
Global optimization using Mathematica: A test
of software tools

Craig Loehle

Abstract

Mathematica provides a suite of built-in and 3rd party tools for nonlinear optimization.

These tools are tested on a set of hard problems. The built-in Mathematica functions are

tested as well as the tools in the MathOptimizer and Global Optimization packages. The

problems tested represent classes of problems that cause difficulties for global solvers,

including those with local minima, discontinuous and black box modules, problems with

non-real regions, and constrained problems with complicated and wavy constraints. In

addition, scaling of performance with problem size is tested. In general, no tool could solve

all problems but all problems could be solved by at least on tool. All of the tools except the

Global Optimization tools GlobalSearch and GlobalPenaltyFn were prone to

returning infeasible solutions on discontinuous and black box modules, problems with

non-real regions, and constrained problems with complicated and wavy constraints. The

GlobalSearch and GlobalPenaltyFn tools were thus the most robust, and were in

many cases also the fastest.

Introduction

Optimization can be done in many different programming languages such as FORTRAN, C++, and

specialty languages. Mathematica is a high level programming language that offers many advantages

for optimization. Very high precision math is standard. A huge library of advanced math functions is

available. The notebook user interface is easy to use and interactive. Most critically for optimization,

symbolic manipulation of expressions is possible. For example, the derivative of a function can be

found exactly (symbolically) rather than by numerical approximation. It is thus interesting to see what

optimization capabilities exist in Mathematica. There are several built-in and third-party tools for

nonlinear optimization. These tools have broad capabilities, which are demonstrated in their respective

user manuals and help files (see below), but in this report I explore some more difficult test problems

than those shown in those places.

Unlike many other Mathematica functions, there is no general proof of correctness for nonlinear

solvers. It is not entirely satisfying to test programs with a library of test problems, although this is

often done. Instead, I here look at the general properties of hard problems. If a function is smooth and

convex, many codes can solve it. If the function has local minima (is not convex), this causes difficul-

ties because the usual tests for convergence are passed at a local minimum. A simple test of a global

solver, then, is how it handles wavy functions. If there are many equivalent solutions, I consider it a

success in this study if a valid solution is found. Since many functions have infinitely many true

minima (e.g., 1 ê SinHxL on 80, 1<), I do not consider it meaningful to try to find “all” solutions. Most of

the tools reviewed here can be given different starting points so that multiple solutions can be found,

except for the Minimize function in Mathematica.

The second type of problem that can cause difficulties is one that is nondifferentiable, because many

optimization codes make use of derivatives (either exact or numerical). A stepwise discontinuity is an

example of a point where derivatives are not defined. In Mathematica, a special kind of nondifferentia-

bility exists. An expression like

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

x2

Can be differentiated in Mathematica symbolically using

D@x2, xD

which here yields 2x as the derivative. Expressions in Mathematica, however, can be in the form of a

Module which can contain logical operations and procedural code. Any attempt to find a derivative of

such an expression will yield invalid results.

Over certain regions, an expression might produce non-real results, which in Mathematica include

Infinity, Complex, and Indeterminate data types. It is critical that a code handle such cases

well.

Scaling is an issue for global optimization programs. An exhaustive search or grid search will work

well for one or two dimensions but not for larger problems. Optimization algorithms are typically

tested on two dimensional problems but this does not show whether they scale well. In this study I test

several large problems.

Vanishing gradients are a big problem for optimization programs. They make it hard to detect when a

minimum has been achieved. The high precision math in Mathematica should make it easier to solve

such problems.

Constraints can make the solution of an optimization problem quite tough when the problem and/or

constraints are nonlinear.

Representative cases of each of the above problem types are addressed in this study. No attempt is

made to be exhaustive in testing. A few classic “hard” problems are used as test cases. It should be

noted that all of the tools tested can solve many nonlinear problems. The focus here is on the particular

issues that cause algorithms to fail. The problems used in this report are representative of a large

number that the author has tested and no attempt is made here to do exhaustive testing.

Mathematica provides several functions for optimization. For convex, unconstrained nonlinear prob-

lems, Mathematica provides FindMinimum, which is very fast. For more general problems, NMiniÖ

mize and Minimize are available. NMinimize has a default method selection, which is usually the

NelderMead method. Other solution methods are RandomSearch, SimulatedAnnealing, and

DifferentialEvolution. The Minimize function uses the most sophisticated methods of

solution, but cannot handle multiple-valued functions (e.g., Sin) in an expression. The MathOptimizer

package (Pinter Consulting, www.pinterconsulting.com or www.wolfram.com/products/applications

/mathoptimizer/) provides three functions. MS is a scoping tool that narrows down the search region.

CNLP is a local solver that handles constraints. To find a global solution, Optimize is used, which

first calls MS and then CNLP. Optimize and MS require bounds but CNLP can search outside of the

bounds given. The Global Optimization package (Loehle Enterprises, developed by the author, www.

wolfram.com/products/applications/globalopt/ or www.loehleenterprises.com) provides two core

functions: GlobalSearch and GlobalpenaltyFn. GlobalSearch solves constrained or

unconstrained problems. Bounds are needed but are only a suggestion for getting started and they need

not bound the true solution. If hard bounds are required they are entered as constraints. Globalpenal

tyFn is used if constraints are too complicated. These functions were the ones tested. MathOptimizer-

Pro is a high-end product that was not tested here due to cost. All tests were conducted with Mathemat-

ica 5.1, Global Optimization 5.1, and MathOptimizer on a Pentium IV 3.4 GHz machine with 3Gb

140 Craig Loehle

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

RAM under Windows XP with no other applications running. Note that because MS and Optimize

only search within the given bounds, all problems had bounds that covered the true solution, unless

otherwise stated. This is a restrictive assumption, because users often do not know what variable range

will cover the true solution. For all Mathematica and Global Optimization procedures, the input range

is not binding, but is a suggestion for starting the search. For GlobalSearch and GlobalPenalÖ

tyFn the default is 3 random starts, and this was used unless otherwise stated. The local solver in

Mathematica FindMinimum was not tested on most problems, because while it is fast it can not

handle constraints and is easily trapped by local minima. In all tests, methods SimulatedAnnealÖ

ing, DifferentialEvolution and RandomSearch are abbreviated SA, DE, and RS, respec-

tively. All of the software tested uses proprietary methods, and thus the exact algorithms used can not

be described here. The reader is referred to the respective web sites for whatever details they provide.

Unconstrained problem scaling

Convex functions are those that are differentiable and that have only a single minimum (i.e., no local

minima). Such functions are the easiest to solve and should be solvable by any of the tools under

consideration. The simplest example is a sum of squared terms. All functions tested could solve this

problem, of course. What is interesting here is to see how speed scales with problem size. Timing was

tested for different size problems. Bounds were set from -100 to 100.

Table 1 Timing, in seconds, for quadratic function.

Variables 10 100 400 4000

FindMinimum 0.016 0.015 0.344 414.8

GlobalSearch 0.05 0.25 2.5 320.

GlobalPenaltyFn 0.06 0.31 2.9 386.5

NMinimize 0.22 1.5 16.6 1152.

NMinimize_SA 0.17 1.5 12.8 Memory

NMinimize_DE 0.17 1.5 12.8 1167.6

NMinimize_RS 0.17 1.5 12.8 1167.6

Minimize 0.16 1.5 13.5 1137.1

CNLP 0.08 0.06 1. 114.2
MS Failed Failed Failed Failed
Optimize 8.7 2447. Time Time

For comparison, FindMinimum is used, which is a local solver. As expected, FindMinimum is

fastest for the problem up to 400 variables, but for very large problems CNLP is fastest (Table 1) and

GlobalSearch and GlobalPenaltyFn next fastest. GlobalSearch (and GlobalPenalÖ

tyFn, which behave almost identically on unconstrained problems) scales well with problem size, as

do NMinimize and Minimize. Optimize with standard defaults (calling first MS and then

CNLP) scales very badly with problem size. For the 400 variable test it ran all night and had to be

cancelled in the morning. MS alone is too slow to use at all above 10 variables, and could not even

reduce this quadratic function below 20 000 for the 10 variable problem. GlobalSearch is 4 times

faster than NMinimize (all methods) and Minimize, which have similar performance. At 4000

variables, SA ran out of memory. At 10 000 variables, the other NMinimize options ran out of

memory, so only FindMinimum, GlobalSearch, GlobalPenaltyFn, and CNLP could solve

such a large problem.

Overall the MathOptimizer functions MS and Optimize do not scale well at all with problem

Global optimization using Mathematica 141

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

size. It is also noteworthy that all MathOptimizer functions require bounds that encompass the true

solution and a good guess starting point. Users can rarely determine correct bounds on problems, so

this is really restrictive.

Wavy functions

If a function is wavy, it has local minima that will trap the solution algorithm for smooth solvers. A

simple problem is:

In[1]:= Plot@Abs@2 Hx - 24L + Hx - 24L* Sin@x - 24DD, 8x, -20, 60<D;

-20 0 20 40 60
0

20

40

60

80

100

120

which has a minimum of 0 at x Ø 24. GlobalSearch and GlobalPenaltyFn solved it with

almost any starting range. The MathOptimizer functions will only solve this if given bounds that

cover the true solution, so they were given bounds 8-10, 100<. NMinimize fails with default parame-

ters, but solves it with certain range values given to it. For comparison, all tests in Table 3 except

MathOptimizer runs are based on bounds of 860, 65<. Minimize can not even get started, and

exits with an error message. Two of the four NMinimize options succeed with these bounds. The min

for Optimize is 0.028, which is not very good. MS does okay but takes 500 times longer than

GlobalSearch. CNLP fails. Table 2 shows results.

Table 2 Wavy function results.

minimum time HsL

GlobalSearch 0 0.08
GlobalPenaltyFn 0 0.03
NMinimize 36. 0.05

NMinimize_SA 0 0.09

NMinimize_DE 36.1 0.09

NMinimize_RS 0 0.09

Minimize Failed Failed
CNLP Failed Failed
MS 0.00001 40.1
Optimize 0.028 0.16

142 Craig Loehle

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

Optimize can solve other wavy problems, but only if the bounds actually contain the solution. Only

in extreme cases can GlobalSearch or GlobalPenaltyFn be made to fail on a wavy problem.

A classic hard non-convex problem was tested. The Lennard-Jones atom packing problem is given by:

In[2]:= dim = 10;
vars = Table@ToExpression@StringJoin@"x", ToString@iDDD,

8i, 1, 3 * dim<D;

f = 4 Sum@Sum@
H1 ê Sqrt@HvarsPiT - varsPjTL^2 + HvarsPi + 1T - varsPj + 1TL^

2 + HvarsPi + 2T - varsPj + 2TL^2DL^12 -

H1 ê Sqrt@HvarsPiT - varsPjTL^2 + HvarsPi + 1T -

varsPj + 1TL^2 + HvarsPi + 2T - varsPj + 2TL^2DL^6,
8i, 1, j - 3, 3<D, 8j, 4, 3 * dim - 2, 3<D;

Here dim is 10 (number of atoms) and vars is the xi terms, which makes this a 30 variable problem.

The minimum is -28.4225 for this problem. There are a huge number of local minima.

Table 3 Lennard-Jones atom-packing results showing min and timing.

minimum time HsL

GlobalSearch -28.4225 3.4

GlobalPenaltyFn -28.4225 3.2

NMinimize -3. 0.7
NMinimize_SA -27.5 7.7

NMinimize_DE -26.4 3.4

NMinimize_RS -28.4225 13.6

Minimize Memory Failed
CNLP -27.5 0.4

MS -27.7 107.2
Optimize -27.6 1358.9

With 6 starts GlobalSearch and GlobalPenaltyFn solved it (Table 3). NMinimize solved it

using RandomSearch, but not with the default or other methods. Minimize grabbed all available

memory and failed. CNLP was run with six random starts, but did not find the minimum. Optimize
found a suboptimal result and took a very very long time to do it. On this problem, MS was actually

faster than Optimize, but was still quite slow, and only found a close suboptimal result. For compari-

son, FindMinimum was very fast on this problem but with 20 random starts the best solution found

was -21.686.

Discontinuous and black-box functions

Discontinuous functions arise in various contexts such as economics and engineering. A simple

example is given here.

In[5]:= g@z_D := Module@8<, If@z § 9, res = -2 z, NullD;
If@z > 9, res = 2 z, NullD; If@z > 11, res = 2 z + 1, NullD;
If@z > 13, res = 2 z + .1 z2, NullD; Return@resDD

Global optimization using Mathematica 143

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

In[6]:= dat = 8<;
Do@AppendTo@dat, 8i, g@iD<D, 8i, -3, 15, .1<D

In[8]:= ListPlot@dat, PlotJoined Ø FalseD;

-2.5 0 2.5 5 7.5 10 12.5 15

-10

0

10

20

30

40

50

GlobalSearch and GlobalPenaltyFn solve this problem. NMinimize (all methods) and

Minimize give the correct min value, but the x value is wrong for any parameter range for x. MS,

Optimize, and CNLP all fail on this problem (min is correct but x is 20, the input starting point), and

probably for the same reason. The same result obtains for a continuous black-box function. The

function g is continuous but there are If statements used in its computation.

In[9]:= g@z_D := Module@8<, If@z > 1, z2 = z, z2 = zD;
res = 2 z2 + .1 z22; Return@resDD

In[10]:= dat = 8<; Do@AppendTo@dat, 8i, g@iD<D, 8i, -30, 15, .1<D

In[11]:= ListPlot@datD;

-30 -20 -10 0 10
-10

0

10

20

30

40

50

In the above cases, all of the MathOptimizer and NMinimize options give either the x value or

function value wrong, probably because the function is being treated as analytic when it is not.

A discontinuous function that is not black-box is given by:

144 Craig Loehle

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

In[12]:= Plot@Abs@IntegerPart@xDD, 8x, -10, 10<D;

-10 -5 0 5 10
0

2

4

6

8

As above, the initial range was set to 8x, 60, 65< for all except the MathOptimizer functions, which

were set to -40 to 40. The solution is 0 at any x such that 8-1 < x < 1<. GlobalSearch, GlobalÖ

PenaltyFn, and NMinimize solve this for any starting range (Table 4). SA, DE, and RS fail (do not

proceed much past the initial range of 860, 65<. Minimize does not execute. Optimize requires

bounds that cover the region -1 to 1 in order to solve it, as does MS. CNLP fails (won’t execute).

Table 4 Results for the step function problem.

Minimum

GlobalSearch 0
GlobalPenaltyFn 0
NMinimize 0
NMinimize_SA 55.

NMinimize_DE 41.

NMinimize_RS 60.

Minimize Failed
CNLP Failed
MS 0
Optimize 0

Problems with non-real regions

Some functions have regions in which they do not return real results. A very simple example is:

In[13]:= f = x0.5;

with solution 0 at 80<. With any starting range, including negative (e.g., 8-6, -3<), GlobalSearch
and GlobalPenaltyFn solve it. Minimize can solve it if the exponent is in the form of a ratio of

whole numbers (1 ê 2) but not as a rational number. NMinimize can not solve it using any option or

bounds, and fails to execute at all if even the lower range value is negative. With bounds that cover the

true solution, Optimize and MS make progress but do not get very close (min of 0.08), and otherwise

they fail. CNLP fails to execute. Similar results obtain with other such problems.

Global optimization using Mathematica 145

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

Problems with vanishing gradients

Some functions have a gradient that vanishes near the solution. For such functions, it can be hard to

tell if the minimum has been reached. An example is:

In[14]:= f = x6 i
k
jj2.0 + SinA

1.0
ÅÅÅÅÅÅÅÅÅÅ
x

Ey
{
zz + y6

i
k
jjj2.0 + SinA

1.0
ÅÅÅÅÅÅÅÅÅÅ
y

Ey
{
zzz;

Unfortunately, at exactly 0, this function is Indeterminate due to division by 0. A slight modifica-

tion of the function retains it’s difficulty but retains the solution 0 at 80<.

In[15]:= f = x6
i
k
jj2.0 + SinA

1.0
ÅÅ
Max@.0000000001, Abs@xDD

Ey
{
zz +

y6
i
k
jjj2.0 + SinA

1.0
ÅÅ
Max@.0000000001, Abs@yDD

Ey
{
zzz;

In[16]:= Plot3D@f, 8x, -1., 1.<, 8y, -1., 1.<D;

-1

-0.5

0

0.5

1
-1

-0.5
0

0.5
1

0

2

4

-1

0.5

0

0.5

1

0

2

4

The criterion for success here is how close to 0 the x and y values are. The input range was 8-5, 5< for

both x and y. While it might be thought that FindMinimum would be able to solve this, it actually

does not get that close, with a solution of 8x Ø 0.0115656, y Ø -0.012471<.

The Loehle Enterprises functions were given a tolerance of 10-60 while other functions used AutoÖ

matic. AccuracyGoal in NMinimize can not be made so small because it requires Real values.

146 Craig Loehle

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

Table 5 Results for the ashtray function. Order of magnitude results are shown
(powers of 10) to focus on the precision of the result.

obj x y

GlobalSearch 1. 10-68 1. 10-12 1. 10-12

GlobalPenaltyFn 0 0 0

NMinimize 1. 10-29 1. 10-6 0.00001

NMinimize_SA 1. 10-11 0.01 0.01

NMinimize_DE 1. 10-34 1. 10-6 1. 10-6

NMinimize_RS 1. 10-10 0.01 0.01

Minimize 1. 10-71 1. 10-12 1. 10-12

CNLP Failed Failed Failed

MS 1. 10-13 0.001 0.001

Optimize 1. 10-9 -0.03 0.03

GlobalPenaltyFn found the exact solution while GlobalSearch and Minimize got extremely

close. CNLP exited with a gradient error message before making any progress.

Constrained problems

When constraints are added to nonlinear problems or nonlinear constraints are added to linear prob-

lems, problem difficulty goes up considerably. In the following tests, I consider a constraint to be

satisfied if it has less than a 10-6 violation.

The simplest equality constraint is simply a linear term. A quadratic problem was set up with every set

of three terms summing to 1, as 8x1 + x2+ x3 = 1, …< with 100 terms. All methods solved the prob-

lem correctly except MS which even with parameters {MaxIterationsØ1000,MaxSampleØ
1000} could not find a feasible solution. Minimize solved this correctly in about 0.9 sec. With

NMinimize, the default, SA, DE, and RS options took 0.78, 13.4, 4.6, and 1.7 seconds, respectively.

GlobalSearch and GlobalPenaltyFn took 0.3 and 0.2 seconds. CNLP took 0.3 seconds. The

largest problem tried, 50 variables, took 807 seconds with Optimize, and a 100 variable problem

was stopped after 3 hours. Bounds had to cover the true solution to get any answer with Optimize.

A second constrained problem comes to us from finance (supplied by a customer), where interest rate

terms produce fractional exponents. It is given by:

In[17]:= f = -H1927.86 * q0.37 H-110 + s + 100 * H1 + tLL0.1743L ë

H-100 * q * t + 27.54 * s H-110 + s + 100* H1 + tLL0.21L0.2;

The list of inequality terms is

In[18]:= ineqs = 9-10000 - 100 * q * t + 27.54 * s H-110 + s + 100* H1 + tLL0.21,

-100 + 27.54 H-110 + s + 100* H1 + tLL0.21,

139.338 -
350

ÅÅÅ

I 100*q H1+tL+27.54*H110-sL H-110+s+100*H1+tLL0.21
ÅÅ

q+27.54*H-110+s+100*H1+tLL0.21
M
0.2

,

110 - s - 100 * H1 + tL,
-0.3 + t, -t, -s, -q, -110 + s,

-27.54 * H-110 + s + 100 * H1 + tLL0.21=;

Global optimization using Mathematica 147

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

where each inequality term is in standard form, and § 0 is implied. The single equality term is:

In[19]:= eq = 9-q - 27.54 * H-110 + s + 100 * H1 + tLL0.21 +

350
ÅÅ

I 100*q*H1+tL+27.54*H110-sL H-110+s+100*H1+tLL0.21
ÅÅÅ

q+27.54*H-110+s+100*H1+tLL0.21
M
0.2

=;

where it is implied that {x + y} is the same as {x + y ã 0}. The equality constraint here is such

that GlobalSearch can not run, and it gives an error message to use GlobalPenaltyFn, which

solved this problem (min value -5321.65 at 8t Ø 0.29949, s Ø 43.446, q Ø 73.5118<). NMinimize
does not even execute with defaults. With an input range for 8t, s, q<, NMinimize finds a solution but

the solution violates the constraints with a value of around 85 for the equality constaint violation. This

is true for all options (simulated annealing, etc). Minimize also finds an equally bad infeasible

solution. Optimize, MS, and CNLP failed to execute.

An example from the MathOptimizer user manual is a concave quadratic programming problem

with multiple points that have a minimum f = -310. Results are shown in Table 6.

In[20]:= f = -25 Hx1 - 2L2 - Hx2 - 2L2 -

Hx3 - 1L2 - Hx4 - 4L2 - Hx5 - 1L2 - Hx6 - 4L2;

The list of inequality terms is

In[21]:= ineqs = 9-x1, x1 - 6, -x2, x2 - 6, 1 - x3, x3 - 5, -x4, x4 - 6,

1 - x5, x5 - 5, -x6, x6 - 10,
1
ÅÅÅÅ
4

* H-Hx3 - 3L2 - x4 + 4L,

1
ÅÅÅÅ
4

* H-Hx5 - 3L2 - x6 + 4L,
1
ÅÅÅÅ
2

* Hx1 - 3 x2 - 2L,

1
ÅÅÅÅ
2

* H-x1 + x2 - 2L,
1
ÅÅÅÅ
6

* Hx1 + x2 - 6L,
1
ÅÅÅÅ
2

* H-x1 - x2 + 2L=;

Table 6 Results for quadratic programming problem.

minimum time HsL

GlobalSearch -310 8.4
GlobalPenaltyFn -310 15.6

NMinimize -171. 0.05

NMinimize_SA -120 0.99

NMinimize_DE -310.56 3.6 0.001
violation

NMinimize_RS -274.1 6.4

Minimize Failed Time
CNLP -¶ 15 Infeasible

MS -¶ 100 Infeasible
Optimize -¶ 35 Infeasible

GlobalSearch and GlobalPenaltyFn solved this with 3 multiple starts. NMinimize did not

get close with either the default or a range for the variables, or with any solution method except for

148 Craig Loehle

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

DifferentialEvolution, which had a slightly infeasible solution. Minimize timed out after

15 minutes. CNLP, Optimize, and MS all had solutions running off to -¶ unless the inequality

constraints were strongly conditioned (multiplied by a large number). Some of the inequality con-

straints had values of +¶. Of course, typical users are unable to tell when they need to condition an

equation.

The next constrained example illustrates how algorithms may be sensitive to starting points and

bounds. The problem is test problem 62 from [1].

In[22]:= f = -32.174 *

H255. * Log@Hx1 + x2 + x3 + 0.03L ê H0.09 * x1 + x2 + x3 + 0.03LD +

280 * Log@Hx2 + x3 + 0.03L ê H0.07 * x2 + x3 + 0.03LD +

290 * Log@Hx3 + 0.03L ê H0.13 * x3 + 0.03LDL;

eqs = 8x1 + x2 + x3 - 1<;

The implicit positivity of the variables is made explicit with inequality constraints. The default bounds

are rather narrow at 0 to 1. Table 7 shows the results. The true solution is-26272.5 at 80.0617813,

0.328202, 0.0539851<. Two other sets of initial ranges are shown.

Table 7 Results for testing problem 62 showing minimum found for various initial

bounds. Minimize can not be given starting range values, so NA is put for the
second two columns.

bounds\n
{0,1}

bound\n
{-20,-4}

bound\n
{-113,4}

GlobalSearch -26272.5 -26272.5 -26272.5

GlobalPenaltyFn -26272.5 -26272.5 -26272.5

NMinimize -26272.5 Failed -17373.7

NMinimize_SA -26272.5 Failed -26272.5

NMinimize_DE -26272.5 Failed -25560.3

NMinimize_RS -26272.5 Failed -17374.6

M inimize -17374.7 NA NA
CNLP Infeasible Infeasible Infeasible
MS Infeasible Infeasible Infeasible
Optimize Infeasible Infeasible Infeasible

GlobalSearch and GlobalPenaltyFn solve this for all initial ranges. NMinimize with the

default (no range given) and Minimize both found the suboptimal result -17374.7. NMinimize
only succeeds if given very narrow, positive bounds. Optimize and CNLP always give an infeasible

result (equality constraint value of 0.5 to 1.0). It is very bad to return an infeasible result from an

optimization problem.

A very difficult problem is created when the constraints have an oscillatory term. In the following

problem, the solution is 0 at 80, 0<.

In[24]:= f = H2 * x12 - x22L2 + Hx2 - 6 * x12L2;
ineqs = 8x2 + x1 - 2<;
eqs = 8x1 - 10 * x2 - 100 * Sin@2 * x1 + 3 * x2D<;

Global optimization using Mathematica 149

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

The problem was tested with initial range 8-10, 10< for both variables. CNLP was tested with 10

random starts within this range and GlobalPenaltyFn with 3 starts. MS was run with {MaxIteraÖ

tionsØ1000,MaxSampleØ1000}. Results are shown in Table 8.

Table 8 Results for wavy equality constraint problem.

minimum time HsL

GlobalSearch NA NA
GlobalPenaltyFn 0 3.2
NMinimize 504.8 0.3

NMinimize_SA 77. 0.25

NMinimize_DE 0.13 0.88

NMinimize_RS 2408.5 5.5

Minimize Failed Failed
CNLP 2.05 1.75

MS 31708.8 85.6

Optimize 0 0.23

GlobalSearch printed an error message that GlobalPenaltyFn should be used, and GlobalÖ

PenaltyFn solved it from various starting ranges. Optimize also solved it, and quickly, but only if

the bounds covered the true solution. CNLP could solve the problem with a sufficiently close guess,

but 10 random tries did not succeed. Minimize would not execute with this function. RandomÖ

Search with default did not succeed. RandomSearch with 100 search points solved it in 26

seconds (but not with 25 search points), but this brute force method may not work well with larger

problems and clearly takes a while. DifferentialEvolution got pretty close.

A very difficult problem is Alkyl, given by

In[27]:= f = 5.04 * x0 + x1 + 3.36 * x12 + 0.35 * x13 - H6.3 * x2 * x4L;

ineqs = 8-x0, -x1, -x2, 0.85 - x3, 0.9 - x4, 3. - x5,
1.2 - x6, 1.45 - x7, 0.99 - x8, 0.99 - x9, 0.9 - x10,
0.99 - x11, -x12, -x13, -2 + x0, -1.2 + x1, -5 + x2,
-0.93 + x3, -0.95 + x4, -12 + x5, -4 + x6, -1.62 + x7,
-1.0101010101 + x8, -1.0101010101 + x9, -1.11111111111 + x10,
-1.0101010101 + x11, -2 + x12, -1.6 + x13<;

eq = 8-.8196721311475 * x0 + x2 - .8196721311475 * x12,
-x3 * H0.01 * x2 * x6 + x1L + 0.98 * x1, x12 + 10 * x13 - x0 * x5,
-x0 * H.13167 * x5 - 0.0067 * x5 * x5 + 1.12L + x2 * x8,
-0.325 * x3 + H0.00038 * x5 - .01098L * x5 + x4 * x9 - 0.57425,
22.2 * x7 + x6 * x10 - 35.82, -3 * x4 + x7 * x11 + 1.33<;

which has solution -1.756. The cross product terms in the equality constraints are the principle source

of difficulty here. Results (Table 9) show that several tools failed on this problem.

150 Craig Loehle

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

Table 9 Results for problem Alkyl.

minimum time HsL

GlobalSearch -1.756 24.7

GlobalPenaltyFn -0.99 655

NMinimize -1.39 8.8
NMinimize_SA -1.359 6.8

NMinimize_DE -1.39 6.9

NMinimize_RS -1.32 168.9

Minimize -1.39 8.7
CNLP Infeasible 6.4
MS Infeasible 63.9
Optimize Infeasible 220

Only GlobalSearch is able to find the solution. GlobalPenaltyFn took much too long. The

MathOptimizer function solutions violate every equality constraint and several inequalities by 0.2 to 2

in magnitude.

Conclusions

There are several types of problems that pose particular difficulties for nonlinear optimization. If

functions are discontinuous or procedural, they are nondifferentiable. For this reason all solvers tested

here failed on such problems except the Loehle Enterprises solvers GlobalSearch and GlobalPen

altyFn. These tests included black-box functions which can not be differentiated (even if continu-

ous), functions with non-real regions, and step functions.

A second class of difficult functions is those that are wavy. GlobalSearch and GlobalPenalÖ

tyFn are very robust to such problems. NMinimize usually failed with the defaults. It could succeed

with certain ranges and certain options (e.g., RandomSearch) but was sensitive to the range. MiniÖ

mize usually failed to execute. The MathOptimizer functions MS and Optimize could always solve

such problems but only if the bounds covered the true solution, which is a severe limitation since users

rarely can define good bounds. CNLP and FindMinimum found local minima.

Scaling of speed with problem size is a serious concern. CNLP scales even better than FindMiniÖ

mum, and can handle constraints, but it is still a local solver and fails on many problems. Optimize
does not scale well and a 100 variable problem may run for hours. GlobalSearch and GlobalPenÖ

altyFn scale similarly to NMinimize and are often much faster. On larger problems the Mathemat-

ica functions can grab all the memory and crash the kernel.

The Minimize function has the virtue of finding exact solutions but only for a restricted set of

problems. If exponents are exact (Integer or ratios of whole numbers), it will work, but if they are

Real, Minimize will actually call NMinimize. If there are multivalued terms such as Sin, it will not

run.

Constrained problems are one of the greatest challenges for global optimization. Many problems can

be solved by all the tools tested. However, it is easy to find constrained problems which can not be

solved by NMinimize, Minimize, Optimize, MS, or CNLP, which often return infeasible results.

GlobalSearch (or GlobalPenaltyFn for complicated constraints) are very robust to such

problems and return an error message if no feasible solution can be found.

While Mathematica is not as fast as C++, the algorithms tested turned in quite good times on some

Global optimization using Mathematica 151

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

challenging problems. No single tool could solve all the problems tested, but all problems could be

solved by at least one of the tools. One or more of the tools tested should be able to solve most global

optimization problems.

Literature cited

[1] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes. Springer-Verlag,

Berlin / Heidelberg / New York, 1981.

About the author

The author is a senior research scientist with NCASI. He has published extensively on modeling

methods, spatial statistics, the philosophy of science, and applied mathematics. His book “Thinking

Strategically” is published by Cambridge Press.

Craig Loehle, Ph.D.

1258 Windemere Ave.

Naperville, IL 60564 USA

info@loehleenterprises.com

152 Craig Loehle

Mathematica in Education and Research Vol.11 No.2 2006 © iJournals.net

