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Outline of a New Approach to the Analysis of
Complex Systems and Decision Processes

LOTFI A. ZADEH

Abstract-The approach described in this paper represents a substan- theory in the design of highly accurate space navigation
tive departure from the conventional quantitative techniques of system systems have stimulated its use in the theoretical analyses
analysis. It has three main distinguishing features: 1) use of so-called of economic and biological systems. Similarly, the effective-
"linguistic" variables in place of or in addition to numerical variables;
2) characterization of simple relations between variables by fuzzy ness of computer simulation techniques in the macroscopic
conditional statements; and 3) characterization of complex relations by analyses of physical systems has brought into vogue the use
fuzzy algorithms. of computer-based econometric models for purposes of
A linguistic variable is defined as a variable whose values are sentences forecasting, economic planning, and management.

in a natural or artificial language. Thus, if tall, not tall, very tall, very Given the deeply entrenched tradition of scientific think-
very tall, etc. are values of height, then height is a linguistic variable.
Fuzzy conditional statements are expressions of the form IF A THEN B, ing which equates the understanding of a phenomenon with
where A and B have fuzzy meaning, e.g., IF x is small THEN y iS large, the ability to analyze it in quantitative terms, one is certain
where small and large are viewed as labels of fuzzy sets. Afuzzy algorithm to strike a dissonant note by questioning the growing
is an ordered sequence of instructions which may contain fuzzy assignment tendency to analyze the behavior of humanistic systems as
and conditional statements, e.g., x = very small, IF X iS small THEN Y 15 if they were mechanistic systems governed by difference,
large. The execution of such instructions is governed by the compositional
rule of inference and the rule of the preponderant alternative. diferential, or integral equations. Such a note is struck in
By relying on the use of linguistic variables and fuzzy algorithms, the the present paper.

approach provides an approximate and yet effective means of describing Essentially, our contention is that the conventional
the behavior of systems which are too complex or too ill-defined to admit quantitative techniques of system analysis are intrinsically
of precise mathematical analysis. Its main applications lie in economics, te dea
management science, artificial intelligence, psychology, linguistics, unsui ling with humanistic systems or, for that

information retrieval, medicine, biology, and other fields in which the matter, any system whose complexity is comparable to that
dominant role is played by the animate rather than inanimate behavior of of humanistic systems. The basis for this contention rests
system constituents. on what might be called the principle of inconmpatibility.

Stated informally, the essence of this principle is that as
the complexity of a system increases, our ability to make

I. INTRODUCTION precise and yet significant statements about its behavior
diminishes until a threshold is reached beyond which

THE ADVENT of the computer age has stimulated a precision and significance (or relevance) become almost
rapid expansion in the use of quantitative techniques mutually exclusive characteristics.1 It is in this sense that

for the analysis of economic, urban, social, biological, and precise quantitative analyses of the behavior of humanistic
other types of systems in which it is the animate rather systems are not likely to have much relevance to the real-
than inanimate behavior of system constituents that plays world societal, political, economic, and other types of
a dominant role. At present, most of the techniques em- problems which involve humans either as individuals or in
ployed for the analysis of humanistic, i.e., human-centered, groups.
systems are adaptations of the methods that have been An alternative approach outlined in this paper is based
developed over a long period of time for dealing with on the premise that the key elements in human thinking are
mechanistic systems, i.e., physical systems governed in the not numbers, but labels of fuzzy sets, that is, classes of
main by the laws of mechanics, electromagnetism, and objects in which the transition from membership to non-
thermodynamics. The remarkable successes of these methods membership is gradual rather than abrupt. Indeed, the
in unraveling the secrets of nature and enabling us to build pervasiveness of fuzziness in human thought processes
better and better machines have inspired a widely held suggests that much of the logic behind human reasoning is
belief that the same or similar techniques can be applied not the traditional two-valued or even multivalued logic,
with comparable effectiveness to the analysis of humanistic but a logic with fuzzy truths, fuzzy connectives, and fuzzy
systems. As a case in point, the successes of modern control rules of inference. In our view, it is this fuzzy, and as yet

not well-understood, logic that plays a basic role in what
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upon the human brain those and only those subcollections If we regard the color of an object as a variable, then its
which are relevant to the performance of the task at hand. values, red, blue, yellow, green, etc., may be interpreted as
By its nature, a summary is an approximation to what it labels of fuzzy subsets of a universe of objects. In this

summarizes. For many purposes, a very approximate sense, the attribute color is afuzzy variable, that is, a variable
characterization of a collection of data is sufficient because whose values are labels of fuzzy sets. It is important to note
most of the basic tasks performed by humans do not that the characterization of a value of the variable color by
require a high degree of precision in their execution. The a natural label such as red is much less precise than the
human brain takes advantage of this tolerance for im- numerical value of the wavelength of a particular color.
precision by encoding the "task-relevant" (or "decision- In the preceding example, the values of the variable
relevant") information into labels of fuzzy sets which bear color are atomic terms like red, blue, yellow, etc. More
an approximate relation to the primary data. In this way, generally, the values may be sentences in a specified
the stream of information reaching the brain via the visual, language, in which case we say that the variable is linguistic.
auditory, tactile, and other senses is eventually reduced to To illustrate, the values of the fuzzy variable height might
the trickle that is needed to perform a specified task with be expressible as tall, not tall, somewhat tall, very tall, not
a minimal degree of precision. Thus, the ability to manip- very tall, very very tall, tall but not very tall, quite tall, more
ulate fuzzy sets and the consequent summarizing capability or less tall. Thus, the values in question are sentences formed
constitute one of the most important assets of the human from the label tall, the negation not, the connectives and
mind as well as a fundamental characteristic that dis- and but, and the hedges very, somewhat, quite, and more or
tinguishes human intelligence from the type of machine less. In this sense, the variable height as defined above is a
intelligence that is embodied in present-day digital com- linguistic variable.
puters. As will be seen in Section III, the main function of
Viewed in this perspective, the traditional techniques of linguistic variables is to provide a systematic means for

system analysis are not well suited for dealing with human- an approximate characterization of complex or ill-defined
istic systems because they fail to come to grips with the phenomena. In essence, by moving away from the use of
reality of the fuzziness of human thinking and behavior. quantified variables and toward the use of the type of
Thus, to deal with such systems realistically, we need ap- linguistic descriptions employed by humans, we acquire a
proaches which do not make a fetish of precision, rigor, capability to deal with systems which are much too complex
and mathematical formalism, and which employ instead a to be susceptible to analysis in conventional mathematical
methodological framework which is tolerant of imprecision terms.
and partial truths. The approach described in the sequel 2) Characterization of Simple Relations Between Fuzzy
is a step-but not necessarily a definitive step in this Variables by Conditional Statements: In quantitative ap-
direction. proaches to system analysis, a dependence between two
The approach in question has three main distinguishing numerically valued variables x and y is usually charac-

features: 1) use of so-called "linguistic" variables in place terized by a table which, in words, may be expressed as a
of or in addition to numerical variables; 2) characterization set of conditional statements, e.g., IF x is 5 THEN y iS 10,
of simple relations between variables by conditional fuzzy IF x is 6 THEN y iS 14, etc.
statements; and 3) characterization of complex relations by The same technique is employed in our approach, except
fuzzy algorithms. Before proceeding to a detailed discussion that x and y are allowed to be fuzzy variables. In particular,
of our approach, it will be helpful to sketch the principal if x and y are linguistic variables, the conditional statements
ideas behind these features. We begin with a brief explana- describing the dependence of y on x might read (the
tion of the notion of a linguistic variable. following italicized words represent the values of fuzzy vari-

1) Linguistic and Fuzzy Variables: As already pointed ables):
out, the ability to summarize information plays an essential
role in the characterization of complex phenomena. In the IF X IS Small THEN Y iS very large
case of humans, the ability to summarize information finds IF x is not very small THEN y iS very very large
its most pronounced manifestation in the use of natural IF X is not small and not large THEN y is not very large
languages. Thus, each word x in a natural language L may and so forth.
be viewed as a summarized description of a fuzzy subset Fuzzy conditional statements of the form IF A THEN B,
M(x) of a universe of discourse U, with M(x) representing where A and B are terms with a fuzzy meaning, e.g., "IF
the meaning of x. In this sense, the language as a whole John is nice to you THEN you should be kind to him," are
may be regarded as a system for assigning atomic and used routinely in everyday discourse. However, the meaning
composite labels (i.e., words, phrases, and sentences) to the of such statemenlts when used in communication between
fuzzy subsets of U. (This point of view is discussed in humans is poorly defined. As will be shown in Section V,
greater detail in [4] and [5].) For example, if the meaning the conditional statement IF A THEN B can be given a
of the noun flower is a fuzzy subset M(flower), and the precise meaning even when A and B are fuzzy rather than
meaning of the adjective red is a fuzzy subset M(red), then nonfuzzy sets, provided the meanings of A and B are
the meaning of the noun phrase redflower is given by the defined precisely as specified subsets of the universe of
intersection of M(red) and M(flower). discourse.
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In the preceding example, the relation between two fuzzy application can be adjusted to fit the needs of the task and
variables x and y is simple in the sense that it can be charac- the accuracy of the available data. This flexibility constitutes
terized as a set of conditional statements of the form IF A one of the important features of the method that will be
THEN B, where A and B are labels of fuzzy sets representing described.
the values of x and y, respectively. In the case of more
complex relations, the characterization of the dependence II. FUZZY SETS: A SUMMARY OF RELEVANT PROPERTIES
of y on x may require the use of a fuzzy algorithm. As In order to make our exposition self-contained, we shall
indicated below, and discussed in greater detail in Section summarize in this section those properties of fuzzy sets
VI, the notion of a fuzzy algorithm plays a basic role in which will be needed in later sections. (More detailed
providing a means of approximate characterization of fuzzy discussions of topics in the theory of fuzzy sets which are
concepts and their interrelations. relevant to the subject of the present paper may be found

3) Fuzzy-Algorithmic Characterization of Functions and in [1]-[17].)
Relations: The definition of a fuzzy function through the
use of fuzzy conditional statements is analogous to the Notation and Terminology
definition of a nonfuzzy function f by a table of pairs A fuzzy subset A of a universe of discourse U is charac-
(x,f(x)), in which x is a generic value of the argument of terized by a membership function YA: U -+ [0,1] which
f and f(x) is the value of the function. Just as a nonfuzzy associates with each element y of U a number gY(y) in the
function can be defined algorithmically (e.g., by a program) interval [0,1] which represents the grade of membership of
rather than by a table, so a fuzzy function can be defined y in A. The support of A is the set of points in U at which
by a fuzzy algorithm rather than as a collection of fuzzy IA(Y) is positive. A crossover point in A is an element of U
conditional statements. The same applies to the definition whose grade of membership in A is 0.5. A fuzzy singleton
of sets, relations, and other constructs which are fuzzy in is a fuzzy set whose support is a single point in U. If A is
nature. a fuzzy singleton whose support is the point y, we write

Essentially, a fuzzy algorithm [6] is an ordered sequence
of instructions (like a computer program) in which some of A = g/y (2.1)
the instructions may contain labels of fuzzy sets, e.g.: where , is the grade of membership of y in A. To be con-

Reduce x slightly if y is large sistent with this notation, a nonfuzzy singleton will be
Increase x very slightly if y is not very large and not very denoted by 1/y.
small A fuzzy set A may be viewed as the union (see (2.27)) of
If x is small then stop; otherwise increase x by 2. its constituent singletons. On this basis, A may be repre-

sented in the form
By allowing an algorithm to contain instructions of this
type, it becomes possible to give an approximate fuzzy- A = FA(Y)/Y (2.2)
algorithmic characterization of a wide variety of complex u
phenomena. The important feature of such characteriza- where the integral sign stands for the union of the fuzzy
tions is that, though imprecise in nature, they may be singletons PA(y)/y.If A has a finite support {y,y2, Yn}
perfectly adequate for the purposes of a specified task. In then (2.2) may be replaced by the summation
this way, fuzzy algorithms can provide an effective means
of approximate description of objective functions, con- A = ,u1/y1 + . + gnlYn (2.3)
straints, system performance, strategies, etc. or

In what follows, we shall elaborate on some of the basic A =
n

(2.4)
aspects of linguistic variables, fuzzy conditional statements,
and fuzzy algorithms. However, we shall not attempt to in which 1ii = 1,.* ,n, is the grade of membership of yi
present a definitive exposition of our approach and its in A. It should be noted that the + sign in (2.3) denotes the
applications. Thus, the present paper should be viewed union (see (2.27)) rather than the arithmetic sum. In this
primarily as an introductory outline of a method which sense of +, a finite universe of discourse U =

sum.

* s

departs from the tradition of precision and rigor in scientific yn} may be represented simply by the summation
analysis-a method whose approximate nature mirrors the
fuzziness of human behavior and thereby offers a promise U = Y1 + Y2 + *'' + Yn (2.5)
of providing a more realistic basis for the analysis of or
humanistic systems. U = S Yi (2.6)
As will be seen in the following sections, the theoretical U i= (26

foundation of our approach is actually quite precise and although, strictly, we should write (2.5) and (2.6) as
rather mathematical in spirit. Thus, the source of impreci-
sion in the approach is not the underlying theory, but the U = l/y1 + l/y2 ±+. + l/yn (2.7)
manner in which linguistic variables and fuzzy algorithms and
are applied to the formulation and solution of real-world =n /~ 28
problems. In effect, the level of precision in a particular i128
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Fuzzy Relations
YOUNG OD

Afuzzy relation R from a set X to a set Y is a fuzzy subset
l >------- - of the Cartesian product X x Y. (X x Y is the collection

of ordered pairs (x,y), x E X, y E Y). R is characterized by
0.5 ------ a bivariate membership function PR(x,y) and is expressed

AGE R _ PR(X,YW/X,Y). (2.19)
CROSSOVER PTS. X xY

Fig. 1. Diagrammatic representation of young and old. More generally, for an nary fuzzy relation R which is a

fuzzy subset of Xl x X2 x x X", we have

As an illustration, suppose that
R _ UR(~PXI, _,XX)(X1, * ** xn

U = 1 + 2 + + 10. (2.9) x x xx,
xi E Xi, i- 1, n. (2.20)

Then a fuzzy subset2 of U labeled several may be expressed As an illustration if
as (the symbol A stands for "equal by definition," or "is1
defined to be," or "denotes") X = {TOM, DICK} and Y = {JOHN, JIM}

several A 0.5/3 + 0.8/4 + 1/5 + 1/6 + 0.8/7 + 0.5/8. then a binary fuzzy relation of resemblance between
(2.10) members of X and Y might be expressed as

Similarly, if U is the interval [0,100], with y A age, then resemblance = 0.8/(TOM, JOHN) + 0.6/(TOM, JIM)
the fuzzy subsets of U labeled young and old may be + 0.2/(DICK, JOHN) + 0.9/(DICK, JIM).
represented as (here and elsewhere in this paper we do not
differentiate between a fuzzy set and its label) Alternatively, this relation may be represented as a rela-

tion matrix

young = 1/y + I(1 + (y l25)) y (2.11) JOHN JIM

rioo 1 ~~~~~~~-i~~TOM [0.8 0.6](.1
old = J (1+ (y 5) ) /Y. (2.12) DICK [0.2 0.9]

in which the (i,j)th element is the value of p!R(x,y) for the
(see Fig. 1). ith value of x and the jth value of y.
The grade of membership in a fuzzy set may itself be a If R is a relation from X to Y and S is a relation from

fuzzy set. For example, if Y to Z, then the composition of R and S is a fuzzy relation
denoted by R o S and defined by

U = TOM + JIM + DICK + BOB (2.13)
and A is the fuzzy subset labeled agile, then we may have R ° S A T V (YR(X,y) A gj(y,Z))/(X,Z) (2.22)

xxz Y

agile = medium/TOM + low/JIM where v and A denote, respectively, max and min.3 Thus,

+ low/DICK + high/BOB. (2.14) for real a,b,

In this representation, the fuzzy grades of membership low, a v b= max (a,b)-A a if a . b
medium, and high are fuzzy subsets of the universe V - b, if a < b (2.23)

V = 0 + 0.1 + 0.2 + + 0.9 + 1 (2.15) a A b =min(a,b)-(b if a > b (2.24)
which~ ~ ~ ~~ ~ ~ ~~~~~~~~~~~~~~~~~~ ~b areadefined bywhich are defined by and v 1S the supremum over the domaln of y.
low = 0.5/0.2 + 0.7/0.3 + 1/0.4 + 0.7/0.5 + 0.5/0.6 If the domains of the variables x, y, and z are finite sets,

then the relation matrix for R o S is the max-min product4
(2.16) of the relation matrices for R and S. For example, the max-

medium = 0.5/0.4 + 0.7/0.5 + 1/0.6 + 0.7/0.7 + 0.5/0.8 min product of the relation matrices on the left-hand side
(2.17) of (2.25) results in the relation matrix R o 5 shown on the

high = 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1. (2.18) 3 Equation (2.22) defines the max-mmn composition of R and S.
Max-product composition is defined similarly, except that A is
replaced by the arithmetic product. A more detailed discussion of

2 A is a subset of B, written A C B, if and only if IIA(Y) . IJB(y), for these compositions may be found in [2].
ally in U. For example, the fuzzy set A = 0.6/1 + 0.3/2 is a subset of 4 In the max-mmn matrix product, the operations of addition and
B = 0.8/1 + 0.5/2 + 0.6/3. multiplication are replaced by v and A, respectively.
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right-hand side of Based on (2.36), A', where ox is any positive number, is

R S R oS defined by
E0.3 0.8] 0.5 0.9] _04 0.8] A a r(Ay)y (2.401)
0.6 0.9 [0.4 1 j[05 0.9j (2.25)

Operations on Fuzzy Sets Similarly, if oc is a nonnegative real number, then

The negation not, the connectives and and or, the hedges xaA F| A(Y)IY. (2.41)
very, highly, more or less, and other terms which enter in u
the representation of values of linguistic variables may be As an illustration, if A is expressed by (2.37), then
viewed as labels of various operations defined on the
fuzzy subsets of U. The more basic of these operations will A2 = 0.64/2 + 0.81/5 (2.42)
be summarized. 0.5A = 0.4/2 + 0.45/5. (2.43)
The complement of A is denoted A and is defined by

In addition to the basic operations just defined, there are

A A (1 - A(Y))/Y (2.26) other operations that are of use in the representation of
"u linguistic hedges. Some of these will be briefly defined. (A

The operation of complementation corresponds to negation. more detailed discussion of these operations may be found
Thus, if x is a label for a fuzzy set, then not x should be in [15].)
interpreted as x. (Strictly speaking, m operates on fuzzy The operation of concentration is defined by
sets, whereas not operates on their labels. With this under- CON (A) A A2 (2.44)
standing, we shall use m and not interchangeably.)
The union of fuzzy sets A and B is denoted A + B and Applying this operation to A results in a fuzzy subset of A

is defined by such that the reduction in the magnitude of the grade of
membership of y in A is relatively small for those y which

A + B A (PA(W) V uB(Y))/Y. (2.27) have a high grade of membership in A and relatively large
"u for the y with low membership.

The union corresponds to the connective or. Thus, if u and The operation of dilation is defined by
v are labels of fuzzy sets, then DIL (A) A A°5 (2.45)

u or v A u + v (2.28) The effect of this operation is the opposite of that of

The intersection of A and B is denoted A n B and is concentration.
defined by The operation of contrast intensification is defined by

A r B _(A (Y) A YB(Y))/Y. (2.29) I ( 2A2, for 0 < PA(Y) < 0.5
"u INT (A) A 2(7 A)2, for 0.5 < PA(y) < 1. (2.46)

The intersection corresponds to the connective and; thus This operation differs from concentration in that it increases

u and v A u r v. (2.30) the values of PA(y) which are above 0.5 and diminishes those
which are below this point. Thus, contrast intensification

As an illustration, if has the effect of reducing the fuzziness of A. (An entropy-

U = 1 + 2 + - * * + 10 (2.31) like measure of fuzziness of a fuzzy set is defined in [16].)
As its name implies, the operation of fuzzification (or,u = 0.8/3 + 1/5 + 0.6/6 (2.32) more specifically, support fuzzification) has the effect of

v = 0.7/3 + 1/4 + 0.5/6 (2.33) transforming a nonfuzzy set into a fuzzy set or increasing
then the fuzziness of a fuzzy set. The result of application of a

u or v = 0.8/3 + 1/4 + 1/5 + 0.6/6 (2.34) fuzzification to A will be denoted by F(A) or A, with the
wavy overbar referred to as a fuzzifier. Thus x 3 meansu and v = 0.7/3 + 0.5/6. (2.35) "x is approximately equal to 3," while x = I means "x is

The product of A and B is denoted AB and is defined by a fuzzy set which approximates to 3." A fuzzifier F is
characterized by its kernel K(y), which is the fuzzy set

AB A J 4UA(Y)llB(Y)/Y. (2.36) resulting from the application of F to a singleton 1/y. Thus

Thus, if K(y) A l/y. (2.47)
A = 0.8/2 + 0.9/5 (2.37) In terms of K, the result of applying F to a fuzzy set A is

B = 0.6/2 + 0.8/3 + 0.6/5 (2.38) given by
then = 4/ .45 23)F(A; K) A J' [A(Y)K(Y) (2.48)
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where luA(y)K(y) represents the product (in the sense of Then we can represent the fuzzy subset of U labeled young
(2.41)) of the scalar 4uA(y) and the fuzzy set K(y), and fu as (see (2.11))
should be interpreted as the union of the family of fuzzy 25 100 -25 2 -1
sets IA(y)K(y), y E U. Thus (2.48) is analogous to the young = 1/y + v1+ y (2.55)
integral representation of a linear operator, with K(y) 5 5
playing the role of impulse response. with the right-hand member of (2.55) representing the
As an illustration of (2.48), assume that U, A, and K(y) meaning of young.

are defined by Linguistic hedges such as very, much, more or less, etc.,

U = I + 2 + 3 + 4 (2.49) make it possible to modify the meaning of atomic as well
U 1+ +3as composite terms and thus serve to increase the range of

A = 0.8/1 + 0.6/2 (2.50) values of a linguistic variable. The use of linguistic hedges
for this purpose is discussed in the following section.

K(1) = 1/1 + 0.4/2 (2.51)
III. LINGUISTIC HEDGES

K(2) = 1/2 + 0.4/1 + 0.4/3. As stated in Section II, the values of a linguistic variable

Then, the result of applying F to A is given by are labels of fuzzy subsets of U which have the form of
phrases or, sentences in a natural or artificial language. For

F(A; K) = 0.8(1/1 + 0.4/2) + 0.6(1/2 + 0.4/1 + 0.4/3) example, if U is the collection of integers

= 0.8/1 + 0.32/2 + 0.6/2 + 0.24/1 + 0.24/3 U = 0 + 1 + 2 + + 100 (3.1)

= 0.8/1 + 0.6/2 + 0.24/3. (2.52) and age is a linguistic variable labeled x, then the values of
x might be young, not young, very young, not very young,

The operation of fuzzification plays an important role old and not old, not very old, not young and not old, etc.
in the definition of linguistic hedges such as more or less, In general, a value of a linguistic variable is a composite
slightly, much, etc. Examples of its uses are given in [15]. term x = x1x2 ... x,,, which is a concatenation of atomic

Language and Meaning terms x1, ,xn. These atomic terms may be divided into
four categories:

As was indicated in Section I, the values of a linguistic 1) primary terms, which are labels of specified fuzzy
variable are fuzzy sets whose labels are sentences in a subsets of the universe of discourse (e.g., young and
natural or artificial language. For our purposes, a language old in the preceding example)
L may be viewed as a correspondence between a set of old inethe p ngeample);
terms T and a universe of discourse U. (This point of view 2) hednegi notan ter mcnnective an rn or;
is described in greater detail in [4] and [5]. For simplicity, 3) hedges, such as very, much, slightly, more or lesswsdeassubedthgreateTris dailnonfuz set.) Thi. corresipond (although more or less is comprised of three words, it
we assume that T iS a nonfuzzy set.) This correspondence isrgdeasnatmcem)ec.is regarded as an atomic term), etc.;may be assumed to be characterized by a fuzzy naming '
relation N from T to U, which associates with each term 4) markers, such as parentheses.
x in T and each object y in U the degree YN(X,y) to which A basic problem P1 which arises in connection with the
x applies to y. For example, if x = young and y = 23 use of linguistic variables is the following: Given the mean-
years, then uN(young, 23) might be 0.9. A term may be ing of each atomic term xi, i = 1, * *,n, in a composite
atomic, e.g., x = tall, or composite, in which case it is a term x = x1 ... xn which represents a value of a linguistic
concatenation of atomic terms, e.g., x = very tall man. variable, compute the meaning of x in the sense of (2.53).
For a fixed x, the membership function guN(x,y) defines a This problem is an instance of a central problem in quan-

fuzzy subset M(x) of U whose membership function is titative fuzzy semantics [4], namely, the computation of the
given by meaning of a composite term. P1 is a special case of the

latter problem because the composite terms representing
4uM(x)(y)A 4uN(x,y), x e T, y E U. (2.53) the values of a linguistic variable have a relatively simple

This fuzzy subset is defined to be the meaning of x. Thus, grammatical structure which is restricted to the four
the meaning of a term x is the fuzzy subset M(x) of U for categories of atomic terms 1)-4).
which x serves as a label. Although x and M(x) are different As a preliminary to describing a general approach to the
entities (x is an element of T, whereas M(x) is a fuzzy subset solution of P,, it will be helpful to consider a subproblem
of U), we shall write x for M(x), except where there is a of P1 which involves the computation of the meaning of a
need for differentiation between them. To illustrate, sup- composite term of the form x = hu, where h is a hedge and
pose that the meaning of the term young is defined by u is a term with a specified meaning; e.g., x = very tall man,

where h-=very and u = tall man.
01, ~~~~fory . 25 Taking the point of view described in [15], a hedge h

gN(young,y) = ({i + (y -25)2)1, for y>25 may be regarded as an operator which transforms the fuzzy
\ \ 5 set M(u), representing the meaning of u, into the fuzzy set

(25)M(hu). As stated already, the hedges serve the function of
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In some instances, to identify the operand of very we
have to use parentheses or replace a composite term by an

-VE lD---A atomic one. For example, it is not grammatical to write
A 0 L D VERYxLD'A x = very not exact (3.11)

but if not exact is replaced by the atomic term inexact, then
Fig. 2. Effect of hedge very. x = very inexact (3.12)

is grammatically correct and we can write
generating a larger set of values for a linguistic variable 2
from a small collection of primary terms. For example, by x = (-exact)2. (3.13)
using the hedge very in conjunction with not, and, and the Note that
primary term tall, we can generate the fuzzy sets very tall, not very exact = (very exact) = (exact 2) (3.14)
very very tall, not very tall, tall and not very tall, etc. To
define a hedge h as an operator, it is convenient to employ is not the same as (3.13).
some of the basic operations defined in Section II, especially The artificial hedges plus and minus serve the purpose of
concentration, dilation, and fuzzification. In what follows, providing milder degrees of concentration and dilation
we shall indicate the manner in which this can be done for than those associated with the operations CON and DIL
the natural hedge very and the artificial hedges plus and (see (2.44), (2.45)). Thus, as operators acting on a fuzzy set
minus. Characterizations of such hedges as more or less, labeled x, plus and minus are defined by
much, slightly, sort of, and essentially may be found in [15]. plus X _ X1.25 (3.15)
Although in its everyday use the hedge very does not have

a well-defined meaning, in essence it acts as an intensifier, minus x A X075. (3.16)
generating a subset of the set on which it operates. A In consequence of (3.15) and (3.16), we have the ap-
simple operation which has this property is that of con- proximate identity
centration (see (2.44)). This suggests that very x, where x
is a term, be defined as the square of x, that is plus plus x = minus very x. (3.17)

very x A X2 (3.2) As an illustration, if the hedge highly is defined as
or, more explicitly

rr, more explicitly

highly = minus very very (3.18)
very x A 92(0y/ (3.3) then, equivalently,

For example, if (see Fig. 2) highly = plus plus very. (3.19)

x = old men A J (1 + y- 50 (3 4) As was stated earlier, the computation of the meaning ofOd enA

0 5 / /4 composite terms of the form hu is a preliminary to the
then problem of computing the meaning of values of a linguistic
2 100 , -50 -2 -2 variable. We are now in a position to turn our attention to

x = very old men = J I + t 5 l) /- (3.5) this problem.

Thus, if the grade of membership of JOHN in the class of IV. COMPUTATION OF THE MEANING OF VALUES
old men is 0.8, then his grade of membership in the class of OF A LINGUISTIC VARIABLE
very old men is 0.64. As another simple example, if Once we know how to compute the meaning of a com-

U = 1 + 2 + 3 + 4 + 5 (3.6) posite term of the form hu, the computation of the meaning
and of a more complex composite term, which may involve the

terms not, or, and and in addition to terms of the form hu,
small 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (3.7) becomes a relatively simple problem which is quite similar

then to that of the computation of the value of a Boolean
expression. As a simple illustration, consider the computa-

very small = 1/1 + 0.64/2 + 0.36/3 + 0.16/4 + 0.04/5. tion of the meaning of the composite term

(3.8) x = not very small (4.1)
Viewed as an operator, very can be composed with itself.

Thus where the primary term small is defined as
very very x=(very x)2 = x4. (3.9) ~~~~~small = 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (4.2)

For example, applying (3.9) to (3.7), we obtain (neglecting
small terms) with the universe of discourse being

very very small = 1/1 + 0.4/2 + 0.1/3. (3.10) U = 1 + 2 + 3 + 4 + 5. (4.3)
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By (3.8), the operation of very on small yields and hence

very small = 1/1 + 0.64/2 + 0.36/3 + 0.16/4 + 0.04/5 very very unlikely

(4.4) =(unlikely)'
and, by (2.26),(44=(ulky)

1/0 + 1/0.1 + 1/0.2 + 0.4/0.3 + 0.2/0.4. (4.18)
not very small = m (very small)

= 0.36/2 + 0.64/3 + 0.84/4 + 0.96/5 Finaly byl(4.14
0.4/2 + 0.6/3 + 0.8/4 + 1/5. (4.5)

= minus very very unlikely
As a slightly more complicated example, consider the

composite term (1/0 + 1/0.1 + 1/0.2 + 0.4/0.3 + 0.2/0.4)0.75

x = not very small and not very very large (4.6) 1/0 + 1/0.1 + 1/0.2 + 0.5/0.3 + 0.3/0.4. (4.19)

where large is defined by It should be noted that in computing the meaning of
composite terms in the preceding examples we have made

large = 0.2/1 + 0.4/2 + 0.6/3 + 0.8/4 + 1/5. (4.7) implicit use of the usual precedence rules governing the

In this case, evaluation of Boolean expressions. With the addition of
very large = large 2 hedges, these precedence rules may be expressed as follows.

very large = large2

= 0.04/1 + 0.16/2 + 0.36/3 + 0.64/4 Precedence Operation

+ 1/5 (4.8) First h, not
Second and

very very large = (large 2)2 Third or

0.1/3 + 0.4/4 + 1/5 (4.9) As usual, parentheses may be used to change the precedence

not very very large 1/1 + 1/2 + 0.9/3 + 0.6/4 (4.10) order and ambiguities may be resolved by the use of asso-
ciation to the right. Thus plus very minus very tall should be

and hence interpreted as

not very small and not very very large plus (very (minus (very (tall)))).

~(0.4/2 + 0.6/3 + 0.8/4 + 1/5) The technique that was employed for the computation

r) (1/1 + 1/2 + 0.9/3 + 0.6/4) of the meaning of a composite term is a special case of a
more general approach which is described in [4] and [5].

0.4/2 + 0.6/3 + 0.6/4. (4.11) The approach in question can be applied to the computa-
An example of a different nature is provided by the tion of the meaning of values of a linguistic variable pro-

values of a linguistic variable labeled likelihood. In this vided the composite terms representing these values can be
case, we assume that the universe of discourse is given by generated by a context-free grammar. As an illustration,

consider a linguistic variable x whose values are exemplified
U= 0 + 0.1 + 0.2 + 0.3 + 0.4 + 0.5 by small, not small, large, not large, very small, not very

+ 0.6 + 0.7 + 0.8 + 0.9 + 1 (4.12) small, small or not very very large, small and (large or not
in which the elements of U represent probabilities. Suppose small), not very very small and not very very large, etc.

that we wish to compute the meaning of the value The values in question can be generated by a context-free
grammar G = (VT,VN,S,P) in which the set of terminals

x = highly unlikely (4.13) VT comprises the atomic terms small, large, not, and, or,
in which highly is defined as (see (3.18)) very, etc.; the nonterminals are denoted S, A, B, C, D, and

highly = minus very very (4.14) E; and the production system is given by
and S- A C D

unlikely= not likely (4.15) S S orA C E

with the meaning of the primary term likely given by A -> B D -+very D
likely = 1/1 + 1/0.9 + 1/0.8 + 0.8/0.7

+ 0.6/0.6 + 0.5/0.5 + 0.3/0.4 + 0.2/0.3. (4.16) A -~A and B F -> very F
Using (4.15), we obtain B- C D small
unlikely = 1/0 + 1/0.1 + 1/0.2 + 0.8/0.3 + 0.7/0.4 B -+not C E -*large

+ 0.5/0.5 + 0.4/0.6 + 0.2/0.7 (4.17) C -+(S). (4.20)
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Each production in (4.20) gives rise to a relation between in the sense that the propositional expressions A - B
the fuzzy sets labeled by the corresponding terminal and (A implies B) and A v B (not A or B) have identical
nonterminal symbols. In the case of (4.20), these relations truth tables.
are (we omit the productions which have no effect on the A more general concept, which plays an important role
associated fuzzy sets) in our approach, is a fuzzy conditional statement: IF A

S S or A SL = SR + A R THEN B or, for short, A = B, in which A (the antecedent)
S - S r L SR+ R and B (the consequent) are fuzzy sets rather than proposi-

A A and B -> AL = AR rn BR tional variables. The following are typical examples of
such statements:

B not C => BL= MCR
D very D - DL = DR2 IF large THEN small

IF slippery THEN dangerous
E very E = EL = ER2 which are abbreviations of the statements

D -*small =>DL = smallD small =>DL= small IF X iS large THEN y is small
E large => EL = large (4.21) IF the road is slippery THEN driving is dangerous.

in which the subscripts L and R are used to differentiate In essence, statements of this form describe a relation
between the symbols on the left- and right-hand sides of a between two fuzzy variables. This suggests that a fuzzy
production. conditional statement be defined as a fuzzy relation in the
To compute the meaning of a composite term x, it is sense of (2.19) rather than as a connective in the sense of

necessary to perform a syntactical analysis of x in terms of (5.1).
the specified grammar G. Then, knowing the syntax tree of To this end, it is expedient to define first the Cartesian
x, one can employ the relations given in (4.21) to derive a product of two fuzzy sets. Specifically, let A be a fuzzy
set of equations (in triangular form) which upon solution subset of a universe of discourse U, and let B be a fuzzy
yield the meaning of x. For example, in the case of the subset of a possibly different universe of discourse V. Then,
composite term the Cartesian product of A and B is denoted by A x B

x = not very small and not very very large and is defined by

the solution of these equations yields A x B A TX AWA(U) A PB(V)I(U,V) (5.2)
uxy

x = (--ismall2) n (--i large') (4.22)
where U x V denotes the Cartesian product of the non-

which agrees with (4.11). Details of this solution may be fuzzy sets U and V; that is,
found in [4] and [5]. U V A {(u v) Uv V}.
The ability to compute the meaning of values of a lin- U x V

guistic variable is a prerequisite to the computation of the Note that when A and B are nonfuzzy, (5.2) reduces to the
meaning of fuzzy conditional statements of the form IF A conventional definition of the Cartesian product of non-
THEN B, e.g., IF x is not very small THEN Y iS very very large. fuzzy sets. In words, (5.2) means that A x B is a fuzzy set
This problem is considered in the following section. of ordered pairs (u,v), u E U, v E V, with the grade of

membership of (u,v) in A x B given by JUA(u) A IUB(v). In
V. FUZZY CONDITIONAL STATEMENTS AND COMPOSITIONAL this sense, A x B is a fuzzy relation from U to V.

RULE OF INFERENCE As a very simple example, suppose that

In classical propositional calculus,5 the expression IF A
THEN B, where A and B are propositional variables, is
written as A => B, with the implication = regarded as a V = 1 + 2 + 3 (5.4)
connective which is defined by the truth table. A = 1/1 + 0.8/2 (5.5)

A B A => B B = 0.6/1 + 0.9/2 + 1/3. (5.6)
Then

T T T
T F F A x B = 0.6/(1,1) + 0.9/(1,2) + 1/(1,3)
F T T
F F T + 0.6/(2,1) + 0.8/(2,2) + 0.8/(2,3). (5.7)

The relation defined by (5.7) may be conveniently repre-
Thus, sented by the relation matrix

A=r B_miA vB (5.1) 1 2 3

5A detailed discussion of the significance of implication and its role 2 [0.6 0.8 0.8](5.8)
in modal logic may be found in [181.LJ
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The significance of a fuzzy conditional statement of the which holds only approximately for fuzzy A, B, and C.
form IF A THEN B is made clearer by regarding it as a special This indicates that, in relation to (5.15), the definitions of
case of the conditional expression IF A THEN B ELSE C, IF A THEN B ELSE C and IF A THEN B, as expressed by (5.9)
where A and (B and C) are fuzzy subsets of possibly and (5.12), are not exactly consistent for fuzzy A, B, and C.
different universes U and V, respectively. In terms of the It should also be noted that if 1) U = V, 2) x = y, and
Cartesian product, the latter statement is defined as follows: 3) A = B holds for all points in U, then, by (5.12),

IF A THEN B ELSE C A A x B + (-iA x C) (5.9) A B implies and is implied by A c B (5.15)

in which + stands for the union of the fuzzy relations exactly if A and B are nonfuzzy and approximately other-
A x Band (-iA x C). wise.
More generally, if A1, -,A, are fuzzy subsets of U, and As will be seen in Section VI, fuzzy conditional state-

Bl,* ,Bn are fuzzy subsets of V, then6 ments play a basic role in fuzzy algorithms. More specif-

IF Al THEN B, ELSE IF A2 THEN B ... ELSE IF A' THENB* ically, a typical problem which is encountered in the course
IATN EL I TE 2* ELSE IF A THENof execution of such algorithms is the following. We have

A A1 x B1 + A2 x B2 + + An x Bn. (5.10) a fuzzy relation, say, R, from Uto V which is defined by a
fuzzy conditional statement. Then, we are given a fuzzy

Note that (5.10) reduces to (5.9) if IF A THEN B ELSE C iS subset of U, say, x, and have to determine the fuzzy subset
interpreted as IF A THEN B ELSE IF A THEN C. It should of V, say, y, which is induced in V by x. For example, we
also be noted that by repeated application of (5.9) we may have the following two statements.
obtain

1) x is very small
IF A THEN (IF B THEN C ELSE D) ELSE E 2) IF X iS small THEN y iS large ELSE y is not very large

= A x B x C + A x -iB x D + -iA x E. (5.11) of which the second defines by (5.9) a fuzzy relation R.

If we regard IF A THEN B as IF A THEN B ELSE C with The question, then, is as follows: What will be the value of
y if x is very small? The answer to this question is providedunspecifie C, thn deedn on th.supinmd by the following rule of inference, which may be regardedabout C, various interpretations of IF A THEN B will result. n

In particular, if we assume that C = V, then IF A THEN B as an extension of the familiar rule of modus ponens.
(or A => B) becomes7 Compositional Rule of Inference: If R is a fuzzy relation

from U to V, and x is a fuzzy subset of U, then the fuzzy
A -> B A IF A THEN B A A x B + (-iA x V). (5.12) subset y of V which is induced by x is given by the com-

position (see (2.22)) of R and x; that is,
If, in addition, we set A = U in (5.12), we obtain as an
alternative definition y = x o R (5.16)

A => B A U x B + (-iA x V). (5.13) in which x plays the role of a unary relation.8

In the sequel, we shall assume that C = V, and hence that
As a simple illustration of (5.16), suppose that R and x

' ' . ~~~~~~~~~aredefined by the relation matrices in (5.17). Then y iS
A = B is defined by (5.12). In effect, the assumption that gin e the roduct in

x and R:
C = V implies that, in the absence of an indication to the given by the max-mm product of x and R:

contrary, the consequent of A =. C can be any fuzzy x R y
subset of the universe of discourse. As a very simple -0.8 0.9 0.2
illustration of (5.12), suppose that A and B are defined by [0.2 1 0.3] | 0.6 1 0.41 = [0.6 1 0.4]. (5.17)
(5.5) and (5.6). Then, on substituting (5.8) in (5.12), the L0.5 0.8 1
relation matrix for A = B is found to be

As for the question raised before, suppose that, as in
A B [0.6 0.8 0.8] (4.3), we have

U =1±+2+3+4 +5 (5.18)
It should be observed that when A, B, and C are non-

fuzzy sets, we have the identity with small and large defined by (4.2) and (4.7), respectively.

IF A4 THEN B ELSE C=- (IF A4 THENB) ( -F A THEN C\ Then, substituting small for A, large for B and not very large
for C in (5.9), we obtain the relation matrix R for the fuzzy

(5.14) conditional statement IF small THEN large ELSE not very
large. The result of the composition of R with x = very

6 It should be noted that, in the sense used in ALGOL, the right-
hand side of (5.10) wouldbeexpressed aSA1 X B1 + (nA1 r) A2) X
B2 + *.*. + (iA1 n * * n nAn-1 r' An) x Bn when the Ai and Bi, 8 If R is visualized as a fuzzy graph, then (5.'16) may be viewed as
i = 1,-.* ,n, are nonfuzzy sets. the expression for the fuzzy ordinate y corresponding to a fuzzy

7 This definition should be viewed as tentative in nature. abscissa x.
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small is As a final comment, it is important to realize that in
R practical applications of fuzzy conditional statements to

F0.2 0.4 0.6 0.8 1 1 the description of complex or ill-defined relations, the com-
x 0.2 0.4 0.6 0.8 0.8 putations involved in (5.9), (5.10), and (5.16) would, in

[I 0.64 0.36 0.16 0.04] ° 0.4 0.4 0.6 0.6 0.6 general, be performed in a highly approximate fashion.
0.6 0.6 0.6 0.4 0.4 Furthermore, an additional source of imprecision would be
0.8 0.8 0.64 0.36 0.2 the result of representing a fuzzy set as a value of a linguistic

variable. For example, suppose that a relation between
y fuzzy variables x and y is described by the fuzzy condi-

= [0.36 0.4 0.6 0.8 1]. (5.19) tional statement IF small THEN large ELSE IF medium THEN
medium ELSE IF large THEN very small.

There are several aspects of (5.16) that are in need of TypicaLly we ld si f li v
comment. First, it should be noted that when R = A -_ B x'ancmu te orresponding values u o

and x = A we obtain
x and compute the correspondng values of y by the use of

(5.16). Then, on approximating to the computed values of

y= A o (A B) = B (5.20) y by linguistic labels, we would arrive at a table having the
form shown below:

as an exact identity, when A, B, and C are nonfuzzy, and
an approximate one, when A, B, and C are fuzzy. It is in Given Inferred
this sense that the compositional inference rule (5.16) may A B x y
be viewed as an approximate extension of modus ponens. small large not small not very large
(Note that in consequence of the way in which A =. B is medium medium very small very very large
defined in (5.12), the more different x is from A, the less large very small very very small very very large

sharplydefinedisy.) not very large small or medium
sharply defined is y.)

Second, (5.16) is analogous to the expression for the Such a table constitutes an approximate linguistic charac-
marginal probability in terms of the conditional probability terization of the relation between x and y which is inferred
function; that is from the given fuzzy conditional statement. As was stated

rj =i qipij (5.21) earlier, fuzzy conditional statements play a basic role in
the description and execution of fuzzy algorithms. We

where turn to this subject in the following section.

qi = Pr {X = Xi} VI. Fuzzy ALGORITHMS
rj = Pr {Y = yj} Roughly speaking, a fuzzy algorithm is an ordered set of

P =Pr {Y- = x} fuzzy instructions which upon execution yield an ap-
=ij- Pryj - iproximate solution to a specified problem. In one form or

and X and Y are random variables with values x1,x2,. another, fuzzy algorithms pervade much of what we do.
and Y9Y2 , , respectively. However, this analogy does not Thus, we employ fuzzy algorithms both consciously and
imply that (5.16) is a relation between probabilities. subconsciously when we walk, drive a car, search for an

Third, it should be noted that because of the use of the object, tie a knot, park a car, cook a meal, find a number in
max-min matrix product in (5.16), the relation between x a telephone directory, etc. Furthermore, there are many
and y is not continuous. Thus, in general, a small change in instances of uses of what, in effect, are fuzzy algorithms in
x would produce no change in y until a certain threshold is a wide variety of fields, especially in programming, opera-
exceeded. This would not be the case if the composition of tions research, psychology, management science, and
x with R were defined as max-product composition. medical diagnosis.

Fourth, in the computation of x o R one may take ad- The notion of a fuzzy set and, in particular, the concept
vantage of the distributivity of composition over the union of a fuzzy conditional statement provide a basis for using
of fuzzy sets. Thus, if fuzzy algorithms in a more systematic and hence more

effective ways than was possible in the past. Thus, fuzzy
x = u or v (5.22) algorithms could become an important tool for an ap-

where u and v are labels of fuzzy sets, then proximate analysis of systems and decision processes which
are much too complex for the application of conventional

(u or v) o R = u o R or v o R. (5.23) mathematical techniques.

For xampe,fx s sall r mdium an R =A B A formal characterization of the concept of a fuzzy
reads IF X iS not small and not large THEN y iS very small, aloih.a egvni erso h oino uz
then we can write 'Turing machine or a fuzzy Markoff algorithm [6]-[8]. In

this section, the main aim of our discussion iS to relate the
(small or medium) o (not small and not large => very small) concept of a fuzzy algorithm to the notions introduced in
= smallo(notsmallandnot large- - very small) ormedium the preceding sections and illustrate by simple examples

(not small and not large => very small). (5.24) some of the uses of such algorithms.
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The instructions in a fuzzy algorithm fall into the follow- As pointed out in [6], it is reasonable to assume that the
ing three classes. result of execution will be that element of the fuzzy set

1) Assignment Statements: e.g., which has the highest grade of membership in it. If such an

x~5 11%.element is not unique, as is true of (6.5), then a random or
x smal5 arbitrary choice can be made among the elements having the
x-small highest grade of membership. Alternatively, an external
x is large criterion can be introduced which linearly orders those
x is not large and not very small. elements of the fuzzy set which have the highest member-

2) Fuzzy Conditional Statements: e.g., ship, and thus generates a unique greatest element. For
example, in the case of (6.5), if the external criterion is to

IF X iS posmalleTHENydiselargeaELse yslisotlag minimize the number of steps that have to be taken, then
IF X iS positiveTHENgdereasertn y Slhtly the subject will pick 5 from the elements with the highestIF X iS much greater than 5 THEN stop gaeo ebrhp
IF X iS very small THEN go to 7. gaeo ebrhp

An analogous question arises in situations in which a
Note that in such statements either the antecedent or the human subject has to give a "yes" or "no" answer to a
consequent or both may be labels of fuzzy sets. fuzzy question. For example, suppose that a subject is

3) Unconditional Action Statements: e.g., presented with the instruction

multiply x by x IF X iS small THEN stop ELSE gO to 7 (6.6)
decrease x slightly in which small is defined by (4.2). Now assume that x = 3,

deletethefirst7few occurrences of 1 which has the grade of membership of 0.6 in small. Shouldgo to 7 the subject execute "stop" or "go to 7"? We shall assume
print x that in situations of this kind the subject will pick that

alternative which is more true than untrue, e.g., "x is
Note that some of these instructions are fuzzy and some small" over "x is not small," since in our example the degree
are not. of truth of the statement "3 is small" is 0.6, which is greater
The combination of an assignment statement and a fuzzy than that of the statement "3 is not small." If both alterna-

conditional statement is executed in accordance with the tives have more or less equal truth values, the choice can be
compositional rule (5.16). For example, if at some point in made arbitrarily. For convenience, we shall refer to this
the execution of a fuzzy algorithm we encounter the rule of deciding between two alternatives as the rule of the
instructions preponderant alternative.

It is very important to understand that the questions just
1) IFx=ive small

THEN Y iS large ELSE is not very large discussed arise only in those situations in which the result
of execution of a fuzzy instruction is required to be a single

where small and large are defined by (4.2) and (4.7), then element (e.g., a number) rather than a fuzzy set. Thus, if
the result of the execution of 1) and 2) will be the value of we allowed the result of execution of (6.6) to be fuzzy, then
y given by (5.19), that is, for x = 3 we would obtain the fuzzy set

y = 0.36/1 + 0.4/2 + 0.64/3 + 0.8/4 + 1/5. (6.1) 0.6/stop + 0.4/go to 7

An unconditional but fuzzy action statement is executed which implies that the execution is carried out in parallel.
similarly. For example, the instruction The assumption of parallelism is implicit in the composi-

tional rule of inference and is basic to the understanding of
multiply x by itself afew times (6.2) fuzzy algorithms and their execution by humans and

with few defined as machines.
f In what follows, we shall present several examples of

few = I/1 + 0.8/2 + 0.6/3 + 0.4/4 (6.3) fuzzy algorithms in the light of the concepts discussed in
would yield upon execution the fuzzy set the preceding sections. It should be stressed that these

examples are intended primarily to illustrate the basic
aspects of fuzzy algorithms rather than demonstrate their

It is important to observe that, in both (6.1) and (6.4), effectiveness in the solution of practical problems.
the result of execution is a fuzzy set rather than a single It is convenient to classify fuzzy algorithms into several
number. However, when a human subject is presented with basic categories, each corresponding to a particular type of
a fuzzy instruction such as "take several steps," with several application: definitional and identificational algorithms;
defined by (see (2.10)) generational algorithms; relational and behavioral al-

sevral= 05/3+ 08/4+ 15 1/ + .8/ + .5/ (65)gorithms; and decisional algorithms. (It should be noted
seveal 0.53+0.8/ + /5 +1/6+ 0 /7 0 58 ( 5)that an algorithm of a particular type can include algorithms

the result of execution must be a single number between 3 of other types as subalgorithms. For example, a definitional
and 8. On what basis will such a number be chosen? algorithm may contain relational and decisional sub-
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algorithms.) We begin with an example of a definitional 4) x' x + I (move from x to a neighboring point).
algorithm. 5) t' direction of tangent to Tat x'.

6) oLt angle between t' and t.Fuzzy Definitional Algorithms 7) x x'.
One of the basic areas of application for fuzzy algorithms 8) t direction of tangent to T at x.

lies in the definition of complex, ill-defined or fuzzy con- 9) x' x + 1.
cepts in terms of simpler or less fuzzy concepts. The follow- 10) t' direction of tangent to T at x'.
ing are examples of such fuzzy concepts: sparseness of 11) ,3 angle between t' and t.
matrices; handwritten characters; measures of complexity; 12) IF /B does not have the same sign as CX THEN T is not
measures ofproximity or resemblance; degrees of clustering; convex; return.
criteria of performance; soft constraints; rules of various 13) IF X' / a THEN T is convex; return.
kinds, e.g., zoning regulations; legal criteria, e.g., criteria 14) Go to 7).
for insanity, obscenity, etc.; and fuzzy diseases such as

arhits areislrss schizohreni. Comment: It should be noted that the first three instruc-arthritis, arteriosclerosis, schizophrenia.
Sincea fuzzy concept may be viewed as a label for a tions in OVAL are nonfuzzy. As for instructions 4) and 5),Sfnce a fuzzy deftioal a r isieca finit they involve definitions of concepts such as "more or less

set of possibly fuzzy instructions which define a fuzzy set in orthogonal," and "much longer," which, though fuzzy are
terms of other fuzzy sets (and possibly itself, i.e., recursively) less complexeand tter unerto n the c eptnof
orcositt arrcdr o opuigtegaeo oval. This exemplifies the main function of a fuzzy defini-or constitute a ele of the puniver e d e in tional algorithm, namely, to reduce a new or complex

themsetershp dfiani en.I thelaterse, t deinationa fuzzy concept to simpler or better understood fuzzy con-

algorithm plays thole on identtercational aloith,tat cepts. In a more elaborate version of the algorithm OVAL,
is, an.algorithmwashi identifiew therao northaelmn the answers to 4) and 5) could be the degrees to which the
bos, toalg seithm or,chm enerallydhetherminet gradel of conditions in these instructions are satisfied. The final result
meberonsi .asexampe ofsuhan algormith its prvded of the algorithm, then, would be the grade of membershipmembership. An example Of such an algorithm iS provided fTi th fuzz sefoalojcsbyheprcedre(se[])fo coptn th grad of of T in the fuzzy set of oval objects.by t r r e f cIn this connection, it should be noted that, in virtue ofmembership of a string in a fuzzy language generated by a . D .

O
context-freegrammar. ~~(5.15) the algorithm OVAL as stated iS approximatelycontet-fre grammar.1 1 . equivalent to the expressionAs a very simple example of a fuzzy definitional algorithm,

we shall consider the fuzzy concept oval. It should be em- oval = closed n non-self-intersecting r- convex
phasized again that the oversimplified definition that will
be given is intended only for illustrative purposes and has
no pretense at being an accurate definition of the concept rn major axis much larger than minor axis (6.7)
oval. The instructions comprising the algorithm OVAL are
listed here. The symbol T in these instructions stands for which defines the fuzzy set oval as the intersection of the
the object under test. The term CALL CONVEX represents fuzzy and nonfuzzy sets whose labels appear on the right-
a call on a subalgorithm labeled CONVEX, which is a hand side of (6.7). However, one significant difference is
definitional algorithm for testing whether or not T is that the algorithm not only defines the right-hand side of

convex. An instruction of the form IF A THEN B should be (6.7), but also specifies the order in which the computations
interpreted as IF A THEN B ELSE gO to next instruction. implicit in (6.7) are to be performed.

Algorithm OVAL: Fuzzy Generational Algorithms

1) IF T is not closed THEN T is not oval; stop. As its designation implies, a fuzzy generational algorithm
2) IF T is self-intersecting THEN T is not oval; stop. serves to generate rather than define a fuzzy set. Possible
3) IF T is not CALL CONVEX THEN T is not oval; stop. applications of generational algorithms include: generation
4) IF T does not have two more or less orthogonal axes of handwritten characters and patterns of various kinds;

of symmetry THEN T is not oval; stop. cooking recipes; generation of music; generation of sen-
5) IF the major axis of T is not much longer than the tences in a natural language; generation of speech.

minor axis THEN T is not oval; stop. As a simple illustration of the notion of a generational
6) T is oval; stop. algorithm, we shall consider an algorithm for generating.

Subalgorithm CONVEX: Basically, this subalgorithm in- the letter P, with the height h and the base b ofP constituting
volves a check on whether the curvature of T at each point the parameters of the algorithm. For simplicity, P will be
maintains the same sign as one moves along T in some generated as a dotted pattern, with eight dots lying on the
initially chosen direction. vertical line.

1) x = a (some initial point on T).AloihP(b)
2) Choose a direction of movement along T. 1) i = 1.
3) t direction of tangent to T at x. 2) X(i) = b (first dot at base).
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Add 2 cups granvlated sug9r to Saucepan
0E) Add 1 cup bottled milk to saucepan

Sequence Add S teaspoon salt to saucepan
Of ' Add 2 ox unsweetened chocolate to saucepan

stotements Add 2 tablespoons white corn syrup to saucepon
Put saucepan over low heat

LD oofor r Stir th. stuff
dissolving

J

sugar t ( Is sugor dissolved? No

Yes

o fCook. gently Removal from heat
cooking

r | | ~~~~~~~~Dropin 2 tb sp L utter|
Drop a little of the mixture

into cold water
Stir a litt`le

L J * { ~~~~~~~~~~~~Puthond on bottom of pan Cooling
0 ~~~~loop Let stand

, ! ' ~~~~~~~~~~~~~~~~~~~~a mi nute
No aDoesit form a soft ball? Y.* Did you burn it (your hand, that is)

_

Yes Nos Ye
psmallamont from spo n Adnt ts vnill Bead wit spo

Beat~~ ~ ~ ~ ~ ~ 0 with, fuor 0suoe

E t

Fi.Yecp e(o

| (Doyou hve time tomTunointo gmased Po

Y>s~~ ~ ~ ~~ ~ol cut int sqae

Eat~~~~itt

Fig.3.ecipe fo ihclte fugoo fo [9)
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3) X(i + 1) % X(i) + h/6 (put dot approximately h/6 As in the case of the previous example, the meaning of
units of distance above X(i)). the fuzzy conditional statements in this algorithm can be

4) i = i + 1. computed by the use of the methods discussed in Sections
5) IF i = 7 THEN make right turn and go to 7). IV and V if one is given the definitions of the primary
6) Go to 3. terms large and small as well as the hedges slightly, sub-
7) Move by h/6 units; put a dot. stantially, and moderately.
8) Turn by 450; move by h/6 units; put a dot. As a simple example of a behavioral algorithm, suppose
9) Turn by 450; move by h/6 units; put a dot. that we have a system S with two nonfuzzy states (see [3])

10) Turn by 450; move by h/6 units; put a dot. labeled q1 and q2, two fuzzy input values labeled low and
11) Turn by 450; move by h/6 units; put a dot; stop. high, and two fuzzy output values labeled large and small.

The universe of discourse for the input and output values
The algorithm as stated is of open-loop type in the sense is assumed to be the real line. We assume further that the

that it does not incorporate any feedback. To make the behavior of S can be characterized in an approximate
algorithm less sensitive to errors in execution, we could fashion by the algorithm that will be given. However, to
introduce fuzzy feedback by conditioning the termination represent the relations between the inputs, states, and out-
of the algorithm on an approximate satisfaction of a puts, we use the conventional state transition tables instead
specified test. For example, if the last point in step 11) does of conditional statements.
not fall on the vertical part of P, we could return to step 8) Algorithm BEHA VIOR:
and either reduce or increase the angle of turn in steps
8)-1l) to correct for the terminal error. The flowchart of a Xt+i Yt
cooking recipe for chocolate fudge (Fig. 3), which is Xt

reproduced from [19], is a good example of what, in effect,
is a fuzzy generational algorithm with feedback. ligh q2 q smalel samle
Fuzzy Relational and Behavioral Algorithms where

A fuzzy relational algorithm serves to describe a relation ut input at time t
or relations between fuzzy variables. A relational algorithm Yt output at time t
which is used for the specific purpose of approximate xt state at time t.
description of the behavior of a system will be referred to
as a fuzzy behavioral algorithm. On the surface, this table appears to define a conventional
A simple example of a relational algorithm labeled R nonfuzzy finite-state system. What is important to recognize,

which involves three parameters x, y, and z is given. This however, is that in the case of the system under considera-
algorithm defines a fuzzy ternary relation R in the universe tion the inputs and outputs are fuzzy subsets of the real line.
of discourse U = I + 2 + 3 + 4 + 5 with small and large Thus we could pose the question: What would be the output
defined by (4.2) and (4.7). of S if it is in state q1 and the applied input is very low? In

Algorithm R(x,y,z): the case of S, this question can be answered by an applica-
tion of the compositional inference rule (5.16). On the other

1) IF x is small and y is large THEN Z iS very small ELSE hand, the same question would not be a meaningful one if
z is not small. S is assumed to be a nonfuzzy finite-state system charac-

2) IF X iS large THEN (IF y is small THEN Z iS very large terized by the preceding table.
ELSE z is small) ELSE z and y are very very small. Behavioral fuzzy algorithms can also be used to describe

If nedt manotscntn sthe more complex forms of behavior resulting from the
If needed, the meaning of these conditional statementsprsneoradmlmntinaytm.Frxml,th

can be computed by using (5.9) and (5.11). The relation R presence of random elements in a system. For example, the
then, will be he intersectin of the relatons defined b presence of random elements in S might result in the follow-

insrcions 1) ando2). iong fuzzy-probabilistic characterization of its behavior:instructions 1) and 2).
Another simple example of a relational fuzzy algorithm

t
Y

F(x,y) which illustrates a different aspect of such algorithms \ t

is the following. t q, q2 ql q2

Algorithm F(x,y): low q2 likely q1 likely large smally2likely likely
slightly high qt likely2 q, unlikely2 small large

1) IF X iS small and x iS increased sihl THEN y will likely2 unlikely2
increase slightly.

2) IF X iS small and x is increased substantially THEN y In this table, the term likely and its modifications by
will increase substantially. very and not serve to provide an approximate characteriza-

3) IF X iS large and x is increased slightly THEN y Will tion of probabilities. For example, IF the input is low and
increase moderately. the present state is q1, THEN the next state is likely to be q2.

4) IF X iS large and x is increased substantially THEN y Similarly, IF the input is high and the present state is q2
will increase very substantially. THEN the output is very unlikely to be large. If the meaning
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of likely is defined by (see (4.16)) goal

likely = 1/1 + 1/0.9 + 1/0.8 + 0.8/0.7 + 0.6/0.6
g $2N

HUG
+ 0.5/0.5 + 0.3/0.4 + 0.2/0.3 (6.8) I-goall-

then

unlikely = 0.2/0.7 + 0.4/0.6 + 0.5/0.5 + 0.7/0.4 start

+ 0.8/0.3 + 1/0.2 + 1/0.1 + 1/0 (6.9) Fig. 4. Problem of transferring blindfolded subject from start to goal.

very likely 1/1 + 1/0.9 + 1/0.8 + 0.6/0.7 + 0.4/0.6

+ 0.3/0.5 + 0.1/0.4 (6.10) portant point of the example is that such an algorithm
could be constructed along the same lines as the highly

very unlikely 0.2/0.6 + 0.3/0.5 + 0.5/0.4 + 0.6/0.3 simplified version just described. Furthermore, it shows

+ 1/0.2 + l/0.1 + 1/0. (6.11) that a fuzzy algorithm could serve as an effective means of
communicating know-how and experience.

Fuzzy Decisional Algorithms As a final example, we consider a decisional algorithm
..fuzz decisional algorithm is afuzzyalgoritfor transferring a blindfolded subject H from an initial

Afuzzy decisional algorithm is a fuzzy algorithm which position start to a final position goal under the assumption
serves to provide an approximate description of a strategy that there may be an obstacle lying between start and goal
or decision rule. Commonplace examples of such al-. . ..(see Fig. 4). (Highly sophisticated nonfuzzy algorithms of
gorithms, which we use for the most part on a subconscious this type for use by robots are incorporated in Shakey, the
level, are the algorithms for parking a car, crossing an robot built by the Artificial Intelligence Group at Stanford
intersection, transferring an object, buying a house, etc. Research Institute. A description of this robot is given in
To illustrate the notion of a fuzzy decisional algorithm, [20].)

we shall consider two simple examples drawn from our The algorithm, labeled OBSTACLE, is assumed to be
everyday experiences. used by a human controller C who can observe the way in
Example-Crossing a traffic intersection: It is convenient which H executes his instructions. This fuzzy feedback

to break down the algorithm in question into several sub- plays an essential role in making it possible for C to direct
algorithms, each of which applies to a particular type of H to goal in spite of the fuzziness of instructions as well as
intersection. For our purposes, it will be sufficient to describe the errors in their execution by H. The algorithm OB-
only one of these subalgorithms, namely, the subalgorithm STACLE consists of three subalgorithms: ALIGN, HUG,
SIGN, which is used when the intersection has a stop sign. and STRAIGHT. The function of STRAIGHT is to trans-
As in the case of other examples in this section, we shall fer H from start to an intermediate goal I-goal,, and then
make a number of simplifying assumptions in order to from I-goal2 to goal. (See Fig. 4.) The function of ALIGN
shorten the description of the algorithm, is to orient H in a desired direction; the function of HUG

Algorithm INTERSECTION: is to guide H along the boundary of the obstacle until the
1) IF signal lights THEN CALL SIGNAL ELSE IF stop sign goal is no longer obstructed.

THEN CALL SIGN ELSE IF blinking light THEN CALL Instead of describing these subalgorithms in terms of
BLINKING ELSE CALL UNCONTROLLED. fuzzy conditional statements as we have done in previous

examples, it is instructive to convey the same information
Subalgorithm SIGN: by flowcharts, as shown in Figs. 5-7. In the flowchart of

1) IF no stop sign on your side THEN IF no cars in the ALIGN, s denotes the error in alignment, and we assume
intersection THEN cross at normal speed ELSE wait for simplicity that E has a constant sign. The flowcharts of
for cars to leave the intersection and then cross. HUG and STRAIGHT are self-explanatory. Expressed in

2) IF not close to intersection THEN continue approach- terms of fuzzy conditional statements, the flowchart of
ing at normal speed for a few seconds; go to 2). STRAIGHT, for example, translates into the following

3) Slow down. instructions.
4) IF in a great hurry and no police cars in sight and Subalgorithm STRAIGHT:

no cars in the intersection or its vicinity THEN cross 1) IF not close THEN take a step; go to 1).the intersection at slow spDeed.I 1I "\the intersection at slow speed.2) IF not very close THEN take a small step; go to 2).
5)*FveycoetXnescinTE tp ot) 3) IF not very very close THEN take a very small step;

6) Continue approaching at very slow speed; go to 5). go to 3).
7) IF no cars approaching or in the intersection THEN 4) Stop.

cross.
8) Wait afew seconds; go to 7). VII.CONCLUJDING REMARKS

It hardly needs saying that a realistic version of this In this and the preceding sections of this paper, we have
algorithm would be considerably more complex. The im- attempted to develop a conceptual framework for dealing
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with systems which are too complex or too ill-defined to
admit of precise quantitative analysis. What we have done

turnturn by 30 should be viewed, of course, as merely a first tentative step
alturnturn by 30 in this direction. Clearly, there are many basic as well as

ei turn a detailed aspects of our approach which we have treated
ERROR X turn very little 21ittle incompletely, if at all. Among these are questions relating

turn very very little to the role of fuzzy feedback in: the execution of fuzzy

TURN-e A =E close to 30° algorithms; the execution of fuzzy algorithms by humans;
B EE close to 0° the conjunction of fuzzy instructions; the assessment of
C = e very close to 0' the goodness of fuzzy algorithms; the implications of the

'El compositional rule of inference and the rule of the pre-
ponderant alternative; and the interplay between fuzziness

S A TUNand probability in the behavior of humanistic systems.
Nevertheless, even at its present stage of development,

yRN|| L2lTTUTRLNEl J the method described in this paper can be applied rather
LIT effectively to the formulation and approximate solution of

FiE.5. Sllbalgorithm ALIGN. a wide variety of practical problems, particularly in such
Fig. 5. Subalgorithm ALIGN. fields as economics, management science, psychology, lin-

guistics, taxonomy, artificial intelligence, information re-
trieval, medicine, and biology. This is particularly true of
those problem areas in these fields in which fuzzy algorithms
can be drawn upon to provide a means of description of
ill-defined concepts, relations, and decision rules.
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