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1. INTRODUCTION 

The purpose of this book is to present a mathematical theory of the class 
of machines known as Perceptrons. The theory is carefully formulated and 
focuses on the theoretical capabilities and limitations of these machines. 

It is a remarkable book. Not only do the authors formulate a new and 
fundamental conceptual framework, but they also fill in the details using 
strikingly ingenious mathematical techniques. They ask some novel questions 
and find some difficult answers. The most striking of these will be presented 
in Section 2. 

The authors address the book to three classes of readers: 

(1) Computer scientists, specializing in pattern recognition, learning 
machines, and threshold logic; 

(2) Abstract mathematicians interested in the d6but of Computational 
Geometry; 

(3) Those interested in a general theory of computation leading to 
decisions based on the weight of partial evidence. The authors hope that this 
class includes psychologists and biologists. 

In Section 6 I shall give my estimate of the value of the book to each of 
these groups. 

The conversational style and the childlike freehand sketches might mislead 
the casual reader into believing that this book makes light reading. For 
example, the review in The American Mathematical Monthly (1969) states 
that the prospective reader "requires little mathematics beyond the high 
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school level." This, as we shall see, is somewhat sanguine. Another extreme 
opinion is due to Allen Newell (1969) who begins his review in Science with 
the statement "This  is a great book.", and then proceeds to present in detail 
his reasons for this extraordinary judgement. My evaluation is somewhat 
more moderate. I t  is presented in Sections 5 and 6. 

2. HIGHLIGHTS OF THE NEW THEORY 

In  the interest of brevity we will not provide any of the proofs or introduce 
those concepts whose r61e is primarily technical. The  reader who tries to 
provide his own proofs will, I believe, soon come to appreciate the mathe- 
matical virtuosity of the authors. We start with some definitions. 

Let the plane rectangular region {0 ~ x ~ M, 0 ~ y ~ N} be divided 
into squares s~j = { i ~ < x ~ i q - 1 ,  j ~ < y  ~ j - ~ l ;  i = 0,1,..., M - - 1 ,  
j = 0, 1,..., N -  1}. The  set of all these squares is called 1 the retina, R. 
Thus  R is a finite set of squares {sit }. A subset X of R is called an image 
(or pattern, or figure) in R. The  number of squares (sometimes called points) 
in X is denoted by ] X[ .  

A predicate P is a function of images, taking on the value " t rue"  or "false." 
That  is, P(X) is a statement about the subset X which is either true or false. 
The  authors introduce the helpful "partial bracket" notation r 7, where for 
any statement P, rp7 = 1 if P is true, rp7 = 0 if P is false. We now identify 
"1"  with "true," and "0"  with "false." Thus  if P is a predicate so is rp7. 
This "partial bracket" is often convenient for typographically displaying 
predicates. 

The  support of a predicate P is the intersection of all subsets S of R which 
satisfy the condition: P(X) -~ P(X n S) for all subsets X of R. In  intuitive 
terms, the support of P is the set of squares that P "depends on." The  
support of P is denoted by S(P). Thus I S(P)I is the number of squares in the 
support of P. 

For a given family of predicates *I, = {4}, we say that a predicate ~b is a 
linear threshold function with respect to • if there is a number/9 and, for each 

in ~ ,  a number a(4), such that ~b has the representation 

¢(x) = E 4(x)  > 

1 For simplicity and clarity of exposition in this review, I have slightly altered 
Minsky and Papert's definition, which initially takes R to be an arbitrary finite set of 
points. The special setting we use here will be more suitable for our exposition and 
involves no real loss in generality. 
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for all subsets X of R. The  class of all predicates which are linear threshold 
functions with respect to • is denoted by L(O). A perceptron is defined, by 
the authors, as a device capable of computing all the predicates in L(cI,) for 
some family cI,. In  Sections 5 and 6 we discuss the relation of perceptrons 
so defined to the Perceptrons introduced by F. Rosenblatt. 

The  order of a predicate ~b is the least number k for which there exists a set 
of predicates cl, = {~} such that ~b ~L(cI,) and ] S(~)[ ~ h for all q~ in 4 .  
(Note that the number of predicates in • does not enter into the definition 
of order. This will be discussed in Section 6.) 

We can now state two theorems. 

THEOREM. The "parity predicate" r I X I is odd ~ has order I R [. 

THEOREM. Let A1 ,  A 2 ,..., Am be disjoint subsets of R,  each containing 
4m 2 points. Then the order of the "one in a box predicate" rI- L [ X n Ai]  > 0 7 
is at least m. 

We need a few more definitions. A transformation g on R is a one-to-one 
mapping of R onto itself. A transformation g induces, in a natural way, the 
set function g(X)  = Os~xg(s). With the product of transformations defined 
in the usual way (gh(s) = g(h(s))), a set of transformations closed under 
product and inverse is a group of transformations. Translations are handled 
by the agreement that any part of a figure that is carried over the right 
boundary of the retina is brought back in at the corresponding place at the 
left, and vice versa. Similarly, parts carried over the top re-enter at the bottom 
and vice versa. That  is, after a figure in R has been translated, the X and Y 
coordinates of its points are reduced to their residues modulo M and N, 
respectively. Thus,  the retina is wrapped onto a torus, where the translations 
become a finite transformation group. I f  the figures and the translations are 
"small" relative to the retina, it is expected that the "local structure" of the 
toroidal retina will be in close agreement with that of the plane retina. 

Given a group G ----= {g} of transformations, a predicate ~b is invariant 
under G if ~b(g(X)) ~ ~b(X) for every g in G and every subset X of R. 
A group G is transitive if for every pair (s, t) in R × R there is a g in G such 
that g(s) = t. 

THEOREM. The "counting predicates" r] X I < M 7 and r[ X I > M q 
(where M is some number) are of order one. These are the only first-order 
predicates invariant under a transitive group. 

Most of the predicates we shall meet, e.g., r X  is a convex set 7, r x  is a 
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connected set 7, r X  has a hole 7, etc., can be described without explicit 
reference to the size and shape of the retina R. I f  a predicate is of order ~ k ,  
regardless of the size and shape of the retina, then we say that  the predicate 
is of finite order. (To be perfectly rigorous we should say that  we have a class 
of retinas R = {R} and a class of predicates, one for each R. I f  the orders of 
all these predicates are bounded,  then the class is of finite order. Since no 

confusion is likely to arise, the simpler locution is used.) For  example, it 
follows from the theorems cited above that  the pari ty predicate and the 
one-in-a-box predicate are not of finite order. The  counting predicate is 
of finite order, in fact of order one. 

The  logical operators @, --~, ^ ,  v are defined by 

r p @ Q 7  = r p 7  
r p = Q 7  = r p 7  
r p  ^ Q7 = r p 7  

rp  v Q7 = r p 7  

(1 - rQ~) + (1 - rp~)  rQ~, 
rQ7 _]_ (1 - rpT)(1 - rQT), 
rQT, 
+ rQ~ _ rp7 rQ~. 

THEOREM. I f  41 is of order r a and 42 is of order r~ then r41 @ 427 and 
r41 =-- 4~ 7 are of order ~ r  1 + r 2 . 

However, there is also the 

"AND-OR" THEOREM. There exist predicates 41 and ~b 2 , each of order one, 
such that r41 ^ 424 and r~b 1 v 4~ 7 are not of finite order. 

DEFINITION. Two squares of R are adjacent if they have a common edge. 
(Note that corner contacts are not counted.) An image X is connected if for 
every two squares Sl,  s K in X there is a connected path in X joining them 
(i.e., a sequence of squares: s l ,  s 2 ,..., sK, where sk, sk+ 1 are adjacent and 
in X).  

TI-IEOREM. The predicate r X  is connected 7 is not of finite order. In fact  it is 
of order ~C~/]  R ]. 

DEFINITION. A component of a figure is a maximal connected subset of 
the figure. A hole of a figure is a component of the complement  of the figure; 
here however we allow corner connectionsL Note that it is assumed that  the 
figure is surrounded by an "outs ide"  that  does not count as a hole. 

2 It seems that this difficulty could be avoided by using hexagons instead of squares 
for the tessellation of the plane. Some of the theory would have to be checked to 
verify that no difficulties are thereby introduced. 
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Let the Euler number E(X) equal the number of components of X minus 
the number of holes of X. 

THEOREM. Let M be any number. Then the order of rE(X) < M 7 ~ 4; 
the order of rE(X) : M 7 ~ 8. 

The authors define a predicate as topologically invariant if it is unchanged 
when the figure is distorted without changing connectedness or the inside- 
outside relations of its parts. (See Section 4 for some remarks about this 
definition.) 

THEOREM. Except for trivial predicates, such as r x  is (non-) empty 7, the 
only topologically invariant predicates of finite order are functions of E(X). 

DEFINITION. For a given figure X and any ordered pair of squares (s, t) 
in X × X let the difference vector v(s, t) be the vector from the center of 
square s to the center of t. For each such vector v(s, t) = v let nv(X ) be the 
number of ordered pairs of squares having the difference vector v. 

THEOREM. Any translation-invariant predicate of order two is of the form 
r~v avnv(X ) > 07; hence it is a function only of the "difference-vector 
spectrum" nv(X ). 

It  follows, e.g., that any figure and the figure obtained by rotating it 180 ° 
(which have the same difference-vector spectrum) cannot be distinguished 
from each other by a translation-invariant second-order predicate. 

THEOREM. The following predicates are of order three: r x  is a solid 
rectangleT; rX is a hollow rectangleT; r x  is a solid squareT; rX is a hollow 
square 7. On the other hand, the "hollow square in context" predicate tone 
component of X is a hollow square ~ is not of finite order. 

THEOREM. Let X 1 and X~ be two figures which are not translationally 
equivalent. Then there exists a translationally-invariant predicate ~ of order 
4 3  which separates them, i.e., such that ¢(X1) = 0 < ¢(X~). 

THEOREM. Consider the "infinite linear" retina, consisting of the squares 
{ O ~ y ~ l ,  j ~ x ~ j  + l; j . . . .  , - -1 ,0 ,1 , . . .} .  Consider the class of 
finite figures {X}. The predicate r x  is symmetrical about some point 7 is of order 
44.  For any given figure Xo,  the predicate r x  is a translate of Xo 7 is of order 
<~2. 
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This theorem, concerning the "infinite linear" retina, might be compared 
with the third preceding theorem, which states that any second-order, 
translationally invariant predicate on a toroidal retina is a function only of 
the difference-vector spectrum. Thus, since the two patterns Iiiiiiiiit~ili~!i.] ti.i~iii~ 
and lii:.i!ii~ [iii!::!~[:;ii::iii] have the same difference-vector spectrum, they are not 
distinguishable by such a predicate. But according to the last sentence of 
the present theorem they can be separated by a second-order, translationally 
invariant predicate on the infinite line. 

THEOREM. Consider the "doubly infinite" linear retina consisting of the 
squares { i ~ y < ~ i + l ,  j < ~ x < ~ j + l ;  i = 0 , 1 ;  j . . . .  , - -1,0,1, . . .} .  
Let X be a finite figure composed of apart U(X) in the upper row of squares and 
a part L(X)  in the lower row. The predicate EL(X) is a translate of U(X) 7 
is of order 45.  

A somewhat similar theory, but with some differences, is obtained if one 
replaces the order limitation of a predicate by a diameter limitation. That is, 
instead of the number of points in S(6) in the definition of order, we use the 
diameter of the set S(~). The authors find that diameter-limited perceptrons 
can recognize the predicates r x  = R ~, r I X I >  M 7, rX is a triangle ~, 
r x  is a rectangle 7, r x  is a particular figure X0 7, but cannot recognize the 
predicate rM 1 < [X[  < M~ 7 (which is second-order), or the infinite-order 
predicate r x  is connected 7 ; also, that the only nontrivial topological properties 
that can be recognized by a diameter-limited perceptron are the Eulerian 
predicates rE(X) > M 7, rE(X) < M 7. 

3. SUMMARY OF THE BOOK 

The book begins with Chapter 0, Introduction. Here Minsky and Papert 
present a clear, crisp, and masterful summary of the book as a whole. In 
addition they offer, in their ebullient style, their opinions and sentiments 
on the past, present, and future of Perceptrons. 

Chapters 1-10 develop the new theory, the highlights of which we gave 
in Section 2, above. 

Chapter 11 treats learning machines and gives several proofs of the well- 
known convergence theorem for perceptrons with error correction. 
Considerably more novel is the proof of the Boundedness Theorem in the 
nonseparable case. This theorem can be stated as follows: 

Let V be a vector space with an inner product. Let F = {~} be a finite set of 
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vectors in V. Let  v 1 be an arbitrary vector in V and define recursively v,+ 1 = 

vi + Oi , where Oi is any vector in F such that Oi " v~ <~ O. Then the vectors vi 
stay bounded; in fact  there is a number M depending on the set F, but not on v 1 , 

such that [1 vi ]l ~< II vl [[ -5 M for i = 1, 2, . . . .  

This theorem was conjectured by Nils Nilsson and, independently, by 
Terry Beyer. A proof was offered by Bradley Efron (1964), but it was rather 
difficult to follow and was never published in a standard journal. The 
literature has therefore lacked a clear and rigorous proof. Minsky and Papert's 
penetrating analysis goes a long way towards providing one. (But see the 
remark in Section 4, below). 

Chapter 12 contains a general discussion of linear separation, learning, 
and heuristics. Also included are estimates of the storage capacity and 
computing time required by a variety of algorithms, such as maximum 
likelihood, isodata, template matching, and nearest neighbor. Layered 
machines, Samuel's checker player, neuronal models, hash coding, and 
incremental methods are briefly discussed. 

In the final chapter, 13, the authors expound their general views on 
perceptrons and pattern recognition. They also recount the development 
of their ideas on the subject. The book ends with Bibliographic Notes, in 
which the authors comment briefly on some of the well-known papers in 
this field. 

4. DETAILED NOTES FOR THE PROSPECTIVE CAREFUL READER OF THE BOOK 

This section of the review is directed to those who will read the book 
carefully and is intended to help them over misprints, lacunae, ellipses, 
etc. Notation: An asterisk following the number of a line denotes that number 
of lines from the bottom of the page. 

Page 26, line 14", (i.e., 14 from bottom) for that read than. 
Page 26, lines 5*, 6*, change many predicates to every predicate. 
Page 31, line 9*, add except for the mask of the empty set, which has order 

~ e r o .  

Page 32, line 3*, the inequality should read 0 < M < I R  I, for the 
result is not true if M = 0 or M = I R [. The predicate then is, in fact, 
of order one. 

Page 43, line 1, mentions the "group of all rotations about all points 
in the plane". This is not a group, since the product of two equal but opposite 
rotations about two distinct points is not a rotation about a point in the plane, 
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but a translation. Adjoining the rotations about the point at infinity (i.e., 
the translations) will complete the 'group. 

Page 58, line 3, add except, possibly, the mask of the empty set. 
Page 60, line 2, I ] R  11/3 should be ([ R 1/4) 1/3. Furthermore,  in the 

"one-in-a-box" theorem, page 59, line 1", one can replace 4m 2 by (2m - -  1) 2. 
Also, it is easy to show that the order of ~b is equal to m. 

Page 65, lines 8*, 2*, interchange the arguments in f ( ,  ). The  proof given 
applies only for N odd, but an easy proof can be made if N is even. 

Page 68, line 3*, 2*, replace P by Q and it by P. 
Page 71, line 1, change "by the" to "by a topologically invariant". 
Page 74, line 6, after path add in thefigure. 
Page 75, lines 13, 14, replace X by Y. 
Page 78, line 10, replace ~ " '  c by --= "" 
Page 78, last line, and p. 79, first line, interchange/)  with R. 
Page 80, lines 11, 12, interchange "on R" with "on R". 
Page 80, line 17, for 2n read (2n + 2). 
Page 81, line 3, replace (1/12) I R ] by (1/12) I / ] --  1. 
Page 84, lines 2, 3, it seems that one can replace 5n by 3n, and 2n by n 

(by running the first half about the left end and the second half about the 
right end). 

Page 84, line 6, replace n = 5 by n = 4. 
Let  P(X) denote the predicate rX  is connected or X contains a hole n. 

Then  the assertion on the bottom of page 85 that "P (X)  is of finite order," 
seems to be incorrect. Apparently the authors felt that the assertion followed 
from page 89, line 10, where it is shown that the predicate rE(X) = M 7 is 
of finite order. But these are not the same predicates for any value of M. 
Even though (E(X) = 1) implies (P(X) is true), the converse does not hold. 
In fact Theorem 5.9 (page 92), stating that "The  only [nontrivial HDB] 
topologically invariant predicates of finite order, are functions of the Euler 
number E(X)" contradicts the assertion. For we have E(X) = 2 if X has 
two components and no holes, or if X has three components and one hole. 
But in the first case P(X) is false, while in the second P(X) is true. Thus  
P(X) is not a function of E(X). 

It might seem more natural to define a topological transformation as 
a one-to-one mapping (like the other transformations) which preserves 
adjacency and, perhaps, the "outsideness"; and to say that a predicate ~b is 
topologically invariant if it is invariant under topological transformations. 
Then  however Theorem 5.9 (cited just above) would no longer be true, 
because, e.g., the counting predicate r I X 1 < M 7 is of order one and is 
invariant under any group of one-to-one transformations, but clearly it is 
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not a function of the Euler number. Thus the authors have a reason for 
choosing their definitions as they do, but it would seem more natural for 
topological invariance to be less restrictive than invariance under the full 
permutation group, which allows discontinuities and tearing. This suggests 
the following question, which is not treated in the book. Which (one-to-one) 
transformations of a finite toroidal grid preserve adjacency and outsideness ? 
Clearly we have the translations, reflections in horizontal or vertical lines 
or through a center, products of the preceding, and, for square grids, rotations 
through multiples of 90 °. Are there any others ? How can the whole class 
be characterized ? 

In the last nine lines of p. 98 the authors discuss the "tolerance difficulties" 
(caused by the finite mesh size) when one tries to deal with rotations other 
than multiples of 90 ° or with affine contractions. However, their definition 
of convexity "(a ~ X and b e X) implies (midpoint [a, b] E X)" (p. 103) 
ignores this difficulty. Moreover, they are using "lattice points" as the points 
in R, in which case the midpoint of two lattice points is not always another 
lattice point. One can partially get round this difficulty by using closed 
squares, as we have, and defining a set X as convex if every line segment 
joining the centers of two squares in X has its midpoint in X. Another 
definition is that there exists a convex subset of the plane which meets each 
square in X and no others; a detailed study can be found in Sklansky (1970) 
or Montanari (I 970). Minsky and Papert again discuss the tolerance difficulties 
on page 134, lines 5-19, and examine convexity further in Section 9.3. 

Page 108, line 9, replace orders by sizes of the supports. 
Page 109, line 7", replace ~b2 by U~ ~b2. 
Page 109, line 3", replace ~b2 by ~bi2. 

On page 111 the authors define a predicate in context, by 

•eontext(X) = r$(y)  for some component Y of X n. 

(I have added the second Y and deleted the word connected--HDB.) This 
definition is not completely satisfactory. For example, take a disconnected 
figure, such as the character "i".  Let the predicate ~b"i"(X) = rX is a 
translate of "i ''~. Then ¢context is always false. Similarly if ~b"~"(X) = rX is 
a translate of "w ''7 then a figure consisting of "w" with one extra square 
connected to it does not satisfy the predicate "w" . ¢context The authors do admit 
to some doubts about their definition of a "predicate in context", but these 
doubts do not inhibit them from using their definition as the basis for some 
rather strong statements on page 112 (lines 3-11) and page 113 (last 10 lines). 

On page 118, line 10", the authors take B~ = d + 1 and then make the 
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parenthetical remark "(We resisted the temptation to write B~ = (1/2) d.)". 
I found this remark disconcerting, since I computed Bj = (1/2)(d-[-1), 
for d odd, and (1/2) d for d even, so one can use Bj = (1/2)(d + 1) in any 
case. I still haven't discerned the source of the authors' temptation or their 
reason for resisting so strongly. 

Page 119, lines 15, 16, replace i b y j  and j  by k. 
Page 136, last line, replace path by pair. 
The definition on page 137, line 10, "We choose xi. to be the boundary 

point to one's right when standing on xi and facing the complement of X,"  
is ambiguous if, as in the figure (top of page 138), the figure has parts that 
are only one square thick. The dotted lines in Figure 9.1 confused me; 
they do not seem to agree with the algorithm in the text. 

Page 144, line 12, change 2 m to 2 '~-1 -t- 1, and modify subsequent estimates. 
Page 151, line 22, change 3~3 to 3~2 • 
In a book dedicated to mathematically precise exposition, it is something 

of a shock to meet the statement (page 160, lines 9*-7*): "Probably this 
means that Theorem 10.4.1 is not strictly true, but we do not think the 
exceptions are important." 

In Chapter 10, Minsky and Papert show that extremely large weights 
are required for certain predicates. It should be noted that the weights could 
be reduced if additional layers were used. 

Page 166, line 10, replace vector by direction, since any positive multiple 
of a solution vector is again a solution vector. 

Page 170, line 3, replace dialectrical by dialectical. In the caption of Figure 
11.3 replace A 1 by A~. 

The proof of the Convergence Theorem (pages 164-175) seems excessively 
labored. The briefest proof, based on one by W. C. Ridgeway, is only a few 
lines long and may be found in Block and Levin (1970). 

Page 175, lines 12-14, insert a minus sign on the right side of the displayed 
equation. 

Page 175, line 17", the phrase "after a finite number of transfers" is 
incorrect. In fact it is easy to see that for c < 1, a solution is never reached, 
since after each step, A • ¢ is still negative. The algorithm of Kameda (1967), 
which converges rapidly to a minimal length solution, deserves to be cited 
here. 

The proof of the Boundedness Theorem (pages 182-187) is, as has been 
mentioned above, a welcome addition to the theory, filling a long-standing 
need. The presentation in the text is somewhat disorganized and unclear. 
There is one serious flaw, where the authors draw the inference "... so that 
II C tl < M~-I ;" (page 187, line 17), apparently based on the inequality 
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[I B1 + C II < I1 B1 II + M ~ - I .  T h i s  h ia tus  can  b e  repa i red ,  b u t  i t  is no t  

t r ivial .  T h e  reader  will f ind  in Block a n d  L e v i n  (1970) a d e a r e r  proof ,  w h i c h  

is b a s e d  on  t h e  ideas i n t r o d u c e d  b y  M i n s k y  a n d  P a p e r t  in  th i s  sec t ion  of 

t h e  book.  

I n  t he  d i scuss ion  of  t he  Bayes p r o c e d u r e  (page 193, l ines 3 " - 1 " ,  a n d  in  

Sec t ion  12.4.2) t h e r e  appea r s  to  b e  some  con fus ion  r ega rd ing  t h e  re la t ionsh ip  

b e t w e e n  (a) t h e  hypo thes i s  t h a t  t he  ¢ ' s  are s ta t is t ical ly  i n d e p e n d e n t ,  a n d  

(b)  t he  l inear i ty  of  t he  d i s c r i m i n a n t  func t ion .  T h e  fo l lowing e l e m e n t a r y  

de r iva t ion  will, I bel ieve,  clar ify t h e  s i tua t ion .  

BAYESIAN DECISION PROCEDURE, STATISTICAL INDEPENDENCE, 

AND LINEAR DISCRIMINANT FUNCTIONS 

Consider K urns labeled 1, 2,..., K. Each urn contains a collection of patterns {X}e. 
(It  may happen that the same pattern occurs in more than one urn.) The  contents 
of each urn are known. One urn  is chosen at random but  its label is not revealed. 
From that  u rn  a pattern X is chosen and revealed. From which urn  did it come ? 

We must  decide on a number  k from the set (1, 2,..., K),  knowing that  a certain 
pattern X has been chosen. There  are three well-known approaches. 

1. The  maximum likelihood method decides on the k which maximizes P ( X  [ k), 
the probability that pattern X is drawn, under  the hypothesis that u rn  k was selected. 

2. The  maximum a posteriori method decides on the k which maximizes the 
conditional probability of k, given that X i s  observed: P(k [ X )  = [P(X [ k) P(k)/P(X)]; 
or, equivalently, the k which maximizes P ( X  ] k) P(k). In the special case in which 
the a priori probabilities P(k) are equal, method (2) reduces to method (1) 

3. Assume that a loss A(k [ j )  is suffered if we decide on urn  k when in fact j was 
the urn form which X came. If, when we observe X,  we decide on urn  k, then the 
expected loss is L(k ] X)  = E, h(k l j )  P(J I X) = Ej A(k I J) [P(X ] j) P(j)/P(X)].  The  
minimal expected loss method, or the Bayes Procedure, decides on the k which minimizes 
L(k I X )  (or, equivalently, E~ 2(k ]j) P ( X  I j )  P(j)). 

If  A(k [j) = 1 - - ~  then method (3) reduces to method (2); also L ( k l X )  is then 
the probability of an error if k is decided on when X is observed. 

In general then, having observed X, we choose k so as to minimize 

K 

g(k ] X)  = ~ h(k [/) P ( X  [/) P(j).  

For each subset S of R let Cs be the predicate Cs(X) = r x  ~ S n. Then  

K 

j = l  S 

= ~ as(k) Cs(x). 
R 



512 ~LOCK 

Hence we have a discriminant function linear in the ~'s, with no assumption of inde- 
pendence. (Minsky and Papert seem to suggest that linearity requires the assumption 
of independence.) In typical applications, most of the coefficients P(S I j) wiU be zero. 
Therefore the last summation may involve considerably fewer than all 2 IRI possible 
predicates. 

Denoting the retina R by (sl , s2 ,..., sial), we can represent X in the form (xl,  x2 ,..., 
XlRi) , where xl is the predicate x~(X) = 7s~ E X 7. Let us denote the corresponding 
random variables by so, . Then if the s¢~ are independent under each hypothesis j, 

x ]RI 

g(k l X )  = ~ A(k l J ) P ( J ) I ~  P(~, = x, lJ). 

If A(h [j) = 1 - -  3k~ then we can take logarithms and choose k so as to maximize 

h(h I X) = log P(k) q- ~, log P(~, = x, ] k) = log P(k) -k ~ {x, log P(~i = 1 ] k) 

+ (1 - -  x,) log P(~, = 0 1 k)} 

= ~ ~,~(k)x, + O(k), 
t 

which is a linear discriminant function in the one-point predicates xi • 
The analysis in Minsky and Papert follows from the above, if we consider their ~'s 

as if they were x2s in a second level. The assumption of independence can often be 
validated in practice by suitably randomizing the retinal connections, as Rosenblatt did. 

O n  pages 194-199, the  neares t -ne ighbor  method  is discussed. T h e  authors  

would  have done well to cite the elegant results of T .  Cover (1967b), showing 
the  effectiveness of this method.  

Page 205, l ine 2",  a factor p~ should  be inser ted on the r ight  side of the  

equation.  
T h e  figure on page 206 is somewhat  misleading;  it should be noted  that  

the inpu t  to I-[J is I~i (Pij/qiJ) ¢i" 
I n  Section 12.6 reference should be made to the remarkable  f inding of 

T .  Cover (1967a) that,  for a large n u m b e r  of pat terns in  general  position, 
the n u m b e r  of pat terns that  can be separated is approximately twice the  
n u m b e r  of adjustable weights. 

Page 244, l ine 19, refers to T h e o r e m  11.6. T h e re  doesn ' t  seem to be any  
theorem with this number .  Wha t  is probably  in tended  is the  T h e o r e m  in  
Section 11.9. Similar ly on l ine 23, the reference to Section 11.6 should 
probably  read Section 11.10. 

Page 248, l ine 15", change proceduce to procedure. 
O n  page 248 (lines 6*-4*)  it is stated that  " the  [perceptron convergence] 

theorem would  have been  ins tant ly  obvious had the cyberneticists interested 
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in perceptrons known about Agmon's work." Since there is nothing in 
"Agmon's work" (1954) about termination of the process after a finite number 
of steps, this aspect of the theorem at least does not seem to be "instantly 
obvious". Furthermore, it is not clear who "the cyberneticists" are; but 
presumably the authors do not include themselves in this category. One 
might wonder why the rebuke does not apply to all those interested in the 
perceptron, e.g., Papert (1961), or Minsky and Selfridge (1961), rather than 
just to "the cyberneticists". In this connection one may also wonder about 
the remark on page 4 (lines 5*-3*): "We feel, in fact, that the solemn experts 
who most complained about the 'exaggerated claims' of the cybernetic 
enthusiasts were, in the balance, much more in the wrong." Are the authors 
to be counted among the "solemn experts"? (cf. Minsky (1961)). 

5. COMPARISON WITH ROSENBLATT'S PERCEPTRONS 

Let us compare the perceptrons studied in this book with the Perceptrons 
introduced by F. Rosenblatt (1957) and investigated extensively by him and 
others over the past fifteen years. (We denote Rosenblatt's version by italics, 
as indicated.) 

A perceptron, as defined by Minsky and Papert, is slightly more general 
than what Rosenblatt called a simple Perceptron. (While Minsky and Papert 
allow all predicates $ to participate in the linear threshold function, Rosenblatt 
allowed only "neurons"; not every predicate can be realized by a "neuron.") 
On the other hand, the simple Perceptron (which consists of a set of inputs, 
one layer of neurons, and a single output, with no feedback or cross coupling) 
is not at all what a Perceptron enthusiast would consider a typical Perceptron. 
He would be more interested in Perceptrons with several layers, feedback, 
and cross coupling. Let us take a few moments to explain why this is so. 

By 1930 it had become generally accepted that the mind resides in the 
brain and the brain is packed with neurons. The threshold response of 
neurons and their electrochemical pulses were also known, as was the general 
nature of the synapses. Scientists therefore began to look forward to an 
explanation of brain functions, such as memory, perception, or reasoning, 
in terms of brain structures, such as neurons, synapses, and thresholds. 
The classic paper of McCulloch and Pitts (1943) showed that all logical 
functions could be effected by simple mathematical abstractions of neurons. 
(Incidentally, Kleene (1956), in clarifying the results of McCulloch and Pitts, 
introduced the connection between "regular expressions" and "finite-state 
machines," thus initiating an important part of the field of computer science; 
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but these developments turned away from the problem of brain modelling.) 
There followed a good deal of discussion on "neuroeconomics": I f  the 
neurons in the brain were of this simple type, would there be enough of them 
to account for brain functions ? It was also asked whether the specific 
configurations used by McCulloch and Pitts actually occur in the brain. 
The answer to both questions appeared to be negative, or at least not 
encouraging for brain models of this type. A model proposed by Hebb (1949), 
using reverberating cell assemblies, appeared to overcome some of these 
difficulties; but Hebb's model was vague in many details. 

One purpose of Rosenblatt's Perceptrons was to define the Hebb model 
more precisely, so that its performance could be analyzed mathematically. 
One of the crucial features of Rosenblatt's machines was the provision for 
change in the neural net as the result of its activity. Only by including a 
mechanism for change in the net can one hope to achieve a model for memory 
and learning. The analysis of complicated networks of this type appeared 
to be very difficult. In order to see if a form of learning occurs, even in the 
most primitive case, the simple Perceptron was studied first, and for it the 
"Perceptron convergence theorem" was proved. This was encouraging, not 
because the simple Perceptron is itself a reasonable brain model (which it 
certainly is not; no existing Perceptron can even begin to compete with a 
mouse!), but because it showed that adaptive neural nets, in their simplest 
forms, could, in principle, improve. This suggested that more complicated 
networks might exhibit more interesting behavior. Minsky and Papert view 
the r61e of the simple Perceptron differently: p. 247 (lines 15-17) "... a key 
part of the process leading to the convergence theorem was the molding of 
the concept of the machine to the appropriate form." Thus, what the 
Perceptronists took to be a temporary handhold, Minsky and Papert interpret 
as the final structure. 

Another difference seems to stem from a venerable misunderstanding as 
to why Rosenblatt used randomized connections. Switching theorists look 
for some particular virtue in this arrangment. Finding none, they condemn 
the system as inefficient. Except for certain small blessings of independence 
mentioned earlier (at the end of the passage in Section 4 on "Bayesian 
Decision Procedures,...") there is no particular virtue in randomization. 
This is precisely the reason it is used! I f  a randomized net can learn, then 
certainly so can a net with carefully specified connections. The postulation 
of a highly specific connection scheme obliges the modeller to find such a 
network in the brain. He would also have to face such problems as explaining 
how functions of damaged parts of the brain are taken over by other parts; or 
how one learns to see with inverting eyeglasses. So in the sense of a "worst 
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case"  or  " m i n i m a l  cons t ra in t"  feasibility study,  one randomizes  the  

connections.  T h i s  approach goes back at least to Craik (1943): 

"Models of the brain-on the pattern of a telephone exchange-would be much 
more convincing if they did not postulate any particular connections. Such constancy 
of connections is very unlikely in view of individual variations in micro-anatomy. 

" I t  is possible that a brain consisting of randomly connected impressionable 
synapses would assume the required degree of orderliness as a result of experience, 
just as a randomly connected telephone exchange might become usable if any pair 
of people could lower the resistance of their line and so get into audible communication, 
if they tried often enough." 

I t  also appears in M c C u l l o c h  (1951): 

"...[Von Neumann] has to be very careful to specify in detail which relays are to 
be connected to a given relay to trip it. That is not the case in human brains. Wiener 
has calculated that the maximum amount of information our chromosomes can convey 
would fill one volume of the Encyclopedia Britannica, which could specify all the 
connections of ten thousand neurons if that was all it had to do. As we have 10 l° neurons, 
we can inherit only the general scheme of the structure of our brains. The rest must 
be left to chance. Chance includes experience which engenders learning. Ramon y Cajal 
suggested that learning was the growing of new connections." 

T h e  idea is also implic i t  in Ashby ' s  (1956) " L a w  of Requis i te  Varie ty ,"  

where  the valuable  configurat ions would  become s t rengthened and useless 

ones atrophied.  

I n  recent  days, even the  au tonomic  nervous  system has been  suspected of  

learning [Mil ler  (1969), D iCara  (1970)]. T h i s  bel ief  has been  held  for some 

t ime  in the  East. 

I n  some Perceptrons, Rosenblat t  (1962) does use specif ic-connect ion models ,  

pa t t e rned  after the  a r rangements  found  by H u b e l  and Wiesel  (1959) in the  

cat and Le t tv in  et al. (1959) in the  frog. These  do per form bet ter ,  bu t  in a 

certain sense evade the  deeper  p rob l em of the  mechan i sm of learning. 

One  may  conceive models  in two fundamenta l ly  different ways. Given  

several compe t ing  theories,  models  may  be employed  to decide which  theory  

is closest to the  observed  facts. O n  the  o ther  hand,  given an observed  funct ion,  

one migh t  seek to cons t ruc t  a mode l  which,  wi thout  regard to accuracy in 

detail, exhibi ts  that  funct ion.  T h e  latter was Rosenblat t ' s  approach.  Since 

there  exists no mode l  which  even remote ly  imitates bra in  funct ion,  

Rosenbla t t ' s  a im was to devise some model ,  of  no greater  complexi ty  than  

biological  neurons ,  which  migh t  be  capable of approximat ing  at least some 

e lementary  bra in  funct ions;  cf. Block (1962) :  

"...Admittedly the model represents an enormous simplification of even the known 
brain structure; but if it does not violate the biological constraints (such as the number 
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of units, the organization of connections, the reliability of components, the mechanism 
of signal transmission, the speed of response, the stability of the performance with 
respect to component malfunction or extirpation, the capacity for information storage, 
etc.) and if it exhibits even rudimentary brain functions, then, even if it does not in 
fact operate in the same manner as the brain does, it still provides at least a possible 
explanation of how the brain structure, as we know it at this time, might be organized 
to perform these functions." 

The  opposite view of the r61e of models can be seen in Minsky and Papert 
p. 211, line 17: 

"Thus the simple anatomy, combined with the membrane becoming permeable 
briefly following a nerve impulse, could give a quantity that is an estimator of the 
appropriate probability. 

"How could this representation of probability be translated into a useful neuronal 
mechanism ? One could image all sorts of schemes: ionic concentrations-- or rather, 
their logarithms!--could become membrane potentials, or conductivities, or even 
probabilities of occurrences of other chemical events. The 'anatomy' and 'physiology' 
of our model could easily be modified to obtain likelihood ratios. Indeed, it is so easy 
to imagine variants--the idea is so insensitive to details [my italics--HDB]--that we 
don't propose it seriously, except as a family of simple yet intriguing models that 
a neural theorist should know about." 

"Insensitivity to details" is a fault in the eyes of someone trying to decide 
which among several theories is true; but it is a virtue to someone trying to 
find some model, not inconsistent with the known facts, that will function 
in a specific way. Both approaches are, of course, legitimate, but  a lack of 
understanding of the differing perspectives of the parties can lead to much 
fruitless debate. 

To exhibit the difference in still another way: Suppose that we randomly 
scrambled 10 l° mathematical neurons, furnished inputs, specified reinforce- 

ment  rules, and observed outputs. Suppose further that we then found that 

the mass functioned like a brain; perceiving, thinking, remembering, deciding, 
guessing, controlling purposeful behavior, etc. This  might be very exciting; 
but  it really wouldn ' t  prove anything about how any actual brain works. I t  is 
incorrect in all details; it is too complicated to analyze; it can't  tell us anything 
about the function of the hippocampus, or where memories are stored or 
how they are called up. It  does suggest how a brain might be organized, 
but  has nothing to contribute to the question of how any living brain is in fact  
organized. A Perceptron is not a description of a brain; it is rather a direction 
and a hope. 

Work on the four-layer Perceptrons has been difficult; but  the results 
suggest that such systems may be rich in behavioral possibilities, once the 
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mathematical tools become available to analyze them [cf. Rosenblatt (1960), 
(1964), Block, Knight, and Rosenblatt (1962), Konheim (1963)]. Even more 
suggestive are the multilayer machines with feedback (the C-systems and 
F-systems of Rosenblatt (1967)). The models studied extensively by Grossberg 
(1967-1969), although differing from the Perceptron in several respects 
(continuous variables, instead of discrete; linear, instead of a step-thresholding 
function, etc.) are nevertheless much closer to the spirit of Rosenblatt's 
Perceptron than is the book under review. The same can be said of other 
brain models, such as those of Kabrisky (1966) or Baron (1970a), (1970b). 
From this point of view, the potential capabilities of Perceptrons are still 
mostly unexplored. 

Another indication of this difference of perspective is Minsky and Papert's 
concern with such predicates as parity and connectedness. Human beings 
cannot perceive the parity of large sets (is the number of dots in a newspaper 
photograph even or odd ?), nor connectedness (on the cover of Minsky and 
Papert's book are two patterns; one is connected, one is not. It is virtually 
impossible to determine by visual examination which is which). Rosenblatt 
would be content to begin to approach human capabilities, and in fact would 
tend to regard unfavorably a machine which went beyond them, since it is 
human perception he is trying to approximate. Recognition of commonly 
occurring shapes, familiar faces, partially obscured objects, the detection of 
significant features, etc., would seem to provide more relevant tests than 
parity or connectedness. Rosenblatt's approach would call for quantitative 
studies of more natural recognition problems. 

While Minsky and Papert enumerate at length the difficulties that such 
predicates as parity and connectedness cause for their perceptrons, they 
neglect to mention the remarkable ability of Perceptrons to continue to 
function reliably even after many of their components have been destroyed. 
This capability is inherent in the organization of Perceptrons and does not 
require special arrangements. "Reliability of the system in spite of mal- 
function of the components" is important to the Rosenblatt viewpoint 
because it is common in biological systems but rare in computers, where the 
malfunction of a single element generally results in a nonsensical output. 

Thus, although the authors state (p. 4, lines 12-14) "we have agreed to 
use the name 'perceptron' in recognition of the pioneer work of Frank 
Rosenblatt.", they study a severely limited class of machines from a viewpoint 
quite alien to Rosenblatt's. As a result, the title of the book, although generous 
in intent, is seriously misleading to the naive reader who wants to find out 
something about the general class of Perceptrons. 

In summary then, Minsky and Papert use the word perceptron to denote 

643/I7/5-7 
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a restricted subset of the general class of Perceptrons. They show that these 
simple machines are limited in their capabilities. This approach is reminiscent 
of the m6hel who throws the baby into the furnace, hands the father the 
foreskin and says, "Here it is; but it will never amount to much." 

6. CONCLUSIONS 

We might address the following comments to the three classes of readers 
for whom Minsky and Papert have intended their book. 

1. Specialists in "pattern recognition" who are interested in the practical 
recognition of visual patterns by computers will find the book of limited 
value. Such readers might more usefully consult the books of Kolers and 
Eden (1968), Rosenfeld (1969), Grasselli (1970), Cheng et al. (1970), or 
Uhr (1966). Although some of Minsky and Papert's theorems might prove 
useful, there seem to be more promising avenues to practical pattern 
recognition; as Minsky and Papert indicate, one might be Guzman's (1968); 
others would be Alan Shaw's (1969), (1970), and David Noton's (1969), 
(1970). 

"Learning Machine" enthusiasts will find, unfortunately for their purposes, 
that most of the book concerns fixed networks. However, the chapters on 
"learning machines" are sprinkled with provocative comments, which many 
readers may find stimulating and instructive. 

Specialists in "threshold logic" may find the mathematical techniques 
useful Unless they are concerned with visual pattern recognition however, 
they may find much of the theory to be outside their domain of interest. 

2. I had thought that abstract mathematicians might find intriguing 
the idea of a computational geometry. Those with whom I have tried to 
discuss the subject were not captivated. They objected to the concept of 
order as not taking into account the number of predicates used. Thus, for 
example, they felt that convexity, although of order three, involved so many 
predicates that it really should be of infinite order. In the same way, they felt 
that the And-Or Theorem, far from revealing a deep fact about the nature 
of geometry, was merely the consequence of a poor choice of the basic 
definitions. If a relation as primitive (and as easy to implement technically) 
as "and" or "or" can, when it operates on two first-order predicates, produce 
a predicate of infinite order, then some doubt is cast on the appropriateness 
of "order" as a measure of complexity. Also, it is easy to prove that there 
exists a set of predicates cI, ~ {¢}, each having only one point of support, 
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such that any predicate ~b eL(L(O)). Does this mean that with two layers, 
all predicates are of order one ? I f  not, how does one define order for muki- 
layer machines ? I t  seems that there should be a trade-off between logical 
depth (number of layers) and complexity in a given layer. This basic relation- 
ship still remains to be formulated and explored. 

I don't take too seriously these criticisms offered by pure mathematicians, 
recalling the reception accorded Heaviside and Dirac; but the notion of 
Computational Geometry did stir up a lot of apathy. 

3. For psychologists and biologists, the level of mathematical maturity 
demanded will, I believe, make the book somewhat difficult to read. Moreover, 
since the types of neural nets that Minsky and Papert study are very restricted, 
it seems unlikely that theorems about their limitations can be of much 
relevance to psychologists or biologists. I t  is like demonstrating to a surgeon 
that if he wears boxing gloves he cannot possibly operate effectively. 

The absence of Exercises or Problems might limit the usefulness of the 
book as a classroom text. 

As to future research in the new theory: I would expect that the charisma 
of the authors will attract many able young workers. I would also expect 
that any results which have eluded the mathematical inventiveness of 
Minsky and Papert will turn out to be very difficuk indeed to establish. 
One has the impression that if there were anything further of interest in 
this direction, Minsky and Papert would probably have found it! Thus, 
one would expect that the next phase of this research will turn toward more 
elaborate systems: models having several layers, heirarchical organization, 
feature detectors, feedback, etc. 

In sum then, Minsky and Papert's formulation of their theory of perceptrons 
is precise and elegant. Their mathematical analysis is brilliant. Their 
exposition is lively, often bombastic, and, occasionally, snide (p. 242, lines 
14"-11", "We were pleased and encouraged by the enthusiastic reception 
by many colleagues at the A.M.S. meeting and no less so by the doleful 
reception of a similar presentation at a Bionics meeting."). Two questions 
remain: 

Will the new subject of "Computational Geometry" grow into an active 
field of mathematics; or will it peter out in a miscellany of dead ends ? 

Will the formulations or methods developed in the book have a serious 
influence on future research in pattern recognition, threshold logic, 
psychology, or biology; or will this book prove to be only a monument to the 
mathematical virtuosity of Minsky and Papert ? 

We shall have to wait for a few years to find out. 
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