsius degrees.  To get a clear view, results of all cooling scenarios and half of all 16 

heating scenarios are given. 
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Figure 27: Evaluation of measuring grid under both cooling and heating mode: (a) IP units and (b) 

SI units. 

The results of cooling mode illustrate that measurements of eight SATG,C are close to those of 

SATmfr,meas.  In all cooling scenarios, the error between the mean of eight SATG,C and SATmfr,meas is about 

1.5 ºF (0.8 °C) or less.  It is consistent with the previous evaluation for the MSAT sensor-based direct 

measurement.  Both MSAT sensor and measuring grid in cooling mode are trustable for using. 
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From the heating mode plot, the following points can be observed: 

 Temperature distribution of eight SATG,H is irregular 

Combining Figure 26 and 27, relationships of eight SATG,H and their location in heating mode are 

erratic.  Temperature values of sensors 1 to 4 are lower than those of the corresponding sensors 5 to 8.  It 

is unsuitable to calculate the true value of SAT by averaging eight SATG,H. 

 Big temperature difference exists between SATmfr,meas and the average eight  SATG,H 

In scenario H-7, for example, SATmfr,meas is 106.1°F (41.2 °C) ; SATG,H sensors 1 to 8 give the 

lowest reading as 74.4 °F (23.6 °C), the highest as 108.7 °F (42.6°C).  It makes the differential 

temperature between SATmfr,meas  and the average eight SATG,H  8.9 °F  (4.9 °C).  In all heating scenarios, 

the error between SATmfr,meas  and the mean of eight SATG,H varies from 3.0 ºF (1.7 °C)   to 12.2 ºF (6.8 

°C) . 

 Various temperature difference stands between SATth,pred and the mean of eight SATG,H 

The temperature difference between SATth,pred and the mean of eight SATG,H varies in different 

scenarios.  Like in scenario H-7, with Hstage 2 and OADst 30%, the mean of eight SATG,H is 95.2 °F 

(35.1°C)  while the true value SATth,pred  is 99.2 °F (37.3 °C) [with 4.0 °F (2.2 °C) temperature 

difference].  However, in scenario H-16 with Hstage 1 and OADst 30%, the mean of eight SATG,H is 

85.9°F (29.9 °C)  while the true value SATth,pred is 88.7 °F  (31.5 °C) [with 2.8 °F (1.6 °C) temperature 

difference].  As presented in this case, the measuring grid does not indicate the true value of SAT. 

In summary, the evaluation of measuring grid further testifies that the offset error for MSAT in 

heating mode varies.  Controls in RTUs related to MSAT sensor direct measurements in heating mode 

can be far from the intended operation and lead to inferior system performance.  What is more, using 

measuring grid does not help obtain the true value of SAT in RTUs.  It could not be used for the 

verification of the predicted true value of SAT as well.  An innovative calibration algorithm is needed to 

fill in the gap. 
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3.4.1.3 Development of a virtual calibration model for a SAT sensor in RTUs 

 Algorithm development 

As analyzed above, direct measurement, either the single MSAT sensor-based or the measuring 

grid-based cannot catch the true value of SAT.  The measuring grid method in a location out of the RTU 

merely provides closer but still mediocre prediction.  Besides, additional construction, costs, maintenance 

and sources for uncertainty are incurred by using the measuring grid.  It is not a practical tool in real 

applications. 

Variables in the experiments thus are reinvestigated to identify the algorithm that might be useful 

to predict the offset for the calibration of the MSAT sensor-based measurement. 
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Figure 28: eH vs OADst in different Hstage: (a) IP units and (b) SI units. 
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As shown in Figure 28, the error eH is a strong function of heating stages (Hstage) and OADst.  A 

liner model can be fitted to represent the relationship between eH, Hstage and OADst in RTUs.  As shown 

in Equation (56), the model can be used to estimate the calibration error (ecal) of the MSAT sensor under 

certain Hstage and OADst.  Verification through more lab tests is explored in later sections. 

      OADstHstagegOADstfOADstdHstagecHstagebae 22
cal                        (56) 

Once such an offset ecal expression is obtained for a given type of RTU, it can be utilized to 

correct the MSAT sensor-based measurement for the true value in RTUs.  The equation for the calibrated 

MSAT sensor (SATmfr,cal) is given below: 

                                                 calmeas,mfrcal,mfr eSATSAT                                         (57)  

For this 7.5 ton rooftop unit with 130,000 Btu/hr (38.1 kW) gas heating capacity, the coefficients 

for the linear model are obtained with the experimental data.  The results are listed in Table 10, with R-

square 0.98. 

Table 10: Linear model coefficients for the example RTU 

IP units 
Coefficient

s 

a b c d f g 

Value 1.0900 0.6905 2.4200 0.5484 0.1166 -8.5000 

SI units 
Coefficient

s 
a b c d f g 

Value 0.6056 0.3836 1.3444 0.3047 0.0648 -4.7222 

 

Equations (56) and (57) jointly constitute the model of the virtual calibration that can be directly 

transplanted to different RTUs. 

3.4.1.4 Uncertainty analysis 

The virtual calibration algorithm of an MSAT sensor obtains SATmfr,cal as the prediction of SAT 

true value.  In this section, uncertainty sensitivity of SATmfr,cal to relative 
HQ


,

measV


,MAT and ΔTfan is 

raised.  The root sum square method of uncertainty calculation is applied to the variables.  The random 

uncertainty is expressed in units °F (°C) as Equation (58): 
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Where HQ


 , measV


 , MAT  and 
fanT are sensor uncertainties. 

Table 11 summarizes the uncertainties of independent variables as inputs to Equation (55), as 

well as the calculated uncertainties of SATmfr,cal as outputs.  As can be seen, the absolute uncertainty of 

virtual calibrated SAT is lower than 1.2 °F (0.7 °C).  It is in the range of acceptable error for temperature 

uncertainties in the HVAC industry.  

Table 11: Uncertainty analysis of SATmfr,cal 

Independent variables Inputs Uncertainty 

Gas heating capacity, HQ


,Btu/hr (kW)  
Gas heating stage 1: 84,500 (24.8) 

Gas heating stage 2: 130,000 (38.1) 
±2% 

Measured supply air flow rate,  measV


,cfm (m3/s) Default data in Table 1 ±1% 

Mixed air temperature, MAT, °F (°C) Default data in Table 1 ±1.0°F (0.6 °C) 

Supply fan temperature rise, ∆Tfan, °F (°C) 1.7°F (0.9 °C) ±0.2°F (0.1 °C) 

Dependent variable Calibrated manufacturer-installed SAT sensor, SATmfr,cal ,°F (°C)
 

Scenario ID H-1 H-2 H-3 H-4 H-5 H-6 H-7 H-8 

Uncertainty  (°F) 1.2(0.7) 1.1(0.6) 1.2(0.7) 1.2(0.7) 1.1(0.6) 1.1(0.6) 1.1(0.6) 1.1(0.6) 

Scenario ID H-9 H-10 H-11 H-12 H-13 H-14 H-15 H-16 

Uncertainty (°F) 1.1(0.6) 1.1(0.6) 1.1(0.6) 1.1(0.6) 1.1(0.6) 1.1(0.6) 1.1(0.6) 1.1(0.6) 

 

The accuracy of virtual calibrated MSAT (SATmfr,cal)  in Equation (56) and (57) is further 

evaluated by using energy balance under both cooling (forward) and heating (backward) mode as  

elaborated in Appendix B.  It demonstrates SATmfr,cal can be trusted as the true value of SAT in RTUs. 

The virtual calibration method for measuring and processing MSAT measurement is adopted to develop a 

virtual SCFM meter in this study. 

3.4.2 Measuring and processing MAT  

Accurate direct MAT measurements are notoriously difficult to obtain in RTUs due to space 

constraints and the use of small chambers for mixing outdoor and return air (ANSI/ASME Standard PTC 

19.3, 1974). As presented previously, Wichman and Braun (2009) proposed and demonstrated an 

economical scheme for adjusting a single-point measurement of MAT (a smart MAT sensor) in RTUs 

that is based on in-situ measurements and self calibration.  The approach is achieved by correlating the 

bias error in terms of OADst and temperature difference between outdoor and return-air. Extensive lab 
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testing demonstrates that the smart mixed air temperature sensor performs very well and the overall root-

mean-squared error is 0.57ºF (0.3ºC). The smart MAT sensor proposed overcomes a typical technical 

barrier of using costly measurement grids or simulation software.   

However, a physical MAT sensor is not typically installed in light commercial RTUs due to its 

bad performance.  So this smart MAT sensor cannot be implemented without adding a new MAT sensor. 

To further simplify this technique, Yang and Li (2011) proposed an alternative method which eliminates 

the need of a physical MAT sensor and instead constructs a virtual MAT sensor to estimate MAT using 

OAT, RAT and a correlated virtual outdoor air ratio sensor β as follows, 

RAT)1(OATMAT                                                  (59) 

Both laboratory and field testing demonstrate an acceptable uncertainty of ±1.0 ºF (0.6 ºC). Since 

there is no pre-installed physical MAT sensor available in our study, we adopted this method.  

With accurate parameters accomplished, a graphical flowchart is explored accordingly to sum up 

the implementation procedures of a virtual SCFM meter in RTUs. 

3.4.3 Implementation flowchart of the virtual SCFM meter 

The virtual SCFM meter in RTUs can be implemented through the following procedures in 

Figure 29: 

Step 1: Check the steady-status; 

Step 2: Check the heating and cooling status; 

Step 3: Check the availability of direct MSAT, OAT and RAT measurements; 

Step 4: Virtually calibrate MSAT measurement; compute virtual MAT values; 

Step 5: Run the virtual SCFM meter in Equation (50). 
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Figure 29: An implementation flowchart of a virtual SCFM meter in RTUs 
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Chapter 4 FUTURE RESEARCH NEEDS AND 

CONCLUTION  

4.1 Future needs for virtual sensing technology and its application in 

building systems  

4.1.1 Future needs for virtual sensing technology in building systems  

There is significant research and development that is needed before virtual sensors 

become commonplace within buildings.  In addition to the need for specific virtual sensor 

developments, there is a need for standard methods to evaluate virtual sensor performance and 

approaches for information management of networks of virtual sensors that can share sensor 

inputs and outputs.   

According to Underwood (1997), the performance of physical sensors is evaluated in 

terms of range, repeatability, sensitivity and accuracy. These same performance parameters are 

important for virtual sensors.  However, the performance of a single virtual sensor can be 

dependent on the accuracy of multiple physical sensor inputs and a model that uses those inputs 

to predict the virtual sensor output.  Standard approaches for calibrating and evaluating the 

performance of virtual sensors over a wide range of operating conditions do not exist but are 

needed.  Furthermore, the model used within a virtual sensor can be based on a physical process 

that changes over time due to the development of faults.  As a result, virtual sensor performance 

evaluations need to consider the robustness of sensor outputs with respect to the development of 

physical faults.   

Another important issue is information management for networks of virtual sensors that 

are massively deployed within a building system.   This problem can be described as 

systemization of virtual sensors (SoVS), which has been an active area of research in other fields 
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for more than a decade (Hardy and Maroof 1999; Gu et al. 2004; Chin et. al, 2005; Bose et al. 

2007).   Figure 30 presents a proposed hierarchy for SoVS that could be applied to virtual sensors 

in buildings.  Two classes of virtual sensor are proposed: basic and derived virtual sensors.  Basic 

virtual sensors are created by using information from a group of physical sensors, empirical 

coefficients, and user specifications. They can be viewed as extensions of physical sensors that 

are used as low-cost replacements or backups for physical sensors or to estimate new quantities 

that cannot be physically measured.  Conversely, a derived virtual sensor is a sensor model built 

in a combination with physical, basic and/or other derived virtual sensor measurements. They 

could be used to provide higher level system information for performance monitoring, fault 

identification and advanced control.   

Basic virtual

sensors layer

Fundamental sensing and

communication hardware

and device drivers, etc

Derived virtual

sensors layer

Physical sensors system (layer)

Backup

/replacement;

Observing

A hierarchy

of

SoVS

Knowledge and

other available

information base,

 such as

 user specifications

and

empirical coefficients

  

Figure 30: A hierarchy scheme of SoVS 

4.1.2 Future steps for development of an improved virtual SCFM meter in RTUs 

Based on the above study of development and deployment an FP based virtual SCFM 

meter in RTUs, we find that it needs further research about its model implementation and fault 

diagnostics. 

The FP based virtual SCFM meter relies heavily on indirect measurements of a virtually 

calibrated supply air temperature (SATmfr,cal) sensor (Yu. et al. 2011a) and a virtual mixed air 

temperature (MATvir) sensor (Yang and Li 2011). Owing to the drifts and other changes of data 
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during routine operations and during system renovation (e.g., serious damages of physical 

sensors), there is often no objective measurement to reassess the virtual or virtually calibrated 

sensors. Moreover, multiple parameters of the virtual meter (e.g., OAT, RAT, SAT and β) 

periodically require traditional calibration or virtual calibration (Yang et al. 2011) before they can 

be used since the accuracy and reliability of the fragile physical sensors often cannot be 

guaranteed (e.g., exposed to hostile environment for a long time).  

In the meantime, since the FP based virtual SCFM meter is proposed by utilizing an 

energy balance in combination with accurate SATmfr,cal and MATvir measurements across heating 

coils, it cannot be used to develop a virtual heating capacity meter inversely for further automated 

FDD applications.  

Therefore, further simplification of implementation and maintenance and enhancement of 

fault diagnosing capability for the virtual SCFM meter in RTUs is necessary.  The attempt of 

using grey-box or black-box based modeling method could be one of solutions for the future 

development of an improved virtual SCFM meter in RTUs. 

4.1.3 Future steps for development of an improved virtually calibrated SAT sensor 

in RTUs 

The existing virtual calibration model for a SAT sensor proposed by Yu et al (2011) has 

several deficiencies practically in the following aspects: 

 Low accuracy under a wide range of operating conditions  

Due to the limitations of experimental configurations from Yu et al. (2011), the 

correlated model of the virtual calibration method exposes greater errors (e.g., relative error is 

±4.0 ˚F [2.2˚C]) under a wide range of operating conditions (e.g., OAT is lower than 

35˚F[1.67˚C] and the SCFM degradation is higher than 20%) . 

 Poor performance in fault diagnostics   



 

93 

 

The low credibility of virtually calibrated MSAT measurements directly causes relatively 

poor performance in fault diagnostics. A classic example is the FP based virtual SCFM meter, 

which could raise a higher uncertainty. 

 Limited fault-tolerance in the presence of faults.   

The current virtual calibration model for an MSAT sensor functions well only under 

conditions in which the RTU performance is not significantly degraded [e.g., supply airflow rate 

should not be lower than 80% of nominal SCFM level].   

Therefore, to overcome the inadequacies of the existing virtual calibration method for an 

MSAT sensor in RTUs, further research is needed to develop an improved calibration model with 

well-designed laboratory experiments under a wider span of operation conditions and in the 

presence of faults (e.g., substantially enhanced SCFM degradation of 50%). 

4.2 Conclusion  

Virtual sensing has the potential for providing high value information with low cost 

measurements and models that has been successfully applied in other fields.  The benefits for 

buildings could be even greater than those for other applications because of the cost sensitivity of 

the industry and the current lack of real-time information on building performance.  Virtual 

sensors could be embedded in practically every device within a building, providing a wealth of 

component performance information that when combined would provide subsystem and overall 

system level performance.  In addition to smart mechanical and electrical devices (pumps, fans, 

compressors, lights, etc.), structural and passive devices such as windows, skylights, walls, etc. 

could have embedded intelligence for providing virtual sensor outputs for energy flows, 

daylighting, etc.  The widespread development and application of virtual sensors within buildings 

could play a part in revolutionizing the industry and enabling the vision of intelligent and high 

performance buildings that includes real-time performance monitoring, automated diagnostics, 

and optimized controls.   
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This study has reviewed developments and approaches within other fields that could be 

helpful to product developers and researchers for building applications.  Some recent examples of 

virtual sensors developed for buildings were presented, but for the most part the landscape for 

future developments is wide open.  The virtual sensors developed for buildings are based on very 

simple steady-state models.  More robust and accurate virtual sensors are undoubtedly possible 

using dynamic models and techniques that have been applied in other fields.  Ultimately, 

manufacturers’ of building devices and systems must embrace the concept of embedding virtual 

sensors within their products before significant progress towards intelligent buildings will be 

made.   

As for development of a virtual SCFM meter for RTUs, the importance and necessity of 

monitoring SCFM are obvious for control effectiveness, energy conservation and IAQ in building 

systems. Using direct SCFM meters in RTUs has long been retarded due to the relatively high 

price and practical problems.  An innovative virtual SCFM meter in RTUs only using 

noninvasive temperature measurements is then proposed in this study.   

Modeling and evaluations of both cooling- and heating-based approaches are studied 

before selecting the algorithm.  According to the guiding principles for developing a virtual 

SCFM meter as the authors suggested, it is found that heating-based SCFM meter possesses the 

following features: (1) using a simple while reliable mechanism; (2) characteristic of small 

uncertainty and robust against faults; (3) easy-to-obtain parameters or measurements.  The 

otherwise hard-to-measure SAT and MAT are solved by using the existing research results. 

In conclusion, the innovative methodology demonstrates that the virtual SCFM meter in 

RTUs  

 Is robust enough against various operation conditions; 

 Has a good accuracy rate (uncertainty is ± 6.9%); 

 Is relatively easy to implement and economical for use; 
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 Is generic for all RTUs with gas heating. 

As for applications, the virtual SCFM meter can facilitate maintenance and real-time 

automated FDD in RTUs by:  

1. Serving as part of permanently installed control or monitoring system to indicate 

the real time SCFM and automatically detect and diagnose improper readings  

2. Detecting RTU air side faults such as  dirty indoor filters and slipping supply fan 

belt, which lead to decreased SCFM  in RTUs 

Besides, regarding the SAT parameter used in the virtual SCFM meter, it is found that the 

single MSAT sensor-based direct measurement is conventionally used in RTUs to obtain SAT.  

But the accuracy and reliability is greatly compromised in heating mode due to the severe 

temperature stratification and high thermal radiation in RTUs.  The single onboard MSAT sensor- 

and measuring grid-based measurements are evaluated through a set of tests in a lab.  The 

experiments are designed to cover representative operations in both cooling and heating mode.  It 

is found that, although direct measurements have reasonably good accuracy in cooling mode, 

there are unacceptable erratic errors in heating mode and a regular calibration can hardly 

overcome the defect. 

An easy-to-use virtual calibration methodology of an MSAT sensor in RTUs is then 

proposed.  A general linear model relying on available operation information (OADst, Hstage) 

and direct temperature measurements (SATmfr,meas) is derived to acquire the various offsets.  

Further experimental evaluation and uncertainty analysis are conducted to prove the performance 

of this innovative method.  The study indicates that the virtual calibration of an MSAT sensor in 

RTUs is robust against multi-variable operating conditions, is easy to implement and economical 

for use, and is generic in RTUs with the same construction of gas furnaces. Knowledge of 

accurate SAT values in RTUs would also benefit to real-time automated control, FDD and other 

advance applications.  For instance, 
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 It could improve the energy efficiency and obtain better reliability of  the SAT 

based sequencing control  

 It could serve as part of a permanently installed control or monitoring system to 

ensure the accuracy in SAT measurement. 

 It could help find the heating stage failure fault in RTUs by evaluating the 

differential temperature across the gas furnaces. 

 It also could be utilized to develop a virtual supply airflow rate meter which is 

vital for improving energy management, sustaining indoor air quality, and facilitating real-time 

automated control and FDD in RTU  
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Appendix A 

Calculation procedure of virtual cooling capacity sensor and its calculation case 

(Yang and Li 2010) 

1. Calculate SHR values for the 192 sets of manufacturer’ rating data, i.e., CsC QQSHR


 /,  

2. Determine ),,( OATVMATfQ CwbC



  function for wet-coil condition from manual data. 

a. First, filter out the dry-coil condition data (i.e., SHR = 1) from the manufacturer’s 

rating data, and then take the average CQ


 for the remaining data with different MAT values but 

with the same ),,( OATVMAT Cwb



. 
In fact, 

CQ


at different MAT only has a slight difference. 

b. Second, use the above data as regression data to obtain the two polynomial-order 

regression equation (including the cross-terms), i.e., 

CQ


= –2.07941376E+02 + 2.96627293E + 00 · CV


– 5.09934779E–03 · 
2

CV


– 

2.80837085E+00 · OAT – 1.20456417E–02 · OAT
2
 + 1.13374693E+01 · MATwb– 

8.90324909E–02 · MATwb
2
 + 3.31590430E-03 · CV



· OAT – 3.25207538E–02· CV


· MATwb + 

5.95485478E–02 · OAT · MATwb. 

3. Determine ),,,( OATVMATMATfSHR Cwb




 
function for wet-coil condition from manual 

data. 

a. First, using all of the manufacturer’s rating data (including the dry- and wet-coil 

condition data) as regression base data to obtain the two polynomial-order regression equation 

(including the cross-terms), i.e.,  
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),,,(00 OATVMATMATfSHR Cwb



 , Calculated 

)1],,,,[min( 00 OATVMATMATfSHR Cwb




 
 

SHR0 = 2.06138630E+00 + 4.86175823E–03 · CV


– 2.31885687E–05 · 
2

CV


– 

6.03107125E–03 · OAT – 3.47628104E–06 · OAT
2
 – 2.12623314E–02 · MATdb – 6.23810658E–

04· MATdb
2
 + 1.42567593E-03· MATwb – 1.70365679E–03 · MATwb

2
 + 5.08243110E–06 · CV



· 

OAT– 7.18371002E–05 · CV


· MATdb + 8.47359069E–05 · CV


· MATwb + 2.65979398E–05 · 

OAT· MATdb + 8.21949015E–05 · OAT · MATwb + 2.16712122E–03 · MATdb · MATwb 

b. Second, calculate the relative error RelSHR0= (real SHR – Calculated SHR0) / real SHR 

for all data. If the absolute ABS (RelSHR0 ) < 0.04 for all data, then SHR0 is the needed SHR, i.e., 

SHR = ),,,(00 OATVMATMATfSHR Cwb




. 
However, the case has the maximum RelSHR0 at 

11%, so the following step (one more trial run) is needed. 

c. Otherwise, select both the wet-coil data and the dry-coil data with their SHR0 (i.e., 

filter out the dry-coil condition data with their SHR0 ≥ 1) as the regression base data to obtain the 

two polynomial-order regression equation (including the cross-terms), i.e., 

),,,(11 OATVMATMATfSHR Cwb



 . Then calculate the relative error RelSHR1 = (real SHR –

Calculated SHR1) / real SHR for all data. If the absolute ABS(RelSHR1 ) < 0.04 for all data, then 

SHR1 is the needed SHR. If not, then repeat step 3 to obtain SHRi (i > 1) until ABS(RelSHR1 ) < 

0.04 where SHRi is the needed SHR. The case has the following SHR1 equation and its maximum 

RelSHR1 is 7.9%, so one more trial run is needed. 

SHR1 = 9.15278278E–01 + 9.81014645E–03 · CV


– 1.65320650E–05 · 
2

CV


– 

3.17794263E–03 · OAT + 3.91291794E–06 · OAT
2
 + 1.14217256E–02 · MATdb– 5.74152410E–

04 · MATdb
2
– 1.58296172E–02 · MATwb – 6.72975815E–04 · MATwb

2
 + 3.44307387E–05 · CV



· 
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OAT + 7.48326342E–05 · CV


· MATdb – 2.08790216E–04 · CV


· MATwb + 1.86863800E–04 · 

OAT · MATdb – 1.93730853E–04· OAT · MATwb + 1.21717851E–03 · MATdb · MATwb 

d. Filter out the dry-coil data with their SHR1 ≥ 1 and use the remaining data as the 

regression base data to obtain the two polynomial-order regression equation (including the cross-

terms), i.e., ),,,(22 OATVMATMATfSHR Cwb



 and then its corresponding RelSHR2. The 

maximum RelSHR2 is 4%, so SHR2 is the needed SHR. 

SHR2 = 8.13491256E–01 + 1.12900295E–02 · CV


– 1.05332286E–05 · 
2

CV


– 

5.14903396E–03 · OAT + 1.62786936E–05 · OAT
2
 + 5.17463820E–02 · MATdb – 

3.97020976E–04 · MATdb
2
 – 6.07627777E–02 · MATwb + 4.18798335E–04 · MATwb

2
 + 

3.91372605E–05 · CV


· OAT + 1.20515835E–04 · CV


· MATdb – 2.98347811E–04 · CV


· 

MATwb + 2.70113976E–04 · OAT · MATdb – 2.97676815E–04· OAT · MATwb + 8.76128835E–

05 · MATdb · MATwb 

e. If there is no ABS(RelSHRi) < 0.04 after several runs, we can choose the SHRi whose 

max value or average value of ABS(RelSHRi ) is minimal among these trial runs. Fortunately, we 

generally can obtain the SHR function before the third trial run for our case calculations, that is, 

SHR2 or SHR1 is the right solution.  

4. Determine MAT
0
wb. 

a. For a fixed ( OATVMAT C ,,


), the equation ),,,( OATVMATMATfSHR Cwb



 is 

actually a quadratic equation of MATwb, i.e.,
 

cMATbMATaSHR wbwb 
2

 , where (a, b, 

c) are constants at a fixed OATVMAT C ,,


. Given SHR = 1, the MATwb
0
 can be easily solved 

from the following equation: 

01
2

 cMATbMATa wbwb  
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i.e.,
a

cabb
MATwb






2

)1(42
0

 

All coefficients of the case follow: 

a = 4.18798335E–04 

b = –6.07627777E–02 – 2.98347811E–04 · CV


– 2.97676815E–04 · OAT + 

8.76128835E–05 · MATdb 

c = 8.13491256E–01 + 1.12900295E–02 · CV


– 1.05332286E–05 · 
2

CV


 – 

5.14903396E–03· OAT + 1.62786936E–05 · OAT
2
 + 5.17463820E–02 · MATdb – 3.97020976E–

04 · MATdb
2
+ 3.91372605E–05 · CV



· OAT + 1.20515835E–04· CV


· MATdb + 2.70113976E–

04 · OAT · MATdb 

5. Having obtained
CQ



 = f(MATwb, CV


, OAT), SHR = f(MATwb, MATdb, OAT, CV


), and 

MATwb
0
 , we can quickly determine the coil’s condition and its cooling capacity for any operating 

driving inputs (MATdb, MATwb, CV


, OAT) using Equation (18). 

Appendix B 

Experimental evaluation of the virtual calibration method for a SAT sensor in RTUs  

Measurements description 

There are another more than seven indispensable air temperature sensors to accomplish 

the study are listed below:  

Measurements of additional six air temperature sensors Figure 31 depicts the 

installation of six air temperature sensors at the supply air duct outlet to the indoor chamber.  

Measurements under both cooling (SATO,C) and heating (SATO,H) mode of these six air 

temperature sensors are collected.  
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Measurement of lab-installed temperature sensor at the supply air duct outlet The 

sensor is referred to as lab-installed temperature sensor at the supply air duct outlet (SATO,lab).  

The function is to verify the additional six temperature sensors at the supply air duct outlet in 

Figure 31. 

 

Figure 31: Sensors layout of additional six air temperature sensors  

Evaluation of SATO,C and SATO,H 

Observed from Figure 32, in cooling mode, the average error between SATO,lab and the 

mean of six SATO,C is less than 1ºF (0.6°C).  In the meantime, in heating mode, the error between 

SATO,lab and the mean of six SATO,C is lower 3 ºF (1.7°C).  As expected, at the cross-section close 

to the outlet, air is well mixed and temperature distribution is fairly balanced.  So in this study the 

mean of six SATO,C and the mean of six SATO,H are used in the verification process. 
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Figure 32: Evaluation of additional six temperature sensors under both cooling and heating 

mode: (a) IP units and (b) SI units. 

Experimental evaluation of virtually calibrated SAT measurement 

Evaluation is presented here to validate the accuracy of virtually calibrated MSAT 

measurement.  There is no direct way but an indirect method to evaluate the accuracy of virtual 
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calibration method in RTUs.  This goal is achieved by carefully designing an experiment in a 

laboratory environment.   

 Evaluation layout 

Figure 33 depicts the experiment evaluation procedures of the virtual calibration 

methodology for an MSAT sensor presented in this study.  The idea of using energy balance 

under both cooling (forward) and heating (backward) mode is innovatively conducted.   

The verification is implemented by comparing SATmfr,cal in Equation (57) to 

experimentally calculated true value of SAT (SATexp,eva).  SATexp,eva is obtained based on an 

energy balance of the heat loss through the duct work.  It is a counterpart of SATmfr,cal but used for 

evaluation purposes only.  To calculate SATexp,eva, the knowns and assumptions are listed as 

follows: 

 The mean of eight SATG,C  is regarded as the true value of SAT in cooling mode. 

 Based on the supportive analysis previously, measurements of six air temperature sensors at 

the supply air duct outlet are reliable under both heating (SATO,H) and cooling mode 

(SATO,C).  The average of six SATO,H and  the average of six SATO,C are used in the 

calculation.   

 UA of the supply air duct work from the measuring grid to the outlet is assumed to be 

constant under both cooling and heating mode.   

 Supply air flow rate ( measV


) and additional temperature measurements are taken in the 

location where the air is well mixed. 
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Figure 33: The experiment evaluation procedures of the virtual calibration methodology 

 Evaluation implementation 

Three main steps of evaluation in sequence are included as follows:  

Step (1): Correcting UA in cooling mode 

Heat loss in cooling mode (Qloss,C) through the duct work leads to the air temperature 

change from the measuring grid cross-section to the outlet in the duct.  Heat transfer surface (A) 

and heat transfer coefficient (U) of the duct work are constants; therefore, UA could be deduced 

with measV


, OAT, SATG,C  and SATO,C. 

Step (2): Correlating SATexp,eva 

Similarly, SATexp,eva in heating mode should be acquired while UA, measV


, SATO,H and 

OAT are known.  

Step (3): Verification of  SATmfr,cal 

Finally, SATmfr,cal in heating mode is evaluated after SATexp,eva is derived from 

experiments.   

Step (1): Correcting UA in cooling mode 

The goal here is to estimate the constant UA in the lab environment with the data points 

collected in the experiment series in cooling mode.  To investigate the UA, it is assumed that (1) 
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the overall heat transfer coefficient is constant, (2) the specific heat of air is constant, and (3) the 

supply air flow rate is constant because a fixed-fan speed is incorporated in the RTU. 

In cooling mode, with
measV


, OAT, SATG,C  and SATO,C known,  Qloss,C can be calculated: 

                                         v

)SATSAT(CV
Q

C,GC,Opmeas

C,loss






                                (60) 

Meanwhile, Qloss,C also can be expressed as: 

                                        
)

2

SATSAT
OAT(UAQ

C,GC,O
C,loss


                                      (61) 

Combining the two expressions, we get: 

                           
)

2

SATSAT
OAT(UA

v

)SATSAT(CV
C,GC,OC,GC,Opmeas 






            (62)                                      

Put variable ∆TC as follows: 

2

SATSAT
OATT

C,GC,O
C


  

So, Equation (61) can be further simplified to the equation below: 

                                                         CC,loss TUAQ                                              (63)               

Eight sets of measV


, OAT, SATG,C and SATO,C , as well as the intermediate value Qloss,C 

and ∆TC, are listed in Table 12. 

Table 12: Correcting UA in cooling mode 

Scenario ID measV


, 

cfm (m
3
/s) 

SATO,C,°F(°C) SATG,C,°F(°C) OAT,°F(°C) 
Qloss,C, 

Btu/hr(kW) 
∆TC,°F(°C) 

C-1 1931(0.9) 49.4(9.7) 48.0(8.9) 81.8(27.7) 2982(0.87) 33.1(18.4) 

C-2 2328(1.1) 41.1(5.1) 38.6(3.7) 87.8(31.0) 6311(1.85) 47.9(26.6) 

C-3 2084(1.0) 52.3(11.3) 51.1(10.6) 82.3(27.9) 2566(0.75) 30.6(17.0) 

C-4 2595(1.2) 51.9(11.1) 50.3(10.2) 87.0(30.6) 4596(1.35) 35.9(19.9) 

C-5 1874(0.9) 63.0(17.2) 62.5(16.9) 79.6(26.4) 1154(0.34) 16.9(9.4) 

C-6 2251(1.1) 58.5(14.7) 57.0(13.9) 81.8(27.7) 3792(1.11) 24.1(13.4) 

C-7 2026(1.0) 66.5(19.2) 66.0(18.9) 81.9(27.7) 1094(0.32) 15.7(8.7) 

C-8 2526(1.2) 68.2(20.1) 67.4(19.7) 86.4(30.2) 2373(0.70) 18.7(10.3) 
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Figure 34 shows that Qloss,C and ∆TC have a positive linear correlation.  Data points 

scatter closely beside a line.  The slope of the linear-regressed line, which is 115.47, can be used 

as the value of UA for the duct work.  In other words, UA is found as115.47 Btu/hr·°F (0.06 

kW/K).  As physical characteristics of the duct work, this value remains unchanged when gas 

heating is operating. 

Qloss,C= 115.47×∆TC

R² = 0.80
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Figure 34: UA linear regression: (a) IP units and (b) SI units. 

Step (2): Correlating SATexp,eva  

As pointed out previously, with UA, measV


, SATO,H and OAT known, SATexp,eva could be 

obtained by jointly solving Equation (64) and (65),  
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                                  v

)SATSAT(CV
Q

H,Oevaexp,pmeas

H,loss






                                    (64) 

                                     
)

2

SATSAT
OAT(UAQ

H,Oevaexp,
H,loss


                                      (65) 

Then results of SATexp,eva are summarized in Table 13.  From this point on, SATexp,eva can be 

used to evaluate the accuracy of SATmfr,cal. 

Step (3): Evaluation of SATmfr,cal 

To estimate the accuracy of SATmfr,cal, the error eeva between SATmfr,cal and SATexp,eva given as 

Equation (66) is to be analyzed: 

                                                evaexp,cal,mfreva SATSATe                                                 (66) 

The results are gathered in Table 13.  The error eeva is within the range of ±1.1 °F (0.6 °C).  

Thus SATmfr,cal is demonstrated credible and can be trusted as the true value of SAT in RTUs. 

Table 13: Results of evaluation of SATmfr,cal 

Scenario ID SATexp,eva , °F (°C) measV


,cfm (m
3
/s) SATmfr,cal , °F (°C) eeva , °F (°C) 

H-1 108.6(42.6) 1848(0.87) 108.0(42.2) -0.6(-0.3) 

H-2 108.8(42.7) 2045(0.97) 108.3(42.4) -0.5(-0.3) 

H-3 110.1(43.4) 1857(0.88) 108.9(42.7) -1.1(-0.6) 

H-4 112.3(44.6) 1829(0.86) 111.8(44.3) -0.5(-0.3) 

H-5 92.4(33.6) 2076(0.98) 93.0(33.9) 0.6(0.3) 

H-6 95.9(35.5) 2269(1.07) 96.7(35.9) 0.7(0.4) 

H-7 98.4(37.3) 2037(0.96) 99.2(37.3) 0.7(0.4) 

H-8 101.9(39.3) 2040(0.96) 102.7(39.3) 0.8(0.4) 

H-9 95.2(35.1) 1853(0.87) 94.7(34.8) -0.5(-0.3) 

H-10 93.9(34.4) 2051(0.97) 93.2(34.0) -0.6(-0.3) 

H-11 96.7(35.9) 1849(0.87) 96.4(35.8) -0.3(-0.2) 

H-12 98.8(37.1) 1831(0.86) 99.6(37.6) 0.8(0.4) 

H-13 80.8(27.1) 2081(0.98) 80.4(26.9) -0.4(-0.2) 

H-14 81.1(27.3) 2272(1.07) 82.1(27.8) 1.0(0.6) 

H-15 85.5(29.7) 2059(0.97) 85.5(29.7) 0.0(0.0) 

H-16 88.9(31.6) 2046(0.97) 88.7(31.5) -0.2(-0.1) 
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