ICTAC 2019
October 31, 2019

Hammamet, Tunisia

A Tutorial on Abstract Interpretation

Patrick Cousot

New York University, Courant Institute of Mathematics, Computer Science

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

“A Tutorial on Abstract Interpretation, ICTAC 2019" -1/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019


https:nyu.edu
https:cims.nyu.edu
https:cs.nyu.edu
http://cs.nyu.edu/~pcousot

October 31, 2019, 09:00—10:30

“A Tutorial on Abstract Interpretation, ICTAC 2019” -2/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Introduction

“A Tutorial on Abstract Interpretation, ICTAC 2019"

-3/95 -

/

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Static analysis

= A static analyzer
= inputs the source code of a program in a given programming language

= always terminates
= automatically output sound information valid for all possible program

executions (e.g. runtime errors, data races, etc.)
(and this without running the program)

“A Tutorial on Abstract Interpretation, ICTAC 2019” - 4/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



How to design a static analyzer by abstract interpretation

= Define the syntax & semantics of the language
= Define the semantic properties to be analyzed

» Define an abstraction of this semantic properties into an abstract domain (machine
representable subset of the semantic properties)

= Design the static analyzer by calculational design of the abstraction of the semantics

“A Tutorial on Abstract Interpretation, ICTAC 2019” -5/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



How to design a static analyzer by abstract interpretation

= Define the syntax & semantics of the language
= Define the semantic properties to be analyzed

» Define an abstraction of this semantic properties into an abstract domain (machine
representable subset of the semantic properties)

= Design the static analyzer by calculational design of the abstraction of the semantics

= This will be illustrated in November 2, 2019 session 9:00—10:30 of ICTAC by the
design of a regular model checker

= A this tutorial, we introduce the basic notions of abstract interpretation

“A Tutorial on Abstract Interpretation, ICTAC 2019” -5/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Basic notions of abstract interpretation

Part |

= structural definitions and structural proofs, program semantics
= property and collecting semantics

= abstraction & Galois connection

= abstract domain

= abstract interpreter
Part 1l

= trace semantics
= fixpoints
= fixpoint abstraction

= fixpoint extrapolation (widening) and interpolation (narrowing)

a few simple examples of static analyzes

“A Tutorial on Abstract Interpretation, ICTAC 2019” -6/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Structural definition and
proof, Program semantics

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 7/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Syntax and semantics of programs

= Syntax: how to write a program (say that compiles correctly)
= Example: XY,... €V variables (¥ not empty)

Aec A :=1]|x]|A-A arithmetic expressions!

= Semantics: a formal definition of what the program computes

Lassumed to be left associative that is 1-1-1 is ((1-1)-1)

“A Tutorial on Abstract Interpretation, ICTAC 2019” - 8/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Structural definition and proofs

= To define the semantics of programs, we use structural definitions i.e. by induction
on the program syntax
= Example: XY, ... €V variables (V not empty)
AecA:=1]|x]|A-A arithmetic expressions

= A structural definition of f € A — S where S is a set has the form
» f(1) and f(x) are defined to be constants (so f(1) £ ¢, and f(x) £ ¢, where
c;,¢, €8);
= f(A, - A,)is a function of f(A,) and f(A,) (so f(A, - A,) 2 F.(f(A), f(A,))
where F_ e $x§ — §).

“A Tutorial on Abstract Interpretation, ICTAC 2019” -9/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Environment

= What is the value of expression x?
0 if x has value 0, 1 if x has value 1, -1 if x has value -1, etc.

= We do not want to consider infinitely many cases.

= An environment formalizes has value to avoid considering infinitely many cases

= An environment p € Ev =2 V — Z maps variables x € V to their integer value
p(x) € Z,

“A Tutorial on Abstract Interpretation, ICTAC 2019" —-10/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Structural definition of the semantics of arithmetic expressions

The value o [A] of an arithmetic expression A € A is structurally defined as follows.

Af1] 2 Ap-1 (3.4)
d[x] £ Ap=p(x)
da -a] = Ap-da]p-da]p

1, x, -, and A are syntactic objects e.g. strings of characters.

1, p, — are (already defined) mathematical objects.
Ax = f(x) is the anonymous function such that (Ax = f(x)) e = f(e).

“A Tutorial on Abstract Interpretation, ICTAC 2019" -11/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Proofs by structural induction

= To prove a property of f € A — S defined by structural induction
= Prove that the property holds for f(1) and f(x)
= Assuming that the property holds for f(A;) and f(A,), prove that the property
holds for f(A; - A,)
= Conclude that VA € A . f(A) has the property.

“A Tutorial on Abstract Interpretation, ICTAC 2019" -12/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Proofs by structural induction

= To prove a property of f € A — S defined by structural induction
= Prove that the property holds for f(1) and f(x)
= Assuming that the property holds for f(A;) and f(A,), prove that the property
holds for f(A; - A,)
= Conclude that VA € A . f(A) has the property.

» Example: prove that VA€ A .Vp e Ev. A[A]p € Z where Ev 2V — Z

A1] 2 Ap-1 (3.4)
A[x] £ Ap=p(x)
da -n] = Ap-dAa]p-dAa]p

“A Tutorial on Abstract Interpretation, ICTAC 2019" -12/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Properties and collecting semantics

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 13/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Properties

= In computer science properties are often defined using logics?

= We use set theory instead

We define properties as sets (of individuals with this property)

Examples

= to be even: {2z |z € Z}
= Oiseven: 0 € {2z |z € Z}
= lisnoteven: 1¢{2z]|z¢€Z}
» the multiples of 4 are even {4z |z € Z} c {2z | z € Z} (< is implication)
» To be positive or negative {z € Z |z>0lU{z e Z |z < 0} (U is disjunction)
» To be positive and negative {z € Z |z>0}nN{zeZ |z<0}=Q

(N is conjunction, & is false)

2which have there limitations e.g. one cannot define the reflexive transitive closure in first-order logic

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 14/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Properties

= In computer science properties are often defined using logics?

= We use set theory instead

We define properties as sets (of individuals with this property)

Examples

= to be even: {2z |z € Z}
= Oiseven: 0 € {2z |z € Z}
= lisnoteven: 1¢{2z]|z¢€Z}
» the multiples of 4 are even {4z |z € Z} c {2z | z € Z} (< is implication)
» To be positive or negative {z € Z |z>0lU{z e Z |z < 0} (U is disjunction)
» To be positive and negative {z € Z |z>0}nN{zeZ |z<0}=Q

(N is conjunction, & is false)

= |f U is a universe (a set of individuals/things you are interested in), the properties
of the individuals of the universe belong to (U) = {P | P < U}

2which have there limitations e.g. one cannot define the reflexive transitive closure in first-order logic

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 14/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Weaker /stronger properties

= P cQis implication

Example: “to be greater that 42 implies to be positive” is
{zeZ|z>42}c{zeZ|z>0}

P is a stronger/more precise property than Q (less elements satisfy it)

Q is a weaker/less precise property than P (more elements satisfy it)

@ (false) is the strongest property of elements of the universe U

U (true) is the weakest property

{x} strongest property of element x € U

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 15/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Complete lattice of properties (p(U), <, &, U, U, N)

= Cis a partial order (reflexive, antisymmetric, and transitive)

@ is the infimum (smallest element)

U is the infimum (largest element)

Any set of properties X € p(p(U)) has a least upper bound J X
Any set of properties X € p(p(U)) has a greatest lowe bound (] X

Generalizes to (L, C, L, T, LI, M) e.g. 7
z

{z|z<0} {z |

{z|z<0} {0} {z|z>0}

“A Tutorial on Abstract Interpretation, ICTAC 2019" -16/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Least upper bound

upper bounds of §
least upper bound of § Z

{zleO} {z | z + 0} {z]z=0}
set S
XX
{z|z <0} {z|z>0}

N

{o}
|
%]

“A Tutorial on Abstract Interpretation, ICTAC 2019”

greatest lower bound of S><

- 17/95 -

Greatest upper bound

z
|
z

A

{z|lz<0} {z|

1<

{z|z<0}

#0} {zlz >0}

><| <« setS§

{0} {z|z>0}

|
@

lower bounds of §

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Program properties

By our definition, a program property is a set of programs

Example: “to return 1" is

[AcAa|Vpelkv. d[A]p=1}
= {L(x-x)-((1-1)-1),...}
1 ¢ {AcA|Vpelkv. d[A]p=1}

= We are interested in semantic properties: a set of possible semantics of programs

Example: “to return 1" is

{(febvy—>Z|Vpelv. f(p) =1}
d[1] € {febv—>Z|Vpeklkv. f(p) =1}

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 18/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Collecting semantics

= The collecting semantics is the strongest property of a program semantics
» S°[A] £ {A[A]}
= Program A has property P
iff A[A] € P
iff S°[A] c P
so we can get rid of € in favor of C and reason in the complete lattice of properties!

$[1] {Ap-1}
S°[x] {Ap - p(x)}
STa -A] = {Ap- filp) = folp) | f1 € S[A] A £, € S[A[}

(note: same p)

“A Tutorial on Abstract Interpretation, ICTAC 2019" -19/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Abstraction & Galois connections

“A Tutorial on Abstract Interpretation, ICTAC 2019" —-20/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Proving and analyzing programs

= |t is not possible to prove program properties by enumerating all possible cases
= e.g. Model-checking does not scale

= e.g. Prove by enumeration of all cases that x - x = 0 where x has integer values
encoded on p = 1,2,3,..,64 bits

“A Tutorial on Abstract Interpretation, ICTAC 2019" —21/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Fully mechanized solutions

» Consider programs with a small number of small executions (model-checking®)

= Ask for human help (deductive methods using user-provided information and help
for theorem-provers or SMT solvers)

= Use sound approximations (static analysis)
— abstraction formalized by abstract interpretation

= or prove nothing as in unsound static analysis

3e,g, the model-checker of Scade will almost certainly fail when numerical computations over more than 8 bits have to be taken into account.

“A Tutorial on Abstract Interpretation, ICTAC 2019" —22/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Abstraction and abstract properties

= Do not consider all possible properties of the semantics (e.g. all properties of the
semantics of an arithmetic expression)

= Abstraction consists in considering a subset pertinent to what you want to prove
(e.g. the sign of an arithmetic expression knowing the sign of its arguments)

= Abstract properties are a computer representation of these properties of interest

/I\

\I/

“A Tutorial on Abstract Interpretation, ICTAC 2019" —23/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Abstract domain

= Abstract domain = abstract properties + operations on abstract properties
= Lattice operations C., L., T., Ls, M,
= Example of operation on sign abstract properties*

S xS, 1L, <0 =0 >0 <0 #0 =20 T
s Lo | Lo Lo Ly 1y Ly Ly L Ly
<0 1. T <0 <0 . T. <0 T
=0 | 1. >0 =0 <0 20 #0 <0 T
>0 1L, >0 >0 T. >0 . T. T
0| L. T. <0 <0 . T <0 T
#0 | L. T # T T T. T T
20| L. >0 20 T. 20 T. T. T
T L, T T T T T T T

4Observe the loss of information
“A Tutorial on Abstract Interpretation, ICTAC 2019" —24/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Correspondance between abstract and concrete properties

= Concretization function y

= Example, sign concretization

P:(L) 2 O 1:(€0) 2 {z€Z | z<0} (3.23)
y:(<0) = {z€Z|z<0}  y.(#0) 2 {zeZ|z#0}
y:(=0) = {0} 7:(20) = {z€Z |z >0}
p(0) 2 (2€Z|2>00  p(T) :Z
“A Tutorial on Abstract Interpretation, ICTAC 2019" —25/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Correspondance between concrete and abstract properties

= Abstraction function «

= Example, sign abstraction

a.(P) =

“A Tutorial on Abstract Interpretation, ICTAC 2019”

Q
o)
[

i+

|z<0}’?<0
} =0

z|z>07>0
z|z<0}7%<0
z|z+0}7? %0

5~ v la vl B o lla B~
=N 1N 1N N N N N

{z
{0
{
{
{
{

00 /= = == == = —

i

-26/95 -

(3.30)

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Best approximation

» «.(P) is the best over-approximation of P € ©(Z) in P* since
» P Cy.(a.(P)) i.e. a.(P) is an over-approximation/sound abstraction of P;

eg V:(.({z€Z |z2242}) =y.>0)={z € Z | z > 0}

» if P € P* and P € y.(P) then a.(P) C. P
i.e. a.(P) is more precise than any other over-approximation/sound abstraction
of P.

T
eg. {ze€Z|z>42} Cy.(>0),y.(20),y.(T.) and / | \
a.({z€Z|z242})=>0C, >0C. 20C. T. |>< ><|

<0 =0

>0

N |7
L.

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 27/95 -

D P. Cousot, NYU, CIMS, CS, October 31, 2019



Galois connection
= The pair {a., y.) is a Galois connection, i.e.

VP € p(Z).VP € P* . au(P)E. Q iff PCy.(Q)

» if a.(P) C. Q then Q is a sound over-approximation of P (including Q = a.(P))
= if Q is a sound over-approximation of P (i.e. P € .(Q)) then a.(P) is
better/more precise than Q (so «a.(P) is the best sound abstraction of P)

= Notation: (p(Z), <) Z:t (P*, C.)

“A Tutorial on Abstract Interpretation, ICTAC 2019" —28/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



P+
Properties of Galois connection (p(Z), <) _? (P*, ©)

= Essential properties
» «. and y. are increasing
» VP ep(Z).PCy.(x:(P))
= VQe P*. ai(Yi(Q)) CQ
= . preserves least upper bounds, y. preserves greatest lower bounds
» VQ € P* . a.(y:.(Q)) = Q iff e, is surjective iff y. is injective
= One function uniquely determines the other (for the given orders)

“A Tutorial on Abstract Interpretation, ICTAC 2019" —29/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Abstracting properties of functions

= Abstracting properties of environments

@.(P) 2 Ax=a.({p(x) | p € P}) (3:33)
(V> Z), ©) s (V - P*, £

= Abstracting properties of expression semantics

@& (P) 2 Apa.({8(p) | S € PAp € () (3.34)

(((V > 2Z) > Z), &) == ((V - P*) > P%), £.)

Spointwise ordering: f & g iff Vx . f(x) C g(x), F £ G iff Vf . Vx . F(f)x T G(f)x

“A Tutorial on Abstract Interpretation, ICTAC 2019" -30/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Sign analysis

“A Tutorial on Abstract Interpretation, ICTAC 2019”

—-31/95 -

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Sign analysis

= Sign analysis 8*[A] is the abstraction of the collecting semantics $“[A] of
arithmetic expressions A

a(SC[A]) E. S*[A]

= Sound approximation (can be Et.)
= 8*[A] can be formally derived form the definition of $“[A] by calculus

“A Tutorial on Abstract Interpretation, ICTAC 2019" -32/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Calculational design of the sign analysis

“A Tutorial on Abstract Interpretation, ICTAC 2019" —33/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Sign analysis

= By calculus (to be shown after that slide), we get the structural sign semantics
8*[A] € (V — P*) — P* defined as follows

S*[1] = Ap=>0
S*[x] = Ap=p(x)
S[A -] = Ap - (S*[A]p) = (8*[A]p)

= Strategy

= by structural induction
» develop and simplify the definitions
= make approximations to get rid of concrete semantic computations

“A Tutorial on Abstract Interpretation, ICTAC 2019" —34/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Constants

» Assume 7.(p) # @ is not empty

$[]p
2w (S 1])p {def. abstraction§
= a.({8(p) | 8 € 8[1] Ap € 1.(p)}) (def. (3.34) of &.§
= a.({4[1](p) | p € y-(P)}) {def. (3.13) of 8°[1]5
= o.({1}) {7-(p) is not empty and def. (3.4) of o [1]§
= >0 {def. (3.30) of a.§

» Otherwise y.(p) = & is empty

$*[Alp
= @A) PP = @) {def. S*[A] with j.(p) = @ §
= 1. (def. a.§

“A Tutorial on Abstract Interpretation, ICTAC 2019" —35/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Variable (when y.(p(y)) is not empty)

$*[x]p
= a.(8[x]p
= a.({8(p) | 8 € S [x][ Ap (P} {def. (3.34) of &
= a.({d[x](p) | p € (D)) {def. (3.13) of 8°[x]§
= a(fp() | p€y.(p)) {def. (3.4) of A[x]§
= a.({fp(x) | Vy € V.. p(y) € p:(p(y))}) (def. (3.24) of .§

= a.({p(x) | p(x) € y:(p(x))})
{when yi(f)(y)) is not empty so for y # x, p(y) can be chosen arbitrarily to satisfy
ply) € y:(p(y))§

= alx | x € p(pOO Lletting x = p(x)S
= a.(y:(p(x))) (since S = {x | z € S} for any set S§
= p(x) (by (3.37), a. ° y. is the identity§

“A Tutorial on Abstract Interpretation, ICTAC 2019" -36/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Difference (when y.(p) is not empty)

We assume, by structural induction hypothesis, that &.($“[A,]) C. $*[A;] and
& (SC[A,]) £ 8*[A,]

da.(S[A; - A])p

= a.({8(p) | 8 € 8°[A, - A ] Ap e (p)}) {def. (3.34) of d.S§
= a.({A[A; - A,](p) | p € y:(P)D) (def. (3.13) of 8°[A; - A,]§
= a.({A[A](p) — A[A,](p) | p € y:(P)}) (def. (3.4) of A§

Coon(fx—y [ x e {A[A (") | " € pu(P)} Ay € (A[A](p") | p" € ()}

Ufp)—glp) lpeRc{x—ylxe{f(p") | p eRFAye{g(p”)|p" € R} and
«. is increasing.®

5This over-approximation allows for A; and A, to be evaluated in the concrete with different environments p’ and p’’ with the same sign of
variables but possibly different values of variables. This accounts for the fact that the rule of signs does not take relationships between values of
variables into account. For example the sign of x - x is not =0 in general.

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 37/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Coo({x -y | x € plo.({A[A ] () | p € 7DD A y € pula (A [A](0) | p € p(PIND)
Ux-ylxePAyeQlc{x—y|xep(a(P) Ay € p.(a.(Q))} since y. » a. is.
extensive and «, is increasing7S
= a.({A[A]P) | p € y.(P)}) ~ . ({A[A](p) | p € 7:(p)})
(s1=8 = a(fx—ylxepls)Ayeyp(s)hS
— 0.({8(p) | 8 € ST IM]Ap € (P ~ ({8 (p) | 8 € S[A] Ap € 1u(P)}) {def. 85
= @(S[A]Dp — a(S[A])p (def. &.§
= a.(8°[A]Dp -~ a(8°[A])p (def. &, §
C. (8*[A]p) ~ (S*[A]p)
{induction hypothesis and -, is increasing in both parameters}

2 8*[A, -A]p {def. 8*[A, - A,] when Vy € V. p(y) # 1.§ O

"This over-approximation allows for the evaluation of the sign to be performed in the abstract with - instead of the concrete.
“A Tutorial on Abstract Interpretation, ICTAC 2019" —38/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Abstract interpreter

“A Tutorial on Abstract Interpretation, ICTAC 2019" -39/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Abstract interpreter

= The calculational design can be generalized to any abstract domain
D* = (P¥, ", 1%, u", 17, oF)
such that
Y
" (p(2), &) = (P", £7)
= {1} cy(1™)
» VP,P, e P* . {x—y|xepP))AyepP,)}<yP,o" P,
= Then the abstract interpreter
87[1] = Ap-17
87[x] = Ap+p(x)
8°[A - &) = A+ (8¥[A]P) &” (87 [,]p)
is sound VA € A . S°[A] € (ST [A]) i.e. A[A] € y(S"[A])

“A Tutorial on Abstract Interpretation, ICTAC 2019" —40/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Parity analysis

= Abstract domain:

P2 = {2z|ze€Z} {2z+1|zeZ} Pr- e

/Z N v
6]
= Constant 1: 1’20

= Difference:

x elelolo| _ |L3/T?
y |elole|lo|LP/T°

x&’yle|o|o|e|L?/T*| LT

“A Tutorial on Abstract Interpretation, ICTAC 2019" —41/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Exercise

Following the pseudo-evaluation idea of Peter Naur in compilation [Naur, 1963, 1965],
Michel Sintzoff [Sintzoff, 1972] postulates the sign analysis in the following way:
“axa+bxb yields always the object “pos” when a and b are the objects “pos”
or “neg”, and when the valuation is defined as follows :

pos+pos = pos pos X pos = pos
pos+neg = pos,neg pos X neg = neg
neg+pos = pos,neg neg x pos = neg
neg+neg = neg neg x neg = pos
Vip+q) = V(p)+V(q) Vibxq) = V(p)x V(q)
V(o) = V(1) = .. = pos
V(-1) = V(-2) = .. = neg

What is wrong?

“A Tutorial on Abstract Interpretation, ICTAC 2019" —42/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



October 31, 2019, 11:00—12:00

“A Tutorial on Abstract Interpretation, ICTAC 2019" —43/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Introduction

Great but what about iteration (and recursion)

Part Il

= trace semantics
= semantics of while iteration
= fixpoints

= fixpoint extrapolation (widening) and interpolation (narrowing)

“A Tutorial on Abstract Interpretation, ICTAC 2019" —44/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Traces

“A Tutorial on Abstract Interpretation, ICTAC 2019” —45/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Haud computation of
(1-1)-1 « (1-1)

1}

-
1
ey

partial trace

_ < Y204 from ) o
0-1 = maxtmal fluite trace

a0 0 TS T 9 9
LU
1
—_)

Inn
-+~
~~

L

“A Tutorial on Abstract Interpretation, ICTAC 2019" —46/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Traces

“A Tutorial on Abstract Interpretation, ICTAC 2019” —47/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Finite traces of a program: P

= Program (notice the labelling):
& x=x+1; (4.4)
while & (tt) {
L x=x+13
if & (x> 2) & break ;}%;¢%

= Prefix traces (from ¢, initially x = 0):

— — - > 2
x=1 t x=2 ¢ (x ) ¢ t

o ) € 4 2 €

= Finite (maximal) traces:
= = _'X>2 =
— x=1 ¢ t ¢ X =2 ¢, ( ) ¢, tt 6 x=3 ¢ x> 2 & break

skip

Ly —— ¢,

“A Tutorial on Abstract Interpretation, ICTAC 2019" —48/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Infinite traces of a program: P

= Program:
6x=0 3 whilet, (tt) {&x=x+13; } &

= |nfinite trace:
o 220, 0, By XEL g My XT2 e e KT, By,
x=n+1
[

“A Tutorial on Abstract Interpretation, ICTAC 2019” —49/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Traces

T*: the set of all finite traces,

T°: the set of all infinite traces,

T+ the set of all finite or infinite traces.

Conventions:

» we write 77 = ¢/ to make clear that the trace 7 is assumed to start with the
program label ¢ (although 7’ is not itself a properly formed trace),

= we write 7 = 71'¢ when assuming that the trace 7 is finite and ends with label ¢
(although, again, 7’ is not itself a properly formed trace).

“A Tutorial on Abstract Interpretation, ICTAC 2019" —-50/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Trace concatenation -

= Definition:

T4~ G, undefined if & # ¢,
b -, 2 i, if 77, is finite
T~ T, = if 77, is infinite

= |n pattern matching, we sometimes need the empty trace 5. For example ¢rt’ = ¢
thent=3and ¢ = ¢.

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 51/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Values of variables at the end of a trace

= the value o(7r)x of variable x at the end of trace 7 is the last value assigned to x (or
0 at initialization).

omt 2= v)x 2y (6.4)
o(mt —— t)x = go(mt) otherwise
e(®)x =0

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 52/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Prefix trace semantics

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 53/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Prefix trace semantics of the assignment statement

Prefix traces of an assignment statement S ::=¢ x = A

S*[s] = {(nt, ¥y | v =& U (15.2)

(v, v XZAZU after[s]) | ¢ = ¢ Av = A [A]o(t)}

= after[S] is the program label reached on termination of program component S
= at[s] is the program label where the execution of S starts
= o(mt) is the environment assigning a value to variables at the end of the trace mt

= The semantics of a program component S is a set of pairs (r¢, ¢x') where the
initialization 7z¢ is a computation arriving at[S] = ¢ and the continuation ¢7’
describes zero or more computation steps of S after reaching at[s] = ¢

“A Tutorial on Abstract Interpretation, ICTAC 2019" —54/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Prefix trace semantics of a statement list

Prefix traces of a statement list SU::=SU S

S*[s] = $*[sU]u (15.3)
(), 7y ~13) | (), my) € S*[SU] A () ~ 1y, 3) € 8*[S]}

» 77, starts at[[s] = after[S1'] so 7, must necessarily terminate after[S1'] = at[s] i.e.
the execution of S1’ must necessarily terminate for that of S to start

= The values of variables on 7, m,, and 7, are necessarily compatible

x=0=0 X=x-1=42 - .
L8 12 ¢ is impossible

R
a1

Uz T3

“A Tutorial on Abstract Interpretation, ICTAC 2019" —55/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Prefix trace semantics of the conditional statement

Prefix traces of a conditional statement S ::=+ift (B) S,

$°[s] = {(mt, e —2, after[s]) | B[e]o(m,6) = f} U (6.16)
(e, ¢ 25 at]s,] - m,) | BBJo(mt) =t A (6.17)

(m,t 25 at[s,], m,) € S *[s,]}

= This includes the case when the true alternative S, terminates after[s,] = after[s]

“A Tutorial on Abstract Interpretation, ICTAC 2019" -56/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Prefix trace semantics of the wh1ile iteration

» The prefix trace semantics 8 *[whilet (B) S,] of an iteration whilet (B) S, with
loop body s, define traces after 0, 1, 2, ... iterations

= while (B) S, =1if (B) {Sy;while (B) S,}
= or X =1if (B) {S,;X} where X =while (B) S,
» So the prefix trace semantics 8 *[while ¢ (B) S,] is defined recursively

S*[whitet (B) S,] = F*[whilet (B) S,[(S *[whilet (B) S,])
or X = Fwhilet (B) S,[(X)

» F*[whilet (B) S,]X describes the effect of one iteration if (B) {S,; X}
» Technically, § *[while ¢ (B) S,] is the least fixpoint of F *[whilet (B) S,]

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 57/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Prefix trace semantics of the while iteration (cont'd)

Prefix traces of an iteration statement S ::= whilet (B) S,
S*[whitet (B) S,] = Ifp® F*[whilet (B) S,] (15.4)
Fwhilet (B) S,J(X) 2 {(mt &)} (a)
! ! _|(B) ! ! !
U {(m 8, vmt — after[S]) | (m,¥, ¢m,¥) € XA
B[Bo(m,tmyt) = AL = ¢} (b)
U (e, vmt =2 at[s,] - 7 | (s Uty € X A B[Bo(r, eyt = tt

Amtmt =5 at[s,], m5) € 8™ [s,] At =1 (c)

s Fr[whilet (B) Sp[(X)(m,¢) = & whent' ¢

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 58/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Example
Consider S =whilet (tt) €x =x+1 ; so that S, =¢x = x+1 ;. We have

FIsIX) 2 {(me, O} u{me bt = ) | (8, tnyt) € XU

tt = 1=
{8, byt v XEXELEV L0y | (L, tmyt) € X Av = o(mtm,t) + 1)

The iterates (F*", n € N) of F*[s] from & are

9;*0 — %)
1
F* {(7'[1?'; €>}
t = 1=
F? = {(m8, &), (myt, e_>e') (8 e &) | v=0e(m?) +1}
=x+1=uv(l
F o= {me B>,<me,ei>e'>,<nle,B o 22Xy e e
=x+1=uv(1 =x+1=v(1
o XX @, t vy, (e, ¢ e X = X @ ., ot

x=x+1=v(2)

&) | Vi€ [1,2] . v(i) = @(m;t) + i}

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 59/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



x=x+1=uv(i k x=x+1=u(i
F = {(nlf, (z LN ® e) ), (1,8, (e LN @
i=0

k!
e)__ome ey ‘ kel0,nl Ak €[0,n—2]AVi € [1L,n-1] . v() = ;) + i}
0

{ind. hyp. with (E E) =t
F = FSNF {def. iterates§

{develop and simplify§
_{(;—;e (e LI x=x+1=uvl) E)k)(ne (e LN x=x+1=vl)
- 17 . >

1

k/
DRTED | ke [0n] AK€ [0,n—1]AVi€ [Ln] . v() = g(m?) + i}

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 60/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



S*[s] = lp"F*[s]

= G*¢
= Ug*”
neN
t x=x+1=uv(i) k t x=x+1=uv(i)
= ' : e (¢ ¢
Jome (¢ 2 ) ime (
k t . . .
€>'O~€—>€)|k€IN/\VzeIN.v(z)=Q(rrlf)+z} |
i-

“A Tutorial on Abstract Interpretation, ICTAC 2019" -61/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Fixpoints

“A Tutorial on Abstract Interpretation, ICTAC 2019”

-62/95 -

© P. Cousot, NYU, CIMS, CS, October 31, 2019



lteration
= We have seen that the (partial trace) semantics of an iteration is defined as
S = Ifp-&F
that is the C-least solution/fixpoint of the equation
X =%FX)
on a partial order (D, C)

= Kleene/Tarski/Scott theorems ensure the existence of this C-least solution/fixpoint

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 63/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Kleene/Tarski/Scott fixpoint iteration theorem

If
= (D, L, L, U)is a poset with infimum L and (partially defined) least upper bound U
= F €D Dis upper-continuous

i.e. if the increasing chain x, C x; C ... C x,, C ... of elements of D has a least
upper bound |_| x, € D then E’F(l_l x,) = |_| F(x,)
neN

neN neN
» The iterates F° = 1, .., F" = F(F") have a least upper bound in D
then
X = F(X) has a least solution Ifp= &F = |_| F"
neN
ie. Wp*F = F(fp=F)
& if X =% (X) then Ifpc F C X

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 64/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Fixpoint abstraction

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 65/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Exact fixpoint abstraction

If
= (D, L, L, U)is a poset with infimum L and (partially defined) least upper bound U
= F €D Dis upper-continuous
» Theiterates F° = 1, .., F"! = F(F") have a least upper bound in D
= (D, C) % (P7, ), « surjective
then

Ifp" F Cy(Ifp=" o s F - y)

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 66/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Fixpoint over-approximation

(D, C, 1, U) is a poset with infimum L and (partially defined) least upper bound U

F € D+ D is upper-continuous
The iterates F° = 1, .., F" = F(F") have a least upper bound in D
(D, ) = (PF, )
" qo FoyL” FH
then
Ifp° F C y(Ifp=" YF "

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 67/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Reachability

“A Tutorial on Abstract Interpretation, ICTAC 2019”

- 68/95 —

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Reachability abstraction (exact)

= Abstract a set of traces into a map from initial states to reachable states at each
program point

(T x T*), ) == (p(Ev) — L - p(Ev), €)

= af(8) R, ¢ {o(motomt’) | (oo, G’y € 8 Ng(myt) € Ry AU =t}

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 69/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Reachability for assignment

Reachability of an assignment statement S ::= x = E ;

STs] Ryt = (¢ =at[s] ? R, (17.12)
| ¢ = after[[s] 2 assign'[x,A] R,
3 D)

{plx — A[A[p] | p € Ro}

assign’x, A] R,

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 70/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Reachability for iteration

Reachability of an iteration statement S ::= whilet (B) S,

S| Ryt = (fp° Flwhilet (B) S,] R) ¢ (17.16)
Flwhilet (B) S] Ry X ¢ =
(¢ =% Ry US[S,] (test’[B]X(2)) ¢ (a)
[ ¢ ein]s,]\ {&} ? 87s,] (test’[B]X(0)) ¢ (b)
(

| ¢ = after[[s] ? test [B](X(¢)) U U 87s test™[B]X(2) & (c)
" ebreaks-of[[s,]

s )
test’[B]R, 2 {p € R, | B[B]p = tt}
test'[B]R, 2 {p € R, | B[B]p = ff}

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 71/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Interval analysis

“A Tutorial on Abstract Interpretation, ICTAC 2019”

-72/95 -

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Interval abstraction (approximate)

= Abstract the set of possible values of a variable by the interval of its minimum and
maximum value (or co)

V), € == (P, i) P/ 2 {[Lh] | 1< htu {2}

(@) &2 @ &(V) 2 [minV,maxV]

(P(EY), ©) == (V - P, £ )

«(E) 2 Ax-&i({p(x) | p € E})

(L — p(Ev), &) :y: (L -V > P el

a1 2 a/” =&/ (I(4))

(p(Ev) — (L — p(Ev)), <) <——_y_> (V> P 5 (L -V P el
&(T) 2 & T-9

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 73/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



(P?, ') is an infinite complete lattice

[-00,00]
oot]  [43,3] [1, o]
[-00,0] [-3,2] [-2,3] [0, 00]
/ ~/ N/ \ \
[—00,—1] [-3,1] [-2,2] [-1,3] [1,00]
/ /' N/ \/\ AN
[—00, 2] [-3,0] [-2,1] [-1,2] [0,3] [2, 00]
/ N/ N/ N/ N/ "\
[—00, 3] [-3,-1] [-2,0] [-1,1] [0,2] [1,3] [3, 00]
S/ N/ N/ N/ N/ N\
[-3,-2] [-2,-1] [-1,0] [0,1] [1,2] [2,3]
~/ N/ N/ N/ N/ N/ \ .
1i=g

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 74/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Analysis of an iteration
Consider the simple diverging program P, = while®& (tt)
6L x=x+13
23
The interval static analysis from an initial assignment p, of intervals to variables is

S'lpi] Py = Ifp*’ (F'lwhilet (tt) & x=x+13;] Po)

where

Filwhitet (tt) Lx=x+1;]p, X¥ (v =0t7%p, U X(t)[x — X(&)(x) o [1,1])]
[I@’ =4 ?X(el)
s /% U=t x/ xeV i 1)

[0, k] [0 k] = [€ +8yh +hy]

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 75/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



= Assume that initially p (x) = [0,0] and let x = X(&)(x). The fixpoint computation
amounts to solving the fixpoint equation

x = Fix) where Fi(x) = [0,0]U (x&'[1,1])
Let us solve iteratively.
X0 = i
x' = Fix) = [0,0]U0 (x°e [1,1]) = [0,0]
= Fix) = [0,0U (e [1,1]) = [0,0]U'[1,1] = [0,1]
x" = [0,n-1] induction hypothesis

= FixM) = [0,0] IJ’: (x" &' [1,1])

2 = | [ penl0n=11 = [0,00] limit
X = Fix®) = [0,0]U (x° @' [1,1]) = [0,0]u'[l,c0+1] = [0,00]
= Ifp“ x— [0,0] LU (x & [1,1])

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 76/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Non convergence

= Unfortunalely computerized methods to infer induction hypotheses, to simplify the
iteration terms, and to pass to the limit are not effective.

= We soundly automatize the induction and passage to the limit at the price of a loss
of precision to enforce rapid convergence. This is the purpose of widenings and

narrowings.

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 77/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Fixpoint extrapolation (widen-
ing) and interpolation (narrowing)

“A Tutorial on Abstract Interpretation, ICTAC 2019" —78/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Widening

» The idea of the widening is to extrapolate from an iterate x”* and the next one x"*!
to an upper bound x" V x"! so as accelerate or enforce the convergence of the
iterates in finitely many steps.

= This is an extrapolation v

RN

—_—. 5 —

% f®) £V f(%)

= The price to be paid is a loss of precision

-

F . _F

ifp F lfp F

“A Tutorial on Abstract Interpretation, ICTAC 2019" -79/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019




Interval widening

Let us consider for example the interval widening

113

1iVig 2 xViQ!

X (31.4)
(e, 1] V' [£y,h,]

(€, <2 2—c0:8),(h,>h 2 oosh,]]

1>

that essentially pushes unstable bounds to infinity.

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 80/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Example of loss of precision by widening

plOOL = whilet (x<1001)
€ x = x+1 3
23

Assuming initially p,(x) = [0,0], x = X(t)(x), and y = X(&)(x), the fixpoint
computation amounts to solving the fixpoint system of equations

¥

Fi(x) where  Fi(x) = [0,0] U ((x N [-00,1000]) &' [1,1])
x M° [1001, o]

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 81/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Example of loss of precision by widening (cont'd)

The upward iterates with widening are now

20 = i P = Qi
= ROV FERYD) = 20Vi(0,0]L ((£° N [~00,1000]) & [1,1]))
= 1'Vi[0,0] = [0,0] since Fi(2%) = [0,0]¢' L = x°
2 = *lv’@f(fcl) = 2V ([0,0] U (' N [-00,1000]) &' [1,1]))
= [0,0] V' ([0,0] L' [1,1]) = [0,0] V*[0,1]
= [0, 00] since Fi(z1) = [0,1]¢' %' = [0,0]
o= % nx=2
since Fi(x2) = ([0,0] LU (&2 [- oo,lOOO])EB'[l 1))
([0,0] L (([0, 00] 11" [~00, 1000]) &' [1,1]))
= ([0,0] L% [1,1001]) = [0,1001] ' %> = [0,00]
y = %*n'[1001,c0] = [0,00] M [1001,00] = [1001,00]

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 82/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019



Improving the solution

The solution found is therefore x = [0, 00] and = y = [1001, co]

This is frustrating since F(x) = [0,1001] provides a better solution.

= We can improve the solution by a decreasing iteration

This iteration may be infinite or very long for intervals, we stop it by a narrowing

“A Tutorial on Abstract Interpretation, ICTAC 2019" —83/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Interval narrowing

LA x2xAN1P 2 | (31.6)
[fl,hl] Al [ez,hz] £ [(“)'1 = -0 ? €2 3 El D’([hl = ? h2 8]’11 D]

which attempts to improve infinite bounds only. This is an interpolation

“A Tutorial on Abstract Interpretation, ICTAC 2019" —84/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Downward iterates with narrowing
X = % = [0,00], ¥y = y = [1001,00]
o= OANFIER) = 20 A(0,0] U (&N [-00,1000]) &' [1,1]))
[0,00] A’ [0,1001] = [0,1001]
since F/(x°) = [0,1001] # [0,00] = X

([0,0] L ((x* 1 [~00, 1000]) &' [1,1]))

= ([0,0] L (([0,1001] N [0, 1000]) &' [1,1]))
= ([0,0] L [1,1001]) = [0,1001] = «!

y = x'm'[1001,00] = [0,1001] M [1001,00] = [1001,1001].

since F(x!)

“A Tutorial on Abstract Interpretation, ICTAC 2019" —85/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Examples of static analyzes

“A Tutorial on Abstract Interpretation, ICTAC 2019" —86/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Examples of abstract domains

A A
+ + A
8 o]
1 1 5§ 5|
I I I I + + + > 4 g 1:7
Y L R 5 1} t )‘1 —t+—— J >
signs intervals zones octagons
8A 8‘ 8‘ 8‘
54 54 54 54
1: T 1: 1: 1:
S R e
polyhedra congruences ellipses exponentials

“A Tutorial on Abstract Interpretation, ICTAC 2019" - 87/95 —

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Example of octagon analysis

11: {7} i = 03
while 12: (i < n) {i>=0}

13: {i»>=0, i<=n-1} i = (i + 1);
14: {i>=0, i>=n}

“A Tutorial on Abstract Interpretation, ICTAC 2019" —88/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



Conclusion

“A Tutorial on Abstract Interpretation, ICTAC 2019”

—-89/95 —

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Conclusion

= Static analysis is undecidable

i.e. no terminating algorithm can always automatically analyze correctly any
program with best possible precision

= Abstract interpretation theory can be used to build static analyzers that are

» fully automatic (no human intervention needed)
» always terminating
= always sound/correct

but
= may sometimes be imprecise

= example: Astrée (https://www.absint.com/astree/index.htm)

“A Tutorial on Abstract Interpretation, ICTAC 2019" -90/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019


https://www.absint.com/astree/index.htm
https://www.absint.com/astree/index.htm

Conclusion

= This light introduction to abstract interpretation should be sufficient to follow the
invited talk “Calculational design of a regular model checker by abstract
interpretation” on November 2, 2019, 9:00-10:30

= Reading these slides by yourself can be helpful

= These slides are available at
https://cs.nyu.edu/~pcousot/summerschools/ICTAC-2029/Cousot-tutorial.pdf

= | will attend the tutorials and conference, so | am available at any time for
questions, don't hesitate!

“A Tutorial on Abstract Interpretation, ICTAC 2019" -91/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019


https://cs.nyu.edu/~pcousot/summerschools/ICTAC-2029/Cousot-tutorial.pdf

Other online resources

= MIT course web.mit.edu/16.399/

= NYU course https://cs.nyu.edu/~pcousot/courses/spring19/CSCI-GA.3140-001
(send me an email at pcousot@cs.nyu.edu to get access)

“A Tutorial on Abstract Interpretation, ICTAC 2019" -92/95 - © P. Cousot, NYU, CIMS, CS, October 31, 2019


http://web.mit.edu/16.399/
https://cs.nyu.edu/~pcousot/courses/spring19/CSCI-GA.3140-001/slides/index.html

Bibliography

“A Tutorial on Abstract Interpretation, ICTAC 2019”

—-93/95 -

© P. Cousot, NYU, CIMS, CS, October 31, 2019



Basic references |

Bertrane, Julien, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne,
Antoine Miné, and Xavier Rival (2015). “Static Analysis and Verification of
Aerospace Software by Abstract Interpretation”. Foundations and Trends in
Programming Languages 2.2-3, pp. 71-190.

Cousot, Patrick (1999). “The Calculational Design of a Generic Abstract Interpreter”.
In: M. Broy and R. Steinbriiggen, eds. Calculational System Design. NATO ASI
Series F. |OS Press, Amsterdam.

— (2015). “Abstracting Induction by Extrapolation and Interpolation”. In: VAMCAI.
Vol. 8931. Lecture Notes in Computer Science. Springer, pp. 19-42.

Cousot, Patrick and Radhia Cousot (1977). “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”. In: POPL. ACM, pp. 238-252.

— (1979). “Systematic Design of Program Analysis Frameworks”. In: POPL. ACM
Press, pp. 269-282.

“A Tutorial on Abstract Interpretation, ICTAC 2019" —94/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



The End, Thank you

“A Tutorial on Abstract Interpretation, ICTAC 2019" —-95/95 — © P. Cousot, NYU, CIMS, CS, October 31, 2019



	Bibliography

