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Abstract—In this paper, a new model, addressing the 
Associative Reinforcement Learning (ARL) problem, based on 
learning automata and self organizing map is proposed. The 
model consists of two layers. The First layer comprised of a 
SOM which is utilized to quantize the state (context) space and 
the second layer contains of a team of learning automata which 
is used to select an optimal action in each state of the 
environment. First layer is mapped to the second layer via an 
associative function. In other words, each learning automaton 
is in correspondence with only one neuron of the self 
organizing map. In order to show the performance of the 
proposed method, it has been applied successfully to 
classification applications on Iris, Ecoli, and Yeast data sets, as 
examples of ARL task. The results of experiments show that 
the proposed method is reached the accuracy near to or even 
higher than the highest reported accuracy. The results 
obtained for Ecoli and Yeast data sets indicate that the method 
is able to classify in relatively high dimensional context space 
and high number of classes. 
 

I. INTRODUCTION  
Associative reinforcement learning (ARL) task defined 

originally by Barto and Anandan [1]  is one that requires the 
learning element to establish a connection between input and 
output. ARL tasks involve the following interaction between 
the environment and the learning system. At time step n, the 
environment provides the learning system with some context 
vector  ܺሺ݊ሻ selected from a set of vectors ܺ ك Ը௡, where  
Ը is set of real numbers. Based on this input, the learning 
system selects an action ߙሺ݊ሻ among its action set. The 
environment evaluates the action ߙሺ݊ሻ in the context of the 
input ܺሺ݊ሻ and sends to the learning system a real-valued 
evaluation signal ߚሺ݊ ൅ 1ሻ א ሾ0, 1ሿ at time step n+1, 
with ߚሺ݊ ൅ 1ሻ ൌ 0  denoting the maximum evaluation. 

Many works have been done on ARL, from which only a 
few are mentioned here. In original definition of ARL tasks, 
Barto and Anandan [1] only considered learning tasks for 
which the evaluation is a binary-valued success/failure signal 
(i.e. ߚሺ݊ሻ א ሼ0, 1ሽ). Their work in such tasks led to the 

development of the associative reward-penalty algorithm 
  .(ோି௉ܣ)

Some solutions of ARL tasks utilize a set of parameters. 
In this case, the learning task is to find the optimal values of 
the parameters. The complementary reinforcement 
backpropagation algorithm (CRBP) [2], an approach based 
on neural network, consists of a feed-forward network 
mapping an encoding of the context vector to an encoding of 
the action. The action is determined probabilistically from 
the activation of the output units. A supervised training 
procedure is used to adapt the network as follows. If the 
evaluation of the selected action is success (ߚ ൌ 1), then the 
network is trained to use the action whenever this context 
vector is provided. If an action fails to generate reward, 
CRBP will endeavor to generate an action that is different 
from current choice. Another work take  advantage of set of 
parameters is presented In [3]. In this algorithm, each action 
(or alternative) has an attribute vector associated with it, and 
for each the action it selects, it gets either a success or 
failure. The method incorporates a learning method like 
Widrow-Hoff rule and a probabilistic selection strategy to 
solve the ARL problem. Another method of this category is 
an automaton-based approach which will be described later. 

Some methods consider ARL tasks from an analytical 
point of view. Streth shows that associative prediction 
problem, a version of ARL, can be reduced to cost-sensitive 
classification and then to standard classification [4]. In [5], 
confidence bounds are used to deal with situations which 
exhibit an exploitation-exploration trade-off. In [6], efficient 
algorithms to solve a restricted class of RL problem are 
proposed. These algorithms can learn efficiently action 
policies that can be expressed as propositional formula in k-
DNF (disjunctive normal form). Abe et al. consider the 
problem of reinforcement learning with immediate rewards 
in a worst-case theoretical framework. This work provides 
bounds on the per-trial regret that go to zero as the number of 
trials approaches infinity [7]. In [8, 9], immediate reward 
reinforcement learning problem is reduced to a reward-
weighted nonlinear regression problem, which greatly 



accelerates the speed of learning. The method is successfully 
applied on simulated anthropomorphic robot arms. 

Two learning automata-based methods dealing with 
associative reinforcement learning problems are Generalized 
Learning Automata (GLA) and a team of Finite Action-Set 
Learning Automata (FALA) [10]. In the GLA approach, the 
structure of LA is modified to allow for context vector input 
[11, 12]. In the other method, a parameterized class of 
discrimination function is defined. The learning problem is 
to obtain the optimal values of the parameters. Considering 
actions of automata as parameter values, optimal actions can 
be learned without reference to any context. In [13], a team 
of Finite Action-Set Learning Automata (FALA) is used to 
learn the optimal parameters in ARL problems. 

In this paper, a new model, dealing with the ARL 
problem, based on learning automata and self organizing 
map is proposed. The model is composed of two layers. First 
layer comprised of a SOM which is used to represent the 
state (context) space. The second layer consists of a learning 
automaton team. The LA team is responsible for selecting an 
optimal action in each state of the environment and receiving 
the environment feedback. Two layers are related with each 
other via an associative function. In other words, each 
learning automaton is in correspondence with only one 
neuron of self organizing map. In order to show the 
performance of the proposed method, it has been applied 
successfully to classification applications on Iris, Ecoli, and 
Yeast data sets, as examples of ARL task. The results of 
experiments show that the proposed method is reached the 
accuracy near to or even higher than the highest reported 
accuracy. The results obtained for Ecoli and Yeast data sets 
indicate that the method is able to classify in relatively high 
dimensional context space and high number of classes. 

    The rest of the paper is organized as follows. Section 2 
briefly introduces self organizing map. Section 3 describes 
learning automata.  In section 4 the proposed model is 
described. Section 5 discusses the results of applying the 
proposed model on several classification problems. The 
conclusion remark is presented in section 6. 

II. SELF ORGANIZING MAP  
The SOM usually consists of an array of units arranged 

in a grid. Associated with each unit, t, is a weight vector, 
࢚࢝ ൌ ሾݓଵ

௧, ଶݓ
௧, … , ஽ݓ

௧ ሿ where D is the dimensionality of the 
input data. The aim is to find a suitable set of weights for 
each unit so that the network models the distribution of the 
input data in the input space. In many cases, the intrinsic 
dimensionality of the distribution may be low, even though 
the dimensionality of the input data itself is high. In these 
cases, the SOM can be used as a dimensionality reduction 
technique [14].  

The learning rule responsible for finding a suitable set of 
weights is simple: given an input vector, ݔ ൌ ሾݔଵ, ,ଶݔ … ,   ஽ሿݔ
the distance between each unit, t, of the SOM and the input 
vector is calculated by (1). 

෍ሺݔௗ െ ௗݓ
௧ ሻଶ

஽

ௗୀଵ

 (1) 

The unit with the smallest distance is the one which most 
closely represents the current input, and is thus considered 
the winner for that input. The weights of the winning unit are 
updated towards that input. In addition to the winning unit, 
the neighbors of the winning unit are also updated towards 
the input vector but by an amount that decays with the 
distance of those neighbors from the winning unit. The 
neighborhood function which controls this is often Normally 
distributed around the winning unit. 

The weights of the map are initialized to random values 
and then the above process is iterated for each input vector in 
the data set, effectively resulting in a competition between 
different regions of the input space for units of the map. 
Dense regions of the input space will tend to attract more 
units than sparse ones, with the distribution of units in 
weight space ultimately reflecting the distribution of the 
input data in the input space. Neighborhood learning also 
encourages topology preservation with units close in the 
topology of the map ending up close in the weight space too 
[14].  

III. LEARNING AUTOMATA 
Learning automaton can be defined as an abstract model 

which randomly selects one action out of its finite set of 
actions and performs it on a random environment. 
Environment then evaluates the selected action and 
responses to the automaton with a reinforcement signal. 
Based on selected action, and received signal, the automaton 
updates its internal state and selects its next action. Figure 1 
depicts the automaton’s interaction with its environment. 

 
Figure 1: Learning automaton acting in an environment 

Environment can be defined by the triple ܧ ൌ ሼߙ, ,ߚ ܿሽ 
where ߙ ൌ  ሼߙଵ, ,ଶߙ … ,  ,௥ሽ represents a finite input setߙ
ߚ ൌ ሼߚଵ, ,ଶߚ … , ܿ ௥ሽ represents the output set, andߚ ൌ
ሼܿଵ, ܿଶ, … , ܿ௥ሽ is a set of penalty probabilities, where each 
element ܿ௜ of c corresponds to one input of action ߙ௜. An 
environment in which ߚ can take only binary values 0 or 1 is 
referred to as P-model environment. A further generalization 
of the environment, known as Q-model, allows finite output 
set with more than two elements that take values in the 
interval [0, 1]. A further step in this direction is the S-model 
whose responses can take continuous values over the unit 
interval [0, 1]. 

Learning automata can be classified into fixed-structure 
LA, and variable-structure LA. Fixed-structure automata are 
characterized by state transition probabilities that are fixed. 



Tsetline, Krinsky, and Krylov are examples of this kind of 
learning automata. A variable-structure automaton is defined 
by the quadruple ሼߙ, ,ߚ ,݌ ܶሽ in which ߙ ൌ  ሼߙଵ, ,ଶߙ … ,  ௥ሽߙ
represents the action set of the automata, ߚ ൌ ሼߚଵ, ,ଶߚ … ,  ௥ሽߚ
represents the input set, ݌ ൌ ሼ݌ଵ, ,ଶ݌ … ,  ௥ሽ represents the݌
action probability set, and finally learning algorithm is 
defined as ݌ሺ݊ ൅ 1ሻ ൌ ܶሾߙሺ݊ሻ, ,ሺ݊ሻߚ  ሺ݊ሻሿ. This automaton݌
operates as follows. Based on the action probability set p, 
automaton randomly selects an action ߙ௜, and performs it on 
the environment. After receiving the environment's 
reinforcement signal, automaton updates its action 
probability set based on following reinforcement scheme, 
equations (2) for favorable response, and equations (3) for 
unfavorable one. It is noteworthy that this reinforcement 
scheme is for multi-action learning automata acting in the P-
model environment [15]. 

௜ሺ݊݌ ൅ 1ሻ ൌ ௜ሺ݊ሻ݌ ൅ ܽ൫1 െ  ௜ሺ݊ሻ൯݌
௝ሺ݊݌ ൅ 1ሻ ൌ ௝ሺ݊ሻ݌ െ ݆ ׊               ௝ሺ݊ሻ݌ܽ ് ݅ (2) 

 

௜ሺ݊݌ ൅ 1ሻ ൌ ሺ1 െ ܾሻ݌௜ሺ݊ሻ 

௝ሺ݊݌ ൅ 1ሻ ൌ
ܾ

ݎ െ 1 ൅ ሺ1 െ ܾሻ݌௝ሺ݊ሻ    ׊ ݆ ് ݅ 
(3) 

In these two equations, a and b are reward and penalty 
parameters respectively. For a=b, learning algorithm is 
called ܮோି௉, for b << a, it is called ܮோఌ௉, and for b = 0, it is 
called ܮோିூ. 

IV. THE PROPOSED MODEL  
In this section, a new hybrid model for associative 

reinforcement learning (ARL) obtained by combining self 
organizing map and learning automata is proposed. An 
associative reinforcement learning (ARL) agent is shown 
in figure 2. The ARL agent’s interaction with its 
environment is similar to the Interaction of learning 
automata with its environment (figure 1) except that in 
addition to the environment response it also gets a 
context vector from the environment.  

 
Figure 2: ARL agent acting in an environment 

The proposed model can be defined by ሼܵ, ,ߞ ܰ, ߶, ܶሽ in 
which S is the self organizing map used to represent state 
space; ߞ ൌ ሼܮ௜| 1 ൑ ݅ ൑  ሽ is a team of M learningܯ
automata, where M is less than or equal to the number of 
SOM neurons; N is the topology of learning automaton team, 
which is assumed to be the same as the topology of SOM in 
this paper; ߶ is a function which specifies associations 
between each neuron of SOM and each learning automaton 
of LA team (ߞ); and finally T is the learning algorithm which 
is explained in more details later. 

    Figure 3 depicts the model structure and its interaction 
with the environment. The model contains two layers. First 
layer incorporates a SOM which is used to quantize the state 
(context) space. The second layer comprised of a learning 
automata team which is used to select the optimal action. 
First layer is mapped to the second layer via ߶ function. In 
other words, each learning automaton is in correspondence 
with only one neuron of the SOM. The interaction of the 
model with the environment is as follows: environment 
provides the ARL agent with a context vector; the winner 
neuron which most closely represents this context vector is 
determined; learning automaton associated to the winner 
neuron is determined usingφ  function; the selected learning 
automaton chooses an action and performs it in the 
environment; the environment evaluates the action and 
provides the LA with a reinforcement signal; using this 
signal, LA and Its neighbors update their action selection 
strategies. 

 
Figure 3:  The Proposed model 

The algorithm is summarized as follow: 

1. ARL agent gets the context vector from the 
environment. 

2. The SOM determines the winner neuron. 
3. The learning automaton in correspondence with 

the winner neuron is selected using ߶ function. 
4. The learning automaton selects an action and 

performs it on the environment. 
5.  The environment evaluates the action of LA 

and gives a reinforcement signal to the LA 
team. 

6. SOM updates its neurons towards the context 
vector. 

7. LA is updated based on the reinforcement 
signal. 



8. (Only if variable structure LA is used) LA 
neighbors are updated based on the 
reinforcement signal provided to executing LA 
but with smaller reward and penalty parameter. 

V. EXPERIMENTAL RESULTS 
Experimental results for several pattern recognition 

problems are reported in this section. Figure 4 demonstrates 
the first problem. This simple problem is selected to illustrate 
various feature of our model, later we use the model in more 
difficult problems. In this problem, the environment provides 
the context vectors uniformly from ሾ0,1ሿ ൈ ሾ0,1ሿ. The 
discrimination function to be learned is shown in figure 4 
and mathematically defined by ሾ2ݔଵ െ ଶݔ ൐ 0ሿ ר ሾെݔଵ ൅
ଶݔ2 ൐ 0ሿ. The task of ARL agent is to classify the given 
context vector as class A or class B. In this experiment, the 
environment provides the ARL agent with 15000 samples. 
After learning each sample, the performance of the ARL 
agent is calculated. Performance is the number of correct 
classified context vector of the test set. The experiment is 
repeated over 10 independent trials. The figure 5 shows the 
average performance against time over 10 independent trials 
and the bars show the best and worst trial among 10 trials. 
The figure indicates that the method learns to classify the 
provided context vector properly. 

 
Figure 4: Discrimination function 

 
Figure 5 average performance of proposed model against time over 10 

independent trials 

    Figure 6 demonstrates how the model changes its 
internal structure against the time. It shows change in the 
SOM neurons positions and the probabilities of LA actions 
during learning. The figure 6 comprise of four snapshots 
(step 1, 1000, 5000, 15000) of learning.  For each step, left 
diagram shows the positions of SOM neurons and the 
topology of the SOM. Each neuron is determined with black 
or white circle. Black circle determines that selection 
probability of class B in corresponding LA is greater than 
class A and white circle is defined vice versa. Right diagram 
shows the Vornoi diagrams for the left diagram. The diagram 
determines that each neuron which portion of the state space 
is classifying as class A or class B. 

    Figure 6-a shows the internal structure of the model in 
the step 1. In this step, the neuron weights of the SOM are 
selected randomly. So the topology of the SOM neurons is 
not preserved in the weight space. Irregular distribution of 
black or white circles in the Vornoi diagram implies that the 
selection probability of class A or B for each LA is also 
random.  

    In the step 1000, in spite of preserving the topology in 
the weight space, the SOM could not properly estimate the 
uniform distribution of context space. Also several 
misclassifications can be seen which some of them is shaded 
in red in corresponding Vornoi diagram. The shaded region 
shows that associated LA has not converged yet. 
Misclassifications can be seen either in the middle of the 
class A/B region or boundary of the class A and B. The figure 
6-c shows the step 5000 of learning. In this step, the 
topology is properly preserved but the SOM could not 
represent the uniform distribution of context space very well. 
The neurons need minor change in order to elegantly 
represent the space. For instance, distribution of neurons in 
regions which are bounded in red ellipse is not uniform, so 
that the SOM need more learning sample to converge to a 
suitable representation. In the Vornoi diagram of this figure, 
some misclassifications are shaded in red. In this case, 
misclassifications are restricted to some neurons in the 
boundary of class A and B.  

Figure 6-d shows the step of 15000 learning. In this step, the 
topology is preserved; the neurons uniformly  distributed in 
the state space; and as can be seen misclassifications are 
occurred neither in the middle of the class A/B region nor 
boundary of the class A and B. 

 
Table 1 Evaluation of the model on three standard data sets 
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Iris 150 4 3 100% %99 
Ecoli 336 7 8 81% %85 
Yeast 1484 8 10 55% %52 

 



Step SOM neurons Positions Vornoi Diagram of neurons 
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1000 

5000 

 

15000 

 
 

 
 

Figure 6: The internal structure of the model in the step 1, 5000, 10000, and 15000. Diagrams in the left column 
demonstrate SOM topology in each step. Right diagrams indicate Vornoi diagram for each step. Each neuron is determined 

with black or white circle. Black circle determines that selection probability of class B in corresponding LA is greater than class 
A and white circle is defined vice versa.  



 

The previous example illustrates how the proposed 
model works in a simple problem. In the following, we 
present the evaluation of the proposed model on Iris, Ecoli, 
and Yeast data sets [16].  The characteristics of each data 
set, highest accuracy of previous methods, and accuracy of 
the proposed method is presented in table 1. The results for 
the proposed model are calculated using 10-fold cross 
validation procedure and each result is averaged over 10 
runs. The results demonstrate that the proposed method is 
reached the accuracy near to (for Ecoli, better than) 
highest reported accuracy. Applying the model on Ecoli 
and Yeast dataset shows that the method is able to deal 
with classification problems with relatively high 
dimensional context space and high number of classes. 

VI. CONCLUSION 
In this paper, we described a new hybrid model that 

uses evaluative performance feedback to learn associative 
maps from context vector to a set of actions. The new 
hybrid model is based on the SOM and a team of Learning 
Automata. Various features of the model were illustrated 
by a simple classification problem. This simple problem 
indicated that the proposed model learns to preserve 
topology in the weight space, to represent properly the 
distribution of the context vector, and to classify correctly 
the given context vector. Experimental results on three 
standard data sets showed that the proposed method can 
perform near to or even better than the best previous 
method. The experiments also indicated that the method 
can be used in high dimensional context space and high 
number of classes. 
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