Complex Analysis: Some Highlights

Gareth E. Roberts

Department of Mathematics and Computer Science
College of the Holy Cross
Worcester, MA

MATH 305 Spring 2016 Complex Anaylsis

Complex Analysis

$$z = x + iy$$
, with $x, y \in \mathbb{R}$
 $i = \sqrt{-1}$ or $i^2 = -1$

Complex Analysis

$$z = x + iy$$
, with $x, y \in \mathbb{R}$
 $i = \sqrt{-1}$ or $i^2 = -1$

Replace the real line \mathbb{R} with the complex plane \mathbb{C} .

$$\mathbb{C} = \{z = x + iy | x, y \in \mathbb{R}\} \approx \mathbb{R}^2$$

Complex Analysis

$$z = x + iy$$
, with $x, y \in \mathbb{R}$
 $i = \sqrt{-1} \text{ or } i^2 = -1$

Replace the real line \mathbb{R} with the complex plane \mathbb{C} .

$$\mathbb{C} = \{z = x + iy | x, y \in \mathbb{R}\} \approx \mathbb{R}^2$$

Consider functions $f: \mathbb{C} \mapsto \mathbb{C}$. We will study the calculus of such functions, e.g., limits, continuity, differentiability, integration, power series. What's similar and what's different?

Cool Formulas

Figure: Math pride!

Cool Graphs

Figure: How do we visualize complex functions?

More Cool Graphs

Figure: Some minimal surfaces: catenoid (left), helicoid (center), Enneper surface (right). Nature forms these surfaces to minimize energy (soap film).

Even Cooler Graphs

Figure: Some fractals in the complex plane created by some past research students. Both figures concern the use of Newton's method to find the roots of a complex polynomial, an example of a dynamical system. Figures by Gabe Weaver (left) and Trevor O'Brien (right).

Cool Theorems

Theorem (The Fundamental Theorem of Algebra)

Any complex polynomial $p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ with $a_n \neq 0$ has at least one root $z_0 \in \mathbb{C}$ (i.e., $p(z_0) = 0$).

Cool Theorems

Theorem (The Fundamental Theorem of Algebra)

Any complex polynomial $p(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ with $a_n \neq 0$ has at least one root $z_0 \in \mathbb{C}$ (i.e., $p(z_0) = 0$).

This in turn implies that any polynomial can be completely factored into a product of linear terms. We say that $\mathbb C$ is an algebraically closed field. This is not the case for $\mathbb R$.

$$f(x) = x^2 + 3$$

has no solutions in \mathbb{R} .

Cool Applications

• Heat equation: $u_t = k\nabla^2 u$, where u = u(x, y, z, t) measures temperature at point (x, y, z) at time t

Describes distribution of heat in a given region over time.

Cool Applications

- Heat equation: $u_t = k\nabla^2 u$, where u = u(x, y, z, t) measures temperature at point (x, y, z) at time t
 - Describes distribution of heat in a given region over time.
- In the plane, a steady state solution satisfies $\nabla^2 u = 0$, or

$$u_{xx}+u_{yy} = 0,$$

a famous equation called Laplace's equation.

Cool Applications

• Heat equation: $u_t = k\nabla^2 u$, where u = u(x, y, z, t) measures temperature at point (x, y, z) at time t

Describes distribution of heat in a given region over time.

• In the plane, a steady state solution satisfies $\nabla^2 u = 0$, or

$$u_{xx}+u_{yy}=0,$$

a famous equation called Laplace's equation.

• Complex Analysis Fun Fact: Suppose that f(z) is a differentiable function. Then the real and imaginary parts of f each satisfy Laplace's equation.