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Highlights:  

• We performed the 1st randomized double-blind placebo-controlled trial of ld-IL-2 

• We report the detailed kinetics and dose-relationship of ld-IL-2 effects  

• We report detailed immunomonitoring of the broad modification of immune responses  

• Our results are key to optimize the use of IL-2 for therapy of autoimmune diseases  
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Abstract 

Most autoimmune diseases (AID) are linked to an imbalance between autoreactive effector T 

cells (Teffs) and regulatory T cells (Tregs). While blocking Teffs with immunosuppression 

has long been the only therapeutic option, activating/expanding Tregs may achieve the same 

objective without the toxicity of immunosuppression. We showed that low-dose interleukin-2 

(ld-IL-2) safely expands/activates Tregs in patients with AID, such HCV-induced vasculitis 

and Type 1 Diabetes (T1D). Here we analyzed the kinetics and dose-relationship of IL-2 

effects on immune responses in T1D patients. Ld-IL-2 therapy induced a dose-dependent 

increase in CD4+Foxp3+ and CD8+Foxp3+ Treg numbers and proportions, the duration of 

which was markedly dose-dependent. Tregs expressed enhanced levels of activation markers, 

including CD25, GITR, CTLA-4 and basal pSTAT5, and retained a 20-fold higher sensitivity 

to IL-2 than Teff and NK cells. Plasma levels of regulatory cytokines were increased in a 

dose-dependent manner, while cytokines linked to Teff and Th17 inflammatory cells were 

mostly unchanged. Global transcriptome analyses showed a dose-dependent decrease in 

immune response signatures. At the highest dose, Teff responses against beta-cell antigens 

were suppressed in all 4 patients tested. These results inform of broader changes induced by 

ld-IL-2 beyond direct effects on Tregs, and relevant for further development of ld-IL-2 for 

therapy and prevention of T1D, and other autoimmune and inflammatory diseases. 

 

 

 

Key words: Tolerance, Immunotherapy, Inflammation, Immunopathology, Pharmacokinetics. 
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1. Introduction 

Most self-reactive T lymphocytes are physically eliminated during thymic selection to avoid 

immune responses against self-antigens. Yet this process is imperfect, and potentially harmful 

self-specific effector T cells (Teffs) survive thymic deletion and populate the periphery. In the 

normal immune system, these autoreactive Teffs do not mediate autoimmunity as their 

expansion and function are inhibited by regulatory T cells (Tregs) [1]. In most autoimmune 

diseases (AID), there is an imbalance between Teffs that attack normal tissues and Tregs that 

normally control them. Tregs are essential players in the control of all immune responses, 

including responses to self, tumors, and infectious agents [1], and in the control of 

inflammatory disorders [2]. The discovery of Tregs revolutionized our understanding of AID 

pathophysiology and opened new avenues for the treatment of autoimmunity. Human beings 

and mice presenting a FOXP3 genetically-determined Treg defect develop multiple organ-

specific AID [3-8]. Treg quantitative or qualitative defects have been described in common 

human AID and their mouse models [9-13]. Moreover, administration/restoration of Tregs 

improves symptoms in experimental animals and patients with AID [14-19]. Thus, while 

blocking Teffs with immunosuppressive drugs has long been the only therapeutic option for 

AID, activating/expanding Tregs is becoming a novel approach that may lead to improved 

outcomes with better safety [14-19]. 

Until recently, most Treg-based therapies have been based on the infusion of ex vivo 

expanded Tregs, as there were no drugs or molecules that could specifically expand/activate 

Tregs in vivo. We and others recently showed that IL-2, a molecule identified almost 30 years 

ago for its capacity to stimulate T cells in vitro, could be such a molecule [14-17]. We 

performed the first clinical trial aimed at inducing Tregs with IL-2 in patients with an AID 

[17], namely hepatitis C virus (HCV)-related vasculitis (NCT00574652) [20]. We treated 

these patients with low-dose (ld) IL-2 (1.5-3 million international units MIU/day; 52.5 MIU 
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cumulative dose; Proleukin®). The treatment was very well tolerated. Importantly, we 

observed a major expansion of Tregs with subsequent clinical improvement in 8/10 patients 

[17]. Our results showed for the first time that ld-IL-2 could be exploited as an 

immunoregulatory drug for the treatment of AID, acting via Treg expansion/activation. 

Others have reported that low dose IL-2 is safe and beneficial for the treatment of 

alloimmunity, i.e. chronic graft versus host disease (GVHD) [15, 16].  

Based on these results, we evaluated ld-IL-2 in patients with type 1 diabetes (T1D), a 

condition resulting from the chronic autoimmune destruction of pancreatic beta-cells, 

eventually leading to insulin deficiency. There are several reasons for using IL-2 in T1D 

patients: (i) several susceptibility genes are directly connected to the IL-2 pathway: IL-2, 

CD25 (IL-2RA) [21-23], IL-2RB [24], and PTPN2 [25, 26]; (ii) some studies reported Treg 

deficiency in peripheral blood [9, 10], and in pancreatic lymph nodes [27, 28]; (iii) at the time 

of clinical diagnosis, there is significant residual beta-cell function in most patients, so that 

immunotherapy could curtail inflammation, promote immune tolerance, and in turn preserve 

beta-cell mass and function [29]. In Non Obese Diabetic (NOD) mice, a model of 

spontaneous autoimmune diabetes with remarkable similarities to the human disease, IL-2 

prevents T1D and we showed that a short course of IL-2 at diabetes onset led to disease 

reversal in one third of the mice [14, 30]. Finally, the use of immunosuppressants such as 

cyclosporine A (CsA), a calcineurin inhibitor that reduces T cell activation and expansion, 

provided proof of principle that newly-diagnosed T1D could be treated with immunotherapy 

[31-33]. CsA demonstrated clinical efficacy in prolonging endogenous insulin production, but 

remission from autoimmunity was limited to the duration of the treatment and CsA toxicity 

precluded its clinical use. Other immunosuppressive drugs or immunomodulators have been 

tested in clinical trials in T1D, both as short therapy courses or chronic regimens, only in 

some cases resulting in temporary preservation of insulin secretion with better results in 
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subsets of responder patients, as reported recently for therapies with anti-CD3, anti-CD20 and 

CTLA4-Ig [34-38].  

The identification of a dose of IL-2 capable of safely tipping the Treg/Teff balance towards 

Tregs is of major importance. In our vasculitis trial, we showed that IL-2 at the dose of 1.5 

MIU induced Tregs in all 10 patients and was well tolerated. However, the dose to be used in 

T1D was not predictable as (i) some T1D patients may have defects in the IL-2/IL-2R 

activation pathway [39] (ii) HCV vasculitis is an antibody-mediated disease, while in T1D 

beta-cell destruction is mediated by pathogenic Teffs that could respond to IL-2 and thus 

exacerbate disease. Hence, we designed a dose finding trial to define safety and 

immunological responses; we previously reported that a 5-day course of single IL-2 

injections, given at 0.33, 1 or 3 MIU, were well tolerated and stimulated Tregs [40].  

Here, we report the results of detailed immunomonitoring of these patients, showing that ld-

IL-2 induces a dose-dependent, regulatory milieu characterized by broad changes extending 

beyond the primary effect on Tregs. Thus, our study provides important information for 

further developing ld-IL2 therapies. 
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2. Materials and methods 

2.1. Patient characteristics 

Male and female patients aged from 18 to 55 years, with confirmed T1D were recruited at the 

Diabetology Department of the Pitié-Salpêtrière Hospital (Paris, France) and thereafter 

followed at the Clinical Investigation Centre-Paris Est. Written informed consent was 

obtained from all subjects before they were enrolled in the DF-IL2 trial (NCT01353833). 

Detailed patients description, safety analyses and peak effects of the treatment on Tregs have 

been reported [40]. This clinical trial was conducted according to Declaration of Helsinki 

principles. All human studies were approved by the appropriate institutional review boards.  

2.2. Immunomonitoring 

Blood samples were collected according to the planned protocol: absolute numbers of 

lymphocyte subsets and Tregs were monitored at each patient visit: day-1, before treatment; 

day 2-5, during IL-2 administration; day-6; 15, 22, and 60 end of the follow up. 

Tregs phenotyping and cytokines assay were performed at baseline, day 6, 15, 22 and 60. 

Because of the limited amount of blood collected, other phenotypic markers where only 

investigated at baseline and day 15. When possible, cells were frozen for other investigations. 

Stat5 phosphorylation (pSTAT5) was examined on frozen cells from 2 controls and 3 patients 

per treated group. Beta-cell-specific Teff responses were studied in 1 control, 3 patients for 

the dose 0.33, 2 for the dose 1 and 4 for the dose 3.  

2.3. Flow Cytometry and pStat5 analysis 

Flow cytometry and basal pStat5 experiments were performed according to previously 

published methods [17, 41]. Monoclonal antibodies (mAbs) used were CD3-APCa750, CD4-

ECD, CD8-APCa700, CD16-FITC, CD19-ECD, CD45RO-FITC, CD56-PCy7 and CD152-

PE from Beckman Coulter; CD25-PE, CD45RA-APC and CD45RA-PCy7 from BD 
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Biosciences; CD127-FITC from eBioscience; CD25-APC and LAP-PE from R&D Systems 

and GITR-PE from Miltenyi.  

For pSTAT5 activation experiments, peripheral blood mononuclear cells (PBMCs) were 

cultured (500,000/well) for 30 min at 37o C and IL-2 was added for 15 min. Cells were then 

fixed with 1.6% paraformaldehyde, permeabilized with 100% methanol, stained for pSTAT5 

and appropriate surface markers. Events were collected using a LSRFortessa flow cytometer 

(BD Biosciences) and data were analyzed using Diva software (BD Biosciences). To calculate 

EC50, after subtracting the value from the media control, binding data for each sample was 

normalized to 100% based on the maximal response and non-linear regression of these data 

was performed assuming a variable slope using Graph-Pad Prism 6.0.  

2.4. Plasma cytokine measurement  

Plasma samples were collected, aliquoted and stored at −80°C until analyzed. Quantitative 

determination of 26 cytokines/chemokines (GM-CSF, IFN-α2, IFN-γ, IL-1RA, IL1a, IL1β, 

IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p40, IL-12p70 , IL-13, IL-15, IL-17a, CXCL-

10, CCL-2, CCL-3, CCL-4, CCL-2, TNF-α and IL-2RA) was performed using Human 

Milliplex HCYTOMAG-60 kits (Millipore) and TGF-beta using Human TGF-beta1 Platinium 

ELISA (eBioscience) in accordance with the manufacturer protocols. 

2.5. Analysis of beta-cell antigen-specific T-cell responses 

CD4+ and CD8+ T-cell responses were evaluated according to previously published assay 

[42]. 

2.6. Anti-IL-2 antibodies assay  

The presence of plasma IL-2-binding antibodies was studied by ELISA, as previously 

described [43]. Data are the average of two replicates. Positive controls are from ApoE-/- mice 
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that were injected three times a week with 25,000 IU of Proleukin® for 4 months. Mouse 

studies were approved by the appropriate institutional review boards.  

IL-2 neutralizing activity of plasma was assayed in a proliferation assay with Kit 225 cells 

[44]. 10,000 cells/well were cultured (37°C in 5% CO2) in 100 µL of RPMI (Gibco) and 10% 

of BSA. Plasma were preincubated for 1 hour with IL-2 10 IU/ml at 37°C and then added at 

the start of the cultures at a concentration of 20%. Cell proliferation was assayed by counting 

cells at day 3. 

2.7. Transcriptomic analysis  

Transcriptomic analysis was performed using the SurePrint G3 Human GE v2 8x60K 

Microarray (Agilent Technologies, ID: 039494) according to the manufacturer’s protocol and 

to previously published [17]. Cyanine-3 labeled cRNAs were prepared using the One-Color 

Low Input Quick Amp Labeling kit (Agilent Technologies).  

The slides were scanned using a G2565CA Scanner System (Agilent Technologies), and 

using a scan protocol with a resolution of 3 µm and a dynamic range of 20 bit. The resulting 

.tiff images were analyzed with the Feature Extraction Software v10.7.3.1 (Agilent 

Technologies) and using the GE2_107_Sep09 protocol. Original dataset was normalized 

using quantile method implemented in Limma’s package. Probes with bad detection p-values 

(<0.01) in half of the samples of a biological group were discarded. Ranked gene lists were 

obtained using statistical score of paired eBayes implemented in Limma’s package. Gene set 

enrichment analyses were performed using the Blood Transcription Modules [45] added with 

a selection of molecular signatures from C2 database provided by GSEA software [46, 47]. 

Network analyses were performed using Cytoscape 2.8.3 and the plugin Enrichment Map 

dedicated to gene set enrichment analyses. 

All datasets can be accessed in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) 

under accession number E-MTAB-2858.  
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2.8. Statistical analysis 

Data were compared between patients groups using a two-way analysis of variance (ANOVA) 

for repeated measures using GraphPad Prism version 5.0. When the p value of the time by 

treatment interaction was significant (p<0.05), each IL-2 group of patients was compared to 

placebo group. 

Detailed statistical results of two-way ANOVA for repeated measures are shown in the 

Supplementary table 1.  

Principal Component Analyses were then performed on log10-transformed data expressed as 

fold change compared to day 1. Multivariate analyses were performed using R platform 

(www.r-project.org).  

 

3. Results 

3.1. Clinical trial design, patients and safety 

Results presented here are from a randomized, double-blind, placebo-controlled, dose-

finding trial. Patients received a daily sub-cutaneous injection of placebo or 0.33, 1 or 3 MIU 

of IL-2 for 5 consecutive days. They were sampled every day just before the IL-2 injection for 

the first 5 days, then at day 6, 15, 22 and 60 (Supplementary Fig 1). Twenty-four patients (6 

per dose) were included in the per-protocol analysis. No serious adverse events were reported 

during the trial [40]. 

3.2. Dose dependent effects on peripheral blood mononuclear cells 

3.2.1. T, B and NK cells 
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There were no significant changes in CD4+ and CD8+ T cell, B cell and NK cell numbers in 

the two lower dose groups compared to placebo (Supplementary Fig 2). At the dose of 3 

MIU/day, T, B and NK cell numbers were decreased approximately 2 fold during treatment, 

followed by an immediate return to baseline thereafter (Supplementary Fig 2). Regarding cell 

percentages (Supplementary Fig 3), a B cell reduction was observed at the two highest doses 

(p=0.03 at 1 MIU/day and 0.003 at 3 MIU/day) during treatment, followed by a return to 

baseline levels thereafter. No statistically significant variations of NK cell percentages were 

observed at the doses of 0.33 and 1 MIU/day while increase NK proportions were observed at 

the dose of 3 MIU/day (p=0.003). However, at this dose, individual variations of NK cell 

percentages remained in the range observed in the placebo group (see below). Finally, there 

was an increase in CD56bright regulatory NK cells [48] at the dose of 1 MIU/day (p=0.015) 

(Supplementary Fig 4). 

3.2.2. CD4 and CD8 Tregs 

Effects of treatment on the proportions of CD4+ Tregs are shown in Fig 1A. Comparisons 

between placebo and each of the three doses of IL-2 by repeated measures ANOVA showed 

that the day/treatment interaction was highly significant (p<0.0001). Tregs were expanded at 

all doses, and the duration of increase was dose-dependent. By day 15, Tregs returned to 

baseline at the dose of 0.33 MIU/day, but persisted elevated at the dose of 1 MIU/day; 

increased Treg levels were still detected at day 60 at the dose of 3 MIU/day. The increased 

percentage of CD4+ Tregs was associated with an increase in their absolute numbers 

(p<0.0001) (Fig1B), leading to an increase in the Tregs/Teff ratio (p<0.0001) (Fig 1C).  

We previously reported that the very small population of CD8+CD25+Foxp3+ T cells, which 

are suppressive and expanded in colorectal cancer [49], was expanded in the VASCU-IL-2 
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trial [17]. Here, we show a dose-dependent expansion of these CD8+ Tregs (p=0.0002), 

remarkably high at the highest IL-2 dose (p< 0.0001) (Fig 1D).  

3.3. Treg immunophenotyping 

Expanded Tregs displayed a memory phenotype (p=0.0051) [50] and phenotypic features 

characteristic of enhanced activation (Fig 2A). The expression of IL-2 receptor-alpha (CD25) 

was increased in Tregs (Fig 2B), but not in CD4+CD45RA- T effector/memory (TEM) cells 

(not shown), during IL-2 therapy, from day 2 or 3, for all doses (p<0.0001), and rapidly 

returned to baseline values thereafter. This was associated with increased expression of GITR 

(p=0.0058) and CTLA-4 (p<0.0001) (Fig 2C, 2D), whereas TGF-β latency-associated peptide 

(LAP) remained unchanged (data not shown).  

3.4. Tregs show stable, selective, and highly sensitive responses to IL-2.   

An immediate consequence of IL-2 binding to the IL-2R is tyrosine phosphorylation of 

STAT5 (pSTAT5). Basal pSTAT5 levels in Tregs were transiently increased at the 3 

MIU/day dose (p=0.0308) (Fig 2E), which may be related to the increased proportions of 

CD45RA- Tregs (Fig 2A). We also assessed the IL-2-dependent activation of pSTAT5 by 

CD4+ Treg and TEM cells by various amounts of IL-2, for patients’ samples that were obtained 

before and 4-6 days after the initiation of IL-2 therapy. For each patient’s sample examined, 

Tregs showed increased sensitivity to IL-2 when compared to TEM cells. These responses 

were largely comparable to cells from normal controls that did not receive IL-2 therapy (Fig 

3A). This trend was similar regardless of the dose of IL-2 used to treat the patients. In 

addition, the responses during treatment were essentially identical to those detected before ld-

IL-2 therapy. Thus, a short course of IL-2 therapy did not rapidly alter IL-2-dependent 

pSTAT5 activation. By calculating the EC50s of these responses, Tregs from T1D patients 

were approximately 15-20-fold more sensitive to IL-2 that TEM cells (Fig 3B). These analyses 
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of frozen PBMCs resulted in IC50s in a similar range detected for fresh PBMCs, i.e 3-7 pM 

for Tregs and 30-35 pM for CD4+ TEM cells (A.Y, A.P. and T.R.M, unpublished data). 

Overall, these data are consistent with stable, highly sensitive, and selective responses by 

Tregs to IL-2 in these T1D patients.   

3.5. Dose dependent modulation of plasma cytokine profiles 

A panel of 26 cytokines and chemokines were assayed to investigate whether IL-2 could 

influence the balance of Th1/Th2/Th17 cytokines during treatment. The entire cytokine 

profile was tested at day 6, according to dose and to the functional classification of cytokines. 

Dose dependent IL-2 levels could be detected in the plasma. A radar chart (Fig 4A) illustrates 

a clear trend for a dose-dependent increase of Treg-related cytokines, while the other 

cytokines are modestly affected at the 0.33 and 1 MIU/day doses. At 3 MIU/day, there are 

discrete and more pronounced cytokine increases, notably for CXCL10 and IL-5 whereas 

other cytokines tested remained unchanged (Fig 4A). Principal Component Analyses of these 

results illustrate this dose-dependent trend: the 0.33 MIU/day patients largely overlap with 

placebo-treated patients, while the 1 and 3 MIU/day patients show more distinct behaviors 

(Fig 4B). 

Repeated measures ANOVA for the day/treatment interaction were significant for IL-2, IL-

2RA, IL-5, IL-10, IL-17, TNF-alpha, TGF-beta1, CCL22, and CXCL10 (p<0.0001 for IL-2, 

IL-2RA, IL-5, IL10, CXCL10 and TNF-alpha, p=0.0006 for TGF-beta1, p=0.0059 for IL-17 

and p=0.0096 for CCL22) (Fig 4A and supplementary Table 1). The time-course changes for 

cytokines show a dose-dependent and rapid increase, with values already elevated at day 2 

(Fig 4C). The increase of IL-17 was only observed at the 3 MIU/day dose (Fig 4C), but this 

was paralleled by an increase in the regulatory cytokine TGF-beta.  

3.6. Transcriptomic analysis 
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We compared the global transcriptome of PBMCs at baseline and day-6. For each IL-2 

treatment dose (0.33, 1 and 3 MUI), Enrichment Map analysis was performed on significantly 

up- and down-regulated molecular signatures (q-value < 0.05). Network analyses of 

significantly enriched molecular signatures show a good consistency for all IL-2 doses (Fig 

5). Whatever the IL-2 dose, there is a striking down regulation of B-cells related signatures, 

and an up regulation of molecular signatures related to cell cycle and transcription. 

Chemokines associated signatures are found down regulated with the 2 lowest IL-2 doses, but 

up-regulated at the dose of 3 MIU/day, a dose at which NK cells signatures also became up-

regulated.  

The molecular signature related to FOXP3 target genes [51] is non-significantly up-regulated 

at the lowest dose (q-val=0.2), and significantly enriched and up-regulated at the dose of 1 

and 3 MIU/day.  

3.7. Modulation of beta-cell-specific Teff responses 

Preproinsulin (PPI) and glutamic acid decarboxylase (GAD) are beta-cell autoantigens 

commonly targeted by pathogenic Teffs in T1D patients. We therefore investigated T-cell 

responses directed to GAD, proinsulin (PI), C-peptide and the PPI signal peptide during ld-

IL-2 treatment in 10 patients for whom samples from different time points (day 1, 6, 15 and 

22) were available. Compared to pre-treatment values, many treated patients showed a 

reduction or stabilization of IFN-gamma responses to most antigens between day 6 and 22 

(Fig 6). Specifically, we observed consistent suppression of all Teff responses tested in 1/3, 

1/2 and 4/4 patients treated with 0.33, 1 and 3 MIU of IL-2, respectively. The suppressive 

effect on these responses was maintained after cessation of IL-2 therapy at the higher 3 

MIU/day dose (Fig 6), up to day 22. 

3.8. Anti-IL-2 antibodies are not induced by ld-IL-2  
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We did not observe induction of anti-IL-2 antibodies and neutralizing antibodies in the 

plasma, at any time during the follow-up (Fig 7). While a very small reactivity against IL-2 

could be detected in some patients, (i) it was not increased by IL-2 administration (Fig 7A and 

B) and (ii) it did not neutralize the effect of IL-2 on the proliferation of an IL-2-dependent cell 

line (Fig 7C). 

4. Discussion 

4.1. On finding an optimal IL-2 dose for Treg specific expansion/activation 

IL-2 has been initially described as a T cell growth factor [52] and developed for the 

treatment of conditions calling for the boosting of Teffs, i.e. cancer and infections [53, 54]. 

However, IL-2 is dispensable for the differentiation, survival and function of Teffs, as IL-2-/- 

mice develop T-cell-mediated autoimmunity [55]. In contrast, IL-2 is essential for the 

differentiation, survival and function of Tregs [56, 57]. IL-2 also has pleiotropic functions and 

can activate Teffs and notably memory CD8+ Teffs, and using IL-2 for treating T-cell 

mediated AID by promoting Treg function carries the risk of stimulating Teffs and could 

potentially worsen disease. Thus, therapeutic use of IL-2 to control autoimmunity requires 

identifying doses that selectively promote Treg function without activating effector 

populations. 

The present study shows that the 0.3 to 3 MIU/day dose range is safe and effectively 

expanded/activated Tregs in T1D patients. The IL-2 dose-range of 0.3 to 1 MIU/day, given 

for 5 days effectively expands and activates Tregs without untoward effects on Teffs or NK 

cells. These results are in line with a recent study of low dose IL-2 (≈0.1 to 0.4 MIU/day for 

five days) in healthy adults [58]. At the dose of 3 MIU/day, the effect on Tregs is even more 

pronounced and importantly more durable; yet at this dose, we observed a trend toward NK 
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cell expansion (Supplementary Fig 2), a trend for chemokine cytokine/chemokine increase 

(Fig 4), and more frequent mild to moderate side effects [40].  

Under the assumption that chronic diseases will require maintaining increased proportion of 

Tregs over time, repeated treatment will likely be necessary. The appropriate dosing should 

consider the patient population, the duration and frequency of the treatment, and the 

cumulative dosing effects in relation to time. The duration of Tregs expansion, which is 

clearly dose-dependent, is a major parameter to take in consideration for designing regimen of 

administration. Using results from this trial, we modeled that at a dose of 1 MIU/day, a 5-day 

induction course followed by one injection every two weeks would allow to maintain a 

modest increase (< 30%) of Tregs throughout the treatment period, a dosing that we currently 

use in a trial investigating ld-IL-2 in 11 different AIDs (NCT01988506). 

4.2. On the effect of IL-2 on the immune environment 

At the dose of 1 and 3 MIU/day, we observed a significant and unexpected decrease in B cell 

percentages, correlating with increases in Treg but not NK cells (Supplementary Fig 2). 

Interpretation of this finding is not straightforward. A direct effect of IL-2 on mature B cells 

is unlikely because they do not express CD25 nor the signal transducing beta and gamma 

chains of the IL2 receptor [59]. The clinical significance of these findings remains to be 

clarified in future studies, particularly because a decrease in B cells could be advantageous for 

the treatment of B cell dependent AIDs.  

IL-2 induces a clear shift of the peripheral blood immune environment towards a regulatory 

milieu, as reflected not only by changes in cell proportions, but also by plasma proteomics. 

This shift is dose-dependent, as well illustrated by the unsupervised statistical analyses (Fig 

4B). These results suggest a broad anti-inflammatory effect of ld-IL-2 [17] and thus a broader 

therapeutic scope. 
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IL-10 and TGF-beta, two cytokines involved in suppressive functions, are also increased by 

IL-2 therapy, more pronouncedly at 3 MIU/day. At the same dose, there is an increase in IFN-

gamma, which is usually classified as a Th1 cytokine. However, this is the only Th1 cytokine 

impacted and it was only modestly elevated, possibly coming from IFN-gamma secreting 

Tregs [60]. IL-17 was moderately increased only at the 3 MIU/day dose, a dose at which IL-2, 

IL-10 and TGF-beta were markedly increased; thus, the overall balance still appears tipped 

towards a regulatory milieu at this dose. Consistent with this interpretation, beta-cell-specific 

Teff responses were reduced in 6/9 patients tested during treatment, importantly in 4/4 treated 

with the 3 MIU/day dose (Fig 6), with no reductions in the placebo-treated patient tested. 

Thus, altogether, there is a clear IL-2 dose-dependent tuning of the immune response towards 

regulation of effector responses, including disease-specific, autoreactive Teff responses.  

At the dose of 3 MIU/day, there was a marked increase of IL-5 levels (Fig 4A), a cytokine 

involved in eosinophil homeostasis. However, at the single and cumulative doses used, our 

available data show only a modest increase in eosinophil counts. This contrasts with the 

marked increase reported by others at doses of IL-2 that were higher and/or given over a 

longer time course [15, 61]. These results are compatible with IL-2 triggering IL-5 production 

by stimulating ILC2 cells, which are CD25+ [62]. However, ILC2 also produce IL-13, IL-9 

and IL-4 [62], which were not increased in patients’ plasma. Of note, it has been reported that 

IL-5 promotes induction of antigen-specific Treg that suppress autoimmunity [63]. 

Importantly, at the 1 MIU/day dose, IL-5 was not induced, further pointing at this dose as 

safer choice for chronic administration.  

4.3. On IL-2 and therapy and prevention of AIDs 

AIDs often develop over a long period of time and are chronic, with a progressive 

aggravation. Early intervention with ld-IL2 could help reestablish a proper immune milieu 
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and slow-down or even reverse the process. This is exemplified in T1D, for which at 

diagnosis most patients still maintain a functional mass of pancreatic β-cells and produce 

insulin upon stimulation. Halting beta-cell autoimmune destruction and preserving residual 

beta-cells soon after diagnosis could prevent further disease progression, thus improving 

clinical management and long-term outcomes for patients with T1D. In this perspective, our 

initial results showing the blunting of beta-cell-specific Teffs during ld-IL-2 are very 

encouraging. We caution that such analyses could be performed only in a subset of patients 

and thus further study and validation are needed, which we will pursue in our efficacy trial of 

ld-IL-2 in patients with T1D (NCT01862120).  

We believe that there may be even greater potential for using ld-IL-2 to prevent AIDs. 

Providing a boost to Tregs in patients at risk for AIDs, such as autoantibody-positive relatives 

of T1D patients, could help delay or prevent the onset of the full-blown disease. Moreover, 

boosting Tregs with ld-IL2 could also prevent or decrease the frequency and severity of 

relapses in relapsing-remitting diseases like multiple sclerosis (MS).  

Finally, ld-IL-2 has now been used successfully in the setting of chronic and acute GVHD 

[15, 64] and several AIDs, such as HCV-vasculitis [17], T1D [40], alopecia areata [65], and 

SLE [66-68]. A therapeutic benefit was observed in most patients treated in these trials. This 

changes the paradigm of a highly focused effect of ld-IL-2 on Tregs to one where IL-2 has a 

broader regulatory influence on the homeostasis of the immune system, and notably 

inflammation. As such, future studies should explore further the effects of IL-2 and define 

efficacious ld-IL-2 regimens that can benefit patients currently suffering from several forms 

of AID and inflammatory disorders. 
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Figure legends 

Fig 1: Dose-dependent increase of Treg in T1D patients treated by ld-IL-2 

Each curve represents changes in CD25highCD127-Foxp3+ among CD4+ T cells (percentages 

in A and absolute numbers in B), in Treg/Teff ratio (C) and in percentages of 

CD8+CD25+Foxp3+ cells (D). Data are shown as mean ± SEM of individual results 

normalized by baseline values for each patient at different time points (the grey zone 

represents the 5 days IL-2 treatment). 
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Fig 2: Dose-dependent Treg activation in T1D patients treated by ld-IL-2 

Curves represent changes in Treg activation markers. Percentage of CD25highCD127-

CD45RA- Tregs among CD4+ cells (A). CD25 MFI (B), percentage of GITR+ (C), CTLA-4+ 

(D) and basal pSTAT5 expression (E) in CD4+CD25highCD127-Foxp3+Tregs. Data are shown 

as mean ± SEM of patients’ values normalized by individual baseline values at different time 

points (the grey zone represents the 5 days IL-2 treatment). Results are for all 6 patients per 

group, except for pSTAT5 measurement for which 2, 3, 3 and 3 patients were studied for the 

0, .33, 1 and 3 MIU doses, respectively.  
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Fig 3: Selective IL-2-dependent activation of STAT5 by Tregs does not vary after ld-IL-

2 therapy 

PBMC from controls (n=4) or patients treated with 0.33 MIU (n=3), 1 MIU (n=2), and 3 MIU 

(n=3) of IL-2 were stimulated with IL-2 for 15 minutes and the activation of pSTAT5 was 

determined for CD4+ Foxp3+ Tregs and CD4+ Foxp3- CD45RA- TEM cells. (A) Dose response 

curves and (B) non linear regression analyses of the binding data for the indicated cell 

populations. The numbers on the regression curves are the EC50s.  
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Fig 4: Dose-dependent changes in cytokines and chemokines in the plasma of T1D 

patients treated by ld-IL-2 

Plasma cytokines and chemokines were measured by luminex assay, except for TGF-beta 

measured by ELISA. Radar chart representation of Treg/anti-inflammatory, 

Th1/Th17/inflammatory and Th2 cytokines at day 6 of follow-up (A). For each cluster of 

cytokines, patient projections according to the first two PCA components (capturing more 

than 70% of the overall variability) (B). Time course changes of representative cytokines (C). 

Data are shown as mean ± SEM of patients’ values normalized by individual baseline values 

at different time points.  
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Fig 5: Clustering of significantly regulated molecular signatures from PBMCs.  

For each IL-2 treatment dose (0.33, 1 and 3 MIU), Enrichment Map analysis was performed 

on significantly up- and down-regulated molecular signatures, in red and green, respectively 

(q-value < 0.05). Clusters have been labelled according to their main biological feature. Size 

of nodes (circles) is proportional to the number of genes in the signature; width of bars linking 

nodes is related to the Jaccard coefficient between two signatures. Signatures without 

connection are not shown.  
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Fig 6: Modifications of β-cell-specific T-cell responses and Treg numbers in ld-IL-2-

treated T1D patients 

PBMCs from T1D patients were analyzed for IFN-γ T-cell responses against β-cell protein 

antigens (left Y axis) at different time points. Percentages of Tregs are shown by the dashed 

red line (right Y axis). Results are expressed as fold changes normalized to day 1 (baseline). 

Each graph represents one patient except the bottom right graph which represents the median 

and range fold changes of 4 patients treated at 3 MIU /day.  
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Fig 7: Anti-IL-2 antibodies study  

Patients’ plasma were tested for the presence of anti-IL-2 antibodies at different time points. 

(A) Mean values for anti-IL-2 Ig in patients and healthy donors (HD) plasma and for anti-

human IL-2 Ig in plasma of mice treated for 4 months with human IL-2. (B) Individual time 

course of human Ig anti-IL-2 among normal and low responders group. (C) Proliferation of 

the IL-2 dependent Kit 225 cells in presence of patients and HD plasma, or an anti-IL-2 

neutralizing antibody. 
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Supplementary figures and table 

 

Supplementary Fig 1: Trial design 
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Supplementary Fig 2: Effect of ld-IL-2 on Lymphocyte Subpopulations numbers during 

follow up of patients groups  

Flow cytometry quantification of total lymphocytes (A), CD3+CD4+ T cells (B), CD3+CD8+ T 

cells (C), CD4+/CD8+ T-cell ratio (D), CD19+ B cells (E), CD3-CD56+NK cells (F), in blood 

of patients. Data are shown as mean ± SEM of absolute cell numbers/mm3 normalized by 

individual baseline values for each patient at the different time points. 
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Supplementary Fig 3: Effect of ld-IL-2 on lymphocyte subpopulations percentages 

during follow up of patients groups  

% CD3+CD4+ T cells (A), CD3+CD8+ T cells (B), CD3-CD56+NK cells (C), CD19+ B cells 

(D) in blood of patients. Data are shown as mean ± SEM of cell percentages normalized by 

individual baseline values for each patient at the different time points.  
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Supplementary Fig 4: CD56bright NK cells changes under ld-IL-2 therapy  

Representation of CD56bright cells percentages within CD3-CD56+ NK cells. Data are shown 

as mean ± SEM of cell percentages normalized by individual baseline values in each group of 

6 patients at day 15. 
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Supplementary Table 1: Detailed statistical results of two-way ANOVA for repeated 

measures: time by treatment interaction 

   All dose groups Dose0.33 vs placebo Dose1 vs placebo Dose3 vs placebo 

Fig. 1 

 

          

% treg/CD4 <0.0001 <0.0001 <0.0001 <0.0001 

CD4+Treg/mm3 <0.0001 0.012 0.002 <0.0001 

% Treg/Teff <0.0001 <0.0001 <0.0001 <0.0001 

% CD8+Treg/CD8 0.0002 0.008 0.001 <0.0001 

           

Fig. 2 

% CD45RA- Treg 0.0051 0.0451 0.0004 <0.0001 

CD25 MFI <0.0001 <0.0001 <0.0001 <0.0001 

% GITR 0.0058 0.0193 0.0068 <0.0001 

% CTLA-4 <0.0001 0.0247 0.0024 0.0005 

% LAP ns - - - 

pSTAT5 MFI 0.0308 0.0372 ns ns 

      

Fig. 3 

IL-2 <0.0001 0.03 <0.0001 <0.0001 

IL-2RA <0.0001 ns <0.0001 <0.0001 

IL-10 <0.0001 ns ns 0.0002 

TGF-β 0.0006 0.002 ns 0.036 

IL-17A 0.0059 ns ns 0.019 

IFN-γ ns - - - 

TNF-α <0.0001 0.039 ns <0.0001 

IL-5 <0.0001 ns ns 0.0003 

CCL22 0.0096 0.01 ns ns 

CXCL10 <0.0001 0.002 <0.0001 <0.0001 

Fig. 

S2 

Lymphocytes/mm3 <0.0001 ns ns <0.0001 

CD4+/mm3 0.0005 ns ns 0.0029 

CD8+/mm3 <0.0001 ns ns <0.0001 

CD4/CD8 0.0075 0.002 ns 0.0003 

B CD19+/mm3 <0.0001 ns ns 0.001 

NK CD3-

CD56+/mm3 
<0.0001 ns ns 0.002 

      

Fig. 

S3 

CD4+ (%) ns - - - 

CD8+ (%) 0.04 0.006 0.01 0.006 

CD19+ (%) <0.0001 ns 0.03 <0.0001 

NK CD3-CD56+ 

(%) 
0.0003 ns ns 0.0003 
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