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Abstract

Mathematica  provides  a  suite  of  built-in  and  3rd  party  tools  for  nonlinear  optimization.

These  tools  are  tested  on  a  set  of  hard  problems.  The  built-in  Mathematica  functions  are

tested  as  well  as  the  tools  in  the  MathOptimizer  and  Global  Optimization  packages.  The

problems  tested  represent  classes  of  problems  that  cause  difficulties  for  global  solvers,

including  those  with  local  minima,  discontinuous  and  black  box  modules,  problems  with

non-real  regions,  and  constrained  problems  with  complicated  and  wavy  constraints.  In

addition, scaling  of performance  with problem size is tested. In general,  no tool could solve

all problems but all problems could be solved by at least on tool. All of the tools except the

Global  Optimization  tools  GlobalSearch  and  GlobalPenaltyFn  were  prone  to

returning  infeasible  solutions  on  discontinuous  and  black  box  modules,  problems  with

non-real  regions,  and  constrained  problems  with  complicated  and  wavy  constraints.  The

GlobalSearch  and  GlobalPenaltyFn  tools  were  thus  the  most  robust,  and  were  in

many cases also the fastest.

Introduction

Optimization  can  be  done  in  many  different  programming  languages  such  as  FORTRAN, C++,  and

specialty  languages.  Mathematica  is  a  high level  programming  language  that offers  many advantages

for  optimization.  Very  high precision  math is standard.  A huge library  of advanced math  functions  is

available.  The notebook  user  interface  is easy to use and  interactive.  Most critically  for  optimization,

symbolic  manipulation  of  expressions  is  possible.  For  example,  the  derivative  of  a  function  can  be

found exactly (symbolically)  rather than by numerical approximation.  It is thus interesting to see what

optimization  capabilities  exist  in  Mathematica.  There  are  several  built-in  and  third-party  tools  for

nonlinear optimization. These tools have broad capabilities,  which are demonstrated in their respective

user manuals and help files (see below), but in this report I explore some more difficult  test problems

than those shown in those places.

Unlike  many  other  Mathematica  functions,  there  is  no  general  proof  of  correctness  for  nonlinear

solvers.  It  is  not  entirely  satisfying  to  test  programs  with  a  library  of  test  problems,  although  this  is

often done. Instead, I here look at the general properties of hard problems. If a function is smooth and

convex, many codes can solve it. If the function has local minima (is not convex), this causes difficul-

ties  because  the usual  tests  for  convergence  are passed  at a  local minimum.  A simple test  of a global

solver,  then,  is  how it  handles  wavy functions.  If there  are  many  equivalent  solutions,  I  consider  it a

success  in  this  study  if  a  valid  solution  is  found.  Since  many  functions  have  infinitely  many  true

minima (e.g., 1 ê SinHxL on 80, 1<), I do not consider it meaningful to try to find “all” solutions. Most of

the tools  reviewed here  can be given  different starting  points  so that multiple  solutions  can be found,

except for the Minimize function in Mathematica.

The second  type of problem that  can cause  difficulties  is one  that  is nondifferentiable,  because  many

optimization  codes make use of derivatives (either exact or numerical). A stepwise discontinuity is an

example of a point where derivatives are not defined. In Mathematica, a special kind of nondifferentia-

bility exists. An expression like 
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x2

Can be differentiated in Mathematica symbolically using 

D@x2, xD

which here yields 2x as the derivative. Expressions in Mathematica, however,  can be in the form of a

Module which can contain logical operations and procedural code. Any attempt to find a derivative of

such an expression will yield invalid results. 

Over  certain  regions,  an  expression  might  produce  non-real  results,  which  in  Mathematica  include

Infinity, Complex, and Indeterminate  data types. It is critical that a code handle such cases

well. 

Scaling  is  an  issue  for  global  optimization  programs.  An  exhaustive  search  or  grid  search  will  work

well  for  one  or  two  dimensions  but  not  for  larger  problems.  Optimization  algorithms  are  typically

tested on two dimensional problems but this does not show whether they scale well. In this study I test

several large problems. 

Vanishing gradients are a big problem for optimization  programs. They make it hard to detect when a

minimum has been achieved.  The high precision math in Mathematica  should  make it  easier  to solve

such problems. 

Constraints  can  make  the  solution  of  an  optimization  problem  quite  tough  when  the  problem  and/or

constraints are nonlinear.

Representative  cases  of  each  of  the  above  problem  types  are  addressed  in  this  study.  No  attempt  is

made  to  be  exhaustive  in  testing.  A  few  classic  “hard”  problems  are  used  as  test  cases.  It  should  be

noted that all of the tools tested can solve many nonlinear problems. The focus here is on the particular

issues  that  cause  algorithms  to  fail.  The  problems  used  in  this  report  are  representative  of  a  large

number that the author has tested and no attempt is made here to do exhaustive testing. 

Mathematica  provides  several  functions  for  optimization.  For  convex,  unconstrained  nonlinear  prob-

lems, Mathematica provides FindMinimum, which is very fast. For more general problems, NMiniÖ

mize and Minimize are available. NMinimize has a default method selection, which is usually the

NelderMead method. Other solution methods are RandomSearch, SimulatedAnnealing, and

DifferentialEvolution.  The  Minimize  function  uses  the  most  sophisticated  methods  of

solution, but cannot handle multiple-valued functions  (e.g.,  Sin) in an expression.  The MathOptimizer

package  (Pinter  Consulting,  www.pinterconsulting.com  or  www.wolfram.com/products/applications

/mathoptimizer/)  provides  three  functions.  MS  is  a  scoping  tool  that  narrows  down the  search  region.

CNLP  is  a local  solver  that  handles constraints.  To find a global  solution,  Optimize  is used,  which

first calls MS  and then CNLP. Optimize  and MS  require bounds  but CNLP  can search outside  of the

bounds  given.  The Global  Optimization  package  (Loehle  Enterprises,  developed by the author,  www.

wolfram.com/products/applications/globalopt/  or  www.loehleenterprises.com)  provides  two  core

functions:  GlobalSearch  and  GlobalpenaltyFn. GlobalSearch  solves  constrained  or

unconstrained problems. Bounds are needed but are only a suggestion for getting started and they need

not bound the true solution. If hard bounds are required they are entered as constraints. Globalpenal

tyFn is used if constraints are too complicated. These functions were the ones tested. MathOptimizer-

Pro is a high-end product that was not tested here due to cost. All tests were conducted with Mathemat-

ica  5.1,  Global  Optimization  5.1,  and  MathOptimizer  on  a  Pentium  IV  3.4  GHz  machine  with  3Gb
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RAM under  Windows XP with  no other  applications  running.  Note  that because  MS  and  Optimize

only  search  within  the  given  bounds,  all  problems  had  bounds  that  covered  the  true  solution,  unless

otherwise stated. This is a restrictive assumption, because users often do not know what variable range

will cover the true solution. For all Mathematica and Global  Optimization procedures,  the input range

is not binding, but is a suggestion for starting the search. For GlobalSearch  and GlobalPenalÖ

tyFn  the  default  is  3  random  starts,  and  this  was  used  unless  otherwise  stated.  The  local  solver  in

Mathematica FindMinimum  was  not  tested  on  most  problems,  because  while  it  is  fast  it  can  not

handle constraints and is easily trapped by local minima. In all tests,  methods SimulatedAnnealÖ

ing, DifferentialEvolution  and  RandomSearch  are  abbreviated  SA, DE,  and  RS,  respec-

tively. All of the software tested uses proprietary methods, and thus the exact algorithms used can not

be described here. The reader is referred to the respective web sites for whatever details they provide.

Unconstrained problem scaling

Convex functions  are those that  are differentiable and that  have only a single minimum (i.e.,  no local

minima).  Such  functions  are  the  easiest  to  solve  and  should  be  solvable  by  any  of  the  tools  under

consideration.  The  simplest  example  is  a  sum of  squared  terms.  All  functions  tested  could  solve this

problem, of course. What is interesting here is to see how speed scales with problem size. Timing was

tested for different size problems. Bounds were set from -100 to 100. 

Table 1 Timing, in seconds, for quadratic function.

Variables 10 100 400 4000

FindMinimum 0.016 0.015 0.344 414.8

GlobalSearch 0.05 0.25 2.5 320.

GlobalPenaltyFn 0.06 0.31 2.9 386.5

NMinimize 0.22 1.5 16.6 1152.

NMinimize_SA 0.17 1.5 12.8 Memory

NMinimize_DE 0.17 1.5 12.8 1167.6

NMinimize_RS 0.17 1.5 12.8 1167.6

Minimize 0.16 1.5 13.5 1137.1

CNLP 0.08 0.06 1. 114.2
MS Failed Failed Failed Failed
Optimize 8.7 2447. Time Time

For  comparison,  FindMinimum  is  used,  which  is  a  local  solver.  As  expected,  FindMinimum  is

fastest for  the problem up to 400 variables, but for very large problems CNLP  is fastest  (Table 1) and

GlobalSearch  and  GlobalPenaltyFn  next  fastest.  GlobalSearch  (and  GlobalPenalÖ

tyFn,  which  behave almost identically  on unconstrained  problems) scales well  with problem size,  as

do  NMinimize  and  Minimize. Optimize  with  standard  defaults  (calling  first  MS  and  then

CNLP)  scales  very  badly  with  problem  size.  For  the  400  variable  test  it  ran  all  night  and  had  to  be

cancelled  in  the  morning.  MS  alone  is  too  slow  to  use  at  all  above  10  variables,  and  could  not  even

reduce  this quadratic  function below 20 000 for  the 10 variable problem. GlobalSearch  is 4 times

faster  than  NMinimize  (all  methods)  and  Minimize,  which  have  similar  performance.  At  4000

variables,  SA  ran  out  of  memory.  At  10 000  variables,  the  other  NMinimize  options  ran  out  of

memory,  so  only  FindMinimum, GlobalSearch, GlobalPenaltyFn,  and  CNLP  could  solve

such a large problem. 

Overall  the  MathOptimizer  functions  MS  and  Optimize  do  not  scale  well  at  all  with  problem
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size. It is also noteworthy that all MathOptimizer functions require bounds that encompass the true

solution  and  a  good  guess  starting  point.  Users  can  rarely  determine  correct  bounds  on  problems,  so

this is really restrictive.

Wavy functions

If  a  function  is  wavy,  it  has  local  minima  that  will  trap the  solution  algorithm  for  smooth  solvers.  A

simple problem is:

In[1]:= Plot@Abs@2 Hx - 24L + Hx - 24L* Sin@x - 24DD, 8x, -20, 60<D;

-20 0 20 40 60
0

20

40

60

80

100

120

which  has  a  minimum  of  0  at  x Ø 24.  GlobalSearch  and  GlobalPenaltyFn  solved  it  with

almost  any  starting  range.  The MathOptimizer  functions  will  only solve this  if  given  bounds  that

cover the true solution, so they were given bounds 8-10, 100<. NMinimize fails with default parame-

ters,  but  solves  it  with  certain  range  values  given  to  it.  For  comparison,  all  tests  in  Table  3  except

MathOptimizer  runs  are  based  on  bounds  of  860, 65<. Minimize  can  not  even  get  started,  and

exits with an error message. Two of the four NMinimize options succeed with these bounds. The min

for  Optimize  is  0.028,  which  is  not  very  good.  MS  does  okay  but  takes  500  times  longer  than

GlobalSearch. CNLP fails. Table 2 shows results.

Table 2 Wavy function results.

minimum time HsL

GlobalSearch 0 0.08
GlobalPenaltyFn 0 0.03
NMinimize 36. 0.05

NMinimize_SA 0 0.09

NMinimize_DE 36.1 0.09

NMinimize_RS 0 0.09

Minimize Failed Failed
CNLP Failed Failed
MS 0.00001 40.1
Optimize 0.028 0.16
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Optimize  can solve other wavy problems, but only if the bounds actually contain the solution. Only

in extreme cases can GlobalSearch or GlobalPenaltyFn be made to fail on a wavy problem.

A classic hard non-convex problem was tested. The Lennard-Jones atom packing problem is given by:

In[2]:= dim = 10;
vars = Table@ToExpression@StringJoin@"x", ToString@iDDD,

8i, 1, 3 * dim<D;

f = 4 Sum@Sum@
H1 ê Sqrt@HvarsPiT - varsPjTL^2 + HvarsPi + 1T - varsPj + 1TL^

2 + HvarsPi + 2T - varsPj + 2TL^2DL^12 -

H1 ê Sqrt@HvarsPiT - varsPjTL^2 + HvarsPi + 1T -

varsPj + 1TL^2 + HvarsPi + 2T - varsPj + 2TL^2DL^6,
8i, 1, j - 3, 3<D, 8j, 4, 3 * dim - 2, 3<D;

Here dim is 10 (number of atoms) and vars is the xi terms, which makes this a 30 variable problem.

The minimum is -28.4225 for this problem. There are a huge number of local minima. 

Table 3 Lennard-Jones atom-packing results showing min and timing.

minimum time HsL

GlobalSearch -28.4225 3.4

GlobalPenaltyFn -28.4225 3.2

NMinimize -3. 0.7
NMinimize_SA -27.5 7.7

NMinimize_DE -26.4 3.4

NMinimize_RS -28.4225 13.6

Minimize Memory Failed
CNLP -27.5 0.4

MS -27.7 107.2
Optimize -27.6 1358.9

With 6 starts GlobalSearch  and GlobalPenaltyFn  solved it (Table 3). NMinimize  solved it

using RandomSearch,  but  not  with  the default  or other  methods.  Minimize  grabbed  all  available

memory and failed. CNLP  was run with six random starts, but did not find the minimum. Optimize
found  a suboptimal  result  and  took  a  very very  long time  to  do it.  On this  problem,  MS  was actually

faster than Optimize, but was still quite slow, and only found a close suboptimal result. For compari-

son,  FindMinimum  was very fast on this problem but with 20 random starts the best  solution found

was -21.686.

Discontinuous and black-box functions

Discontinuous  functions  arise  in  various  contexts  such  as  economics  and  engineering.  A  simple

example is given here.

In[5]:= g@z_D := Module@8<, If@z § 9, res = -2 z, NullD;
If@z > 9, res = 2 z, NullD; If@z > 11, res = 2 z + 1, NullD;
If@z > 13, res = 2 z + .1 z2, NullD; Return@resDD
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In[6]:= dat = 8<;
Do@AppendTo@dat, 8i, g@iD<D, 8i, -3, 15, .1<D

In[8]:= ListPlot@dat, PlotJoined Ø FalseD;
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GlobalSearch  and  GlobalPenaltyFn  solve  this  problem.  NMinimize  (all  methods)  and

Minimize  give  the  correct  min value,  but  the  x  value  is  wrong  for  any  parameter  range  for  x. MS,

Optimize, and CNLP all fail on this problem (min is correct but x is 20, the input starting point), and

probably  for  the  same  reason.  The  same  result  obtains  for  a  continuous  black-box  function.  The

function g is continuous but there are If statements used in its computation.

In[9]:= g@z_D := Module@8<, If@z > 1, z2 = z, z2 = zD;
res = 2 z2 + .1 z22; Return@resDD

In[10]:= dat = 8<; Do@AppendTo@dat, 8i, g@iD<D, 8i, -30, 15, .1<D

In[11]:= ListPlot@datD;
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In  the above  cases,  all  of the MathOptimizer  and  NMinimize  options  give either  the x  value or

function value wrong, probably because the function is being treated as analytic when it is not.

A discontinuous function that is not black-box is given by:
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In[12]:= Plot@Abs@IntegerPart@xDD, 8x, -10, 10<D;
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8

As above, the initial range was set to 8x, 60, 65< for all except the MathOptimizer functions, which

were set to -40 to 40. The solution is 0 at any x such that 8-1 < x < 1<. GlobalSearch, GlobalÖ

PenaltyFn, and NMinimize solve this for any starting range (Table 4). SA, DE, and RS fail (do not

proceed  much  past  the  initial  range  of  860, 65<. Minimize  does  not  execute.  Optimize  requires

bounds that cover the region -1 to 1 in order to solve it, as does MS. CNLP fails (won’t execute).

Table 4 Results for the step function problem.

Minimum

GlobalSearch 0
GlobalPenaltyFn 0
NMinimize 0
NMinimize_SA 55.

NMinimize_DE 41.

NMinimize_RS 60.

Minimize Failed
CNLP Failed
MS 0
Optimize 0

Problems with non-real regions

Some functions have regions in which they do not return real results. A very simple example is:

In[13]:= f = x0.5;

with  solution  0  at  80<.  With  any  starting  range,  including  negative (e.g.,  8-6, -3<),  GlobalSearch
and GlobalPenaltyFn solve it. Minimize can solve it if the exponent is in the form of a ratio of

whole numbers (1 ê 2) but not as a rational  number. NMinimize  can not solve it  using any option or

bounds, and fails to execute at all if even the lower range value is negative. With bounds that cover the

true solution, Optimize and MS make progress but do not get very close (min of 0.08), and otherwise

they fail. CNLP fails to execute. Similar results obtain with other such problems.
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Problems with vanishing gradients

Some  functions  have  a  gradient  that  vanishes  near  the solution.  For  such  functions,  it  can  be hard  to

tell if the minimum has been reached. An example is:

In[14]:= f = x6 i
k
jj2.0 + SinA

1.0
ÅÅÅÅÅÅÅÅÅÅ
x

Ey
{
zz + y6

i
k
jjj2.0 + SinA

1.0
ÅÅÅÅÅÅÅÅÅÅ
y

Ey
{
zzz;

Unfortunately, at exactly 0, this function is Indeterminate due to division by 0. A slight modifica-

tion of the function retains it’s difficulty but retains the solution 0 at 80<.

In[15]:= f = x6
i
k
jj2.0 + SinA

1.0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max@.0000000001, Abs@xDD

Ey
{
zz +

y6
i
k
jjj2.0 + SinA

1.0
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max@.0000000001, Abs@yDD

Ey
{
zzz;

In[16]:= Plot3D@f, 8x, -1., 1.<, 8y, -1., 1.<D;
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The criterion for success here is how close to 0 the x and y values are. The input range was 8-5, 5< for

both x  and y.  While  it  might  be  thought  that  FindMinimum  would  be able  to  solve this,  it  actually

does not get that close, with a solution of 8x Ø 0.0115656, y Ø -0.012471<.

The Loehle  Enterprises  functions  were given  a  tolerance  of 10-60  while  other  functions  used  AutoÖ

matic. AccuracyGoal in NMinimize can not be made so small because it requires Real values.
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Table  5   Results  for  the  ashtray  function.  Order  of  magnitude  results  are  shown
(powers of 10) to focus on the precision of the result.

obj x y

GlobalSearch 1. 10-68 1. 10-12 1. 10-12

GlobalPenaltyFn 0 0 0

NMinimize 1. 10-29 1. 10-6 0.00001

NMinimize_SA 1. 10-11 0.01 0.01

NMinimize_DE 1. 10-34 1. 10-6 1. 10-6

NMinimize_RS 1. 10-10 0.01 0.01

Minimize 1. 10-71 1. 10-12 1. 10-12

CNLP Failed Failed Failed

MS 1. 10-13 0.001 0.001

Optimize 1. 10-9 -0.03 0.03

GlobalPenaltyFn found the exact solution while GlobalSearch and Minimize got extremely

close. CNLP exited with a gradient error message before making any progress.

Constrained problems

When  constraints  are  added  to  nonlinear  problems  or  nonlinear  constraints  are  added  to  linear  prob-

lems,  problem  difficulty  goes  up  considerably.  In  the  following  tests,  I  consider  a  constraint  to  be

satisfied if it has less than a 10-6  violation.

The simplest equality constraint is simply a linear term. A quadratic problem was set up with every set

of three terms  summing to 1,  as 8x1 + x2+ x3 = 1, …<  with 100  terms.  All methods  solved the prob-

lem  correctly  except  MS  which  even  with  parameters  {MaxIterationsØ1000,MaxSampleØ
1000}  could  not  find  a  feasible  solution.  Minimize  solved  this  correctly  in  about  0.9  sec.  With

NMinimize,  the default, SA, DE,  and RS options took 0.78, 13.4, 4.6,  and 1.7 seconds, respectively.

GlobalSearch  and  GlobalPenaltyFn  took  0.3  and  0.2  seconds.  CNLP  took  0.3  seconds.  The

largest  problem  tried,  50  variables,  took  807  seconds  with  Optimize,  and  a  100  variable  problem

was stopped after 3 hours. Bounds had to cover the true solution to get any answer with Optimize.

A second constrained  problem comes to us from finance (supplied by a customer),  where interest rate

terms produce fractional exponents. It is given by: 

In[17]:= f = -H1927.86 * q0.37 H-110 + s + 100 * H1 + tLL0.1743L ë

H-100 * q * t + 27.54 * s H-110 + s + 100* H1 + tLL0.21L0.2;

The list of inequality terms is 

In[18]:= ineqs = 9-10000 - 100 * q * t + 27.54 * s H-110 + s + 100* H1 + tLL0.21,

-100 + 27.54 H-110 + s + 100* H1 + tLL0.21,

139.338 -
350

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

I 100*q H1+tL+27.54*H110-sL H-110+s+100*H1+tLL0.21
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q+27.54*H-110+s+100*H1+tLL0.21
M
0.2

,

110 - s - 100 * H1 + tL,
-0.3 + t, -t, -s, -q, -110 + s,

-27.54 * H-110 + s + 100 * H1 + tLL0.21=;
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where each inequality term is in standard form, and § 0 is implied. The single equality term is:

In[19]:= eq = 9-q - 27.54 * H-110 + s + 100 * H1 + tLL0.21 +

350
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

I 100*q*H1+tL+27.54*H110-sL H-110+s+100*H1+tLL0.21
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

q+27.54*H-110+s+100*H1+tLL0.21
M
0.2

=;

where it is implied that {x + y} is the same as {x + y ã 0}. The equality constraint here is such

that GlobalSearch  can not run, and it gives an error message to use GlobalPenaltyFn,  which

solved  this  problem  (min  value  -5321.65  at  8t Ø 0.29949, s Ø 43.446, q Ø 73.5118<).  NMinimize
does not even execute with defaults. With an input range for 8t, s, q<, NMinimize finds a solution but

the solution violates the constraints with a value of around 85 for the equality constaint violation. This

is  true  for  all  options  (simulated  annealing,  etc).  Minimize  also  finds  an  equally  bad  infeasible

solution. Optimize, MS, and CNLP failed to execute.

An  example  from  the  MathOptimizer  user  manual  is  a  concave  quadratic  programming  problem

with multiple points that have a minimum f = -310. Results are shown in Table 6.

In[20]:= f = -25 Hx1 - 2L2 - Hx2 - 2L2 -

Hx3 - 1L2 - Hx4 - 4L2 - Hx5 - 1L2 - Hx6 - 4L2;

The list of inequality terms is 

In[21]:= ineqs = 9-x1, x1 - 6, -x2, x2 - 6, 1 - x3, x3 - 5, -x4, x4 - 6,

1 - x5, x5 - 5, -x6, x6 - 10,
1
ÅÅÅÅ
4

* H-Hx3 - 3L2 - x4 + 4L,

1
ÅÅÅÅ
4

* H-Hx5 - 3L2 - x6 + 4L,
1
ÅÅÅÅ
2

* Hx1 - 3 x2 - 2L,

1
ÅÅÅÅ
2

* H-x1 + x2 - 2L,
1
ÅÅÅÅ
6

* Hx1 + x2 - 6L,
1
ÅÅÅÅ
2

* H-x1 - x2 + 2L=;

Table 6 Results for quadratic programming problem.

minimum time HsL

GlobalSearch -310 8.4
GlobalPenaltyFn -310 15.6

NMinimize -171. 0.05

NMinimize_SA -120 0.99

NMinimize_DE -310.56 3.6 0.001
violation

NMinimize_RS -274.1 6.4

Minimize Failed Time
CNLP -¶ 15 Infeasible

MS -¶ 100 Infeasible
Optimize -¶ 35 Infeasible

GlobalSearch  and  GlobalPenaltyFn  solved  this  with  3  multiple  starts.  NMinimize  did  not

get  close  with  either  the  default  or  a  range  for  the  variables,  or  with  any  solution  method  except  for
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DifferentialEvolution,  which  had  a  slightly  infeasible  solution.  Minimize  timed  out  after

15  minutes.  CNLP, Optimize,  and  MS  all  had  solutions  running  off  to  -¶  unless  the  inequality

constraints  were  strongly  conditioned  (multiplied  by  a  large  number).  Some  of  the  inequality  con-

straints  had  values of  +¶.  Of  course,  typical  users  are unable  to tell  when they  need to condition an

equation.

The  next  constrained  example  illustrates  how  algorithms  may  be  sensitive  to  starting  points  and

bounds. The problem is test problem 62 from [1]. 

In[22]:= f = -32.174 *

H255. * Log@Hx1 + x2 + x3 + 0.03L ê H0.09 * x1 + x2 + x3 + 0.03LD +

280 * Log@Hx2 + x3 + 0.03L ê H0.07 * x2 + x3 + 0.03LD +

290 * Log@Hx3 + 0.03L ê H0.13 * x3 + 0.03LDL;

eqs = 8x1 + x2 + x3 - 1<;

The implicit positivity of the variables is made explicit with inequality constraints. The default bounds

are  rather  narrow  at  0  to  1.  Table  7  shows  the  results.  The  true  solution  is-26272.5  at  80.0617813,

0.328202, 0.0539851<. Two other sets of initial ranges are shown.

Table 7  Results for  testing problem 62  showing minimum found for various initial

bounds. Minimize can not be given starting range values, so NA is put for the
second two columns.

bounds\n
{0,1}

bound\n
{-20,-4}

bound\n
{-113,4}

GlobalSearch -26272.5 -26272.5 -26272.5

GlobalPenaltyFn -26272.5 -26272.5 -26272.5

NMinimize -26272.5 Failed -17373.7

NMinimize_SA -26272.5 Failed -26272.5

NMinimize_DE -26272.5 Failed -25560.3

NMinimize_RS -26272.5 Failed -17374.6

M inimize -17374.7 NA NA
CNLP Infeasible Infeasible Infeasible
MS Infeasible Infeasible Infeasible
Optimize Infeasible Infeasible Infeasible

GlobalSearch  and  GlobalPenaltyFn  solve  this  for  all  initial  ranges.  NMinimize  with  the

default  (no  range  given)  and  Minimize  both  found  the  suboptimal  result  -17374.7.  NMinimize
only succeeds if given very narrow, positive bounds. Optimize and CNLP  always give an infeasible

result  (equality  constraint  value  of  0.5  to  1.0).  It  is  very  bad  to  return  an  infeasible  result  from  an

optimization problem. 

A  very  difficult  problem  is  created  when  the  constraints  have  an  oscillatory  term.  In  the  following

problem, the solution is 0 at 80, 0<.

In[24]:= f = H2 * x12 - x22L2 + Hx2 - 6 * x12L2;
ineqs = 8x2 + x1 - 2<;
eqs = 8x1 - 10 * x2 - 100 * Sin@2 * x1 + 3 * x2D<;
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The  problem  was  tested  with  initial  range  8-10, 10<  for  both  variables.  CNLP  was  tested  with  10

random starts within this range and GlobalPenaltyFn with 3 starts. MS was run with {MaxIteraÖ

tionsØ1000,MaxSampleØ1000}. Results are shown in Table 8.

Table 8 Results for wavy equality constraint problem.

minimum time HsL

GlobalSearch NA NA
GlobalPenaltyFn 0 3.2
NMinimize 504.8 0.3

NMinimize_SA 77. 0.25

NMinimize_DE 0.13 0.88

NMinimize_RS 2408.5 5.5

Minimize Failed Failed
CNLP 2.05 1.75

MS 31708.8 85.6

Optimize 0 0.23

GlobalSearch  printed an error message that GlobalPenaltyFn  should be used, and GlobalÖ

PenaltyFn solved it from various starting ranges. Optimize also solved it, and quickly, but only if

the  bounds  covered  the  true  solution.  CNLP  could  solve  the  problem with  a  sufficiently  close  guess,

but  10  random  tries  did  not  succeed.  Minimize  would  not  execute  with  this  function.  RandomÖ

Search  with  default  did  not  succeed.  RandomSearch  with  100  search  points  solved  it  in  26

seconds  (but  not  with  25  search  points),  but  this  brute  force  method  may  not  work  well  with  larger

problems and clearly takes a while. DifferentialEvolution got pretty close.

A very difficult problem is Alkyl, given by

In[27]:= f = 5.04 * x0 + x1 + 3.36 * x12 + 0.35 * x13 - H6.3 * x2 * x4L;

ineqs = 8-x0, -x1, -x2, 0.85 - x3, 0.9 - x4, 3. - x5,
1.2 - x6, 1.45 - x7, 0.99 - x8, 0.99 - x9, 0.9 - x10,
0.99 - x11, -x12, -x13, -2 + x0, -1.2 + x1, -5 + x2,
-0.93 + x3, -0.95 + x4, -12 + x5, -4 + x6, -1.62 + x7,
-1.0101010101 + x8, -1.0101010101 + x9, -1.11111111111 + x10,
-1.0101010101 + x11, -2 + x12, -1.6 + x13<;

eq = 8-.8196721311475 * x0 + x2 - .8196721311475 * x12,
-x3 * H0.01 * x2 * x6 + x1L + 0.98 * x1, x12 + 10 * x13 - x0 * x5,
-x0 * H.13167 * x5 - 0.0067 * x5 * x5 + 1.12L + x2 * x8,
-0.325 * x3 + H0.00038 * x5 - .01098L * x5 + x4 * x9 - 0.57425,
22.2 * x7 + x6 * x10 - 35.82, -3 * x4 + x7 * x11 + 1.33<;

which has solution -1.756. The cross product terms in the equality constraints are the principle source

of difficulty here. Results (Table 9) show that several tools failed on this problem.
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Table 9 Results for problem Alkyl.

minimum time HsL

GlobalSearch -1.756 24.7

GlobalPenaltyFn -0.99 655

NMinimize -1.39 8.8
NMinimize_SA -1.359 6.8

NMinimize_DE -1.39 6.9

NMinimize_RS -1.32 168.9

Minimize -1.39 8.7
CNLP Infeasible 6.4
MS Infeasible 63.9
Optimize Infeasible 220

Only  GlobalSearch  is  able  to  find  the  solution.  GlobalPenaltyFn  took  much  too  long.  The

MathOptimizer  function solutions violate every equality constraint and several inequalities by 0.2 to 2

in magnitude.

Conclusions

There  are  several  types  of  problems  that  pose  particular  difficulties  for  nonlinear  optimization.  If

functions are discontinuous or procedural, they are nondifferentiable.  For this reason all solvers tested

here failed on such problems except the Loehle Enterprises solvers GlobalSearch and GlobalPen

altyFn.  These  tests  included  black-box  functions  which  can  not  be  differentiated  (even  if  continu-

ous), functions with non-real regions, and step functions.

A second  class  of  difficult  functions  is  those  that  are  wavy.  GlobalSearch  and  GlobalPenalÖ

tyFn are very robust to such problems. NMinimize usually failed with the defaults. It could succeed

with certain ranges and certain options (e.g., RandomSearch) but was sensitive to the range. MiniÖ

mize  usually failed to execute. The MathOptimizer functions MS and Optimize  could always solve

such problems but only if the bounds covered the true solution, which is a severe limitation since users

rarely can define good bounds. CNLP and FindMinimum found local minima.

Scaling  of  speed  with  problem size  is  a  serious  concern.  CNLP  scales  even  better  than FindMiniÖ

mum,  and can handle constraints,  but it is still a local solver and fails on many problems.  Optimize
does not scale well and a 100 variable problem may run for hours. GlobalSearch and GlobalPenÖ

altyFn scale similarly to NMinimize and are often much faster. On larger problems the Mathemat-

ica functions can grab all the memory and crash the kernel.

The  Minimize  function  has  the  virtue  of  finding  exact  solutions  but  only  for  a  restricted  set  of

problems.  If  exponents  are  exact  (Integer  or  ratios  of  whole  numbers),  it  will  work,  but  if  they  are

Real, Minimize will  actually call NMinimize. If there are multivalued terms such as Sin, it will not

run.

Constrained  problems  are  one  of  the  greatest  challenges  for  global  optimization.  Many  problems  can

be  solved  by  all  the  tools  tested.  However,  it  is  easy  to  find  constrained  problems  which  can  not  be

solved by NMinimize, Minimize, Optimize, MS, or CNLP, which often return infeasible results.

GlobalSearch  (or  GlobalPenaltyFn  for  complicated  constraints)  are  very  robust  to  such

problems and return an error message if no feasible solution can be found.

While  Mathematica  is  not  as  fast  as  C++,  the  algorithms  tested  turned  in  quite  good  times  on  some
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challenging  problems.  No  single  tool  could  solve  all  the  problems  tested,  but  all  problems  could  be

solved by at least one of the tools. One or more of the tools tested should be able to solve most global

optimization problems.
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