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Biological motion perception is referred to as the ability to recognize a moving human figure from no more than a few
moving point lights. Such point-light stimuli contain limited form information about the shape of the body and local image
motion signals from the moving points. The contributions of form and motion to the vivid perception of point-light displays are
subject to controversy in the discussion. While some studies claim that local motion signals are critical, others emphasize
the role of global form cues. Here, we present a template-matching approach to investigate the role of global form analysis.
We used a template-matching method that derives biological motion exclusively from form information. The algorithm used
static postures monitored from walking humans as stored templates. We compared the simulation results to psychophysical
experiments with the commonly used point-light walker and a variant point-light walker with near-absent local motion
signals. The common result in all experiments was a high correlation between simulation results and psychophysical data.
The results show that the limited form information in point-light stimuli might be sufficient to perceive biological motion. We
suggest that it is possible for humans to extract the sparse form information in point-light walkers and to use it to perceive
biological motion by integrating dynamic form information over time.
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Introduction

Perceiving human movements is a complex task for the
visual system because human movements contain many
degrees of freedom and involve both rigid and nonrigid
elements. Yet, naive human observers readily recognize
moving human figures and their complex actions within
fractions of a second. This is true even if the stimulus is
degraded to only 12 point lights attached to the joints on
the body (Johansson, 1973). This striking phenomenon is
referred to as Bperception of biological motion.[

Biological motion contains different kinds of motion
and form information (Figure 1). Each light point changes
position over time and thus provides apparent motion
signals. We call these the Blocal[ or Bimage[ motion
signals. The instantaneous positions of all light points at
any time provide structural information about the momen-
tary posture of the body. Although this information is only
weak in a single snapshot of a human body, temporal
integration of the instantaneous position signals over a
sequence of postures may provide increased structural
information. We call this the Bglobal form[ information.
Changes of the structural information of the body posture
over time also provide motion information. In this article,

this is referred to as Bglobal motion[ information
(Figure 1).

The perceptual origin of global motion impressions is
still an issue of discussion. Beintema and Lappe (2002)
investigated whether normal observers can perceive bio-
logical motion in the absence of image motion. They
developed a stimulus, which consisted of a fixed number
of dots spread randomly over the skeleton of a human
figure. The dots were reallocated to a new position every
nth frame. For n = 1, the position was changed for each
frame, thus minimizing useful local image motion
information in the stimulus. By varying n, the contribution
of local image motion signals could be manipulated (see
Stimuli section for details). Spontaneous recognition of
this new stimulus by naive observers was similar to that of
the classical Johansson stimulus. In various discrimination
experiments, Beintema and Lappe and Beintema, Georg,
and Lappe (in press) investigated more precisely the role
of form information and image motion signals. They
manipulated the amount of form information by changing
the number of simultaneously visible dots. The results
revealed a clear relationship between available form
information and discrimination performance of the sub-
jects. Adding local motion signals, on the other hand, did
not improve the subjects’ performance, and, in fact, their
performance deteriorated marginally. Beintema and Lappe
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suggested that biological motion perception might be
achieved by an analysis of the dynamic form of the human
figure and that image motion signals have a supporting
character in more complicated tasks and are not essential
for perception.

The importance of form cues for biological motion
perception has also been demonstrated in earlier studies.
Chatterjee, Freyd, and Shiffrar (1996) studied the perception
of apparent motion from sequential full-body images and
found a higher level of usage for biomechanically consistent
motion paths compared with impossible motion paths. This
motion percept relates to the global motion of the body and
overwrites local apparent motion signals when there is a
conflict between the two. In another study, Shiffrar, Lichtey,
and Heptula Chatterjee (1997) report an orientation-specific
recognition of biological motion through apertures, although
other objects could not be identified in this manner. Both
studies support a role of global form mechanisms
for biological motion perception. Because they used line
drawings or full-body photographs, the question whether
global form analysis can also explain biological motion
perception from point-light stimuli remains open.

Bertenthal and Pinto (1994) investigated the importance
of form for the recognition of point-light biological
motion. Using masks comprising dots with trajectories
identical to those of the walker itself but with different,
randomly chosen positions, they concluded that biological
motion perception results from a global top–down form
recognition process, rather than from a bottom–up local
motion analysis. This conclusion was challenged by Giese
and Poggio (2003), who proposed that a hierarchical
bottom–up process using only local motion signals
combined with an attention process could account for
the results. Neri, Morrone, and Burr (1998) claimed that
the perception of biological motion in the presence of
noise is driven mainly by the integration of local motion
signals.

Studies that emphasized the contribution of local
motion signals often argue that the information from a

single static picture of a point-light walker does not allow
a naive observer to perceive a walking human figure.
Spontaneous biological motion perception occurs only in
an animated sequence (Johansson, 1973). Therefore, most
studies on biological motion perception have suggested or
implicitly relied upon the assumption that the perception
is processed by means of local image motion signals
(Cutting, 1981; Johansson, 1973; Mather, Radford, &
West, 1992; Neri et al., 1998). However, while a single
static frame is insufficient to recognize a walker, bio-
logical motion perception might also be derived from
temporal integration of the sparse form information in
each frame.

Computational studies have also emphasized the role of
local motion signals. Giese and Poggio (2003) proposed a
model that analyzed form and motion cues separately.
Their model accounts for a variety of experimental results
purely by using the extracted local motion signals. In
contrast, the form-analyzing pathway did not reveal
selectivity for biological motion stimuli. Based on Giese
and Poggio’s approach, Casile and Giese (2005) devel-
oped a model that relied on the local motion signals in the
stimulus. This model contained detectors of local motion
signals that move in opposing direction. Casile and Giese
computed the amount of Bopponent motion[ signals in the
stimulus proposed by Beintema and Lappe (2002) and
developed a new artificial stimulus with the same amount
of opponent motion signals. From the approximate
similarities between the two stimuli and the corresponding
model simulations, Casile and Giese claimed that these
opposing local motion signals might act as a critical
feature in biological motion perception. This debate
clearly reveals the controversy relating to which processes
are necessary for perceiving biological motion as opposed
to those supplementary in nature.

While several studies investigated the contribution of
local motion signals, our objective in this study was to
investigate quantitatively the contribution of global form
information. We present a simple model based on

Figure 1. (a) The shape of a human figure contains global (illustrated by the black sketch) and local (illustrated by the red dots) features.
(b) The impression of a walking person may occur from the integration of the global shape over time (differently shaded figures) or (c) by
integrating the local image motion signals (illustrated by arrows).
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template matching, which relies on form analysis only and
completely ignores any image motion signals. We inves-
tigated how much form information is available from
point-light walkers and whether this information could
contribute to tasks that use point-light walkers as a
stimulus. By comparing the performance of the model to
both the psychophysical results described above and to the
additional experiments reported below, we assessed
quantitatively the contribution of form information.
Among the many and often complicated characteristics
of biological motion, we will focus on basic and often
used low-level discrimination tasks. We chose these tasks
on the one hand because they are simple and allow a
straightforward quantitative comparison and, on the other
hand, because we believe that restricting the scope of the
model is advisable for an early investigation. For a similar
reason, we concentrated on stimuli without masking noise.
Beintema and Lappe (2002) have argued that biological
motion recognition within noise may involve not only the
perception of the biological motion stimulus per se but
also the segmentation of the figure from the background,
which could be a different process. The relationship
between our model and the masking studies will be
considered in the Discussion section.

Methods

Stimuli

Stimuli were computer-generated two-dimensional
point-light walkers (Cutting, 1978). All translatory move-
ment components were eliminated, giving the impression
of a person walking on a treadmill. Each trial simulated a
walking speed of 1.6 s per gait cycle, with each stimulus
frame presented for 52 ms. The trials lasted for one gait
cycle (31 frames), except for the forward/backward task in
the first experiment (Figure 3c), which lasted 2 s (i.e., 40
frames, walking speed 1.6 s per gait cycle), in analogy to
the experimental parameters (Beintema et al., in press).

Three different types of point-light walkers were used. The
first type is the classical walker introduced by Johansson (1973),
in which point lights appear on the major joints of the body
and produce smooth trajectories when the stimulus is in motion
(Movie 1). The second type, introduced by Beintema and
Lappe (2002), manipulated these stimuli such that the single
dots did not keep a constant position on the body but rather
changed position each frame by jumping to a new, randomly
selected position on the limbs (Movie 2). This minimized local
motion signals and allowed to selectively manipulate them by
varying the lifetime of the dots (in number of frames) before a
new position is allocated. Note that because the dot positions
are chosen randomly each frame, any single trial comprises
different stimulus frames than any other trial.

The third type of stimulus was introduced by Casile and Giese
(2005). It is similar to the stimulus used by Beintema and
Lappe in terms of local motion signals, but it is degraded in
terms of positional information. The stimulus consisted of four
regions. In two of these regions, roughly corresponding to the
position of hands and feet, dots move with a sinusoidal
horizontal component and with a random vertical component.
The other two regions contain dots that move completely
random. The spatial arrangement of the four regions was
derived from the spatial arrangement of a person walking to
the right or to the left.

Tasks

Following the psychophysical studies to be simulated,
we used three different tasks to compare the results of the
template-matching analysis with psychophysical data.

Direction task

In this task, human observers and the template-matching
model had to decide whether the walker was facing and
moving to the right or to the left.

Movie 1. Movie of the point-light walker generated by Cutting’s
(1978) algorithm. Click on the image to view the movie.

Movie 2. Movie of the new stimulus developed by Beintema and
Lappe (2002). Click on the image to view the movie.
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Coherence task

Here, the template-matching model and the human
observers had to decide whether the upper and lower
parts of the body were facing and moving in the same
(coherent) or opposite (incoherent) direction. This task
was used previously by Mather et al. (1992). For the
model, this decision was similar to the direction task
except for the fact that the upper and lower halves of the
stimulus were initially treated separately. After making a
direction decision as described for the direction task for
each half separately, the model decided whether both
halves were walking in the same or in different directions.

Forward/backward task

In this task, the model and the human observers had to
decide whether the walker was moving in a forward or
backward direction (Beintema et al., in press). Both
conditions comprised identical frames. The sequence of
frames was shown either in correct order, giving the im-
pression of a walker moving forward or in reversed order.
In this case, the walker appeared to move backward.

Templates

We attached sensors to the major joints of the bodies
(i.e., shoulders, elbows, wrists, hips, knees, and ankles) of
nine people (five were male) and recorded their walking
movements on a catwalk with a body-tracking system
(MotionStar, Ascension). Because we used only two-
dimensional stimuli, we omitted the depth component of

the movement patterns. We spatiotemporally averaged
(Giese & Poggio, 2000) the individual walking patterns
and connected the dots in a biological appropriate way,
resulting in a stick figure model of a Bmean walker.[ We
subdivided one step cycle of this walking pattern into 100
temporally equidistant frames. The model used these
frames as its templates of a common walking person
(Figure 2). The number of movement patterns that were
used to generate the templates is arbitrary. We assured
that the number is high enough to avoid much influence of
an individual person’s movement pattern and, thus, to
ensure that the templates represent an arbitrary average of
human locomotion patterns. Similarly, the number of
templates was set to 100 because the number approx-
imately matched the temporal resolution of the tracking
system and because the temporal sampling of the walking
sequence seems reasonable. In informal tests, we con-
firmed that varying the number of templates between 50
and 150 did not affect the performance of the model in the
task we present below.

Template-matching analysis

The template-matching analysis was achieved by a
frame-by-frame template-matching algorithm, which eval-
uates the distances between the templates and the stimulus
frames (Figure 2).

For each stimulus frame, the model computed the shortest
Euclidian distance of every dot in the stimulus frame to any
of the limbs for each possible template. Thereby, stimulus
dots were not restricted to a specific limb nor was the
number of dots per limb restricted. Out of all computations,
the model selected the shortest distance. After summing

Figure 2. One frame of the stimulus (filled circles; the dashed lines are only for clarification and are not shown in the real stimulus), which
is matched to a set of templates of a walker moving and facing to the right and a walker moving and facing to the left (stick figure, solid
lines). The match depends on distance measurements between stimulus dots and the template.
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these minimum Euclidian distances of all dots in each frame,
the frame with the shortest total distance was selected from
the set of template frames. This choice was based on a
winner-take-all principle. In preliminary tests, we checked
the dependence of the model on the distance measure.
Instead of the linear Euclidian distance measure, we used
variants like quadratic, cubic, or Gaussian distance functions
for the discrimination task. The differences for the recog-
nition rates between these and the simple Euclidian distance
were less than 4%. Thus, in the simulations reported below,
we used the simple and parameter-free Euclidian measure.

By matching each stimulus frame to 100 template frames
of a walker moving to the right and to 100 template frames
of a walker moving to the left, the model had to decide
frame by frame which direction decision it would favor.
When one whole stimulus was completed, all single
decisions were averaged to achieve a decision in the
respective task. In a subsequent processing stage, the model
analyzes the temporal position of the best matching
template in the whole set of templates. It computes whether
consecutive frames were arranged in the order expected
when the walker was moving forward or backward. In this
manner, the model constructed chains of consecutively
ascending or descending frames. At the end of one trial, the
chain with the maximum length was used as the decision
variable. A consecutively ascending temporal order of the
selected frames was an indication for forward movement; a
consecutively descending temporal order of the frames was
an indication for backward movement.

Thus, the model only uses the available form informa-
tion, ignoring all motion signals, if there were any (see
Appendix for mathematical description).

In each simulation run for a given task, we presented
100 trials. Although we always used the same stimulus,
trials differed because the single dots of the stimulus
were always drawn on different positions. A full step
cycle of a walking sequence was divided into 31 frames.
In the forward/backward simulations, a single trial lasted
for 2.0 s and consisted of 40 frames (thereby keeping
walking speed constant at 1.6 s per gait cycle), in
accordance with the parameters used in the psychophys-
ical study of that task (Beintema et al., in press). The
model calculated decisions for each trial as described
above. We then summed the 100 single decisions for each
of the 100 trials to calculate the overall recognition rate
for the task. During the simulations, all stimulus proper-
ties like trial duration and stimulus size were identical to
the conditions used in the psychophysical tasks. Starting
phase of the walking cycle of the stimulus was random-
ized over trials.

In comparing psychophysical with computational data,
we needed to account for the phenomenon of visible
persistence (Coltheart, 1980). Visible persistence refers to
the fact that light points presented to an observer for a
period shorter than 100 ms are perceived for as long as
100 ms, whereas dots shown for longer periods are
perceived for the time they are actually presented.

In psychophysical experiments, subjects reported seeing
more points on the screen than were presented in any single
frame. Quantitative analysis showed that in accordance with
the literature reviewed by Coltheart, subjects perceived about
twice as much dots than are really shown at the 50-ms frame
duration (Beintema et al., in press). We, therefore, feel that
visible persistence is part of the process of interpreting these
stimuli and consequently needs to be implemented in the
template-matching analysis. We adapted the model to this
effect as simple as possible: to include the effect of visible
persistence by overlapping the dots in a stimulus frame with
the dots of the preceding frame if the presentation duration
of the frame was less than 100 ms. The resulting frame then
had twice the number of dots: the dots from the frame itself
plus the dots from the previous frame.

The model uses a view-based approach that treats size
and position of the stimulus as constant. We believe that
these assumptions, especially knowledge of height and
position, are appropriate for a template-matching model
when a discrimination stimulus is presented in isolation as
in the experiments that we modeled. The model does not
use any adjustable parameters that could be fitted to the
psychophysical data. The model stages were chosen to be
as simple and intuitive as possible.

In the simulations, we compared the model’s decisions
in each processing stage with the stimulus properties and
determined the percentage of correct decisions within 100
trials, each containing a full walking cycle of the stimulus.
Note that the stimulus is a computer-generated artificial
walker, whereas the templates were obtained from record-
ings of actual human walkers. Therefore, the stimulus
will never exactly match any of the templates. Thus, the
model is not expected to yield recognition rates of 100%.
We believe that this is an appropriate comparison with the
psychophysical task in which this same computer-
generated walker was presented to human observers. If,
as we predict, human observers use templates of body
postures, then it is likely that these templates are also
learned from observing real people walking. We com-
pared the recognition rates of the model to data from
psychophysical experiments or psychophysical data
obtained from other studies with the same tasks and
stimuli as used in the model simulations.

Results

We intended to test the performance of the model in
several tasks, in which we varied parameters that
influence form and motion contribution as well as
stimulus types.

First, we studied the importance of form information.
We used the psychophysical data from the studies by
Beintema and Lappe (2002) and Beintema et al. (in press)
and simulated these tasks with our model. We varied the
amount of form information by presenting different
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numbers of dots per frame (1, 2, 4, or 8). The frame
duration and the lifetime of the dots were kept constant
(52 ms = 1 frame).

We first simulated a direction discrimination task and
compared the results to data from Beintema and Lappe (2002;
for the results, see Figure 3a). We secondly simulated a
coherence task and compared the results to data from
Beintema et al. (in press; for the results, see Figure 3b). In
both tasks, we presented one step cycle of the stimulus
(31 frames) consistent with the experimental studies.

The model was able to solve both the direction and
coherence tasks solely based on static form information.
Therefore, both tasks can be solved in principle from form
analysis alone and do not necessarily depend on the
perception of the temporal pattern of walking. In the
forward/backward task introduced by Beintema et al. (in
press), recognition of the stimulus depends on temporal
integration. Both stimuli (forward and backward walking)
consisted of the same individual frames; the only differ-
ence was the order in which they were shown. In normal
frame order, the impression of a forward-moving walker
occurred, whereas in reversed order, the impression of a
backward-moving walker occurred. We simulated this
task with the second stage of the model, which analyzes
the temporal order of the frames and compared the
results to data from Beintema et al. (for the results, see
Figure 3c). Beintema et al. used a stimulus duration of 2 s
while keeping the walking speed of the stimulus constant.

Therefore, we simulated this task with a stimulus duration
of 40 frames (one gait cycle still comprises 31 frames).

We statistically analyzed data from Beintema and
Lappe (2002) and Beintema et al. (in press; Figure 3). A
two-way analysis of variance (ANOVA) with Bnumber of
points[ as within-subject factor and Btask[ as between
subject factor revealed a significant main effect of number
of points, F(3,12) = 18.27, p G .01. No statistically signifi-
cant effects were found on the factor task, F(2,12) = 3.8,
p = .12, and on the interaction between task and number
of points, F(2,12) = 0.66, p = .57. Planned within-subjects
contrasts revealed a significant linear trend, F(1) = 26.65,
p G .01, stating that recognition rates increase with in-
creasing number of points. Three subjects participated in
the study of Beintema and Lappe (Figure 3a), and there
were two subjects in the study of Beintema et al. (in press;
Figure 3b and 3c).

As shown in Figure 3, the results of the model simulated
the human performance accurately. To quantify the model
simulations, we compared the model data and the mean
value of the psychophysical data for each data point
separately. No statistical differences could be observed
(one-sample t tests, p 9 .05).

Local motion signals

We next looked at the influence of local motion signals
on the perception of biological motion. To compare model

Figure 3. Percentage of correct answers as a function of the number of points shown per frame for (a) the direction task, (b) the coherence
task, and (c) the forward/backward task for model and human observers. Psychophysical data are adapted from Beintema et al. (in press)
and Beintema and Lappe (2002) and are shown as mean T SE.
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simulations with psychophysical data, we adapted the data
of Beintema and Lappe (2002) and Beintema et al. in
press. Beintema and Lappe added local motion signals to
the stimulus by varying the duration (number of frames)
for which a dot kept its position on the limb before being
extinguished and relocated to a different position. If a dot
remained at a specific limb position for several frames, its
spatiotemporal profile allows estimating local image
motion. Because the model, however, relies on form
information only, it does not evaluate this local motion
signal. If human observers do take advantage of local
motion signals, the answers of the model and humans
should therefore differ. The difference should become
more obvious with prolonged lifetime of the dots.

The simulations were conducted with the direction task
(with 1, 2, 4, and 8 points per frame) to examine whether
local motion signals would improve performance in
general (Figure 4a–d), as well as with the forward/
backward task (8 points per frame), in which local motion

signals should provide the most useful additional infor-
mation (see Figure 4e). In addition to varying the lifetime
of the dots, we also varied the number of dots per frame.
Human data in the direction task were taken from
Beintema and Lappe (2002). Data in the forward/back-
ward task were taken from Beintema et al. (in press).

Prolonging lifetime results in an increase of local motion
signals. Therefore, an increase of correct answers with
prolonging lifetime should be expected if the perception
relies on local motion signals. We statistically analyzed
the data from Beintema and Lappe (2002; Figure 4a–d).
A two-way ANOVA with Blifetime of points[ as within-
subject factor and number of points as between-subject
factor revealed a significant main effect of lifetime of
points, F(3,24) = 4.74, p = .01. There was also a sta-
tistically significant effect on the factor number of points,
F(3,8) = 60.37, p G .01, and no effect on the interac-
tion between lifetime of points and number of points,
F(3,8) = 1.1, p = .40. Planned within-subjects contrasts

Figure 4. Percentage of correct answers as a function of the lifetime of single points in the direction task for (a) 1 point per frame, (b) 2
points per frame, (c) 4 points per frame, and (d) 8 points per frame and in the (e) forward/backward task for 8 points per frame.
Psychophysical data (Panels a–d were adapted from Beintema & Lappe, 2002; Panel e was adapted from Beintema et al., in press) are
shown as mean T SE.
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revealed a significant linear trend, F(1) = 6.72, p = .03,
stating that recognition rates decrease with increasing
lifetime of points. Three subjects participated in each
experiment.

The observed behavior would be expected if form
information were dominant over local motion signals.
With longer lifetime, each dot remains on a fixed position
on the body for a longer time. Thus, the sampling rate of
the form of the body is reduced. Also, the number of dots
effectively perceived due to visible persistence decreases
when lifetime is prolonged. In the model, this is
equivalent to decreasing the number of effectively used
dots. For this reason, the performance of the model drops
if lifetime alters from one to two frames. For the other
transitions (from two to four and from four to eight
frames), the recognition rates are constant and differences
are negligible because they show no uniform trend. We
observe a similar behavior for the psychophysical data. An
a priori contrast test between the conditions Blifetime[ of
one frame and two frames revealed a significant effect,
F(1,8) = 16.0, p G .01, whereas the contrast test between
two frames and four frames and that between four and
eight frames no longer show a significant effect, F(1,8) =
4.46, p = .07 and F(1,8) = 0.12, p = .74, respectively.
Furthermore, we found a statistically significant difference
between model and psychophysical data only for two
conditions: one point per frame, lifetime four frames and
two points per frame, lifetime two frames (both: one-
sample t test, p G .05). Because of ceiling effects, for the
condition four points per frame, lifetime two frames, no t
value could be calculated.

For the forward/backward task (Figure 4e), there was no
significant influence of lifetime, ANOVA with repeated
measures: F(3,6) = 3.17, p = .11. Similarly, the model
does not reveal a marked influence on lifetime in the
forward/backward task. Furthermore, there were no
statistically significant differences between model data
and psychophysical data (one-sample t test, p 9 .05).

In summary, the model matched the performance of
human subjects qualitatively and quantitatively, although
it uses form information only and ignores local motion
signals.

Other walkers

We tested discrimination tasks also with the classical
point-light walker introduced by Johansson (1973).

Figure 5 shows the results of the simulation of a
psychophysical experiment by Mather et al. (1992). They
presented the classical walker in a direction discrimination
task in conditions in which specific dots were omitted
from the walker. In the first condition, all dots were
shown, whereas in the other conditions, four dots were
removed in any of the following: shoulders and hips,
elbows and knees, or wrists and ankles. Particularly, the
omission of wrists and ankles had a deteriorating effect on
perception.

The results of the template-matching analysis revealed
the same dependence on visible dots as the psychophys-
ical data of Mather et al. Leaving out the ankles and wrists
impaired the perception. Leaving out the elbows and
knees showed little effect, whereas omitting the shoulders
and hips had no influence at all.

Mather et al. concluded that the feet and hands are most
important because they follow the longest trajectories,
hence providing most motion information. Our simula-
tions revealed similar results and confirm that distal dots
are most important. Because the model uses only form
information, we conclude that the reason that wrists and
ankles are more important than other, more proximal dots
is that they offer the most reliable spatial information
about the posture of the walker.

Casile and Giese (2005) argued against the idea that the
form information in the point-light walkers with strongly
degraded local motion information is sufficient to explain
psychophysical data by Beintema and Lappe (2002).
Casile and Giese proposed a model that used only
Bopponent local motion[ features to model the psycho-
physical data of Beintema and Lappe (2002) and for a
newly developed stimulus.

The new stimulus (critical feature stimulus [CFS])
proposed by Casile and Giese was similar to the stimulus
used by Beintema and Lappe in terms of local motion
signals, but it was degraded in terms of positional
information. The stimulus consisted of four regions. In
two of these regions, roughly corresponding to the
position of hands and feet, dots move with a sinusoidal
horizontal component and with a random vertical compo-
nent. The other two regions contain dots that move
completely random. The spatial arrangement of the four
regions was derived from the spatial arrangement of a
person walking to the right or to the left. Casile and
Giese’s psychophysical data with the CFS are similar to
the psychophysical results by Beintema and Lappe (2002).

Figure 5. Percentage of correct answers as a function of the dots
omitted. Psychophysical data (adapted from Mather et al., 1992)
are shown as mean T SE.
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Beintema and Lappe reported a counterintuitive decline of
recognition rates for prolonged lifetimes of the stimulus
dots (Figure 4). Although Casile and Giese were unable to
replicate this decline of recognition rates, they claimed
that the remaining sparse local image motion information
acted as a critical feature for the recognition.

We used this CFS-Walker to test the available form
information in the CFS-Walker stimulus with our tem-
plate-matching analysis. Recognition rates for the CFS-
Walker in our template-matching model were similar to
those for the sequential position stimulus (SPS)-Walker.
Both stimuli revealed the same dependency on points per
frame (Figure 6). These simulations showed that the
positional information in the CFS-Walker is still compa-
rable with the information in the SPS-Walker and that this
information is sufficient to explain the psychophysical
data.

As described above, the walker consisted of four
regions, each with a specific spatial offset from the
vertical axes. If there would be no spatial displacement
of the four regions at all, a stimulus facing to the left
would be identical to a stimulus facing to the right. The
discrimination task would be unsolvable, and thus, the
spatial displacements are essential to observe results
different from chance level. Therefore, it is these spatial
displacements that act as the critical feature rather than the
opposing motion signals.

Although the CFS-Walker matched the form of a human
body only very roughly, the performance of this model
was similar to that of the SPS-Walker. At first glance, this
result seems surprising because we compare a walking
stimulus to an artificial stimulus with coarse position
information approximately matching the original stimulus.
However, in the SPS-Walker, which is mainly used in this
study, the stimulus dots also almost never exactly match
the template. Actually, the SPS-Walker also represents an
artificial computer stimulus. Therefore, the model identi-
fied the SPS-Walker, as well as the CFS-Walker, as a
noisy stimulus of a walker. The simulation results ob-

tained with both the CFS-Walker and the psychophysical
results by Casile and Giese indicate that the visual system
is very robust against noise.

Stimulus duration

In addition to already existing psychophysical studies
(Beintema et al., in press; Beintema & Lappe, 2002;
Casile & Giese, 2005; Mather et al., 1992), we conducted
a further experiment and compared the data to simulation
results.

Methods

The new experiment used a direction task and varied the
duration of the stimulus. The methods followed the
procedures described in Beintema et al. (in press) and
Beintema and Lappe (2002). The stimuli were presented
on a monitor with a resolution of 1280 � 1024 pixels and
a display size of 30 � 40 cm. The duration of a single
frame was 52 ms. The lifetime of each single dot was 1
frame, that is, 52 ms. The subjects were seated 60 cm in
front of the monitor and viewed the stimulus binocularly.
The stimulus covered a field of 5 � 10 deg and consisted
of white dots (5 � 5 pixels) on a black background.
Stimulus position had a randomly chosen offset. Stimulus
duration was varied from about 100 ms to 1.6 s (2 to 31
frames) in a pseudorandomized manner. In blocked trials,
2, 4, or 8 stimulus dots per frame were presented. The
subjects had to decide the direction of the walker after
each trial and indicate their decision with a button press,
whereupon the next trial started. Six subjects participated.

Results

The results are shown in Figure 7. A two-way ANOVA
with Bstimulus duration[ as within-subject factor and num-
ber of points as between-subject factor revealed a signifi-
cant main effect of stimulus duration, F(4,60) = 54.22,
p G .01. Also, the factor number of points revealed a sig-
nificant effect, F(2,15) = 39.7, p G .01, as well as the inter-
action between number of points and stimulus duration,
F(2,15) = 13.0, p G .01. Planned within-subjects contrasts
revealed a significant linear trend, F(1) = 168.0, p G .01,
stating that recognition rates increase with prolonged
stimulus duration.

The model revealed the same qualitative behavior;
recognition rates increased with prolonged lifetime and
with increasing number of points per stimulus frame. For
sparse form information, that is, for 2 and for 4 points per
frame and very short stimulus durations (100 and 200 ms),
however, the model significantly overrates the recognition
rates (one-sample t test, p G .05). Consequently, the model
in these simulations was performing better than the
average of the human observers. This might be caused
by two reasons: For simplicity, the template-matching

Figure 6. Comparison of the template-matching analysis in a
direction task for the stimulus used in this study (SPS) and the
stimulus proposed by Casile and Giese (2005; CFS-Walker).
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analysis is not affected by internal noise, whereas humans
apparently are affected. Especially for sparse visual input,
the neural noise in the human visual system will
presumably attenuate humans’ ability to correctly solve
the task. Secondly, the human subjects in this experiment
were untrained to biological motion perception. By
contrast, the model must be considered as a trained
observer because it is able to extract the form information
accurately. Trained human observers, like those in the
experiment by Beintema and Lappe (2002) presented above,
are able to reach higher recognition rates comparable with
the recognition rates of the template-matching analysis
even for sparse form information (Figure 3).

Discussion

In this article, we addressed the question of possible
mechanisms underlying the perception of biological
motion. Global biological motion, that is, the motion of
the human figure, may be derived from local image
motion analysis of the light points or from structural
information from the changing shape of the body.

In our study, we investigated quantitatively the con-
tribution of global form to discrimination tasks with point-
light walkers. By assuming a library of static postures of a
walking person, we developed a model based on template
matching, which uses only sequential posture information
rather than local motion signals. In this way, we could
quantify the amount of global form signals available in the
depicted point-light displays in the absence of local image
motion signals. Global motion information will be derived
from the change of these postures over time rather than
from local motion signals.

First, we employed different experiments that varied the
amount of form and local motion signals and compared
the results of the template-matching analysis to the
psychophysical data. Data in some experiments were
taken from previous studies (Beintema et al., in press;
Beintema and Lappe, 2002; Figures 3 and 4). One
experiment was a new one conducted for this study
(Figure 7). In these experiments, we varied the number
of visible points per frame, the stimulus duration, and the
amount of local motion signals. The comparison revealed
a strong dependence on available form information in the
template-matching model similar to the data from the
psychophysical studies. These similarities were consistent
when the total form information was not varied not within
one single frame but in the overall information mediated
by stimulus duration.

Beintema and Lappe also reported a counterintuitive
decline of recognition rates for prolonged lifetime of the
stimulus dots. Casile and Giese (2005) proposed a model
that was supposed to explain these psychophysical data by
exploiting local motion features. However, the model
predicted a slight increase of recognition rates for a
prolonged lifetime of stimulus dots. In contrast to Casile
and Giese, our simulation results based on global form
showed a decline for a longer lifetime of stimulus dots
similar to the psychophysical data. In accordance with
Beintema et al. (in press), we suggest that this decline is
due to a decreasing form sampling in combination with
visible persistence and not due to the addition of local
motion signals. For a detailed analysis of the relationship
of recognition rates and visible persistence, see the study
of Beintema et al.

In another experiment, Casile and Giese introduced a
new artificial stimulus called CFS. They intended to
show that this stimulus does not contain any information

Figure 7. Percentage of correct answers as a function of the total stimulus duration for 2, 4, and 8 points per frame in the direction task.
Psychophysical data are shown as mean T SE.

Journal of Vision (2006) 6, 836–849 Lange, Georg, & Lappe 845

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932841/ on 08/02/2016



but only opponent local motion features. They claimed
these opposing motion vectors to be critical features
that are essential to recognize biological motion. Our
simulations showed that the CFS-Walker still contained
coarse global form information. This information is
strongly degraded but is still sufficient to solve the
applied task (Figure 6). We suggest that the critical
feature in this stimulus is global form and not local motion
signals.

The data on the CFS as well as on the study by
Mather et al. (1992) also demonstrate that the results
presented in this study do not depend on the particular
stimulus used. Our template-matching analysis was able
to simulate data from the classical Johansson walker as
well as from the stimuli of Beintema et al. and Casile and
Giese. Furthermore, the simulations on the study by
Mather et al. suggest that the results can be explained by
missing form information instead of missing motion
information (Figure 5, but see also Troje & Westhoff,
2006).

Several studies examined the perception of biological
motion in masking experiments; that is, the stimulus is
shown in a number of distracting noise dots. Beintema
and Lappe (2002) have argued that these tasks comprise
both the perception of the biological motion stimulus per
se and the segmentation of the stimulus from the
background, which could be a separate process. Within
the current analysis, we did not simulate noise experi-
ments because we wanted to keep the model simple and
confined to the biological motion task without an addi-
tional segmentation stage. Such a separate segmentation
stage, however, might not be needed. Lee and Wong
(2004) recently presented a template model for the
recognition of biological motion that is similar in spirit
to our approach but uses point-light templates rather than
stick-figure templates. They showed that a form-based
template-matching approach could also account for per-
ception of biological motion in noise with results similar
to psychophysical data (Neri et al., 1998). In addition,
because their model did not include segmentation by local
image motion, it should also work for more complicated
noise patterns. Although more work would be needed to
confirm this hypothesis for our approach, we suggest that
our template matching would be able to reveal similar
results.

Our computational approach suggests that perception
of biological motion is possible from matching the
sparse stimulus frames to (dynamic) form templates
and integrating this information over time. The concept
that learned global prototypes underlie the interpreta-
tion of perceived body structures in a top–down
process relates back to initial ideas by Marr and
Nishihara (1978). The general idea is supported by other
psychophysical experiments. Sinha and Poggio (1996)
connected the dots on the major joints of a human body so
that it showed the line drawing of a person. If this rigid
structure was rotated about its vertical axis, it was seen as

a walking figure. However, if the wrong joints were
connected (so that the figure did not represent a human
body), the rotation was correctly interpreted. Sinha and
Poggio argued that the visual system interprets the human
figure in terms of how the human structure is expected to
change. Our study supports this idea of a form-based top –
down process mediating the perception of biological
motion. The simulations reveal that Sinha and Poggio’s
idea can be extended from static line drawings to moving
point-light figures. Even if a single frame did not provide
enough information to recognize the human figure, the
succession of point-light images was sufficient. The
simulations do not exclude the fact that human observers
can use available local image motion signals if they are
useful.

Our approach derives global motion information from
an analysis of the changing shape of the figure rather than
from local motion detectors. As such, it bears some
relationship to feature-based motion systems as suggested
by Cavanagh (1992) and Lu and Sperling (1995). From a
computational viewpoint, the advantage of such feature-
based motion systems over lower level, energy-based
motion systems is particularly high for biological motion
recognition because in contrast to rigid object motion,
biological motion relies inevitably on form information
due to the large number of degrees of freedom in the
nonrigid motion of the body.

Perception of biological motion is not just a single
phenomenon. The perception of biological motion is
composed of a rich palette of different aspects such as
action recognition (Dittrich, 1993, Johansson, 1973;
Pollick, Fidopiastis, & Braden, 2001), gender discrimi-
nation (Pollick, Lestou, Ryu, & Cho, 2002; Troje, 2002;
Troje, Westhoff, & Lavrov, 2005), and identification of
identity (Cutting & Kozlowski, 1977; Loula, Prasad,
Harber, & Shiffrar, 2005). It has been shown that humans
can use different information to judge movements depend-
ing on the task (Pollick et al., 2001, Troje, 2002) and that
the influence of bottom–up and top–down processing, as
well as attention, differs among tasks (Thornton, Pinto, &
Shiffrar, 1998; Thornton, Rensink, & Shiffrar, 2002;
Thornton & Vuong, 2004). In this study, we have focused
on straightforward discrimination tasks for simplicity.
These simple tasks can be solved by a global form
analysis in the absence of local motion signals. One may
now ask: Which of the more complex aspects of bio-
logical motion perception are local and which ones are
global? Which ones require motion per se and which ones
are based on structural cues? In principle, a template
model such as ours may be sufficient to also discriminate
action, gender, or identity provided that the appropriate
templates are available. The model arrives at a description
of the temporal structure of the body posture change over
time and, thus, may also discriminate actions and use
dynamic cues (Troje, 2002) even if they are not derived
from local motion analysis. Whether this is truly sufficient
would have to be investigated in further studies; however,

Journal of Vision (2006) 6, 836–849 Lange, Georg, & Lappe 846

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/932841/ on 08/02/2016



it is also likely that among the many aspects of biological
motion, there are some that benefit from additional motion
signals. However, for the task we studied here, these local
motion signals do not form a critical feature for biological
motion.

Appendix

This section provides a mathematical description of the
model. The model consists of two hierarchically arranged
but functionally separate stages.

In Stage 1, the model uses a library of size-
normalized static templates T with known two-
dimensional coordinates xpT for each stimulus point p.
The set of template points xp

T comprises not only the
joint positions of the template but also all positions on
the lines connecting the joints (i.e., pYV). The input
to Stage 1 are the coordinates xi

S of the stimulus dots i
of a given frame S. The model computes the distances
dS,TL and dS,TR between a given stimulus frame S and each
of the templates TL (templates for walking to the
left) and TR (templates for walking to the right) by
calculating the minimum Euclidian distance between
each of the stimulus dots xi

S and all locations xp
T on each

template frame and adding all single distances up.
Technically, the distance was measured by dropping a
perpendicular line on the nearest limb or by calculating
the distance to the nearest joint, whichever was shorter.
This procedure was performed independently for each
set of templates TL and TR without adding any internal
or external noise:

dS;TL ¼ ~
n

i¼ 1

min
p
ðjxSi j xTL

p jÞ;

dS;TR ¼ ~
n

i¼ 1

min
p
ðjxSi j xTR

p jÞ;

where n is the number of stimulus dots.
For a given stimulus frame S, the best matching

templates were determined by finding the templates with
the minimum distances dS,TL and dS,TR independently for
each template set TL and TR:

dS;TL

min
¼ min

TL

ðdS;TLÞ ¼ dS;TS;min
L ;

dS;TR

min ¼ min
TR

ðdS;TRÞ ¼ dS;T S;min
R :

This procedure results in TL
S,min and TR

S,min, which
represent the template frames within the template set for
walking to the left (TL) and for walking to the right (TR)
that match the stimulus frame S best. dS,TL

S,min denotes the
distance between the given stimulus frame S and the
best matching template frame TL

S,min for walking to

the left, and dS,TR
S,min denotes the distance between the

given stimulus frame S and the best matching
template frame TR

S,min for walking to the right.
The model’s decision variable at Stage 1 (c1

S) to
discriminate the walking direction of the stimulus in a
single stimulus frame S is based on the minimum distance
measures dmin

S,TL,R:

c1
s ¼ 1 for dS;TL

min G dS;TR

min and c1
s ¼ j1 otherwise:

For (c1
S)

1 = 1, the model decides in favor of walking to
the left; for (c1

S)
1 = j1, the model decides in favor of

walking to the right. Note that the templates for left
and right (TL and TR) are never identical, and therefore,

dmin
S,TL = dmin

S,TR is never the case.
A trial consists of N stimulus frames. Each frame is

evaluated independently from the other frames by the
computation described above. At the end of a given trial,
the model computes an overall decision variable at Stage 1
c1 by averaging all single decision variables (c1

S)
1:

c1 ¼
~
N

S¼1

c1
s

N
:

For c1 9 0, the model decides in favor of walking to the
left; for c1 G 0, it decides in favor of walking to the right.
For the rare case of c1 = 0, the model randomly decides in
favor of left or right.

This procedure is applied to each of the 100 trials of a
simulation run, and the proportion of correct decisions is
expressed as the percentage of correct decisions.

The best matching templates TL
S,min and TR

S,min for all
stimulus frames S are forwarded to model Stage 2. In
this stage, the template frames are ordered depending on
their temporal position in the entire walking sequence
from 1 to t. For two consecutive stimulus frames S and
S + 1, the decision variable in Stage 2 (c2

S,S + 1) is:

c2
S;Sþ1 ¼ 1 for TL;R

S; min
e TL; R

Sþ1;min and

c2
S;Sþ1 ¼ j1 for TL; R

S; min
Q TL; R

Sþ1;min:

If, for two consecutive stimulus frames S and S + 1, the
best matching template frames are from the same template
set (i.e., both frames are out of the set TL or both are out
of TR) and these two template frames are temporally
ascending, then the variable is set to c2

S,S + 1 = 1. If the
selected template frames are descending, c2

S,S + 1 = j1. If
the selected frames for S and S + 1 are equal, c2

S,S + 1 is set
equal to the preceding entry for c2S,S + 1. In case the
selected template frames for the stimulus frames S and
S + 1 are from different template sets (e.g., for S from TL

and for S + 1 from TR), the variable is set to c2
S,S + 1 = 0.
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An entire trial consists of N stimulus frames. This leads to
a time series T with N j 1 entries for c2

S,S + 1. An overall
decision variable after one trial for a forward (c2

f ) and a
backward (c2

b) movement is achieved by applying two
functions Ff and Fb on the series T:

cf
2 ¼ FfðTÞ;

c2
b ¼ FbðTÞ:

Ff finds Bchains[ of consecutive entries of B1[ and
determines the length of the longest chain; Fb finds chains
of consecutive Bj1[ and determines length of the longest
chain of j1 values. Thus, c2

f and c2
b give the longest

chains of monotonously ascending or descending selected
template frames.

The model decides in favor of a forward movement if

c2
f 9 c2

b

and for a backward movement if

c2
f G c2

b:

For c2
f = c2

b, the model randomly decides in favor of
forward or backward movement.

This procedure is applied to each of the 100 trials of a
simulation run, and the proportion of correct decisions is
expressed as percentage correct.
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