
Dive into Deep Learning
Release 0.7.1

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola

Contents

Preface 1

Installation 9

Notation 13

1 Introduction 17
1.1 A Motivating Example . 18
1.2 The Key Components: Data, Models, and Algorithms 20
1.3 Kinds of Machine Learning . 23
1.4 Roots . 35
1.5 The Road to Deep Learning . 37
1.6 Success Stories . 39

2 Preliminaries 43
2.1 Data Manipulation . 43

2.1.1 Getting Started . 44
2.1.2 Operations . 46
2.1.3 Broadcasting Mechanism . 48
2.1.4 Indexing and Slicing . 49
2.1.5 Saving Memory . 49
2.1.6 Conversion to Other Python Objects . 50

2.2 Data Preprocessing . 51
2.2.1 Reading the Dataset . 51
2.2.2 Handling Missing Data . 52
2.2.3 Conversion to the ndarray Format . 53

2.3 Linear Algebra . 54
2.3.1 Scalars . 54
2.3.2 Vectors . 54
2.3.3 Matrices . 56
2.3.4 Tensors . 57
2.3.5 Basic Properties of Tensor Arithmetic . 58
2.3.6 Reduction . 59
2.3.7 Dot Products . 61
2.3.8 Matrix-Vector Products . 61
2.3.9 Matrix-Matrix Multiplication . 62
2.3.10 Norms . 63
2.3.11 More on Linear Algebra . 65

2.4 Calculus . 66
2.4.1 Derivatives and Differentiation . 67
2.4.2 Partial Derivatives . 70

i

2.4.3 Gradients . 70
2.4.4 Chain Rule . 71

2.5 Automatic Differentiation . 72
2.5.1 A Simple Example . 72
2.5.2 Backward for Non-Scalar Variables . 74
2.5.3 Detaching Computation . 74
2.5.4 Computing the Gradient of Python Control Flow 75
2.5.5 Training Mode and Prediction Mode . 76

2.6 Probability . 77
2.6.1 Basic Probability Theory . 78
2.6.2 Dealing with Multiple Random Variables 82
2.6.3 Expectation and Variance . 85

2.7 Documentation . 86
2.7.1 Finding All the Functions and Classes in a Module 86
2.7.2 Finding the Usage of Specific Functions and Classes 86
2.7.3 API Documentation . 87

3 Linear Neural Networks 89
3.1 Linear Regression . 89

3.1.1 Basic Elements of Linear Regression . 89
3.1.2 The Normal Distribution and Squared Loss 95
3.1.3 From Linear Regression to Deep Networks 97

3.2 Linear Regression Implementation from Scratch 99
3.2.1 Generating the Dataset . 100
3.2.2 Reading the Dataset . 101
3.2.3 Initializing Model Parameters . 102
3.2.4 Defining the Model . 103
3.2.5 Defining the Loss Function . 103
3.2.6 Defining the Optimization Algorithm . 103
3.2.7 Training . 104

3.3 Concise Implementation of Linear Regression . 106
3.3.1 Generating the Dataset . 106
3.3.2 Reading the Dataset . 106
3.3.3 Defining the Model . 107
3.3.4 Initializing Model Parameters . 108
3.3.5 Defining the Loss Function . 108
3.3.6 Defining the Optimization Algorithm . 109
3.3.7 Training . 109

3.4 Softmax Regression . 110
3.4.1 Classification Problems . 111
3.4.2 Loss Function . 113
3.4.3 Information Theory Basics . 114
3.4.4 Model Prediction and Evaluation . 116

3.5 The Image Classification Dataset (Fashion-MNIST) 117
3.5.1 Getting the Dataset . 117
3.5.2 Reading a Minibatch . 118
3.5.3 Putting All Things Together . 119

3.6 Implementation of Softmax Regression from Scratch 120
3.6.1 Initializing Model Parameters . 121
3.6.2 The Softmax . 121
3.6.3 The Model . 122

ii

3.6.4 The Loss Function . 123
3.6.5 Classification Accuracy . 123
3.6.6 Model Training . 125
3.6.7 Prediction . 127

3.7 Concise Implementation of Softmax Regression 128
3.7.1 Initializing Model Parameters . 128
3.7.2 The Softmax . 128
3.7.3 Optimization Algorithm . 129
3.7.4 Training . 129

4 Multilayer Perceptrons 131
4.1 Multilayer Perceptron . 131

4.1.1 Hidden Layers . 131
4.1.2 Activation Functions . 134

4.2 Implementation of Multilayer Perceptron from Scratch 139
4.2.1 Initializing Model Parameters . 139
4.2.2 Activation Function . 140
4.2.3 The model . 140
4.2.4 The Loss Function . 140
4.2.5 Training . 140

4.3 Concise Implementation of Multilayer Perceptron 142
4.3.1 The Model . 142

4.4 Model Selection, Underfitting and Overfitting . 143
4.4.1 Training Error and Generalization Error 144
4.4.2 Model Selection . 146
4.4.3 Underfitting or Overfitting? . 147
4.4.4 Polynomial Regression . 149

4.5 Weight Decay . 153
4.5.1 Squared Norm Regularization . 154
4.5.2 High-Dimensional Linear Regression . 155
4.5.3 Implementation from Scratch . 156
4.5.4 Concise Implementation . 158

4.6 Dropout . 161
4.6.1 Overfitting Revisited . 161
4.6.2 Robustness through Perturbations . 161
4.6.3 Dropout in Practice . 162
4.6.4 Implementation from Scratch . 163
4.6.5 Concise Implementation . 165

4.7 Forward Propagation, Backward Propagation, and Computational Graphs 167
4.7.1 Forward Propagation . 167
4.7.2 Computational Graph of Forward Propagation 168
4.7.3 Backpropagation . 168
4.7.4 Training a Model . 170

4.8 Numerical Stability and Initialization . 171
4.8.1 Vanishing and Exploding Gradients . 171
4.8.2 Parameter Initialization . 173

4.9 Considering the Environment . 175
4.9.1 Distribution Shift . 176
4.9.2 A Taxonomy of Learning Problems . 182
4.9.3 Fairness, Accountability, and Transparency in Machine Learning 183

4.10 Predicting House Prices on Kaggle . 184

iii

4.10.1 Kaggle . 185
4.10.2 Accessing and Reading the Dataset . 186
4.10.3 Data Preprocessing . 187
4.10.4 Training . 188
4.10.5 k-Fold Cross-Validation . 189
4.10.6 Model Selection . 190
4.10.7 Predict and Submit . 191

5 Deep Learning Computation 195
5.1 Layers and Blocks . 195

5.1.1 A Custom Block . 198
5.1.2 The Sequential Block . 199
5.1.3 Blocks with Code . 200
5.1.4 Compilation . 201

5.2 Parameter Management . 202
5.2.1 Parameter Access . 203
5.2.2 Parameter Initialization . 207
5.2.3 Tied Parameters . 209

5.3 Deferred Initialization . 211
5.3.1 Instantiating a Network . 211
5.3.2 Deferred Initialization in Practice . 213
5.3.3 Forced Initialization . 213

5.4 Custom Layers . 215
5.4.1 Layers without Parameters . 215
5.4.2 Layers with Parameters . 216

5.5 File I/O . 218
5.5.1 Loading and Saving ndarrays . 218
5.5.2 Gluon Model Parameters . 219

5.6 GPUs . 220
5.6.1 Computing Devices . 222
5.6.2 ndarray and GPUs . 223
5.6.3 Gluon and GPUs . 225

6 Convolutional Neural Networks 227
6.1 From Dense Layers to Convolutions . 228

6.1.1 Invariances . 228
6.1.2 Constraining the MLP . 229
6.1.3 Convolutions . 230
6.1.4 Waldo Revisited . 231

6.2 Convolutions for Images . 232
6.2.1 The Cross-Correlation Operator . 232
6.2.2 Convolutional Layers . 234
6.2.3 Object Edge Detection in Images . 234
6.2.4 Learning a Kernel . 235
6.2.5 Cross-Correlation and Convolution . 236

6.3 Padding and Stride . 237
6.3.1 Padding . 238
6.3.2 Stride . 240

6.4 Multiple Input and Output Channels . 241
6.4.1 Multiple Input Channels . 242
6.4.2 Multiple Output Channels . 243

iv

6.4.3 1× 1 Convolutional Layer . 244
6.5 Pooling . 246

6.5.1 Maximum Pooling and Average Pooling 246
6.5.2 Padding and Stride . 248
6.5.3 Multiple Channels . 249

6.6 Convolutional Neural Networks (LeNet) . 250
6.6.1 LeNet . 251
6.6.2 Data Acquisition and Training . 253

7 Modern Convolutional Neural Networks 257
7.1 Deep Convolutional Neural Networks (AlexNet) 257

7.1.1 Learning Feature Representation . 258
7.1.2 AlexNet . 261
7.1.3 Reading the Dataset . 264
7.1.4 Training . 264

7.2 Networks Using Blocks (VGG) . 265
7.2.1 VGG Blocks . 266
7.2.2 VGG Network . 266
7.2.3 Model Training . 268

7.3 Network in Network (NiN) . 269
7.3.1 NiN Blocks . 270
7.3.2 NiN Model . 271
7.3.3 Data Acquisition and Training . 272

7.4 Networks with Parallel Concatenations (GoogLeNet) 273
7.4.1 Inception Blocks . 273
7.4.2 GoogLeNet Model . 275
7.4.3 Data Acquisition and Training . 277

7.5 Batch Normalization . 278
7.5.1 Training Deep Networks . 278
7.5.2 Batch Normalization Layers . 280
7.5.3 Implementation from Scratch . 281
7.5.4 Using a Batch Normalization LeNet . 282
7.5.5 Concise Implementation . 283
7.5.6 Controversy . 284

7.6 Residual Networks (ResNet) . 286
7.6.1 Function Classes . 286
7.6.2 Residual Blocks . 287
7.6.3 ResNet Model . 289
7.6.4 Data Acquisition and Training . 292

7.7 Densely Connected Networks (DenseNet) . 293
7.7.1 Function Decomposition . 293
7.7.2 Dense Blocks . 294
7.7.3 Transition Layers . 295
7.7.4 DenseNet Model . 296
7.7.5 Data Acquisition and Training . 296

8 Recurrent Neural Networks 299
8.1 Sequence Models . 299

8.1.1 Statistical Tools . 300
8.1.2 A Toy Example . 303
8.1.3 Predictions . 304

v

8.2 Text Preprocessing . 307
8.2.1 Reading the Dataset . 307
8.2.2 Tokenization . 308
8.2.3 Vocabulary . 308
8.2.4 Putting All Things Together . 310

8.3 Language Models and the Dataset . 311
8.3.1 Estimating a Language Model . 311
8.3.2 Markov Models and n-grams . 312
8.3.3 Natural Language Statistics . 313
8.3.4 Training Data Preparation . 315

8.4 Recurrent Neural Networks . 319
8.4.1 Recurrent Networks Without Hidden States 319
8.4.2 Recurrent Networks with Hidden States 320
8.4.3 Steps in a Language Model . 321
8.4.4 Perplexity . 322

8.5 Implementation of Recurrent Neural Networks from Scratch 323
8.5.1 One-hot Encoding . 324
8.5.2 Initializing the Model Parameters . 324
8.5.3 RNN Model . 325
8.5.4 Prediction . 326
8.5.5 Gradient Clipping . 326
8.5.6 Training . 327

8.6 Concise Implementation of Recurrent Neural Networks 331
8.6.1 Defining the Model . 331
8.6.2 Training and Predicting . 332

8.7 Backpropagation Through Time . 334
8.7.1 A Simplified Recurrent Network . 334
8.7.2 The Computational Graph . 336
8.7.3 BPTT in Detail . 337

9 Modern Recurrent Neural Networks 339
9.1 Gated Recurrent Units (GRU) . 339

9.1.1 Gating the Hidden State . 340
9.1.2 Implementation from Scratch . 342
9.1.3 Concise Implementation . 345

9.2 Long Short Term Memory (LSTM) . 346
9.2.1 Gated Memory Cells . 347
9.2.2 Implementation from Scratch . 350
9.2.3 Concise Implementation . 352

9.3 Deep Recurrent Neural Networks . 353
9.3.1 Functional Dependencies . 354
9.3.2 Concise Implementation . 355
9.3.3 Training . 355

9.4 Bidirectional Recurrent Neural Networks . 357
9.4.1 Dynamic Programming . 357
9.4.2 Bidirectional Model . 359

9.5 Machine Translation and the Dataset . 362
9.5.1 Reading and Preprocessing the Dataset 363
9.5.2 Tokenization . 364
9.5.3 Vocabulary . 365
9.5.4 Loading the Dataset . 365

vi

9.5.5 Putting All Things Together . 366
9.6 Encoder-Decoder Architecture . 367

9.6.1 Encoder . 367
9.6.2 Decoder . 367
9.6.3 Model . 368

9.7 Sequence to Sequence . 369
9.7.1 Encoder . 370
9.7.2 Decoder . 371
9.7.3 The Loss Function . 372
9.7.4 Training . 373
9.7.5 Predicting . 375

9.8 Beam Search . 376
9.8.1 Greedy Search . 376
9.8.2 Exhaustive Search . 378
9.8.3 Beam Search . 378

10 AttentionMechanisms 381
10.1 Attention Mechanisms . 381

10.1.1 Dot Product Attention . 384
10.1.2 Multilayer Perceptron Attention . 385

10.2 Sequence to Sequence with Attention Mechanisms 386
10.2.1 Decoder . 388
10.2.2 Training . 389

10.3 Transformer . 391
10.3.1 Multi-Head Attention . 392
10.3.2 Position-wise Feed-Forward Networks . 395
10.3.3 Add and Norm . 396
10.3.4 Positional Encoding . 397
10.3.5 Encoder . 398
10.3.6 Decoder . 399
10.3.7 Training . 401

11 Optimization Algorithms 405
11.1 Optimization and Deep Learning . 405

11.1.1 Optimization and Estimation . 406
11.1.2 Optimization Challenges in Deep Learning 407

11.2 Convexity . 411
11.2.1 Basics . 411
11.2.2 Properties . 414
11.2.3 Constraints . 417

11.3 Gradient Descent . 420
11.3.1 Gradient Descent in One Dimension . 420
11.3.2 Multivariate Gradient Descent . 423
11.3.3 Adaptive Methods . 425

11.4 Stochastic Gradient Descent . 430
11.4.1 Stochastic Gradient Updates . 430
11.4.2 Dynamic Learning Rate . 432
11.4.3 Convergence Analysis for Convex Objectives 433
11.4.4 Stochastic Gradients and Finite Samples 435

11.5 Minibatch Stochastic Gradient Descent . 436
11.5.1 Vectorization and Caches . 437

vii

11.5.2 Minibatches . 439
11.5.3 Reading the Dataset . 440
11.5.4 Implementation from Scratch . 440
11.5.5 Concise Implementation . 444

11.6 Momentum . 445
11.6.1 Basics . 446
11.6.2 Practical Experiments . 450
11.6.3 Theoretical Analysis . 453

11.7 Adagrad . 455
11.7.1 Sparse Features and Learning Rates . 456
11.7.2 Preconditioning . 456
11.7.3 The Algorithm . 458
11.7.4 Implementation from Scratch . 460
11.7.5 Concise Implementation . 460

11.8 RMSProp . 462
11.8.1 The Algorithm . 462
11.8.2 Implementation from Scratch . 463
11.8.3 Concise Implementation . 465

11.9 Adadelta . 466
11.9.1 The Algorithm . 466
11.9.2 Implementation . 467

11.10 Adam . 469
11.10.1 The Algorithm . 469
11.10.2 Implementation . 470
11.10.3 Yogi . 471

11.11 Learning Rate Scheduling . 473
11.11.1 Toy Problem . 474
11.11.2 Schedulers . 475
11.11.3 Policies . 477

12 Computational Performance 483
12.1 Compilers and Interpreters . 483

12.1.1 Symbolic Programming . 484
12.1.2 Hybrid Programming . 485
12.1.3 HybridSequential . 486

12.2 Asynchronous Computation . 490
12.2.1 Asynchrony via Backend . 491
12.2.2 Barriers and Blockers . 493
12.2.3 Improving Computation . 494
12.2.4 Improving Memory Footprint . 494

12.3 Automatic Parallelism . 497
12.3.1 Parallel Computation on CPUs and GPUs 498
12.3.2 Parallel Computation and Communication 499

12.4 Hardware . 501
12.4.1 Computers . 502
12.4.2 Memory . 503
12.4.3 Storage . 504
12.4.4 CPUs . 505
12.4.5 GPUs and other Accelerators . 508
12.4.6 Networks and Buses . 510
12.4.7 More Latency Numbers . 512

viii

12.5 Training on Multiple GPUs . 514
12.5.1 Splitting the Problem . 514
12.5.2 Data Parallelism . 516
12.5.3 A Toy Network . 517
12.5.4 Data Synchronization . 518
12.5.5 Distributing Data . 519
12.5.6 Training . 520
12.5.7 Experiment . 521

12.6 Concise Implementation for Multiple GPUs . 522
12.6.1 A Toy Network . 523
12.6.2 Parameter Initialization and Logistics . 523
12.6.3 Training . 525
12.6.4 Experiments . 525

12.7 Parameter Servers . 527
12.7.1 Data Parallel Training . 527
12.7.2 Ring Synchronization . 530
12.7.3 Multi-Machine Training . 532
12.7.4 (key,value) Stores . 534

13 Computer Vision 537
13.1 Image Augmentation . 537

13.1.1 Common Image Augmentation Method 538
13.1.2 Using an Image Augmentation Training Model 542

13.2 Fine Tuning . 545
13.2.1 Hot Dog Recognition . 546

13.3 Object Detection and Bounding Boxes . 551
13.3.1 Bounding Box . 552

13.4 Anchor Boxes . 554
13.4.1 Generating Multiple Anchor Boxes . 554
13.4.2 Intersection over Union . 556
13.4.3 Labeling Training Set Anchor Boxes . 557
13.4.4 Bounding Boxes for Prediction . 560

13.5 Multiscale Object Detection . 563
13.6 The Object Detection Dataset (Pikachu) . 566

13.6.1 Downloading the Dataset . 566
13.6.2 Reading the Dataset . 567
13.6.3 Demonstration . 568

13.7 Single Shot Multibox Detection (SSD) . 569
13.7.1 Model . 569
13.7.2 Training . 575
13.7.3 Prediction . 577

13.8 Region-based CNNs (R-CNNs) . 580
13.8.1 R-CNNs . 581
13.8.2 Fast R-CNN . 582
13.8.3 Faster R-CNN . 584
13.8.4 Mask R-CNN . 585

13.9 Semantic Segmentation and the Dataset . 586
13.9.1 Image Segmentation and Instance Segmentation 586
13.9.2 The Pascal VOC2012 Semantic Segmentation Dataset 587

13.10 Transposed Convolution . 592
13.10.1 Basic 2D Transposed Convolution . 592

ix

13.10.2 Padding, Strides, and Channels . 594
13.10.3 Analogy to Matrix Transposition . 594

13.11 Fully Convolutional Networks (FCN) . 596
13.11.1 Constructing a Model . 597
13.11.2 Initializing the Transposed Convolution Layer 598
13.11.3 Reading the Dataset . 600
13.11.4 Training . 600
13.11.5 Prediction . 601

13.12 Neural Style Transfer . 603
13.12.1 Technique . 604
13.12.2 Reading the Content and Style Images . 605
13.12.3 Preprocessing and Postprocessing . 606
13.12.4 Extracting Features . 607
13.12.5 Defining the Loss Function . 608
13.12.6 Creating and Initializing the Composite Image 609
13.12.7 Training . 610

13.13 Image Classification (CIFAR-10) on Kaggle . 613
13.13.1 Obtaining and Organizing the Dataset . 614
13.13.2 Image Augmentation . 616
13.13.3 Reading the Dataset . 617
13.13.4 Defining the Model . 618
13.13.5 Defining the Training Functions . 619
13.13.6 Training and Validating the Model . 619
13.13.7 Classifying the Testing Set and Submitting Results on Kaggle 620

13.14 Dog Breed Identification (ImageNet Dogs) on Kaggle 621
13.14.1 Obtaining and Organizing the Dataset . 622
13.14.2 Image Augmentation . 624
13.14.3 Reading the Dataset . 625
13.14.4 Defining the Model . 625
13.14.5 Defining the Training Functions . 626
13.14.6 Training and Validating the Model . 627
13.14.7 Classifying the Testing Set and Submit Results on Kaggle 627

14 Natural Language Processing 629
14.1 Word Embedding (word2vec) . 629

14.1.1 Why Not Use One-hot Vectors? . 629
14.1.2 The Skip-Gram Model . 630
14.1.3 The Continuous Bag of Words (CBOW) Model 632

14.2 Approximate Training for Word2vec . 634
14.2.1 Negative Sampling . 634
14.2.2 Hierarchical Softmax . 635

14.3 The Dataset for Word2vec . 637
14.3.1 Reading and Preprocessing the Dataset 637
14.3.2 Subsampling . 638
14.3.3 Loading the Dataset . 640
14.3.4 Putting All Things Together . 643

14.4 Implementation of Word2vec . 644
14.4.1 The Skip-Gram Model . 644
14.4.2 Training . 646
14.4.3 Applying the Word Embedding Model . 648

14.5 Subword Embedding (fastText) . 649

x

14.6 Word Embedding with Global Vectors (GloVe) . 650
14.6.1 The GloVe Model . 651
14.6.2 Understanding GloVe from Conditional Probability Ratios 652

14.7 Finding Synonyms and Analogies . 653
14.7.1 Using Pre-Trained Word Vectors . 654
14.7.2 Applying Pre-Trained Word Vectors . 655

14.8 Text Classification and the Dataset . 657
14.8.1 The Text Sentiment Classification Dataset 657
14.8.2 Putting All Things Together . 660

14.9 Text Sentiment Classification: Using Recurrent Neural Networks 660
14.9.1 Using a Recurrent Neural Network Model 661

14.10 Text Sentiment Classification: Using Convolutional Neural Networks (textCNN) . . 664
14.10.1 One-Dimensional Convolutional Layer . 665
14.10.2 Max-Over-Time Pooling Layer . 667
14.10.3 The TextCNN Model . 667

15 Recommender Systems 673
15.1 Overview of Recommender Systems . 673

15.1.1 Collaborative Filtering . 674
15.1.2 Explicit Feedback and Implicit Feedback 675
15.1.3 Recommendation Tasks . 675

15.2 The MovieLens Dataset . 676
15.2.1 Getting the Data . 676
15.2.2 Statistics of the Dataset . 677
15.2.3 Splitting the dataset . 678
15.2.4 Loading the data . 679

15.3 Matrix Factorization . 680
15.3.1 The Matrix Factorization Model . 681
15.3.2 Model Implementation . 682
15.3.3 Evaluation Measures . 682
15.3.4 Training and Evaluating the Model . 683

15.4 AutoRec: Rating Prediction with Autoencoders 685
15.4.1 Model . 685
15.4.2 Implementing the Model . 686
15.4.3 Reimplementing the Evaluator . 686
15.4.4 Training and Evaluating the Model . 687

15.5 Personalized Ranking for Recommender Systems 688
15.5.1 Bayesian Personalized Ranking Loss and its Implementation 689
15.5.2 Hinge Loss and its Implementation . 690

15.6 Neural Collaborative Filtering for Personalized Ranking 691
15.6.1 The NeuMF model . 692
15.6.2 Model Implementation . 693
15.6.3 Customized Dataset with Negative Sampling 694
15.6.4 Evaluator . 694
15.6.5 Training and Evaluating the Model . 696

15.7 Sequence-Aware Recommender Systems . 698
15.7.1 Model Architectures . 698
15.7.2 Model Implementation . 700
15.7.3 Sequential Dataset with Negative Sampling 701
15.7.4 Load the MovieLens 100K dataset . 702
15.7.5 Train the Model . 703

xi

15.8 Feature-Rich Recommender Systems . 704
15.8.1 An Online Advertising Dataset . 705
15.8.2 Dataset Wrapper . 705

15.9 Factorization Machines . 707
15.9.1 2-Way Factorization Machines . 707
15.9.2 An Efficient Optimization Criterion . 708
15.9.3 Model Implementation . 709
15.9.4 Load the Advertising Dataset . 709
15.9.5 Train the Model . 710

15.10 Deep Factorization Machines . 711
15.10.1 Model Architectures . 711
15.10.2 Implemenation of DeepFM . 713
15.10.3 Training and Evaluating the Model . 713

16 Generative Adversarial Networks 715
16.1 Generative Adversarial Networks . 715

16.1.1 Generate some “real” data . 717
16.1.2 Generator . 718
16.1.3 Discriminator . 718
16.1.4 Training . 718

16.2 Deep Convolutional Generative Adversarial Networks 721
16.2.1 The Pokemon Dataset . 721
16.2.2 The Generator . 722
16.2.3 Discriminator . 724
16.2.4 Training . 726

17 Appendix: Mathematics for Deep Learning 729
17.1 Geometry and Linear Algebraic Operations . 730

17.1.1 Geometry of Vectors . 730
17.1.2 Dot Products and Angles . 732
17.1.3 Hyperplanes . 734
17.1.4 Geometry of Linear Transformations . 737
17.1.5 Linear Dependence . 739
17.1.6 Rank . 739
17.1.7 Invertibility . 740
17.1.8 Determinant . 741
17.1.9 Tensors and Common Linear Algebra Operations 742

17.2 Eigendecompositions . 746
17.2.1 Finding Eigenvalues . 746
17.2.2 Decomposing Matrices . 747
17.2.3 Operations on Eigendecompositions . 748
17.2.4 Eigendecompositions of Symmetric Matrices 748
17.2.5 Gershgorin Circle Theorem . 749
17.2.6 A Useful Application: The Growth of Iterated Maps 750
17.2.7 Conclusions . 754

17.3 Single Variable Calculus . 755
17.3.1 Differential Calculus . 755
17.3.2 Rules of Calculus . 758

17.4 Multivariable Calculus . 765
17.4.1 Higher-Dimensional Differentiation . 766
17.4.2 Geometry of Gradients and Gradient Descent 767

xii

17.4.3 A Note on Mathematical Optimization . 768
17.4.4 Multivariate Chain Rule . 769
17.4.5 The Backpropagation Algorithm . 771
17.4.6 Hessians . 774
17.4.7 A Little Matrix Calculus . 776

17.5 Integral Calculus . 781
17.5.1 Geometric Interpretation . 781
17.5.2 The Fundamental Theorem of Calculus 783
17.5.3 Change of Variables . 785
17.5.4 A Comment on Sign Conventions . 786
17.5.5 Multiple Integrals . 787
17.5.6 Change of Variables in Multiple Integrals 789

17.6 Random Variables . 790
17.6.1 Continuous Random Variables . 791

17.7 Maximum Likelihood . 808
17.7.1 The Maximum Likelihood Principle . 808
17.7.2 Numerical Optimization and the Negative Log-Likelihood 810
17.7.3 Maximum Likelihood for Continuous Variables 811

17.8 Naive Bayes . 813
17.8.1 Optical Character Recognition . 813
17.8.2 The Probabilistic Model for Classification 815
17.8.3 The Naive Bayes Classifier . 815
17.8.4 Training . 816

17.9 Statistics . 820
17.9.1 Evaluating and Comparing Estimators . 820
17.9.2 Conducting Hypothesis Tests . 824
17.9.3 Constructing Confidence Intervals . 828

17.10 Information Theory . 831
17.10.1 Information . 831
17.10.2 Entropy . 833
17.10.3 Mutual Information . 835
17.10.4 Kullback–Leibler Divergence . 839
17.10.5 Cross Entropy . 841

18 Appendix: Tools for Deep Learning 845
18.1 Using Jupyter . 845

18.1.1 Editing and Running the Code Locally . 845
18.1.2 Advanced Options . 849

18.2 Using Amazon SageMaker . 850
18.2.1 Registering Account and Logging In . 850
18.2.2 Creating an SageMaker Instance . 851
18.2.3 Running and Stopping an Instance . 852
18.2.4 Updating Notebooks . 854

18.3 Using AWS EC2 Instances . 854
18.3.1 Creating and Running an EC2 Instance . 855
18.3.2 Installing CUDA . 859
18.3.3 Installing MXNet and Downloading the D2L Notebooks 860
18.3.4 Running Jupyter . 862
18.3.5 Closing Unused Instances . 862

18.4 Using Google Colab . 863
18.5 Selecting Servers and GPUs . 864

xiii

18.5.1 Selecting Servers . 864
18.5.2 Selecting GPUs . 866

18.6 Contributing to This Book . 869
18.6.1 From Reader to Contributor in 6 Steps . 869

18.7 d2l API Document . 873

Bibliography 877

xiv

Preface

Just a few years ago, there were no legions of deep learning scientists developing intelligent prod-
ucts and services at major companies and startups. When the youngest among us (the authors)
entered the field, machine learning did not command headlines in daily newspapers. Our parents
had no idea what machine learning was, let alone why we might prefer it to a career in medicine or
law. Machine learning was a forward-looking academic discipline with a narrow set of real-world
applications. And those applications, e.g., speech recognition and computer vision, required so
much domain knowledge that they were often regarded as separate areas entirely for which ma-
chine learning was one small component. Neural networks then, the antecedents of the deep
learning models that we focus on in this book, were regarded as outmoded tools.

In just the past five years, deep learning has taken the world by surprise, driving rapid progress
in fields as diverse as computer vision, natural language processing, automatic speech recogni-
tion, reinforcement learning, and statistical modeling. With these advances in hand, we can now
build cars that drive themselves with more autonomy than ever before (and less autonomy than
some companies might have you believe), smart reply systems that automatically draft the most
mundane emails, helping people dig out from oppressively large inboxes, and software agents that
dominate the world s̓ best humans at board games like Go, a feat once thought to be decades away.
Already, these tools exert ever-wider impacts on industry and society, changing the way movies
are made, diseases are diagnosed, and playing a growing role in basic sciences—from astrophysics
to biology.

About This Book

This book represents our attempt to make deep learning approachable, teaching you both the
concepts, the context, and the code.

OneMedium Combining Code, Math, and HTML

For any computing technology to reach its full impact, it must be well-understood, well-
documented, and supported by mature, well-maintained tools. The key ideas should be clearly
distilled, minimizing the onboarding time needing to bring new practitioners up to date. Mature
libraries should automate common tasks, and exemplar code should make it easy for practitioners
to modify, apply, and extend common applications to suit their needs. Take dynamic web appli-
cations as an example. Despite a large number of companies, like Amazon, developing successful
database-driven web applications in the 1990s, the potential of this technology to aid creative en-
trepreneurs has been realized to a far greater degree in the past ten years, owing in part to the
development of powerful, well-documented frameworks.

1

Testing the potential of deep learning presents unique challenges because any single application
brings together various disciplines. Applying deep learning requires simultaneously understand-
ing (i) the motivations for casting a problem in a particular way; (ii) the mathematics of a given
modeling approach; (iii) the optimization algorithms for fitting the models to data; and (iv) and the
engineering required to train models efficiently, navigating the pitfalls of numerical computing
and getting the most out of available hardware. Teaching both the critical thinking skills required
to formulate problems, the mathematics to solve them, and the software tools to implement those
solutions all in one place presents formidable challenges. Our goal in this book is to present a
unified resource to bring would-be practitioners up to speed.

We started this book project in July 2017 when we needed to explain MXNet s̓ (then new) Gluon in-
terface to our users. At the time, there were no resources that simultaneously (i) were up to date;
(ii) covered the full breadth of modern machine learning with substantial technical depth; and
(iii) interleaved exposition of the quality one expects from an engaging textbook with the clean
runnable code that one expects to find in hands-on tutorials. We found plenty of code exam-
ples for how to use a given deep learning framework (e.g., how to do basic numerical computing
with matrices in TensorFlow) or for implementing particular techniques (e.g., code snippets for
LeNet, AlexNet, ResNets, etc) scattered across various blog posts and GitHub repositories. How-
ever, these examples typically focused on how to implement a given approach, but left out the
discussion of why certain algorithmic decisions are made. While some interactive resources have
popped up sporadically to address a particular topic, e.g., the engaging blog posts published on
the website Distill1, or personal blogs, they only covered selected topics in deep learning, and
often lacked associated code. On the other hand, while several textbooks have emerged, most no-
tably (Goodfellow et al., 2016), which offers a comprehensive survey of the concepts behind deep
learning, these resources do not marry the descriptions to realizations of the concepts in code,
sometimes leaving readers clueless as to how to implement them. Moreover, too many resources
are hidden behind the paywalls of commercial course providers.

We set out to create a resource that could (1) be freely available for everyone; (2) offer sufficient
technical depth to provide a starting point on the path to actually becoming an applied machine
learning scientist; (3) include runnable code, showing readers how to solve problems in practice;
(4) that allowed for rapid updates, both by us and also by the community at large; and (5) be com-
plemented by a forum2 for interactive discussion of technical details and to answer questions.

These goals were often in conflict. Equations, theorems, and citations are best managed and laid
out in LaTeX. Code is best described in Python. And webpages are native in HTML and JavaScript.
Furthermore, we want the content to be accessible both as executable code, as a physical book,
as a downloadable PDF, and on the internet as a website. At present there exist no tools and no
workflow perfectly suited to these demands, so we had to assemble our own. We describe our
approach in detail in Section 18.6. We settled on Github to share the source and to allow for edits,
Jupyter notebooks for mixing code, equations and text, Sphinx as a rendering engine to generate
multiple outputs, and Discourse for the forum. While our system is not yet perfect, these choices
provide a good compromise among the competing concerns. We believe that this might be the
first book published using such an integrated workflow.

1 http://distill.pub
2 http://discuss.mxnet.io

2 Contents

http://distill.pub
http://discuss.mxnet.io

Learning by Doing

Many textbooks teach a series of topics, each in exhaustive detail. For example, Chris Bishops̓
excellent textbook (Bishop, 2006), teaches each topic so thoroughly, that getting to the chapter on
linear regression requires a non-trivial amount of work. While experts love this book precisely
for its thoroughness, for beginners, this property limits its usefulness as an introductory text.

In this book, we will teach most concepts just in time. In other words, you will learn concepts at the
very moment that they are needed to accomplish some practical end. While we take some time at
the outset to teach fundamental preliminaries, like linear algebra and probability, we want you to
taste the satisfaction of training your first model before worrying about more esoteric probability
distributions.

Aside from a few preliminary notebooks that provide a crash course in the basic mathematical
background, each subsequent chapter introduces both a reasonable number of new concepts and
provides single self-contained working examples—using real datasets. This presents an organi-
zational challenge. Some models might logically be grouped together in a single notebook. And
some ideas might be best taught by executing several models in succession. On the other hand,
there is a big advantage to adhering to a policy of 1 working example, 1 notebook: This makes it as
easy as possible for you to start your own research projects by leveraging our code. Just copy a
notebook and start modifying it.

We will interleave the runnable code with background material as needed. In general, we will
often err on the side of making tools available before explaining them fully (and we will follow up
by explaining the background later). For instance, we might use stochastic gradient descent before
fully explaining why it is useful or why it works. This helps to give practitioners the necessary
ammunition to solve problems quickly, at the expense of requiring the reader to trust us with
some curatorial decisions.

Throughout, we will be working with the MXNet library, which has the rare property of being
flexible enough for research while being fast enough for production. This book will teach deep
learning concepts from scratch. Sometimes, we want to delve into fine details about the models
that would typically be hidden from the user by Gluons̓ advanced abstractions. This comes up
especially in the basic tutorials, where we want you to understand everything that happens in a
given layer or optimizer. In these cases, we will often present two versions of the example: one
where we implement everything from scratch, relying only on the NumPy interface and auto-
matic differentiation, and another, more practical example, where we write succinct code using
Gluon. Once we have taught you how some component works, we can just use the Gluon version
in subsequent tutorials.

Contents 3

Content and Structure

The book can be roughly divided into three parts, which are presented by different colors in Fig.
1:

Fig. 1: Book structure

• The first part covers basics and preliminaries. Chapter 1 offers an introduction to deep learn-
ing. Then, in Chapter 2, we quickly bring you up to speed on the prerequisites required for
hands-on deep learning, such as how to store and manipulate data, and how to apply various
numerical operations based on basic concepts from linear algebra, calculus, and probabil-
ity. Chapter 3 and Chapter 4 cover the most basic concepts and techniques of deep learning,
such as linear regression, multilayer perceptrons and regularization.

• The next five chapters focus on modern deep learning techniques. Chapter 5 describes the
various key components of deep learning calculations and lays the groundwork for us to
subsequently implement more complex models. Next, in Chapter 6 and Chapter 7, we intro-
duce convolutional neural networks (CNNs), powerful tools that form the backbone of most
modern computer vision systems. Subsequently, in Chapter 8 and Chapter 9, we introduce
recurrent neural networks (RNNs), models that exploit temporal or sequential structure in
data, and are commonly used for natural language processing and time series prediction.
In Chapter 10, we introduce a new class of models that employ a technique called attention
mechanisms and they have recently begun to displace RNNs in natural language processing.
These sections will get you up to speed on the basic tools behind most modern applications
of deep learning.

• Part three discusses scalability, efficiency, and applications. First, in Chapter 11, we dis-
cuss several common optimization algorithms used to train deep learning models. The next

4 Contents

chapter, Chapter 12 examines several key factors that influence the computational perfor-
mance of your deep learning code. In Chapter 13 and Chapter 14, we illustrate major appli-
cations of deep learning in computer vision and natural language processing, respectively.

Code

Most sections of this book feature executable code because of our belief in the importance of an
interactive learning experience in deep learning. At present, certain intuitions can only be devel-
oped through trial and error, tweaking the code in small ways and observing the results. Ideally,
an elegant mathematical theory might tell us precisely how to tweak our code to achieve a desired
result. Unfortunately, at present, such elegant theories elude us. Despite our best attempts, for-
mal explanations for various techniques are still lacking, both because the mathematics to char-
acterize these models can be so difficult and also because serious inquiry on these topics has only
just recently kicked into high gear. We are hopeful that as the theory of deep learning progresses,
future editions of this book will be able to provide insights in places the present edition cannot.

Most of the code in this book is based on Apache MXNet. MXNet is an open-source framework for
deep learning and the preferred choice of AWS (Amazon Web Services), as well as many colleges
and companies. All of the code in this book has passed tests under the newest MXNet version.
However, due to the rapid development of deep learning, some code in the print edition may not
work properly in future versions of MXNet. However, we plan to keep the online version remain
up-to-date. In case you encounter any such problems, please consult Installation (page 9) to update
your code and runtime environment.

At times, to avoid unnecessary repetition, we encapsulate the frequently-imported and referred-
to functions, classes, etc. in this book in the d2l package. For any block block such as a function,
a class, or multiple imports to be saved in the package, we will mark it with # Saved in the d2l
package for later use. The d2l package is light-weight and only requires the following packages
and modules as dependencies:

Saved in the d2l package for later use
import collections
from collections import defaultdict
from IPython import display
import math
from matplotlib import pyplot as plt
from mxnet import autograd, context, gluon, image, init, np, npx
from mxnet.gluon import nn, rnn
import os
import pandas as pd
import random
import re
import sys
import tarfile
import time
import zipfile

We offer a detailed overview of these functions and classes in Section 18.7.

Contents 5

Target Audience

This book is for students (undergraduate or graduate), engineers, and researchers, who seek a
solid grasp of the practical techniques of deep learning. Because we explain every concept from
scratch, no previous background in deep learning or machine learning is required. Fully explain-
ing the methods of deep learning requires some mathematics and programming, but we will only
assume that you come in with some basics, including (the very basics of) linear algebra, calcu-
lus, probability, and Python programming. Moreover, in the Appendix, we provide a refresher
on most of the mathematics covered in this book. Most of the time, we will prioritize intuition
and ideas over mathematical rigor. There are many terrific books which can lead the interested
reader further. For instance, Linear Analysis by Bela Bollobas (Bollobas, 1999) covers linear alge-
bra and functional analysis in great depth. All of Statistics (Wasserman, 2013) is a terrific guide to
statistics. And if you have not used Python before, you may want to peruse this Python tutorial3.

Forum

Associated with this book, we have launched a discussion forum, located at discuss.mxnet.io4.
When you have questions on any section of the book, you can find the associated discussion page
by scanning the QR code at the end of the section to participate in its discussions. The authors of
this book and broader MXNet developer community frequently participate in forum discussions.

Acknowledgments

We are indebted to the hundreds of contributors for both the English and the Chinese drafts. They
helped improve the content and offered valuable feedback. Specifically, we thank every contrib-
utor of this English draft for making it better for everyone. Their GitHub IDs or names are (in
no particular order): alxnorden, avinashingit, bowen0701, brettkoonce, Chaitanya Prakash Ba-
pat, cryptonaut, Davide Fiocco, edgarroman, gkutiel, John Mitro, Liang Pu, Rahul Agarwal, Mo-
hamed Ali Jamaoui, Michael (Stu) Stewart, Mike Müller, NRauschmayr, Prakhar Srivastav, sad-,
sfermigier, Sheng Zha, sundeepteki, topecongiro, tpdi, vermicelli, Vishaal Kapoor, vishwesh5,
YaYaB, Yuhong Chen, Evgeniy Smirnov, lgov, Simon Corston-Oliver, IgorDzreyev, Ha Nguyen,
pmuens, alukovenko, senorcinco, vfdev-5, dsweet, Mohammad Mahdi Rahimi, Abhishek Gupta,
uwsd, DomKM, Lisa Oakley, Bowen Li, Aarush Ahuja, Prasanth Buddareddygari, brianhendee,
mani2106, mtn, lkevinzc, caojilin, Lakshya, Fiete Lüer, Surbhi Vijayvargeeya, Muhyun Kim, den-
nismalmgren, adursun, Anirudh Dagar, liqingnz, Pedro Larroy, lgov, ati-ozgur, Jun Wu, Matthias
Blume, Lin Yuan, geogunow, Josh Gardner, Maximilian Böther, Rakib Islam, Leonard Lausen,
Abhinav Upadhyay, rongruosong, Steve Sedlmeyer, ruslo, Rafael Schlatter, liusy182, Giannis Pap-
pas, ruslo, ati-ozgur, qbaza, dchoi77, Adam Gerson, Phuc Le, Mark Atwood, christabella, vn09,
Haibin Lin, jjangga0214, RichyChen.

We thank Amazon Web Services, especially Swami Sivasubramanian, Raju Gulabani, Charlie Bell,
and Andrew Jassy for their generous support in writing this book. Without the available time,
resources, discussions with colleagues, and continuous encouragement this book would not have
happened.

3 http://learnpython.org/
4 https://discuss.mxnet.io/

6 Contents

http://learnpython.org/
https://discuss.mxnet.io/

Summary

• Deep learning has revolutionized pattern recognition, introducing technology that now
powers a wide range of technologies, including computer vision, natural language process-
ing, automatic speech recognition.

• To successfully apply deep learning, you must understand how to cast a problem, the math-
ematics of modeling, the algorithms for fitting your models to data, and the engineering
techniques to implement it all.

• This book presents a comprehensive resource, including prose, figures, mathematics, and
code, all in one place.

• To answer questions related to this book, visit our forum at https://discuss.mxnet.io/.

• Apache MXNet is a powerful library for coding up deep learning models and running them
in parallel across GPU cores.

• Gluon is a high level library that makes it easy to code up deep learning models using Apache
MXNet.

• Conda is a Python package manager that ensures that all software dependencies are met.

• All notebooks are available for download on GitHub.

• If you plan to run this code on GPUs, do not forget to install the necessary drivers and update
your configuration.

Exercises

1. Register an account on the discussion forum of this book discuss.mxnet.io5.

2. Install Python on your computer.

3. Follow the links at the bottom of the section to the forum, where you will be able to seek out
help and discuss the book and find answers to your questions by engaging the authors and
broader community.

4. Create an account on the forum and introduce yourself.

5 https://discuss.mxnet.io/

Contents 7

https://discuss.mxnet.io/
https://discuss.mxnet.io/

8 Contents

Installation

In order to get you up and running for hands-on learning experience, we need to set you up with an
environment for running Python, Jupyter notebooks, the relevant libraries, and the code needed
to run the book itself.

Installing Miniconda

The simplest way to get going will be to install Miniconda7. The Python 3.x version is recom-
mended. You can skip the following steps if conda has already been installed. Download the
corresponding Miniconda sh file from the website and then execute the installation from the com-
mand line using sh <FILENAME> -b. For macOS users:

The file name is subject to changes
sh Miniconda3-latest-MacOSX-x86_64.sh -b

For Linux users:

The file name is subject to changes
sh Miniconda3-latest-Linux-x86_64.sh -b

Next, initialize the shell so we can run conda directly.

~/miniconda3/bin/conda init

Now close and re-open your current shell. You should be able to create a new environment as
following:

conda create --name d2l -y

7 https://conda.io/en/latest/miniconda.html

9

https://conda.io/en/latest/miniconda.html

Downloading the D2L Notebooks

Next, we need to download the code of this book. You can use the link8 to download and unzip
the code. Alternatively, if you have unzip (otherwise run sudo apt install unzip) available:

mkdir d2l-en && cd d2l-en
curl https://d2l.ai/d2l-en-0.7.1.zip -o d2l-en.zip
unzip d2l-en.zip && rm d2l-en.zip

Now we will want to activate the d2l environment and install pip. Enter y for the queries that
follow this command.

conda activate d2l
conda install python=3.7 pip -y

Installing MXNet and the d2l Package

Before installing MXNet, please first check whether or not you have proper GPUs on your machine
(the GPUs that power the display on a standard laptop do not count for our purposes). If you are
installing on a GPU server, proceed to GPU Support (page 11) for instructions to install a GPU-
supported MXNet.

Otherwise, you can install the CPU version. That will be more than enough horsepower to get you
through the first few chapters but you will want to access GPUs before running larger models.

For Windows users
pip install mxnet==1.6.0b20190926

For Linux and macOS users
pip install mxnet==1.6.0b20191122

We also install the d2l package that encapsulates frequently used functions and classes in this
book.

pip install d2l==0.11.1

Once they are installed, we now open the Jupyter notebook by running:

jupyter notebook

At this point, you can open http://localhost:8888 (it usually opens automatically) in your Web
browser. Then we can run the code for each section of the book. Please always execute conda
activate d2l to activate the runtime environment before running the code of the book or updat-
ing MXNet or the d2l package. To exit the environment, run conda deactivate.

8 https://d2l.ai/d2l-en-0.7.1.zip

10 Contents

https://d2l.ai/d2l-en-0.7.1.zip
http://localhost:8888

Upgrading to a New Version

Both this book and MXNet are keeping improving. Please check a new version from time to time.

1. The URL https://d2l.ai/d2l-en.zip always points to the latest contents.

2. Please upgrade the d2l package by pip install d2l --upgrade.

3. For the CPU version, MXNet can be upgraded by pip install -U --pre mxnet.

GPU Support

By default, MXNet is installed without GPU support to ensure that it will run on any computer
(including most laptops). Part of this book requires or recommends running with GPU. If your
computer has NVIDIA graphics cards and has installed CUDA9, then you should install a GPU-
enabled MXNet. If you have installed the CPU-only version, you may need to remove it first by
running:

pip uninstall mxnet

Then we need to find the CUDA version you installed. You may check it through nvcc --version
or cat /usr/local/cuda/version.txt. Assume that you have installed CUDA 10.1, then you can
install MXNet with the following command:

For Windows users
pip install mxnet-cu101==1.6.0b20190926

For Linux and macOS users
pip install mxnet-cu101==1.6.0b20191122

Like the CPU version, the GPU-enabled MXNet can be upgraded by pip install -U --pre mxnet-
cu101. You may change the last digits according to your CUDA version, e.g., cu100 for CUDA 10.0
and cu90 for CUDA 9.0. You can find all available MXNet versions via pip search mxnet.

Exercises

1. Download the code for the book and install the runtime environment.

9 https://developer.nvidia.com/cuda-downloads

Contents 11

https://d2l.ai/d2l-en.zip
https://developer.nvidia.com/cuda-downloads

12 Contents

Notation

The notation used throughout this book is summarized below.

Numbers

• x: A scalar

• x: A vector

• X: A matrix

• X: A tensor

• I: An identity matrix

• xi, [x]i: The ith element of vector x

• xij, [X]ij: The element of matrix X at row i and column j

Set Theory

• X : A set

• Z: The set of integers

• R: The set of real numbers

• Rn: The set of n-dimensional vectors of real numbers

• Ra×b: The set of matrices of real numbers with a rows and b columns

• A ∪ B: Union of setsA and B

• A ∩ B: Intersection of setsA and B

• A \ B: Subtraction of set B from setA

13

Functions and Operators

• f(·): A function

• log(·): The natural logarithm

• exp(·): The exponential function

• 1X : The indicator function

• (·)⊤: Transpose of a vector or a matrix

• X−1: Inverse of matrix X

• ⊙: Hadamard (elementwise) product

• |X |: Cardinality of set X

• ∥ · ∥p: ℓp norm

• ∥ · ∥: ℓ2 norm

• ⟨x, y⟩: Dot product of vectors x and y

•
∑

: Series addition

•
∏

: Series multiplication

Calculus

• dy
dx : Derivative of y with respect to x

• ∂y
∂x : Partial derivative of y with respect to x

• ∇xy: Gradient of y with respect to x

•
∫ b
a f(x) dx: Definite integral of f from a to b with respect to x

•
∫
f(x) dx: Indefinite integral of f with respect to x

Probability and Information Theory

• P (·): Probability distribution

• z ∼ P : Random variable z has probability distribution P

• P (X | Y): Conditional probability of X | Y

• p(x): probability density function

• Ex[f(x)]: Expectation of f with respect to x

• X ⊥ Y : Random variables X and Y are independent

• X ⊥ Y | Z: Random variables X and Y are conditionally independent given random vari-
able Z

• Var(X): Variance of random variable X

14 Contents

• σX : Standard deviation of random variable X

• Cov(X,Y): Covariance of random variables X and Y

• ρ(X,Y): Correlation of random variables X and Y

• H(X): Entropy of random variable X

• DKL(P∥Q): KL-divergence of distributions P and Q

Complexity

• O: Big O notation

Contents 15

16 Contents

1 | Introduction

Until recently, nearly every computer program that we interact with daily were coded by soft-
ware developers from first principles. Say that we wanted to write an application to manage an
e-commerce platform. After huddling around a whiteboard for a few hours to ponder the prob-
lem, we would come up with the broad strokes of a working solution that might probably look
something like this: (i) users interact with the application through an interface running in a web
browser or mobile application; (ii) our application interacts with a commercial-grade database
engine to keep track of each user s̓ state and maintain records of historical transactions; and (iii)
at the heart of our application, the business logic (you might say, the brains) of our application spells
out in methodical detail the appropriate action that our program should take in every conceivable
circumstance.

To build the brains of our application, we d̓ have to step through every possible corner case that
we anticipate encountering, devising appropriate rules. Each time a customer clicks to add an
item to their shopping cart, we add an entry to the shopping cart database table, associating that
user s̓ ID with the requested product s̓ ID. While few developers ever get it completely right the
first time (it might take some test runs to work out the kinks), for the most part, we could write
such a program from first principles and confidently launch it before ever seeing a real customer.
Our ability to design automated systems from first principles that drive functioning products and
systems, often in novel situations, is a remarkable cognitive feat. And when you are able to devise
solutions that work 100% of the time, you should not be using machine learning.

Fortunately for the growing community of ML scientists, many tasks that we would like to auto-
mate do not bend so easily to human ingenuity. Imagine huddling around the whiteboard with
the smartest minds you know, but this time you are tackling one of the following problems:

• Write a program that predicts tomorrow s̓ weather given geographic information, satellite
images, and a trailing window of past weather.

• Write a program that takes in a question, expressed in free-form text, and answers it cor-
rectly.

• Write a program that given an image can identify all the people it contains, drawing outlines
around each.

• Write a program that presents users with products that they are likely to enjoy but unlikely,
in the natural course of browsing, to encounter.

In each of these cases, even elite programmers are incapable of coding up solutions from scratch.
The reasons for this can vary. Sometimes the program that we are looking for follows a pattern
that changes over time, and we need our programs to adapt. In other cases, the relationship (say
between pixels, and abstract categories) may be too complicated, requiring thousands or millions
of computations that are beyond our conscious understanding (even if our eyes manage the task
effortlessly). Machine learning (ML) is the study of powerful techniques that can learn from expe-

17

rience. As ML algorithm accumulates more experience, typically in the form of observational data
or interactions with an environment, their performance improves. Contrast this with our deter-
ministic e-commerce platform, which performs according to the same business logic, no matter
how much experience accrues, until the developers themselves learn and decide that it is time to
update the software. In this book, we will teach you the fundamentals of machine learning, and
focus in particular on deep learning, a powerful set of techniques driving innovations in areas as
diverse as computer vision, natural language processing, healthcare, and genomics.

1.1 A Motivating Example

Before we could begin writing, the authors of this book, like much of the work force, had to be-
come caffeinated. We hopped in the car and started driving. Using an iPhone, Alex called out
“Hey Siri”, awakening the phone s̓ voice recognition system. Then Mu commanded “directions to
Blue Bottle coffee shop”. The phone quickly displayed the transcription of his command. It also
recognized that we were asking for directions and launched the Maps application to fulfill our re-
quest. Once launched, the Maps app identified a number of routes. Next to each route, the phone
displayed a predicted transit time. While we fabricated this story for pedagogical convenience, it
demonstrates that in the span of just a few seconds, our everyday interactions with a smart phone
can engage several machine learning models.

Imagine just writing a program to respond to a wake word like “Alexa”, “Okay, Google” or “Siri”. Try
coding it up in a room by yourself with nothing but a computer and a code editor, as illustrated
in Fig. 1.1.1. How would you write such a program from first principles? Think about it… the
problem is hard. Every second, the microphone will collect roughly 44,000 samples. Each sample
is a measurement of the amplitude of the sound wave. What rule could map reliably from a snippet
of raw audio to confident predictions {yes, no} on whether the snippet contains the wake word?
If you are stuck, do not worry. We do not know how to write such a program from scratch either.
That is why we use ML.

Fig. 1.1.1: Identify an awake word.

Here s̓ the trick. Often, even when we do not know how to tell a computer explicitly how to map
from inputs to outputs, we are nonetheless capable of performing the cognitive feat ourselves. In
other words, even if you do not know how to program a computer to recognize the word “Alexa”,
you yourself are able to recognize the word “Alexa”. Armed with this ability, we can collect a huge
dataset containing examples of audio and label those that do and that do not contain the wake word.
In the ML approach, we do not attempt to design a system explicitly to recognize wake words.
Instead, we define a flexible program whose behavior is determined by a number of parameters.
Then we use the dataset to determine the best possible set of parameters, those that improve the
performance of our program with respect to some measure of performance on the task of interest.

You can think of the parameters as knobs that we can turn, manipulating the behavior of the pro-
gram. Fixing the parameters, we call the program a model. The set of all distinct programs (input-
output mappings) that we can produce just by manipulating the parameters is called a family of
models. And the meta-program that uses our dataset to choose the parameters is called a learning
algorithm.

18 Chapter 1. Introduction

Before we can go ahead and engage the learning algorithm, we have to define the problem pre-
cisely, pinning down the exact nature of the inputs and outputs, and choosing an appropriate
model family. In this case, our model receives a snippet of audio as input, and it generates a se-
lection among {yes, no} as output. If all goes according to plan the model s̓ guesses will typically
be correct as to whether (or not) the snippet contains the wake word.

If we choose the right family of models, then there should exist one setting of the knobs such
that the model fires yes every time it hears the word “Alexa”. Because the exact choice of the
wake word is arbitrary, we will probably need a model family sufficiently rich that, via another
setting of the knobs, it could fire yes only upon hearing the word “Apricot”. We expect that the
same model family should be suitable for “Alexa” recognition and “Apricot” recognition because
they seem, intuitively, to be similar tasks. However, we might need a different family of models
entirely if we want to deal with fundamentally different inputs or outputs, say if we wanted to map
from images to captions, or from English sentences to Chinese sentences.

As you might guess, if we just set all of the knobs randomly, it is not likely that our model will rec-
ognize “Alexa”, “Apricot”, or any other English word. In deep learning, the learning is the process
by which we discover the right setting of the knobs coercing the desired behavior from our model.

As shown in Fig. 1.1.2, the training process usually looks like this:

1. Start off with a randomly initialized model that cannot do anything useful.

2. Grab some of your labeled data (e.g., audio snippets and corresponding {yes, no} labels)

3. Tweak the knobs so the model sucks less with respect to those examples

4. Repeat until the model is awesome.

Fig. 1.1.2: A typical training process.

To summarize, rather than code up a wake word recognizer, we code up a program that can learn
to recognize wake words, if we present it with a large labeled dataset. You can think of this act of
determining a programs̓ behavior by presenting it with a dataset as programming with data. We
can “program” a cat detector by providing our machine learning system with many examples of
cats and dogs, such as the images below:

cat cat dog dog

1.1. A Motivating Example 19

This way the detector will eventually learn to emit a very large positive number if it is a cat, a very
large negative number if it is a dog, and something closer to zero if it is not sure, and this barely
scratches the surface of what ML can do.

Deep learning is just one among many popular methods for solving machine learning problems.
Thus far, we have only talked about machine learning broadly and not deep learning. To see why
deep learning is important, we should pause for a moment to highlight a couple crucial points.

First, the problems that we have discussed thus far—learning from raw audio signal, the raw pixel
values of images, or mapping between sentences of arbitrary lengths and their counterparts in
foreign languages—are problems where deep learning excels and where traditional ML methods
faltered. Deep models are deep in precisely the sense that they learn many layers of computation.
It turns out that these many-layered (or hierarchical) models are capable of addressing low-level
perceptual data in a way that previous tools could not. In bygone days, the crucial part of applying
ML to these problems consisted of coming up with manually-engineered ways of transforming the
data into some form amenable to shallow models. One key advantage of deep learning is that it
replaces not only the shallow models at the end of traditional learning pipelines, but also the labor-
intensive process of feature engineering. Second, by replacing much of the domain-specific prepro-
cessing, deep learning has eliminated many of the boundaries that previously separated computer
vision, speech recognition, natural language processing, medical informatics, and other applica-
tion areas, offering a unified set of tools for tackling diverse problems.

1.2 The Key Components: Data, Models, and Algorithms

In our wake-word example, we described a dataset consisting of audio snippets and binary labels
gave a hand-wavy sense of how we might train a model to approximate a mapping from snippets
to classifications. This sort of problem, where we try to predict a designated unknown label given
known inputs, given a dataset consisting of examples, for which the labels are known is called
supervised learning, and it is just one among many kinds of machine learning problems. In the
next section, we will take a deep dive into the different ML problems. First, we d̓ like to shed more
light on some core components that will follow us around, no matter what kind of ML problem
we take on:

1. The data that we can learn from.

2. A model of how to transform the data.

3. A loss function that quantifies the badness of our model.

4. An algorithm to adjust the model s̓ parameters to minimize the loss.

1.2.1 Data

It might go without saying that you cannot do data science without data. We could lose hundreds
of pages pondering what precisely constitutes data, but for now we will err on the practical side
and focus on the key properties to be concerned with. Generally we are concerned with a collec-
tion of examples (also called data points, samples, or instances). In order to work with data usefully,
we typically need to come up with a suitable numerical representation. Each example typically
consists of a collection of numerical attributes called features. In the supervised learning prob-
lems above, a special feature is designated as the prediction target, (sometimes called the label or
dependent variable). The given features from which the model must make its predictions can then
simply be called the features, (or often, the inputs, covariates, or independent variables).

20 Chapter 1. Introduction

If we were working with image data, each individual photograph might constitute an example,
each represented by an ordered list of numerical values corresponding to the brightness of each
pixel. A 200 × 200 color photograph would consist of 200 × 200 × 3 = 120000 numerical values,
corresponding to the brightness of the red, green, and blue channels for each spatial location.
In a more traditional task, we might try to predict whether or not a patient will survive, given a
standard set of features such as age, vital signs, diagnoses, etc.

When every example is characterized by the same number of numerical values, we say that the
data consists of fixed-length vectors and we describe the (constant) length of the vectors as the
dimensionality of the data. As you might imagine, fixed length can be a convenient property. If we
wanted to train a model to recognize cancer in microscopy images, fixed-length inputs means we
have one less thing to worry about.

However, not all data can easily be represented as fixed length vectors. While we might expect
microscope images to come from standard equipment, we cannot expect images mined from the
Internet to all show up with the same resolution or shape. For images, we might consider crop-
ping them all to a standard size, but that strategy only gets us so far. We risk losing information
in the cropped out portions. Moreover, text data resists fixed-length representations even more
stubbornly. Consider the customer reviews left on e-commerce sites like Amazon, IMDB, or Tri-
pAdvisor. Some are short: “it stinks!”. Others ramble for pages. One major advantage of deep
learning over traditional methods is the comparative grace with which modern models can han-
dle varying-length data.

Generally, the more data we have, the easier our job becomes. When we have more data, we can
train more powerful models, and rely less heavily on pre-conceived assumptions. The regime
change from (comparatively small) to big data is a major contributor to the success of modern
deep learning. To drive the point home, many of the most exciting models in deep learning either
do not work without large datasets. Some others work in the low-data regime, but no better than
traditional approaches.

Finally it is not enough to have lots of data and to process it cleverly. We need the right data. If
the data is full of mistakes, or if the chosen features are not predictive of the target quantity of
interest, learning is going to fail. The situation is captured well by the cliché: garbage in, garbage
out. Moreover, poor predictive performance is not the only potential consequence. In sensitive
applications of machine learning, like predictive policing, resumé screening, and risk models
used for lending, we must be especially alert to the consequences of garbage data. One common
failure mode occurs in datasets where some groups of people are unrepresented in the training
data. Imagine applying a skin cancer recognition system in the wild that had never seen black
skin before. Failure can also occur when the data does not merely under-represent some groups,
but reflects societal prejudices. For example if past hiring decisions are used to train a predictive
model that will be used to screen resumes, then machine learning models could inadvertently
capture and automate historical injustices. Note that this can all happen without the data scientist
actively conspiring, or even being aware.

1.2. The Key Components: Data, Models, and Algorithms 21

1.2.2 Models

Most machine learning involves transforming the data in some sense. We might want to build a
system that ingests photos and predicts smiley-ness. Alternatively, we might want to ingest a set of
sensor readings and predict how normal vs anomalous the readings are. By model, we denote the
computational machinery for ingesting data of one type, and spitting out predictions of a possibly
different type. In particular, we are interested in statistical models that can be estimated from
data. While simple models are perfectly capable of addressing appropriately simple problems the
problems that we focus on in this book stretch the limits of classical methods. Deep learning is
differentiated from classical approaches principally by the set of powerful models that it focuses
on. These models consist of many successive transformations of the data that are chained together
top to bottom, thus the name deep learning. On our way to discussing deep neural networks, we
will discuss some more traditional methods.

1.2.3 Objective functions

Earlier, we introduced machine learning as “learning from experience”. By learning here, we mean
improving at some task over time. But who is to say what constitutes an improvement? You might
imagine that we could propose to update our model, and some people might disagree on whether
the proposed update constituted an improvement or a decline.

In order to develop a formal mathematical system of learning machines, we need to have formal
measures of how good (or bad) our models are. In machine learning, and optimization more
generally, we call these objective functions. By convention, we usually define objective functions
so that lower is better. This is merely a convention. You can take any function f for which higher is
better, and turn it into a new function f ′ that is qualitatively identical but for which lower is better
by setting f ′ = −f . Because lower is better, these functions are sometimes called loss functions or
cost functions.

When trying to predict numerical values, the most common objective function is squared error
(y−ŷ)2. For classification, the most common objective is to minimize error rate, i.e., the fraction of
instances on which our predictions disagree with the ground truth. Some objectives (like squared
error) are easy to optimize. Others (like error rate) are difficult to optimize directly, owing to
non-differentiability or other complications. In these cases, it is common to optimize a surrogate
objective.

Typically, the loss function is defined with respect to the model s̓ parameters and depends upon the
dataset. The best values of our model s̓ parameters are learned by minimizing the loss incurred on
a training set consisting of some number of examples collected for training. However, doing well on
the training data does not guarantee that we will do well on (unseen) test data. So we will typically
want to split the available data into two partitions: the training data (for fitting model parameters)
and the test data (which is held out for evaluation), reporting the following two quantities:

• Training Error: The error on that data on which the model was trained. You could think of
this as being like a student s̓ scores on practice exams used to prepare for some real exam.
Even if the results are encouraging, that does not guarantee success on the final exam.

• Test Error: This is the error incurred on an unseen test set. This can deviate significantly
from the training error. When a model performs well on the training data but fails to gen-
eralize to unseen data, we say that it is overfitting. In real-life terms, this is like flunking the
real exam despite doing well on practice exams.

22 Chapter 1. Introduction

1.2.4 Optimization algorithms

Once we have got some data source and representation, a model, and a well-defined objective
function, we need an algorithm capable of searching for the best possible parameters for mini-
mizing the loss function. The most popular optimization algorithms for neural networks follow
an approach called gradient descent. In short, at each step, they check to see, for each parameter,
which way the training set loss would move if you perturbed that parameter just a small amount.
They then update the parameter in the direction that reduces the loss.

1.3 Kinds of Machine Learning

In the following sections, we discuss a few kinds of machine learning problems in greater detail.
We begin with a list of objectives, i.e., a list of things that we would like machine learning to do.
Note that the objectives are complemented with a set of techniques of how to accomplish them,
including types of data, models, training techniques, etc. The list below is just a sampling of the
problems ML can tackle to motivate the reader and provide us with some common language for
when we talk about more problems throughout the book.

1.3.1 Supervised learning

Supervised learning addresses the task of predicting targets given inputs. The targets, which we
often call labels, are generally denoted by y. The input data, also called the features or covariates,
are typically denoted x. Each (input, target) pair is called an examples or an instances. Some times,
when the context is clear, we may use the term examples, to refer to a collection of inputs, even
when the corresponding targets are unknown. We denote any particular instance with a subscript,
typically i, for instance (xi, yi). A dataset is a collection of n instances {xi, yi}ni=1. Our goal is to
produce a model fθ that maps any input xi to a prediction fθ(xi).

To ground this description in a concrete example, if we were working in healthcare, then we might
want to predict whether or not a patient would have a heart attack. This observation, heart attack
or no heart attack, would be our label y. The input data x might be vital signs such as heart rate,
diastolic and systolic blood pressure, etc.

The supervision comes into play because for choosing the parameters θ, we (the supervisors)
provide the model with a dataset consisting of labeled examples (xi, yi), where each example xi
is matched with the correct label.

In probabilistic terms, we typically are interested in estimating the conditional probabilityP (y|x).
While it is just one among several paradigms within machine learning, supervised learning ac-
counts for the majority of successful applications of machine learning in industry. Partly, that is
because many important tasks can be described crisply as estimating the probability of something
unknown given a particular set of available data:

• Predict cancer vs not cancer, given a CT image.

• Predict the correct translation in French, given a sentence in English.

• Predict the price of a stock next month based on this months̓ financial reporting data.

Even with the simple description “predict targets from inputs” supervised learning can take a great
many forms and require a great many modeling decisions, depending on (among other considera-
tions) the type, size, and the number of inputs and outputs. For example, we use different models

1.3. Kinds of Machine Learning 23

to process sequences (like strings of text or time series data) and for processing fixed-length vec-
tor representations. We will visit many of these problems in depth throughout the first 9 parts of
this book.

Informally, the learning process looks something like this: Grab a big collection of examples for
which the covariates are known and select from them a random subset, acquiring the ground truth
labels for each. Sometimes these labels might be available data that has already been collected
(e.g., did a patient die within the following year?) and other times we might need to employ human
annotators to label the data, (e.g., assigning images to categories).

Together, these inputs and corresponding labels comprise the training set. We feed the training
dataset into a supervised learning algorithm, a function that takes as input a dataset and outputs
another function, the learned model. Finally, we can feed previously unseen inputs to the learned
model, using its outputs as predictions of the corresponding label. The full process in drawn in
Fig. 1.3.1.

Fig. 1.3.1: Supervised learning.

Regression

Perhaps the simplest supervised learning task to wrap your head around is regression. Consider,
for example a set of data harvested from a database of home sales. We might construct a table,
where each row corresponds to a different house, and each column corresponds to some relevant
attribute, such as the square footage of a house, the number of bedrooms, the number of bath-
rooms, and the number of minutes (walking) to the center of town. In this dataset each example
would be a specific house, and the corresponding feature vector would be one row in the table.

If you live in New York or San Francisco, and you are not the CEO of Amazon, Google, Microsoft, or
Facebook, the (sq. footage, no. of bedrooms, no. of bathrooms, walking distance) feature vector
for your home might look something like: [100, 0, .5, 60]. However, if you live in Pittsburgh, it
might look more like [3000, 4, 3, 10]. Feature vectors like this are essential for most classic machine
learning algorithms. We will continue to denote the feature vector correspond to any example i
as xi and we can compactly refer to the full table containing all of the feature vectors as X.

What makes a problem a regression is actually the outputs. Say that you are in the market for a new
home. You might want to estimate the fair market value of a house, given some features like these.
The target value, the price of sale, is a real number. If you remember the formal definition of the
reals you might be scratching your head now. Homes probably never sell for fractions of a cent,
let alone prices expressed as irrational numbers. In cases like this, when the target is actually
discrete, but where the rounding takes place on a sufficiently fine scale, we will abuse language
just a bit cn continue to describe our outputs and targets as real-valued numbers.

We denote any individual target yi (corresponding to example xi) and the set of all targets y (cor-
responding to all examples X). When our targets take on arbitrary values in some range, we call
this a regression problem. Our goal is to produce a model whose predictions closely approximate

24 Chapter 1. Introduction

the actual target values. We denote the predicted target for any instance ŷi. Do not worry if the
notation is bogging you down. We will unpack it more thoroughly in the subsequent chapters.

Lots of practical problems are well-described regression problems. Predicting the rating that a
user will assign to a movie can be thought of as a regression problem and if you designed a great
algorithm to accomplish this feat in 2009, you might have won the 1-million-dollar Netflix prize12.
Predicting the length of stay for patients in the hospital is also a regression problem. A good rule
of thumb is that any How much? or How many? problem should suggest regression.

• “How many hours will this surgery take?”: regression

• “How many dogs are in this photo?”: regression.

However, if you can easily pose your problem as “Is this a _ ?”, then it is likely, classification, a
different kind of supervised problem that we will cover next. Even if you have never worked with
machine learning before, you have probably worked through a regression problem informally.
Imagine, for example, that you had your drains repaired and that your contractor spent x1 = 3
hours removing gunk from your sewage pipes. Then she sent you a bill of y1 = $350. Now imagine
that your friend hired the same contractor for x2 = 2 hours and that she received a bill of y2 =
$250. If someone then asked you how much to expect on their upcoming gunk-removal invoice
you might make some reasonable assumptions, such as more hours worked costs more dollars.
You might also assume that there is some base charge and that the contractor then charges per
hour. If these assumptions held true, then given these two data points, you could already identify
the contractor s̓ pricing structure: $100 per hour plus $50 to show up at your house. If you followed
that much then you already understand the high-level idea behind linear regression (and you just
implicitly designed a linear model with a bias term).

In this case, we could produce the parameters that exactly matched the contractor s̓ prices. Some-
times that is not possible, e.g., if some of the variance owes to some factors besides your two fea-
tures. In these cases, we will try to learn models that minimize the distance between our predic-
tions and the observed values. In most of our chapters, we will focus on one of two very common
losses, the L1 loss13 where

l(y, y′) =
∑
i

|yi − y′i| (1.3.1)

and the least mean squares loss, or L2 loss14, where

l(y, y′) =
∑
i

(yi − y′i)
2. (1.3.2)

As we will see later, the L2 loss corresponds to the assumption that our data was corrupted by
Gaussian noise, whereas the L1 loss corresponds to an assumption of noise from a Laplace distri-
bution.

12 https://en.wikipedia.org/wiki/Netflix_Prize
13 http://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.L1Loss
14 http://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.L2Loss

1.3. Kinds of Machine Learning 25

https://en.wikipedia.org/wiki/Netflix_Prize
http://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.L1Loss
http://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.L2Loss

Classification

While regression models are great for addressing how many? questions, lots of problems do not
bend comfortably to this template. For example, a bank wants to add check scanning to their
mobile app. This would involve the customer snapping a photo of a check with their smart phone s̓
camera and the machine learning model would need to be able to automatically understand text
seen in the image. It would also need to understand hand-written text to be even more robust.
This kind of system is referred to as optical character recognition (OCR), and the kind of problem
it addresses is called classification. It is treated with a different set of algorithms than those used
for regression (although many techniques will carry over).

In classification, we want our model to look at a feature vector, e.g., the pixel values in an image,
and then predict which category (formally called classes), among some (discrete) set of options, an
example belongs. For hand-written digits, we might have 10 classes, corresponding to the digits 0
through 9. The simplest form of classification is when there are only two classes, a problem which
we call binary classification. For example, our dataset X could consist of images of animals and
our labels Y might be the classes {cat,dog}. While in regression, we sought a regressor to output a
real value ŷ, in classification, we seek a classifier, whose output ŷ is the predicted class assignment.

For reasons that we will get into as the book gets more technical, it can be hard to optimize a
model that can only output a hard categorical assignment, e.g., either cat or dog. In these cases,
it is usually much easier to instead express our model in the language of probabilities. Given an
example x, our model assigns a probability ŷk to each label k. Because these are probabilities,
they need to be positive numbers and add up to 1 and thus we only need K − 1 numbers to assign
probabilities of K categories. This is easy to see for binary classification. If there is a 0.6 (60%)
probability that an unfair coin comes up heads, then there is a 0.4 (40%) probability that it comes
up tails. Returning to our animal classification example, a classifier might see an image and output
the probability that the image is a catP (y = cat | x) = 0.9. We can interpret this number by saying
that the classifier is 90% sure that the image depicts a cat. The magnitude of the probability for
the predicted class conveys one notion of uncertainty. It is not the only notion of uncertainty and
we will discuss others in more advanced chapters.

When we have more than two possible classes, we call the problem multiclass classification. Com-
mon examples include hand-written character recognition [0, 1, 2, 3 ... 9, a, b, c, ...].
While we attacked regression problems by trying to minimize the L1 or L2 loss functions, the
common loss function for classification problems is called cross-entropy. In MXNet Gluon, the
corresponding loss function can be found here15.

Note that the most likely class is not necessarily the one that you are going to use for your decision.
Assume that you find this beautiful mushroom in your backyard as shown in Fig. 1.3.2.

15 https://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.SoftmaxCrossEntropyLoss

26 Chapter 1. Introduction

https://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.SoftmaxCrossEntropyLoss

Fig. 1.3.2: Death cap—do not eat!

Now, assume that you built a classifier and trained it to predict if a mushroom is poisonous based
on a photograph. Say our poison-detection classifier outputs P (y = deathcap|image) = 0.2. In
other words, the classifier is 80% sure that our mushroom is not a death cap. Still, youd̓ have to be
a fool to eat it. That is because the certain benefit of a delicious dinner is not worth a 20% risk of
dying from it. In other words, the effect of the uncertain risk outweighs the benefit by far. We can
look at this more formally. Basically, we need to compute the expected risk that we incur, i.e., we
need to multiply the probability of the outcome with the benefit (or harm) associated with it:

L(action|x) = Ey∼p(y|x)[loss(action, y)]. (1.3.3)

Hence, the loss L incurred by eating the mushroom is L(a = eat|x) = 0.2 ∗ ∞ + 0.8 ∗ 0 = ∞,
whereas the cost of discarding it is L(a = discard|x) = 0.2 ∗ 0 + 0.8 ∗ 1 = 0.8.

Our caution was justified: as any mycologist would tell us, the above mushroom actually is a death
cap. Classification can get much more complicated than just binary, multiclass, or even multi-
label classification. For instance, there are some variants of classification for addressing hierar-
chies. Hierarchies assume that there exist some relationships among the many classes. So not all
errors are equal—if we must err, we would prefer to misclassify to a related class rather than to a
distant class. Usually, this is referred to as hierarchical classification. One early example is due to
Linnaeus16, who organized the animals in a hierarchy.

In the case of animal classification, it might not be so bad to mistake a poodle for a schnauzer,
but our model would pay a huge penalty if it confused a poodle for a dinosaur. Which hierarchy
is relevant might depend on how you plan to use the model. For example, rattle snakes and garter
snakes might be close on the phylogenetic tree, but mistaking a rattler for a garter could be deadly.

16 https://en.wikipedia.org/wiki/Carl_Linnaeus

1.3. Kinds of Machine Learning 27

https://en.wikipedia.org/wiki/Carl_Linnaeus

Tagging

Some classification problems do not fit neatly into the binary or multiclass classification setups.
For example, we could train a normal binary classifier to distinguish cats from dogs. Given the
current state of computer vision, we can do this easily, with off-the-shelf tools. Nonetheless, no
matter how accurate our model gets, we might find ourselves in trouble when the classifier en-
counters an image of the Town Musicians of Bremen.

Fig. 1.3.3: A cat, a roster, a dog and a donkey

As you can see, there is a cat in the picture, and a rooster, a dog, a donkey and a bird, with some
trees in the background. Depending on what we want to do with our model ultimately, treating
this as a binary classification problem might not make a lot of sense. Instead, we might want to
give the model the option of saying the image depicts a cat and a dog and a donkey and a rooster
and a bird.

The problem of learning to predict classes that are not mutually exclusive is called multi-label clas-
sification. Auto-tagging problems are typically best described as multi-label classification prob-
lems. Think of the tags people might apply to posts on a tech blog, e.g., “machine learning”, “tech-
nology”, “gadgets”, “programming languages”, “linux”, “cloud computing”, “AWS”. A typical article
might have 5-10 tags applied because these concepts are correlated. Posts about “cloud comput-
ing” are likely to mention “AWS” and posts about “machine learning” could also deal with “pro-
gramming languages”.

We also have to deal with this kind of problem when dealing with the biomedical literature, where
correctly tagging articles is important because it allows researchers to do exhaustive reviews of
the literature. At the National Library of Medicine, a number of professional annotators go over

28 Chapter 1. Introduction

each article that gets indexed in PubMed to associate it with the relevant terms from MeSH, a
collection of roughly 28k tags. This is a time-consuming process and the annotators typically have
a one year lag between archiving and tagging. Machine learning can be used here to provide
provisional tags until each article can have a proper manual review. Indeed, for several years, the
BioASQ organization has hosted a competition17 to do precisely this.

Search and ranking

Sometimes we do not just want to assign each example to a bucket or to a real value. In the field of
information retrieval, we want to impose a ranking on a set of items. Take web search for example,
the goal is less to determine whether a particular page is relevant for a query, but rather, which
one of the plethora of search results is most relevant for a particular user. We really care about
the ordering of the relevant search results and our learning algorithm needs to produce ordered
subsets of elements from a larger set. In other words, if we are asked to produce the first 5 letters
from the alphabet, there is a difference between returning A B C D E and C A B E D. Even if the
result set is the same, the ordering within the set matters.

One possible solution to this problem is to first assign to every element in the set a corresponding
relevance score and then to retrieve the top-rated elements. PageRank18, the original secret sauce
behind the Google search engine was an early example of such a scoring system but it was peculiar
in that it did not depend on the actual query. Here they relied on a simple relevance filter to
identify the set of relevant items and then on PageRank to order those results that contained the
query term. Nowadays, search engines use machine learning and behavioral models to obtain
query-dependent relevance scores. There are entire academic conferences devoted to this subject.

Recommender systems

Recommender systems are another problem setting that is related to search and ranking. The
problems are similar insofar as the goal is to display a set of relevant items to the user. The main
difference is the emphasis on personalization to specific users in the context of recommender sys-
tems. For instance, for movie recommendations, the results page for a SciFi fan and the results
page for a connoisseur of Peter Sellers comedies might differ significantly. Similar problems pop
up in other recommendation settings, e.g., for retail products, music, or news recommendation.

In some cases, customers provide explicit feedback communicating how much they liked a partic-
ular product (e.g., the product ratings and reviews on Amazon, IMDB, GoodReads, etc.). In some
other cases, they provide implicit feedback, e.g., by skipping titles on a playlist, which might in-
dicate dissatisfaction but might just indicate that the song was inappropriate in context. In the
simplest formulations, these systems are trained to estimate some score yij, such as an estimated
rating or the probability of purchase, given a user ui and product pj.

Given such a model, then for any given user, we could retrieve the set of objects with the largest
scores yij, which are could then be recommended to the customer. Production systems are consid-
erably more advanced and take detailed user activity and item characteristics into account when
computing such scores. Fig. 1.3.4 is an example of deep learning books recommended by Amazon
based on personalization algorithms tuned to capture the author s̓ preferences.

17 http://bioasq.org/
18 https://en.wikipedia.org/wiki/PageRank

1.3. Kinds of Machine Learning 29

http://bioasq.org/
https://en.wikipedia.org/wiki/PageRank

Fig. 1.3.4: Deep learning books recommended by Amazon.

Despite their tremendous economic value, recommendation systems naively built on top of pre-
dictive models suffer some serious conceptual flaws. To start, we only observe censored feedback.
Users preferentially rate movies that they feel strongly about: you might notice that items receive
many 5 and 1 star ratings but that there are conspicuously few 3-star ratings. Moreover, current
purchase habits are often a result of the recommendation algorithm currently in place, but learn-
ing algorithms do not always take this detail into account. Thus it is possible for feedback loops
to form where a recommender system preferentially pushes an item that is then taken to be bet-
ter (due to greater purchases) and in turn is recommended even more frequently. Many of these
problems about how to deal with censoring, incentives, and feedback loops, are important open
research questions.

Sequence Learning

So far, we have looked at problems where we have some fixed number of inputs and produce a fixed
number of outputs. Before we considered predicting home prices from a fixed set of features:
square footage, number of bedrooms, number of bathrooms, walking time to downtown. We
also discussed mapping from an image (of fixed dimension) to the predicted probabilities that it
belongs to each of a fixed number of classes, or taking a user ID and a product ID, and predicting
a star rating. In these cases, once we feed our fixed-length input into the model to generate an
output, the model immediately forgets what it just saw.

This might be fine if our inputs truly all have the same dimensions and if successive inputs truly
have nothing to do with each other. But how would we deal with video snippets? In this case,
each snippet might consist of a different number of frames. And our guess of what is going on in
each frame might be much stronger if we take into account the previous or succeeding frames.

30 Chapter 1. Introduction

Same goes for language. One popular deep learning problem is machine translation: the task of
ingesting sentences in some source language and predicting their translation in another language.

These problems also occur in medicine. We might want a model to monitor patients in the in-
tensive care unit and to fire off alerts if their risk of death in the next 24 hours exceeds some
threshold. We definitely would not want this model to throw away everything it knows about the
patient history each hour and just make its predictions based on the most recent measurements.

These problems are among the most exciting applications of machine learning and they are in-
stances of sequence learning. They require a model to either ingest sequences of inputs or to emit
sequences of outputs (or both!). These latter problems are sometimes referred to as seq2seq prob-
lems. Language translation is a seq2seq problem. Transcribing text from spoken speech is also
a seq2seq problem. While it is impossible to consider all types of sequence transformations, a
number of special cases are worth mentioning:

Tagging and Parsing. This involves annotating a text sequence with attributes. In other words,
the number of inputs and outputs is essentially the same. For instance, we might want to know
where the verbs and subjects are. Alternatively, we might want to know which words are the
named entities. In general, the goal is to decompose and annotate text based on structural and
grammatical assumptions to get some annotation. This sounds more complex than it actually is.
Below is a very simple example of annotating a sentence with tags indicating which words refer
to named entities.

Tom has dinner in Washington with Sally.
Ent - - - Ent - Ent

Automatic Speech Recognition. With speech recognition, the input sequence x is an audio
recording of a speaker (shown in Fig. 1.3.5), and the output y is the textual transcript of what the
speaker said. The challenge is that there are many more audio frames (sound is typically sampled
at 8kHz or 16kHz) than text, i.e., there is no 1:1 correspondence between audio and text, since
thousands of samples correspond to a single spoken word. These are seq2seq problems where
the output is much shorter than the input.

Fig. 1.3.5: -D-e-e-p- L-ea-r-ni-ng-

Text to Speech. Text-to-Speech (TTS) is the inverse of speech recognition. In other words, the
input x is text and the output y is an audio file. In this case, the output is much longer than the
input. While it is easy for humans to recognize a bad audio file, this is not quite so trivial for
computers.

Machine Translation. Unlike the case of speech recognition, where corresponding inputs and
outputs occur in the same order (after alignment), in machine translation, order inversion can
be vital. In other words, while we are still converting one sequence into another, neither the
number of inputs and outputs nor the order of corresponding data points are assumed to be the

1.3. Kinds of Machine Learning 31

same. Consider the following illustrative example of the peculiar tendency of Germans to place
the verbs at the end of sentences.

German: Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
English: Did you already check out this excellent tutorial?
Wrong alignment: Did you yourself already this excellent tutorial looked-at?

Many related problems pop up in other learning tasks. For instance, determining the order in
which a user reads a Webpage is a two-dimensional layout analysis problem. Dialogue problems
exhibit all kinds of additional complications, where determining what to say next requires taking
into account real-world knowledge and the prior state of the conversation across long temporal
distances. This is an active area of research.

1.3.2 Unsupervised learning

All the examples so far were related to Supervised Learning, i.e., situations where we feed the model
a giant dataset containing both the features and corresponding target values. You could think of
the supervised learner as having an extremely specialized job and an extremely anal boss. The
boss stands over your shoulder and tells you exactly what to do in every situation until you learn
to map from situations to actions. Working for such a boss sounds pretty lame. On the other hand,
it is easy to please this boss. You just recognize the pattern as quickly as possible and imitate their
actions.

In a completely opposite way, it could be frustrating to work for a boss who has no idea what
they want you to do. However, if you plan to be a data scientist, youd̓ better get used to it. The
boss might just hand you a giant dump of data and tell you to do some data science with it! This
sounds vague because it is. We call this class of problems unsupervised learning, and the type and
number of questions we could ask is limited only by our creativity. We will address a number of
unsupervised learning techniques in later chapters. To whet your appetite for now, we describe a
few of the questions you might ask:

• Can we find a small number of prototypes that accurately summarize the data? Given a set of
photos, can we group them into landscape photos, pictures of dogs, babies, cats, mountain
peaks, etc.? Likewise, given a collection of usersʼ browsing activity, can we group them into
users with similar behavior? This problem is typically known as clustering.

• Can we find a small number of parameters that accurately capture the relevant properties of
the data? The trajectories of a ball are quite well described by velocity, diameter, and mass
of the ball. Tailors have developed a small number of parameters that describe human body
shape fairly accurately for the purpose of fitting clothes. These problems are referred to
as subspace estimation problems. If the dependence is linear, it is called principal component
analysis.

• Is there a representation of (arbitrarily structured) objects in Euclidean space (i.e., the space
of vectors in Rn) such that symbolic properties can be well matched? This is called represen-
tation learning and it is used to describe entities and their relations, such as Rome − Italy +
France = Paris.

• Is there a description of the root causes of much of the data that we observe? For instance,
if we have demographic data about house prices, pollution, crime, location, education,
salaries, etc., can we discover how they are related simply based on empirical data? The
fields concerned with causality and probabilistic graphical models address this problem.

32 Chapter 1. Introduction

• Another important and exciting recent development in unsupervised learning is the advent
of generative adversarial networks. These give us a procedural way to synthesize data, even
complicated structured data like images and audio. The underlying statistical mechanisms
are tests to check whether real and fake data are the same. We will devote a few notebooks
to them.

1.3.3 Interacting with an Environment

So far, we have not discussed where data actually comes from, or what actually happens when a
machine learning model generates an output. That is because supervised learning and unsuper-
vised learning do not address these issues in a very sophisticated way. In either case, we grab a
big pile of data up front, then set our pattern recognition machines in motion without ever in-
teracting with the environment again. Because all of the learning takes place after the algorithm
is disconnected from the environment, this is sometimes called offline learning. For supervised
learning, the process looks like Fig. 1.3.6.

Fig. 1.3.6: Collect data for supervised learning from an environment.

This simplicity of offline learning has its charms. The upside is we can worry about pattern recog-
nition in isolation, without any distraction from these other problems. But the downside is that
the problem formulation is quite limiting. If you are more ambitious, or if you grew up reading
Asimov s̓ Robot Series, then you might imagine artificially intelligent bots capable not only of mak-
ing predictions, but of taking actions in the world. We want to think about intelligent agents, not
just predictive models. That means we need to think about choosing actions, not just making predic-
tions. Moreover, unlike predictions, actions actually impact the environment. If we want to train
an intelligent agent, we must account for the way its actions might impact the future observations
of the agent.

Considering the interaction with an environment opens a whole set of new modeling questions.
Does the environment:

• Remember what we did previously?

• Want to help us, e.g., a user reading text into a speech recognizer?

• Want to beat us, i.e., an adversarial setting like spam filtering (against spammers) or playing
a game (vs an opponent)?

• Not care (as in many cases)?

• Have shifting dynamics (does future data always resemble the past or do the patterns change
over time, either naturally or in response to our automated tools)?

1.3. Kinds of Machine Learning 33

This last question raises the problem of distribution shift, (when training and test data are differ-
ent). It is a problem that most of us have experienced when taking exams written by a lecturer,
while the homeworks were composed by her TAs. We will briefly describe reinforcement learning
and adversarial learning, two settings that explicitly consider interaction with an environment.

1.3.4 Reinforcement learning

If you are interested in using machine learning to develop an agent that interacts with an environ-
ment and takes actions, then you are probably going to wind up focusing on reinforcement learning
(RL). This might include applications to robotics, to dialogue systems, and even to developing AI
for video games. Deep reinforcement learning (DRL), which applies deep neural networks to RL
problems, has surged in popularity. The breakthrough deep Q-network that beat humans at Atari
games using only the visual input19, and the AlphaGo program that dethroned the world champion
at the board game Go20 are two prominent examples.

Reinforcement learning gives a very general statement of a problem, in which an agent interacts
with an environment over a series of timesteps. At each timestep t, the agent receives some ob-
servation ot from the environment and must choose an action at that is subsequently transmitted
back to the environment via some mechanism (sometimes called an actuator). Finally, the agent
receives a reward rt from the environment. The agent then receives a subsequent observation,
and chooses a subsequent action, and so on. The behavior of an RL agent is governed by a policy.
In short, a policy is just a function that maps from observations (of the environment) to actions.
The goal of reinforcement learning is to produce a good policy.

Fig. 1.3.7: The interaction between reinforcement learning and an environment.

It is hard to overstate the generality of the RL framework. For example, we can cast any supervised
learning problem as an RL problem. Say we had a classification problem. We could create an RL
agent with one action corresponding to each class. We could then create an environment which
gave a reward that was exactly equal to the loss function from the original supervised problem.

That being said, RL can also address many problems that supervised learning cannot. For exam-
ple, in supervised learning we always expect that the training input comes associated with the
correct label. But in RL, we do not assume that for each observation, the environment tells us the
optimal action. In general, we just get some reward. Moreover, the environment may not even
tell us which actions led to the reward.

Consider for example the game of chess. The only real reward signal comes at the end of the
game when we either win, which we might assign a reward of 1, or when we lose, which we could

19 https://www.wired.com/2015/02/google-ai-plays-atari-like-pros/
20 https://www.wired.com/2017/05/googles-alphago-trounces-humans-also-gives-boost/

34 Chapter 1. Introduction

https://www.wired.com/2015/02/google-ai-plays-atari-like-pros/
https://www.wired.com/2015/02/google-ai-plays-atari-like-pros/
https://www.wired.com/2017/05/googles-alphago-trounces-humans-also-gives-boost/
https://www.wired.com/2017/05/googles-alphago-trounces-humans-also-gives-boost/

assign a reward of -1. So reinforcement learners must deal with the credit assignment problem:
determining which actions to credit or blame for an outcome. The same goes for an employee
who gets a promotion on October 11. That promotion likely reflects a large number of well-chosen
actions over the previous year. Getting more promotions in the future requires figuring out what
actions along the way led to the promotion.

Reinforcement learners may also have to deal with the problem of partial observability. That is,
the current observation might not tell you everything about your current state. Say a cleaning
robot found itself trapped in one of many identical closets in a house. Inferring the precise lo-
cation (and thus state) of the robot might require considering its previous observations before
entering the closet.

Finally, at any given point, reinforcement learners might know of one good policy, but there might
be many other better policies that the agent has never tried. The reinforcement learner must
constantly choose whether to exploit the best currently-known strategy as a policy, or to explore
the space of strategies, potentially giving up some short-run reward in exchange for knowledge.

MDPs, bandits, and friends

The general reinforcement learning problem is a very general setting. Actions affect subsequent
observations. Rewards are only observed corresponding to the chosen actions. The environment
may be either fully or partially observed. Accounting for all this complexity at once may ask too
much of researchers. Moreover, not every practical problem exhibits all this complexity. As a
result, researchers have studied a number of special cases of reinforcement learning problems.

When the environment is fully observed, we call the RL problem a Markov Decision Process (MDP).
When the state does not depend on the previous actions, we call the problem a contextual bandit
problem. When there is no state, just a set of available actions with initially unknown rewards, this
problem is the classic multi-armed bandit problem.

1.4 Roots

Although many deep learning methods are recent inventions, humans have held the desire to an-
alyze data and to predict future outcomes for centuries. In fact, much of natural science has its
roots in this. For instance, the Bernoulli distribution is named after Jacob Bernoulli (1655-1705)21,
and the Gaussian distribution was discovered by Carl Friedrich Gauss (1777-1855)22. He invented
for instance the least mean squares algorithm, which is still used today for countless problems
from insurance calculations to medical diagnostics. These tools gave rise to an experimental ap-
proach in the natural sciences—for instance, Ohms̓ law relating current and voltage in a resistor
is perfectly described by a linear model.

Even in the middle ages, mathematicians had a keen intuition of estimates. For instance, the
geometry book of Jacob Köbel (1460-1533)23 illustrates averaging the length of 16 adult mens̓ feet
to obtain the average foot length.

21 https://en.wikipedia.org/wiki/Jacob_Bernoulli
22 https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
23 https://www.maa.org/press/periodicals/convergence/mathematical-treasures-jacob-kobels-geometry

1.4. Roots 35

https://en.wikipedia.org/wiki/Jacob_Bernoulli
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://www.maa.org/press/periodicals/convergence/mathematical-treasures-jacob-kobels-geometry

Fig. 1.4.1: Estimating the length of a foot

Fig. 1.4.1 illustrates how this estimator works. The 16 adult men were asked to line up in a row,
when leaving church. Their aggregate length was then divided by 16 to obtain an estimate for
what now amounts to 1 foot. This “algorithm” was later improved to deal with misshapen feet—
the 2 men with the shortest and longest feet respectively were sent away, averaging only over the
remainder. This is one of the earliest examples of the trimmed mean estimate.

Statistics really took off with the collection and availability of data. One of its titans, Ronald Fisher
(1890-1962)24, contributed significantly to its theory and also its applications in genetics. Many of
his algorithms (such as Linear Discriminant Analysis) and formula (such as the Fisher Information
Matrix) are still in frequent use today (even the Iris dataset that he released in 1936 is still used
sometimes to illustrate machine learning algorithms). Fisher was also a proponent of eugenics,
which should remind us that the morally dubious use data science has as long and enduring a
history as its productive use in industry and the natural sciences.

A second influence for machine learning came from Information Theory (Claude Shannon, 1916-
2001)25 and the Theory of computation via Alan Turing (1912-1954)26. Turing posed the question
“can machines think?” in his famous paper Computing machinery and intelligence27 (Mind, Oc-
tober 1950). In what he described as the Turing test, a machine can be considered intelligent if it
is difficult for a human evaluator to distinguish between the replies from a machine and a human
based on textual interactions.

Another influence can be found in neuroscience and psychology. After all, humans clearly exhibit
intelligent behavior. It is thus only reasonable to ask whether one could explain and possibly re-

24 https://en.wikipedia.org/wiki/Ronald_Fisher
25 https://en.wikipedia.org/wiki/Claude_Shannon
26 https://en.wikipedia.org/wiki/Alan_Turing
27 https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence

36 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Ronald_Fisher
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence

verse engineer this capacity. One of the oldest algorithms inspired in this fashion was formulated
by Donald Hebb (1904-1985)28. In his groundbreaking book The Organization of Behavior (Hebb
& Hebb, 1949), he posited that neurons learn by positive reinforcement. This became known as
the Hebbian learning rule. It is the prototype of Rosenblatt s̓ perceptron learning algorithm and it
laid the foundations of many stochastic gradient descent algorithms that underpin deep learning
today: reinforce desirable behavior and diminish undesirable behavior to obtain good settings of
the parameters in a neural network.

Biological inspiration is what gave neural networks their name. For over a century (dating back
to the models of Alexander Bain, 1873 and James Sherrington, 1890), researchers have tried to
assemble computational circuits that resemble networks of interacting neurons. Over time, the
interpretation of biology has become less literal but the name stuck. At its heart, lie a few key
principles that can be found in most networks today:

• The alternation of linear and nonlinear processing units, often referred to as layers.

• The use of the chain rule (also known as backpropagation) for adjusting parameters in the
entire network at once.

After initial rapid progress, research in neural networks languished from around 1995 until 2005.
This was due to a number of reasons. Training a network is computationally very expensive.
While RAM was plentiful at the end of the past century, computational power was scarce. Sec-
ond, datasets were relatively small. In fact, Fisher s̓ Iris dataset from 1932 was a popular tool for
testing the efficacy of algorithms. MNIST with its 60,000 handwritten digits was considered huge.

Given the scarcity of data and computation, strong statistical tools such as Kernel Methods, Deci-
sion Trees and Graphical Models proved empirically superior. Unlike neural networks, they did
not require weeks to train and provided predictable results with strong theoretical guarantees.

1.5 The Road to Deep Learning

Much of this changed with the ready availability of large amounts of data, due to the World Wide
Web, the advent of companies serving hundreds of millions of users online, a dissemination of
cheap, high quality sensors, cheap data storage (Kryder s̓ law), and cheap computation (Moore s̓
law), in particular in the form of GPUs, originally engineered for computer gaming. Suddenly
algorithms and models that seemed computationally infeasible became relevant (and vice versa).
This is best illustrated in Table 1.5.1.

Table 1.5.1: Dataset versus computer memory and compu-
tational power

Decade Dataset Mem-
ory

Floating Point Calculations per Second

1970 100 (Iris) 1 KB 100 KF (Intel 8080)
1980 1 K (House prices in Boston) 100 KB 1 MF (Intel 80186)
1990 10 K (optical character recognition) 10 MB 10 MF (Intel 80486)
2000 10 M (web pages) 100 MB 1 GF (Intel Core)
2010 10 G (advertising) 1 GB 1 TF (Nvidia C2050)
2020 1 T (social network) 100 GB 1 PF (Nvidia DGX-2)

It is evident that RAM has not kept pace with the growth in data. At the same time, the increase
28 https://en.wikipedia.org/wiki/Donald_O._Hebb

1.5. The Road to Deep Learning 37

https://en.wikipedia.org/wiki/Donald_O._Hebb

in computational power has outpaced that of the data available. This means that statistical mod-
els needed to become more memory efficient (this is typically achieved by adding nonlineari-
ties) while simultaneously being able to spend more time on optimizing these parameters, due
to an increased compute budget. Consequently the sweet spot in machine learning and statis-
tics moved from (generalized) linear models and kernel methods to deep networks. This is also
one of the reasons why many of the mainstays of deep learning, such as multilayer perceptrons
(McCulloch & Pitts, 1943), convolutional neural networks (LeCun et al., 1998), Long Short-Term
Memory (Hochreiter & Schmidhuber, 1997), and Q-Learning (Watkins & Dayan, 1992), were es-
sentially “rediscovered” in the past decade, after laying comparatively dormant for considerable
time.

The recent progress in statistical models, applications, and algorithms, has sometimes been
likened to the Cambrian Explosion: a moment of rapid progress in the evolution of species. In-
deed, the state of the art is not just a mere consequence of available resources, applied to decades
old algorithms. Note that the list below barely scratches the surface of the ideas that have helped
researchers achieve tremendous progress over the past decade.

• Novel methods for capacity control, such as Dropout (Srivastava et al., 2014) have helped
to mitigate the danger of overfitting. This was achieved by applying noise injection (Bishop,
1995) throughout the network, replacing weights by random variables for training purposes.

• Attention mechanisms solved a second problem that had plagued statistics for over a cen-
tury: how to increase the memory and complexity of a system without increasing the num-
ber of learnable parameters. (Bahdanau et al., 2014) found an elegant solution by using what
can only be viewed as a learnable pointer structure. Rather than having to remember an en-
tire sentence, e.g., for machine translation in a fixed-dimensional representation, all that
needed to be stored was a pointer to the intermediate state of the translation process. This
allowed for significantly increased accuracy for long sentences, since the model no longer
needed to remember the entire sentence before commencing the generation of a new sen-
tence.

• Multi-stage designs, e.g., via the Memory Networks (MemNets) (Sukhbaatar et al., 2015) and
the Neural Programmer-Interpreter (Reed & DeFreitas, 2015) allowed statistical modelers
to describe iterative approaches to reasoning. These tools allow for an internal state of the
deep network to be modified repeatedly, thus carrying out subsequent steps in a chain of
reasoning, similar to how a processor can modify memory for a computation.

• Another key development was the invention of GANS (Goodfellow et al., 2014). Traditionally,
statistical methods for density estimation and generative models focused on finding proper
probability distributions and (often approximate) algorithms for sampling from them. As
a result, these algorithms were largely limited by the lack of flexibility inherent in the sta-
tistical models. The crucial innovation in GANs was to replace the sampler by an arbitrary
algorithm with differentiable parameters. These are then adjusted in such a way that the dis-
criminator (effectively a two-sample test) cannot distinguish fake from real data. Through
the ability to use arbitrary algorithms to generate data, it opened up density estimation to
a wide variety of techniques. Examples of galloping Zebras (Zhu et al., 2017) and of fake
celebrity faces (Karras et al., 2017) are both testimony to this progress.

• In many cases, a single GPU is insufficient to process the large amounts of data available for
training. Over the past decade the ability to build parallel distributed training algorithms
has improved significantly. One of the key challenges in designing scalable algorithms is
that the workhorse of deep learning optimization, stochastic gradient descent, relies on rel-
atively small minibatches of data to be processed. At the same time, small batches limit the
efficiency of GPUs. Hence, training on 1024 GPUs with a minibatch size of, say 32 images

38 Chapter 1. Introduction

per batch amounts to an aggregate minibatch of 32k images. Recent work, first by Li (Li,
2017), and subsequently by (You et al., 2017) and (Jia et al., 2018) pushed the size up to 64k
observations, reducing training time for ResNet50 on ImageNet to less than 7 minutes. For
comparison—initially training times were measured in the order of days.

• The ability to parallelize computation has also contributed quite crucially to progress in re-
inforcement learning, at least whenever simulation is an option. This has led to significant
progress in computers achieving superhuman performance in Go, Atari games, Starcraft,
and in physics simulations (e.g., using MuJoCo). See e.g., (Silver et al., 2016) for a descrip-
tion of how to achieve this in AlphaGo. In a nutshell, reinforcement learning works best if
plenty of (state, action, reward)triples are available, i.e., whenever it is possible to try out
lots of things to learn how they relate to each other. Simulation provides such an avenue.

• Deep Learning frameworks have played a crucial role in disseminating ideas. The first
generation of frameworks allowing for easy modeling encompassed Caffe29, Torch30, and
Theano31. Many seminal papers were written using these tools. By now, they have been su-
perseded by TensorFlow32, often used via its high level API Keras33, CNTK34, Caffe 235, and
Apache MxNet36. The third generation of tools, namely imperative tools for deep learning,
was arguably spearheaded by Chainer37, which used a syntax similar to Python NumPy to
describe models. This idea was adopted by PyTorch38 and the Gluon API39 of MXNet. It is
the latter group that this course uses to teach deep learning.

The division of labor between systems researchers building better tools and statistical modelers
building better networks has greatly simplified things. For instance, training a linear logistic re-
gression model used to be a nontrivial homework problem, worthy to give to new machine learn-
ing PhD students at Carnegie Mellon University in 2014. By now, this task can be accomplished
with less than 10 lines of code, putting it firmly into the grasp of programmers.

1.6 Success Stories

Artificial Intelligence has a long history of delivering results that would be difficult to accomplish
otherwise. For instance, mail is sorted using optical character recognition. These systems have
been deployed since the 90s (this is, after all, the source of the famous MNIST and USPS sets of
handwritten digits). The same applies to reading checks for bank deposits and scoring creditwor-
thiness of applicants. Financial transactions are checked for fraud automatically. This forms the
backbone of many e-commerce payment systems, such as PayPal, Stripe, AliPay, WeChat, Apple,
Visa, MasterCard. Computer programs for chess have been competitive for decades. Machine
learning feeds search, recommendation, personalization and ranking on the Internet. In other
words, artificial intelligence and machine learning are pervasive, albeit often hidden from sight.

It is only recently that AI has been in the limelight, mostly due to solutions to problems that were
considered intractable previously.

29 https://github.com/BVLC/caffe
30 https://github.com/torch
31 https://github.com/Theano/Theano
32 https://github.com/tensorflow/tensorflow
33 https://github.com/keras-team/keras
34 https://github.com/Microsoft/CNTK
35 https://github.com/caffe2/caffe2
36 https://github.com/apache/incubator-mxnet
37 https://github.com/chainer/chainer
38 https://github.com/pytorch/pytorch
39 https://github.com/apache/incubator-mxnet

1.6. Success Stories 39

https://github.com/BVLC/caffe
https://github.com/torch
https://github.com/Theano/Theano
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras
https://github.com/Microsoft/CNTK
https://github.com/caffe2/caffe2
https://github.com/apache/incubator-mxnet
https://github.com/chainer/chainer
https://github.com/pytorch/pytorch
https://github.com/apache/incubator-mxnet

• Intelligent assistants, such as Apple s̓ Siri, Amazons̓ Alexa, or Google s̓ assistant are able to
answer spoken questions with a reasonable degree of accuracy. This includes menial tasks
such as turning on light switches (a boon to the disabled) up to making barber s̓ appoint-
ments and offering phone support dialog. This is likely the most noticeable sign that AI is
affecting our lives.

• A key ingredient in digital assistants is the ability to recognize speech accurately. Gradually
the accuracy of such systems has increased to the point where they reach human parity
(Xiong et al., 2018) for certain applications.

• Object recognition likewise has come a long way. Estimating the object in a picture was a
fairly challenging task in 2010. On the ImageNet benchmark (Lin et al., 2010) achieved a
top-5 error rate of 28%. By 2017, (Hu et al., 2018) reduced this error rate to 2.25%. Similarly
stunning results have been achieved for identifying birds, or diagnosing skin cancer.

• Games used to be a bastion of human intelligence. Starting from TDGammon [23], a pro-
gram for playing Backgammon using temporal difference (TD) reinforcement learning, al-
gorithmic and computational progress has led to algorithms for a wide range of applications.
Unlike Backgammon, chess has a much more complex state space and set of actions. Deep-
Blue beat Gary Kasparov, Campbell et al. (Campbell et al., 2002), using massive parallelism,
special purpose hardware and efficient search through the game tree. Go is more difficult
still, due to its huge state space. AlphaGo reached human parity in 2015, (Silver et al., 2016)
using Deep Learning combined with Monte Carlo tree sampling. The challenge in Poker
was that the state space is large and it is not fully observed (we do not know the opponentsʼ
cards). Libratus exceeded human performance in Poker using efficiently structured strate-
gies (Brown & Sandholm, 2017). This illustrates the impressive progress in games and the
fact that advanced algorithms played a crucial part in them.

• Another indication of progress in AI is the advent of self-driving cars and trucks. While
full autonomy is not quite within reach yet, excellent progress has been made in this direc-
tion, with companies such as Tesla, NVIDIA, and Waymo shipping products that enable at
least partial autonomy. What makes full autonomy so challenging is that proper driving re-
quires the ability to perceive, to reason and to incorporate rules into a system. At present,
deep learning is used primarily in the computer vision aspect of these problems. The rest is
heavily tuned by engineers.

Again, the above list barely scratches the surface of where machine learning has impacted prac-
tical applications. For instance, robotics, logistics, computational biology, particle physics, and
astronomy owe some of their most impressive recent advances at least in parts to machine learn-
ing. ML is thus becoming a ubiquitous tool for engineers and scientists.

Frequently, the question of the AI apocalypse, or the AI singularity has been raised in non-
technical articles on AI. The fear is that somehow machine learning systems will become sen-
tient and decide independently from their programmers (and masters) about things that directly
affect the livelihood of humans. To some extent, AI already affects the livelihood of humans in
an immediate way—creditworthiness is assessed automatically, autopilots mostly navigate cars,
decisions about whether to grant bail use statistical data as input. More frivolously, we can ask
Alexa to switch on the coffee machine.

Fortunately, we are far from a sentient AI system that is ready to manipulate its human creators
(or burn their coffee). First, AI systems are engineered, trained and deployed in a specific, goal-
oriented manner. While their behavior might give the illusion of general intelligence, it is a com-
bination of rules, heuristics and statistical models that underlie the design. Second, at present
tools for artificial general intelligence simply do not exist that are able to improve themselves, rea-

40 Chapter 1. Introduction

son about themselves, and that are able to modify, extend and improve their own architecture
while trying to solve general tasks.

A much more pressing concern is how AI is being used in our daily lives. It is likely that many me-
nial tasks fulfilled by truck drivers and shop assistants can and will be automated. Farm robots will
likely reduce the cost for organic farming but they will also automate harvesting operations. This
phase of the industrial revolution may have profound consequences on large swaths of society
(truck drivers and shop assistants are some of the most common jobs in many states). Further-
more, statistical models, when applied without care can lead to racial, gender or age bias and raise
reasonable concerns about procedural fairness if automated to drive consequential decisions. It
is important to ensure that these algorithms are used with care. With what we know today, this
strikes us a much more pressing concern than the potential of malevolent superintelligence to
destroy humanity.

Summary

• Machine learning studies how computer systems can leverage experience (often data) to im-
prove performance at specific tasks. It combines ideas from statistics, data mining, artificial
intelligence, and optimization. Often, it is used as a means of implementing artificially-
intelligent solutions.

• As a class of machine learning, representational learning focuses on how to automatically
find the appropriate way to represent data. This is often accomplished by a progression of
learned transformations.

• Much of the recent progress in deep learning has been triggered by an abundance of data
arising from cheap sensors and Internet-scale applications, and by significant progress in
computation, mostly through GPUs.

• Whole system optimization is a key component in obtaining good performance. The avail-
ability of efficient deep learning frameworks has made design and implementation of this
significantly easier.

Exercises

1. Which parts of code that you are currently writing could be “learned”, i.e., improved by
learning and automatically determining design choices that are made in your code? Does
your code include heuristic design choices?

2. Which problems that you encounter have many examples for how to solve them, yet no spe-
cific way to automate them? These may be prime candidates for using deep learning.

3. Viewing the development of artificial intelligence as a new industrial revolution, what is the
relationship between algorithms and data? Is it similar to steam engines and coal (what is
the fundamental difference)?

4. Where else can you apply the end-to-end training approach? Physics? Engineering? Econo-
metrics?

1.6. Success Stories 41

42 Chapter 1. Introduction

2 | Preliminaries

To get started with deep learning, we will need to develop a few basic skills. All machine learning
is concerned with extracting information from data. So we will begin by learning the practical
skills for storing, manipulating, and preprocessing data.

Moreover, machine learning typically requires working with large datasets, which we can think
of as tables, where the rows correspond to examples and the columns correspond to attributes.
Linear algebra gives us a powerful set of techniques for working with tabular data. We will not go
too far into the weeds but rather focus on the basic of matrix operations and their implementation.

Additionally, deep learning is all about optimization. We have a model with some parameters and
we want to find those that fit our data the best. Determining which way to move each parameter at
each step of an algorithm requires a little bit of calculus, which will be briefly introduced. Fortu-
nately, the autograd package automatically computes differentiation for us, and we will cover it
next.

Next, machine learning is concerned with making predictions: what is the likely value of some un-
known attribute, given the information that we observe? To reason rigorously under uncertainty
we will need to invoke the language of probability.

In the end, the official documentation provides plenty of descriptions and examples that are be-
yond this book. To conclude the chapter, we will show you how to look up documentation for the
needed information.

This book has kept the mathematical content to the minimum necessary to get a proper under-
standing of deep learning. However, it does not mean that this book is mathematics free. Thus,
this chapter provides a rapid introduction to basic and frequently-used mathematics to allow any-
one to understand at least most of the mathematical content of the book. If you wish to understand
all of the mathematical content, further reviewing Chapter 17 should be sufficient.

2.1 Data Manipulation

In order to get anything done, we need some way to store and manipulate data. Generally, there
are two important things we need to do with data: (i) acquire them; and (ii) process them once they
are inside the computer. There is no point in acquiring data absent some way to store it, so let s̓
get our hands dirty first by playing with synthetic data. To start, we introduce the n-dimensional
array (ndarray), MXNet s̓ primary tool for storing and transforming data. In MXNet, ndarray is a
class and we call any instance “an ndarray”.

If you have worked with NumPy, the most widely-used scientific computing package in Python,
then will find this section familiar. That s̓ by design. We designed MXNet s̓ ndarray to be an exten-
sion to NumPy s̓ ndarray with a few killer features. First, MXNet s̓ ndarray supports asynchronous

43

computation on CPU, GPU, and distributed cloud architectures, whereas NumPy only supports
CPU computation. Second, MXNet s̓ ndarray supports automatic differentiation. These proper-
ties make MXNet s̓ ndarray suitable for deep learning. Throughout the book, when we say ndarray,
we are referring to MXNet s̓ ndarray unless otherwise stated.

2.1.1 Getting Started

In this section, we aim to get you up and running, equipping you with the the basic math and
numerical computing tools that you will build on as you progress through the book. Do not worry
if you struggle to grok some of the mathematical concepts or library functions. The following
sections will revisit this material in the context practical examples and it will sink. On the other
hand, if you already have some background and want to go deeper into the mathematical content,
just skip this section.

To start, we import the np (numpy) and npx (numpy_extension) modules from MXNet. Here, the np
module includes functions supported by NumPy, while the npxmodule contains a set of extensions
developed to empower deep learning within a NumPy-like environment. When using ndarray, we
almost always invoke the set_np function: this is for compatibility of ndarray processing by other
components of MXNet.

from mxnet import np, npx
npx.set_np()

An ndarray represents a (possibly multi-dimensional) array of numerical values. With one axis,
an ndarray corresponds (in math) to a vector. With two axes, an ndarray corresponds to a matrix.
Arrays with more than two axes do not have special mathematical names—we simply call them
tensors.

To start, we can use arange to create a row vector x containing the first 12 integers starting with 0,
though they are created as floats by default. Each of the values in an ndarray is called an element
of the ndarray. For instance, there are 12 elements in the ndarray x. Unless otherwise specified,
a new ndarray will be stored in main memory and designated for CPU-based computation.

x = np.arange(12)
x

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])

We can access an ndarray s̓ shape (the length along each axis) by inspecting its shape property.

x.shape

(12,)

If we just want to know the total number of elements in an ndarray, i.e., the product of all of the
shape elements, we can inspect its size property. Because we are dealing with a vector here, the
single element of its shape is identical to its size.

x.size

44 Chapter 2. Preliminaries

12

To change the shape of an ndarray without altering either the number of elements or their values,
we can invoke the reshape function. For example, we can transform our ndarray, x, from a row
vector with shape (12,) to a matrix with shape (3, 4). This new ndarray contains the exact same
values, but views them as a matrix organized as 3 rows and 4 columns. To reiterate, although the
shape has changed, the elements in x have not. Note that the size is unaltered by reshaping.

x = x.reshape(3, 4)
x

array([[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.]])

Reshaping by manually specifying every dimension is unnecessary. If our target shape is a matrix
with shape (height, width), then after we know the width, the height is given implicitly. Why
should we have to perform the division ourselves? In the example above, to get a matrix with
3 rows, we specified both that it should have 3 rows and 4 columns. Fortunately, ndarray can
automatically work out one dimension given the rest. We invoke this capability by placing -1 for
the dimension that we would like ndarray to automatically infer. In our case, instead of calling
x.reshape(3, 4), we could have equivalently called x.reshape(-1, 4) or x.reshape(3, -1).

The empty method grabs a chunk of memory and hands us back a matrix without bothering to
change the value of any of its entries. This is remarkably efficient but we must be careful because
the entries might take arbitrary values, including very big ones!

np.empty((3, 4))

array([[4.5769305e-11, 4.5798638e-41, 3.9092172e-04, 3.0637990e-41],
[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00],
[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]])

Typically, we will want our matrices initialized either with zeros, ones, some other constants, or
numbers randomly sampled from a specific distribution. We can create an ndarray representing
a tensor with all elements set to 0 and a shape of (2, 3, 4) as follows:

np.zeros((2, 3, 4))

array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])

Similarly, we can create tensors with each element set to 1 as follows:

np.ones((2, 3, 4))

2.1. Data Manipulation 45

array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])

Often, we want to randomly sample the values for each element in an ndarray from some
probability distribution. For example, when we construct arrays to serve as parameters in a
neural network, we will typically inititialize their values randomly. The following snippet creates
an ndarray with shape (3, 4). Each of its elements is randomly sampled
from a standard Gaussian (normal) distribution with a mean of 0 and a standard deviation of 1.

np.random.normal(0, 1, size=(3, 4))

array([[2.2122064 , 1.1630787 , 0.7740038 , 0.4838046],
[1.0434405 , 0.29956347, 1.1839255 , 0.15302546],
[1.8917114 , -1.1688148 , -1.2347414 , 1.5580711]])

We can also specify the exact values for each element in the desired ndarray by supplying a Python
list (or list of lists) containing the numerical values. Here, the outermost list corresponds to axis
0, and the inner list to axis 1.

np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])

array([[2., 1., 4., 3.],
[1., 2., 3., 4.],
[4., 3., 2., 1.]])

2.1.2 Operations

This book is not about software engineering. Our interests are not limited to simply reading and
writing data from/to arrays. We want to perform mathematical operations on those arrays. Some
of the simplest and most useful operations are the elementwise operations. These apply a stan-
dard scalar operation to each element of an array. For functions that take two arrays as inputs,
elementwise operations apply some standard binary operator on each pair of corresponding ele-
ments from the two arrays. We can create an elementwise function from any function that maps
from a scalar to a scalar.

In mathematical notation, we would denote such a unary scalar operator (taking one input) by the
signature f : R→ R. This just mean that the function is mapping from any real number (R) onto
another. Likewise, we denote a binary scalar operator (taking two real inputs, and yielding one
output) by the signature f : R,R→ R. Given any two vectorsu and v of the same shape, and a binary
operator f , we can produce a vector c = F (u, v) by setting ci ← f(ui, vi) for all i, where ci, ui, and
vi are the ith elements of vectors c,u, and v. Here, we produced the vector-valued F : Rd,Rd → Rd

by lifting the scalar function to an elementwise vector operation.

46 Chapter 2. Preliminaries

In MXNet, the common standard arithmetic operators (+, -, *, /, and **) have all been lifted to el-
ementwise operations for any identically-shaped tensors of arbitrary shape. We can call element-
wise operations on any two tensors of the same shape. In the following example, we use commas
to formulate a 5-element tuple, where each element is the result of an elementwise operation.

x = np.array([1, 2, 4, 8])
y = np.array([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y # The ** operator is exponentiation

(array([3., 4., 6., 10.]),
array([-1., 0., 2., 6.]),
array([2., 4., 8., 16.]),
array([0.5, 1. , 2. , 4.]),
array([1., 4., 16., 64.]))

Many more operations can be applied elementwise, including unary operators like exponentia-
tion.

np.exp(x)

array([2.7182817e+00, 7.3890562e+00, 5.4598148e+01, 2.9809580e+03])

In addition to elementwise computations, we can also perform linear algebra operations, includ-
ing vector dot products and matrix multiplication. We will explain the crucial bits of linear algebra
(with no assumed prior knowledge) in Section 2.3.

We can also concatenate multiple ndarrays together, stacking them end-to-end to form a larger
ndarray. We just need to provide a list of ndarrays and tell the system along which axis to con-
catenate. The example below shows what happens when we concatenate two matrices along rows
(axis 0, the first element of the shape) vs. columns (axis 1, the second element of the shape). We
can see that, the first output ndarrayʻs axis-0 length (6) is the sum of the two input ndarraysʼ axis-0
lengths (3 + 3); while the second output ndarrayʻs axis-1 length (8) is the sum of the two input
ndarraysʼ axis-1 lengths (4 + 4).

x = np.arange(12).reshape(3, 4)
y = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
np.concatenate([x, y], axis=0), np.concatenate([x, y], axis=1)

(array([[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[2., 1., 4., 3.],
[1., 2., 3., 4.],
[4., 3., 2., 1.]]),

array([[0., 1., 2., 3., 2., 1., 4., 3.],
[4., 5., 6., 7., 1., 2., 3., 4.],
[8., 9., 10., 11., 4., 3., 2., 1.]]))

Sometimes, we want to construct a binary ndarray via logical statements. Take x == y as an example.
For each position, if x and y are equal at that position, the corresponding entry in the new ndarray
takes a value of 1, meaning that the logical statement x == y is true at that position; otherwise that
position takes 0.

2.1. Data Manipulation 47

x == y

array([[False, True, False, True],
[False, False, False, False],
[False, False, False, False]])

Summing all the elements in the ndarray yields an ndarray with only one element.

x.sum()

array(66.)

For stylistic convenience, we can write x.sum()as np.sum(x).

2.1.3 Broadcasting Mechanism

In the above section, we saw how to perform elementwise operations on two ndarrays of the same
shape. Under certain conditions, even when shapes differ, we can still perform elementwise op-
erations by invoking the broadcasting mechanism. These mechanisms work in the following way:
First, expand one or both arrays by copying elements appropriately so that after this transforma-
tion, the two ndarrays have the same shape. Second, carry out the elementwise operations on the
resulting arrays.

In most cases, we broadcast along an axis where an array initially only has length 1, such as in the
following example:

a = np.arange(3).reshape(3, 1)
b = np.arange(2).reshape(1, 2)
a, b

(array([[0.],
[1.],
[2.]]), array([[0., 1.]]))

Since a and b are 3 × 1 and 1 × 2 matrices respectively, their shapes do not match up if we want
to add them. We broadcast the entries of both matrices into a larger 3 × 2 matrix as follows: for
matrix a it replicates the columns and for matrix b it replicates the rows before adding up both
elementwise.

a + b

array([[0., 1.],
[1., 2.],
[2., 3.]])

48 Chapter 2. Preliminaries

2.1.4 Indexing and Slicing

Just as in any other Python array, elements in an ndarray can be accessed by index. As in any
Python array, the first element has index 0 and ranges are specified to include the first but before
the last element. As in standard Python lists, we can access elements according to their relative
position to the end of the list by using negative indices.

Thus, [-1] selects the last element and [1:3] selects the second and the third elements as follows:

x[-1], x[1:3]

(array([8., 9., 10., 11.]), array([[4., 5., 6., 7.],
[8., 9., 10., 11.]]))

Beyond reading, we can also write elements of a matrix by specifying indices.

x[1, 2] = 9
x

array([[0., 1., 2., 3.],
[4., 5., 9., 7.],
[8., 9., 10., 11.]])

If we want to assign multiple elements the same value, we simply index all of them and then assign
them the value. For instance, [0:2, :] accesses the first and second rows, where : takes all the
elements along axis 1 (column). While we discussed indexing for matrices, this obviously also
works for vectors and for tensors of more than 2 dimensions.

x[0:2, :] = 12
x

array([[12., 12., 12., 12.],
[12., 12., 12., 12.],
[8., 9., 10., 11.]])

2.1.5 Saving Memory

In the previous example, every time we ran an operation, we allocated new memory to host its
results. For example, if we write y = x + y, we will dereference the ndarray that y used to point to
and instead point y at the newly allocated memory. In the following example, we demonstrate this
with Pythons̓ id() function, which gives us the exact address of the referenced object in memory.
After running y = y + x, we will find that id(y) points to a different location. That is because
Python first evaluates y + x, allocating new memory for the result and then makes y point to this
new location in memory.

before = id(y)
y = y + x
id(y) == before

2.1. Data Manipulation 49

False

This might be undesirable for two reasons. First, we do not want to run around allocating mem-
ory unnecessarily all the time. In machine learning, we might have hundreds of megabytes of
parameters and update all of them multiple times per second. Typically, we will want to perform
these updates in place. Second, we might point at the same parameters from multiple variables.
If we do not update in place, this could cause that discarded memory is not released, and make it
possible for parts of our code to inadvertently reference stale parameters.

Fortunately, performing in-place operations in MXNet is easy. We can assign the result of an op-
eration to a previously allocated array with slice notation, e.g., y[:] = <expression>. To illustrate
this concept, we first create a new matrix z with the same shape as another y, using zeros_like to
allocate a block of 0 entries.

z = np.zeros_like(y)
print('id(z):', id(z))
z[:] = x + y
print('id(z):', id(z))

id(z): 140368458524304
id(z): 140368458524304

If the value of x is not reused in subsequent computations, we can also use x[:] = x + y or x +=
y to reduce the memory overhead of the operation.

before = id(x)
x += y
id(x) == before

True

2.1.6 Conversion to Other Python Objects

Converting an MXNet ndarray to a NumPy ndarray, or vice versa, is easy. The converted result
does not share memory. This minor inconvenience is actually quite important: when you perform
operations on the CPU or on GPUs, you do not want MXNet to halt computation, waiting to see
whether the NumPy package of Python might want to be doing something else with the same
chunk of memory. The array and asnumpy functions do the trick.

a = x.asnumpy()
b = np.array(a)
type(a), type(b)

(numpy.ndarray, mxnet.numpy.ndarray)

To convert a size-1 ndarray to a Python scalar, we can invoke the item function or Pythons̓ built-in
functions.

50 Chapter 2. Preliminaries

a = np.array([3.5])
a, a.item(), float(a), int(a)

(array([3.5]), 3.5, 3.5, 3)

Summary

• MXNet s̓ ndarray is an extension to NumPy s̓ ndarray with a few killer advantages that make
it suitable for deep learning.

• MXNet s̓ ndarray provides a variety of functionalities including basic mathematics opera-
tions, broadcasting, indexing, slicing, memory saving, and conversion to other Python ob-
jects.

Exercises

1. Run the code in this section. Change the conditional statement x == y in this section to x <
y or x > y, and then see what kind of ndarray you can get.

2. Replace the two ndarrays that operate by element in the broadcasting mechanism with other
shapes, e.g., three dimensional tensors. Is the result the same as expected?

2.2 Data Preprocessing

So far we have introduced a variety of techniques for manipulating data that are already stored
in ndarrays. To apply deep learning to solving real-world problems, we often begin with prepro-
cessing raw data, rather than those nicely prepared data in the ndarray format. Among popular
data analytic tools in Python, the pandas package is commonly used. Like many other extension
packages in the vast ecosystem of Python, pandas can work together with ndarray. So, we will
briefly walk through steps for preprocessing raw data with pandas and converting them into the
ndarray format. We will cover more data preprocessing techniques in later chapters.

2.2.1 Reading the Dataset

As an example, we begin by creating an artificial dataset that is stored in a csv (comma-separated
values) file. Data stored in other formats may be processed in similar ways.

Write the dataset row by row into a csv file
data_file = '../data/house_tiny.csv'
with open(data_file, 'w') as f:

f.write('NumRooms,Alley,Price\n') # Column names

(continues on next page)

2.2. Data Preprocessing 51

(continued from previous page)

f.write('NA,Pave,127500\n') # Each row is a data point
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')

To load the raw dataset from the created csv file, we import the pandas package and invoke the
read_csv function. This dataset has 4 rows and 3 columns, where each row describes the number
of rooms (“NumRooms”), the alley type (“Alley”), and the price (“Price”) of a house.

If pandas is not installed, just uncomment the following line:
!pip install pandas
import pandas as pd

data = pd.read_csv(data_file)
print(data)

NumRooms Alley Price
0 NaN Pave 127500
1 2.0 NaN 106000
2 4.0 NaN 178100
3 NaN NaN 140000

2.2.2 Handling Missing Data

Note that “NaN” entries are missing values. To handle missing data, typical methods include im-
putation and deletion, where imputation replaces missing values with substituted ones, while dele-
tion ignores missing values. Here we will consider imputation.

By integer-location based indexing (iloc), we split data into inputs and outputs, where the former
takes the first 2 columns while the later only keeps the last column. For numerical values in inputs
that are missing, we replace the “NaN” entries with the mean value of the same column.

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

NumRooms Alley
0 3.0 Pave
1 2.0 NaN
2 4.0 NaN
3 3.0 NaN

For categorical or discrete values in inputs, we consider “NaN” as a category. Since the “Alley”
column only takes 2 types of categorical values “Pave” and “NaN”, pandas can automatically con-
vert this column to 2 columns “Alley_Pave” and “Alley_nan”. A row whose alley type is “Pave” will
set values of “Alley_Pave” and “Alley_nan” to 1 and 0. A row with a missing alley type will set their
values to 0 and 1.

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

52 Chapter 2. Preliminaries

NumRooms Alley_Pave Alley_nan
0 3.0 1 0
1 2.0 0 1
2 4.0 0 1
3 3.0 0 1

2.2.3 Conversion to the ndarray Format

Now that all the entries in inputs and outputs are numerical, they can be converted to the ndar-
ray format. Once data are in this format, they can be further manipulated with those ndarray
functionalities that we have introduced in Section 2.1.

from mxnet import np

X, y = np.array(inputs.values), np.array(outputs.values)
X, y

(array([[3., 1., 0.],
[2., 0., 1.],
[4., 0., 1.],
[3., 0., 1.]], dtype=float64),

array([127500, 106000, 178100, 140000], dtype=int64))

Summary

• Like many other extension packages in the vast ecosystem of Python, pandas can work to-
gether with ndarray.

• Imputation and deletion can be used to handle missing data.

Exercises

Create a raw dataset with more rows and columns.

1. Delete the column with the most missing values.

2. Convert the preprocessed dataset to the ndarray format.

2.2. Data Preprocessing 53

2.3 Linear Algebra

Now that you can store and manipulate data, let s̓ briefly review the subset of basic linear algebra
that you will need to understand and implement most of models covered in this book. Below, we
introduce the basic mathematical objects, arithmetic, and operations in linear algebra, expressing
each both through mathematical notation and the corresponding implementation in code.

2.3.1 Scalars

If you never studied linear algebra or machine learning, then your past experience with math
probably consisted of thinking about one number at a time. And, if you ever balanced a check-
book or even paid for dinner at a restaurant then you already know how to do basic things like
adding and multiplying pairs of numbers. For example, the temperature in Palo Alto is 52 de-
grees Fahrenheit. Formally, we call values consisting of just one numerical quantity scalars. If
you wanted to convert this value to Celsius (the metric systems̓ more sensible temperature scale),
you would evaluate the expression c = 5

9(f − 32), setting f to 52. In this equation, each of the
terms—5, 9, and 32—are scalar values. The placeholders c and f are called variables and they rep-
resented unknown scalar values.

In this book, we adopt the mathematical notation where scalar variables are denoted by ordinary
lower-cased letters (e.g., x, y, and z). We denote the space of all (continuous) real-valued scalars
by R. For expedience, we will punt on rigorous definitions of what precisely space is, but just
remember for now that the expression x ∈ R is a formal way to say that x is a real-valued scalar.
The symbol ∈ can be pronounced “in” and simply denotes membership in a set. Analogously, we
could write x, y ∈ {0, 1} to state that x and y are numbers whose value can only be 0 or 1.

In MXNet code, a scalar is represented by an ndarray with just one element. In the next snippet,
we instantiate two scalars and perform some familiar arithmetic operations with them, namely
addition, multiplication, division, and exponentiation.

from mxnet import np, npx
npx.set_np()

x = np.array(3.0)
y = np.array(2.0)

x + y, x * y, x / y, x ** y

(array(5.), array(6.), array(1.5), array(9.))

2.3.2 Vectors

You can think of a vector as simply a list of scalar values. We call these values the elements (entries
or components) of the vector. When our vectors represent examples from our dataset, their values
hold some real-world significance. For example, if we were training a model to predict the risk that
a loan defaults, we might associate each applicant with a vector whose components correspond
to their income, length of employment, number of previous defaults, and other factors. If we
were studying the risk of heart attacks hospital patients potentially face, we might represent each
patient by a vector whose components capture their most recent vital signs, cholesterol levels,

54 Chapter 2. Preliminaries

minutes of exercise per day, etc. In math notation, we will usually denote vectors as bold-faced,
lower-cased letters (e.g., x, y, and z).

In MXNet, we work with vectors via 1-dimensional ndarrays. In general ndarrays can have arbi-
trary lengths, subject to the memory limits of your machine.

x = np.arange(4)
x

array([0., 1., 2., 3.])

We can refer to any element of a vector by using a subscript. For example, we can refer to the ith

element of x by xi. Note that the element xi is a scalar, so we do not bold-face the font when refer-
ring to it. Extensive literature considers column vectors to be the default orientation of vectors,
so does this book. In math, a vector x can be written as

x =


x1
x2
...
xn

 , (2.3.1)

where x1, . . . , xn are elements of the vector. In code, we access any element by indexing into the
ndarray.

x[3]

array(3.)

Length, Dimensionality, and Shape

Let s̓ revisit some concepts from Section 2.1. A vector is just an array of numbers. And just as every
array has a length, so does every vector. In math notation, if we want to say that a vector x consists
of n real-valued scalars, we can express this as x ∈ Rn. The length of a vector is commonly called
the dimension of the vector.

As with an ordinary Python array, we can access the length of an ndarray by calling Pythons̓ built-
in len() function.

len(x)

4

When an ndarray represents a vector (with precisely one axis), we can also access its length via
the .shape attribute. The shape is a tuple that lists the length (dimensionality) along each axis of
the ndarray. For ndarrays with just one axis, the shape has just one element.

x.shape

2.3. Linear Algebra 55

(4,)

Note that the word “dimension” tends to get overloaded in these contexts and this tends to confuse
people. To clarify, we use the dimensionality of a vector or an axis to refer to its length, i.e., the
number of elements of a vector or an axis. However, we use the dimensionality of an ndarray to
refer to the number of axes that an ndarray has. In this sense, the dimensionality of an ndarray s̓
some axis will be the length of that axis.

2.3.3 Matrices

Just as vectors generalize scalars from order 0 to order 1, matrices generalize vectors from order
1 to order 2. Matrices, which we will typically denote with bold-faced, capital letters (e.g., X, Y,
and Z), are represented in code as ndarrays with 2 axes.

In math notation, we use A ∈ Rm×n to express that the matrix A consists of m rows and n columns
of real-valued scalars. Visually, we can illustrate any matrix A ∈ Rm×n as a table, where each
element aij belongs to the ith row and jth column:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

am1 am2 · · · amn

 . (2.3.2)

For any A ∈ Rm×n, the shape of A is (m, n) or m × n. Specifically, when a matrix has the same
number of rows and columns, its shape becomes a square; thus, it is called a square matrix.

We can create an m × n matrix in MXNet by specifying a shape with two components m and n
when calling any of our favorite functions for instantiating an ndarray.

A = np.arange(20).reshape(5, 4)
A

array([[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]])

We can access the scalar element aij of a matrix A in (2.3.2) by specifying the indices for the row
(i) and column (j), such as [A]ij. When the scalar elements of a matrix A, such as in (2.3.2), are not
given, we may simply use the lower-case letter of the matrixAwith the index subscript, aij, to refer
to [A]ij. To keep notation simple, commas are inserted to separate indices only when necessary,
such as a2,3j and [A]2i−1,3.

Sometimes, we want to flip the axes. When we exchange a matrix s̓ rows and columns, the result is
called the transpose of the matrix. Formally, we signify a matrix A s̓ transpose by A⊤ and if B = A⊤,
then bij = aji for any i and j. Thus, the transpose of A in (2.3.2) is a n×m matrix:

A⊤ =


a11 a21 . . . am1

a12 a22 . . . am2
...

...
a1n a2n . . . amn

 . (2.3.3)

56 Chapter 2. Preliminaries

In code, we access a matrix s̓ transpose via the T attribute.

A.T

array([[0., 4., 8., 12., 16.],
[1., 5., 9., 13., 17.],
[2., 6., 10., 14., 18.],
[3., 7., 11., 15., 19.]])

As a special type of the square matrix, a symmetric matrix A is equal to its transpose: A = A⊤.

B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B

array([[1., 2., 3.],
[2., 0., 4.],
[3., 4., 5.]])

B == B.T

array([[True, True, True],
[True, True, True],
[True, True, True]])

Matrices are useful data structures: they allow us to organize data that have different modalities
of variation. For example, rows in our matrix might correspond to different houses (data points),
while columns might correspond to different attributes. This should sound familiar if you have
ever used spreadsheet software or have read Section 2.2. Thus, although the default orientation of
a single vector is a column vector, in a matrix that represents a tabular dataset, it is more conven-
tional to treat each data point as a row vector in the matrix. And, as we will see in later chapters,
this convention will enable common deep learning practices. For example, along the outermost
axis of an ndarray, we can access or enumerate minibatches of data points, or just data points if
no minibatch exists.

2.3.4 Tensors

Just as vectors generalize scalars, and matrices generalize vectors, we can build data structures
with even more axes. Tensors give us a generic way of describing ndarrays with an arbitrary num-
ber of axes. Vectors, for example, are first-order tensors, and matrices are second-order tensors.
Tensors are denoted with capital letters of a special font face (e.g., X, Y, and Z) and their indexing
mechanism (e.g., xijk and [X]1,2i−1,3) is similar to that of matrices.

Tensors will become more important when we start working with images, which arrive as ndarrays
with 3 axes corresponding to the height, width, and a channel axis for stacking the color channels
(red, green, and blue). For now, we will skip over higher order tensors and focus on the basics.

X = np.arange(24).reshape(2, 3, 4)
X

2.3. Linear Algebra 57

array([[[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.]],

[[12., 13., 14., 15.],
[16., 17., 18., 19.],
[20., 21., 22., 23.]]])

2.3.5 Basic Properties of Tensor Arithmetic

Scalars, vectors, matrices, and tensors of an arbitrary number of axes have some nice properties
that often come in handy. For example, you might have noticed from the definition of an elemen-
twise operation that any elementwise unary operation does not change the shape of its operand.
Similarly, given any two tensors with the same shape, the result of any binary elementwise oper-
ation will be a tensor of that same shape. For example, adding two matrices of the same shape
performs elementwise addition over these two matrices.

A = np.arange(20).reshape(5, 4)
B = A.copy() # Assign a copy of A to B by allocating new memory
A, A + B

(array([[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]), array([[0., 2., 4., 6.],
[8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]]))

Specifically, elementwise multiplication of two matrices is called their Hadamard product (math
notation⊙). Consider matrixB ∈ Rm×n whose element of row i and column j is bij. The Hadamard
product of matrices A (defined in (2.3.2)) and B

A⊙ B =


a11b11 a12b12 . . . a1nb1n
a21b21 a22b22 . . . a2nb2n

...
...

am1bm1 am2bm2 . . . amnbmn

 . (2.3.4)

A * B

array([[0., 1., 4., 9.],
[16., 25., 36., 49.],
[64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]])

Multiplying or adding a tensor by a scalar also does not change the shape of the tensor, where each
element of the operand tensor will be added or multiplied by the scalar.

58 Chapter 2. Preliminaries

a = 2
X = np.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape

(array([[[2., 3., 4., 5.],
[6., 7., 8., 9.],
[10., 11., 12., 13.]],

[[14., 15., 16., 17.],
[18., 19., 20., 21.],
[22., 23., 24., 25.]]]), (2, 3, 4))

2.3.6 Reduction

One useful operation that we can perform with arbitrary tensors is to calculate the sum of their
elements. In mathematical notation, we express sums using the

∑
symbol. To express the sum of

the elements in a vector x of length d, we write
∑d

i=1 xi. In code, we can just call the sum function.

x = np.arange(4)
x, x.sum()

(array([0., 1., 2., 3.]), array(6.))

We can express sums over the elements of tensors of arbitrary shape. For example, the sum of the
elements of an m× n matrix A could be written

∑m
i=1

∑n
j=1 aij.

A.shape, A.sum()

((5, 4), array(190.))

By default, invoking the sum function reduces a tensor along all its axes to a scalar. We can also
specify the axes along which the tensor is reduced via summation. Take matrices as an example.
To reduce the row dimension (axis 0) by summing up elements of all the rows, we specify axis=0
when invoking sum. Since the input matrix reduces along axis 0 to generate the output vector, the
dimension of axis 0 of the input is lost in the output shape.

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape

(array([40., 45., 50., 55.]), (4,))

Specifying axis=1 will reduce the column dimension (axis 1) by summing up elements of all the
columns. Thus, the dimension of axis 1 of the input is lost in the output shape.

A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape

2.3. Linear Algebra 59

(array([6., 22., 38., 54., 70.]), (5,))

Reducing a matrix along both rows and columns via summation is equivalent to summing up all
the elements of the matrix.

A.sum(axis=[0, 1]) # Same as A.sum()

array(190.)

A related quantity is the mean, which is also called the average. We calculate the mean by dividing
the sum by the total number of elements. In code, we could just call mean on tensors of arbitrary
shape.

A.mean(), A.sum() / A.size

(array(9.5), array(9.5))

Like sum, mean can also reduce a tensor along the specified axes.

A.mean(axis=0), A.sum(axis=0) / A.shape[0]

(array([8., 9., 10., 11.]), array([8., 9., 10., 11.]))

Non-Reduction Sum

However, sometimes it can be useful to keep the number of axes unchanged when invoking sum
or mean by setting keepdims=True.

sum_A = A.sum(axis=1, keepdims=True)
sum_A

array([[6.],
[22.],
[38.],
[54.],
[70.]])

For instance, since sum_A still keeps its 2 axes after summing each row, we can divide A by sum_A
with broadcasting.

A / sum_A

array([[0. , 0.16666667, 0.33333334, 0.5],
[0.18181819, 0.22727273, 0.27272728, 0.3181818],
[0.21052632, 0.23684211, 0.2631579 , 0.28947368],
[0.22222222, 0.24074075, 0.25925925, 0.2777778],
[0.22857143, 0.24285714, 0.25714287, 0.27142859]])

60 Chapter 2. Preliminaries

If we want to calculate the cumulative sum of elements of A along some axis, say axis=0 (row by
row), we can call the cumsum function. This function will not reduce the input tensor along any
axis.

A.cumsum(axis=0)

array([[0., 1., 2., 3.],
[4., 6., 8., 10.],
[12., 15., 18., 21.],
[24., 28., 32., 36.],
[40., 45., 50., 55.]])

2.3.7 Dot Products

So far, we have only performed elementwise operations, sums, and averages. And if this was all
we could do, linear algebra probably would not deserve its own section. However, one of the most
fundamental operations is the dot product. Given two vectors x, y ∈ Rd, their dot product x⊤y (or
⟨x, y⟩) is a sum over the products of the elements at the same position: x⊤y =

∑d
i=1 xiyi.

y = np.ones(4)
x, y, np.dot(x, y)

(array([0., 1., 2., 3.]), array([1., 1., 1., 1.]), array(6.))

Note that we can express the dot product of two vectors equivalently by performing an element-
wise multiplication and then a sum:

np.sum(x * y)

array(6.)

Dot products are useful in a wide range of contexts. For example, given some set of values, denoted
by a vector x ∈ Rd and a set of weights denoted by w ∈ Rd, the weighted sum of the values in x
according to the weights w could be expressed as the dot product x⊤w. When the weights are
non-negative and sum to one (i.e.,

(∑d
i=1wi = 1

)
), the dot product expresses a weighted average.

After normalizing two vectors to have the unit length, the dot products express the cosine of the
angle between them. We will formally introduce this notion of length later in this section.

2.3.8 Matrix-Vector Products

Now that we know how to calculate dot products, we can begin to understand matrix-vector prod-
ucts. Recall the matrixA ∈ Rm×n and the vector x ∈ Rn defined and visualized in (2.3.2) and (2.3.1)
respectively. Let s̓ start off by visualizing the matrix A in terms of its row vectors

A =


a⊤1
a⊤2
...
a⊤m

 , (2.3.5)

2.3. Linear Algebra 61

where each a⊤i ∈ Rn is a row vector representing the ith row of the matrix A. The matrix-vector
product Ax is simply a column vector of length m, whose ith element is the dot product a⊤i x:

Ax =


a⊤1
a⊤2
...
a⊤m

 x =


a⊤1 x
a⊤2 x

...
a⊤mx

 . (2.3.6)

We can think of multiplication by a matrix A ∈ Rm×n as a transformation that projects vectors
from Rn to Rm. These transformations turn out to be remarkably useful. For example, we can
represent rotations as multiplications by a square matrix. As we will see in subsequent chapters,
we can also use matrix-vector products to describe the most intensive calculations required when
computing each layer in a neural network given the values of the previous layer.

Expressing matrix-vector products in code with ndarrays, we use the same dot function as for dot
products. When we call np.dot(A, x) with a matrix A and a vector x, the matrix-vector product is
performed. Note that the column dimension of A (its length along axis 1) must be the same as the
dimension of x (its length).

A.shape, x.shape, np.dot(A, x)

((5, 4), (4,), array([14., 38., 62., 86., 110.]))

2.3.9 Matrix-Matrix Multiplication

If you have gotten the hang of dot products and matrix-vector products, then matrix-matrix multi-
plication should be straightforward.

Say that we have two matrices A ∈ Rn×k and B ∈ Rk×m:

A =


a11 a12 · · · a1k
a21 a22 · · · a2k

...
...

an1 an2 · · · ank

 , B =


b11 b12 · · · b1m
b21 b22 · · · b2m

...
...

bk1 bk2 · · · bkm

 . (2.3.7)

Denote by a⊤i ∈ Rk the row vector representing the ith row of the matrix A, and let bj ∈ Rk be the
column vector from the jth column of the matrix B. To produce the matrix product C = AB, it is
easiest to think of A in terms of its row vectors and B in terms of its column vectors:

A =


a⊤1
a⊤2
...
a⊤n

 , B =
[
b1 b2 · · · bm

]
. (2.3.8)

Then the matrix product C ∈ Rn×m is produced as we simply compute each element cij as the dot
product a⊤i bj:

C = AB =


a⊤1
a⊤2
...
a⊤n

 [b1 b2 · · · bm

]
=


a⊤1 b1 a⊤1 b2 · · · a⊤1 bm

a⊤2 b1 a⊤2 b2 · · · a⊤2 bm
...

...
a⊤nb1 a⊤nb2 · · · a⊤nbm

 . (2.3.9)

62 Chapter 2. Preliminaries

We can think of the matrix-matrix multiplication AB as simply performing m matrix-vector prod-
ucts and stitching the results together to form an n×m matrix. Just as with ordinary dot products
and matrix-vector products, we can compute matrix-matrix multiplication by using the dot func-
tion. In the following snippet, we perform matrix multiplication on A and B. Here, A is a matrix
with 5 rows and 4 columns, and B is a matrix with 4 rows and 3 columns. After multiplication, we
obtain a matrix with 5 rows and 3 columns.

B = np.ones(shape=(4, 3))
np.dot(A, B)

array([[6., 6., 6.],
[22., 22., 22.],
[38., 38., 38.],
[54., 54., 54.],
[70., 70., 70.]])

Matrix-matrix multiplication can be simply called matrix multiplication, and should not be con-
fused with the Hadamard product.

2.3.10 Norms

Some of the most useful operators in linear algebra are norms. Informally, the norm of a vector
tells us how big a vector is. The notion of size under consideration here concerns not dimension-
ality but rather the magnitude of the components.

In linear algebra, a vector norm is a function f that maps a vector to a scalar, satisfying a handful
of properties. Given any vector x, the first property says that if we scale all the elements of a vector
by a constant factor α, its norm also scales by the absolute value of the same constant factor:

f(αx) = |α|f(x). (2.3.10)

The second property is the familiar triangle inequality:

f(x+ y) ≤ f(x) + f(y). (2.3.11)

The third property simply says that the norm must be non-negative:

f(x) ≥ 0. (2.3.12)

That makes sense, as in most contexts the smallest size for anything is 0. The final property re-
quires that the smallest norm is achieved and only achieved by a vector consisting of all zeros.

∀i, [x]i = 0⇔ f(x) = 0. (2.3.13)

You might notice that norms sound a lot like measures of distance. And if you remember Euclidean
distances (think Pythagorasʼ theorem) from grade school, then the concepts of non-negativity and
the triangle inequality might ring a bell. In fact, the Euclidean distance is a norm: specifically it is
the ℓ2 norm. Suppose that the elements in the n-dimensional vector x are x1, . . . , xn. The ℓ2 norm
of x is the square root of the sum of the squares of the vector elements:

∥x∥2 =

√√√√ n∑
i=1

x2i , (2.3.14)

where the subscript 2 is often omitted in ℓ2 norms, i.e., ∥x∥ is equivalent to ∥x∥2. In code, we can
calculate the ℓ2 norm of a vector by calling linalg.norm.

2.3. Linear Algebra 63

u = np.array([3, -4])
np.linalg.norm(u)

array(5.)

In deep learning, we work more often with the squared ℓ2 norm. You will also frequently en-
counter the ℓ1 norm, which is expressed as the sum of the absolute values of the vector elements:

∥x∥1 =
n∑

i=1

|xi| . (2.3.15)

As compared with the ℓ2 norm, it is less influenced by outliers. To calculate the ℓ1 norm, we
compose the absolute value function with a sum over the elements.

np.abs(u).sum()

array(7.)

Both the ℓ2 norm and the ℓ1 norm are special cases of the more general ℓp norm:

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

. (2.3.16)

Analogous to ℓ2 norms of vectors, the Frobenius norm of a matrix X ∈ Rm×n is the square root of
the sum of the squares of the matrix elements:

∥X∥F =

√√√√ m∑
i=1

n∑
j=1

x2ij . (2.3.17)

The Frobenius norm satisfies all the properties of vector norms. It behaves as if it were an ℓ2 norm
of a matrix-shaped vector. Invoking linalg.norm will calculate the Frobenius norm of a matrix.

np.linalg.norm(np.ones((4, 9)))

array(6.)

Norms and Objectives

While we do not want to get too far ahead of ourselves, we can plant some intuition already about
why these concepts are useful. In deep learning, we are often trying to solve optimization prob-
lems: maximize the probability assigned to observed data; minimize the distance between pre-
dictions and the ground-truth observations. Assign vector representations to items (like words,
products, or news articles) such that the distance between similar items is minimized, and the
distance between dissimilar items is maximized. Oftentimes, the objectives, perhaps the most
important components of deep learning algorithms (besides the data), are expressed as norms.

64 Chapter 2. Preliminaries

2.3.11 More on Linear Algebra

In just this section, we have taught you all the linear algebra that you will need to understand a
remarkable chunk of modern deep learning. There is a lot more to linear algebra and a lot of
that mathematics is useful for machine learning. For example, matrices can be decomposed into
factors, and these decompositions can reveal low-dimensional structure in real-world datasets.
There are entire subfields of machine learning that focus on using matrix decompositions and
their generalizations to high-order tensors to discover structure in datasets and solve prediction
problems. But this book focuses on deep learning. And we believe you will be much more inclined
to learn more mathematics once you have gotten your hands dirty deploying useful machine learn-
ing models on real datasets. So while we reserve the right to introduce more mathematics much
later on, we will wrap up this section here.

If you are eager to learn more about linear algebra, you may refer to either Section 17.1 or other
excellent resources (Strang, 1993; Kolter, 2008; Petersen et al., 2008).

Summary

• Scalars, vectors, matrices, and tensors are basic mathematical objects in linear algebra.

• Vectors generalize scalars, and matrices generalize vectors.

• In the ndarray representation, scalars, vectors, matrices, and tensors have 0, 1, 2, and an
arbitrary number of axes, respectively.

• A tensor can be reduced along the specified axes by sum and mean.

• Elementwise multiplication of two matrices is called their Hadamard product. It is different
from matrix multiplication.

• In deep learning, we often work with norms such as the ℓ1 norm, the ℓ2 norm, and the Frobe-
nius norm.

• We can perform a variety of operations over scalars, vectors, matrices, and tensors with
ndarray functions.

Exercises

1. Prove that the transpose of a matrix A s̓ transpose is A: (A⊤)⊤ = A.

2. Given two matrices A and B, show that the sum of transposes is equal to the transpose of a
sum: A⊤ + B⊤ = (A+ B)⊤.

3. Given any square matrix A, is A+ A⊤ always symmetric? Why?

4. We defined the tensor X of shape (2, 3, 4) in this section. What is the output of len(X)?

5. For a tensor X of arbitrary shape, does len(X) always correspond to the length of a certain
axis of X? What is that axis?

6. Run A / A.sum(axis=1) and see what happens. Can you analyze the reason?

7. When traveling between two points in Manhattan, what is the distance that you need to cover
in terms of the coordinates, i.e., in terms of avenues and streets? Can you travel diagonally?

2.3. Linear Algebra 65

8. Consider a tensor with shape (2, 3, 4). What are the shapes of the summation outputs along
axis 0, 1, and 2?

9. Feed a tensor with 3 or more axes to the linalg.norm function and observe its output. What
does this function compute for ndarrays of arbitrary shape?

2.4 Calculus

Finding the area of a polygon had remained mysterious until at least 2, 500 years ago, when ancient
Greeks divided a polygon into triangles and summed their areas. To find the area of curved shapes,
such as a circle, ancient Greeks inscribed polygons in such shapes. As shown in Fig. 2.4.1, an
inscribed polygon with more sides of equal length better approximates the circle. This process is
also known as the method of exhaustion.

Fig. 2.4.1: Find the area of a circle with the method of exhaustion.

In fact, the method of exhaustion is where integral calculus (will be described in Section 17.5) orig-
inates from. More than 2, 000 years later, the other branch of calculus, differential calculus, was
invented. Among the most critical applications of differential calculus, optimization problems
consider how to do something the best. As discussed in Section 2.3.10, such problems are ubiqui-
tous in deep learning.

In deep learning, we train models, updating them successively so that they get better and better
as they see more and more data. Usually, getting better means minimizing a loss function, a score
that answers the question “how bad is our model?” This question is more subtle than it appears.
Ultimately, what we really care about is producing a model that performs well on data that we have
never seen before. But we can only fit the model to data that we can actually see. Thus we can
decompose the task of fitting models into two key concerns: i) optimization: the process of fitting
our models to observed data; ii) generalization: the mathematical principles and practitionersʼ
wisdom that guide as to how to produce models whose validity extends beyond the exact set of
data points used to train them.

To help you understand optimization problems and methods in later chapters, here we give a very
brief primer on differential calculus that is commonly used in deep learning.

66 Chapter 2. Preliminaries

2.4.1 Derivatives and Differentiation

We begin by addressing the calculation of derivatives, a crucial step in nearly all deep learning
optimization algorithms. In deep learning, we typically choose loss functions that are differen-
tiable with respect to our model s̓ parameters. Put simply, this means that for each parameter,
we can determine how rapidly the loss would increase or decrease, were we to increase or decrease
that parameter by an infinitesimally small amount.

Suppose that we have a function f : R→ R, whose input and output are both scalars. The derivative
of f is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (2.4.1)

if this limit exists. If f ′(a) exists, f is said to be differentiable at a. If f is differentiable at every
number of an interval, then this function is differentiable on this interval. We can interpret the
derivative f ′(x) in (2.4.1) as the instantaneous rate of change of f(x)with respect tox. The so-called
instantaneous rate of change is based on the variation h in x, which approaches 0.

To illustrate derivatives, let s̓ experiment with an example. Define u = f(x) = 3x2 − 4x.

%matplotlib inline
import d2l
from IPython import display
from mxnet import np, npx
npx.set_np()

def f(x):
return 3 * x ** 2 - 4 * x

By setting x = 1 and letting h approach 0, the numerical result of f(x+h)−f(x)
h in (2.4.1) approaches

2. Though this experiment is not a mathematical proof, we will see later that the derivative u′ is 2
when x = 1.

def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h

h = 0.1
for i in range(5):

print('h=%.5f, numerical limit=%.5f' % (h, numerical_lim(f, 1, h)))
h *= 0.1

h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003

Let s̓ familiarize ourselves with a few equivalent notations for derivatives. Given y = f(x), where
x and y are the independent variable and the dependent variable of the function f , respectively.
The following expressions are equivalent:

f ′(x) = y′ =
dy

dx
=

df

dx
=

d

dx
f(x) = Df(x) = Dxf(x), (2.4.2)

where symbols d
dx and D are differentiation operators that indicate operation of differentiation. We

can use the following rules to differentiate common functions:

2.4. Calculus 67

• DC = 0 (C is a constant),

• Dxn = nxn−1 (the power rule, n is any real number),

• Dex = ex,

• D ln(x) = 1/x.

To differentiate a function that is formed from a few simpler functions such as the above com-
mon functions, the following rules can be handy for us. Suppose that functions f and g are both
differentiable and C is a constant, we have the constant multiple rule

d

dx
[Cf(x)] = C

d

dx
f(x), (2.4.3)

the sum rule

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x), (2.4.4)

the product rule

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)], (2.4.5)

and the quotient rule

d

dx

[
f(x)

g(x)

]
=

g(x) d
dx [f(x)]− f(x) d

dx [g(x)]

[g(x)]2
. (2.4.6)

Now we can apply a few of the above rules to find u′ = f ′(x) = 3 d
dxx

2 − 4 d
dxx = 6x − 4. Thus, by

setting x = 1, we have u′ = 2: this is supported by our earlier experiment in this section where
the numerical result approaches 2. This derivative is also the slope of the tangent line to the curve
u = f(x) when x = 1.

To visualize such an interpretation of derivatives, we will use matplotlib, a popular plotting li-
brary in Python. To configure properties of the figures produced by matplotlib, we need to define
a few functions. In the following, the use_svg_display function specifies the matplotlib package
to output the svg figures for sharper images. The comment # Saved in the d2l package for
later use is a special mark where the following function, class, or import statements are also
saved in the d2l package so that we can directly invoke d2l.use_svg_display() later.

Saved in the d2l package for later use
def use_svg_display():

"""Use the svg format to display a plot in Jupyter."""
display.set_matplotlib_formats('svg')

We define the set_figsize function to specify the figure sizes. Note that here we directly use d2l.
plt since the import statement from matplotlib import pyplot as plt has been marked for
being saved in the d2l package in the preface.

Saved in the d2l package for later use
def set_figsize(figsize=(3.5, 2.5)):

"""Set the figure size for matplotlib."""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize

The following set_axes function sets properties of axes of figures produced by matplotlib.

68 Chapter 2. Preliminaries

Saved in the d2l package for later use
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):

"""Set the axes for matplotlib."""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:

axes.legend(legend)
axes.grid()

With these 3 functions for figure configurations, we define the plot function to plot multiple
curves succinctly since we will need to visualize many curves throughout the book.

Saved in the d2l package for later use
def plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None,

ylim=None, xscale='linear', yscale='linear',
fmts=['-', 'm--', 'g-.', 'r:'], figsize=(3.5, 2.5), axes=None):

"""Plot data points."""
d2l.set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()

Return True if X (ndarray or list) has 1 axis
def has_one_axis(X):

return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
and not hasattr(X[0], "__len__"))

if has_one_axis(X):
X = [X]

if Y is None:
X, Y = [[]] * len(X), X

elif has_one_axis(Y):
Y = [Y]

if len(X) != len(Y):
X = X * len(Y)

axes.cla()
for x, y, fmt in zip(X, Y, fmts):

if len(x):
axes.plot(x, y, fmt)

else:
axes.plot(y, fmt)

set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

Now we can plot the functionu = f(x) and its tangent line y = 2x−3 atx = 1, where the coefficient
2 is the slope of the tangent line.

x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])

2.4. Calculus 69

2.4.2 Partial Derivatives

So far we have dealt with the differentiation of functions of just one variable. In deep learning,
functions often depend on many variables. Thus, we need to extend the ideas of differentiation to
these multivariate functions.

Let y = f(x1, x2, . . . , xn) be a function with n variables. The partial derivative of y with respect to
its ith parameter xi is

∂y

∂xi
= lim

h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h
. (2.4.7)

To calculate ∂y
∂xi

, we can simply treatx1, . . . , xi−1, xi+1, . . . , xn as constants and calculate the deriva-
tive of y with respect to xi. For notation of partial derivatives, the following are equivalent:

∂y

∂xi
=

∂f

∂xi
= fxi = fi = Dif = Dxif. (2.4.8)

2.4.3 Gradients

We can concatenate partial derivatives of a multivariate function with respect to all its variables
to obtain the gradient vector of the function. Suppose that the input of function f : Rn → R is an
n-dimensional vector x = [x1, x2, . . . , xn]

⊤ and the output is a scalar. The gradient of the function
f(x) with respect to x is a vector of n partial derivatives:

∇xf(x) =
[
∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xn

]⊤
, (2.4.9)

where∇xf(x) is often replaced by∇f(x) when there is no ambiguity.

Let x be an n-dimensional vector, the following rules are often used when differentiating multi-
variate functions:

• For all A ∈ Rm×n,∇xAx = A⊤,

• For all A ∈ Rn×m,∇xx⊤A = A,

• For all A ∈ Rn×n,∇xx⊤Ax = (A+ A⊤)x,

• ∇x∥x∥2 = ∇xx⊤x = 2x.

70 Chapter 2. Preliminaries

Similarly, for any matrix X, we have ∇X∥X∥2F = 2X. As we will see later, gradients are useful for
designing optimization algorithms in deep learning.

2.4.4 Chain Rule

However, such gradients can be hard to find. This is because multivariate functions in deep learn-
ing are often composite, so we may not apply any of the aforementioned rules to differentiate these
functions. Fortunately, the chain rule enables us to differentiate composite functions.

Let s̓ first consider functions of a single variable. Suppose that functions y = f(u) and u = g(x)
are both differentiable, then the chain rule states that

dy

dx
=

dy

du

du

dx
. (2.4.10)

Now let s̓ turn our attention to a more general scenario where functions have an arbitrary number
of variables. Suppose that the differentiable function y has variables u1, u2, . . . , um, where each
differentiable function ui has variables x1, x2, . . . , xn. Note that y is a function of x1, x2, . . . , xn.
Then the chain rule gives

dy

dxi
=

dy

du1

du1
dxi

+
dy

du2

du2
dxi

+ · · ·+ dy

dum

dum
dxi

(2.4.11)

for any i = 1, 2, . . . , n.

Summary

• Differential calculus and integral calculus are two branches of calculus, where the former
can be applied to the ubiquitous optimization problems in deep learning.

• A derivative can be interpreted as the instantaneous rate of change of a function with respect
to its variable. It is also the slope of the tangent line to the curve of the function.

• A gradient is a vector whose components are the partial derivatives of a multivariate function
with respect to all its variables.

• The chain rule enables us to differentiate composite functions.

Exercises

1. Plot the function y = f(x) = x3 − 1
x and its tangent line when x = 1.

2. Find the gradient of the function f(x) = 3x21 + 5ex2 .

3. What is the gradient of the function f(x) = ∥x∥2?

4. Can you write out the chain rule for the case where u = f(x, y, z) and x = x(a, b), y = y(a, b),
and z = z(a, b)?

2.4. Calculus 71

2.5 Automatic Differentiation

As we have explained in Section 2.4, differentiation is a crucial step in nearly all deep learning
optimization algorithms. While the calculations for taking these derivatives are straightforward,
requiring only some basic calculus, for complex models, working out the updates by hand can be
a pain (and often error-prone).

The autograd package expedites this work by automatically calculating derivatives, i.e., automatic
differentiation. And while many other libraries require that we compile a symbolic graph to take
automatic derivatives, autograd allows us to take derivatives while writing ordinary imperative
code. Every time we pass data through our model, autograd builds a graph on the fly, tracking
which data combined through which operations to produce the output. This graph enables auto-
grad to subsequently backpropagate gradients on command. Here, backpropagate simply means
to trace through the computational graph, filling in the partial derivatives with respect to each pa-
rameter.

from mxnet import autograd, np, npx
npx.set_np()

2.5.1 A Simple Example

As a toy example, say that we are interested in differentiating the function y = 2x⊤x with respect
to the column vector x. To start, let s̓ create the variable x and assign it an initial value.

x = np.arange(4)
x

array([0., 1., 2., 3.])

Note that before we even calculate the gradient of y with respect to x, we will need a place to store
it. It is important that we do not allocate new memory every time we take a derivative with respect
to a parameter because we will often update the same parameters thousands or millions of times
and could quickly run out of memory.

Note also that a gradient of a scalar-valued function with respect to a vector x is itself vector-valued
and has the same shape as x. Thus it is intuitive that in code, we will access a gradient taken with
respect to x as an attribute of the ndarray x itself. We allocate memory for an ndarray s̓ gradient
by invoking its attach_grad method.

x.attach_grad()

After we calculate a gradient taken with respect to x, we will be able to access it via the grad at-
tribute. As a safe default, x.grad is initialized as an array containing all zeros. That is sensible
because our most common use case for taking gradient in deep learning is to subsequently update
parameters by adding (or subtracting) the gradient to maximize (or minimize) the differentiated
function. By initializing the gradient to an array of zeros, we ensure that any update accidentally
executed before a gradient has actually been calculated will not alter the parametersʼ value.

x.grad

72 Chapter 2. Preliminaries

array([0., 0., 0., 0.])

Now let s̓ calculate y. Because we wish to subsequently calculate gradients, we want MXNet to
generate a computational graph on the fly. We could imagine that MXNet would be turning on a
recording device to capture the exact path by which each variable is generated.

Note that building the computational graph requires a nontrivial amount of computation. So
MXNet will only build the graph when explicitly told to do so. We can invoke this behavior by
placing our code inside an autograd.record scope.

with autograd.record():
y = 2 * np.dot(x, x)

y

array(28.)

Since x is an ndarray of length 4, np.dot will perform an inner product of x and x, yielding the
scalar output that we assign to y. Next, we can automatically calculate the gradient of y with
respect to each component of x by calling y s̓ backward function.

y.backward()

If we recheck the value of x.grad, we will find its contents overwritten by the newly calculated
gradient.

x.grad

array([0., 4., 8., 12.])

The gradient of the function y = 2x⊤x with respect to x should be 4x. Let s̓ quickly verify that
our desired gradient was calculated correctly. If the two ndarrays are indeed the same, then the
equality between them holds at every position.

x.grad == 4 * x

array([True, True, True, True])

If we subsequently compute the gradient of another variable whose value was calculated as a func-
tion of x, the contents of x.grad will be overwritten.

with autograd.record():
y = x.sum()

y.backward()
x.grad

array([1., 1., 1., 1.])

2.5. Automatic Differentiation 73

2.5.2 Backward for Non-Scalar Variables

Technically, when y is not a scalar, the most natural interpretation of the gradient of y (a vector of
length m) with respect to x (a vector of length n) is the Jacobian (an m×n matrix). For higher-order
and higher-dimensional y and x, the Jacobian could be a gnarly high-order tensor.

However, while these more exotic objects do show up in advanced machine learning (including in
deep learning), more often when we are calling backward on a vector, we are trying to calculate
the derivatives of the loss functions for each constituent of a batch of training examples. Here,
our intent is not to calculate the Jacobian but rather the sum of the partial derivatives computed
individually for each example in the batch.

Thus when we invoke backward on a vector-valued variable y, which is a function of x, MXNet
assumes that we want the sum of the gradients. In short, MXNet will create a new scalar variable
by summing the elements in y, and compute the gradient of that scalar variable with respect to x.

with autograd.record():
y = x * x # y is a vector

y.backward()

u = x.copy()
u.attach_grad()
with autograd.record():

v = (u * u).sum() # v is a scalar
v.backward()

x.grad == u.grad

array([True, True, True, True])

2.5.3 Detaching Computation

Sometimes, we wish to move some calculations outside of the recorded computational graph. For
example, say that y was calculated as a function of x, and that subsequently z was calculated as a
function of both y and x. Now, imagine that we wanted to calculate the gradient of z with respect
to x, but wanted for some reason to treat y as a constant, and only take into account the role that
x played after y was calculated.

Here, we can call u = y.detach() to return a new variable u that has the same value as y but
discards any information about how y was computed in the computational graph. In other words,
the gradient will not flow backwards through u to x. This will provide the same functionality as if
we had calculated u as a function of x outside of the autograd.record scope, yielding a u that will
be treated as a constant in any backward call. Thus, the following backward function computes the
partial derivative of z = u * x with respect to x while treating u as a constant, instead of the partial
derivative of z = x * x * x with respect to x.

with autograd.record():
y = x * x
u = y.detach()
z = u * x

z.backward()
x.grad == u

74 Chapter 2. Preliminaries

array([True, True, True, True])

Since the computation of y was recorded, we can subsequently call y.backward() to get the deriva-
tive of y = x * x with respect to x, which is 2 * x.

y.backward()
x.grad == 2 * x

array([True, True, True, True])

Note that attaching gradients to a variable x implicitly calls x = x.detach(). If x is computed based
on other variables, this part of computation will not be used in the backward function.

y = np.ones(4) * 2
y.attach_grad()
with autograd.record():

u = x * y
u.attach_grad() # Implicitly run u = u.detach()
z = 5 * u - x

z.backward()
x.grad, u.grad, y.grad

(array([-1., -1., -1., -1.]), array([5., 5., 5., 5.]), array([0., 0., 0., 0.]))

2.5.4 Computing the Gradient of Python Control Flow

One benefit of using automatic differentiation is that even if building the computational graph
of a function required passing through a maze of Python control flow (e.g., conditionals, loops,
and arbitrary function calls), we can still calculate the gradient of the resulting variable. In the
following snippet, note that the number of iterations of the while loop and the evaluation of the
if statement both depend on the value of the input a.

def f(a):
b = a * 2
while np.linalg.norm(b) < 1000:

b = b * 2
if b.sum() > 0:

c = b
else:

c = 100 * b
return c

Again to compute gradients, we just need to record the calculation and then call the backward
function.

a = np.random.normal()
a.attach_grad()
with autograd.record():

d = f(a)
d.backward()

2.5. Automatic Differentiation 75

We can now analyze the f function defined above. Note that it is piecewise linear in its input a. In
other words, for any a there exists some constant scalar k such that f(a) = k * a, where the value
of k depends on the input a. Consequently d / a allows us to verify that the gradient is correct.

a.grad == d / a

array(True)

2.5.5 Training Mode and Prediction Mode

As we have seen, after we call autograd.record, MXNet logs the operations in the following block.
There is one more subtle detail to be aware of. Additionally, autograd.record will change the
running mode from prediction mode to training mode. We can verify this behavior by calling the
is_training function.

print(autograd.is_training())
with autograd.record():

print(autograd.is_training())

False
True

When we get to complicated deep learning models, we will encounter some algorithms where the
model behaves differently during training and when we subsequently use it to make predictions.
We will cover these differences in detail in later chapters.

Summary

• MXNet provides the autograd package to automate the calculation of derivatives. To use it,
we first attach gradients to those variables with respect to which we desire partial deriva-
tives. We then record the computation of our target value, execute its backward function,
and access the resulting gradient via our variable s̓ grad attribute.

• We can detach gradients to control the part of the computation that will be used in the back-
ward function.

• The running modes of MXNet include training mode and prediction mode. We can deter-
mine the running mode by calling the is_training function.

Exercises

1. Why is the second derivative much more expensive to compute than the first derivative?

2. After running y.backward(), immediately run it again and see what happens.

3. In the control flow example where we calculate the derivative of d with respect to a, what
would happen if we changed the variable a to a random vector or matrix. At this point, the
result of the calculation f(a) is no longer a scalar. What happens to the result? How do we
analyze this?

76 Chapter 2. Preliminaries

4. Redesign an example of finding the gradient of the control flow. Run and analyze the result.

5. Let f(x) = sin(x). Plot f(x) and df(x)
dx , where the latter is computed without exploiting that

f ′(x) = cos(x).

6. In a second-price auction (such as in eBay or in computational advertising), the winning
bidder pays the second-highest price. Compute the gradient of the final price with respect
to the winning bidder s̓ bid using autograd. What does the result tell you about the mecha-
nism? If you are curious to learn more about second-price auctions, check out the paper by
Edelman et al. (Edelman et al., 2007).

2.6 Probability

In some form or another, machine learning is all about making predictions. We might want to
predict the probability of a patient suffering a heart attack in the next year, given their clinical his-
tory. In anomaly detection, we might want to assess how likely a set of readings from an airplane s̓
jet engine would be, were it operating normally. In reinforcement learning, we want an agent to
act intelligently in an environment. This means we need to think about the probability of getting
a high reward under each of the available action. And when we build recommender systems we
also need to think about probability. For example, say hypothetically that we worked for a large
online bookseller. We might want to estimate the probability that a particular user would buy
a particular book. For this we need to use the language of probability. Entire courses, majors,
theses, careers, and even departments, are devoted to probability. So naturally, our goal in this
section is not to teach the whole subject. Instead we hope to get you off the ground, to teach you
just enough that you can start building your first deep learning models, and to give you enough of
a flavor for the subject that you can begin to explore it on your own if you wish.

We have already invoked probabilities in previous sections without articulating what precisely
they are or giving a concrete example. Let s̓ get more serious now by considering the first case:
distinguishing cats and dogs based on photographs. This might sound simple but it is actually a
formidable challenge. To start with, the difficulty of the problem may depend on the resolution
of the image.

2.6. Probability 77

Fig. 2.6.1: Images of varying resolutions (10× 10, 20× 20, 40× 40, 80× 80, and 160× 160 pixels).

As shown in Fig. 2.6.1, while it is easy for humans to recognize cats and dogs at the resolution of
160× 160 pixels, it becomes challenging at 40× 40 pixels and next to impossible at 10× 10 pixels.
In other words, our ability to tell cats and dogs apart at a large distance (and thus low resolution)
might approach uninformed guessing. Probability gives us a formal way of reasoning about our
level of certainty. If we are completely sure that the image depicts a cat, we say that the probability
that the corresponding label y is “cat”, denoted P (y = “cat”) equals 1. If we had no evidence to
suggest that y = “cat” or that $y = $ “dog”, then we might say that the two possibilities were equally
likely expressing this as P (y = “cat”) = P (y = “dog”) = 0.5. If we were reasonably confident, but
not sure that the image depicted a cat, we might assign a probability 0.5 < P (y = “cat”) < 1.

Now consider the second case: given some weather monitoring data, we want to predict the proba-
bility that it will rain in Taipei tomorrow. If it is summertime, the rain might come with probability
0.5.

In both cases, we have some value of interest. And in both cases we are uncertain about the out-
come. But there is a key difference between the two cases. In this first case, the image is in fact
either a dog or a cat, and we just do not know which. In the second case, the outcome may actu-
ally be a random event, if you believe in such things (and most physicists do). So probability is a
flexible language for reasoning about our level of certainty, and it can be applied effectively in a
broad set of contexts.

2.6.1 Basic Probability Theory

Say that we cast a die and want to know what the chance is of seeing a 1 rather than another digit.
If the die is fair, all the 6 outcomes {1, . . . , 6} are equally likely to occur, and thus we would see a
1 in one out of six cases. Formally we state that 1 occurs with probability 1

6 .

For a real die that we receive from a factory, we might not know those proportions and we would
need to check whether it is tainted. The only way to investigate the die is by casting it many times
and recording the outcomes. For each cast of the die, we will observe a value in {1, . . . , 6}. Given
these outcomes, we want to investigate the probability of observing each outcome.

78 Chapter 2. Preliminaries

One natural approach for each value is to take the individual count for that value and to divide it
by the total number of tosses. This gives us an estimate of the probability of a given event. The law
of large numbers tell us that as the number of tosses grows this estimate will draw closer and closer
to the true underlying probability. Before going into the details of what is going here, let s̓ try it
out.

To start, let s̓ import the necessary packages.

%matplotlib inline
import d2l
from mxnet import np, npx
import random
npx.set_np()

Next, we will want to be able to cast the die. In statistics we call this process of drawing ex-
amples from probability distributions sampling. The distribution that assigns probabilities to a
number of discrete choices is called the multinomial distribution. We will give a more formal def-
inition of distribution later, but at a high level, think of it as just an assignment of probabilities
to events. In MXNet, we can sample from the multinomial distribution via the aptly named np.
random.multinomial function. The function can be called in many ways, but we will focus on the
simplest. To draw a single sample, we simply pass in a vector of probabilities. The output of the
np.random.multinomial function is another vector of the same length: its value at index i is the
number of times the sampling outcome corresponds to i.

fair_probs = [1.0 / 6] * 6
np.random.multinomial(1, fair_probs)

array([0, 0, 0, 1, 0, 0], dtype=int64)

If you run the sampler a bunch of times, you will find that you get out random values each time.
As with estimating the fairness of a die, we often want to generate many samples from the same
distribution. It would be unbearably slow to do this with a Python for loop, so random.multinomial
supports drawing multiple samples at once, returning an array of independent samples in any
shape we might desire.

np.random.multinomial(10, fair_probs)

array([1, 1, 5, 1, 1, 1], dtype=int64)

We can also conduct, say 3, groups of experiments, where each group draws 10 samples, all at
once.

counts = np.random.multinomial(10, fair_probs, size=3)
counts

array([[1, 2, 1, 2, 4, 0],
[3, 2, 2, 1, 0, 2],
[1, 2, 1, 3, 1, 2]], dtype=int64)

Now that we know how to sample rolls of a die, we can simulate 1000 rolls. We can then go through
and count, after each of the 1000 rolls, how many times each number was rolled. Specifically, we

2.6. Probability 79

calculate the relative frequency as the estimate of the true probability.

Store the results as 32-bit floats for division
counts = np.random.multinomial(1000, fair_probs).astype(np.float32)
counts / 1000 # Reletive frequency as the estimate

array([0.164, 0.153, 0.181, 0.163, 0.163, 0.176])

Because we generated the data from a fair die, we know that each outcome has true probability 1
6 ,

roughly 0.167, so the above output estimates look good.

We can also visualize how these probabilities converge over time towards the true probability.
Let s̓ conduct 500 groups of experiments where each group draws 10 samples.

counts = np.random.multinomial(10, fair_probs, size=500)
cum_counts = counts.astype(np.float32).cumsum(axis=0)
estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)

d2l.set_figsize((6, 4.5))
for i in range(6):

d2l.plt.plot(estimates[:, i].asnumpy(),
label=("P(die=" + str(i + 1) + ")"))

d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();

Each solid curve corresponds to one of the six values of the die and gives our estimated probability
that the die turns up that value as assessed after each group of experiments. The dashed black line

80 Chapter 2. Preliminaries

gives the true underlying probability. As we get more data by conducting more experiments, the
6 solid curves converge towards the true probability.

Axioms of Probability Theory

When dealing with the rolls of a die, we call the set S = {1, 2, 3, 4, 5, 6} the sample space or outcome
space, where each element is an outcome. An event is a set of outcomes from a given sample space.
For instance, “seeing a 5” ({5}) and “seeing an odd number” ({1, 3, 5}) are both valid events of
rolling a die. Note that if the outcome of a random experiment is in event A, then event A has
occurred. That is to say, if 3 dots faced up after rolling a die, since 3 ∈ {1, 3, 5}, we can say that the
event “seeing an odd number” has occurred.

Formally, probability can be thought of a function that maps a set to a real value. The probability
of an eventA in the given sample space S, denoted as P (A), satisfies the following properties:

• For any eventA, its probability is never negative, i.e., P (A) ≥ 0;

• Probability of the entire sample space is 1, i.e., P (S) = 1;

• For any countable sequence of eventsA1,A2, . . . that are mutually exclusive (Ai∩Aj = ∅ for all
i ̸= j), the probability that any happens is equal to the sum of their individual probabilities,
i.e., P (

∪∞
i=1Ai) =

∑∞
i=1 P (Ai).

These are also the axioms of probability theory, proposed by Kolmogorov in 1933. Thanks to this
axiom system, we can avoid any philosophical dispute on randomness; instead, we can reason
rigorously with a mathematical language. For instance, by letting event A1 be the entire sample
space and Ai = ∅ for all i > 1, we can prove that P (∅) = 0, i.e., the probability of an impossible
event is 0.

Random Variables

In our random experiment of casting a die, we introduced the notion of a random variable. A ran-
dom variable can be pretty much any quantity and is not deterministic. It could take one value
among a set of possibilities in a random experiment. Consider a random variable X whose value
is in the sample space S = {1, 2, 3, 4, 5, 6} of rolling a die. We can denote the event “seeing a 5”
as {X = 5} or X = 5, and its probability as P ({X = 5}) or P (X = 5). By P (X = a), we make a
distinction between the random variable X and the values (e.g., a) that X can take. However, such
pedantry results in a cumbersome notation. For a compact notation, on one hand, we can just de-
note P (X) as the distribution over the random variable X: the distribution tells us the probability
that X takes any value. On the other hand, we can simply write P (a) to denote the probability that
a random variable takes the value a. Since an event in probability theory is a set of outcomes from
the sample space, we can specify a range of values for a random variable to take. For example,
P (1 ≤ X ≤ 3) denotes the probability of the event {1 ≤ X ≤ 3}, which means {X = 1, 2, or, 3}.
Equivalently, P (1 ≤ X ≤ 3) represents the probability that the random variable X can take a
value from {1, 2, 3}.

Note that there is a subtle difference between discrete random variables, like the sides of a die,
and continuous ones, like the weight and the height of a person. There is little point in ask-
ing whether two people have exactly the same height. If we take precise enough measure-
ments you will find that no two people on the planet have the exact same height. In fact, if
we take a fine enough measurement, you will not have the same height when you wake up and
when you go to sleep. So there is no purpose in asking about the probability that someone is

2.6. Probability 81

1.80139278291028719210196740527486202 meters tall. Given the world population of humans the
probability is virtually 0. It makes more sense in this case to ask whether someone s̓ height falls
into a given interval, say between 1.79 and 1.81 meters. In these cases we quantify the likelihood
that we see a value as a density. The height of exactly 1.80 meters has no probability, but nonzero
density. In the interval between any two different heights we have nonzero probability. In the rest
of this section, we consider probability in discrete space. For probability over continuous random
variables, you may refer to Section 17.6.

2.6.2 Dealing with Multiple Random Variables

Very often, we will want to consider more than one random variable at a time. For instance, we
may want to model the relationship between diseases and symptoms. Given a disease and a symp-
tom, say “flu” and “cough”, either may or may not occur in a patient with some probability. While
we hope that the probability of both would be close to zero, we may want to estimate these prob-
abilities and their relationships to each other so that we may apply our inferences to effect better
medical care.

As a more complicated example, images contain millions of pixels, thus millions of random vari-
ables. And in many cases images will come with a label, identifying objects in the image. We can
also think of the label as a random variable. We can even think of all the metadata as random
variables such as location, time, aperture, focal length, ISO, focus distance, and camera type. All
of these are random variables that occur jointly. When we deal with multiple random variables,
there are several quantities of interest.

Joint Probability

The first is called the joint probability P (A = a,B = b). Given any values a and b, the joint proba-
bility lets us answer, what is the probability that A = a and B = b simultaneously? Note that for
any values a and b, P (A = a,B = b) ≤ P (A = a). This has to be the case, since for A = a and
B = b to happen, A = a has to happen and B = b also has to happen (and vice versa). Thus, A = a
and B = b cannot be more likely than A = a or B = b individually.

Conditional Probability

This brings us to an interesting ratio: 0 ≤ P (A=a,B=b)
P (A=a) ≤ 1. We call this ratio a conditional probability

and denote it byP (B = b | A = a): it is the probability of B = b, provided that A = a has occurred.

Bayes’ theorem

Using the definition of conditional probabilities, we can derive one of the most useful and cel-
ebrated equations in statistics: Bayes’ theorem. It goes as follows. By construction, we have the
multiplication rule that P (A,B) = P (B | A)P (A). By symmetry, this also holds for P (A,B) =
P (A | B)P (B). Assume that P (B) > 0. Solving for one of the conditional variables we get

P (A | B) =
P (B | A)P (A)

P (B)
. (2.6.1)

Note that here we use the more compact notation whereP (A,B) is a joint distribution andP (A | B)
is a conditional distribution. Such distributions can be evaluated for particular values A = a,B = b.

82 Chapter 2. Preliminaries

Marginalization

Bayesʼ theorem is very useful if we want to infer one thing from the other, say cause and effect,
but we only know the properties in the reverse direction, as we will see later in this section. One
important operation that we need, to make this work, is marginalization. It is the operation of
determining P (B) from P (A,B). We can see that the probability of B amounts to accounting for
all possible choices of A and aggregating the joint probabilities over all of them:

P (B) =
∑
A

P (A,B), (2.6.2)

which is also known as the sum rule. The probability or distribution as a result of marginalization
is called a marginal probability or a marginal distribution.

Independence

Another useful property to check for is dependence vs. independence. Two random variables A and
B are independent means that the occurrence of one event of A does not reveal any information
about the occurrence of an event of B. In this case P (B | A) = P (B). Statisticians typically
express this as A ⊥ B. From Bayesʼ theorem, it follows immediately that also P (A | B) = P (A).
In all the other cases we call A and B dependent. For instance, two successive rolls of a die are
independent. In contrast, the position of a light switch and the brightness in the room are not
(they are not perfectly deterministic, though, since we could always have a broken light bulb,
power failure, or a broken switch).

Since P (A | B) = P (A,B)
P (B) = P (A) is equivalent to P (A,B) = P (A)P (B), two random variables are

independent if and only if their joint distribution is the product of their individual distributions.
Likewise, two random variables A and B are conditionally independent given another random vari-
able C if and only if P (A,B | C) = P (A | C)P (B | C). This is expressed as A ⊥ B | C.

Application

Let s̓ put our skills to the test. Assume that a doctor administers an AIDS test to a patient. This test
is fairly accurate and it fails only with 1% probability if the patient is healthy but reporting him as
diseased. Moreover, it never fails to detect HIV if the patient actually has it. We use D1 to indicate
the diagnosis (1 if positive and 0 if negative) and H to denote the HIV status (1 if positive and 0 if
negative). Table 2.6.1 lists such conditional probability.

Table 2.6.1: Conditional probability of P (D1 | H).
Conditional probability H = 1 H = 0

P (D1 = 1 | H) 1 0.01
P (D1 = 0 | H) 0 0.99

Note that the column sums are all 1 (but the row sums are not), since the conditional probability
needs to sum up to 1, just like the probability. Let s̓ work out the probability of the patient having
AIDS if the test comes back positive, i.e., P (H = 1 | D1 = 1). Obviously this is going to depend
on how common the disease is, since it affects the number of false alarms. Assume that the pop-
ulation is quite healthy, e.g., P (H = 1) = 0.0015. To apply Bayesʼ Theorem, we need to apply

2.6. Probability 83

marginalization and the multiplication rule to determine

P (D1 = 1)

=P (D1 = 1,H = 0) + P (D1 = 1,H = 1)

=P (D1 = 1 | H = 0)P (H = 0) + P (D1 = 1 | H = 1)P (H = 1)

=0.011485.

(2.6.3)

Thus, we get

P (H = 1 | D1 = 1)

=
P (D1 = 1 | H = 1)P (H = 1)

P (D1 = 1)

=0.1306

. (2.6.4)

In other words, there is only a 13.06% chance that the patient actually has AIDS, despite using a
very accurate test. As we can see, probability can be quite counterintuitive.

What should a patient do upon receiving such terrifying news? Likely, the patient would ask the
physician to administer another test to get clarity. The second test has different characteristics
and it is not as good as the first one, as shown in Table 2.6.2.

Table 2.6.2: Conditional probability of P (D2 | H).
Conditional probability H = 1 H = 0

P (D2 = 1 | H) 0.98 0.03
P (D2 = 0 | H) 0.02 0.97

Unfortunately, the second test comes back positive, too. Let s̓ work out the requisite probabilities
to invoke Bayesʼ Theorem by assuming the conditional independence:

P (D1 = 1, D2 = 1 | H = 0)

=P (D1 = 1 | H = 0)P (D2 = 1 | H = 0)

=0.0003,

(2.6.5)

P (D1 = 1, D2 = 1 | H = 1)

=P (D1 = 1 | H = 1)P (D2 = 1 | H = 1)

=0.98.

(2.6.6)

Now we can apply marginalization and the multiplication rule:

P (D1 = 1, D2 = 1)

=P (D1 = 1, D2 = 1,H = 0) + P (D1 = 1, D2 = 1,H = 1)

=P (D1 = 1, D2 = 1 | H = 0)P (H = 0) + P (D1 = 1, D2 = 1 | H = 1)P (H = 1)

=0.00176955.

(2.6.7)

In the end, the probability of the patient having AIDS given both positive tests is

P (H = 1 | D1 = 1, D2 = 1)

=
P (D1 = 1, D2 = 1 | H = 1)P (H = 1)

P (D1 = 1, D2 = 1)

=0.8307.

(2.6.8)

That is, the second test allowed us to gain much higher confidence that not all is well. Despite the
second test being considerably less accurate than the first one, it still significantly improved our
estimate.

84 Chapter 2. Preliminaries

2.6.3 Expectation and Variance

To summarize key characteristics of probability distributions, we need some measures. The ex-
pectation (or average) of the random variable X is denoted as

E[X] =
∑
x

xP (X = x). (2.6.9)

When the input of a function f(x) is a random variable drawn from the distribution P with differ-
ent values x, the expectation of f(x) is computed as

Ex∼P [f(x)] =
∑
x

f(x)P (x). (2.6.10)

In many cases we want to measure by how much the random variable X deviates from its expec-
tation. This can be quantified by the variance

Var[X] = E
[
(X − E[X])2

]
= E[X2]− E[X]2. (2.6.11)

Its square root is called the standard deviation. The variance of a function of a random variable
measures by how much the function deviates from the expectation of the function, as different
values x of the random variable are sampled from its distribution:

Var[f(x)] = E
[
(f(x)− E[f(x)])2

]
. (2.6.12)

Summary

• We can use MXNet to sample from probability distributions.

• We can analyze multiple random variables using joint distribution, conditional distribution,
Bayesʼ theorem, marginalization, and independence assumptions.

• Expectation and variance offer useful measures to summarize key characteristics of proba-
bility distributions.

Exercises

1. We conducted m = 500 groups of experiments where each group draws n = 10 samples.
Vary m and n. Observe and analyze the experimental results.

2. Given two events with probability P (A) and P (B), compute upper and lower bounds on
P (A ∪ B) and P (A ∩ B). (Hint: display the situation using a Venn Diagram46.)

3. Assume that we have a sequence of random variables, say A, B, and C, where B only de-
pends on A, and C only depends on B, can you simplify the joint probability P (A,B,C)?
(Hint: this is a Markov Chain47.)

4. In Section 2.6.2, the first test is more accurate. Why not just run the first test a second time?

46 https://en.wikipedia.org/wiki/Venn_diagram
47 https://en.wikipedia.org/wiki/Markov_chain

2.6. Probability 85

https://en.wikipedia.org/wiki/Venn_diagram
https://en.wikipedia.org/wiki/Markov_chain

2.7 Documentation

Due to constraints on the length of this book, we cannot possibly introduce every single MXNet
function and class (and you probably would not want us to). The API documentation and addi-
tional tutorials and examples provide plenty of documentation beyond the book. In this section
we provide you with some guidance to exploring the MXNet API.

2.7.1 Finding All the Functions and Classes in a Module

In order to know which functions and classes can be called in a module, we invoke the dir func-
tion. For instance, we can query all properties in the np.random module as follows:

from mxnet import np
print(dir(np.random))

['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '_
↪→_package__', '__spec__', '_mx_nd_np', 'absolute_import', 'choice', 'multinomial', 'normal',
↪→ 'rand', 'randint', 'shuffle', 'uniform']

Generally, we can ignore functions that start and end with __ (special objects in Python) or func-
tions that start with a single _(usually internal functions). Based on the remaining function or
attribute names, we might hazard a guess that this module offers various methods for generating
random numbers, including sampling from the uniform distribution (uniform), normal distribu-
tion (normal), and multinomial distribution (multinomial).

2.7.2 Finding the Usage of Specific Functions and Classes

For more specific instructions on how to use a given function or class, we can invoke the help
function. As an example, let s̓ explore the usage instructions for ndarray s̓ ones_like function.

help(np.ones_like)

Help on function ones_like in module mxnet.numpy:

ones_like(a)
Return an array of ones with the same shape and type as a given array.

Parameters

a : ndarray

The shape and data-type of a define these same attributes of
the returned array.

Returns

out : ndarray

Array of ones with the same shape and type as a.

Examples

86 Chapter 2. Preliminaries

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0., 1., 2.],

[3., 4., 5.]])
>>> np.ones_like(x)
array([[1., 1., 1.],

[1., 1., 1.]])

>>> y = np.arange(3, dtype=float)
>>> y
array([0., 1., 2.], dtype=float64)
>>>
>>> np.ones_like(y)
array([1., 1., 1.], dtype=float64)

From the documentation, we can see that the ones_like function creates a new array with the
same shape as the supplied ndarray and sets all the elements to 1. Whenever possible, you should
run a quick test to confirm your interpretation:

x = np.array([[0, 0, 0], [2, 2, 2]])
np.ones_like(x)

array([[1., 1., 1.],
[1., 1., 1.]])

In the Jupyter notebook, we can use ? to display the document in another window. For exam-
ple, np.random.uniform? will create content that is almost identical to help(np.random.uniform),
displaying it in a new browser window. In addition, if we use two question marks, such as np.
random.uniform??, the code implementing the function will also be displayed.

2.7.3 API Documentation

For further details on the API details check the MXNet website at http://mxnet.apache.org/. You
can find the details under the appropriate headings (also for programming languages other than
Python).

Summary

• The official documentation provides plenty of descriptions and examples that are beyond
this book.

• We can look up documentation for the usage of MXNet API by calling the dir and help func-
tions, or checking the MXNet website.

2.7. Documentation 87

http://mxnet.apache.org/

Exercises

1. Look up ones_like and autograd on the MXNet website.

2. What are all the possible outputs after running np.random.choice(4, 2)?

3. Can you rewrite np.random.choice(4, 2) by using the np.random.randint function?

88 Chapter 2. Preliminaries

3 | Linear Neural Networks

Before we get into the details of deep neural networks, we need to cover the basics of neural net-
work training. In this chapter, we will cover the entire training process, including defining simple
neural network architectures, handling data, specifying a loss function, and training the model.
In order to make things easier to grasp, we begin with the simplest concepts. Fortunately, classic
statistical learning techniques such as linear and logistic regression can be cast as shallow neural
networks. Starting from these classic algorithms, we will introduce you to the basics, providing
the basis for more complex techniques such as softmax regression (introduced at the end of this
chapter) and multilayer perceptrons (introduced in the next chapter).

3.1 Linear Regression

Regression refers to a set of methods for modeling the relationship between data points x and
corresponding real-valued targets y. In the natural sciences and social sciences, the purpose of
regression is most often to characterize the relationship between the inputs and outputs. Machine
learning, on the other hand, is most often concerned with prediction.

Regression problems pop up whenever we want to predict a numerical value. Common exam-
ples include predicting prices (of homes, stocks, etc.), predicting length of stay (for patients in
the hospital), demand forecasting (for retail sales), among countless others. Not every prediction
problem is a classic regression problem. In subsequent sections, we will introduce classification
problems, where the goal is to predict membership among a set of categories.

3.1.1 Basic Elements of Linear Regression

Linear regression may be both the simplest and most popular among the standard tools to regres-
sion. Dating back to the dawn of the 19th century, linear regression flows from a few simple
assumptions. First, we assume that the relationship between the features x and targets y is linear,
i.e., that y can be expressed as a weighted sum of the inputs x, give or take some noise on the ob-
servations. Second, we assume that any noise is well-behaved (following a Gaussian distribution).
To motivate the approach, let s̓ start with a running example. Suppose that we wish to estimate
the prices of houses (in dollars) based on their area (in square feet) and age (in years).

To actually fit a model for predicting house prices, we would need to get our hands on a dataset
consisting of sales for which we know the sale price, area and age for each home. In the termi-
nology of machine learning, the dataset is called a training data or training set, and each row (here
the data corresponding to one sale) is called an instance or example. The thing we are trying to
predict (here, the price) is called a target or label. The variables (here age and area) upon which
the predictions are based are called features or covariates.

89

Typically, we will use n to denote the number of examples in our dataset. We index the samples
by i, denoting each input data point as x(i) = [x

(i)
1 , x

(i)
2] and the corresponding label as y(i).

Linear Model

The linearity assumption just says that the target (price) can be expressed as a weighted sum of
the features (area and age):

price = warea · area + wage · age + b. (3.1.1)

Here, warea and wage are called weights, and b is called a bias (also called an offset or intercept). The
weights determine the influence of each feature on our prediction and the bias just says what value
the predicted price should take when all of the features take value 0. Even if we will never see any
homes with zero area, or that are precisely zero years old, we still need the intercept or else we
will limit the expressivity of our linear model.

Given a dataset, our goal is to choose the weightsw and bias b such that on average, the predictions
made according our model best fit the true prices observed in the data.

In disciplines where it is common to focus on datasets with just a few features, explicitly ex-
pressing models long-form like this is common. In ML, we usually work with high-dimensional
datasets, so it is more convenient to employ linear algebra notation. When our inputs consist of
d features, we express our prediction ŷ as

ŷ = w1 · x1 + ...+ wd · xd + b. (3.1.2)

Collecting all features into a vector x and all weights into a vector w, we can express our model
compactly using a dot product:

ŷ = wTx+ b. (3.1.3)

Here, the vector x corresponds to a single data point. We will often find it convenient to refer to
our entire dataset via the design matrix X. Here, X contains one row for every example and one
column for every feature.

For a collection of data points X, the predictions ŷ can be expressed via the matrix-vector product:

ŷ = Xw+ b. (3.1.4)

Given a training dataset X and corresponding (known) targets y, the goal of linear regression is
to find the weight vector w and bias term b that given some a new data point xi, sampled from the
same distribution as the training data will (in expectation) predict the target yi with the lowest
error.

Even if we believe that the best model for predicting y given x is linear, we would not expect to
find real-world data where yi exactly equals wTx + b for all points (x, y). For example, whatever
instruments we use to observe the features X and labels y might suffer small amount of measure-
ment error. Thus, even when we are confident that the underlying relationship is linear, we will
incorporate a noise term to account for such errors.

Before we can go about searching for the best parameters w and b, we will need two more things:
(i) a quality measure for some given model; and (ii) a procedure for updating the model to improve
its quality.

90 Chapter 3. Linear Neural Networks

Loss Function

Before we start thinking about how to fit our model, we need to determine a measure of fitness.
The loss function quantifies the distance between the real and predicted value of the target. The loss
will usually be a non-negative number where smaller values are better and perfect predictions
incur a loss of 0. The most popular loss function in regression problems is the sum of squared
errors. When our prediction for some example i is ŷ(i) and the corresponding true label is y(i), the
squared error is given by:

l(i)(w, b) =
1

2

(
ŷ(i) − y(i)

)2
. (3.1.5)

The constant 1/2 makes no real difference but will prove notationally convenient, cancelling out
when we take the derivative of the loss. Since the training dataset is given to us, and thus out of
our control, the empirical error is only a function of the model parameters. To make things more
concrete, consider the example below where we plot a regression problem for a one-dimensional
case as shown in Fig. 3.1.1.

Fig. 3.1.1: Fit data with a linear model.

Note that large differences between estimates ŷ(i) and observations y(i) lead to even larger contri-
butions to the loss, due to the quadratic dependence. To measure the quality of a model on the
entire dataset, we simply average (or equivalently, sum) the losses on the training set.

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) =
1

n

n∑
i=1

1

2

(
w⊤x(i) + b− y(i)

)2
. (3.1.6)

When training the model, we want to find parameters (w∗, b∗) that minimize the total loss across
all training samples:

w∗, b∗ = argmin
w,b

L(w, b). (3.1.7)

3.1. Linear Regression 91

Analytic Solution

Linear regression happens to be an unusually simple optimization problem. Unlike most other
models that we will encounter in this book, linear regression can be solved analytically by apply-
ing a simple formula, yielding a global optimum. To start, we can subsume the bias b into the
parameter w by appending a column to the design matrix consisting of all 1s. Then our predic-
tion problem is to minimize ||y−Xw||. Because this expression has a quadratic form, it is convex,
and so long as the problem is not degenerate (our features are linearly independent), it is strictly
convex.

Thus there is just one critical point on the loss surface and it corresponds to the global minimum.
Taking the derivative of the loss with respect to w and setting it equal to 0 yields the analytic solu-
tion:

w∗ = (XTX)−1XT y. (3.1.8)

While simple problems like linear regression may admit analytic solutions, you should not get
used to such good fortune. Although analytic solutions allow for nice mathematical analysis, the
requirement of an analytic solution is so restrictive that it would exclude all of deep learning.

Gradient descent

Even in cases where we cannot solve the models analytically, and even when the loss surfaces are
high-dimensional and nonconvex, it turns out that we can still train models effectively in practice.
Moreover, for many tasks, these difficult-to-optimize models turn out to be so much better that
figuring out how to train them ends up being well worth the trouble.

The key technique for optimizing nearly any deep learning model, and which we will call upon
throughout this book, consists of iteratively reducing the error by updating the parameters in the
direction that incrementally lowers the loss function. This algorithm is called gradient descent. On
convex loss surfaces, it will eventually converge to a global minimum, and while the same cannot
be said for nonconvex surfaces, it will at least lead towards a (hopefully good) local minimum.

The most naive application of gradient descent consists of taking the derivative of the true loss,
which is an average of the losses computed on every single example in the dataset. In practice,
this can be extremely slow. We must pass over the entire dataset before making a single update.
Thus, we will often settle for sampling a random minibatch of examples every time we need to
computer the update, a variant called stochastic gradient descent.

In each iteration, we first randomly sample a minibatchB consisting of a fixed number of training
data examples. We then compute the derivative (gradient) of the average loss on the mini batch
with regard to the model parameters. Finally, we multiply the gradient by a predetermined step
size η > 0 and subtract the resulting term from the current parameter values.

We can express the update mathematically as follows (∂ denotes the partial derivative) :

(w, b)← (w, b)− η

|B|
∑
i∈B

∂(w,b)l
(i)(w, b). (3.1.9)

To summarize, steps of the algorithm are the following: (i) we initialize the values of the model pa-
rameters, typically at random; (ii) we iteratively sample random batches from the the data (many
times), updating the parameters in the direction of the negative gradient.

92 Chapter 3. Linear Neural Networks

For quadratic losses and linear functions, we can write this out explicitly as follows: Note that w
and x are vectors. Here, the more elegant vector notation makes the math much more readable
than expressing things in terms of coefficients, say w1, w2, . . . , wd.

w← w− η

|B|
∑
i∈B

∂wl
(i)(w, b) = w − η

|B|
∑
i∈B

x(i)
(
w⊤x(i) + b− y(i)

)
,

b← b− η

|B|
∑
i∈B

∂bl
(i)(w, b) = b− η

|B|
∑
i∈B

(
w⊤x(i) + b− y(i)

)
.

(3.1.10)

In the above equation, |B| represents the number of examples in each minibatch (the batch size)
and η denotes the learning rate. We emphasize that the values of the batch size and learning rate
are manually pre-specified and not typically learned through model training. These parameters
that are tunable but not updated in the training loop are called hyper-parameters. Hyperparameter
tuning is the process by which these are chosen, and typically requires that we adjust the hyper-
parameters based on the results of the inner (training) loop as assessed on a separate validation
split of the data.

After training for some predetermined number of iterations (or until some other stopping criteria
is met), we record the estimated model parameters, denoted ŵ, b̂ (in general the “hat” symbol
denotes estimates). Note that even if our function is truly linear and noiseless, these parameters
will not be the exact minimizers of the loss because, although the algorithm converges slowly
towards a local minimum it cannot achieve it exactly in a finite number of steps.

Linear regression happens to be a convex learning problem, and thus there is only one (global)
minimum. However, for more complicated models, like deep networks, the loss surfaces contain
many minima. Fortunately, for reasons that are not yet fully understood, deep learning prac-
titioners seldom struggle to find parameters that minimize the loss on training data. The more
formidable task is to find parameters that will achieve low loss on data that we have not seen be-
fore, a challenge called generalization. We return to these topics throughout the book.

Making Predictions with the Learned Model

Given the learned linear regression model ŵ⊤x+ b̂, we can now estimate the price of a new house
(not contained in the training data) given its area x1 and age (year) x2. Estimating targets given
features is commonly called prediction and inference.

We will try to stick with prediction because calling this step inference, despite emerging as standard
jargon in deep learning, is somewhat of a misnomer. In statistics, inference more often denotes
estimating parameters based on a dataset. This misuse of terminology is a common source of
confusion when deep learning practitioners talk to statisticians.

Vectorization for Speed

When training our models, we typically want to process whole minibatches of examples simulta-
neously. Doing this efficiently requires that we vectorize the calculations and leverage fast linear
algebra libraries rather than writing costly for-loops in Python.

To illustrate why this matters so much, we can consider two methods for adding vectors. To start
we instantiate two 100000-dimensional vectors containing all ones. In one method we will loop
over the vectors with a Python for loop. In the other method we will rely on a single call to np.

3.1. Linear Regression 93

%matplotlib inline
import d2l
import math
from mxnet import np
import time

n = 10000
a = np.ones(n)
b = np.ones(n)

Since we will benchmark the running time frequently in this book, let s̓ define a timer (hereafter
accessed via the d2l package to track the running time.

Saved in the d2l package for later use
class Timer(object):

"""Record multiple running times."""
def __init__(self):

self.times = []
self.start()

def start(self):
Start the timer
self.start_time = time.time()

def stop(self):
Stop the timer and record the time in a list
self.times.append(time.time() - self.start_time)
return self.times[-1]

def avg(self):
Return the average time
return sum(self.times)/len(self.times)

def sum(self):
Return the sum of time
return sum(self.times)

def cumsum(self):
Return the accumuated times
return np.array(self.times).cumsum().tolist()

Now we can benchmark the workloads. First, we add them, one coordinate at a time, using a for
loop.

timer = Timer()
c = np.zeros(n)
for i in range(n):

c[i] = a[i] + b[i]
'%.5f sec' % timer.stop()

'3.51575 sec'

Alternatively, we rely on np to compute the elementwise sum:

94 Chapter 3. Linear Neural Networks

timer.start()
d = a + b
'%.5f sec' % timer.stop()

'0.00023 sec'

You probably noticed that the second method is dramatically faster than the first. Vectorizing code
often yields order-of-magnitude speedups. Moreover, we push more of the math to the library and
need not write as many calculations ourselves, reducing the potential for errors.

3.1.2 The Normal Distribution and Squared Loss

While you can already get your hands dirty using only the information above, in the following
section we can more formally motivate the square loss objective via assumptions about the distri-
bution of noise.

Recall from the above that the squared loss l(y, ŷ) = 1
2(y − ŷ)2 has many convenient properties.

These include a simple derivative ∂ŷl(y, ŷ) = (ŷ − y).

As we mentioned earlier, linear regression was invented by Gauss in 1795, who also discovered
the normal distribution (also called the Gaussian). It turns out that the connection between the
normal distribution and linear regression runs deeper than common parentage. To refresh your
memory, the probability density of a normal distribution with mean µ and variance σ2 is given as
follows:

p(z) =
1√
2πσ2

exp
(
− 1

2σ2
(z − µ)2

)
. (3.1.11)

Below we define a Python function to compute the normal distribution.

x = np.arange(-7, 7, 0.01)

def normal(z, mu, sigma):
p = 1 / math.sqrt(2 * math.pi * sigma**2)
return p * np.exp(- 0.5 / sigma**2 * (z - mu)**2)

We can now visualize the normal distributions.

Mean and variance pairs
parameters = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in parameters], xlabel='z',

ylabel='p(z)', figsize=(4.5, 2.5),
legend=['mean %d, var %d' % (mu, sigma) for mu, sigma in parameters])

3.1. Linear Regression 95

As you can see, changing the mean corresponds to a shift along the x axis, and increasing the
variance spreads the distribution out, lowering its peak.

One way to motivate linear regression with the mean squared error loss function is to formally
assume that observations arise from noisy observations, where the noise is normally distributed
as follows

y = w⊤x+ b+ ϵ where ϵ ∼ N (0, σ2). (3.1.12)

Thus, we can now write out the likelihood of seeing a particular y for a given x via

p(y|x) = 1√
2πσ2

exp
(
− 1

2σ2
(y −w⊤x− b)2

)
. (3.1.13)

Now, according to the maximum likelihood principle, the best values of b and w are those that max-
imize the likelihood of the entire dataset:

P (Y | X) =

n∏
i=1

p(y(i)|x(i)). (3.1.14)

Estimators chosen according to the maximum likelihood principle are called Maximum Likelihood
Estimators (MLE). While, maximizing the product of many exponential functions, might look dif-
ficult, we can simplify things significantly, without changing the objective, by maximizing the log
of the likelihood instead. For historical reasons, optimizations are more often expressed as mini-
mization rather than maximization. So, without changing anything we can minimize the Negative
Log-Likelihood (NLL)− log p(y|X). Working out the math gives us:

− log p(y|X) =
n∑

i=1

1

2
log(2πσ2) +

1

2σ2

(
y(i) −w⊤x(i) − b

)2
. (3.1.15)

Now we just need one more assumption: thatσ is some fixed constant. Thus we can ignore the first
term because it does not depend on w or b. Now the second term is identical to the squared error
objective introduced earlier, but for the multiplicative constant 1

σ2 . Fortunately, the solution does
not depend on σ. It follows that minimizing squared error is equivalent to maximum likelihood
estimation of a linear model under the assumption of additive Gaussian noise.

96 Chapter 3. Linear Neural Networks

3.1.3 From Linear Regression to Deep Networks

So far we only talked about linear functions. While neural networks cover a much richer family
of models, we can begin thinking of the linear model as a neural network by expressing it the
language of neural networks. To begin, let s̓ start by rewriting things in a ʻlayerʼ notation.

Neural Network Diagram

Deep learning practitioners like to draw diagrams to visualize what is happening in their models.
In Fig. 3.1.2, we depict our linear model as a neural network. Note that these diagrams indicate
the connectivity pattern (here, each input is connected to the output) but not the values taken by
the weights or biases.

Fig. 3.1.2: Linear regression is a single-layer neural network.

Because there is just a single computed neuron (node) in the graph (the input values are not com-
puted but given), we can think of linear models as neural networks consisting of just a single ar-
tificial neuron. Since for this model, every input is connected to every output (in this case there
is only one output!), we can regard this transformation as a fully-connected layer, also commonly
called a dense layer. We will talk a lot more about networks composed of such layers in the next
chapter on multilayer perceptrons.

Biology

Although linear regression (invented in 1795) predates computational neuroscience, so it might
seem anachronistic to describe linear regression as a neural network. To see why linear models
were a natural place to begin when the cyberneticists/neurophysiologists Warren McCulloch and
Walter Pitts looked when they began to develop models of artificial neurons, consider the cartoon-
ish picture of a biological neuron in Fig. 3.1.3, consisting of dendrites (input terminals), the nucleus
(CPU), the axon (output wire), and the axon terminals (output terminals), enabling connections to
other neurons via synapses.

3.1. Linear Regression 97

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Fig. 3.1.3: The real neuron

Information xi arriving from other neurons (or environmental sensors such as the retina) is re-
ceived in the dendrites. In particular, that information is weighted by synapticweightswi determin-
ing the effect of the inputs (e.g., activation or inhibition via the product xiwi). The weighted inputs
arriving from multiple sources are aggregated in the nucleus as a weighted sum y =

∑
i xiwi + b,

and this information is then sent for further processing in the axon y, typically after some nonlin-
ear processing via σ(y). From there it either reaches its destination (e.g., a muscle) or is fed into
another neuron via its dendrites.

Certainly, the high-level idea that many such units could be cobbled together with the right con-
nectivity and right learning algorithm, to produce far more interesting and complex behavior than
any one neuron along could express owes to our study of real biological neural systems.

At the same time, most research in deep learning today draws little direct inspiration in neuro-
science. We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial In-
telligence: A Modern Approach (Russell & Norvig, 2016), pointed out that although airplanes might
have been inspired by birds, orninthology has not been the primary driver of aeronautics inno-
vation for some centuries. Likewise, inspiration in deep learning these days comes in equal or
greater measure from mathematics, statistics, and computer science.

Summary

• Key ingredients in a machine learning model are training data, a loss function, an optimiza-
tion algorithm, and quite obviously, the model itself.

• Vectorizing makes everything better (mostly math) and faster (mostly code).

• Minimizing an objective function and performing maximum likelihood can mean the same
thing.

• Linear models are neural networks, too.

98 Chapter 3. Linear Neural Networks

Exercises

1. Assume that we have some data x1, . . . , xn ∈ R. Our goal is to find a constant b such that∑
i(xi − b)2 is minimized.

• Find a closed-form solution for the optimal value of b.

• How does this problem and its solution relate to the normal distribution?

2. Derive the closed-form solution to the optimization problem for linear regression with
squared error. To keep things simple, you can omit the bias b from the problem (we can
do this in principled fashion by adding one column to X consisting of all ones).

• Write out the optimization problem in matrix and vector notation (treat all the data as
a single matrix, all the target values as a single vector).

• Compute the gradient of the loss with respect to w.

• Find the closed form solution by setting the gradient equal to zero and solving the ma-
trix equation.

• When might this be better than using stochastic gradient descent? When might this
method break?

3. Assume that the noise model governing the additive noise ϵ is the exponential distribution.
That is, p(ϵ) = 1

2 exp(−|ϵ|).

• Write out the negative log-likelihood of the data under the model− logP (Y | X).

• Can you find a closed form solution?

• Suggest a stochastic gradient descent algorithm to solve this problem. What could pos-
sibly go wrong (hint - what happens near the stationary point as we keep on updating
the parameters). Can you fix this?

3.2 Linear Regression Implementation from Scratch

Now that you understand the key ideas behind linear regression, we can begin to work through
a hands-on implementation in code. In this section, we will implement the entire method from
scratch, including the data pipeline, the model, the loss function, and the gradient descent op-
timizer. While modern deep learning frameworks can automate nearly all of this work, imple-
menting things from scratch is the only to make sure that you really know what you are doing.
Moreover, when it comes time to customize models, defining our own layers, loss functions, etc.,
understanding how things work under the hood will prove handy. In this section, we will rely only
on ndarray and autograd. Afterwards, we will introduce a more compact implementation, taking
advantage of Gluons̓ bells and whistles. To start off, we import the few required packages.

%matplotlib inline
import d2l

(continues on next page)

3.2. Linear Regression Implementation from Scratch 99

(continued from previous page)

from mxnet import autograd, np, npx
import random
npx.set_np()

3.2.1 Generating the Dataset

To keep things simple, we will construct an artificial dataset according to a linear model with
additive noise. Out task will be to recover this model s̓ parameters using the finite set of examples
contained in our dataset. We will keep the data low-dimensional so we can visualize it easily. In
the following code snippet, we generated a dataset containing 1000 examples, each consisting of
2 features sampled from a standard normal distribution. Thus our synthetic dataset will be an
object X ∈ R1000×2.

The true parameters generating our data will be w = [2,−3.4]⊤ and b = 4.2 and our synthetic
labels will be assigned according to the following linear model with noise term ϵ:

y = Xw+ b+ ϵ. (3.2.1)

You could think of ϵ as capturing potential measurement errors on the features and labels. We
will assume that the standard assumptions hold and thus that ϵ obeys a normal distribution with
mean of 0. To make our problem easy, we will set its standard deviation to 0.01. The following
code generates our synthetic dataset:

Saved in the d2l package for later use
def synthetic_data(w, b, num_examples):

"""generate y = X w + b + noise"""
X = np.random.normal(0, 1, (num_examples, len(w)))
y = np.dot(X, w) + b
y += np.random.normal(0, 0.01, y.shape)
return X, y

true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

Note that each row in features consists of a 2-dimensional data point and that each row in labels
consists of a 1-dimensional target value (a scalar).

print('features:', features[0],'\nlabel:', labels[0])

features: [2.2122064 1.1630787]
label: 4.662078

By generating a scatter plot using the second features[:, 1] and labels, we can clearly observe
the linear correlation between the two.

d2l.set_figsize((3.5, 2.5))
d2l.plt.scatter(features[:, 1].asnumpy(), labels.asnumpy(), 1);

100 Chapter 3. Linear Neural Networks

3.2.2 Reading the Dataset

Recall that training models consists of making multiple passes over the dataset, grabbing one
minibatch of examples at a time, and using them to update our model. Since this process is so fun-
damental to training machine learning algorithms, its worth defining a utility function to shuffle
the data and access it in minibatches.

In the following code, we define a data_iter function to demonstrate one possible implementa-
tion of this functionality. The function takes a batch size, a design matrix, and a vector of labels,
yielding minibatches of size batch_size. Each minibatch consists of an tuple of features and la-
bels.

def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
The examples are read at random, in no particular order
random.shuffle(indices)
for i in range(0, num_examples, batch_size):

batch_indices = np.array(
indices[i: min(i + batch_size, num_examples)])

yield features[batch_indices], labels[batch_indices]

In general, note that we want to use reasonably sized minibatches to take advantage of the GPU
hardware, which excels at parallelizing operations. Because each example can be fed through our
models in parallel and the gradient of the loss function for each example can also be taken in
parallel, GPUs allow us to process hundreds of examples in scarcely more time than it might take
to process just a single example.

To build some intuition, let s̓ read and print the first small batch of data examples. The shape of
the features in each minibatch tells us both the minibatch size and the number of input features.
Likewise, our minibatch of labels will have a shape given by batch_size.

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break

3.2. Linear Regression Implementation from Scratch 101

[[0.75600237 0.16707687]
[-0.41116217 -0.5758122]
[0.07801306 -0.98644793]
[-0.8773337 -1.2138577]
[-0.16882208 0.32604918]
[-0.51751894 -0.5553699]
[-0.06807706 -0.13130364]
[-0.07048063 0.26596692]
[-1.1500514 0.11681478]
[-0.6699576 -0.06915967]]
[5.1450267 5.3464904 7.7167864 6.5756965 2.7615652 5.0592566 4.5233345
3.1558564 1.512002 3.0932438]

As we run the iterator, we obtain distinct minibatches successively until all the data has been
exhausted (try this). While the iterator implemented above is good for didactic purposes, it is
inefficient in ways that might get us in trouble on real problems. For example, it requires that we
load all data in memory and that we perform lots of random memory access. The built-in iterators
implemented in Apache MXNet are considerably efficient and they can deal both with data stored
on file and data fed via a data stream.

3.2.3 Initializing Model Parameters

Before we can begin optimizing our model s̓ parameters by gradient descent, we need to have some
parameters in the first place. In the following code, we initialize weights by sampling random
numbers from a normal distribution with mean 0 and a standard deviation of 0.01, setting the
bias b to 0.

w = np.random.normal(0, 0.01, (2, 1))
b = np.zeros(1)

Now that we have initialized our parameters, our next task is to update them until they fit our data
sufficiently well. Each update requires taking the gradient (a multi-dimensional derivative) of our
loss function with respect to the parameters. Given this gradient, we can update each parameter
in the direction that reduces the loss.

Since nobody wants to compute gradients explicitly (this is tedious and error prone), we use au-
tomatic differentiation to compute the gradient. See Section 2.5 for more details. Recall from the
autograd chapter that in order for autograd to know that it should store a gradient for our param-
eters, we need to invoke the attach_grad function, allocating memory to store the gradients that
we plan to take.

w.attach_grad()
b.attach_grad()

102 Chapter 3. Linear Neural Networks

3.2.4 Defining the Model

Next, we must define our model, relating its inputs and parameters to its outputs. Recall that
to calculate the output of the linear model, we simply take the matrix-vector dot product of the
examples X and the models weights w, and add the offset b to each example. Note that below np.
dot(X, w) is a vector and b is a scalar. Recall that when we add a vector and a scalar, the scalar is
added to each component of the vector.

Saved in the d2l package for later use
def linreg(X, w, b):

return np.dot(X, w) + b

3.2.5 Defining the Loss Function

Since updating our model requires taking the gradient of our loss function, we ought to define
the loss function first. Here we will use the squared loss function as described in the previous
section. In the implementation, we need to transform the true value y into the predicted value s̓
shape y_hat. The result returned by the following function will also be the same as the y_hat
shape.

Saved in the d2l package for later use
def squared_loss(y_hat, y):

return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

3.2.6 Defining the Optimization Algorithm

As we discussed in the previous section, linear regression has a closed-form solution. However,
this is not a book about linear regression, it is a book about deep learning. Since none of the
other models that this book introduces can be solved analytically, we will take this opportunity to
introduce your first working example of stochastic gradient descent (SGD).

At each step, using one batch randomly drawn from our dataset, we will estimate the gradient of
the loss with respect to our parameters. Next, we will update our parameters (a small amount)
in the direction that reduces the loss. Recall from Section 2.5 that after we call backward each
parameter (param) will have its gradient stored in param.grad. The following code applies the SGD
update, given a set of parameters, a learning rate, and a batch size. The size of the update step
is determined by the learning rate lr. Because our loss is calculated as a sum over the batch of
examples, we normalize our step size by the batch size (batch_size), so that the magnitude of a
typical step size does not depend heavily on our choice of the batch size.

Saved in the d2l package for later use
def sgd(params, lr, batch_size):

for param in params:
param[:] = param - lr * param.grad / batch_size

3.2. Linear Regression Implementation from Scratch 103

3.2.7 Training

Now that we have all of the parts in place, we are ready to implement the main training loop. It
is crucial that you understand this code because you will see nearly identical training loops over
and over again throughout your career in deep learning.

In each iteration, we will grab minibatches of models, first passing them through our model to
obtain a set of predictions. After calculating the loss, we call the backward function to initiate the
backwards pass through the network, storing the gradients with respect to each parameter in its
corresponding .grad attribute. Finally, we will call the optimization algorithm sgd to update the
model parameters. Since we previously set the batch size batch_size to 10, the loss shape l for
each minibatch is (10, 1).

In summary, we will execute the following loop:

• Initialize parameters (w, b)

• Repeat until done

– Compute gradient g← ∂(w,b)
1
B
∑

i∈B l(xi, yi,w, b)

– Update parameters (w, b)← (w, b)− ηg

In the code below, l is a vector of the losses for each example in the minibatch. Because l is not a
scalar variable, running l.backward() adds together the elements in l to obtain the new variable
and then calculates the gradient.

In each epoch (a pass through the data), we will iterate through the entire dataset (using the
data_iter function) once passing through every examples in the training dataset (assuming the
number of examples is divisible by the batch size). The number of epochs num_epochs and the
learning rate lr are both hyper-parameters, which we set here to 3 and 0.03, respectively. Unfor-
tunately, setting hyper-parameters is tricky and requires some adjustment by trial and error. We
elide these details for now but revise them later in Chapter 11.

lr = 0.03 # Learning rate
num_epochs = 3 # Number of iterations
net = linreg # Our fancy linear model
loss = squared_loss # 0.5 (y-y')^2

for epoch in range(num_epochs):
Assuming the number of examples can be divided by the batch size, all
the examples in the training dataset are used once in one epoch
iteration. The features and tags of minibatch examples are given by X
and y respectively
for X, y in data_iter(batch_size, features, labels):

with autograd.record():
l = loss(net(X, w, b), y) # Minibatch loss in X and y

l.backward() # Compute gradient on l with respect to [w, b]
sgd([w, b], lr, batch_size) # Update parameters using their gradient

train_l = loss(net(features, w, b), labels)
print('epoch %d, loss %f' % (epoch + 1, train_l.mean().asnumpy()))

epoch 1, loss 0.025000
epoch 2, loss 0.000089
epoch 3, loss 0.000051

104 Chapter 3. Linear Neural Networks

In this case, because we synthesized the data ourselves, we know precisely what the true param-
eters are. Thus, we can evaluate our success in training by comparing the true parameters with
those that we learned through our training loop. Indeed they turn out to be very close to each
other.

print('Error in estimating w', true_w - w.reshape(true_w.shape))
print('Error in estimating b', true_b - b)

Error in estimating w [0.00050855 0.00011015]
Error in estimating b [0.00079584]

Note that we should not take it for granted that we are able to recover the parameters accurately.
This only happens for a special category problems: strongly convex optimization problems with
“enough” data to ensure that the noisy samples allow us to recover the underlying dependency.
In most cases this is not the case. In fact, the parameters of a deep network are rarely the same (or
even close) between two different runs, unless all conditions are identical, including the order in
which the data is traversed. However, in machine learning, we are typically less concerned with
recovering true underlying parameters, and more concerned with parameters that lead to accu-
rate prediction. Fortunately, even on difficult optimization problems, stochastic gradient descent
can often find remarkably good solutions, owing partly to the fact that, for deep networks, there
exist many configurations of the parameters that lead to accurate prediction.

Summary

We saw how a deep network can be implemented and optimized from scratch, using just ndarray
and autograd, without any need for defining layers, fancy optimizers, etc. This only scratches the
surface of what is possible. In the following sections, we will describe additional models based
on the concepts that we have just introduced and learn how to implement them more concisely.

Exercises

1. What would happen if we were to initialize the weights w = 0. Would the algorithm still
work?

2. Assume that you are Georg Simon Ohm51 trying to come up with a model between voltage
and current. Can you use autograd to learn the parameters of your model.

3. Can you use Planck s̓ Law52 to determine the temperature of an object using spectral energy
density?

4. What are the problems you might encounter if you wanted to extend autograd to second
derivatives? How would you fix them?

5. Why is the reshape function needed in the squared_loss function?

6. Experiment using different learning rates to find out how fast the loss function value drops.

7. If the number of examples cannot be divided by the batch size, what happens to the
data_iter functions̓ behavior?

51 https://en.wikipedia.org/wiki/Georg_Ohm
52 https://en.wikipedia.org/wiki/Planck%27s_law

3.2. Linear Regression Implementation from Scratch 105

https://en.wikipedia.org/wiki/Georg_Ohm
https://en.wikipedia.org/wiki/Planck%27s_law

3.3 Concise Implementation of Linear Regression

Broad and intense interest in deep learning for the past several years has inspired both companies,
academics, and hobbyists to develop a variety of mature open source frameworks for automating
the repetitive work of implementing gradient-based learning algorithms. In the previous section,
we relied only on (i) ndarray for data storage and linear algebra; and (ii) autograd for calculating
derivatives. In practice, because data iterators, loss functions, optimizers, and neural network
layers (and some whole architectures) are so common, modern libraries implement these com-
ponents for us as well.

In this section, we will show you how to implement the linear regression model from Section 3.2
concisely by using Gluon.

3.3.1 Generating the Dataset

To start, we will generate the same dataset as in the previous section.

import d2l
from mxnet import autograd, gluon, np, npx
npx.set_np()

true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

3.3.2 Reading the Dataset

Rather than rolling our own iterator, we can call upon Gluons̓ data module to read data. The first
step will be to instantiate an ArrayDataset. This object s̓ constructor takes one or more ndarrays
as arguments. Here, we pass in features and labels as arguments. Next, we will use the Array-
Dataset to instantiate a DataLoader, which also requires that we specify a batch_size and specify
a Boolean value shuffle indicating whether or not we want the DataLoader to shuffle the data on
each epoch (pass through the dataset).

Saved in the d2l package for later use
def load_array(data_arrays, batch_size, is_train=True):

"""Construct a Gluon data loader"""
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)

106 Chapter 3. Linear Neural Networks

Now we can use data_iter in much the same way as we called the data_iter function in the pre-
vious section. To verify that it is working, we can read and print the first minibatch of instances.

for X, y in data_iter:
print(X, '\n', y)
break

[[1.9118724 0.99435186]
[-0.69279176 -0.11865307]
[-0.83655155 -0.58954424]
[-0.9345107 1.0642178]
[-0.34534106 -0.7556803]
[0.30967948 -1.7559303]
[-0.6308071 0.53733146]
[0.46879596 -0.30394194]
[0.75600237 0.16707687]
[-0.16452314 -0.21437684]]
[4.6377006 3.2253058 4.530804 -1.2874792 6.07641 10.791387
1.0948168 6.1717677 5.1450267 4.620073]

3.3.3 Defining the Model

When we implemented linear regression from scratch (in :numref``sec_linear_scratch``), we de-
fined our model parameters explicitly and coded up the calculations to produce output using ba-
sic linear algebra operations. You should know how to do this. But once your models get more
complex, and once you have to do this nearly every day, you will be glad for the assistance. The
situation is similar to coding up your own blog from scratch. Doing it once or twice is rewarding
and instructive, but you would be a lousy web developer if every time you needed a blog you spent
a month reinventing the wheel.

For standard operations, we can use Gluons̓ predefined layers, which allow us to focus especially
on the layers used to construct the model rather than having to focus on the implementation.
To define a linear model, we first import the nn module, which defines a large number of neural
network layers (note that “nn” is an abbreviation for neural networks). We will first define a model
variable net, which will refer to an instance of the Sequential class. In Gluon, Sequential defines
a container for several layers that will be chained together. Given input data, a Sequential passes
it through the first layer, in turn passing the output as the second layer s̓ input and so forth. In
the following example, our model consists of only one layer, so we do not really need Sequential.
But since nearly all of our future models will involve multiple layers, we will use it anyway just to
familiarize you with the most standard workflow.

from mxnet.gluon import nn
net = nn.Sequential()

Recall the architecture of a single-layer network as shown in Fig. 3.3.1. The layer is said to be
fully-connected because each of its inputs are connected to each of its outputs by means of a matrix-
vector multiplication. In Gluon, the fully-connected layer is defined in the Dense class. Since we
only want to generate a single scalar output, we set that number to 1.

3.3. Concise Implementation of Linear Regression 107

Fig. 3.3.1: Linear regression is a single-layer neural network.

net.add(nn.Dense(1))

It is worth noting that, for convenience, Gluon does not require us to specify the input shape for
each layer. So here, we do not need to tell Gluon how many inputs go into this linear layer. When
we first try to pass data through our model, e.g., when we execute net(X) later, Gluon will auto-
matically infer the number of inputs to each layer. We will describe how this works in more detail
in the chapter “Deep Learning Computation”.

3.3.4 Initializing Model Parameters

Before using net, we need to initialize the model parameters, such as the weights and biases in
the linear regression model. We will import the initializer module from MXNet. This module
provides various methods for model parameter initialization. Gluon makes init available as a
shortcut (abbreviation) to access the initializer package. By calling init.Normal(sigma=0.01),
we specify that each weight parameter should be randomly sampled from a normal distribution
with mean 0 and standard deviation 0.01. The bias parameter will be initialized to zero by default.
Both the weight vector and bias will have attached gradients.

from mxnet import init
net.initialize(init.Normal(sigma=0.01))

The code above may look straightforward but you should note that something strange is happening
here. We are initializing parameters for a network even though Gluon does not yet know how
many dimensions the input will have! It might be 2 as in our example or it might be 2000. Gluon
lets us get away with this because behind the scenes, the initialization is actually deferred. The
real initialization will take place only when we for the first time attempt to pass data through the
network. Just be careful to remember that since the parameters have not been initialized yet, we
cannot access or manipulate them.

3.3.5 Defining the Loss Function

In Gluon, the loss module defines various loss functions. We will the imported module loss with
the pseudonym gloss, to avoid confusing it for the variable holding our chosen loss function. In
this example, we will use the Gluon implementation of squared loss (L2Loss).

from mxnet.gluon import loss as gloss
loss = gloss.L2Loss() # The squared loss is also known as the L2 norm loss

108 Chapter 3. Linear Neural Networks

3.3.6 Defining the Optimization Algorithm

Minibatch SGD and related variants are standard tools for optimizing neural networks and thus
Gluon supports SGD alongside a number of variations on this algorithm through its Trainer class.
When we instantiate the Trainer, we will specify the parameters to optimize over (obtainable from
our net via net.collect_params()), the optimization algorithm we wish to use (sgd), and a dictio-
nary of hyper-parameters required by our optimization algorithm. SGD just requires that we set
the value learning_rate, (here we set it to 0.03).

from mxnet import gluon
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})

3.3.7 Training

You might have noticed that expressing our model through Gluon requires comparatively few lines
of code. We did not have to individually allocate parameters, define our loss function, or im-
plement stochastic gradient descent. Once we start working with much more complex models,
Gluons̓ advantages will grow considerably. However, once we have all the basic pieces in place,
the training loop itself is strikingly similar to what we did when implementing everything from
scratch.

To refresh your memory: for some number of epochs, we will make a complete pass over the
dataset (train_data), iteratively grabbing one minibatch of inputs and the corresponding ground-
truth labels. For each minibatch, we go through the following ritual:

• Generate predictions by calling net(X) and calculate the loss l (the forward pass).

• Calculate gradients by calling l.backward() (the backward pass).

• Update the model parameters by invoking our SGD optimizer (note that trainer already
knows which parameters to optimize over, so we just need to pass in the minibatch size.

For good measure, we compute the loss after each epoch and print it to monitor progress.

num_epochs = 3
for epoch in range(1, num_epochs + 1):

for X, y in data_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
trainer.step(batch_size)

l = loss(net(features), labels)
print('epoch %d, loss: %f' % (epoch, l.mean().asnumpy()))

epoch 1, loss: 0.025167
epoch 2, loss: 0.000090
epoch 3, loss: 0.000051

Below, we compare the model parameters learned by training on finite data and the actual param-
eters that generated our dataset. To access parameters with Gluon, we first access the layer that we
need from net and then access that layer s̓ weight (weight) and bias (bias). To access each param-
eter s̓ values as an ndarray, we invoke its data method. As in our from-scratch implementation,
note that our estimated parameters are close to their ground truth counterparts.

3.3. Concise Implementation of Linear Regression 109

w = net[0].weight.data()
print('Error in estimating w', true_w.reshape(w.shape) - w)
b = net[0].bias.data()
print('Error in estimating b', true_b - b)

Error in estimating w [[0.00019813 0.0003016]]
Error in estimating b [0.00057745]

Summary

• Using Gluon, we can implement models much more succinctly.

• In Gluon, the data module provides tools for data processing, the nn module defines a large
number of neural network layers, and the loss module defines many common loss func-
tions.

• MXNet s̓ module initializer provides various methods for model parameter initialization.

• Dimensionality and storage are automatically inferred (but be careful not to attempt to ac-
cess parameters before they have been initialized).

Exercises

1. If we replace l = loss(output, y) with l = loss(output, y).mean(), we need to change
trainer.step(batch_size) to trainer.step(1) for the code to behave identically. Why?

2. Review the MXNet documentation to see what loss functions and initialization methods are
provided in the modules gluon.loss and init. Replace the loss by Huber s̓ loss.

3. How do you access the gradient of dense.weight?

3.4 Softmax Regression

In Section 3.1, we introduced linear regression, working through implementations from scratch
in Section 3.2 and again using Gluon in Section 3.3 to do the heavy lifting.

Regression is the hammer we reach for when we want to answer how much? or how many? ques-
tions. If you want to predict the number of dollars (the price) at which a house will be sold, or
the number of wins a baseball team might have, or the number of days that a patient will remain
hospitalized before being discharged, then you are probably looking for a regression model.

In practice, we are more often interested in classification: asking not how much? but which one?

• Does this email belong in the spam folder or the inbox*?

• Is this customer more likely to sign up or not to sign up for a subscription service?*

110 Chapter 3. Linear Neural Networks

• Does this image depict a donkey, a dog, a cat, or a rooster?

• Which movie is Aston most likely to watch next?

Colloquially, machine learning practitioners overload the word classification to describe two subtly
different problems: (i) those where we are interested only in hard assignments of examples to
categories; and (ii) those where we wish to make soft assignments, i.e., to assess the probability that
each category applies. The distinction tends to get blurred, in part, because often, even when we
only care about hard assignments, we still use models that make soft assignments.

3.4.1 Classification Problems

To get our feet wet, let s̓ start off with a simple image classification problem. Here, each input
consists of a 2× 2 grayscale image. We can represent each pixel value with a single scalar, giving
us four features x1, x2, x3, x4. Further, let s̓ assume that each image belongs to one among the
categories “cat”, “chicken” and “dog”.

Next, we have to choose how to represent the labels. We have two obvious choices. Perhaps the
most natural impulse would be to choose y ∈ {1, 2, 3}, where the integers represent {dog, cat,
chicken} respectively. This is a great way of storing such information on a computer. If the cat-
egories had some natural ordering among them, say if we were trying to predict {baby, toddler,
adolescent, young adult, adult, geriatric}, then it might even make sense to cast this problem as
regression and keep the labels in this format.

But general classification problems do not come with natural orderings among the classes. For-
tunately, statisticians long ago invented a simple way to represent categorical data: the one hot
encoding. A one-hot encoding is a vector with as many components as we have categories. The
component corresponding to particular instance s̓ category is set to 1 and all other components
are set to 0.

y ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (3.4.1)

In our case, y would be a three-dimensional vector, with (1, 0, 0) corresponding to “cat”, (0, 1, 0) to
“chicken” and (0, 0, 1) to “dog”.

Network Architecture

In order to estimate the conditional probabilities associated with each classes, we need a model
with multiple outputs, one per class. To address classification with linear models, we will need as
many linear functions as we have outputs. Each output will correspond to its own linear function.
In our case, since we have 4 features and 3 possible output categories, we will need 12 scalars to
represent the weights, (w with subscripts) and 3 scalars to represent the biases (b with subscripts).
We compute these three logits, o1, o2, and o3, for each input:

o1 = x1w11 + x2w12 + x3w13 + x4w14 + b1,

o2 = x1w21 + x2w22 + x3w23 + x4w24 + b2,

o3 = x1w31 + x2w32 + x3w33 + x4w34 + b3.

(3.4.2)

We can depict this calculation with the neural network diagram shown in Fig. 3.4.1. Just as in lin-
ear regression, softmax regression is also a single-layer neural network. And since the calculation
of each output, o1, o2, and o3, depends on all inputs, x1, x2, x3, and x4, the output layer of softmax
regression can also be described as fully-connected layer.

3.4. Softmax Regression 111

Fig. 3.4.1: Softmax regression is a single-layer neural network.

To express the model more compactly, we can use linear algebra notation. In vector form, we
arrive at o = Wx + b, a form better suited both for mathematics, and for writing code. Note that
we have gathered all of our weights into a 3× 4 matrix and that for a given example x, our outputs
are given by a matrix-vector product of our weights by our inputs plus our biases b.

Softmax Operation

The main approach that we are going to take here is to interpret the outputs of our model as proba-
bilities. We will optimize our parameters to produce probabilities that maximize the likelihood of
the observed data. Then, to generate predictions, we will set a threshold, for example, choosing
the argmax of the predicted probabilities.

Put formally, we would like outputs ŷk that we can interpret as the probability that a given item
belongs to class k. Then we can choose the class with the largest output value as our prediction
argmaxk yk. For example, if ŷ1, ŷ2, and ŷ3 are 0.1, .8, and 0.1, respectively, then we predict category
2, which (in our example) represents “chicken”.

You might be tempted to suggest that we interpret the logits o directly as our outputs of interest.
However, there are some problems with directly interpreting the output of the linear layer as a
probability. Nothing constrains these numbers to sum to 1. Moreover, depending on the inputs,
they can take negative values. These violate basic axioms of probability presented in Section 2.6

To interpret our outputs as probabilities, we must guarantee that (even on new data), they will be
nonnegative and sum up to 1. Moreover, we need a training objective that encourages the model
to estimate faithfully probabilities. Of all instances when a classifier outputs .5, we hope that half
of those examples will actually belong to the predicted class. This is a property called calibration.

The softmax function, invented in 1959 by the social scientist R Duncan Luce in the context of choice
models does precisely this. To transform our logits such that they become nonnegative and sum to
1, while requiring that the model remains differentiable, we first exponentiate each logit (ensuring
non-negativity) and then divide by their sum (ensuring that they sum to 1).

ŷ = softmax(o) where ŷi =
exp(oi)∑
j exp(oj)

. (3.4.3)

It is easy to see ŷ1 + ŷ2 + ŷ3 = 1 with 0 ≤ ŷi ≤ 1 for all i. Thus, ŷ is a proper probability distribu-
tion and the values of ŷ can be interpreted accordingly. Note that the softmax operation does not
change the ordering among the logits, and thus we can still pick out the most likely class by:

ı̂(o) = argmax
i

oi = argmax
i

ŷi. (3.4.4)

The logits o then are simply the pre-softmax values that determining the probabilities assigned
to each category. Summarizing it all in vector notation we get o(i) = Wx(i) + b, where ŷ(i) =
softmax(o(i)).

112 Chapter 3. Linear Neural Networks

Vectorization for Minibatches

To improve computational efficiency and take advantage of GPUs, we typically carry out vector
calculations for minibatches of data. Assume that we are given a minibatch X of examples with
dimensionality d and batch size n. Moreover, assume that we have q categories (outputs). Then
the minibatch features X are in Rn×d, weights W ∈ Rd×q, and the bias satisfies b ∈ Rq.

O = XW+ b,
Ŷ = softmax(O).

(3.4.5)

This accelerates the dominant operation into a matrix-matrix product WX vs the matrix-vector
products we would be executing if we processed one example at a time. The softmax itself can be
computed by exponentiating all entries in O and then normalizing them by the sum.

3.4.2 Loss Function

Next, we need a loss function to measure the quality of our predicted probabilities. We will rely on
likelihood maximization, the very same concept that we encountered when providing a probabilis-
tic justification for the least squares objective in linear regression (Section 3.1).

Log-Likelihood

The softmax function gives us a vector ŷ, which we can interpret as estimated conditional prob-
abilities of each class given the input x, e.g., ŷ1 = P̂ (y = cat | x). We can compare the estimates
with reality by checking how probable the actual classes are according to our model, given the
features.

P (Y | X) =

n∏
i=1

P (y(i) | x(i)) and thus − logP (Y | X) =

n∑
i=1

− logP (y(i) | x(i)). (3.4.6)

Maximizing P (Y | X) (and thus equivalently minimizing− logP (Y | X)) corresponds to predict-
ing the label well. This yields the loss function (we dropped the superscript (i) to avoid notation
clutter):

l = − logP (y | x) = −
∑
j

yj log ŷj . (3.4.7)

For reasons explained later on, this loss function is commonly called the cross-entropy loss. Here,
we used that by construction ŷ is a discrete probability distribution and that the vector y is a one-
hot vector. Hence the the sum over all coordinates j vanishes for all but one term. Since all ŷj are
probabilities, their logarithm is never larger than 0. Consequently, the loss function cannot be
minimized any further if we correctly predict y with certainty, i.e., if P (y | x) = 1 for the correct
label. Note that this is often not possible. For example, there might be label noise in the dataset
(some examples may be mislabeled). It may also not be possible when the input features are not
sufficiently informative to classify every example perfectly.

3.4. Softmax Regression 113

Softmax and Derivatives

Since the softmax and the corresponding loss are so common, it is worth while understanding a
bit better how it is computed. Plugging o into the definition of the loss l and using the definition
of the softmax we obtain:

l = −
∑
j

yj log ŷj =
∑
j

yj log
∑
k

exp(ok)−
∑
j

yjoj = log
∑
k

exp(ok)−
∑
j

yjoj . (3.4.8)

To understand a bit better what is going on, consider the derivative with respect to o. We get

∂oj l =
exp(oj)∑
k exp(ok)

− yj = softmax(o)j − yj = P (y = j | x)− yj . (3.4.9)

In other words, the gradient is the difference between the probability assigned to the true class
by our model, as expressed by the probability P (y | x), and what actually happened, as expressed
by y. In this sense, it is very similar to what we saw in regression, where the gradient was the
difference between the observation y and estimate ŷ. This is not coincidence. In any exponential
family55 model, the gradients of the log-likelihood are given by precisely this term. This fact makes
computing gradients easy in practice.

Cross-Entropy Loss

Now consider the case where we observe not just a single outcome but an entire distribution over
outcomes. We can use the same representation as before for y. The only difference is that rather
than a vector containing only binary entries, say (0, 0, 1), we now have a generic probability vector,
say (0.1, 0.2, 0.7). The math that we used previously to define the loss l still works out fine, just that
the interpretation is slightly more general. It is the expected value of the loss for a distribution
over labels.

l(y, ŷ) = −
∑
j

yj log ŷj . (3.4.10)

This loss is called the cross-entropy loss and it is one of the most commonly used losses for multi-
class classification. We can demystify the name by introducing the basics of information theory.

3.4.3 Information Theory Basics

Information theory deals with the problem of encoding, decoding, transmitting and manipulating
information (also known as data) in as concise form as possible.

Entropy

The central idea in information theory is to quantify the information content in data. This quantity
places a hard limit on our ability to compress the data. In information theory, this quantity is
called the entropy56 of a distribution p, and it is captured by the following equation:

H[p] =
∑
j

−p(j) log p(j). (3.4.11)

55 https://en.wikipedia.org/wiki/Exponential_family
56 https://en.wikipedia.org/wiki/Entropy

114 Chapter 3. Linear Neural Networks

https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Exponential_family
https://en.wikipedia.org/wiki/Entropy

One of the fundamental theorems of information theory states that in order to encode data drawn
randomly from the distribution p, we need at least H[p] “nats” to encode it. If you wonder what a
“nat” is, it is the equivalent of bit but when using a code with base e rather than one with base 2.
One nat is 1

log(2) ≈ 1.44 bit. H[p]/2 is often also called the binary entropy.

Surprisal

You might be wondering what compression has to do with prediction. Imagine that we have a
stream of data that we want to compress. If it is always easy for us to predict the next token,
then this data is easy to compress! Take the extreme example where every token in the stream
always takes the same value. That is a very boring data stream! And not only is it boring, but it is
easy to predict. Because they are always the same, we do not have to transmit any information to
communicate the contents of the stream. Easy to predict, easy to compress.

However if we cannot perfectly predict every event, then we might some times be surprised. Our
surprise is greater when we assigned an event lower probability. For reasons that we will elaborate
in the appendix, Claude Shannon settled on log(1/p(j)) = − log p(j) to quantify one s̓ surprisal at
observing an event j having assigned it a (subjective) probability p(j). The entropy is then the
expected surprisal when one assigned the correct probabilities (that truly match the data-generating
process). The entropy of the data is then the least surprised that one can ever be (in expectation).

Cross-Entropy Revisited

So if entropy is level of surprise experienced by someone who knows the true probability, then
you might be wondering, what is cross-entropy? The cross-entropy from :math:`p` to :math:`q`, de-
noted H(p, q), is the expected surprisal of an observer with subjective probabilities q upon seeing
data that was actually generated according to probabilities p. The lowest possible cross-entropy
is achieved when p = q. In this case, the cross-entropy from p to q is H(p, p) = H(p). Relating
this back to our classification objective, even if we get the best possible predictions, if the best
possible possible, then we will never be perfect. Our loss is lower-bounded by the entropy given
by the actual conditional distributions P (y | x).

Kullback Leibler Divergence

Perhaps the most common way to measure the distance between two distributions is to calculate
the Kullback Leibler divergence D(p∥q). This is simply the difference between the cross-entropy
and the entropy, i.e., the additional cross-entropy incurred over the irreducible minimum value it
could take:

D(p∥q) = H(p, q)−H[p] =
∑
j

p(j) log
p(j)

q(j)
. (3.4.12)

Note that in classification, we do not know the true p, so we cannot compute the entropy directly.
However, because the entropy is out of our control, minimizing D(p∥q) with respect to q is equiv-
alent to minimizing the cross-entropy loss.

In short, we can think of the cross-entropy classification objective in two ways: (i) as maximizing
the likelihood of the observed data; and (ii) as minimizing our surprise (and thus the number of
bits) required to communicate the labels.

3.4. Softmax Regression 115

3.4.4 Model Prediction and Evaluation

After training the softmax regression model, given any example features, we can predict the prob-
ability of each output category. Normally, we use the category with the highest predicted proba-
bility as the output category. The prediction is correct if it is consistent with the actual category
(label). In the next part of the experiment, we will use accuracy to evaluate the model s̓ perfor-
mance. This is equal to the ratio between the number of correct predictions a nd the total number
of predictions.

Summary

• We introduced the softmax operation which takes a vector maps it into probabilities.

• Softmax regression applies to classification problems. It uses the probability distribution of
the output category in the softmax operation.

• cross-entropy is a good measure of the difference between two probability distributions. It
measures the number of bits needed to encode the data given our model.

Exercises

1. Show that the Kullback-Leibler divergence D(p∥q) is nonnegative for all distributions p and
q. Hint: use Jensens̓ inequality, i.e., use the fact that − logx is a convex function.

2. Show that log
∑

j exp(oj) is a convex function in o.

3. We can explore the connection between exponential families and the softmax in some more
depth

• Compute the second derivative of the cross-entropy loss l(y, ŷ) for the softmax.

• Compute the variance of the distribution given by softmax(o) and show that it matches
the second derivative computed above.

4. Assume that we three classes which occur with equal probability, i.e., the probability vector
is (13 ,

1
3 ,

1
3).

• What is the problem if we try to design a binary code for it? Can we match the entropy
lower bound on the number of bits?

• Can you design a better code. Hint: what happens if we try to encode two independent
observations? What if we encode n observations jointly?

5. Softmax is a misnomer for the mapping introduced above (but everyone in deep learning
uses it). The real softmax is defined as RealSoftMax(a, b) = log(exp(a) + exp(b)).

• Prove that RealSoftMax(a, b) > max(a, b).

• Prove that this holds for λ−1RealSoftMax(λa, λb), provided that λ > 0.

• Show that for λ→∞ we have λ−1RealSoftMax(λa, λb)→ max(a, b).

• What does the soft-min look like?

• Extend this to more than two numbers.

116 Chapter 3. Linear Neural Networks

3.5 The Image Classification Dataset (Fashion-MNIST)

In Section 17.8, we trained a naive Bayes classifier, using the MNIST dataset introduced in 1998
(LeCun et al., 1998). While MNIST had a good run as a benchmark dataset, even simple models by
today s̓ standards achieve classification accuracy over 95%. making it unsuitable for distinguish-
ing between stronger models and weaker ones. Today, MNIST serves as more of sanity checks
than as a benchmark. To up the ante just a bit, we will focus our discussion in the coming sections
on the qualitatively similar, but comparatively complex Fashion-MNIST dataset (Xiao et al., 2017),
which was released in 2017.

%matplotlib inline
import d2l
from mxnet import gluon
import sys

d2l.use_svg_display()

3.5.1 Getting the Dataset

Just as with MNIST, Gluon makes it easy to download and load the FashionMNIST dataset into
memory via the FashionMNIST class contained in gluon.data.vision. We briefly work through the
mechanics of loading and exploring the dataset below. Please refer to Section 17.8 for more details
on loading data.

mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)

FashionMNIST consists of images from 10 categories, each represented by 6k images in the train-
ing set and by 1k in the test set. Consequently the training set and the test set contain 60k and 10k
images, respectively.

len(mnist_train), len(mnist_test)

(60000, 10000)

The images in Fashion-MNIST are associated with the following categories: t-shirt, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag and ankle boot. The following function converts
between numeric label indices and their names in text.

Saved in the d2l package for later use
def get_fashion_mnist_labels(labels):

text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',

(continues on next page)

3.5. The Image Classification Dataset (Fashion-MNIST) 117

(continued from previous page)

'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
return [text_labels[int(i)] for i in labels]

We can now create a function to visualize these examples.

Saved in the d2l package for later use
def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):

"""Plot a list of images."""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):

ax.imshow(img.asnumpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:

ax.set_title(titles[i])
return axes

Here are the images and their corresponding labels (in text) for the first few examples in the train-
ing dataset.

X, y = mnist_train[:18]
show_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y));

3.5.2 Reading a Minibatch

To make our life easier when reading from the training and test sets, we use a DataLoader rather
than creating one from scratch, as we did in Section 3.2. Recall that at each iteration, a DataLoader
reads a minibatch of data with size batch_size each time.

During training, reading data can be a significant performance bottleneck, especially when our
model is simple or when our computer is fast. A handy feature of Gluons̓ DataLoader is the ability
to use multiple processes to speed up data reading. For instance, we can set aside 4 processes to
read the data (via num_workers). Because this feature is not currently supported on Windows the
following code checks the platform to make sure that we do not saddle our Windows-using friends
with error messages later on.

Saved in the d2l package for later use
def get_dataloader_workers(num_workers=4):

(continues on next page)

118 Chapter 3. Linear Neural Networks

(continued from previous page)

0 means no additional process is used to speed up the reading of data.
if sys.platform.startswith('win'):

return 0
else:

return num_workers

Below, we convert the image data from uint8 to 32-bit floating point numbers using the ToTensor
class. Additionally, the transformer will divide all numbers by 255 so that all pixels have values
between 0 and 1. The ToTensor class also moves the image channel from the last dimension to
the first dimension to facilitate the convolutional neural network calculations introduced later.
Through the transform_first function of the dataset, we apply the transformation of ToTensor to
the first element of each instance (image and label).

batch_size = 256
transformer = gluon.data.vision.transforms.ToTensor()
train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer),

batch_size, shuffle=True,
num_workers=get_dataloader_workers())

Let s̓ look at the time it takes to read the training data.

timer = d2l.Timer()
for X, y in train_iter:

continue
'%.2f sec' % timer.stop()

'1.65 sec'

3.5.3 Putting All Things Together

Now we define the load_data_fashion_mnist function that obtains and reads the Fashion-MNIST
dataset. It returns the data iterators for both the training set and validation set. In addition, it
accepts an optional argument to resize images to another shape.

Saved in the d2l package for later use
def load_data_fashion_mnist(batch_size, resize=None):

"""Download the Fashion-MNIST dataset and then load into memory."""
dataset = gluon.data.vision
trans = [dataset.transforms.Resize(resize)] if resize else []
trans.append(dataset.transforms.ToTensor())
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True,

num_workers=get_dataloader_workers()),
gluon.data.DataLoader(mnist_test, batch_size, shuffle=False,

num_workers=get_dataloader_workers()))

Below, we verify that image resizing works.

3.5. The Image Classification Dataset (Fashion-MNIST) 119

train_iter, test_iter = load_data_fashion_mnist(32, (64, 64))
for X, y in train_iter:

print(X.shape)
break

(32, 1, 64, 64)

We are now ready to work with the FashionMNIST dataset in the sections that follow.

Summary

• Fashion-MNIST is an apparel classification dataset consisting of images representing 10 cat-
egories.

• We will use this dataset in subsequent sections and chapters to evaluate various classification
algorithms.

• We store the shape of each image with height h width w pixels as h× w or (h, w).

• Data iterators are a key component for efficient performance. Rely on well-implemented
iterators that exploit multi-threading to avoid slowing down your training loop.

Exercises

1. Does reducing the batch_size (for instance, to 1) affect read performance?

2. For non-Windows users, try modifying num_workers to see how it affects read performance.
Plot the performance against the number of works employed.

3. Use the MXNet documentation to see which other datasets are available in mxnet.gluon.
data.vision.

4. Use the MXNet documentation to see which other transformations are available in mxnet.
gluon.data.vision.transforms.

3.6 Implementation of Softmax Regression from Scratch

Just as we implemented linear regression from scratch, we believe that multiclass logistic (soft-
max) regression is similarly fundamental and you ought to know the gory details of how to imple-
ment it yourself. As with linear regression, after doing things by hand we will breeze through an
implementation in Gluon for comparison. To begin, let s̓ import the familiar packages.

120 Chapter 3. Linear Neural Networks

import d2l
from mxnet import autograd, np, npx, gluon
from IPython import display
npx.set_np()

We will work with the Fashion-MNIST dataset, just introduced in Section 3.5, setting up an iterator
with batch size 256.

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.6.1 Initializing Model Parameters

As in our linear regression example, each example here will be represented by a fixed-length vec-
tor. Each example in the raw data is a 28 × 28 image. In this section, we will flatten each image,
treating them as 784 1D vectors. In the future, we will talk about more sophisticated strategies for
exploiting the spatial structure in images, but for now we treat each pixel location as just another
feature.

Recall that in softmax regression, we have as many outputs as there are categories. Because our
dataset has 10 categories, our network will have an output dimension of 10. Consequently, our
weights will constitute a 784 × 10 matrix and the biases will constitute a 1 × 10 vector. As with
linear regression, we will initialize our weights W with Gaussian noise and our biases to take the
initial value 0.

num_inputs = 784
num_outputs = 10

W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)

Recall that we need to attach gradients to the model parameters. More literally, we are allocat-
ing memory for future gradients to be stored and notifiying MXNet that we will want to calculate
gradients with respect to these parameters in the future.

W.attach_grad()
b.attach_grad()

3.6.2 The Softmax

Before implementing the softmax regression model, let s̓ briefly review how operators such as
sum work along specific dimensions in an ndarray. Given a matrix X we can sum over all elements
(default) or only over elements in the same axis, i.e., the column (axis=0) or the same row (axis=1).
Note that if X is an array with shape (2, 3) and we sum over the columns (X.sum(axis=0), the result
will be a (1D) vector with shape (3,). If we want to keep the number of axes in the original array
(resulting in a 2D array with shape (1, 3)), rather than collapsing out the dimension that we
summed over we can specify keepdims=True when invoking sum.

3.6. Implementation of Softmax Regression from Scratch 121

X = np.array([[1, 2, 3], [4, 5, 6]])
print(X.sum(axis=0, keepdims=True), '\n', X.sum(axis=1, keepdims=True))

[[5. 7. 9.]]
[[6.]
[15.]]

We are now ready to implement the softmax function. Recall that softmax consists of two steps:
First, we exponentiate each term (using exp). Then, we sum over each row (we have one row per
example in the batch) to get the normalization constants for each example. Finally, we divide each
row by its normalization constant, ensuring that the result sums to 1. Before looking at the code,
let s̓ recall what this looks expressed as an equation:

softmax(X)ij =
exp(Xij)∑
k exp(Xik)

. (3.6.1)

The denominator, or normalization constant, is also sometimes called the partition function
(and its logarithm is called the log-partition function). The origins of that name are in statisti-
cal physics59 where a related equation models the distribution over an ensemble of particles).

def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(axis=1, keepdims=True)
return X_exp / partition # The broadcast mechanism is applied here

As you can see, for any random input, we turn each element into a non-negative number. More-
over, each row sums up to 1, as is required for a probability. Note that while this looks correct
mathematically, we were a bit sloppy in our implementation because failed to take precautions
against numerical overflow or underflow due to large (or very small) elements of the matrix, as
we did in Section 17.8.

X = np.random.normal(size=(2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(axis=1)

(array([[0.22376052, 0.06659239, 0.06583703, 0.29964197, 0.3441681],
[0.63209665, 0.03179282, 0.194987 , 0.09209415, 0.04902935]]),

array([1. , 0.99999994]))

3.6.3 The Model

Now that we have defined the softmax operation, we can implement the softmax regression model.
The below code defines the forward pass through the network. Note that we flatten each original
image in the batch into a vector with length num_inputs with the reshape function before passing
the data through our model.

def net(X):
return softmax(np.dot(X.reshape(-1, num_inputs), W) + b)

59 https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)

122 Chapter 3. Linear Neural Networks

https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)

3.6.4 The Loss Function

Next, we need to implement the cross-entropy loss function, introduced in Section 3.4. This may
be the most common loss function in all of deep learning because, at the moment, classification
problems far outnumber regression problems.

Recall that cross-entropy takes the negative log likelihood of the predicted probability assigned
to the true label − logP (y | x). Rather than iterating over the predictions with a Python for loop
(which tends to be inefficient), we can use the pick function which allows us to easily select the
appropriate terms from the matrix of softmax entries. Below, we illustrate the pick function on a
toy example, with 3 categories and 2 examples.

y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], [0, 2]]

array([0.1, 0.5])

Now we can implement the cross-entropy loss function efficiently with just one line of code.

def cross_entropy(y_hat, y):
return - np.log(y_hat[range(len(y_hat)), y])

3.6.5 Classification Accuracy

Given the predicted probability distribution y_hat, we typically choose the class with highest pre-
dicted probability whenever we must output a hard prediction. Indeed, many applications require
that we make a choice. Gmail must categorize an email into Primary, Social, Updates, or Forums.
It might estimate probabilities internally, but at the end of the day it has to choose one among the
categories.

When predictions are consistent with the actual category y, they are correct. The classification
accuracy is the fraction of all predictions that are correct. Although it can be difficult optimize
accuracy directly (it is not differentiable), it is often the performance metric that we care most
about, and we will nearly always report it when training classifiers.

To compute accuracy we do the following: First, we execute y_hat.argmax(axis=1) to gather the
predicted classes (given by the indices for the largest entires each row). The result has the same
shape as the variable y. Now we just need to check how frequently the two match. Since the
equality operator == is datatype-sensitive (e.g., an int and a float32 are never equal), we also need
to convert both to the same type (we pick float32). The result is an ndarray containing entries of
0 (false) and 1 (true). Taking the mean yields the desired result.

Saved in the d2l package for later use
def accuracy(y_hat, y):

if y_hat.shape[1] > 1:
return float((y_hat.argmax(axis=1) == y.astype('float32')).sum())

else:
return float((y_hat.astype('int32') == y.astype('int32')).sum())

We will continue to use the variables y_hat and y defined in the pick function, as the predicted
probability distribution and label, respectively. We can see that the first example s̓ prediction cat-
egory is 2 (the largest element of the row is 0.6 with an index of 2), which is inconsistent with the

3.6. Implementation of Softmax Regression from Scratch 123

actual label, 0. The second example s̓ prediction category is 2 (the largest element of the row is
0.5 with an index of 2), which is consistent with the actual label, 2. Therefore, the classification
accuracy rate for these two examples is 0.5.

y = np.array([0, 2])
accuracy(y_hat, y) / len(y)

0.5

Similarly, we can evaluate the accuracy for model net on the dataset (accessed via data_iter).

Saved in the d2l package for later use
def evaluate_accuracy(net, data_iter):

metric = Accumulator(2) # num_corrected_examples, num_examples
for X, y in data_iter:

metric.add(accuracy(net(X), y), y.size)
return metric[0] / metric[1]

Here Accumulator is a utility class to accumulated sum over multiple numbers.

Saved in the d2l package for later use
class Accumulator(object):

"""Sum a list of numbers over time"""

def __init__(self, n):
self.data = [0.0] * n

def add(self, *args):
self.data = [a+b for a, b in zip(self.data, args)]

def reset(self):
self.data = [0] * len(self.data)

def __getitem__(self, i):
return self.data[i]

Because we initialized the net model with random weights, the accuracy of this model should be
close to random guessing, i.e., 0.1 for 10 classes.

evaluate_accuracy(net, test_iter)

0.0811

124 Chapter 3. Linear Neural Networks

3.6.6 Model Training

The training loop for softmax regression should look strikingly familiar if you read through our
implementation of linear regression in Section 3.2. Here we refactor the implementation to make
it reusable. First, we define a function to train for one data epoch. Note that updater is general
function to update the model parameters, which accepts the batch size as an argument. It can be
either a wrapper of d2l.sgd or a Gluon trainer.

Saved in the d2l package for later use
def train_epoch_ch3(net, train_iter, loss, updater):

metric = Accumulator(3) # train_loss_sum, train_acc_sum, num_examples
if isinstance(updater, gluon.Trainer):

updater = updater.step
for X, y in train_iter:

Compute gradients and update parameters
with autograd.record():

y_hat = net(X)
l = loss(y_hat, y)

l.backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.size)

Return training loss and training accuracy
return metric[0]/metric[2], metric[1]/metric[2]

Before showing the implementation of the training function, we define a utility class that draw
data in animation. Again, it aims to simplify the codes in later chapters.

Saved in the d2l package for later use
class Animator(object):

def __init__(self, xlabel=None, ylabel=None, legend=[], xlim=None,
ylim=None, xscale='linear', yscale='linear', fmts=None,
nrows=1, ncols=1, figsize=(3.5, 2.5)):

"""Incrementally plot multiple lines."""
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:

self.axes = [self.axes,]
Use a lambda to capture arguments
self.config_axes = lambda: d2l.set_axes(

self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts

def add(self, x, y):
"""Add multiple data points into the figure."""
if not hasattr(y, "__len__"):

y = [y]
n = len(y)
if not hasattr(x, "__len__"):

x = [x] * n
if not self.X:

self.X = [[] for _ in range(n)]
if not self.Y:

self.Y = [[] for _ in range(n)]
if not self.fmts:

self.fmts = ['-'] * n

(continues on next page)

3.6. Implementation of Softmax Regression from Scratch 125

(continued from previous page)

for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:

self.X[i].append(a)
self.Y[i].append(b)

self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):

self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)

The training function then runs multiple epochs and visualize the training progress.

Saved in the d2l package for later use
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):

animator = Animator(xlabel='epoch', xlim=[1, num_epochs],
ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])

for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch+1, train_metrics+(test_acc,))

Again, we use the minibatch stochastic gradient descent to optimize the loss function of the model.
Note that the number of epochs (num_epochs), and learning rate (lr) are both adjustable hyper-
parameters. By changing their values, we may be able to increase the classification accuracy of
the model. In practice we will want to split our data three ways into training, validation, and test
data, using the validation data to choose the best values of our hyperparameters.

num_epochs, lr = 10, 0.1

def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)

train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

126 Chapter 3. Linear Neural Networks

3.6.7 Prediction

Now that training is complete, our model is ready to classify some images. Given a series of im-
ages, we will compare their actual labels (first line of text output) and the model predictions (sec-
ond line of text output).

Saved in the d2l package for later use
def predict_ch3(net, test_iter, n=6):

for X, y in test_iter:
break

trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true+'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape(n, 28, 28), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

Summary

With softmax regression, we can train models for multi-category classification. The training loop
is very similar to that in linear regression: retrieve and read data, define models and loss functions,
then train models using optimization algorithms. As you will soon find out, most common deep
learning models have similar training procedures.

Exercises

1. In this section, we directly implemented the softmax function based on the mathematical
definition of the softmax operation. What problems might this cause (hint: try to calculate
the size of exp(50))?

2. The function cross_entropy in this section is implemented according to the definition of
the cross-entropy loss function. What could be the problem with this implementation (hint:
consider the domain of the logarithm)?

3. What solutions you can think of to fix the two problems above?

4. Is it always a good idea to return the most likely label. E.g. would you do this for medical
diagnosis?

5. Assume that we want to use softmax regression to predict the next word based on some
features. What are some problems that might arise from a large vocabulary?

3.6. Implementation of Softmax Regression from Scratch 127

3.7 Concise Implementation of Softmax Regression

Just as Gluon made it much easier to implement linear regression in Section 3.3, we will find it
similarly (or possibly more) convenient for implementing classification models. Again, we begin
with our import ritual.

import d2l
from mxnet import gluon, init, npx
from mxnet.gluon import nn
npx.set_np()

Let s̓ stick with the Fashion-MNIST dataset and keep the batch size at 256 as in the last section.

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.7.1 Initializing Model Parameters

As mentioned in Section 3.4, the output layer of softmax regression is a fully-connected (Dense)
layer. Therefore, to implement our model, we just need to add one Dense layer with 10 outputs to
our Sequential. Again, here, the Sequential is not really necessary, but we might as well form the
habit since it will be ubiquitous when implementing deep models. Again, we initialize the weights
at random with zero mean and standard deviation 0.01.

net = nn.Sequential()
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

3.7.2 The Softmax

In the previous example, we calculated our model s̓ output and then ran this output through the
cross-entropy loss. Mathematically, that is a perfectly reasonable thing to do. However, from a
computational perspective, exponentiation can be a source of numerical stability issues (as dis-
cussed in Section 17.8). Recall that the softmax function calculates ŷj = ezj∑n

i=1 e
zi

, where ŷj is the
jth element of yhat and zj is the jth element of the input y_linear variable, as computed by the
softmax.

If some of the zi are very large (i.e., very positive), then ezi might be larger than the largest number
we can have for certain types of float (i.e., overflow). This would make the denominator (and/or
numerator) inf and we wind up encountering either 0, inf, or nan for ŷj. In these situations we
do not get a well-defined return value for cross_entropy. One trick to get around this is to first

128 Chapter 3. Linear Neural Networks

subtract max(zi) from all zi before proceeding with the softmax calculation. You can verify that
this shifting of each zi by constant factor does not change the return value of softmax.

After the subtraction and normalization step, it might be that possible that some zj have large
negative values and thus that the corresponding ezj will take values close to zero. These might
be rounded to zero due to finite precision (i.e underflow), making ŷj zero and giving us -inf for
log(ŷj). A few steps down the road in backpropagation, we might find ourselves faced with a
screenful of the dreaded not-a-number (nan) results.

Fortunately, we are saved by the fact that even though we are computing exponential functions,
we ultimately intend to take their log (when calculating the cross-entropy loss). By combining
these two operators (softmax and cross_entropy) together, we can escape the numerical stability
issues that might otherwise plague us during backpropagation. As shown in the equation below,
we avoided calculating ezj and can instead zj directly due to the canceling in log(exp(·)).

log (ŷj) = log
(

ezj∑n
i=1 e

zi

)
= log (ezj)− log

(
n∑

i=1

ezi

)

= zj − log

(
n∑

i=1

ezi

)
.

(3.7.1)

We will want to keep the conventional softmax function handy in case we ever want to evaluate
the probabilities output by our model. But instead of passing softmax probabilities into our new
loss function, we will just pass the logits and compute the softmax and its log all at once inside the
softmax_cross_entropy loss function, which does smart things like the log-sum-exp trick (see on
Wikipedia61).

loss = gluon.loss.SoftmaxCrossEntropyLoss()

3.7.3 Optimization Algorithm

Here, we use minibatch stochastic gradient descent with a learning rate of 0.1 as the optimiza-
tion algorithm. Note that this is the same as we applied in the linear regression example and it
illustrates the general applicability of the optimizers.

trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})

3.7.4 Training

Next we call the training function defined in the last section to train a model.

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

61 https://en.wikipedia.org/wiki/LogSumExp

3.7. Concise Implementation of Softmax Regression 129

https://en.wikipedia.org/wiki/LogSumExp
https://en.wikipedia.org/wiki/LogSumExp

As before, this algorithm converges to a solution that achieves an accuracy of 83.7%, albeit this
time with fewer lines of code than before. Note that in many cases, Gluon takes additional pre-
cautions beyond these most well-known tricks to ensure numerical stability, saving us from even
more pitfalls that we would encounter if we tried to code all of our models from scratch in practice.

Exercises

1. Try adjusting the hyper-parameters, such as batch size, epoch, and learning rate, to see what
the results are.

2. Why might the test accuracy decrease again after a while? How could we fix this?

130 Chapter 3. Linear Neural Networks

4 | Multilayer Perceptrons

In this chapter, we will introduce your first truly deep networks. The simplest deep networks are
called multilayer perceptrons, and they consist of many layers of neurons each fully connected
to those in the layer below (from which they receive input) and those above (which they, in turn,
influence). When we train high-capacity models we run the risk of overfitting. Thus, we will
need to provide your first rigorous introduction to the notions of overfitting, underfitting, and
capacity control. To help you combat these problems, we will introduce regularization techniques
such as dropout and weight decay. We will also discuss issues relating to numerical stability and
parameter initialization that are key to successfully training deep networks. Throughout, we focus
on applying models to real data, aiming to give the reader a firm grasp not just of the concepts
but also of the practice of using deep networks. We punt matters relating to the computational
performance, scalability and efficiency of our models to subsequent chapters.

4.1 Multilayer Perceptron

In the previous chapters, we showed how you could implement multiclass logistic regression (also
called softmax regression) for classifying images of clothing into the 10 possible categories. To get
there, we had to learn how to wrangle data, coerce our outputs into a valid probability distribution
(via softmax), how to apply an appropriate loss function, and how to optimize over our parameters.
Now that weʼve covered these preliminaries, we are free to focus our attention on the more exciting
enterprise of designing powerful models using deep neural networks.

4.1.1 Hidden Layers

Let s̓ recall linear regression and softmax regression with an example as illustrated in Fig. 4.1.1.
In general, we mapped our inputs directly to our outputs via a single linear transformation:

ô = softmax(Wx+ b). (4.1.1)

Fig. 4.1.1: Single layer perceptron with 5 output units.

131

If our labels really were related to our input data by an approximately linear function, then this
approach would be perfect. But linearity is a strong assumption. Linearity implies that for whatever
target value we are trying to predict, increasing the value of each of our inputs should either drive
the value of the output up or drive it down, irrespective of the value of the other inputs.

Sometimes this makes sense! Say we are trying to predict whether an individual will or will not
repay a loan. We might reasonably imagine that all else being equal, an applicant with a higher
income would be more likely to repay than one with a lower income. In these cases, linear models
might perform well, and they might even be hard to beat.

But what about classifying images in FashionMNIST? Should increasing the intensity of the pixel
at location (13, 17) always increase the likelihood that the image depicts a pocketbook? That seems
ridiculous because we all know that you cannot make sense out of an image without accounting
for the interactions among pixels.

FromOne to Many

As another case, consider trying to classify images based on whether they depict cats or dogs given
black-and-white images.

If we use a linear model, we d̓ basically be saying that for each pixel, increasing its value (making
it more white) must always increase the probability that the image depicts a dog or must always
increase the probability that the image depicts a cat. We would be making the absurd assumption
that the only requirement for differentiating cats vs. dogs is to assess how bright they are. That
approach is doomed to fail in a work that contains both black dogs and black cats, and both white
dogs and white cats.

Teasing out what is depicted in an image generally requires allowing more complex relationships
between our inputs and outputs. Thus we need models capable of discovering patterns that might
be characterized by interactions among the many features. We can over come these limitations of
linear models and handle a more general class of functions by incorporating one or more hidden
layers. The easiest way to do this is to stack many layers of neurons on top of each other. Each
layer feeds into the layer above it, until we generate an output. This architecture is commonly
called a multilayer perceptron, often abbreviated as MLP. The neural network diagram for an MLP
looks like Fig. 4.1.2.

Fig. 4.1.2: Multilayer perceptron with hidden layers. This example contains a hidden layer with 5
hidden units in it.

The multilayer perceptron above has 4 inputs and 3 outputs, and the hidden layer in the middle

132 Chapter 4. Multilayer Perceptrons

contains 5 hidden units. Since the input layer does not involve any calculations, building this
network would consist of implementing 2 layers of computation. The neurons in the input layer
are fully connected to the inputs in the hidden layer. Likewise, the neurons in the hidden layer
are fully connected to the neurons in the output layer.

From Linear to Nonlinear

We can write out the calculations that define this one-hidden-layer MLP in mathematical notation
as follows:

h = W1x+ b1,

o = W2h+ b2,

ŷ = softmax(o).
(4.1.2)

By adding another layer, we have added two new sets of parameters, but what have we gained in
exchange? In the model defined above, we do not achieve anything for our troubles!

That is because our hidden units are just a linear function of the inputs and the outputs (pre-
softmax) are just a linear function of the hidden units. A linear function of a linear function is
itself a linear function. That means that for any values of the weights, we could just collapse out
the hidden layer yielding an equivalent single-layer model using W = W2W1 and b = W2b1 + b2.

o = W2h+ b2 = W2(W1x+ b1) + b2 = (W2W1)x+ (W2b1 + b2) = Wx+ b. (4.1.3)

In order to get a benefit from multilayer architectures, we need another key ingredient—a non-
linearity σ to be applied to each of the hidden units after each layer s̓ linear transformation. The
most popular choice for the nonlinearity these days is the rectified linear unit (ReLU) max(x, 0).
After incorporating these non-linearities it becomes impossible to merge layers.

h = σ(W1x+ b1),

o = W2h+ b2,

ŷ = softmax(o).
(4.1.4)

Clearly, we could continue stacking such hidden layers, e.g., h1 = σ(W1x+b1) andh2 = σ(W2h1+
b2) on top of each other to obtain a true multilayer perceptron.

Multilayer perceptrons can account for complex interactions in the inputs because the hidden
neurons depend on the values of each of the inputs. It s̓ easy to design a hidden node that does ar-
bitrary computation, such as, for instance, logical operations on its inputs. Moreover, for certain
choices of the activation function it s̓ widely known that multilayer perceptrons are universal ap-
proximators. That means that even for a single-hidden-layer neural network, with enough nodes,
and the right set of weights, we can model any function at all! Actually learning that function is the
hard part.

Moreover, just because a single-layer network can learn any function does not mean that you
should try to solve all of your problems with single-layer networks. It turns out that we can approx-
imate many functions much more compactly if we use deeper (vs wider) neural networks. Weʼll
get more into the math in a subsequent chapter, but for now let s̓ actually build an MLP. In this
example, weʼll implement a multilayer perceptron with two hidden layers and one output layer.

4.1. Multilayer Perceptron 133

Vectorization and Minibatch

As before, by the matrix X, we denote a minibatch of inputs. The calculations to produce outputs
from an MLP with two hidden layers can thus be expressed:

H1 = σ(W1X+ b1),

H2 = σ(W2H1 + b2),

O = softmax(W3H2 + b3).

(4.1.5)

With some abuse of notation, we define the nonlinearity σ to apply to its inputs on a row-wise
fashion, i.e., one observation at a time. Note that we are also using the notation for softmax in the
same way to denote a row-wise operation. Often, as in this section, the activation functions that
we apply to hidden layers are not merely row-wise, but component wise. That means that after
computing the linear portion of the layer, we can calculate each nodes activation without looking
at the values taken by the other hidden units. This is true for most activation functions (the batch
normalization operation will be introduced in Section 7.5 is a notable exception to that rule).

%matplotlib inline
import d2l
from mxnet import autograd, np, npx
npx.set_np()

4.1.2 Activation Functions

Because they are so fundamental to deep learning, before going further, let s̓ take a brief look at
some common activation functions.

ReLU Function

As stated above, the most popular choice, due to its simplicity of implementation and its efficacy in
training is the rectified linear unit (ReLU). ReLUs provide a very simple nonlinear transformation.
Given the element z, the function is defined as the maximum of that element and 0.

ReLU(z) = max(z, 0). (4.1.6)

It can be understood that the ReLU function retains only positive elements and discards negative
elements (setting those nodes to 0). To get a better idea of what it looks like, we can plot it.

Because it is used so commonly, NDarray supports the relu function as a basic native operator.
As you can see, the activation function is piece-wise linear.

x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():

y = npx.relu(x)
d2l.set_figsize((4, 2.5))
d2l.plot(x, y, 'x', 'relu(x)')

134 Chapter 4. Multilayer Perceptrons

When the input is negative, the derivative of ReLU function is 0 and when the input is positive, the
derivative of ReLU function is 1. Note that the ReLU function is not differentiable when the input
takes value precisely equal to 0. In these cases, we go with the left-hand-side (LHS) derivative and
say that the derivative is 0 when the input is 0. We can get away with this because the input may
never actually be zero. There is an old adage that if subtle boundary conditions matter, we are
probably doing (real) mathematics, not engineering. That conventional wisdom may apply here.
See the derivative of the ReLU function plotted below.

y.backward()
d2l.plot(x, x.grad, 'x', 'grad of relu')

Note that there are many variants to the ReLU function, such as the parameterized ReLU (pReLU)
of He et al., 201563. This variation adds a linear term to the ReLU, so some information still gets
through, even when the argument is negative.

pReLU(x) = max(0, x) + αmin(0, x). (4.1.7)

The reason for using the ReLU is that its derivatives are particularly well behaved: either they van-
ish or they just let the argument through. This makes optimization better behaved and it reduces
the issue of the vanishing gradient problem (more on this later).

63 https://arxiv.org/abs/1502.01852

4.1. Multilayer Perceptron 135

https://arxiv.org/abs/1502.01852

Sigmoid Function

The sigmoid function transforms its inputs which take values in R to the interval (0, 1). For that
reason, the sigmoid is often called a squashing function: it squashes any input in the range (-inf,
inf) to some value in the range (0, 1).

sigmoid(x) =
1

1 + exp(−x)
. (4.1.8)

In the earliest neural networks, scientists were interested in modeling biological neurons which
either fire or do not fire. Thus the pioneers of this field, going all the way back to McCulloch and
Pitts in the 1940s, were focused on thresholding units. A thresholding function takes either value
0 (if the input is below the threshold) or value 1 (if the input exceeds the threshold)

When attention shifted to gradient based learning, the sigmoid function was a natural choice be-
cause it is a smooth, differentiable approximation to a thresholding unit. Sigmoids are still com-
mon as activation functions on the output units, when we want to interpret the outputs as prob-
abilities for binary classification problems (you can think of the sigmoid as a special case of the
softmax) but the sigmoid has mostly been replaced by the simpler and easier to train ReLU for
most use in hidden layers. In the “Recurrent Neural Network” chapter, we will describe how sig-
moid units can be used to control the flow of information in a neural network thanks to its capacity
to transform the value range between 0 and 1.

See the sigmoid function plotted below. When the input is close to 0, the sigmoid function ap-
proaches a linear transformation.

with autograd.record():
y = npx.sigmoid(x)

d2l.plot(x, y, 'x', 'sigmoid(x)')

The derivative of sigmoid function is given by the following equation:

d

dx
sigmoid(x) =

exp(−x)
(1 + exp(−x))2

= sigmoid(x) (1− sigmoid(x)) . (4.1.9)

The derivative of sigmoid function is plotted below. Note that when the input is 0, the derivative of
the sigmoid function reaches a maximum of 0.25. As the input diverges from 0 in either direction,
the derivative approaches 0.

136 Chapter 4. Multilayer Perceptrons

y.backward()
d2l.plot(x, x.grad, 'x', 'grad of sigmoid')

Tanh Function

Like the sigmoid function, the tanh (Hyperbolic Tangent) function also squashes its inputs, trans-
forms them into elements on the interval between -1 and 1:

tanh(x) =
1− exp(−2x)
1 + exp(−2x)

. (4.1.10)

We plot the tanh function blow. Note that as the input nears 0, the tanh function approaches a
linear transformation. Although the shape of the function is similar to the sigmoid function, the
tanh function exhibits point symmetry about the origin of the coordinate system.

with autograd.record():
y = np.tanh(x)

d2l.plot(x, y, 'x', 'tanh(x)')

The derivative of the Tanh function is:
d

dx
tanh(x) = 1− tanh2(x). (4.1.11)

4.1. Multilayer Perceptron 137

The derivative of tanh function is plotted below. As the input nears 0, the derivative of the tanh
function approaches a maximum of 1. And as we saw with the sigmoid function, as the input
moves away from 0 in either direction, the derivative of the tanh function approaches 0.

y.backward()
d2l.plot(x, x.grad, 'x', 'grad of tanh')

In summary, we now know how to incorporate nonlinearities to build expressive multilayer neural
network architectures. As a side note, your knowledge now already puts you in command of the
state of the art in deep learning, circa 1990. In fact, you have an advantage over anyone working the
1990s, because you can leverage powerful open-source deep learning frameworks to build models
rapidly, using only a few lines of code. Previously, getting these nets training required researchers
to code up thousands of lines of C and Fortran.

Summary

• The multilayer perceptron adds one or multiple fully-connected hidden layers between the
output and input layers and transforms the output of the hidden layer via an activation func-
tion.

• Commonly-used activation functions include the ReLU function, the sigmoid function, and
the tanh function.

Exercises

1. Compute the derivative of the tanh and the pReLU activation function.

2. Show that a multilayer perceptron using only ReLU (or pReLU) constructs a continuous
piecewise linear function.

3. Show that tanh(x) + 1 = 2sigmoid(2x).

4. Assume we have a multilayer perceptron without nonlinearities between the layers. In par-
ticular, assume that we have d input dimensions, d output dimensions and that one of the
layers had only d/2 dimensions. Show that this network is less expressive (powerful) than a
single layer perceptron.

138 Chapter 4. Multilayer Perceptrons

5. Assume that we have a nonlinearity that applies to one minibatch at a time. What kinds of
problems do you expect this to cause?

4.2 Implementation of Multilayer Perceptron from Scratch

Now that we know how multilayer perceptrons (MLPs) work in theory, let s̓ implement them. First,
we import the required packages.

import d2l
from mxnet import gluon, np, npx
npx.set_np()

To compare against the results we previously achieved with vanilla softmax regression, we con-
tinue to use the Fashion-MNIST image classification dataset.

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

4.2.1 Initializing Model Parameters

Recall that this dataset contains 10 classes and that each image consists of a 28× 28 = 784 grid of
pixel values. Since we will be discarding the spatial structure (for now), we can just think of this as
a classification dataset with 784 input features and 10 classes. In particular we will implement our
MLP with one hidden layer and 256 hidden units. Note that we can regard both of these choices
as hyperparameters that could be set based on performance on validation data. Typically, we will
choose layer widths as powers of 2 to make everything align nicely in memory.

Again, we will represent our parameters with several ndarrays. Note that we now have one weight
matrix and one bias vector per layer. As always, we must call attach_grad to allocate memory for
the gradients with respect to these parameters.

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens))
b1 = np.zeros(num_hiddens)
W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs))
b2 = np.zeros(num_outputs)
params = [W1, b1, W2, b2]

for param in params:
param.attach_grad()

4.2. Implementation of Multilayer Perceptron from Scratch 139

4.2.2 Activation Function

To make sure we know how everything works, we will use the maximum function to implement ReLU
ourselves, instead of invoking npx.relu directly.

def relu(X):
return np.maximum(X, 0)

4.2.3 Themodel

As in softmax regression, we will reshape each 2D image into a flat vector of length num_inputs.
Finally, we can implement our model with just a few lines of code.

def net(X):
X = X.reshape(-1, num_inputs)
H = relu(np.dot(X, W1) + b1)
return np.dot(H, W2) + b2

4.2.4 The Loss Function

For better numerical stability and because we already know how to implement softmax regres-
sion completely from scratch in Section 3.6, we will use Gluons̓ integrated function for calcu-
lating the softmax and cross-entropy loss. Recall that we discussed some of these intricacies in
Section 4.1. We encourage the interested reader to examing the source code for mxnet.gluon.
loss.SoftmaxCrossEntropyLoss for more details.

loss = gluon.loss.SoftmaxCrossEntropyLoss()

4.2.5 Training

Steps for training the MLP are no different than for softmax regression. In the d2l package, we
directly call the train_ch3 function, whose implementation was introduced in Section 3.6. We set
the number of epochs to 10 and the learning rate to 0.5.

num_epochs, lr = 10, 0.5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,

lambda batch_size: d2l.sgd(params, lr, batch_size))

140 Chapter 4. Multilayer Perceptrons

To see how well we did, let s̓ apply the model to some test data. If you are interested, compare the
result to corresponding linear model in Section 3.6.

d2l.predict_ch3(net, test_iter)

This looks a bit better than our previous result, a good sign that we are on the right path.

Summary

We saw that implementing a simple MLP is easy, even when done manually. That said, with a large
number of layers, this can get messy (e.g., naming and keeping track of the model parameters,
etc).

Exercises

1. Change the value of the hyperparameter num_hiddens in order to see how this hyperparam-
eter influences your results.

2. Try adding a new hidden layer to see how it affects the results.

3. How does changing the learning rate change the result?

4. What is the best result you can get by optimizing over all the parameters (learning rate, it-
erations, number of hidden layers, number of hidden units per layer)?

4.2. Implementation of Multilayer Perceptron from Scratch 141

4.3 Concise Implementation of Multilayer Perceptron

Now that we learned how multilayer perceptrons (MLPs) work in theory, let s̓ implement them.
We begin, as always, by importing modules.

import d2l
from mxnet import gluon, init, npx
from mxnet.gluon import nn
npx.set_np()

4.3.1 The Model

The only difference from our softmax regression implementation is that we add two Dense (fully-
connected) layers instead of one. The first is our hidden layer, which has 256 hidden units and
uses the ReLU activation function.

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'),

nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

Again, note that as always, Gluon automatically infers the missing input dimensions to each layer.

Training the model follows the exact same steps as in our softmax regression implementation.

batch_size, num_epochs = 256, 10
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.5})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

142 Chapter 4. Multilayer Perceptrons

Exercises

1. Try adding a few more hidden layers to see how the result changes.

2. Try out different activation functions. Which ones work best?

3. Try out different initializations of the weights.

4.4 Model Selection, Underfitting and Overfitting

As machine learning scientists, our goal is to discover general patterns. Say, for example, that we
wish to learn the pattern that associates genetic markers with the development of dementia in
adulthood. It is easy enough to memorize our training set. Each persons̓ genes uniquely identify
them, not just among people represented in our dataset, but among all people on earth!

Given the genetic markers representing some person, we do not want our model to simply rec-
ognize “oh, that is Bob”, and then output the classification, say among {dementia, mild cognitive
impairment, healthy}, that corresponds to Bob. Rather, our goal is to discover patterns that cap-
ture regularities in the underlying population from which our training set was drawn. If we are
successfully in this endeavor, then we could successfully assess risk even for individuals that we
have never encountered before. This problem—how to discover patterns that generalize—is the
fundamental problem of machine learning.

The danger is that when we train models, we access just a small sample of data. The largest public
image datasets contain roughly one million images. And more often we have to learn from thou-
sands or tens of thousands. In a large hospital system we might access hundreds of thousands
of medical records. With finite samples, we always run the risk that we might discover apparent
associations that turn out not to hold up when we collect more data.

Let s̓ consider an extreme pathological case. Imagine that you want to learn to predict which peo-
ple will repay their loans. A lender hires you as a data scientist to investigate, handing over the
complete files on 100 applicants, 5 of which defaulted on their loans within 3 years. Realistically,
the files might include hundreds of potential features, including income, occupation, credit score,
length of employment etc. Moreover, say that they additionally hand over video footage of each
applicant s̓ interview with their lending agent.

Now suppose that after featurizing the data into an enormous design matrix, you discover that of
the 5 applicants who default, all of them were wearing blue shirts during their interviews, while
only 40% of general population wore blue shirts. There is a good chance that if you train a predic-
tive model to predict default, it might rely upon blue-shirt-wearing as an important feature.

Even if in fact defaulters were no more likely to wear blue shirts than people in the general popu-
lation, there s̓ a .45 = .01 probability that we would observe all five defaulters wearing blue shirts.
With just 5 positive examples of defaults and hundreds or thousands of features, we would prob-
ably find a large number of features that appear to be perfectly predictive of our labor just due to
random chance. With an unlimited amount of data, we would expect these spurious associations
to eventually disappear. But we seldom have that luxury.

4.4. Model Selection, Underfitting and Overfitting 143

The phenomena of fitting our training data more closely than we fit the underlying distribution
is called overfitting, and the techniques used to combat overfitting are called regularization. In
the previous sections, you might have observed this effect while experimenting with the Fashion-
MNIST dataset. If you altered the model structure or the hyper-parameters during the experiment,
you might have noticed that with enough nodes, layers, and training epochs, the model can even-
tually reach perfect accuracy on the training set, even as the accuracy on test data deteriorates.

4.4.1 Training Error and Generalization Error

In order to discuss this phenomenon more formally, we need to differentiate between training
error and generalization error. The training error is the error of our model as calculated on the
training dataset, while generalization error is the expectation of our model s̓ error were we to apply
it to an infinite stream of additional data points drawn from the same underlying data distribution
as our original sample.

Problematically, we can never calculate the generalization error exactly. That is because the imagi-
nary stream of infinite data is an imaginary object. In practice, we must estimate the generalization
error by applying our model to an independent test set constituted of a random selection of data
points that were withheld from our training set.

The following three thought experiments will help illustrate this situation better. Consider a col-
lege student trying to prepare for his final exam. A diligent student will strive to practice well and
test her abilities using exams from previous years. Nonetheless, doing well on past exams is no
guarantee that she will excel when it matters. For instance, the student might try to prepare by
rote learning the answers to the exam questions. This requires the student to memorize many
things. She might even remember the answers for past exams perfectly. Another student might
prepare by trying to understand the reasons for giving certain answers. In most cases, the latter
student will do much better.

Likewise, consider a model that simply uses a lookup table to answer questions. If the set of allow-
able inputs is discrete and reasonably small, then perhaps after viewing many training examples,
this approach would perform well. Still this model has no ability to do better than random guess-
ing when faced with examples that it has never seen before. In reality the input spaces are far too
large to memorize the answers corresponding to every conceivable input. For example, consider
the black and white 28× 28 images. If each pixel can take one among 256 gray scale values, then
there are 256784 possible images. That means that there are far more low-res grayscale thumbnail-
sized images than there are atoms in the universe. Even if we could encounter this data, we could
never afford to store the lookup table.

Last, consider the problem of trying to classify the outcomes of coin tosses (class 0: heads, class
1: tails) based on some contextual features that might be available. No matter what algorithm we
come up with, because the generalization error will always be 1

2 . However, for most algorithms,
we should expect our training error to be considerably lower, depending on the luck of the draw,
even if we did not have any features! Consider the dataset {0, 1, 1, 1, 0, 1}. Our feature-less would
have to fall back on always predicting the majority class, which appears from our limited sample
to be 1. In this case, the model that always predicts class 1 will incur an error of 1

3 , considerably
better than our generalization error. As we increase the amount of data, the probability that the
fraction of heads will deviate significantly from 1

2 diminishes, and our training error would come
to match the generalization error.

144 Chapter 4. Multilayer Perceptrons

Statistical Learning Theory

Since generalization is the fundamental problem in machine learning, you might not be surprised
to learn that many mathematicians and theorists have dedicated their lives to developing formal
theories to describe this phenomenon. In their eponymous theorem67, Glivenko and Cantelli de-
rived the rate at which the training error converges to the generalization error. In a series of semi-
nal papers, Vapnik and Chervonenkis68 extended this theory to more general classes of functions.
This work laid the foundations of Statistical Learning Theory69.

In the standard supervised learning setting, which we have addressed up until now and will stick
throughout most of this book, we assume that both the training data and the test data are drawn
independently from identical distributions (commonly called the i.i.d. assumption). This means
that the process that samples our data has no memory. The 2nd example drawn and the 3rd drawn
are no more correlated than the 2nd and the 2-millionth sample drawn.

Being a good machine learning scientist requires thinking critically, and already you should be
poking holes in this assumption, coming up with common cases where the assumption fails. What
if we train a mortality risk predictor on data collected from patients at UCSF, and apply it on pa-
tients at Massachusetts General Hospital? These distributions are simply not identical. Moreover,
draws might be correlated in time. What if we are classifying the topics of Tweets. The news cycle
would create temporal dependencies in the topics being discussed violating any assumptions of
independence.

Sometimes we can get away with minor violations of the i.i.d. assumption and our models will
continue to work remarkably well. After all, nearly every real-world application involves at least
some minor violation of the i.i.d. assumption, and yet we have useful tools for face recognition,
speech recognition, language translation, etc.

Other violations are sure to cause trouble. Imagine, for example, if we tried to train a face recog-
nition system by training it exclusively on university students and then want to deploy it as a tool
for monitoring geriatrics in a nursing home population. This is unlikely to work well since college
students tend to look considerably different from the elderly.

In subsequent chapters and volumes, we will discuss problems arising from violations of the i.i.d.
assumption. For now, even taking the i.i.d. assumption for granted, understanding generalization
is a formidable problem. Moreover, elucidating the precise theoretical foundations that might
explain why deep neural networks generalize as well as they do continues to vexes the greatest
minds in learning theory.

When we train our models, we attempt searching for a function that fits the training data as well
as possible. If the function is so flexible that it can catch on to spurious patterns just as easily as to
the true associations, then it might perform too well without producing a model that generalizes
well to unseen data. This is precisely what we want to avoid (or at least control). Many of the
techniques in deep learning are heuristics and tricks aimed at guarding against overfitting.

67 https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem
68 https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory
69 https://en.wikipedia.org/wiki/Statistical_learning_theory

4.4. Model Selection, Underfitting and Overfitting 145

https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem
https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory
https://en.wikipedia.org/wiki/Statistical_learning_theory

Model Complexity

When we have simple models and abundant data, we expect the generalization error to resemble
the training error. When we work with more complex models and fewer examples, we expect the
training error to go down but the generalization gap to grow. What precisely constitutes model
complexity is a complex matter. Many factors govern whether a model will generalize well. For
example a model with more parameters might be considered more complex. A model whose
parameters can take a wider range of values might be more complex. Often with neural networks,
we think of a model that takes more training steps as more complex, and one subject to early
stopping as less complex.

It can be difficult to compare the complexity among members of substantially different model
classes (say a decision tree versus a neural network). For now, a simple rule of thumb is quite use-
ful: A model that can readily explain arbitrary facts is what statisticians view as complex, whereas
one that has only a limited expressive power but still manages to explain the data well is probably
closer to the truth. In philosophy, this is closely related to Popper s̓ criterion of falsifiability70 of a
scientific theory: a theory is good if it fits data and if there are specific tests which can be used to
disprove it. This is important since all statistical estimation is post hoc71, i.e., we estimate after we
observe the facts, hence vulnerable to the associated fallacy. For now, we will put the philosophy
aside and stick to more tangible issues.

In this section, to give you some intuition, weʼll focus on a few factors that tend to influence the
generalizability of a model class:

1. The number of tunable parameters. When the number of tunable parameters, sometimes
called the degrees of freedom, is large, models tend to be more susceptible to overfitting.

2. The values taken by the parameters. When weights can take a wider range of values, models
can be more susceptible to over fitting.

3. The number of training examples. It s̓ trivially easy to overfit a dataset containing only one
or two examples even if your model is simple. But overfitting a dataset with millions of
examples requires an extremely flexible model.

4.4.2 Model Selection

In machine learning, we usually select our final model after evaluating several candidate models.
This process is called model selection. Sometimes the models subject to comparison are funda-
mentally different in nature (say, decision trees vs linear models). At other times, we are compar-
ing members of the same class of models that have been trained with different hyperparameter
settings.

With multilayer perceptrons for example, we may wish to compare models with different numbers
of hidden layers, different numbers of hidden units, and various choices of the activation functions
applied to each hidden layer. In order to determine the best among our candidate models, we will
typically employ a validation set.

70 https://en.wikipedia.org/wiki/Falsifiability
71 https://en.wikipedia.org/wiki/Post_hoc

146 Chapter 4. Multilayer Perceptrons

https://en.wikipedia.org/wiki/Falsifiability
https://en.wikipedia.org/wiki/Post_hoc

Validation Dataset

In principle we should not touch our test set until after we have chosen all our hyper-parameters.
Were we to use the test data in the model selection process, there is a risk that we might overfit
the test data. Then we would be in serious trouble. If we overfit our training data, there is always
the evaluation on test data to keep us honest. But if we overfit the test data, how would we ever
know?

Thus, we should never rely on the test data for model selection. And yet we cannot rely solely on
the training data for model selection either because we cannot estimate the generalization error
on the very data that we use to train the model.

The common practice to address this problem is to split our data three ways, incorporating a val-
idation set in addition to the training and test sets.

In practical applications, the picture gets muddier. While ideally we would only touch the test
data once, to assess the very best model or to compare a small number of models to each other,
real-world test data is seldom discarded after just one use. We can seldom afford a new test set for
each round of experiments.

The result is a murky practice where the boundaries between validation and test data are worry-
ingly ambiguous. Unless explicitly stated otherwise, in the experiments in this book we are really
working with what should rightly be called training data and validation data, with no true test sets.
Therefore, the accuracy reported in each experiment is really the validation accuracy and not a
true test set accuracy. The good news is that we do not need too much data in the validation set.
The uncertainty in our estimates can be shown to be of the order ofO(n− 1

2).

K-Fold Cross-Validation

When training data is scarce, we might not even be able to afford to hold out enough data to con-
stitute a proper validation set. One popular solution to this problem is to employ K-fold cross-
validation. Here, the original training data is split into K non-overlapping subsets. Then model
training and validation are executed K times, each time training on K − 1 subsets and validat-
ing on a different subset (the one not used for training in that round). Finally, the training and
validation error rates are estimated by averaging over the results from the K experiments.

4.4.3 Underfitting or Overfitting?

When we compare the training and validation errors, we want to be mindful of two common situ-
ations: First, we want to watch out for cases when our training error and validation error are both
substantial but there is a little gap between them. If the model is unable to reduce the training
error, that could mean that our model is too simple (i.e., insufficiently expressive) to capture the
pattern that we are trying to model. Moreover, since the generalization gap between our train-
ing and validation errors is small, we have reason to believe that we could get away with a more
complex model. This phenomenon is known as underfitting.

On the other hand, as we discussed above, we want to watch out for the cases when our train-
ing error is significantly lower than our validation error, indicating severe overfitting. Note that
overfitting is not always a bad thing. With deep learning especially, it is well known that the best
predictive models often perform far better on training data than on holdout data. Ultimately, we
usually care more about the validation error than about the gap between the training and valida-
tion errors.

4.4. Model Selection, Underfitting and Overfitting 147

Whether we overfit or underfit can depend both on the complexity of our model and the size of
the available training datasets, two topics that we discuss below.

Model Complexity

To illustrate some classical intuition about overfitting and model complexity, we given an example
using polynomials. Given training data consisting of a single feature x and a corresponding real-
valued label y, we try to find the polynomial of degree d

ŷ =
d∑

i=0

xiwi (4.4.1)

to estimate the labels y. This is just a linear regression problem where our features are given by
the powers of x, the wi given the model s̓ weights, and the bias is given by w0 since x0 = 1 for all x.
Since this is just a linear regression problem, we can use the squared error as our loss function.

A higher-order polynomial function is more complex than a lower order polynomial function,
since the higher-order polynomial has more parameters and the model functions̓ selection range
is wider. Fixing the training dataset, higher-order polynomial functions should always achieve
lower (at worst, equal) training error relative to lower degree polynomials. In fact, whenever the
data points each have a distinct value of x, a polynomial function with degree equal to the number
of data points can fit the training set perfectly. We visualize the relationship between polynomial
degree and under- vs over-fitting in Fig. 4.4.1.

Fig. 4.4.1: Influence of Model Complexity on Underfitting and Overfitting

Dataset Size

The other big consideration to bear in mind is the dataset size. Fixing our model, the fewer sam-
ples we have in the training dataset, the more likely (and more severely) we are to encounter over-
fitting. As we increase the amount of training data, the generalization error typically decreases.
Moreover, in general, more data never hurts. For a fixed task and data distribution, there is typi-
cally a relationship between model complexity and dataset size. Given more data, we might prof-
itably attempt to fit a more complex model. Absent sufficient data, simpler models may be difficult
to beat. For many tasks, deep learning only outperforms linear models when many thousands of

148 Chapter 4. Multilayer Perceptrons

training examples are available. In part, the current success of deep learning owes to the current
abundance of massive datasets due to internet companies, cheap storage, connected devices, and
the broad digitization of the economy.

4.4.4 Polynomial Regression

We can now explore these concepts interactively by fitting polynomials to data. To get started we
will import our usual packages.

import d2l
from mxnet import gluon, np, npx
from mxnet.gluon import nn
npx.set_np()

Generating the Dataset

First we need data. Given x, we will use the following cubic polynomial to generate the labels on
training and test data:

y = 5 + 1.2x− 3.4
x2

2!
+ 5.6

x3

3!
+ ϵ where ϵ ∼ N (0, 0.1). (4.4.2)

The noise term ϵ obeys a normal distribution with a mean of 0 and a standard deviation of 0.1. We
will synthesize 100 samples each for the training set and test set.

maxdegree = 20 # Maximum degree of the polynomial
n_train, n_test = 100, 100 # Training and test dataset sizes
true_w = np.zeros(maxdegree) # Allocate lots of empty space
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
features = np.random.shuffle(features)
poly_features = np.power(features, np.arange(maxdegree).reshape(1, -1))
poly_features = poly_features / (

npx.gamma(np.arange(maxdegree) + 1).reshape(1, -1))
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

For optimization, we typically want to avoid very large values of gradients, losses, etc. This is
why the monomials stored in poly_features are rescaled from xi to 1

i!x
i. It allows us to avoid

very large values for large exponents i. Factorials are implemented in Gluon using the Gamma
function, where n! = Γ(n+ 1).

Take a look at the first 2 samples from the generated dataset. The value 1 is technically a feature,
namely the constant feature corresponding to the bias.

features[:2], poly_features[:2], labels[:2]

(array([[-0.03716067],
[-1.1468065]]),

array([[1.00000000e+00, -3.71606685e-02, 6.90457586e-04,

(continues on next page)

4.4. Model Selection, Underfitting and Overfitting 149

(continued from previous page)

-8.55262169e-06, 7.94552903e-08, -5.90522298e-10,
3.65736781e-12, -1.94157468e-14, 9.01877669e-17,
-3.72381952e-19, 1.38379622e-21, -4.67479880e-24,
1.44765544e-26, -4.13814215e-29, 1.09840096e-31,
-2.72115417e-34, 6.31999553e-37, -1.38150092e-39,
2.85164237e-42, -5.60519386e-45],

[1.00000000e+00, -1.14680648e+00, 6.57582462e-01,
-2.51373291e-01, 7.20691308e-02, -1.65298693e-02,
3.15942708e-03, -5.17607376e-04, 7.41994299e-05,
-9.45470947e-06, 1.08427218e-06, -1.13040933e-07,
1.08030065e-08, -9.52996793e-10, 7.80644993e-11,
-5.96832479e-12, 4.27782159e-13, -2.88578399e-14,
1.83857564e-15, -1.10973155e-16]]),

array([5.1432443 , -0.06415092]))

Training and Testing Model

Let s̓ first implement a function to evaluate the loss on a given data.

Saved in the d2l package for later use
def evaluate_loss(net, data_iter, loss):

"""Evaluate the loss of a model on the given dataset"""
metric = d2l.Accumulator(2) # sum_loss, num_examples
for X, y in data_iter:

metric.add(loss(net(X), y).sum(), y.size)
return metric[0] / metric[1]

Now define the training function.

def train(train_features, test_features, train_labels, test_labels,
num_epochs=1000):

loss = gluon.loss.L2Loss()
net = nn.Sequential()
Switch off the bias since we already catered for it in the polynomial
features
net.add(nn.Dense(1, use_bias=False))
net.initialize()
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size,

is_train=False)
trainer = gluon.Trainer(net.collect_params(), 'sgd',

{'learning_rate': 0.01})
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',

xlim=[1, num_epochs], ylim=[1e-3, 1e2],
legend=['train', 'test'])

for epoch in range(1, num_epochs+1):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch % 50 == 0:

animator.add(epoch, (evaluate_loss(net, train_iter, loss),
evaluate_loss(net, test_iter, loss)))

print('weight:', net[0].weight.data().asnumpy())

150 Chapter 4. Multilayer Perceptrons

Third-Order Polynomial Function Fitting (Normal)

We will begin by first using a third-order polynomial function with the same order as the data
generation function. The results show that this model s̓ training error rate when using the testing
dataset is low. The trained model parameters are also close to the true valuesw = [5, 1.2,−3.4, 5.6].

Pick the first four dimensions, i.e., 1, x, x^2, x^3 from the polynomial
features
train(poly_features[:n_train, 0:4], poly_features[n_train:, 0:4],

labels[:n_train], labels[n_train:])

weight: [[5.015801 1.195607 -3.4175324 5.6197805]]

Linear Function Fitting (Underfitting)

Let s̓ take another look at linear function fitting. After the decline in the early epoch, it becomes
difficult to further decrease this model s̓ training error rate. After the last epoch iteration has been
completed, the training error rate is still high. When used to fit non-linear patterns (like the third-
order polynomial function here) linear models are liable to underfit.

Pick the first four dimensions, i.e., 1, x from the polynomial features
train(poly_features[:n_train, 0:3], poly_features[n_train:, 0:3],

labels[:n_train], labels[n_train:])

weight: [[5.264786 4.0222955 -3.9895918]]

4.4. Model Selection, Underfitting and Overfitting 151

Insufficient Training (Overfitting)

Now let s̓ try to train the model using a polynomial of too high degree. Here, there is insufficient
data to learn that the higher-degree coefficients should have values close to zero. As a result, our
overly-complex model is far too susceptible to being influenced by noise in the training data. Of
course, our training error will now be low (even lower than if we had the right model!) but our
test error will be high.

Try out different model complexities (n_degree) and training set sizes (n_subset) to gain some
intuition of what is happening.

n_subset = 100 # Subset of data to train on
n_degree = 20 # Degree of polynomials
train(poly_features[1:n_subset, 0:n_degree],

poly_features[n_train:, 0:n_degree], labels[1:n_subset],
labels[n_train:])

weight: [[4.9480042 1.3321037 -3.209672 5.043265 -0.42166913 1.3474398
0.07512859 0.19178352 -0.01918835 0.01772064 -0.0509516 -0.02382804
-0.01497367 -0.04940014 0.06389725 -0.04761839 -0.04380196 -0.05188226
0.05655775 0.01104914]]

152 Chapter 4. Multilayer Perceptrons

In later chapters, we will continue to discuss overfitting problems and methods for dealing with
them, such as weight decay and dropout.

Summary

• Since the generalization error rate cannot be estimated based on the training error rate,
simply minimizing the training error rate will not necessarily mean a reduction in the gen-
eralization error rate. Machine learning models need to be careful to safeguard against over-
fitting such as to minimize the generalization error.

• A validation set can be used for model selection (provided that it is not used too liberally).

• Underfitting means that the model is not able to reduce the training error rate while over-
fitting is a result of the model training error rate being much lower than the testing dataset
rate.

• We should choose an appropriately complex model and avoid using insufficient training
samples.

Exercises

1. Can you solve the polynomial regression problem exactly? Hint: use linear algebra.

2. Model selection for polynomials

• Plot the training error vs. model complexity (degree of the polynomial). What do you
observe?

• Plot the test error in this case.

• Generate the same graph as a function of the amount of data?

3. What happens if you drop the normalization of the polynomial features xi by 1/i!. Can you
fix this in some other way?

4. What degree of polynomial do you need to reduce the training error to 0?

5. Can you ever expect to see 0 generalization error?

4.5 Weight Decay

Now that we have characterized the problem of overfitting and motivated the need for capacity
control, we can begin discussing some of the popular techniques used to these ends in practice.
Recall that we can always mitigate overfitting by going out and collecting more training data, that
can be costly and time consuming, typically making it impossible in the short run. For now, let s̓
assume that we have already obtained as much high-quality data as our resources permit and focus
on techniques aimed at limiting the capacity of the function classes under consideration.

4.5. Weight Decay 153

In our toy example, we saw that we could control the complexity of a polynomial by adjusting its
degree. However, most of machine learning does not consist of polynomial curve fitting. And
moreover, even when we focus on polynomial regression, when we deal with high-dimensional
data, manipulating model capacity by tweaking the degree d is problematic. To see why, note that
for multivariate data we must generalize the concept of polynomials to include monomials, which
are simply products of powers of variables. For example, x21x2, and x3x

2
5 are both monomials of

degree 3. The number of such terms with a given degree d blows up as a function of the degree d.

Concretely, for vectors of dimensionality D, the number of monomials of a given degree d is(
D−1+d
D−1

)
. Hence, a small change in degree, even from say 1 to 2 or 2 to 3 would entail a mas-

sive blowup in the complexity of our model. Thus, tweaking the degree is too blunt a hammer.
Instead, we need a more fine-grained tool for adjusting function complexity.

4.5.1 Squared Norm Regularization

Weight decay (commonly called L2 regularization), might be the most widely-used technique for
regularizing parametric machine learning models. The basic intuition behind weight decay is the
notion that among all functions f , the function f = 0 is the simplest. Intuitively, we can then
measure functions by their proximity to zero. But how precisely should we measure the distance
between a function and zero? There is no single right answer. In fact, entire branches of mathe-
matics, e.g., in functional analysis and the theory of Banach spaces are devoted to answering this
issue.

For our present purposes, a very simple interpretation will suffice: We will consider a linear func-
tion f(x) = w⊤x to be simple if its weight vector is small. We can measure this via ||mathbfw||2.
One way of keeping the weight vector small is to add its norm as a penalty term to the problem
of minimizing the loss. Thus we replace our original objective, minimize the prediction error on
the training labels, with new objective, minimize the sum of the prediction error and the penalty term.
Now, if the weight vector becomes too large, our learning algorithm will find more profit in min-
imizing the norm ||w||2 versus minimizing the training error. That is exactly what we want. To
illustrate things in code, let s̓ revive our previous example from Section 3.1 for linear regression.
There, our loss was given by

l(w, b) =
1

n

n∑
i=1

1

2

(
w⊤x(i) + b− y(i)

)2
. (4.5.1)

Recall that x(i) are the observations, y(i) are labels, and (w, b) are the weight and bias parame-
ters respectively. To arrive at a new loss function that penalizes the size of the weight vector, we
need to add ||mathbfw||2, but how much should we add? To address this, we need to add a new
hyperparameter, that we will call the regularization constant and denote by λ:

l(w, b) +
λ

2
∥w∥2. (4.5.2)

This non-negative parameter λ ≥ 0 governs the amount of regularization. For λ = 0, we recover
our original loss function, whereas for λ > 0 we ensure that w cannot grow too large. The astute
reader might wonder why we are squaring the norm of the weight vector. We do this for two
reasons. First, we do it for computational convenience. By squaring the L2 norm, we remove the
square root, leaving the sum of squares of each component of the weight vector. This is convenient
because it is easy to compute derivatives of a sum of terms (the sum of derivatives equals the
derivative of the sum).

Moreover, you might ask, why the L2 norm in the first place and not the L1 norm, or some other
distance function. In fact, several other choices are valid and are popular throughout statistics.

154 Chapter 4. Multilayer Perceptrons

While L2-regularized linear models constitute the classic ridge regression algorithm L1-regularized
linear regression is a similarly fundamental model in statistics popularly known as lasso regression.

One mathematical reason for working with the L2 norm and not some other norm, is that it pe-
nalizes large components of the weight vector much more than it penalizes small ones. This en-
courages our learning algorithm to discover models which distribute their weight across a larger
number of features, which might make them more robust in practice since they do not depend
precariously on a single feature. The stochastic gradient descent updates for L2-regularized re-
gression are as follows:

w ←
(
1− ηλ

|B|

)
w− η

|B|
∑
i∈B

x(i)
(
w⊤x(i) + b− y(i)

)
, (4.5.3)

As before, we update w based on the amount by which our estimate differs from the observation.
However, we also shrink the size of w towards 0. That is why the method is sometimes called
“weight decay”: because the penalty term literally causes our optimization algorithm to decay the
magnitude of the weight at each step of training. This is more convenient than having to pick
the number of parameters as we did for polynomials. In particular, we now have a continuous
mechanism for adjusting the complexity of f . Small values of λ correspond to unconstrained w,
whereas large values of λ constrain w considerably. Since we do not want to have large bias terms
either, we often add b2 as a penalty, too.

4.5.2 High-Dimensional Linear Regression

For high-dimensional regression it is difficult to pick the ʻrightʼ dimensions to omit. Weight-decay
regularization is a much more convenient alternative. We will illustrate this below. First, we will
generate some synthetic data as before

y = 0.05 +
d∑

i=1

0.01xi + ϵ where ϵ ∼ N (0, 0.01). (4.5.4)

representing our label as a linear function of our inputs, corrupted by Gaussian noise with zero
mean and variance 0.01. To observe the effects of overfitting more easily, we can make our prob-
lem high-dimensional, setting the data dimension to d = 200 and working with a relatively small
number of training examples—here we will set the sample size to 20:

%matplotlib inline
import d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 1
true_w, true_b = np.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

4.5. Weight Decay 155

4.5.3 Implementation from Scratch

Next, we will show how to implement weight decay from scratch. All we have to do here is to add
the squared ℓ2 penalty as an additional loss term added to the original target function. The squared
norm penalty derives its name from the fact that we are adding the second power

∑
iw

2
i . The ℓ2

is just one among an infinite class of norms call p-norms, many of which you might encounter in
the future. In general, for some number p, the ℓp norm is defined as

∥w∥pp :=
d∑

i=1

|wi|p. (4.5.5)

Initializing Model Parameters

First, we will define a function to randomly initialize our model parameters and run attach_grad
on each to allocate memory for the gradients we will calculate.

def init_params():
w = np.random.normal(scale=1, size=(num_inputs, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
return [w, b]

Defining ℓ2 Norm Penalty

Perhaps the most convenient way to implement this penalty is to square all terms in place and
sum them up. We divide by 2 by convention (when we take the derivative of a quadratic function,
the 2 and 1/2 cancel out, ensuring that the expression for the update looks nice and simple).

def l2_penalty(w):
return (w**2).sum() / 2

Defining the Train and Test Functions

The following code defines how to train and test the model separately on the training dataset and
the test dataset. Unlike the previous sections, here, the ℓ2 norm penalty term is added when cal-
culating the final loss function. The linear network and the squared loss have not changed since
the previous chapter, so we will just import them via d2l.linreg and d2l.squared_loss to reduce
clutter.

def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',

xlim=[1, num_epochs], legend=['train', 'test'])
for epoch in range(1, num_epochs + 1):

for X, y in train_iter:

(continues on next page)

156 Chapter 4. Multilayer Perceptrons

(continued from previous page)

with autograd.record():
The L2 norm penalty term has been added
l = loss(net(X), y) + lambd * l2_penalty(w)

l.backward()
d2l.sgd([w, b], lr, batch_size)

if epoch % 5 == 0:
animator.add(epoch+1, (d2l.evaluate_loss(net, train_iter, loss),

d2l.evaluate_loss(net, test_iter, loss)))
print('l1 norm of w:', np.abs(w).sum())

Training without Regularization

Next, let s̓ train and test the high-dimensional linear regression model. When lambd = 0 we do
not use weight decay. As a result, while the training error decreases, the test error does not. This
is a perfect example of overfitting.

train(lambd=0)

l1 norm of w: 152.89598

UsingWeight Decay

The example below shows that even though the training error increased, the error on the test set
decreased. This is precisely the improvement that we expect from using weight decay. While not
perfect, overfitting has been mitigated to some extent. In addition, the ℓ2 norm of the weight w is
smaller than without using weight decay.

train(lambd=3)

l1 norm of w: 0.30536327

4.5. Weight Decay 157

4.5.4 Concise Implementation

Because weight decay is ubiquitous in neural network optimization, Gluon makes it especially
convenient, integrating weight decay into the optimization algorithm itself for easy use in combi-
nation with any loss function. Moreover, this integration serves a computational benefit, allowing
implementation tricks to add weight decay to the algorithm, without any additional computational
overhead. Since the weight decay portion of the update depends only on the current value of each
parameter, and the optimizer must to touch each parameter once anyway.

In the following code, we specify the weight decay hyperparameter directly through the wd param-
eter when instantiating our Trainer. By default, Gluon decays both weights and biases simulta-
neously. Note that we can have different optimizers for different sets of parameters. For instance,
we can have one Trainer with weight decay for the weights w and another without weight decay
to take care of the bias b.

def train_gluon(wd):
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=1))
loss = gluon.loss.L2Loss()
num_epochs, lr = 100, 0.003
The weight parameter has been decayed. Weight names generally end with
"weight"
trainer_w = gluon.Trainer(net.collect_params('.*weight'), 'sgd',

{'learning_rate': lr, 'wd': wd})
The bias parameter has not decayed. Bias names generally end with "bias"
trainer_b = gluon.Trainer(net.collect_params('.*bias'), 'sgd',

{'learning_rate': lr})
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',

xlim=[1, num_epochs], legend=['train', 'test'])
for epoch in range(1, num_epochs+1):

for X, y in train_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
Call the step function on each of the two Trainer instances to
update the weight and bias separately
trainer_w.step(batch_size)

(continues on next page)

158 Chapter 4. Multilayer Perceptrons

(continued from previous page)

trainer_b.step(batch_size)
if epoch % 5 == 0:

animator.add(epoch+1, (d2l.evaluate_loss(net, train_iter, loss),
d2l.evaluate_loss(net, test_iter, loss)))

print('L1 norm of w:', np.abs(net[0].weight.data()).sum())

The plots look just the same as when we implemented weight decay from scratch but they run
a bit faster and are easier to implement, a benefit that will become more pronounced for large
problems.

train_gluon(0)

L1 norm of w: 163.57817

train_gluon(3)

L1 norm of w: 0.3083761

So far, we only touched upon one notion of what constitutes a simple linear function. For nonlinear

4.5. Weight Decay 159

functions, what constitutes simplicity can be a far more complex question. For instance, there exist
Reproducing Kernel Hilbert Spaces (RKHS)73 which allow one to use many of the tools introduced
for linear functions in a nonlinear context. Unfortunately, RKHS-based algorithms do not always
scale well to massive amounts of data. For the purposes of this book, we limit ourselves to simply
summing over the weights for different layers, e.g., via

∑
l ∥wl∥2, which is equivalent to weight

decay applied to all layers.

Summary

• Regularization is a common method for dealing with overfitting. It adds a penalty term to
the loss function on the training set to reduce the complexity of the learned model.

• One particular choice for keeping the model simple is weight decay using an ℓ2 penalty. This
leads to weight decay in the update steps of the learning algorithm.

• Gluon provides automatic weight decay functionality in the optimizer by setting the hyper-
parameter wd.

• You can have different optimizers within the same training loop, e.g., for different sets of
parameters.

Exercises

1. Experiment with the value of λ in the estimation problem in this page. Plot training and test
accuracy as a function of λ. What do you observe?

2. Use a validation set to find the optimal value of λ. Is it really the optimal value? Does this
matter?

3. What would the update equations look like if instead of ∥w∥2 we used
∑

i |wi| as our penalty
of choice (this is called ℓ1 regularization).

4. We know that ∥w∥2 = w⊤w. Can you find a similar equation for matrices (mathematicians
call this the Frobenius norm74)?

5. Review the relationship between training error and generalization error. In addition to
weight decay, increased training, and the use of a model of suitable complexity, what other
ways can you think of to deal with overfitting?

6. In Bayesian statistics we use the product of prior and likelihood to arrive at a posterior via
P (w | x) ∝ P (x | w)P (w). How can you identify P (w) with regularization?

73 https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
74 https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

160 Chapter 4. Multilayer Perceptrons

https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm

4.6 Dropout

Just now, we introduced the classical approach of regularizing statistical models by penalizing the
ℓ2 norm of the weights. In probabilistic terms, we could justify this technique by arguing that we
have assumed a prior belief that weights take values from a Gaussian distribution with mean 0.
More intuitively, we might argue that we encouraged the model to spread out its weights among
many features and rather than depending too much on a small number of potentially spurious
associations.

4.6.1 Overfitting Revisited

Given many more features than examples, linear models can overfit. But when there are many
more examples than features, we can generally count on linear models not to overfit. Unfortu-
nately, the reliability with which linear models generalize comes at a cost: Linear models canʼt
take into account interactions among features. For every feature, a linear model must assign ei-
ther a positive or a negative weight. They lack the flexibility to account for context.

In more formal text, youʼll see this fundamental tension between generalizability and flexibility
discussed as the bias-variance tradeoff. Linear models have high bias (they can only represent a
small class of functions), but low variance (they give similar results across different random sam-
ples of the data).

Deep neural networks take us to the opposite end of the bias-variance spectrum. Neural networks
are so flexible because they arenʼt confined to looking at each feature individually. Instead, they
can learn interactions among groups of features. For example, they might infer that “Nigeria”
and “Western Union” appearing together in an email indicates spam but that “Nigeria” without
“Western Union” does not.

Even when we only have a small number of features, deep neural networks are capable of overfit-
ting. In 2017, a group of researchers presented a now well-known demonstration of the incredible
flexibility of neural networks. They presented a neural network with randomly-labeled images
(there was no true pattern linking the inputs to the outputs) and found that the neural network,
optimized by SGD, could label every image in the training set perfectly.

Consider what this means. If the labels are assigned uniformly at random and there are 10 classes,
then no classifier can get better than 10% accuracy on holdout data. Yet even in these situations,
when there is no true pattern to be learned, neural networks can perfectly fit the training labels.

4.6.2 Robustness through Perturbations

Let s̓ think briefly about what we expect from a good statistical model. We want it to do well on
unseen test data. One way we can accomplish this is by asking what constitutes a “simple” model?
Simplicity can come in the form of a small number of dimensions, which is what we did when
discussing fitting a model with monomial basis functions. Simplicity can also come in the form
of a small norm for the basis functions. This led us to weight decay (ℓ2 regularization). Yet a third
notion of simplicity that we can impose is that the function should be robust under small changes
in the input. For instance, when we classify images, we would expect that adding some random
noise to the pixels should be mostly harmless.

In 1995, Christopher Bishop formalized a form of this idea when he proved that training with input
noise is equivalent to Tikhonov regularization (Bishop, 1995). In other words, he drew a clear

4.6. Dropout 161

mathematical connection between the requirement that a function be smooth (and thus simple),
as we discussed in the section on weight decay, with and the requirement that it be resilient to
perturbations in the input.

Then in 2014, Srivastava et al. (Srivastava et al., 2014) developed a clever idea for how to apply
Bishops̓ idea to the internal layers of the network, too. Namely they proposed to inject noise
into each layer of the network before calculating the subsequent layer during training. They real-
ized that when training deep network with many layers, enforcing smoothness just on the input-
output mapping misses out on what is happening internally in the network. Their proposed idea
is called dropout, and it is now a standard technique that is widely used for training neural net-
works. Throughout training, on each iteration, dropout regularization consists simply of zeroing
out some fraction (typically 50%) of the nodes in each layer before calculating the subsequent
layer.

The key challenge then is how to inject this noise without introducing undue statistical bias. In
other words, we want to perturb the inputs to each layer during training in such a way that the
expected value of the layer is equal to the value it would have taken had we not introduced any
noise at all.

In Bishops̓ case, when we are adding Gaussian noise to a linear model, this is simple: At each
training iteration, just add noise sampled from a distribution with mean zero ϵ ∼ N (0, σ2) to the
input x , yielding a perturbed point x′ = x+ ϵ. In expectation, E[x′] = x.

In the case of dropout regularization, one can debias each layer by normalizing by the fraction of
nodes that were not dropped out. In other words, dropout with drop probability p is applied as
follows:

h′ =

{
0 with probability p
h

1−p otherwise
(4.6.1)

By design, the expectation remains unchanged, i.e., E[h′] = h. Intermediate activations h are
replaced by a random variable h′ with matching expectation. The name “dropout” arises from the
notion that some neurons “drop out” of the computation for the purpose of computing the final
result. During training, we replace intermediate activations with random variables.

4.6.3 Dropout in Practice

Recall the multilayer perceptron (Section 4.1) with a hidden layer and 5 hidden units. Its archi-
tecture is given by

h = σ(W1x+ b1),

o = W2h+ b2,

ŷ = softmax(o).
(4.6.2)

When we apply dropout to the hidden layer, we are essentially removing each hidden unit with
probability p, (i.e., setting their output to 0). We can view the result as a network containing only a
subset of the original neurons. In Fig. 4.6.1, h2 and h5 are removed. Consequently, the calculation
of y no longer depends on h2 and h5 and their respective gradient also vanishes when performing
backprop. In this way, the calculation of the output layer cannot be overly dependent on any one
element of h1, . . . , h5. Intuitively, deep learning researchers often explain the intuition thusly:
we do not want the network s̓ output to depend too precariously on the exact activation pathway
through the network. The original authors of the dropout technique described their intuition as
an effort to prevent the co-adaptation of feature detectors.

162 Chapter 4. Multilayer Perceptrons

Fig. 4.6.1: MLP before and after dropout

At test time, we typically do not use dropout. However, we note that there are some exceptions:
some researchers use dropout at test time as a heuristic approach for estimating the confidence of
neural network predictions: if the predictions agree across many different dropout masks, then
we might say that the network is more confident. For now we will put off the advanced topic of
uncertainty estimation for subsequent chapters and volumes.

4.6.4 Implementation from Scratch

To implement the dropout function for a single layer, we must draw as many samples from a
Bernoulli (binary) random variable as our layer has dimensions, where the random variable takes
value 1 (keep) with probability 1 − p and 0 (drop) with probability p. One easy way to implement
this is to first draw samples from the uniform distribution U [0, 1]. then we can keep those nodes
for which the corresponding sample is greater than p, dropping the rest.

In the following code, we implement a dropout function that drops out the elements in the ndar-
ray input X with probability drop_prob, rescaling the remainder as described above (dividing the
survivors by 1.0-drop_prob).

import d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()

def dropout(X, drop_prob):
assert 0 <= drop_prob <= 1
In this case, all elements are dropped out
if drop_prob == 1:

return np.zeros_like(X)
mask = np.random.uniform(0, 1, X.shape) > drop_prob
return mask.astype(np.float32) * X / (1.0-drop_prob)

We can test out the dropout function on a few examples. In the following lines of code, we pass
our input X through the dropout operation, with probabilities 0, 0.5, and 1, respectively.

X = np.arange(16).reshape(2, 8)
print(dropout(X, 0))

(continues on next page)

4.6. Dropout 163

(continued from previous page)

print(dropout(X, 0.5))
print(dropout(X, 1))

[[0. 1. 2. 3. 4. 5. 6. 7.]
[8. 9. 10. 11. 12. 13. 14. 15.]]
[[0. 0. 0. 0. 8. 10. 12. 0.]
[16. 0. 20. 22. 0. 0. 0. 30.]]
[[0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0.]]

Defining Model Parameters

Again, we can use the Fashion-MNIST dataset, introduced in Section 3.6. We will define a multi-
layer perceptron with two hidden layers. The two hidden layers both have 256 outputs.

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1))
b1 = np.zeros(num_hiddens1)
W2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2))
b2 = np.zeros(num_hiddens2)
W3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs))
b3 = np.zeros(num_outputs)

params = [W1, b1, W2, b2, W3, b3]
for param in params:

param.attach_grad()

Defining the Model

The model defined below concatenates the fully-connected layer and the activation function ReLU,
using dropout for the output of each activation function. We can set the dropout probability of
each layer separately. It is generally recommended to set a lower dropout probability closer to the
input layer. Below we set it to 0.2 and 0.5 for the first and second hidden layer respectively. By
using the is_training function described in Section 2.5, we can ensure that dropout is only active
during training.

drop_prob1, drop_prob2 = 0.2, 0.5

def net(X):
X = X.reshape(-1, num_inputs)
H1 = npx.relu(np.dot(X, W1) + b1)
Use dropout only when training the model
if autograd.is_training():

Add a dropout layer after the first fully connected layer
H1 = dropout(H1, drop_prob1)

H2 = npx.relu(np.dot(H1, W2) + b2)
if autograd.is_training():

Add a dropout layer after the second fully connected layer

(continues on next page)

164 Chapter 4. Multilayer Perceptrons

(continued from previous page)

H2 = dropout(H2, drop_prob2)
return np.dot(H2, W3) + b3

Training and Testing

This is similar to the training and testing of multilayer perceptrons described previously.

num_epochs, lr, batch_size = 10, 0.5, 256
loss = gluon.loss.SoftmaxCrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,

lambda batch_size: d2l.sgd(params, lr, batch_size))

4.6.5 Concise Implementation

Using Gluon, all we need to do is add a Dropout layer (also in the nn package) after each fully-
connected layer, passing in the dropout probability as the only argument to its constructor. During
training, the Dropout layer will randomly drop out outputs of the previous layer (or equivalently,
the inputs to the subsequent layer) according to the specified dropout probability. When MXNet
is not in training mode, the Dropout layer simply passes the data through during testing.

net = nn.Sequential()
net.add(nn.Dense(256, activation="relu"),

Add a dropout layer after the first fully connected layer
nn.Dropout(drop_prob1),
nn.Dense(256, activation="relu"),
Add a dropout layer after the second fully connected layer
nn.Dropout(drop_prob2),
nn.Dense(10))

net.initialize(init.Normal(sigma=0.01))

Next, we train and test the model.

4.6. Dropout 165

trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

Summary

• Beyond controlling the number of dimensions and the size of the weight vector, dropout is
yet another tool to avoid overfitting. Often all three are used jointly.

• Dropout replaces an activation h with a random variable h′ with expected value h and with
variance given by the dropout probability p.

• Dropout is only used during training.

Exercises

1. Try out what happens if you change the dropout probabilities for layers 1 and 2. In particular,
what happens if you switch the ones for both layers?

2. Increase the number of epochs and compare the results obtained when using dropout with
those when not using it.

3. Compute the variance of the the activation random variables after applying dropout.

4. Why should you typically not using dropout?

5. If changes are made to the model to make it more complex, such as adding hidden layer
units, will the effect of using dropout to cope with overfitting be more obvious?

6. Using the model in this section as an example, compare the effects of using dropout and
weight decay. What if dropout and weight decay are used at the same time?

7. What happens if we apply dropout to the individual weights of the weight matrix rather than
the activations?

8. Replace the dropout activation with a random variable that takes on values of [0, γ/2, γ]. Can
you design something that works better than the binary dropout function? Why might you
want to use it? Why not?

166 Chapter 4. Multilayer Perceptrons

4.7 Forward Propagation, Backward Propagation, and Computational
Graphs

In the previous sections, we used minibatch stochastic gradient descent to train our models. When
we implemented the algorithm, we only worried about the calculations involved in forward prop-
agation through the model. In other words, we implemented the calculations required for the
model to generate output corresponding to come given input, but when it came time to calculate
the gradients of each of our parameters, we invoked the backward function, relying on the auto-
grad module to figure out what to do.

The automatic calculation of gradients profoundly simplifies the implementation of deep learning
algorithms. Before automatic differentiation, even small changes to complicated models would
require recalculating lots of derivatives by hand. Even academic papers would too often have to
allocate lots of page real estate to deriving update rules.

While we plan to continue relying on autograd, and we have already come a long way without every
discussing how these gradients are calculated efficiently under the hood, it is important that you
know how updates are actually calculated if you want to go beyond a shallow understanding of
deep learning.

In this section, we will peel back the curtain on some of the details of backward propagation (more
commonly called backpropagation or backprop). To convey some insight for both the techniques
and how they are implemented, we will rely on both mathematics and computational graphs to
describe the mechanics behind neural network computations. To start, we will focus our exposi-
tion on a simple multilayer perceptron with a single hidden layer and ℓ2 norm regularization.

4.7.1 Forward Propagation

Forward propagation refers to the calculation and storage of intermediate variables (including
outputs) for the neural network within the models in the order from input layer to output layer.
In the following, we work in detail through the example of a deep network with one hidden layer
step by step. This is a bit tedious but it will serve us well when discussing what really goes on when
we call backward.

For the sake of simplicity, let s̓ assume that the input example is x ∈ Rd and there is no bias term.
Here the intermediate variable is:

z = W(1)x, (4.7.1)

where W(1) ∈ Rh×d is the weight parameter of the hidden layer. After entering the intermediate
variable z ∈ Rh into the activation function ϕ operated by the basic elements, we will obtain a
hidden layer variable with the vector length of h,

h = ϕ(z). (4.7.2)

4.7. Forward Propagation, Backward Propagation, and Computational Graphs 167

The hidden variable h is also an intermediate variable. Assuming the parameters of the output
layer only possess a weight of W(2) ∈ Rq×h, we can obtain an output layer variable with a vector
length of q:

o = W(2)h. (4.7.3)

Assuming the loss function is l and the example label is y, we can then calculate the loss term for
a single data example,

L = l(o, y). (4.7.4)

According to the definition of ℓ2 norm regularization, given the hyperparameter λ, the regulariza-
tion term is

s =
λ

2

(
∥W(1)∥2F + ∥W(2)∥2F

)
, (4.7.5)

where the Frobenius norm of the matrix is equivalent to the calculation of the L2 norm after flat-
tening the matrix to a vector. Finally, the model s̓ regularized loss on a given data example is

J = L+ s. (4.7.6)

We refer toJ as the objective function of a given data example and refer to it as the objective function
in the following discussion.

4.7.2 Computational Graph of Forward Propagation

Plotting computational graphs helps us visualize the dependencies of operators and variables
within the calculation. Fig. 4.7.1 contains the graph associated with the simple network described
above. The lower-left corner signifies the input and the upper right corner the output. Notice that
the direction of the arrows (which illustrate data flow) are primarily rightward and upward.

Fig. 4.7.1: Computational Graph

4.7.3 Backpropagation

Backpropagation refers to the method of calculating the gradient of neural network parameters.
In general, back propagation calculates and stores the intermediate variables of an objective func-
tion related to each layer of the neural network and the gradient of the parameters in the order of
the output layer to the input layer according to the ʻchain ruleʼ in calculus. Assume that we have
functions Y = f(X) and Z = g(Y) = g ◦ f(X), in which the input and the output X, Y, Z are tensors of
arbitrary shapes. By using the chain rule, we can compute the derivative of Z wrt. X via

∂Z
∂X

= prod
(
∂Z
∂Y

,
∂Y
∂X

)
. (4.7.7)

168 Chapter 4. Multilayer Perceptrons

Here we use the prod operator to multiply its arguments after the necessary operations, such as
transposition and swapping input positions have been carried out. For vectors, this is straight-
forward: it is simply matrix-matrix multiplication and for higher dimensional tensors we use the
appropriate counterpart. The operator prod hides all the notation overhead.

The parameters of the simple network with one hidden layer are W(1) and W(2). The objective
of backpropagation is to calculate the gradients ∂J/∂W(1) and ∂J/∂W(2). To accomplish this,
we will apply the chain rule and calculate, in turn, the gradient of each intermediate variable
and parameter. The order of calculations are reversed relative to those performed in forward
propagation, since we need to start with the outcome of the compute graph and work our way
towards the parameters. The first step is to calculate the gradients of the objective function J =
L+ s with respect to the loss term L and the regularization term s.

∂J

∂L
= 1 and

∂J

∂s
= 1. (4.7.8)

Next, we compute the gradient of the objective function with respect to variable of the output layer
o according to the chain rule.

∂J

∂o
= prod

(
∂J

∂L
,
∂L

∂o

)
=

∂L

∂o
∈ Rq. (4.7.9)

Next, we calculate the gradients of the regularization term with respect to both parameters.

∂s

∂W(1)
= λW(1) and

∂s

∂W(2)
= λW(2). (4.7.10)

Now we are able calculate the gradient ∂J/∂W(2) ∈ Rq×h of the model parameters closest to the
output layer. Using the chain rule yields:

∂J

∂W(2)
= prod

(
∂J

∂o
,

∂o
∂W(2)

)
+ prod

(
∂J

∂s
,

∂s

∂W(2)

)
=

∂J

∂o
h⊤ + λW(2). (4.7.11)

To obtain the gradient with respect to W(1) we need to continue backpropagation along the output
layer to the hidden layer. The gradient with respect to the hidden layer s̓ outputs ∂J/∂h ∈ Rh is
given by

∂J

∂h
= prod

(
∂J

∂o
,
∂o
∂h

)
= W(2)⊤∂J

∂o
. (4.7.12)

Since the activation function ϕ applies elementwise, calculating the gradient ∂J/∂z ∈ Rh of the
intermediate variable z requires that we use the elementwise multiplication operator, which we
denote by⊙.

∂J

∂z
= prod

(
∂J

∂h
,
∂h
∂z

)
=

∂J

∂h
⊙ ϕ′ (z) . (4.7.13)

Finally, we can obtain the gradient ∂J/∂W(1) ∈ Rh×d of the model parameters closest to the input
layer. According to the chain rule, we get

∂J

∂W(1)
= prod

(
∂J

∂z
,

∂z
∂W(1)

)
+ prod

(
∂J

∂s
,

∂s

∂W(1)

)
=

∂J

∂z
x⊤ + λW(1). (4.7.14)

4.7. Forward Propagation, Backward Propagation, and Computational Graphs 169

4.7.4 Training a Model

When training networks, forward and backward propagation depend on each other. In partic-
ular, for forward propagation, we traverse the compute graph in the direction of dependencies
and compute all the variables on its path. These are then used for backpropagation where the
compute order on the graph is reversed. One of the consequences is that we need to retain the
intermediate values until backpropagation is complete. This is also one of the reasons why back-
propagation requires significantly more memory than plain “inference”—we end up computing
tensors as gradients and need to retain all the intermediate variables to invoke the chain rule. An-
other reason is that we typically train with minibatches containing more than one variable, thus
more intermediate activations need to be stored.

Summary

• Forward propagation sequentially calculates and stores intermediate variables within the
compute graph defined by the neural network. It proceeds from input to output layer.

• Back propagation sequentially calculates and stores the gradients of intermediate variables
and parameters within the neural network in the reversed order.

• When training deep learning models, forward propagation and back propagation are inter-
dependent.

• Training requires significantly more memory and storage.

Exercises

1. Assume that the inputs x are matrices. What is the dimensionality of the gradients?

2. Add a bias to the hidden layer of the model described in this section.

• Draw the corresponding compute graph.

• Derive the forward and backward propagation equations.

3. Compute the memory footprint for training and inference in model described in the current
chapter.

4. Assume that you want to compute second derivatives. What happens to the compute graph?
Is this a good idea?

5. Assume that the compute graph is too large for your GPU.

• Can you partition it over more than one GPU?

• What are the advantages and disadvantages over training on a smaller minibatch?

170 Chapter 4. Multilayer Perceptrons

4.8 Numerical Stability and Initialization

In the past few sections, each model that we implemented required initializing our parameters
according to some specified distribution. However, until now, we glossed over the details, taking
the initialization hyperparameters for granted. You might even have gotten the impression that
these choices are not especially important. However, the choice of initialization scheme plays a
significant role in neural network learning, and can prove essentially to maintaining numerical
stability. Moreover, these choices can be tied up in interesting ways with the choice of the acti-
vation function. Which nonlinear activation function we choose, and how we decide to initialize
our parameters can play a crucial role in making the optimization algorithm converge rapidly.
Failure to be mindful of these issues can lead to either exploding or vanishing gradients. In this
section, we delve into these topics with greater detail and discuss some useful heuristics that you
may use frequently throughout your career in deep learning.

4.8.1 Vanishing and Exploding Gradients

Consider a deep network with d layers, input x and output o. Each layer satisfies:

ht+1 = ft(ht) and thus o = fd ◦ . . . , ◦f1(x). (4.8.1)

If all activations and inputs are vectors, we can write the gradient of o with respect to any set of
parameters Wt associated with the function ft at layer t simply as

∂Wto = ∂hd−1hd︸ ︷︷ ︸
:=Md

· . . . , · ∂htht+1︸ ︷︷ ︸
:=Mt

∂Wtht︸ ︷︷ ︸
:=vt

.
(4.8.2)

In other words, it is the product of d − t matrices Md · . . . , ·Mt and the gradient vector vt. What
happens is similar to the situation when we experienced numerical underflow when multiply-
ing too many probabilities. At the time, we were able to mitigate the problem by switching from
into log-space, i.e., by shifting the problem from the mantissa to the exponent of the numerical
representation. Unfortunately the problem outlined in the equation above is much more seri-
ous: initially the matrices Mt may well have a wide variety of eigenvalues. They might be small,
they might be large, and in particular, their product might well be very large or very small. This is
not (only) a problem of numerical representation but it means that the optimization algorithm is
bound to fail. It receives gradients that are either excessively large or excessively small. As a re-
sult the steps taken are either (i) excessively large (the exploding gradient problem), in which case
the parameters blow up in magnitude rendering the model useless, or (ii) excessively small, (the
vanishing gradient problem), in which case the parameters hardly move at all, and thus the learning
process makes no progress.

Vanishing Gradients

One major culprit in the vanishing gradient problem is the choices of the activation functions σ
that are interleaved with the linear operations in each layer. Historically, the sigmoid function (1+
exp(−x)) (introduced in Section 4.1) was a popular choice owing to its similarity to a thresholding
function. Since early artificial neural networks were inspired by biological neural networks, the
idea of neurons that either fire or do not fire (biological neurons do not partially fire) seemed
appealing. Let s̓ take a closer look at the function to see why picking it might be problematic vis-
a-vis vanishing gradients.

4.8. Numerical Stability and Initialization 171

%matplotlib inline
import d2l
from mxnet import autograd, np, npx
npx.set_np()

x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():

y = npx.sigmoid(x)
y.backward()

d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))

As we can see, the gradient of the sigmoid vanishes both when its inputs are large and when they
are small. Moreover, when we execute backward propagation, due to the chain rule, this means
that unless we are in the Goldilocks zone, where the inputs to most of the sigmoids are in the range
of, say [−4, 4], the gradients of the overall product may vanish. When we have many layers, unless
we are especially careful, we are likely to find that our gradient is cut off at some layer. Before
ReLUs (max(0, x)) were proposed as an alternative to squashing functions, this problem used to
plague deep network training. As a consequence, ReLUs have become the default choice when
designing activation functions in deep networks.

Exploding Gradients

The opposite problem, when gradients explode, can be similarly vexing. To illustrate this a bit
better, we draw 100 Gaussian random matrices and multiply them with some initial matrix. For
the scale that we picked (the choice of the variance σ2 = 1), the matrix product explodes. If this
were to happen to us with a deep network, we would have no realistic chance of getting a gradient
descent optimizer to converge.

M = np.random.normal(size=(4, 4))
print('A single matrix', M)
for i in range(100):

M = np.dot(M, np.random.normal(size=(4, 4)))

print('After multiplying 100 matrices', M)

172 Chapter 4. Multilayer Perceptrons

A single matrix [[2.2122064 1.1630787 0.7740038 0.4838046]
[1.0434405 0.29956347 1.1839255 0.15302546]
[1.8917114 -1.1688148 -1.2347414 1.5580711]
[-1.771029 -0.5459446 -0.45138445 -2.3556297]]
After multiplying 100 matrices [[3.4459714e+23 -7.8040680e+23 5.9973287e+23 4.5229990e+23]
[2.5275089e+23 -5.7240326e+23 4.3988473e+23 3.3174740e+23]
[1.3731286e+24 -3.1097155e+24 2.3897773e+24 1.8022959e+24]
[-4.4951040e+23 1.0180033e+24 -7.8232281e+23 -5.9000354e+23]]

Symmetry

Another problem in deep network design is the symmetry inherent in their parametrization. As-
sume that we have a deep network with one hidden layer with two units, say h1 and h2. In this
case, we could permute the weights W1 of the first layer and likewise permute the weights of the
output layer to obtain the same function. There is nothing special differentiating the first hidden
unit vs the second hidden unit. In other words, we have permutation symmetry among the hidden
units of each layer.

This is more than just a theoretical nuisance. Imagine what would happen if we initialized all of
the parameters of some layer as Wl = c for some constant c. In this case, the gradients for all
dimensions are identical: thus not only would each unit take the same value, but it would receive
the same update. Stochastic gradient descent would never break the symmetry on its own and we
might never be able to realize the networks expressive power. The hidden layer would behave as if
it had only a single unit. As an aside, note that while SGD would not break this symmetry, dropout
regularization would!

4.8.2 Parameter Initialization

One way of addressing, or at least mitigating the issues raised above is through careful initializa-
tion of the weight vectors. This way we can ensure that (at least initially) the gradients do not
vanish and that they maintain a reasonable scale where the network weights do not diverge. Addi-
tional care during optimization and suitable regularization ensures that things never get too bad.

Default Initialization

In the previous sections, e.g., in Section 3.3, we used net.initialize(init.Normal(sigma=0.01))
to initialize the values of our weights. If the initialization method is not specified, such as net.
initialize(), MXNet will use the default random initialization method: each element of the
weight parameter is randomly sampled with a uniform distribution U [−0.07, 0.07] and the bias
parameters are all set to 0. Both choices tend to work well in practice for moderate problem sizes.

4.8. Numerical Stability and Initialization 173

Xavier Initialization

Let s̓ look at the scale distribution of the activations of the hidden units hi for some layer. They
are given by

hi =

nin∑
j=1

Wijxj . (4.8.3)

The weights Wij are all drawn independently from the same distribution. Furthermore, let s̓ as-
sume that this distribution has zero mean and variance σ2 (this does not mean that the distribution
has to be Gaussian, just that mean and variance need to exist). We do not really have much control
over the inputs into the layer xj but let s̓ proceed with the somewhat unrealistic assumption that
they also have zero mean and variance γ2 and that they are independent of W. In this case, we
can compute mean and variance of hi as follows:

E[hi] =

nin∑
j=1

E[Wijxj] = 0,

E[h2i] =

nin∑
j=1

E[W 2
ijx

2
j]

=

nin∑
j=1

E[W 2
ij]E[x2j]

= ninσ
2γ2.

(4.8.4)

One way to keep the variance fixed is to set ninσ
2 = 1. Now consider backpropagation. There

we face a similar problem, albeit with gradients being propagated from the top layers. That is,
instead of Ww, we need to deal with W⊤g, where g is the incoming gradient from the layer above.
Using the same reasoning as for forward propagation, we see that the gradientsʼ variance can blow
up unless noutσ

2 = 1. This leaves us in a dilemma: we cannot possibly satisfy both conditions
simultaneously. Instead, we simply try to satisfy:

1

2
(nin + nout)σ

2 = 1 or equivalently σ =

√
2

nin + nout
. (4.8.5)

This is the reasoning underlying the eponymous Xavier initialization (Glorot & Bengio, 2010). It
works well enough in practice. For Gaussian random variables, the Xavier initialization picks a
normal distribution with zero mean and variance σ2 = 2/(nin + nout). For uniformly distributed
random variables U [−a, a], note that their variance is given by a2/3. Plugging a2/3 into the condi-
tion on σ2 yields that we should initialize uniformly with U

[
−
√

6/(nin + nout),
√

6/(nin + nout)
]

.

Beyond

The reasoning above barely scratches the surface of modern approaches to parameter initializa-
tion. In fact, MXNet has an entire mxnet.initializer module implementing over a dozen differ-
ent heuristics. Moreover, initialization continues to be a hot area of inquiry within research into
the fundamental theory of neural network optimization. Some of these heuristics are especially
suited for when parameters are tied (i.e., when parameters of in different parts the network are
shared), for super-resolution, sequence models, and related problems. We recommend that the
interested reader take a closer look at what is offered as part of this module, and investigate the
recent research on parameter initialization. Perhaps you may come across a recent clever idea
and contribute its implementation to MXNet, or you may even invent your own scheme!

174 Chapter 4. Multilayer Perceptrons

Summary

• Vanishing and exploding gradients are common issues in very deep networks, unless great
care is taking to ensure that gradients and parameters remain well controlled.

• Initialization heuristics are needed to ensure that at least the initial gradients are neither too
large nor too small.

• The ReLU addresses one of the vanishing gradient problems, namely that gradients vanish
for very large inputs. This can accelerate convergence significantly.

• Random initialization is key to ensure that symmetry is broken before optimization.

Exercises

1. Can you design other cases of symmetry breaking besides the permutation symmetry?

2. Can we initialize all weight parameters in linear regression or in softmax regression to the
same value?

3. Look up analytic bounds on the eigenvalues of the product of two matrices. What does this
tell you about ensuring that gradients are well conditioned?

4. If we know that some terms diverge, can we fix this after the fact? Look at the paper on LARS
for inspiration (You et al., 2017).

4.9 Considering the Environment

So far, we have worked through a number of hands-on implementations fitting machine learning
models to a variety of datasets. And yet, until now we skated over the matter of where are data
comes from in the first place, and what we plan to ultimately do with the outputs from our models.
Too often in the practice of machine learning, developers rush ahead with the development of
models tossing these fundamental considerations aside.

Many failed machine learning deployments can be traced back to this situation. Sometimes the
model does well as evaluated by test accuracy only to fail catastrophically in the real world when
the distribution of data suddenly shifts. More insidiously, sometimes the very deployment of a
model can be the catalyst which perturbs the data distribution. Say for example that we trained
a model to predict loan defaults, finding that the choice of footware was associated with risk of
default (Oxfords indicate repayment, sneakers indicate default). We might be inclined to there-
after grant loans to all applicants wearing Oxfords and to deny all applicants wearing sneakers.
But our ill-conceived leap from pattern recognition to decision-making and our failure to think
critically about the environment might have disastrous consequences. For starters, as soon as we
began making decisions based on footware, customers would catch on and change their behav-
ior. Before long, all applicants would be wearing Oxfords, and yet there would be no coinciding
improvement in credit-worthiness. Think about this deeply because similar issues abound in the

4.9. Considering the Environment 175

application of machine learning: by introducing our model-based decisions to the environment,
we might break the model.

In this section, we describe some common concerns and aim to get you started acquiring the
critical thinking that you will need in order to detect these situations early, mitigate the damage,
and use machine learning responsibly. Some of the solutions are simple (ask for the “right” data)
some are technically difficult (implement a reinforcement learning system), and others require
that we enter the realm of philosophy and grapple with difficult questions concerning ethics and
informed consent.

4.9.1 Distribution Shift

To begin, we return to the observational setting, putting aside for now the impacts of our actions
on the environment. In the following sections, we take a deeper look at the various ways that data
distributions might shift, and what might be done to salvage model performance. From the outset,
we should warn that if the data-generating distribution p(x, y) can shift in arbitrary ways at any
point in time, then learning a robust classifier is impossible. In the most pathological case, if the
label definitions themselves can change at a moments notice: if suddenly what we called “cats”
are now dogs and what we previously called “dogs” are now in fact cats, without any perceptible
change in the distribution of inputs p(x), then there is nothing we could do to detect the change
or to correct our classifier at test time. Fortunately, under some restricted assumptions on the
ways our data might change in the future, principled algorithms can detect shift and possibly even
adapt, achieving higher accuracy than if we naively continued to rely on our original classifier.

Covariate Shift

One of the best-studied forms of distribution shift is covariate shift. Here we assume that although
the distribution of inputs may change over time, the labeling function, i.e., the conditional distri-
bution P (y | x) does not change. While this problem is easy to understand its also easy to overlook
it in practice. Consider the challenge of distinguishing cats and dogs. Our training data consists
of images of the following kind:

cat cat dog dog

At test time we are asked to classify the following images:

176 Chapter 4. Multilayer Perceptrons

cat cat dog dog

Obviously this is unlikely to work well. The training set consists of photos, while the test set con-
tains only cartoons. The colors are not even realistic. Training on a dataset that looks substantially
different from the test set without some plan for how to adapt to the new domain is a bad idea.
Unfortunately, this is a very common pitfall. Statisticians call this covariate shift because the root
of the problem owed to a shift in the distribution of features (i.e., of covariates). Mathematically,
we could say that P (x) changes but that P (y | x) remains unchanged. Although its usefulness
is not restricted to this setting, when we believe x causes y, covariate shift is usually the right
assumption to be working with.

Label Shift

The converse problem emerges when we believe that what drives the shift is a change in the
marginal distribution over the labels P (y) but that the class-conditional distributions are invari-
ant P (x | y). Label shift is a reasonable assumption to make when we believe that y causes x. For
example, commonly we want to predict a diagnosis given its manifestations. In this case we be-
lieve that the diagnosis causes the manifestations, i.e., diseases cause symptoms. Sometimes the
label shift and covariate shift assumptions can hold simultaneously. For example, when the true
labeling function is deterministic and unchanging, then covariate shift will always hold, including
if label shift holds too. Interestingly, when we expect both label shift and covariate shift hold, it
is often advantageous to work with the methods that flow from the label shift assumption. That
is because these methods tend to involve manipulating objects that look like the label, which (in
deep learning) tends to be comparatively easy compared to working with the objects that look like
the input, which tends (in deep learning) to be a high-dimensional object.

4.9. Considering the Environment 177

Concept Shift

One more related problem arises in concept shift, the situation in which the very label definitions
change. This sounds weird—after all, a cat is a cat. Indeed the definition of a cat might not change,
but can we say the same about soft drinks? It turns out that if we navigate around the United States,
shifting the source of our data by geography, we will find considerable concept shift regarding the
definition of even this simple term as shown in Fig. 4.9.1.

Fig. 4.9.1: Concept shift on soft drink names in the United States.

If we were to build a machine translation system, the distribution P (y | x) might be different
depending on our location. This problem can be tricky to spot. A saving grace is that often the
P (y | x) only shifts gradually.

Examples

Before we go into further detail and discuss remedies, we can discuss a number of situations where
covariate and concept shift may not be so obvious.

Medical Diagnostics

Imagine that you want to design an algorithm to detect cancer. You collect data from healthy and
sick people and you train your algorithm. It works fine, giving you high accuracy and you conclude
that youʼre ready for a successful career in medical diagnostics. Not so fast…

Many things could go wrong. In particular, the distributions that you work with for training and
those that you encounter in the wild might differ considerably. This happened to an unfortunate
startup, that Alex had the opportunity to consult for many years ago. They were developing a
blood test for a disease that affects mainly older men and they d̓ managed to obtain a fair amount
of blood samples from patients. It is considerably more difficult, though, to obtain blood samples
from healthy men (mainly for ethical reasons). To compensate for that, they asked a large num-
ber of students on campus to donate blood and they performed their test. Then they asked me
whether I could help them build a classifier to detect the disease. I told them that it would be very
easy to distinguish between both datasets with near-perfect accuracy. After all, the test subjects

178 Chapter 4. Multilayer Perceptrons

differed in age, hormone levels, physical activity, diet, alcohol consumption, and many more fac-
tors unrelated to the disease. This was unlikely to be the case with real patients: Their sampling
procedure made it likely that an extreme case of covariate shift would arise between the source
and target distributions, and at that, one that could not be corrected by conventional means. In
other words, training and test data were so different that nothing useful could be done and they
had wasted significant amounts of money.

Self Driving Cars

Say a company wanted to build a machine learning system for self-driving cars. One of the key
components is a roadside detector. Since real annotated data is expensive to get, they had the
(smart and questionable) idea to use synthetic data from a game rendering engine as additional
training data. This worked really well on “test data” drawn from the rendering engine. Alas, inside
a real car it was a disaster. As it turned out, the roadside had been rendered with a very simplis-
tic texture. More importantly, all the roadside had been rendered with the same texture and the
roadside detector learned about this “feature” very quickly.

A similar thing happened to the US Army when they first tried to detect tanks in the forest. They
took aerial photographs of the forest without tanks, then drove the tanks into the forest and took
another set of pictures. The so-trained classifier worked “perfectly”. Unfortunately, all it had
learned was to distinguish trees with shadows from trees without shadows—the first set of pic-
tures was taken in the early morning, the second one at noon.

Nonstationary distributions

A much more subtle situation arises when the distribution changes slowly and the model is not
updated adequately. Here are some typical cases:

• We train a computational advertising model and then fail to update it frequently (e.g., we
forget to incorporate that an obscure new device called an iPad was just launched).

• We build a spam filter. It works well at detecting all spam that we have seen so far. But then
the spammers wisen up and craft new messages that look unlike anything we have seen
before.

• We build a product recommendation system. It works throughout the winter… but then it
keeps on recommending Santa hats long after Christmas.

More Anecdotes

• We build a face detector. It works well on all benchmarks. Unfortunately it fails on test
data—the offending examples are close-ups where the face fills the entire image (no such
data was in the training set).

• We build a web search engine for the USA market and want to deploy it in the UK.

• We train an image classifier by compiling a large dataset where each among a large set of
classes is equally represented in the dataset, say 1000 categories, represented by 1000 images
each. Then we deploy the system in the real world, where the actual label distribution of
photographs is decidedly non-uniform.

4.9. Considering the Environment 179

In short, there are many cases where training and test distributions p(x, y) are different. In some
cases, we get lucky and the models work despite covariate, label, or concept shift. In other cases,
we can do better by employing principled strategies to cope with the shift. The remainder of this
section grows considerably more technical. The impatient reader could continue on to the next
section as this material is not prerequisite to subsequent concepts.

Covariate Shift Correction

Assume that we want to estimate some dependencyP (y | x) for which we have labeled data (xi, yi).
Unfortunately, the observations xi are drawn from some target distribution q(x) rather than the
source distribution p(x). To make progress, we need to reflect about what exactly is happening dur-
ing training: we iterate over training data and associated labels {(x1, y1), . . . , (xn, yn)} and update
the weight vectors of the model after every minibatch. We sometimes additionally apply some
penalty to the parameters, using weight decay, dropout, or some other related technique. This
means that we largely minimize the loss on the training.

minimize
w

1

n

n∑
i=1

l(xi, yi, f(xi)) + some penalty(w). (4.9.1)

Statisticians call the first term an empirical average, i.e., an average computed over the data drawn
from P (x)P (y | x). If the data is drawn from the “wrong” distribution q, we can correct for that
by using the following simple identity:∫

p(x)f(x)dx =

∫
q(x)f(x)

p(x)
q(x)

dx. (4.9.2)

In other words, we need to re-weight each instance by the ratio of probabilities that it would have
been drawn from the correct distribution β(x) := p(x)/q(x). Alas, we do not know that ratio, so
before we can do anything useful we need to estimate it. Many methods are available, including
some fancy operator-theoretic approaches that attempt to recalibrate the expectation operator di-
rectly using a minimum-norm or a maximum entropy principle. Note that for any such approach,
we need samples drawn from both distributions—the “true” p, e.g., by access to training data, and
the one used for generating the training set q (the latter is trivially available). Note however, that
we only need samples x ∼ q(x); we do not to access labels y ∼ q(y).

In this case, there exists a very effective approach that will give almost as good results: logistic
regression. This is all that is needed to compute estimate probability ratios. We learn a classi-
fier to distinguish between data drawn from p(x) and data drawn from q(x). If it is impossible to
distinguish between the two distributions then it means that the associated instances are equally
likely to come from either one of the two distributions. On the other hand, any instances that can
be well discriminated should be significantly overweighted or underweighted accordingly. For
simplicity s̓ sake assume that we have an equal number of instances from both distributions, de-
noted by xi ∼ p(x) and x′i ∼ q(x) respectively. Now denote by zi labels which are 1 for data drawn
from p and -1 for data drawn from q. Then the probability in a mixed dataset is given by

P (z = 1 | x) = p(x)
p(x) + q(x)

and hence
P (z = 1 | x)
P (z = −1 | x)

=
p(x)
q(x)

. (4.9.3)

Hence, if we use a logistic regression approach where P (z = 1 | x) = 1
1+exp(−f(x)) it follows that

β(x) =
1/(1 + exp(−f(x)))

exp(−f(x)/(1 + exp(−f(x)))
= exp(f(x)). (4.9.4)

180 Chapter 4. Multilayer Perceptrons

As a result, we need to solve two problems: first one to distinguish between data drawn from both
distributions, and then a reweighted minimization problem where we weigh terms by β, e.g., via
the head gradients. Here s̓ a prototypical algorithm for that purpose which uses an unlabeled
training set X and test set Z:

1. Generate training set with {(xi,−1)...(zj , 1)}.

2. Train binary classifier using logistic regression to get function f .

3. Weigh training data using βi = exp(f(xi)) or better βi = min(exp(f(xi)), c).

4. Use weights βi for training on X with labels Y .

Note that this method relies on a crucial assumption. For this scheme to work, we need that each
data point in the target (test time)distribution had nonzero probability of occurring at training
time. If we find a point where q(x) > 0 but p(x) = 0, then the corresponding importance weight
should be infinity.

Generative Adversarial Networks use a very similar idea to that described above to engineer a data
generator that outputs data that cannot be distinguished from examples sampled from a reference
dataset. In these approaches, we use one network, f to distinguish real versus fake data and a
second network g that tries to fool the discriminator f into accepting fake data as real. We will
discuss this in much more detail later.

Label Shift Correction

For the discussion of label shift, we will assume for now that we are dealing with a k-way multiclass
classification task. When the distribution of labels shifts over time p(y) ̸= q(y) but the class-
conditional distributions stay the same p(x) = q(x), our importance weights will correspond to
the label likelihood ratios q(y)/p(y). One nice thing about label shift is that if we have a reasonably
good model (on the source distribution) then we can get consistent estimates of these weights
without ever having to deal with the ambient dimension (in deep learning, the inputs are often
high-dimensional perceptual objects like images, while the labels are often easier to work, say
vectors whose length corresponds to the number of classes).

To estimate calculate the target label distribution, we first take our reasonably good off the shelf
classifier (typically trained on the training data) and compute its confusion matrix using the vali-
dation set (also from the training distribution). The confusion matrix C, is simply a k × k matrix
where each column corresponds to the actual label and each row corresponds to our model s̓ pre-
dicted label. Each cell s̓ value cij is the fraction of predictions where the true label was j and our
model predicted y.

Now we cannot calculate the confusion matrix on the target data directly, because we do not get
to see the labels for the examples that we see in the wild, unless we invest in a complex real-time
annotation pipeline. What we can do, however, is average all of our models predictions at test
time together, yielding the mean model output µy.

It turns out that under some mild conditions— if our classifier was reasonably accurate in the first
place, if the target data contains only classes of images that we have seen before, and if the label
shift assumption holds in the first place (far the strongest assumption here), then we can recover
the test set label distribution by solving a simple linear system C · q(y) = µy. If our classifier is
sufficiently accurate to begin with, then the confusion C will be invertible, and we get a solution
q(y) = C−1µy. Here we abuse notation a bit, using q(y) to denote the vector of label frequencies.
Because we observe the labels on the source data, it is easy to estimate the distribution p(y). Then

4.9. Considering the Environment 181

for any training example i with label y, we can take the ratio of our estimates q̂(y)/p̂(y) to calculate
the weight wi, and plug this into the weighted risk minimization algorithm above.

Concept Shift Correction

Concept shift is much harder to fix in a principled manner. For instance, in a situation where
suddenly the problem changes from distinguishing cats from dogs to one of distinguishing white
from black animals, it will be unreasonable to assume that we can do much better than just col-
lecting new labels and training from scratch. Fortunately, in practice, such extreme shifts are
rare. Instead, what usually happens is that the task keeps on changing slowly. To make things
more concrete, here are some examples:

• In computational advertising, new products are launched, old products become less popular.
This means that the distribution over ads and their popularity changes gradually and any
click-through rate predictor needs to change gradually with it.

• Traffic cameras lenses degrade gradually due to environmental wear, affecting image quality
progressively.

• News content changes gradually (i.e., most of the news remains unchanged but new stories
appear).

In such cases, we can use the same approach that we used for training networks to make them
adapt to the change in the data. In other words, we use the existing network weights and simply
perform a few update steps with the new data rather than training from scratch.

4.9.2 A Taxonomy of Learning Problems

Armed with knowledge about how to deal with changes in p(x) and in P (y | x), we can now con-
sider some other aspects of machine learning problems formulation.

• Batch Learning. Here we have access to training data and labels {(x1, y1), . . . , (xn, yn)},
which we use to train a network f(x,w). Later on, we deploy this network to score new
data (x, y) drawn from the same distribution. This is the default assumption for any of the
problems that we discuss here. For instance, we might train a cat detector based on lots of
pictures of cats and dogs. Once we trained it, we ship it as part of a smart catdoor computer
vision system that lets only cats in. This is then installed in a customer s̓ home and is never
updated again (barring extreme circumstances).

• Online Learning. Now imagine that the data (xi, yi) arrives one sample at a time. More
specifically, assume that we first observe xi, then we need to come up with an estimate
f(xi, w) and only once we have done this, we observe yi and with it, we receive a reward
(or incur a loss), given our decision. Many real problems fall into this category. E.g. we
need to predict tomorrow s̓ stock price, this allows us to trade based on that estimate and at
the end of the day we find out whether our estimate allowed us to make a profit. In other
words, we have the following cycle where we are continuously improving our model given
new observations.

model ft −→ data xt −→ estimate ft(xt) −→ observation yt −→ loss l(yt, ft(xt)) −→ model ft+1

(4.9.5)

• Bandits. They are a special case of the problem above. While in most learning problems we
have a continuously parametrized function f where we want to learn its parameters (e.g.,
a deep network), in a bandit problem we only have a finite number of arms that we can

182 Chapter 4. Multilayer Perceptrons

pull (i.e., a finite number of actions that we can take). It is not very surprising that for this
simpler problem stronger theoretical guarantees in terms of optimality can be obtained. We
list it mainly since this problem is often (confusingly) treated as if it were a distinct learning
setting.

• Control (and nonadversarial Reinforcement Learning). In many cases the environment
remembers what we did. Not necessarily in an adversarial manner but itʼll just remember
and the response will depend on what happened before. E.g. a coffee boiler controller will
observe different temperatures depending on whether it was heating the boiler previously.
PID (proportional integral derivative) controller algorithms are a popular choice there. Like-
wise, a user s̓ behavior on a news site will depend on what we showed him previously (e.g., he
will read most news only once). Many such algorithms form a model of the environment in
which they act such as to make their decisions appear less random (i.e., to reduce variance).

• Reinforcement Learning. In the more general case of an environment with memory, we
may encounter situations where the environment is trying to cooperate with us (cooperative
games, in particular for non-zero-sum games), or others where the environment will try to
win. Chess, Go, Backgammon or StarCraft are some of the cases. Likewise, we might want
to build a good controller for autonomous cars. The other cars are likely to respond to the
autonomous car s̓ driving style in nontrivial ways, e.g., trying to avoid it, trying to cause an
accident, trying to cooperate with it, etc.

One key distinction between the different situations above is that the same strategy that might have
worked throughout in the case of a stationary environment, might not work throughout when the
environment can adapt. For instance, an arbitrage opportunity discovered by a trader is likely to
disappear once he starts exploiting it. The speed and manner at which the environment changes
determines to a large extent the type of algorithms that we can bring to bear. For instance, if we
know that things may only change slowly, we can force any estimate to change only slowly, too. If
we know that the environment might change instantaneously, but only very infrequently, we can
make allowances for that. These types of knowledge are crucial for the aspiring data scientist to
deal with concept shift, i.e., when the problem that he is trying to solve changes over time.

4.9.3 Fairness, Accountability, and Transparency in Machine Learning

Finally, it is important to remember that when you deploy machine learning systems you are not
simply minimizing negative log likelihood or maximizing accuracy—you are automating some
kind of decision process. Often the automated decision-making systems that we deploy can have
consequences for those subject to its decisions. If we are deploying a medical diagnostic system,
we need to know for which populations it may work and which it may not. Overlooking foresee-
able risks to the welfare of a subpopulation would run afoul of basic ethical principles. Moreover,
“accuracy” is seldom the right metric. When translating predictions in to actions we will often
want to take into account the potential cost sensitivity of erring in various ways. If one way that
you might classify an image could be perceived as a racial sleight, while misclassification to a dif-
ferent category would be harmless, then you might want to adjust your thresholds accordingly, ac-
counting for societal values in designing the decision-making protocol. We also want to be careful
about how prediction systems can lead to feedback loops. For example, if prediction systems are
applied naively to predictive policing, allocating patrol officers accordingly, a vicious cycle might
emerge. Neighborhoods that have more crimes, get more patrols, get more crimes discovered, get
more training data, get yet more confident predictions, leading to even more patrols, even more
crimes discovered, etc. Additionally, we want to be careful about whether we are addressing the
right problem in the first place. Predictive algorithms now play an outsize role in mediating the
dissemination of information. Should what news someone is exposed to be determined by which

4.9. Considering the Environment 183

Facebook pages they have Liked? These are just a few among the many profound ethical dilemmas
that you might encounter in a career in machine learning.

Summary

• In many cases training and test set do not come from the same distribution. This is called
covariate shift.

• Covariate shift can be detected and corrected if the shift is not too severe. Failure to do so
leads to nasty surprises at test time.

• In some cases the environment remembers what we did and will respond in unexpected ways.
We need to account for that when building models.

Exercises

1. What could happen when we change the behavior of a search engine? What might the users
do? What about the advertisers?

2. Implement a covariate shift detector. Hint: build a classifier.

3. Implement a covariate shift corrector.

4. What could go wrong if training and test set are very different? What would happen to the
sample weights?

4.10 Predicting House Prices on Kaggle

In the previous sections, we introduced the basic tools for building deep networks and perform-
ing capacity control via dimensionality-reduction, weight decay and dropout. You are now ready
to put all this knowledge into practice by participating in a Kaggle competition. Predicting house
prices80 is a great place to start: the data is reasonably generic and does not have the kind of rigid
structure that might require specialized models the way images or audio might. This dataset, col-
lected by Bart de Cock in 2011 (DeCock, 2011), is considerably larger than the famous the Boston
housing dataset81 of Harrison and Rubinfeld (1978). It boasts both more examples and more fea-
tures, covering house prices in Ames, IA from the period of 2006-2010.

In this section, we will walk you through details of data preprocessing, model design, hyperpa-
rameter selection and tuning. We hope that through a hands-on approach, you will be able to
observe the effects of capacity control, feature extraction, etc. in practice. This experience is
vital to gaining intuition as a data scientist.

80 https://www.kaggle.com/c/house-prices-advanced-regression-techniques
81 https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names

184 Chapter 4. Multilayer Perceptrons

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.names

4.10.1 Kaggle

Kaggle82 is a popular platform for machine learning competitions. It combines data, code and
users in a way to allow for both collaboration and competition. While leaderboard chasing can
sometimes get out of control, there is also a lot to be said for the objectivity in a platform that
provides fair and direct quantitative comparisons between your approaches and those devised by
your competitors. Moreover, you can checkout the code from (some) other competitorsʼ submis-
sions and pick apart their methods to learn new techniques. If you want to participate in one of
the competitions, you need to register for an account as shown in Fig. 4.10.1 (do this now!).

Fig. 4.10.1: Kaggle website

On the House Prices Prediction page as illustrated in Fig. 4.10.2, you can find the dataset (under
the “Data” tab), submit predictions, see your ranking, etc., The URL is right here:

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

Fig. 4.10.2: House Price Prediction
82 https://www.kaggle.com

4.10. Predicting House Prices on Kaggle 185

https://www.kaggle.com
https://www.kaggle.com/c/house-prices-advanced-regression-techniques

4.10.2 Accessing and Reading the Dataset

Note that the competition data is separated into training and test sets. Each record includes the
property value of the house and attributes such as street type, year of construction, roof type,
basement condition, etc. The features represent multiple data types. Year of construction, for
example, is represented with integers roof type is a discrete categorical feature, other features are
represented with floating point numbers. And here is where reality comes in: for some examples,
some data is altogether missing with the missing value marked simply as ʻna.̓ The price of each
house is included for the training set only (it is a competition after all). You can partition the
training set to create a validation set, but you will only find out how you perform on the official test
set when you upload your predictions and receive your score. The “Data” tab on the competition
tab has links to download the data.

We will read and process the data using pandas, an efficient data analysis toolkit83, so you will
want to make sure that you have pandas installed before proceeding further. Fortunately, if you
are reading in Jupyter, we can install pandas without even leaving the notebook.

If pandas is not installed, please uncomment the following line:
!pip install pandas

%matplotlib inline
import d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
import pandas as pd
npx.set_np()

For convenience, we already downloaded the data and stored it in the ../data directory. To load
the two CSV (Comma Separated Values) files containing training and test data respectively we use
Pandas.

train_data = pd.read_csv('../data/kaggle_house_pred_train.csv')
test_data = pd.read_csv('../data/kaggle_house_pred_test.csv')

The training dataset includes 1, 460 examples, 80 features, and 1 label, while the test data contains
1, 459 examples and 80 features.

print(train_data.shape)
print(test_data.shape)

(1460, 81)
(1459, 80)

Let s̓ take a look at the first 4 and last 2 features as well as the label (SalePrice) from the first 4
examples:

print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
0 1 60 RL 65.0 WD Normal 208500

(continues on next page)

83 http://pandas.pydata.org/pandas-docs/stable/

186 Chapter 4. Multilayer Perceptrons

http://pandas.pydata.org/pandas-docs/stable/

(continued from previous page)

1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000

We can see that in each example, the first feature is the ID. This helps the model identify each
training example. While this is convenient, it does not carry any information for prediction pur-
poses. Hence we remove it from the dataset before feeding the data into the network.

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

4.10.3 Data Preprocessing

As stated above, we have a wide variety of data types. Before we feed it into a deep network, we
need to perform some amount of processing. Let s̓ start with the numerical features. We begin
by replacing missing values with the mean. This is a reasonable strategy if features are missing
at random. To adjust them to a common scale, we rescale them to zero mean and unit variance.
This is accomplished as follows:

x← x− µ

σ
. (4.10.1)

To check that this transforms x to data with zero mean and unit variance simply calculate E[(x−
µ)/σ] = (µ − µ)/σ = 0. To check the variance we use E[(x − µ)2] = σ2 and thus the transformed
variable has unit variance. The reason for “normalizing” the data is that it brings all features to
the same order of magnitude. After all, we do not know a priori which features are likely to be
relevant.

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(

lambda x: (x - x.mean()) / (x.std()))
After standardizing the data all means vanish, hence we can set missing
values to 0
all_features[numeric_features] = all_features[numeric_features].fillna(0)

Next we deal with discrete values. This includes variables such as ʻMSZoning .̓ We replace them
by a one-hot encoding in the same manner as how we transformed multiclass classification data
into a vector of 0 and 1. For instance, ʻMSZoningʼ assumes the values ʻRLʼ and ʻRM.̓ They map into
vectors (1, 0) and (0, 1) respectively. Pandas does this automatically for us.

Dummy_na=True refers to a missing value being a legal eigenvalue, and
creates an indicative feature for it
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape

(2919, 331)

You can see that this conversion increases the number of features from 79 to 331. Finally, via the
values attribute, we can extract the NumPy format from the Pandas dataframe and convert it into
MXNet s̓ native ndarray representation for training.

4.10. Predicting House Prices on Kaggle 187

n_train = train_data.shape[0]
train_features = np.array(all_features[:n_train].values, dtype=np.float32)
test_features = np.array(all_features[n_train:].values, dtype=np.float32)
train_labels = np.array(train_data.SalePrice.values,

dtype=np.float32).reshape(-1, 1)

4.10.4 Training

To get started we train a linear model with squared loss. Not surprisingly, our linear model will
not lead to a competition winning submission but it provides a sanity check to see whether there
is meaningful information in the data. If we cannot do better than random guessing here, then
there might be a good chance that we have a data processing bug. And if things work, the linear
model will serve as a baseline giving us some intuition about how close the simple model gets
to the best reported models, giving us a sense of how much gain we should expect from fancier
models.

loss = gluon.loss.L2Loss()

def get_net():
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize()
return net

With house prices, as with stock prices, we care about relative quantities more than absolute quan-
tities. More concretely, we tend to care more about the relative error y−ŷ

y than about the absolute
error y − ŷ. For instance, if our prediction is off by USD 100,000 when estimating the price of a
house in Rural Ohio, where the value of a typical house is 125,000 USD, then we are probably doing
a horrible job. On the other hand, if we err by this amount in Los Altos Hills, California, this might
represent a stunningly accurate prediction (their, the median house price exceeds 4 million USD).

One way to address this problem is to measure the discrepancy in the logarithm of the price esti-
mates. In fact, this is also the official error metric used by the competition to measure the quality
of submissions. After all, a small value δ of log y − log ŷ translates into e−δ ≤ ŷ

y ≤ eδ. This leads
to the following loss function:

L =

√√√√ 1

n

n∑
i=1

(log yi − log ŷi)
2. (4.10.2)

def log_rmse(net, features, labels):
To further stabilize the value when the logarithm is taken, set the
value less than 1 as 1
clipped_preds = np.clip(net(features), 1, float('inf'))
return np.sqrt(2 * loss(np.log(clipped_preds), np.log(labels)).mean())

Unlike in previous sections, our training functions here will rely on the Adam optimizer (a slight
variant on SGD that we will describe in greater detail later). The main appeal of Adam vs vanilla
SGD is that the Adam optimizer, despite doing no better (and sometimes worse) given unlimited
resources for hyperparameter optimization, people tend to find that it is significantly less sensitive
to the initial learning rate. This will be covered in further detail later on when we discuss the
details in Chapter 11.

188 Chapter 4. Multilayer Perceptrons

def train(net, train_features, train_labels, test_features, test_labels,
num_epochs, learning_rate, weight_decay, batch_size):

train_ls, test_ls = [], []
train_iter = d2l.load_array((train_features, train_labels), batch_size)
The Adam optimization algorithm is used here
trainer = gluon.Trainer(net.collect_params(), 'adam', {

'learning_rate': learning_rate, 'wd': weight_decay})
for epoch in range(num_epochs):

for X, y in train_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
trainer.step(batch_size)

train_ls.append(log_rmse(net, train_features, train_labels))
if test_labels is not None:

test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls, test_ls

4.10.5 k-Fold Cross-Validation

If you are reading in a linear fashion, you might recall that we introduced k-fold cross-validation
in the section where we discussed how to deal with model section (Section 4.4). We will put this to
good use to select the model design and to adjust the hyperparameters. We first need a function
that returns the ith fold of the data in a k-fold cross-validation procedure. It proceeds by slicing
out the ith segment as validation data and returning the rest as training data. Note that this is not
the most efficient way of handling data and we would definitely do something much smarter if
our dataset was considerably larger. But this added complexity might obfuscate our code unnec-
essarily so we can safely omit here owing to the simplicity of our problem.

def get_k_fold_data(k, i, X, y):
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):

idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:

X_valid, y_valid = X_part, y_part
elif X_train is None:

X_train, y_train = X_part, y_part
else:

X_train = np.concatenate((X_train, X_part), axis=0)
y_train = np.concatenate((y_train, y_part), axis=0)

return X_train, y_train, X_valid, y_valid

The training and verification error averages are returned when we train k times in the k-fold cross-
validation.

def k_fold(k, X_train, y_train, num_epochs,
learning_rate, weight_decay, batch_size):

train_l_sum, valid_l_sum = 0, 0
for i in range(k):

(continues on next page)

4.10. Predicting House Prices on Kaggle 189

(continued from previous page)

data = get_k_fold_data(k, i, X_train, y_train)
net = get_net()
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,

weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:

d2l.plot(list(range(1, num_epochs+1)), [train_ls, valid_ls],
xlabel='epoch', ylabel='rmse',
legend=['train', 'valid'], yscale='log')

print('fold %d, train rmse: %f, valid rmse: %f' % (
i, train_ls[-1], valid_ls[-1]))

return train_l_sum / k, valid_l_sum / k

4.10.6 Model Selection

In this example, we pick an un-tuned set of hyperparameters and leave it up to the reader to im-
prove the model. Finding a good choice can take quite some time, depending on how many things
one wants to optimize over. Within reason, the k-fold cross-validation approach is resilient against
multiple testing. However, if we were to try out an unreasonably large number of options it might
fail since we might just get lucky on the validation split with a particular set of hyperparameters.

k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,

weight_decay, batch_size)
print('%d-fold validation: avg train rmse: %f, avg valid rmse: %f'

% (k, train_l, valid_l))

fold 0, train rmse: 0.169580, valid rmse: 0.157184
fold 1, train rmse: 0.162165, valid rmse: 0.190423
fold 2, train rmse: 0.163491, valid rmse: 0.167964
fold 3, train rmse: 0.167756, valid rmse: 0.154808
fold 4, train rmse: 0.163325, valid rmse: 0.183255
5-fold validation: avg train rmse: 0.165264, avg valid rmse: 0.170727

190 Chapter 4. Multilayer Perceptrons

You will notice that sometimes the number of training errors for a set of hyper-parameters can
be very low, while the number of errors for the K-fold cross-validation may be higher. This is an
indicator that we are overfitting. Therefore, when we reduce the amount of training errors, we
need to check whether the amount of errors in the k-fold cross-validation have also been reduced
accordingly.

4.10.7 Predict and Submit

Now that we know what a good choice of hyperparameters should be, we might as well use all the
data to train on it (rather than just 1 − 1/k of the data that is used in the cross-validation slices).
The model that we obtain in this way can then be applied to the test set. Saving the estimates in a
CSV file will simplify uploading the results to Kaggle.

def train_and_pred(train_features, test_feature, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):

net = get_net()
train_ls, _ = train(net, train_features, train_labels, None, None,

num_epochs, lr, weight_decay, batch_size)
d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',

ylabel='rmse', yscale='log')
print('train rmse %f' % train_ls[-1])
Apply the network to the test set
preds = net(test_features).asnumpy()
Reformat it for export to Kaggle
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('submission.csv', index=False)

Let s̓ invoke our model. One nice sanity check is to see whether the predictions on the test set
resemble those of the k-fold cross-validation process. If they do, it is time to upload them to Kag-
gle. The following code will generate a file called submission.csv (CSV is one of the file formats
accepted by Kaggle):

train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size)

train rmse 0.162410

4.10. Predicting House Prices on Kaggle 191

Next, as demonstrated in Fig. 4.10.3, we can submit our predictions on Kaggle and see how they
compare to the actual house prices (labels) on the test set. The steps are quite simple:

• Log in to the Kaggle website and visit the House Price Prediction Competition page.

• Click the “Submit Predictions” or “Late Submission” button (as of this writing, the button is
located on the right).

• Click the “Upload Submission File” button in the dashed box at the bottom of the page and
select the prediction file you wish to upload.

• Click the “Make Submission” button at the bottom of the page to view your results.

Fig. 4.10.3: Submitting data to Kaggle

Summary

• Real data often contains a mix of different data types and needs to be preprocessed.

• Rescaling real-valued data to zero mean and unit variance is a good default. So is replacing
missing values with their mean.

• Transforming categorical variables into indicator variables allows us to treat them like vec-
tors.

• We can use k-fold cross validation to select the model and adjust the hyper-parameters.

• Logarithms are useful for relative loss.

Exercises

1. Submit your predictions for this tutorial to Kaggle. How good are your predictions?

2. Can you improve your model by minimizing the log-price directly? What happens if you try
to predict the log price rather than the price?

3. Is it always a good idea to replace missing values by their mean? Hint: can you construct a
situation where the values are not missing at random?

4. Find a better representation to deal with missing values. Hint: what happens if you add an
indicator variable?

192 Chapter 4. Multilayer Perceptrons

5. Improve the score on Kaggle by tuning the hyperparameters through k-fold cross-validation.

6. Improve the score by improving the model (layers, regularization, dropout).

7. What happens if we do not standardize the continuous numerical features like we have done
in this section?

4.10. Predicting House Prices on Kaggle 193

194 Chapter 4. Multilayer Perceptrons

5 | Deep Learning Computation

Alongside giant datasets and powerful hardware, great software tools have played an indispens-
able role in the rapid progress of deep learning. Starting with the pathbreaking Theano library
released in 2007, flexible open-source tools have enabled researchers to rapidly prototype models
avoiding repetitive work when recycling standard components while still maintaining the ability
to make low-level modifications. Over time, deep learning s̓ libraries have evolved to offer in-
creasingly coarse abstractions. Just as semiconductor designers went from specifying transistors
to logical circuits to writing code, neural networks researchers have moved from thinking about
the behavior of individual artificial neurons to conceiving of networks in terms of whole layers,
and now often design architectures with far coarser blocks in mind.

So far, we have introduced some basic machine learning concepts, ramping up to fully-functional
deep learning models. In the last chapter, we implemented each component of a multilayer per-
ceptron from scratch and even showed how to leverage MXNet s̓ Gluon library to roll out the same
models effortlessly. To get you that far that fast, we called upon the libraries, but skipped over
more advanced details about how they work. In this chapter, we will peel back the curtain, digging
deeper into the key components of deep learning computation, namely model construction, pa-
rameter access and initialization, designing custom layers and blocks, reading and writing models
to disk, and leveraging GPUs to achieve dramatic speedups. These insights will move you from end
user to power user, giving you the tools needed to combine the reap the benefits of a mature deep
learning library, while retaining the flexibility to implement more complex models, including
those you invent yourself! While this chapter does not introduce any new models or datasets, the
advanced modeling chapters that follow rely heavily on these techniques.

5.1 Layers and Blocks

When we first started talking about neural networks, we introduced linear models with a single
output. Here, the entire model consists of just a single neuron. By itself, a single neuron takes
some set of inputs, generates a corresponding (scalar) output, and has a set of associated param-
eters that can be updated to optimize some objective function of interest. Then, once we started
thinking about networks with multiple outputs, we leveraged vectorized arithmetic, we showed
how we could use linear algebra to efficiently express an entire layer of neurons. Layers too expect
some inputs, generate corresponding outputs, and are described by a set of tunable parameters.

When we worked through softmax regression, a single layer was itself the model. However, when
we subsequently introduced multilayer perceptrons, we developed models consisting of multi-
ple layers. One interesting property of multilayer neural networks is that the entire model and its
constituent layers share the same basic structure. The model takes the true inputs (as stated in
the problem formulation), outputs predictions of the true outputs, and possesses parameters (the
combined set of all parameters from all layers) Likewise any individual constituent layer in a mul-

195

tilayer perceptron ingests inputs (supplied by the previous layer) generates outputs (which form
the inputs to the subsequent layer), and possesses a set of tunable parameters tht are updated with
respect to the ultimate objective (using the signal that flows backwards through the subsequent
layer).

While you might think that neurons, layers, and models give us enough abstractions to go about
our business, it turns out that we will often want to express our model in terms of a components
that are large than an indivudal layer. For example, when designing models, like ResNet-152,
which possess hundreds (152, thus the name) of layers, implementing the network one layer at a
time can grow tedious. Moreover, this concern is not just hypothetical—such deep networks dom-
inate numerous application areas, especially when training data is abundant. For example the
ResNet architecture mentioned above won the 2015 ImageNet and COCO computer vision com-
petitions for both recognition and detection (He et al., 2016a). Deep networks with many layers
arranged into components with various repeating patterns are now ubiquitous in other domains
including natural language processing and speech.

To facilitate the implementation of networks consisting of components of arbitrary complexity, we
introduce a new flexible concept: a neural network block. A block could describe a single neuron, a
high-dimensional layer, or an arbitrarily-complex component consisting of multiple layers. From
a software development, a Block is a class. Any subclass of Block must define a method called
forward that transforms its input into output, and must store any necessary parameters. Note that
some Blocks do not require any parameters at all! Finally a Blockmust possess a backwardmethod,
for purposes of calculating gradients. Fortunately, due to some behind-the-scenes magic supplied
by the autograd autogradpackage (introduced in Chapter 2) when defining our own Block typically
requires only that we worry about parameters and the forward function.

One benefit of working with the Block abstraction is that they can be combined into larger arti-
facts, often recursively, e.g., as illustrated in Fig. 5.1.1.

Fig. 5.1.1: Multiple layers are combined into blocks

By defining code to generate Blocks of arbitrary complexity on demand, we can write surprisingly
compact code and still implement complex neural networks.

To begin, we revisit the Blocks that played a role in our implementation of the multilayer percep-
tron (Section 4.3). The following code generates a network with one fully-connected hidden layer
containing 256 units followed by a ReLU activation, and then another fully-connected layer con-
sisting of 10 units (with no activation function). Because there are no more layers, this last 10-unit

196 Chapter 5. Deep Learning Computation

layer is regarded as the output layer and its outputs are also the model s̓ output.

from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

x = np.random.uniform(size=(2, 20))

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()
net(x)

array([[0.06240272, -0.03268593, 0.02582653, 0.02254182, -0.03728798,
-0.04253786, 0.00540613, -0.01364186, -0.09915452, -0.02272738],
[0.02816677, -0.03341204, 0.03565666, 0.02506382, -0.04136416,
-0.04941845, 0.01738528, 0.01081961, -0.09932579, -0.01176298]])

In this example, as in previous chapters, our model consists of an object returned by the nn.
Sequential constructor. After instantiating a nn.Sequential and storing the net variable, we re-
peatedly called its add method, appending layers in the order that they should be executed. We
suspect that you might have already understood more or less what was going on here the first time
you saw this code. You may even have understood it well enough to modify the code and design
your own networks. However, the details regarding what exactly happens inside nn.Sequential
have remained mysterious so far.

In short, nn.Sequential just defines a special kind of Block. Specifically, an nn.Sequential main-
tains a list of constituent Blocks, stored in a particular order. You might think of nnSequential
as your first meta-Block. The add method simply facilitates the addition of each successive Block
to the list. Note that each our layers are instances of the Dense class which is itself a subclass of
Block. The forward function is also remarkably simple: it chains each Block in the list together,
passing the output of each as the input to the next.

Note that until now, we have been invoking our models via the construction net(X) to obtain their
outputs. This is actually just shorthand for net.forward(X), a slick Python trick achieved via the
Block class s̓ __call__ function.

Before we dive in to implementing our own custom Block, we briefly summarize the basic func-
tionality that each Block must perform the following duties:

1. Ingest input data as arguments to its forward function.

2. Generate an output via the value returned by its forward function. Note that the output may
have a different shape from the input. For example, the first Dense layer in our model above
ingests an input of arbitrary dimension but returns an output of dimension 256.

3. Calculate the gradient of its output with respect to its input, which can be accessed via its
backward method. Typically this happens automatically.

4. Store and provide access to those parameters necessary to execute the forward computation.

5. Initialize these parameters as needed.

5.1. Layers and Blocks 197

5.1.1 A Custom Block

Perhaps the easiest way to develop intuition about how nn.Block works is to just dive right in and
implement one ourselves. In the following snippet, instead of relying on nn.Sequential, we just
code up a Block from scratch that implements a multilayer perceptron with one hidden layer, 256
hidden nodes, and 10 outputs.

Our MLP class below inherits the Block class. While we rely on some predefined methods in the
parent class, we need to supply our own __init__ and forward functions to uniquely define the
behavior of our model.

from mxnet.gluon import nn

class MLP(nn.Block):
Declare a layer with model parameters. Here, we declare two fully
connected layers
def __init__(self, **kwargs):

Call the constructor of the MLP parent class Block to perform the
necessary initialization. In this way, other function parameters can
also be specified when constructing an instance, such as the model
parameter, params, described in the following sections
super(MLP, self).__init__(**kwargs)
self.hidden = nn.Dense(256, activation='relu') # Hidden layer
self.output = nn.Dense(10) # Output layer

Define the forward computation of the model, that is, how to return the
required model output based on the input x
def forward(self, x):

return self.output(self.hidden(x))

This code may be easiest to understand by working backwards from forward. Note that the for-
ward method takes as input x. The forward method first evaluates self.hidden(x) to produce the
hidden representation, passing this output as the input to the output layer self.output(...).

The constituent layers of each MLP must be instance-level variables. After all, if we instantiated
two such models net1 and net2 and trained them on different data, we would expect them to them
to represent two different learned models.

The __init__ method is the most natural place to instantiate the layers that we subsequently in-
voke on each call to the forward method. Note that before getting on with the interesting parts,
our customized __init__ method must invoke the parent class s̓ init method: super(MLP, self).
__init__(**kwargs) to save us from reimplementing boilerplate code applicable to most Blocks.
Then, all that is left is to instantiate our two Dense layers, assigning them to self.hidden and self.
output, respectively. Again note that when dealing with standard functionality like this, we do not
have to worry about backpropagation, since the backward method is generated for us automati-
cally. The same goes for the initialize method. Let s̓ try this out:

net = MLP()
net.initialize()
net(x)

array([[-0.03989594, -0.1041471 , 0.06799038, 0.05245074, 0.02526059,
-0.00640342, 0.04182098, -0.01665319, -0.02067346, -0.07863817],

(continues on next page)

198 Chapter 5. Deep Learning Computation

(continued from previous page)

[-0.03612847, -0.07210436, 0.09159479, 0.07890771, 0.02494172,
-0.01028665, 0.01732428, -0.02843242, 0.03772651, -0.06671704]])

As we argued earlier, the primary virtue of the Block abstraction is its versatility. We can subclass
Block to create layers (such as the Dense class provided by Gluon), entire models (such as the MLP
class implemented above), or various components of intermediate complexity, a pattern that we
will lean on heavily throughout the next chapters on convolutinoal neural networks.

5.1.2 The Sequential Block

As we described earlier, the Sequential class itself is also just a subclass of Block, designed specif-
ically for daisy-chaining other Blocks together. All we need to do to implement our own MySequen-
tial block is to define a few convenience functions: 1. An add method for appending Blocks one
by one to a list. 2. A forward method to pass inputs through the chain of Blocks (in the order of
addition).

The following MySequential class delivers the same functionality as Gluons̓ default Sequential
class:

class MySequential(nn.Block):
def __init__(self, **kwargs):

super(MySequential, self).__init__(**kwargs)

def add(self, block):
Here, block is an instance of a Block subclass, and we assume it has
a unique name. We save it in the member variable _children of the
Block class, and its type is OrderedDict. When the MySequential
instance calls the initialize function, the system automatically
initializes all members of _children
self._children[block.name] = block

def forward(self, x):
OrderedDict guarantees that members will be traversed in the order
they were added
for block in self._children.values():

x = block(x)
return x

At its core is the add method. It adds any block to the ordered dictionary of children. These are
then executed in sequence when forward propagation is invoked. Let s̓ see what the MLP looks
like now.

net = MySequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize()
net(x)

array([[-0.07645682, -0.01130233, 0.04952145, -0.04651389, -0.04131573,
-0.05884133, -0.0621381 , 0.01311472, -0.01379425, -0.02514282],

(continues on next page)

5.1. Layers and Blocks 199

(continued from previous page)

[-0.05124625, 0.00711231, -0.00155935, -0.07555379, -0.06675334,
-0.01762914, 0.00589084, 0.01447191, -0.04330775, 0.03317726]])

Indeed, it can be observed that the use of the MySequential class is no different from the use of
the Sequential class described in Section 4.3.

5.1.3 Blocks with Code

Although the Sequential class can make model construction easier, and you do not need to define
the forward method, directly inheriting the Block class can greatly expand the flexibility of model
construction. In particular, we will use Pythons̓ control flow within the forward method. While
we are at it, we need to introduce another concept, that of the constant parameter. These are
parameters that are not used when invoking backprop. This sounds very abstract but here s̓ what
is really going on. Assume that we have some function

f(x,w) = 3 ·w⊤x. (5.1.1)

In this case 3 is a constant parameter. We could change 3 to something else, say c via

f(x,w) = c ·w⊤x. (5.1.2)

Nothing has really changed, except that we can adjust the value of c. It is still a constant as far as
w and x are concerned. However, since Gluon does not know about this beforehand, it is worth
while to give it a hand (this makes the code go faster, too, since we are not sending the Gluon
engine on a wild goose chase after a parameter that does not change). get_constant is the method
that can be used to accomplish this. Let s̓ see what this looks like in practice.

class FancyMLP(nn.Block):
def __init__(self, **kwargs):

super(FancyMLP, self).__init__(**kwargs)
Random weight parameters created with the get_constant are not
iterated during training (i.e., constant parameters)
self.rand_weight = self.params.get_constant(

'rand_weight', np.random.uniform(size=(20, 20)))
self.dense = nn.Dense(20, activation='relu')

def forward(self, x):
x = self.dense(x)
Use the constant parameters created, as well as the relu
and dot functions
x = npx.relu(np.dot(x, self.rand_weight.data()) + 1)
Reuse the fully connected layer. This is equivalent to sharing
parameters with two fully connected layers
x = self.dense(x)
Here in Control flow, we need to call asscalar to return the scalar
for comparison
while np.abs(x).sum() > 1:

x /= 2
if np.abs(x).sum() < 0.8:

x *= 10
return x.sum()

200 Chapter 5. Deep Learning Computation

In this FancyMLP model, we used constant weight Rand_weight (note that it is not a model parame-
ter), performed a matrix multiplication operation (np.dot<), and reused the same Dense layer. Note
that this is very different from using two dense layers with different sets of parameters. Instead,
we used the same network twice. Quite often in deep networks one also says that the parameters
are tied when one wants to express that multiple parts of a network share the same parameters.
Let s̓ see what happens if we construct it and feed data through it.

net = FancyMLP()
net.initialize()
net(x)

array(5.2637568)

There is no reason why we couldnʼt mix and match these ways of build a network. Obviously
the example below resembles more a chimera, or less charitably, a Rube Goldberg Machine85.
That said, it combines examples for building a block from individual blocks, which in turn, may
be blocks themselves. Furthermore, we can even combine multiple strategies inside the same
forward function. To demonstrate this, here s̓ the network.

class NestMLP(nn.Block):
def __init__(self, **kwargs):

super(NestMLP, self).__init__(**kwargs)
self.net = nn.Sequential()
self.net.add(nn.Dense(64, activation='relu'),

nn.Dense(32, activation='relu'))
self.dense = nn.Dense(16, activation='relu')

def forward(self, x):
return self.dense(self.net(x))

chimera = nn.Sequential()
chimera.add(NestMLP(), nn.Dense(20), FancyMLP())

chimera.initialize()
chimera(x)

array(0.97720534)

5.1.4 Compilation

The avid reader is probably starting to worry about the efficiency of this. After all, we have lots
of dictionary lookups, code execution, and lots of other Pythonic things going on in what is sup-
posed to be a high performance deep learning library. The problems of Pythons̓ Global Inter-
preter Lock86 are well known. In the context of deep learning it means that we have a super fast
GPU (or multiple of them) which might have to wait until a puny single CPU core running Python
gets a chance to tell it what to do next. This is clearly awful and there are many ways around it.
The best way to speed up Python is by avoiding it altogether.

Gluon does this by allowing for Hybridization (Section 12.1). In it, the Python interpreter executes
85 https://en.wikipedia.org/wiki/Rube_Goldberg_machine
86 https://wiki.python.org/moin/GlobalInterpreterLock

5.1. Layers and Blocks 201

https://en.wikipedia.org/wiki/Rube_Goldberg_machine
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock

the block the first time it is invoked. The Gluon runtime records what is happening and the next
time around it short circuits any calls to Python. This can accelerate things considerably in some
cases but care needs to be taken with control flow. We suggest that the interested reader skip
forward to the section covering hybridization and compilation after finishing the current chapter.

Summary

• Layers are blocks

• Many layers can be a block

• Many blocks can be a block

• Code can be a block

• Blocks take are of a lot of housekeeping, such as parameter initialization, backprop and re-
lated issues.

• Sequential concatenations of layers and blocks are handled by the eponymous Sequential
block.

Exercises

1. What kind of error message will you get when calling an __init__ method whose parent
class not in the __init__ function of the parent class?

2. What kinds of problems will occur if you remove the asscalar function in the FancyMLP class?

3. What kinds of problems will occur if you change self.net defined by the Sequential instance
in the NestMLP class to self.net = [nn.Dense(64, activation='relu'), nn. Dense(32,
activation='relu')]?

4. Implement a block that takes two blocks as an argument, say net1 and net2 and returns the
concatenated output of both networks in the forward pass (this is also called a parallel block).

5. Assume that you want to concatenate multiple instances of the same network. Implement
a factory function that generates multiple instances of the same block and build a larger
network from it.

5.2 Parameter Management

The ultimate goal of training deep networks is to find good parameter values for a given architec-
ture. When everything is standard, the nn.Sequential class is a perfectly good tool for it. However,
very few models are entirely standard and most scientists want to build things that are novel. This
section shows how to manipulate parameters. In particular we will cover the following aspects:

• Accessing parameters for debugging, diagnostics, to visualize them or to save them is the
first step to understanding how to work with custom models.

202 Chapter 5. Deep Learning Computation

• Second, we want to set them in specific ways, e.g., for initialization purposes. We discuss
the structure of parameter initializers.

• Last, we show how this knowledge can be put to good use by building networks that share
some parameters.

As always, we start from our trusty Multilayer Perceptron with a hidden layer. This will serve as
our choice for demonstrating the various features.

from mxnet import init, np, npx
from mxnet.gluon import nn
npx.set_np()

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
net.initialize() # Use the default initialization method

x = np.random.uniform(size=(2, 20))
net(x) # Forward computation

array([[0.06240272, -0.03268593, 0.02582653, 0.02254182, -0.03728798,
-0.04253786, 0.00540613, -0.01364186, -0.09915452, -0.02272738],
[0.02816677, -0.03341204, 0.03565666, 0.02506382, -0.04136416,
-0.04941845, 0.01738528, 0.01081961, -0.09932579, -0.01176298]])

5.2.1 Parameter Access

In the case of a Sequential class we can access the parameters with ease, simply by indexing each
of the layers in the network. The params variable then contains the required data. Let s̓ try this out
in practice by inspecting the parameters of the first layer.

print(net[0].params)
print(net[1].params)

dense0_ (
Parameter dense0_weight (shape=(256, 20), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)

)
dense1_ (
Parameter dense1_weight (shape=(10, 256), dtype=float32)
Parameter dense1_bias (shape=(10,), dtype=float32)

)

The output tells us a number of things. First, the layer consists of two sets of parameters:
dense0_weight and dense0_bias, as we would expect. They are both single precision and they
have the necessary shapes that we would expect from the first layer, given that the input dimen-
sion is 20 and the output dimension 256. In particular the names of the parameters are very useful
since they allow us to identify parameters uniquely even in a network of hundreds of layers and
with nontrivial structure. The second layer is structured accordingly.

5.2. Parameter Management 203

Targeted Parameters

In order to do something useful with the parameters we need to access them, though. There are
several ways to do this, ranging from simple to general. Let s̓ look at some of them.

print(net[1].bias)
print(net[1].bias.data())

Parameter dense1_bias (shape=(10,), dtype=float32)
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

The first returns the bias of the second layer. Since this is an object containing data, gradients,
and additional information, we need to request the data explicitly. Note that the bias is all 0 since
we initialized the bias to contain all zeros. Note that we can also access the parameters by name,
such as dense0_weight. This is possible since each layer comes with its own parameter dictionary
that can be accessed directly. Both methods are entirely equivalent but the first method leads to
much more readable code.

print(net[0].params['dense0_weight'])
print(net[0].params['dense0_weight'].data())

Parameter dense0_weight (shape=(256, 20), dtype=float32)
[[0.06700657 -0.00369488 0.0418822 ... -0.05517294 -0.01194733
-0.00369594]
[-0.03296221 -0.04391347 0.03839272 ... 0.05636378 0.02545484
-0.007007]
[-0.0196689 0.01582889 -0.00881553 ... 0.01509629 -0.01908049
-0.02449339]
...
[-0.02055008 -0.02618652 0.06762936 ... -0.02315108 -0.06794678
-0.04618235]
[0.02802853 0.06672969 0.05018687 ... -0.02206502 -0.01315478
-0.03791244]
[-0.00638592 0.00914261 0.06667828 ... -0.00800052 0.03406764
-0.03954004]]

Note that the weights are nonzero. This is by design since they were randomly initialized when
we constructed the network. data is not the only function that we can invoke. For instance, we
can compute the gradient with respect to the parameters. It has the same shape as the weight.
However, since we did not invoke backpropagation yet, the values are all 0.

net[0].weight.grad()

array([[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])

204 Chapter 5. Deep Learning Computation

All Parameters at Once

Accessing parameters as described above can be a bit tedious, in particular if we have more com-
plex blocks, or blocks of blocks (or even blocks of blocks of blocks), since we need to walk through
the entire tree in reverse order to how the blocks were constructed. To avoid this, blocks come
with a method collect_params which grabs all parameters of a network in one dictionary such
that we can traverse it with ease. It does so by iterating over all constituents of a block and calls
collect_params on subblocks as needed. To see the difference consider the following:

parameters only for the first layer
print(net[0].collect_params())
parameters of the entire network
print(net.collect_params())

dense0_ (
Parameter dense0_weight (shape=(256, 20), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)

)
sequential0_ (
Parameter dense0_weight (shape=(256, 20), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)
Parameter dense1_weight (shape=(10, 256), dtype=float32)
Parameter dense1_bias (shape=(10,), dtype=float32)

)

This provides us with a third way of accessing the parameters of the network. If we wanted to get
the value of the bias term of the second layer we could simply use this:

net.collect_params()['dense1_bias'].data()

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

Throughout the book we will see how various blocks name their subblocks (Sequential simply
numbers them). This makes it very convenient to use regular expressions to filter out the required
parameters.

print(net.collect_params('.*weight'))
print(net.collect_params('dense0.*'))

sequential0_ (
Parameter dense0_weight (shape=(256, 20), dtype=float32)
Parameter dense1_weight (shape=(10, 256), dtype=float32)

)
sequential0_ (
Parameter dense0_weight (shape=(256, 20), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)

)

5.2. Parameter Management 205

Rube Goldberg Striking Again

Let s̓ see how the parameter naming conventions work if we nest multiple blocks inside each other.
For that we first define a function that produces blocks (a block factory, so to speak) and then we
combine these inside yet larger blocks.

def block1():
net = nn.Sequential()
net.add(nn.Dense(32, activation='relu'))
net.add(nn.Dense(16, activation='relu'))
return net

def block2():
net = nn.Sequential()
for i in range(4):

net.add(block1())
return net

rgnet = nn.Sequential()
rgnet.add(block2())
rgnet.add(nn.Dense(10))
rgnet.initialize()
rgnet(x)

array([[-4.1923025e-09, 1.9830502e-09, 8.9444063e-10, 6.2912990e-09,
-3.3241778e-09, 5.4330038e-09, 1.6013515e-09, -3.7408681e-09,
8.5468477e-09, -6.4805539e-09],

[-3.7507064e-09, 1.4866974e-09, 6.8314709e-10, 5.6925784e-09,
-2.6349172e-09, 4.8626667e-09, 1.4280275e-09, -3.4603027e-09,
7.4127922e-09, -5.7896132e-09]])

Now that we are done designing the network, let s̓ see how it is organized. collect_params pro-
vides us with this information, both in terms of naming and in terms of logical structure.

print(rgnet.collect_params)
print(rgnet.collect_params())

<bound method Block.collect_params of Sequential(
(0): Sequential(

(0): Sequential(
(0): Dense(20 -> 32, Activation(relu))
(1): Dense(32 -> 16, Activation(relu))

)
(1): Sequential(
(0): Dense(16 -> 32, Activation(relu))
(1): Dense(32 -> 16, Activation(relu))

)
(2): Sequential(
(0): Dense(16 -> 32, Activation(relu))
(1): Dense(32 -> 16, Activation(relu))

)
(3): Sequential(
(0): Dense(16 -> 32, Activation(relu))
(1): Dense(32 -> 16, Activation(relu))

(continues on next page)

206 Chapter 5. Deep Learning Computation

(continued from previous page)

)
)
(1): Dense(16 -> 10, linear)

)>
sequential1_ (
Parameter dense2_weight (shape=(32, 20), dtype=float32)
Parameter dense2_bias (shape=(32,), dtype=float32)
Parameter dense3_weight (shape=(16, 32), dtype=float32)
Parameter dense3_bias (shape=(16,), dtype=float32)
Parameter dense4_weight (shape=(32, 16), dtype=float32)
Parameter dense4_bias (shape=(32,), dtype=float32)
Parameter dense5_weight (shape=(16, 32), dtype=float32)
Parameter dense5_bias (shape=(16,), dtype=float32)
Parameter dense6_weight (shape=(32, 16), dtype=float32)
Parameter dense6_bias (shape=(32,), dtype=float32)
Parameter dense7_weight (shape=(16, 32), dtype=float32)
Parameter dense7_bias (shape=(16,), dtype=float32)
Parameter dense8_weight (shape=(32, 16), dtype=float32)
Parameter dense8_bias (shape=(32,), dtype=float32)
Parameter dense9_weight (shape=(16, 32), dtype=float32)
Parameter dense9_bias (shape=(16,), dtype=float32)
Parameter dense10_weight (shape=(10, 16), dtype=float32)
Parameter dense10_bias (shape=(10,), dtype=float32)

)

Since the layers are hierarchically generated, we can also access them accordingly. For instance,
to access the first major block, within it the second subblock and then within it, in turn the bias
of the first layer, we perform the following.

rgnet[0][1][0].bias.data()

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

5.2.2 Parameter Initialization

Now that we know how to access the parameters, let s̓ look at how to initialize them properly. We
discussed the need for initialization in Section 4.8. By default, MXNet initializes the weight matri-
ces uniformly by drawing from U [−0.07, 0.07] and the bias parameters are all set to 0. However,
we often need to use other methods to initialize the weights. MXNet s̓ init module provides a va-
riety of preset initialization methods, but if we want something out of the ordinary, we need a bit
of extra work.

5.2. Parameter Management 207

Built-in Initialization

Let s̓ begin with the built-in initializers. The code below initializes all parameters with Gaussian
random variables.

force_reinit ensures that the variables are initialized again, regardless of
whether they were already initialized previously
net.initialize(init=init.Normal(sigma=0.01), force_reinit=True)
net[0].weight.data()[0]

array([-9.8788980e-03, 5.3957910e-03, -7.0842835e-03, -7.4317548e-03,
-1.4880489e-02, 6.4959107e-03, -8.2659349e-03, 1.8743129e-02,
1.6201857e-02, 1.4534278e-03, 2.2331164e-03, 1.5926110e-02,
-1.2915777e-02, -8.8592555e-05, -1.7293986e-03, -7.2338698e-03,
8.7698260e-03, -4.9947016e-03, -9.6906107e-03, 2.0079101e-03])

If we wanted to initialize all parameters to 1, we could do this simply by changing the initializer
to Constant(1).

net.initialize(init=init.Constant(1), force_reinit=True)
net[0].weight.data()[0]

array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1.])

If we want to initialize only a specific parameter in a different manner, we can simply set the
initializer only for the appropriate subblock (or parameter) for that matter. For instance, below
we initialize the second layer to a constant value of 42 and we use the Xavier initializer for the
weights of the first layer.

net[1].initialize(init=init.Constant(42), force_reinit=True)
net[0].weight.initialize(init=init.Xavier(), force_reinit=True)
print(net[1].weight.data()[0, 0])
print(net[0].weight.data()[0])

42.0
[-0.06319056 -0.10960881 0.11757872 -0.07595599 -0.0849717 0.0851637
0.08330765 0.04028694 -0.0305525 0.02012795 -0.03856885 0.1375024
0.10155623 -0.05016676 -0.02575382 -0.14205234 0.14225402 0.02719662
-0.0888046 -0.00962897]

Custom Initialization

Sometimes, the initialization methods we need are not provided in the init module. At this point,
we can implement a subclass of the Initializer class so that we can use it like any other initial-
ization method. Usually, we only need to implement the _init_weight function and modify the
incoming ndarray according to the initial result. In the example below, we pick a decidedly bizarre
and nontrivial distribution, just to prove the point. We draw the coefficients from the following

208 Chapter 5. Deep Learning Computation

distribution:

w ∼


U [5, 10] with probability 1

4

0 with probability 1
2

U [−10,−5] with probability 1
4

(5.2.1)

class MyInit(init.Initializer):
def _init_weight(self, name, data):

print('Init', name, data.shape)
data[:] = np.random.uniform(-10, 10, data.shape)
data *= np.abs(data) >= 5

net.initialize(MyInit(), force_reinit=True)
net[0].weight.data()[0]

Init dense0_weight (256, 20)
Init dense1_weight (10, 256)

array([-5.172625 , -7.0209026, 5.1446533, -9.844563 , 8.545956 ,
-0. , 0. , -0. , 5.107664 , 9.658335 ,
5.8564453, 7.4483128, 0. , 0. , -0. ,
7.9034443, 0. , 5.4223766, 8.5655575, 5.1224785])

If even this functionality is insufficient, we can set parameters directly. Since data() returns an
ndarraywe can access it just like any other matrix. A note for advanced users: if you want to adjust
parameters within an autograd scope you need to use set_data to avoid confusing the automatic
differentiation mechanics.

net[0].weight.data()[:] += 1
net[0].weight.data()[0, 0] = 42
net[0].weight.data()[0]

array([42. , -6.0209026, 6.1446533, -8.844563 , 9.545956 ,
1. , 1. , 1. , 6.107664 , 10.658335 ,
6.8564453, 8.448313 , 1. , 1. , 1. ,
8.903444 , 1. , 6.4223766, 9.5655575, 6.1224785])

5.2.3 Tied Parameters

In some cases, we want to share model parameters across multiple layers. For instance when we
want to find good word embeddings we may decide to use the same parameters both for encoding
and decoding of words. We discussed one such case when we introduced Section 5.1. Let s̓ see
how to do this a bit more elegantly. In the following we allocate a dense layer and then use its
parameters specifically to set those of another layer.

net = nn.Sequential()
We need to give the shared layer a name such that we can reference its
parameters
shared = nn.Dense(8, activation='relu')

(continues on next page)

5.2. Parameter Management 209

(continued from previous page)

net.add(nn.Dense(8, activation='relu'),
shared,
nn.Dense(8, activation='relu', params=shared.params),
nn.Dense(10))

net.initialize()

x = np.random.uniform(size=(2, 20))
net(x)

Check whether the parameters are the same
print(net[1].weight.data()[0] == net[2].weight.data()[0])
net[1].weight.data()[0, 0] = 100
Make sure that they are actually the same object rather than just having the
same value
print(net[1].weight.data()[0] == net[2].weight.data()[0])

[True True True True True True True True]
[True True True True True True True True]

The above example shows that the parameters of the second and third layer are tied. They are
identical rather than just being equal. That is, by changing one of the parameters the other one
changes, too. What happens to the gradients is quite ingenious. Since the model parameters con-
tain gradients, the gradients of the second hidden layer and the third hidden layer are accumulated
in the shared.params.grad() during backpropagation.

Summary

• We have several ways to access, initialize, and tie model parameters.

• We can use custom initialization.

• Gluon has a sophisticated mechanism for accessing parameters in a unique and hierarchical
manner.

Exercises

1. Use the FancyMLP defined in Section 5.1 and access the parameters of the various layers.

2. Look at the MXNet documentation88 and explore different initializers.

3. Try accessing the model parameters after net.initialize() and before net(x) to observe
the shape of the model parameters. What changes? Why?

4. Construct a multilayer perceptron containing a shared parameter layer and train it. During
the training process, observe the model parameters and gradients of each layer.

5. Why is sharing parameters a good idea?
88 http://beta.mxnet.io/api/gluon-related/mxnet.initializer.html

210 Chapter 5. Deep Learning Computation

http://beta.mxnet.io/api/gluon-related/mxnet.initializer.html

5.3 Deferred Initialization

In the previous examples we played fast and loose with setting up our networks. In particular we
did the following things that shouldn’t work:

• We defined the network architecture with no regard to the input dimensionality.

• We added layers without regard to the output dimension of the previous layer.

• We even “initialized” these parameters without knowing how many parameters were to ini-
tialize.

All of those things sound impossible and indeed, they are. After all, there is no way MXNet (or
any other framework for that matter) could predict what the input dimensionality of a network
would be. Later on, when working with convolutional networks and images this problem will
become even more pertinent, since the input dimensionality (i.e., the resolution of an image) will
affect the dimensionality of subsequent layers at a long range. Hence, the ability to set parameters
without the need to know at the time of writing the code what the dimensionality is can greatly
simplify statistical modeling. In what follows, we will discuss how this works using initialization
as an example. After all, we cannot initialize variables that we do not know exist.

5.3.1 Instantiating a Network

Let s̓ see what happens when we instantiate a network. We start with our trusty MLP as before.

from mxnet import init, np, npx
from mxnet.gluon import nn
npx.set_np()

def getnet():
net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'))
net.add(nn.Dense(10))
return net

net = getnet()

At this point the network does not really know yet what the dimensionalities of the various param-
eters should be. All one could tell at this point is that each layer needs weights and bias, albeit of
unspecified dimensionality. If we try accessing the parameters, that is exactly what happens.

print(net.collect_params)
print(net.collect_params())

5.3. Deferred Initialization 211

<bound method Block.collect_params of Sequential(
(0): Dense(-1 -> 256, Activation(relu))
(1): Dense(-1 -> 10, linear)

)>
sequential0_ (
Parameter dense0_weight (shape=(256, -1), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)
Parameter dense1_weight (shape=(10, -1), dtype=float32)
Parameter dense1_bias (shape=(10,), dtype=float32)

)

In particular, trying to access net[0].weight.data() at this point would trigger a runtime error
stating that the network needs initializing before it can do anything. Let s̓ see whether anything
changes after we initialize the parameters:

net.initialize()
net.collect_params()

sequential0_ (
Parameter dense0_weight (shape=(256, -1), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)
Parameter dense1_weight (shape=(10, -1), dtype=float32)
Parameter dense1_bias (shape=(10,), dtype=float32)

)

As we can see, nothing really changed. Only once we provide the network with some data do we
see a difference. Let s̓ try it out.

x = np.random.uniform(size=(2, 20))
net(x) # Forward computation

net.collect_params()

sequential0_ (
Parameter dense0_weight (shape=(256, 20), dtype=float32)
Parameter dense0_bias (shape=(256,), dtype=float32)
Parameter dense1_weight (shape=(10, 256), dtype=float32)
Parameter dense1_bias (shape=(10,), dtype=float32)

)

The main difference to before is that as soon as we knew the input dimensionality, x ∈ R20 it was
possible to define the weight matrix for the first layer, i.e., W1 ∈ R256×20. With that out of the way,
we can progress to the second layer, define its dimensionality to be 10×256 and so on through the
computational graph and bind all the dimensions as they become available. Once this is known,
we can proceed by initializing parameters. This is the solution to the three problems outlined
above.

212 Chapter 5. Deep Learning Computation

5.3.2 Deferred Initialization in Practice

Now that we know how it works in theory, let s̓ see when the initialization is actually triggered. In
order to do so, we mock up an initializer which does nothing but report a debug message stating
when it was invoked and with which parameters.

class MyInit(init.Initializer):
def _init_weight(self, name, data):

print('Init', name, data.shape)
The actual initialization logic is omitted here

net = getnet()
net.initialize(init=MyInit())

Note that, although MyInitwill print information about the model parameters when it is called, the
above initialize function does not print any information after it has been executed. Therefore
there is no real initialization parameter when calling the initialize function. Next, we define
the input and perform a forward calculation.

x = np.random.uniform(size=(2, 20))
y = net(x)

Init dense2_weight (256, 20)
Init dense3_weight (10, 256)

At this time, information on the model parameters is printed. When performing a forward calcu-
lation based on the input x, the system can automatically infer the shape of the weight parameters
of all layers based on the shape of the input. Once the system has created these parameters, it calls
the MyInit instance to initialize them before proceeding to the forward calculation.

Of course, this initialization will only be called when completing the initial forward calculation.
After that, we will not re-initialize when we run the forward calculation net(x), so the output of
the MyInit instance will not be generated again.

y = net(x)

As mentioned at the beginning of this section, deferred initialization can also cause confusion.
Before the first forward calculation, we were unable to directly manipulate the model parameters,
for example, we could not use the data and set_data functions to get and modify the parameters.
Therefore, we often force initialization by sending a sample observation through the network.

5.3.3 Forced Initialization

Deferred initialization does not occur if the system knows the shape of all parameters when calling
the initialize function. This can occur in two cases:

• We have already seen some data and we just want to reset the parameters.

• We specified all input and output dimensions of the network when defining it.

The first case works just fine, as illustrated below.

5.3. Deferred Initialization 213

net.initialize(init=MyInit(), force_reinit=True)

Init dense2_weight (256, 20)
Init dense3_weight (10, 256)

The second case requires us to specify the remaining set of parameters when creating the layer.
For instance, for dense layers we also need to specify the in_units so that initialization can occur
immediately once initialize is called.

net = nn.Sequential()
net.add(nn.Dense(256, in_units=20, activation='relu'))
net.add(nn.Dense(10, in_units=256))

net.initialize(init=MyInit())

Init dense4_weight (256, 20)
Init dense5_weight (10, 256)

Summary

• Deferred initialization is a good thing. It allows Gluon to set many things automatically and
it removes a great source of errors from defining novel network architectures.

• We can override this by specifying all implicitly defined variables.

• Initialization can be repeated (or forced) by setting the force_reinit=True flag.

Exercises

1. What happens if you specify only parts of the input dimensions. Do you still get immediate
initialization?

2. What happens if you specify mismatching dimensions?

3. What would you need to do if you have input of varying dimensionality? Hint - look at pa-
rameter tying.

214 Chapter 5. Deep Learning Computation

5.4 Custom Layers

One of the reasons for the success of deep learning can be found in the wide range of layers that
can be used in a deep network. This allows for a tremendous degree of customization and adap-
tation. For instance, scientists have invented layers for images, text, pooling, loops, dynamic
programming, even for computer programs. Sooner or later you will encounter a layer that does
not exist yet in Gluon, or even better, you will eventually invent a new layer that works well for
your problem at hand. This is when it is time to build a custom layer. This section shows you how.

5.4.1 Layers without Parameters

Since this is slightly intricate, we start with a custom layer (also known as Block) that does not have
any inherent parameters. Our first step is very similar to when we introduced blocks in Section
5.1. The following CenteredLayer class constructs a layer that subtracts the mean from the input.
We build it by inheriting from the Block class and implementing the forward method.

from mxnet import gluon, np, npx
from mxnet.gluon import nn
npx.set_np()

class CenteredLayer(nn.Block):
def __init__(self, **kwargs):

super(CenteredLayer, self).__init__(**kwargs)

def forward(self, x):
return x - x.mean()

To see how it works let s̓ feed some data into the layer.

layer = CenteredLayer()
layer(np.array([1, 2, 3, 4, 5]))

array([-2., -1., 0., 1., 2.])

We can also use it to construct more complex models.

net = nn.Sequential()
net.add(nn.Dense(128), CenteredLayer())
net.initialize()

Let s̓ see whether the centering layer did its job. For that we send random data through the network
and check whether the mean vanishes. Note that since we are dealing with floating point numbers,
we are going to see a very small albeit typically nonzero number.

y = net(np.random.uniform(size=(4, 8)))
y.mean()

array(3.783498e-10)

5.4. Custom Layers 215

5.4.2 Layers with Parameters

Now that we know how to define layers in principle, let s̓ define layers with parameters. These can
be adjusted through training. In order to simplify things for an avid deep learning researcher the
Parameter class and the ParameterDict dictionary provide some basic housekeeping functionality.
In particular, they govern access, initialization, sharing, saving and loading model parameters.
For instance, this way we do not need to write custom serialization routines for each new custom
layer.

For instance, we can use the member variable params of the ParameterDict type that comes with
the Block class. It is a dictionary that maps string type parameter names to model parameters in
the Parameter type. We can create a Parameter instance from ParameterDict via the get function.

params = gluon.ParameterDict()
params.get('param2', shape=(2, 3))
params

(
Parameter param2 (shape=(2, 3), dtype=<class 'numpy.float32'>)

)

Let s̓ use this to implement our own version of the dense layer. It has two parameters: bias and
weight. To make it a bit nonstandard, we bake in the ReLU activation as default. Next, we imple-
ment a fully connected layer with both weight and bias parameters. It uses ReLU as an activation
function, where in_units and units are the number of inputs and the number of outputs, respec-
tively.

class MyDense(nn.Block):
units: the number of outputs in this layer; in_units: the number of
inputs in this layer
def __init__(self, units, in_units, **kwargs):

super(MyDense, self).__init__(**kwargs)
self.weight = self.params.get('weight', shape=(in_units, units))
self.bias = self.params.get('bias', shape=(units,))

def forward(self, x):
linear = np.dot(x, self.weight.data()) + self.bias.data()
return npx.relu(linear)

Naming the parameters allows us to access them by name through dictionary lookup later. It is
a good idea to give them instructive names. Next, we instantiate the MyDense class and access its
model parameters.

dense = MyDense(units=3, in_units=5)
dense.params

mydense0_ (
Parameter mydense0_weight (shape=(5, 3), dtype=<class 'numpy.float32'>)
Parameter mydense0_bias (shape=(3,), dtype=<class 'numpy.float32'>)

)

We can directly carry out forward calculations using custom layers.

216 Chapter 5. Deep Learning Computation

dense.initialize()
dense(np.random.uniform(size=(2, 5)))

array([[0. , 0.01633355, 0.],
[0. , 0.01581812, 0.]])

We can also construct models using custom layers. Once we have that we can use it just like the
built-in dense layer. The only exception is that in our case size inference is not automatic. Please
consult the MXNet documentation91 for details on how to do this.

net = nn.Sequential()
net.add(MyDense(8, in_units=64),

MyDense(1, in_units=8))
net.initialize()
net(np.random.uniform(size=(2, 64)))

array([[0.06508517],
[0.0615553]])

Summary

• We can design custom layers via the Block class. This is more powerful than defining a block
factory, since it can be invoked in many contexts.

• Blocks can have local parameters.

Exercises

1. Design a layer that learns an affine transform of the data, i.e., it removes the mean and learns
an additive parameter instead.

2. Design a layer that takes an input and computes a tensor reduction, i.e., it returns yk =∑
i,j Wijkxixj.

3. Design a layer that returns the leading half of the Fourier coefficients of the data. Hint: look
up the fft function in MXNet.

91 http://www.mxnet.io

5.4. Custom Layers 217

http://www.mxnet.io

5.5 File I/O

So far we discussed how to process data, how to build, train and test deep learning models. How-
ever, at some point we are likely happy with what we obtained and we want to save the results
for later use and distribution. Likewise, when running a long training process it is best practice
to save intermediate results (checkpointing) to ensure that we do not lose several days worth of
computation when tripping over the power cord of our server. At the same time, we might want
to load a pre-trained model (e.g., we might have word embeddings for English and use it for our
fancy spam classifier). For all of these cases we need to load and store both individual weight
vectors and entire models. This section addresses both issues.

5.5.1 Loading and Saving ndarrays

In its simplest form, we can directly use the load and save functions to store and read ndarrays
separately. This works just as expected.

from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

x = np.arange(4)
npx.save('x-file', x)

Then, we read the data from the stored file back into memory.

x2 = npx.load('x-file')
x2

[array([0., 1., 2., 3.])]

We can also store a list of ndarrays and read them back into memory.

y = np.zeros(4)
npx.save('x-files', [x, y])
x2, y2 = npx.load('x-files')
(x2, y2)

(array([0., 1., 2., 3.]), array([0., 0., 0., 0.]))

We can even write and read a dictionary that maps from a string to an ndarray. This is convenient,
for instance when we want to read or write all the weights in a model.

mydict = {'x': x, 'y': y}
npx.save('mydict', mydict)
mydict2 = npx.load('mydict')
mydict2

{'x': array([0., 1., 2., 3.]), 'y': array([0., 0., 0., 0.])}

218 Chapter 5. Deep Learning Computation

5.5.2 Gluon Model Parameters

Saving individual weight vectors (or other ndarray tensors) is useful but it gets very tedious if we
want to save (and later load) an entire model. After all, we might have hundreds of parameter
groups sprinkled throughout. Writing a script that collects all the terms and matches them to an
architecture is quite some work. For this reason Gluon provides built-in functionality to load and
save entire networks rather than just single weight vectors. An important detail to note is that this
saves model parameters and not the entire model. I.e. if we have a 3 layer MLP we need to specify
the architecture separately. The reason for this is that the models themselves can contain arbi-
trary code, hence they cannot be serialized quite so easily (there is a way to do this for compiled
models: please refer to the MXNet documentation93 for the technical details on it). The result is
that in order to reinstate a model we need to generate the architecture in code and then load the
parameters from disk. The deferred initialization (Section 5.3) is quite advantageous here since
we can simply define a model without the need to put actual values in place. Let s̓ start with our
favorite MLP.

class MLP(nn.Block):
def __init__(self, **kwargs):

super(MLP, self).__init__(**kwargs)
self.hidden = nn.Dense(256, activation='relu')
self.output = nn.Dense(10)

def forward(self, x):
return self.output(self.hidden(x))

net = MLP()
net.initialize()
x = np.random.uniform(size=(2, 20))
y = net(x)

Next, we store the parameters of the model as a file with the name mlp.params.

net.save_parameters('mlp.params')

To check whether we are able to recover the model we instantiate a clone of the original MLP
model. Unlike the random initialization of model parameters, here we read the parameters stored
in the file directly.

clone = MLP()
clone.load_parameters('mlp.params')

Since both instances have the same model parameters, the computation result of the same input
x should be the same. Let s̓ verify this.

yclone = clone(x)
yclone == y

array([[True, True, True, True, True, True, True, True, True,
True],

[True, True, True, True, True, True, True, True, True,
True]])

93 http://www.mxnet.io

5.5. File I/O 219

http://www.mxnet.io

Summary

• The save and load functions can be used to perform File I/O for ndarray objects.

• The load_parameters and save_parameters functions allow us to save entire sets of param-
eters for a network in Gluon.

• Saving the architecture has to be done in code rather than in parameters.

Exercises

1. Even if there is no need to deploy trained models to a different device, what are the practical
benefits of storing model parameters?

2. Assume that we want to reuse only parts of a network to be incorporated into a network of a
different architecture. How would you go about using, say the first two layers from a previous
network in a new network.

3. How would you go about saving network architecture and parameters? What restrictions
would you impose on the architecture?

5.6 GPUs

In the introduction to this book we discussed the rapid growth of computation over the past two
decades. In a nutshell, GPU performance has increased by a factor of 1000 every decade since
2000. This offers great opportunity but it also suggests a significant need to provide such perfor-
mance.

Decade Dataset Mem-
ory

Floating Point Calculations per Second

1970 100 (Iris) 1 KB 100 KF (Intel 8080)
1980 1 K (House prices in Boston) 100 KB 1 MF (Intel 80186)
1990 10 K (optical character recognition) 10 MB 10 MF (Intel 80486)
2000 10 M (web pages) 100 MB 1 GF (Intel Core)
2010 10 G (advertising) 1 GB 1 TF (NVIDIA C2050)
2020 1 T (social network) 100 GB 1 PF (NVIDIA DGX-2)

In this section we begin to discuss how to harness this compute performance for your research.
First by using single GPUs and at a later point, how to use multiple GPUs and multiple servers (with
multiple GPUs). You might have noticed that MXNet ndarray looks almost identical to NumPy. But
there are a few crucial differences. One of the key features that differentiates MXNet from NumPy
is its support for diverse hardware devices.

In MXNet, every array has a context. In fact, whenever we displayed an ndarray so far, it added a
cryptic @cpu(0) notice to the output which remained unexplained so far. As we will discover, this

220 Chapter 5. Deep Learning Computation

just indicates that the computation is being executed on the CPU. Other contexts might be various
GPUs. Things can get even hairier when we deploy jobs across multiple servers. By assigning
arrays to contexts intelligently, we can minimize the time spent transferring data between devices.
For example, when training neural networks on a server with a GPU, we typically prefer for the
model s̓ parameters to live on the GPU.

In short, for complex neural networks and large-scale data, using only CPUs for computation may
be inefficient. In this section, we will discuss how to use a single NVIDIA GPU for calculations.
First, make sure you have at least one NVIDIA GPU installed. Then, download CUDA95 and follow
the prompts to set the appropriate path. Once these preparations are complete, the nvidia-smi
command can be used to view the graphics card information.

!nvidia-smi

Sat Dec 14 03:45:01 2019
+---+
| NVIDIA-SMI 418.67 Driver Version: 418.67 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... Off | 00000000:00:1B.0 Off | 0 |
| N/A 34C P0 50W / 300W | 0MiB / 16130MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla V100-SXM2... Off | 00000000:00:1C.0 Off | 0 |
| N/A 34C P0 51W / 300W | 0MiB / 16130MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla V100-SXM2... Off | 00000000:00:1D.0 Off | 0 |
| N/A 36C P0 54W / 300W | 0MiB / 16130MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla V100-SXM2... Off | 00000000:00:1E.0 Off | 0 |
| N/A 34C P0 53W / 300W | 0MiB / 16130MiB | 4% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

Next, we need to confirm that the GPU version of MXNet is installed. If a CPU version of MXNet
is already installed, we need to uninstall it first. For example, use the pip uninstall mxnet com-
mand, then install the corresponding MXNet version according to the CUDA version. Assuming
you have CUDA 9.0 installed, you can install the MXNet version that supports CUDA 9.0 by pip
install mxnet-cu90. To run the programs in this section, you need at least two GPUs.

Note that this might be extravagant for most desktop computers but it is easily available in the
cloud, e.g., by using the AWS EC2 multi-GPU instances. Almost all other sections do not require
multiple GPUs. Instead, this is simply to illustrate how data flows between different devices.

95 https://developer.nvidia.com/cuda-downloads

5.6. GPUs 221

https://developer.nvidia.com/cuda-downloads

5.6.1 Computing Devices

MXNet can specify devices, such as CPUs and GPUs, for storage and calculation. By default, MXNet
creates data in the main memory and then uses the CPU to calculate it. In MXNet, the CPU and
GPU can be indicated by cpu() and gpu(). It should be noted that cpu() (or any integer in the
parentheses) means all physical CPUs and memory. This means that MXNet s̓ calculations will
try to use all CPU cores. However, gpu() only represents one graphic card and the corresponding
graphic memory. If there are multiple GPUs, we use gpu(i) to represent the ith GPU (i starts from
0). Also, gpu(0) and gpu() are equivalent.

from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

npx.cpu(), npx.gpu(), npx.gpu(1)

(cpu(0), gpu(0), gpu(1))

We can query the number of available GPUs through num_gpus().

npx.num_gpus()

2

Now we define two convenient functions that allows us to run codes even if the requested GPUs
do not exist.

Saved in the d2l package for later use
def try_gpu(i=0):

"""Return gpu(i) if exists, otherwise return cpu()."""
return npx.gpu(i) if npx.num_gpus() >= i + 1 else npx.cpu()

Saved in the d2l package for later use
def try_all_gpus():

"""Return all available GPUs, or [cpu(),] if no GPU exists."""
ctxes = [npx.gpu(i) for i in range(npx.num_gpus())]
return ctxes if ctxes else [npx.cpu()]

try_gpu(), try_gpu(3), try_all_gpus()

(gpu(0), cpu(0), [gpu(0), gpu(1)])

222 Chapter 5. Deep Learning Computation

5.6.2 ndarray and GPUs

By default, ndarray objects are created on the CPU. Therefore, we will see the @cpu(0) identifier
each time we print an ndarray.

x = np.array([1, 2, 3])
x

array([1., 2., 3.])

We can use the context property of ndarray to view the device where the ndarray is located. It
is important to note that whenever we want to operate on multiple terms they need to be in the
same context. For instance, if we sum two variables, we need to make sure that both arguments
are on the same device—otherwise MXNet would not know where to store the result or even how
to decide where to perform the computation.

x.context

cpu(0)

Storage on the GPU

There are several ways to store an ndarray on the GPU. For example, we can specify a storage
device with the ctx parameter when creating an ndarray. Next, we create the ndarray variable a
on gpu(0). Notice that when printing a, the device information becomes @gpu(0). The ndarray
created on a GPU only consumes the memory of this GPU. We can use the nvidia-smi command
to view GPU memory usage. In general, we need to make sure we do not create data that exceeds
the GPU memory limit.

x = np.ones((2, 3), ctx=try_gpu())
x

array([[1., 1., 1.],
[1., 1., 1.]], ctx=gpu(0))

Assuming you have at least two GPUs, the following code will create a random array on gpu(1).

y = np.random.uniform(size=(2, 3), ctx=try_gpu(1))
y

array([[0.67478997, 0.07540122, 0.9956977],
[0.09488854, 0.415456 , 0.11231736]], ctx=gpu(1))

5.6. GPUs 223

Copying

If we want to compute x+ y we need to decide where to perform this operation. For instance, as
shown in Fig. 5.6.1, we can transfer x to gpu(1) and perform the operation there. Do not simply
add x + y since this will result in an exception. The runtime engine would not know what to do,
it cannot find data on the same device and it fails.

Fig. 5.6.1: Copyto copies arrays to the target device

copyto copies the data to another device such that we can add them. Since y lives on the second
GPU we need to move x there before we can add the two.

z = x.copyto(try_gpu(1))
print(x)
print(z)

[[1. 1. 1.]
[1. 1. 1.]] @gpu(0)
[[1. 1. 1.]
[1. 1. 1.]] @gpu(1)

Now that the data is on the same GPU (both z and y are), we can add them up. In such cases MXNet
places the result on the same device as its constituents. In our case that is @gpu(1).

y + z

array([[1.6747899, 1.0754012, 1.9956977],
[1.0948886, 1.415456 , 1.1123173]], ctx=gpu(1))

Imagine that your variable z already lives on your second GPU (gpu(1)). What happens if we call
z.copyto(gpu(1))? It will make a copy and allocate new memory, even though that variable already
lives on the desired device! There are times where depending on the environment our code is
running in, two variables may already live on the same device. So we only want to make a copy
if the variables currently lives on different contexts. In these cases, we can call as_in_context().
If the variable is already the specified context then this is a no-op. In fact, unless you specifically
want to make a copy, as_in_context() is the method of choice.

z = x.as_in_context(try_gpu(1))
z

array([[1., 1., 1.],
[1., 1., 1.]], ctx=gpu(1))

224 Chapter 5. Deep Learning Computation

It is important to note that, if the context of the source variable and the target variable are consis-
tent, then the as_in_context function causes the target variable and the source variable to share
the memory of the source variable.

y.as_in_context(try_gpu(1)) is y

False

The copyto function always creates new memory for the target variable.

y.copyto(try_gpu(1)) is y

False

Side Notes

People use GPUs to do machine learning because they expect them to be fast. But transferring
variables between contexts is slow. So we want you to be 100% certain that you want to do some-
thing slow before we let you do it. If MXNet just did the copy automatically without crashing then
you might not realize that you had written some slow code.

Also, transferring data between devices (CPU, GPUs, other machines) is something that is much
slower than computation. It also makes parallelization a lot more difficult, since we have to wait
for data to be sent (or rather to be received) before we can proceed with more operations. This is
why copy operations should be taken with great care. As a rule of thumb, many small operations
are much worse than one big operation. Moreover, several operations at a time are much better
than many single operations interspersed in the code (unless you know what you are doing). This
is the case since such operations can block if one device has to wait for the other before it can do
something else. It is a bit like ordering your coffee in a queue rather than pre-ordering it by phone
and finding out that it is ready when you are.

Last, when we print ndarrays or convert ndarrays to the NumPy format, if the data is not in main
memory, MXNet will copy it to the main memory first, resulting in additional transmission over-
head. Even worse, it is now subject to the dreaded Global Interpreter Lock which makes every-
thing wait for Python to complete.

5.6.3 Gluon and GPUs

Similarly, Gluons̓ model can specify devices through the ctx parameter during initialization. The
following code initializes the model parameters on the GPU (we will see many more examples
of how to run models on GPUs in the following, simply since they will become somewhat more
compute intensive).

net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(ctx=try_gpu())

When the input is an ndarray on the GPU, Gluon will calculate the result on the same GPU.

5.6. GPUs 225

net(x)

array([[0.04995865],
[0.04995865]], ctx=gpu(0))

Let s̓ confirm that the model parameters are stored on the same GPU.

net[0].weight.data()

array([[0.0068339 , 0.01299825, 0.0301265]], ctx=gpu(0))

In short, as long as all data and parameters are on the same device, we can learn models efficiently.
In the following we will see several such examples.

Summary

• MXNet can specify devices for storage and calculation, such as CPU or GPU. By default,
MXNet creates data in the main memory and then uses the CPU to calculate it.

• MXNet requires all input data for calculation to be on the same device, be it CPU or the same
GPU.

• You can lose significant performance by moving data without care. A typical mistake is as
follows: computing the loss for every minibatch on the GPU and reporting it back to the user
on the command line (or logging it in a NumPy array) will trigger a global interpreter lock
which stalls all GPUs. It is much better to allocate memory for logging inside the GPU and
only move larger logs.

Exercises

1. Try a larger computation task, such as the multiplication of large matrices, and see the dif-
ference in speed between the CPU and GPU. What about a task with a small amount of cal-
culations?

2. How should we read and write model parameters on the GPU?

3. Measure the time it takes to compute 1000 matrix-matrix multiplications of 100× 100 matri-
ces and log the matrix norm trMM⊤ one result at a time vs. keeping a log on the GPU and
transferring only the final result.

4. Measure how much time it takes to perform two matrix-matrix multiplications on two GPUs
at the same time vs. in sequence on one GPU (hint: you should see almost linear scaling).

226 Chapter 5. Deep Learning Computation

6 | Convolutional Neural Networks

In several of our previous examples, we have already come up against image data, which consist
of pixels arranged in a 2D grid. Depending on whether we are looking at a black and white or
color image, we might have either one or multiple numerical values corresponding to each pixel
location. Until now, we have dealt with this rich structure in the least satisfying possible way.
We simply threw away this spatial structure by flattening each image into a 1D vector, and fed it
into a fully-connected network. These networks are invariant to the order of their inputs. We will
get qualitatively identical results out of a multilayer perceptron whether we preserve the origi-
nal order of our features or if we permute the columns of our design matrix before learning the
parameters. Ideally, we would find a way to leverage our prior knowledge that nearby pixels are
more related to each other.

In this chapter, we introduce convolutional neural networks (CNNs), a powerful family of neu-
ral networks that were designed for precisely this purpose. CNN-based network architecures now
dominate the field of computer vision to such an extent that hardly anyone these days would de-
velop a commercial application or enter a competition related to image recognition, object detec-
tion, or semantic segmentation, without basing their approach on them.

Modern ʻconvnets ,̓ as they are often called owe their design to inspirations from biology, group
theory, and a healthy dose of experimental tinkering. In addition to their strong predictive per-
formance, convolutional neural networks tend to be computationally efficient, both because they
tend to require fewer parameters than dense architectures and also because convolutions are easy
to parallelize across GPU cores. As a result, researchers have sought to apply convnets whenever
possible, and increasingly they have emerged as credible competitors even on tasks with 1D se-
quence structure, such as audio, text, and time series analysis, where recurrent neural networks
(introduced in the next chapter) are conventionally used. Some clever adaptations of CNNs have
also brought them to bear on graph-structured data and in recommender systems.

First, we will walk through the basic operations that comprise the backbone of all modern convo-
lutional networks. These include the convolutional layers themselves, nitty-gritty details includ-
ing padding and stride, the pooling layers used to aggregate information across adjacent spatial
regions, the use of multiple channels (also called filters) at each layer, and a careful discussion of
the structure of modern architectures. We will conclude the chapter with a full working example
of LeNet, the first convolutional network successfully deployed, long before the rise of modern
deep learning. In the next chapter we will dive into full implementations of some of the recent
popular neural networks whose designs are representative of most of the techniques commonly
used to design modern convolutional neural networks.

227

6.1 From Dense Layers to Convolutions

The models that we have discussed so far are fine options if you are dealing with tabular data. By
tabular we mean that the data consists of rows corresponding to examples and columns corre-
sponding to features. With tabular data, we might anticipate that pattern we seek could require
modeling interactions among the features, but do not assume anything a priori about which fea-
tures are related to each other or in what way.

Sometimes we truly may not have any knowledge to guide the construction of more cleverly-
organized architectures. In these cases, a multilayer perceptron is often the best that we can
do. However, once we start dealing with high-dimensional perceptual data, these structure-less
networks can grow unwieldy.

For instance, let s̓ return to our running example of distinguishing cats from dogs. Say that we
do a thorough job in data collection, collecting an annotated sets of high-quality 1-megapixel pho-
tographs. This means that the input into a network has 1 million dimensions. Even an aggressive
reduction to 1,000 hidden dimensions would require a dense (fully-connected) layer to support 109
parameters. Unless we have an extremely large dataset (perhaps billions?), lots of GPUs, a tal-
ent for extreme distributed optimization, and an extraordinary amount of patience, learning the
parameters of this network may turn out to be impossible.

A careful reader might object to this argument on the basis that 1 megapixel resolution may not
be necessary. However, while you could get away with 100,000 pixels, we grossly underestimated
the number of hidden nodes that it typically takes to learn good hidden representations of im-
ages. Learning a binary classifier with so many parameters might seem to require that we collect
an enormous dataset, perhaps comparable to the number of dogs and cats on the planet. And yet
both humans and computers are able to distinguish cats from dogs quite well, seemingly contra-
dicting these conclusions. That is because images exhibit rich structure that is typically exploited
by humans and machine learning models alike.

6.1.1 Invariances

Imagine that you want to detect an object in an image. It seems reasonable that whatever method
we use to recognize objects should not be overly concerned with the precise location of the object
shouldnʼt in the image. Ideally we could learn a system that would somehow exploit this knowl-
edge. Pigs usually do not fly and planes usually do not swim. Nonetheless, we could still recognize
a flying pig were one to appear. This ideas is taken to an extreme in the childrens̓ game ʻWhere s̓
Waldo,̓ an example is shown in Fig. 6.1.1. The game consists of a number of chaotic scenes burst-
ing with activity and Waldo shows up somewhere in each (typically lurking in some unlikely loca-
tion). The reader s̓ goal is to locate him. Despite his characteristic outfit, this can be surprisingly
difficult, due to the large number of confounders.

228 Chapter 6. Convolutional Neural Networks

Fig. 6.1.1: Image via Walker Books

Back to images, the intuitions we have been discussing could be made more concrete yielding a
few key principles for building neural networks for computer vision:

1. Our vision systems should, in some sense, respond similarly to the same object regardless
of where it appears in the image (translation invariance).

2. Our visions systems should, in some sense, focus on local regions, without regard for what
else is happening in the image at greater distances (locality).

Let s̓ see how this translates into mathematics.

6.1.2 Constraining the MLP

To start off let s̓ consider what an MLP would look like with h × w images as inputs (represented
as matrices in math, and as 2D arrays in code), and hidden representations similarly organized as
h×w matrices / 2D arrays. Let x[i, j] and h[i, j] denote pixel location (i, j) in an image and hidden
representation, respectively. Consequently, to have each of the hw hidden nodes receive input
from each of the hw inputs, we would switch from using weight matrices (as we did previously in
MLPs) to representing our parameters as four-dimensional weight tensors.

We could formally express this dense layer as follows:

h[i, j] = u[i, j] +
∑
k,l

W [i, j, k, l] · x[k, l] = u[i, j] +
∑
a,b

V [i, j, a, b] · x[i+ a, j + b]. (6.1.1)

The switch from W to V is entirely cosmetic (for now) since there is a one-to-one correspondence
between coefficients in both tensors. We simply re-index the subscripts (k, l) such that k = i + a
and l = j + b. In other words, we set V [i, j, a, b] = W [i, j, i + a, j + b]. The indices a, b run over
both positive and negative offsets, covering the entire image. For any given location (i, j) in the
hidden layer h[i, j], we compute its value by summing over pixels in x, centered around (i, j) and
weighted by V [i, j, a, b].

Now let s̓ invoke the first principle we established above: translation invariance. This implies that
a shift in the inputs x should simply lead to a shift in the activations h. This is only possible if V

6.1. From Dense Layers to Convolutions 229

and u do not actually depend on (i, j), i.e., we have V [i, j, a, b] = V [a, b] and u is a constant. As a
result we can simplify the definition for h.

h[i, j] = u+
∑
a,b

V [a, b] · x[i+ a, j + b]. (6.1.2)

This is a convolution! We are effectively weighting pixels (i+ a, j + b) in the vicinity of (i, j) with
coefficients V [a, b] to obtain the value h[i, j]. Note that V [a, b] needs many fewer coefficients than
V [i, j, a, b]. For a 1 megapixel image it has at most 1 million coefficients. This is 1 million fewer
parameters since it no longer depends on the location within the image. We have made significant
progress!

Now let s̓ invoke the second principle—locality. As motivated above, we believe that we shouldnʼt
have to look very far away from (i, j) in order to glean relevant information to assess what is going
on at h[i, j]. This means that outside some range |a|, |b| > ∆, we should set V [a, b] = 0. Equiva-
lently, we can rewrite h[i, j] as

h[i, j] = u+

∆∑
a=−∆

∆∑
b=−∆

V [a, b] · x[i+ a, j + b]. (6.1.3)

This, in a nutshell is the convolutional layer. When the local region (also called a receptive field)
is small, the difference as compared to a fully-connected network can be dramatic. While previ-
ously, we might have required billions of parameters to represent just a single layer in an image-
processing network, we now typically need just a few hundred. The price that we pay for this
drastic modification is that our features will be translation invariant and that our layer can only
take local information into account. All learning depends on imposing inductive bias. When that
bias agrees with reality, we get sample-efficient models that generalize well to unseen data. But
of course, if those biases do not agree with reality, e.g., if images turned out not to be translation
invariant, our models may not generalize well.

6.1.3 Convolutions

Let s̓ briefly review why the above operation is called a convolution. In mathematics, the convolu-
tion between two functions, say f, g : Rd → R is defined as

[f ⊛ g](x) =

∫
Rd

f(z)g(x− z)dz. (6.1.4)

That is, we measure the overlap between f and g when both functions are shifted by x and
“flipped”. Whenever we have discrete objects, the integral turns into a sum. For instance, for
vectors defined on ℓ2, i.e., the set of square summable infinite dimensional vectors with index
running over Z we obtain the following definition.

[f ⊛ g](i) =
∑
a

f(a)g(i− a). (6.1.5)

For two-dimensional arrays, we have a corresponding sum with indices (i, j) for f and (i−a, j−b)
for g respectively. This looks similar to definition above, with one major difference. Rather than
using (i+a, j+b), we are using the difference instead. Note, though, that this distinction is mostly
cosmetic since we can always match the notation by using Ṽ [a, b] = V [−a,−b] to obtain h = x⊛ Ṽ .
Also note that the original definition is actually a cross correlation. We will come back to this in the
following section.

230 Chapter 6. Convolutional Neural Networks

6.1.4 Waldo Revisited

Let s̓ see what this looks like if we want to build an improved Waldo detector. The convolutional
layer picks windows of a given size and weighs intensities according to the mask V , as demon-
strated in Fig. 6.1.2. We expect that wherever the “waldoness” is highest, we will also find a peak
in the hidden layer activations.

Fig. 6.1.2: Find Waldo.

There is just a problem with this approach: so far we blissfully ignored that images consist of 3
channels: red, green and blue. In reality, images are quite two-dimensional objects but rather as
a 3rd order tensor, e.g., with shape 1024× 1024× 3 pixels. Only two of these axes concern spatial
relationships, while the 3rd can be regarded as assigning a multidimensional representation to
each pixel location.

We thus index x as x[i, j, k]. The convolutional mask has to adapt accordingly. Instead of V [a, b]
we now have V [a, b, c].

Moreover, just as our input consists of a 3rd order tensor it turns out to be a good idea to similarly
formulate our hidden representations as 3rd order tensors. In other words, rather than just having
a 1D representation corresponding to each spatial location, we want to have a multidimensional
hidden representations corresponding to each spatial location. We could think of the hidden rep-
resentation as comprising a number of 2D grids stacked on top of each other. These are sometimes
called channels or feature maps. Intuitively you might imagine that at lower layers, some channels
specialize to recognizing edges, We can take care of this by adding a fourth coordinate to V via
V [a, b, c, d]. Putting all together we have:

h[i, j, k] =

∆∑
a=−∆

∆∑
b=−∆

∑
c

V [a, b, c, k] · x[i+ a, j + b, c]. (6.1.6)

This is the definition of a convolutional neural network layer. There are still many operations
that we need to address. For instance, we need to figure out how to combine all the activations
to a single output (e.g., whether there is a Waldo in the image). We also need to decide how to
compute things efficiently, how to combine multiple layers, and whether it is a good idea to have
many narrow or a few wide layers. All of this will be addressed in the remainder of the chapter.

6.1. From Dense Layers to Convolutions 231

Summary

• Translation invariance in images implies that all patches of an image will be treated in the
same manner.

• Locality means that only a small neighborhood of pixels will be used for computation.

• Channels on input and output allows for meaningful feature analysis.

Exercises

1. Assume that the size of the convolution mask is ∆ = 0. Show that in this case the convolu-
tional mask implements an MLP independently for each set of channels.

2. Why might translation invariance not be a good idea after all? Does it make sense for pigs to
fly?

3. What happens at the boundary of an image?

4. Derive an analogous convolutional layer for audio.

5. What goes wrong when you apply the above reasoning to text? Hint: what is the structure of
language?

6. Prove that f ⊛ g = g ⊛ f .

6.2 Convolutions for Images

Now that we understand how convolutional layers work in theory, we are ready to see how this
works in practice. Since we have motivated convolutional neural networks by their applicability
to image data, we will stick with image data in our examples, and begin by revisiting the convo-
lutional layer that we introduced in the previous section. We note that strictly speaking, convolu-
tional layers are a slight misnomer, since the operations are typically expressed as cross correla-
tions.

6.2.1 The Cross-Correlation Operator

In a convolutional layer, an input array and a correlation kernel array are combined to produce an
output array through a cross-correlation operation. Let s̓ see how this works for two dimensions.
In Fig. 6.2.1, the input is a two-dimensional array with a height of 3 and width of 3. We mark the
shape of the array as 3× 3 or (3, 3). The height and width of the kernel array are both 2. Common
names for this array in the deep learning research community include kernel and filter. The shape
of the kernel window (also known as the convolution window) is given precisely by the height and
width of the kernel (here it is 2× 2).

232 Chapter 6. Convolutional Neural Networks

Fig. 6.2.1: Two-dimensional cross-correlation operation. The shaded portions are the first output
element and the input and kernel array elements used in its computation: 0×0+1×1+3×2+4×3 =
19.

In the two-dimensional cross-correlation operation, we begin with the convolution window posi-
tioned at the top-left corner of the input array and slide it across the input array, both from left
to right and top to bottom. When the convolution window slides to a certain position, the input
subarray contained in that window and the kernel array are multiplied (elementwise) and the re-
sulting array is summed up yielding a single scalar value. This result if precisely the value of the
output array at the corresponding location. Here, the output array has a height of 2 and width of
2 and the four elements are derived from the two-dimensional cross-correlation operation:

0× 0 + 1× 1 + 3× 2 + 4× 3 = 19,

1× 0 + 2× 1 + 4× 2 + 5× 3 = 25,

3× 0 + 4× 1 + 6× 2 + 7× 3 = 37,

4× 0 + 5× 1 + 7× 2 + 8× 3 = 43.

(6.2.1)

Note that along each axis, the output is slightly smaller than the input. Because the kernel has a
width greater than one, and we can only computer the cross-correlation for locations where the
kernel fits wholly within the image, the output size is given by the input size H ×W minus the
size of the convolutional kernel h × w via (H − h + 1) × (W − w + 1). This is the case since we
need enough space to ʻshiftʼ the convolutional kernel across the image (later we will see how to
keep the size unchanged by padding the image with zeros around its boundary such that there is
enough space to shift the kernel). Next, we implement the above process in the corr2d function.
It accepts the input array X with the kernel array K and outputs the array Y.

from mxnet import autograd, np, npx
from mxnet.gluon import nn
npx.set_np()

Saved in the d2l package for later use
def corr2d(X, K):

"""Compute 2D cross-correlation."""
h, w = K.shape
Y = np.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):

for j in range(Y.shape[1]):
Y[i, j] = (X[i: i + h, j: j + w] * K).sum()

return Y

We can construct the input array X and the kernel array K from the figure above to validate the
output of the above implementations of the two-dimensional cross-correlation operation.

6.2. Convolutions for Images 233

X = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
K = np.array([[0, 1], [2, 3]])
corr2d(X, K)

array([[19., 25.],
[37., 43.]])

6.2.2 Convolutional Layers

A convolutional layer cross-correlates the input and kernels and adds a scalar bias to produce
an output. The parameters of the convolutional layer are precisely the values that constitute the
kernel and the scalar bias. When training the models based on convolutional layers, we typically
initialize the kernels randomly, just as we would with a fully-connected layer.

We are now ready to implement a two-dimensional convolutional layer based on the corr2d func-
tion defined above. In the __init__ constructor function, we declare weight and bias as the two
model parameters. The forward computation function forward calls the corr2d function and adds
the bias. As with h×w cross-correlation we also refer to convolutional layers as h×w convolutions.

class Conv2D(nn.Block):
def __init__(self, kernel_size, **kwargs):

super(Conv2D, self).__init__(**kwargs)
self.weight = self.params.get('weight', shape=kernel_size)
self.bias = self.params.get('bias', shape=(1,))

def forward(self, x):
return corr2d(x, self.weight.data()) + self.bias.data()

6.2.3 Object Edge Detection in Images

Let s̓ look at a simple application of a convolutional layer: detecting the edge of an object in an
image by finding the location of the pixel change. First, we construct an ʻimageʼ of 6 × 8 pixels.
The middle four columns are black (0) and the rest are white (1).

X = np.ones((6, 8))
X[:, 2:6] = 0
X

array([[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.],
[1., 1., 0., 0., 0., 0., 1., 1.]])

Next, we construct a kernel K with a height of 1 and width of 2. When we perform the cross-
correlation operation with the input, if the horizontally adjacent elements are the same, the output
is 0. Otherwise, the output is non-zero.

234 Chapter 6. Convolutional Neural Networks

K = np.array([[1, -1]])

Enter X and our designed kernel K to perform the cross-correlation operations. As you can see, we
will detect 1 for the edge from white to black and -1 for the edge from black to white. The rest of
the outputs are 0.

Y = corr2d(X, K)
Y

array([[0., 1., 0., 0., 0., -1., 0.],
[0., 1., 0., 0., 0., -1., 0.],
[0., 1., 0., 0., 0., -1., 0.],
[0., 1., 0., 0., 0., -1., 0.],
[0., 1., 0., 0., 0., -1., 0.],
[0., 1., 0., 0., 0., -1., 0.]])

Let s̓ apply the kernel to the transposed image. As expected, it vanishes. The kernel K only detects
vertical edges.

corr2d(X.T, K)

array([[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])

6.2.4 Learning a Kernel

Designing an edge detector by finite differences [1, -1] is neat if we know this is precisely what
we are looking for. However, as we look at larger kernels, and consider successive layers of con-
volutions, it might be impossible to specify precisely what each filter should be doing manually.

Now let s̓ see whether we can learn the kernel that generated Y from X by looking at the (input,
output) pairs only. We first construct a convolutional layer and initialize its kernel as a random
array. Next, in each iteration, we will use the squared error to compare Y and the output of the
convolutional layer, then calculate the gradient to update the weight. For the sake of simplicity, in
this convolutional layer, we will ignore the bias.

We previously constructed the Conv2D class. However, since we used single-element assignments,
Gluon has some trouble finding the gradient. Instead, we use the built-in Conv2D class provided
by Gluon below.

Construct a convolutional layer with 1 output channel
(channels will be introduced in the following section)
and a kernel array shape of (1, 2)
conv2d = nn.Conv2D(1, kernel_size=(1, 2))

(continues on next page)

6.2. Convolutions for Images 235

(continued from previous page)

conv2d.initialize()

The two-dimensional convolutional layer uses four-dimensional input and
output in the format of (example channel, height, width), where the batch
size (number of examples in the batch) and the number of channels are both 1
X = X.reshape(1, 1, 6, 8)
Y = Y.reshape(1, 1, 6, 7)

for i in range(10):
with autograd.record():

Y_hat = conv2d(X)
l = (Y_hat - Y) ** 2

l.backward()
For the sake of simplicity, we ignore the bias here
conv2d.weight.data()[:] -= 3e-2 * conv2d.weight.grad()
if (i + 1) % 2 == 0:

print('batch %d, loss %.3f' % (i + 1, l.sum()))

batch 2, loss 4.949
batch 4, loss 0.831
batch 6, loss 0.140
batch 8, loss 0.024
batch 10, loss 0.004

As you can see, the error has dropped to a small value after 10 iterations. Now we will take a look
at the kernel array we learned.

conv2d.weight.data().reshape(1, 2)

array([[0.9895 , -0.9873705]])

Indeed, the learned kernel array is remarkably close to the kernel array K we defined earlier.

6.2.5 Cross-Correlation and Convolution

Recall the observation from the previous section that cross-correlation and convolution are equiv-
alent. In the figure above it is easy to see this correspondence. Simply flip the kernel from the
bottom left to the top right. In this case the indexing in the sum is reverted, yet the same result
can be obtained. In keeping with standard terminology with deep learning literature, we will con-
tinue to refer to the cross-correlation operation as a convolution even though, strictly-speaking,
it is slightly different.

236 Chapter 6. Convolutional Neural Networks

Summary

• The core computation of a two-dimensional convolutional layer is a two-dimensional cross-
correlation operation. In its simplest form, this performs a cross-correlation operation on
the two-dimensional input data and the kernel, and then adds a bias.

• We can design a kernel to detect edges in images.

• We can learn the kernel through data.

Exercises

1. Construct an image X with diagonal edges.

• What happens if you apply the kernel K to it?

• What happens if you transpose X?

• What happens if you transpose K?

2. When you try to automatically find the gradient for the Conv2D class we created, what kind
of error message do you see?

3. How do you represent a cross-correlation operation as a matrix multiplication by changing
the input and kernel arrays?

4. Design some kernels manually.

• What is the form of a kernel for the second derivative?

• What is the kernel for the Laplace operator?

• What is the kernel for an integral?

• What is the minimum size of a kernel to obtain a derivative of degree d?

6.3 Padding and Stride

In the previous example, our input had a height and width of 3 and a convolution kernel with a
height and width of 2, yielding an output with a height and a width of 2. In general, assuming the
input shape is nh×nw and the convolution kernel window shape is kh×kw, then the output shape
will be

(nh − kh + 1)× (nw − kw + 1). (6.3.1)

Therefore, the output shape of the convolutional layer is determined by the shape of the input and
the shape of the convolution kernel window.

In several cases we might want to incorporate particular techniques—padding and strides, regard-
ing the size of the output:

6.3. Padding and Stride 237

• In general, since kernels generally have width and height greater than 1, that means that
after applying many successive convolutions, we will wind up with an output that is much
smaller than our input. If we start with a 240×240 pixel image, 10 layers of 5×5 convolutions
reduce the image to 200×200 pixels, slicing off 30% of the image and with it obliterating any
interesting information on the boundaries of the original image. Padding handles this issue.

• In some cases, we want to reduce the resolution drastically if say we find our

• original input resolution to be unwieldy. Strides can help in these instances.

6.3.1 Padding

As described above, one tricky issue when applying convolutional layers is that losing pixels on
the perimeter of our image. Since we typically use small kernels, for any given convolution, we
might only lose a few pixels, but this can add up as we apply many successive convolutional layers.
One straightforward solution to this problem is to add extra pixels of filler around the boundary of
our input image, thus increasing the effective size of the image Typically, we set the values of the
extra pixels to 0. In Fig. 6.3.1, we pad a 3× 5 input, increasing its size to 5× 7. The corresponding
output then increases to a 4× 6 matrix.

Fig. 6.3.1: Two-dimensional cross-correlation with padding. The shaded portions are the input
and kernel array elements used by the first output element: 0× 0 + 0× 1 + 0× 2 + 0× 3 = 0.

In general, if we add a total of ph rows of padding (roughly half on top and half on bottom) and
a total of pw columns of padding (roughly half on the left and half on the right), the output shape
will be

(nh − kh + ph + 1)× (nw − kw + pw + 1). (6.3.2)

This means that the height and width of the output will increase by ph and pw respectively.

In many cases, we will want to set ph = kh − 1 and pw = kw − 1 to give the input and output the
same height and width. This will make it easier to predict the output shape of each layer when
constructing the network. Assuming that kh is odd here, we will pad ph/2 rows on both sides of
the height. If kh is even, one possibility is to pad ⌈ph/2⌉ rows on the top of the input and ⌊ph/2⌋
rows on the bottom. We will pad both sides of the width in the same way.

Convolutional neural networks commonly use convolutional kernels with odd height and width
values, such as 1, 3, 5, or 7. Choosing odd kernel sizes has the benefit that we can preserve the
spatial dimensionality while padding with the same number of rows on top and bottom, and the
same number of columns on left and right.

238 Chapter 6. Convolutional Neural Networks

Moreover, this practice of using odd kernels and padding to precisely preserve dimensionality
offers a clerical benefit. For any two-dimensional array X, when the kernels size is odd and the
number of padding rows and columns on all sides are the same, producing an output with the same
height and width as the input, we know that the output Y[i, j] is calculated by cross-correlation
of the input and convolution kernel with the window centered on X[i, j].

In the following example, we create a two-dimensional convolutional layer with a height and width
of 3 and apply 1 pixel of padding on all sides. Given an input with a height and width of 8, we find
that the height and width of the output is also 8.

from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

For convenience, we define a function to calculate the convolutional layer.
This function initializes the convolutional layer weights and performs
corresponding dimensionality elevations and reductions on the input and
output
def comp_conv2d(conv2d, X):

conv2d.initialize()
(1, 1) indicates that the batch size and the number of channels
(described in later chapters) are both 1
X = X.reshape((1, 1) + X.shape)
Y = conv2d(X)
Exclude the first two dimensions that do not interest us: batch and
channel
return Y.reshape(Y.shape[2:])

Note that here 1 row or column is padded on either side, so a total of 2
rows or columns are added
conv2d = nn.Conv2D(1, kernel_size=3, padding=1)
X = np.random.uniform(size=(8, 8))
comp_conv2d(conv2d, X).shape

(8, 8)

When the height and width of the convolution kernel are different, we can make the output and
input have the same height and width by setting different padding numbers for height and width.

Here, we use a convolution kernel with a height of 5 and a width of 3. The
padding numbers on both sides of the height and width are 2 and 1,
respectively
conv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

(8, 8)

6.3. Padding and Stride 239

6.3.2 Stride

When computing the cross-correlation, we start with the convolution window at the top-left corner
of the input array, and then slide it over all locations both down and to the right. In previous
examples, we default to sliding one pixel at a time. However, sometimes, either for computational
efficiency or because we wish to downsample, we move our window more than one pixel at a time,
skipping the intermediate locations.

We refer to the number of rows and columns traversed per slide as the stride. So far, we have
used strides of 1, both for height and width. Sometimes, we may want to use a larger stride. Fig.
6.3.2 shows a two-dimensional cross-correlation operation with a stride of 3 vertically and 2 hori-
zontally. We can see that when the second element of the first column is output, the convolution
window slides down three rows. The convolution window slides two columns to the right when
the second element of the first row is output. When the convolution window slides three columns
to the right on the input, there is no output because the input element cannot fill the window
(unless we add another column of padding).

Fig. 6.3.2: Cross-correlation with strides of 3 and 2 for height and width respectively. The shaded
portions are the output element and the input and core array elements used in its computation:
0× 0 + 0× 1 + 1× 2 + 2× 3 = 8, 0× 0 + 6× 1 + 0× 2 + 0× 3 = 6.

In general, when the stride for the height is sh and the stride for the width is sw, the output shape
is

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋. (6.3.3)

If we set ph = kh − 1 and pw = kw − 1, then the output shape will be simplified to ⌊(nh + sh −
1)/sh⌋ × ⌊(nw + sw − 1)/sw⌋. Going a step further, if the input height and width are divisible by
the strides on the height and width, then the output shape will be (nh/sh)× (nw/sw).

Below, we set the strides on both the height and width to 2, thus halving the input height and width.

conv2d = nn.Conv2D(1, kernel_size=3, padding=1, strides=2)
comp_conv2d(conv2d, X).shape

(4, 4)

Next, we will look at a slightly more complicated example.

conv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4))
comp_conv2d(conv2d, X).shape

240 Chapter 6. Convolutional Neural Networks

(2, 2)

For the sake of brevity, when the padding number on both sides of the input height and width are
ph and pw respectively, we call the padding (ph, pw). Specifically, when ph = pw = p, the padding is
p. When the strides on the height and width are sh and sw, respectively, we call the stride (sh, sw).
Specifically, when sh = sw = s, the stride is s. By default, the padding is 0 and the stride is 1.
In practice we rarely use inhomogeneous strides or padding, i.e., we usually have ph = pw and
sh = sw.

Summary

• Padding can increase the height and width of the output. This is often used to give the output
the same height and width as the input.

• The stride can reduce the resolution of the output, for example reducing the height and width
of the output to only 1/n of the height and width of the input (n is an integer greater than 1).

• Padding and stride can be used to adjust the dimensionality of the data effectively.

Exercises

1. For the last example in this section, use the shape calculation formula to calculate the output
shape to see if it is consistent with the experimental results.

2. Try other padding and stride combinations on the experiments in this section.

3. For audio signals, what does a stride of 2 correspond to?

4. What are the computational benefits of a stride larger than 1.

6.4 Multiple Input and Output Channels

While we have described the multiple channels that comprise each image (e.g., color images have
the standard RGB channels to indicate the amount of red, green and blue), until now, we simplified
all of our numerical examples by working with just a single input and a single output channel. This
has allowed us to think of our inputs, convolutional kernels, and outputs each as two-dimensional
arrays.

When we add channels into the mix, our inputs and hidden representations both become three-
dimensional arrays. For example, each RGB input image has shape 3×h×w. We refer to this axis,
with a size of 3, as the channel dimension. In this section, we will take a deeper look at convolution
kernels with multiple input and multiple output channels.

6.4. Multiple Input and Output Channels 241

6.4.1 Multiple Input Channels

When the input data contains multiple channels, we need to construct a convolution kernel with
the same number of input channels as the input data, so that it can perform cross-correlation with
the input data. Assuming that the number of channels for the input data is ci, the number of input
channels of the convolution kernel also needs to be ci. If our convolution kernel s̓ window shape
is kh × kw, then when ci = 1, we can think of our convolution kernel as just a two-dimensional
array of shape kh × kw.

However, when ci > 1, we need a kernel that contains an array of shape kh × kw for each input
channel. Concatenating these ci arrays together yields a convolution kernel of shape ci × kh × kw.
Since the input and convolution kernel each have ci channels, we can perform a cross-correlation
operation on the two-dimensional array of the input and the two-dimensional kernel array of the
convolution kernel for each channel, adding the ci results together (summing over the channels)
to yield a two-dimensional array. This is the result of a two-dimensional cross-correlation between
multi-channel input data and a multi-input channel convolution kernel.

In Fig. 6.4.1, we demonstrate an example of a two-dimensional cross-correlation with two input
channels. The shaded portions are the first output element as well as the input and kernel array
elements used in its computation: (1×1+2×2+4×3+5×4)+(0×0+1×1+3×2+4×3) = 56.

Fig. 6.4.1: Cross-correlation computation with 2 input channels. The shaded portions are the first
output element as well as the input and kernel array elements used in its computation: (1 × 1 +
2× 2 + 4× 3 + 5× 4) + (0× 0 + 1× 1 + 3× 2 + 4× 3) = 56.

To make sure we really understand what is going on here, we can implement cross-correlation
operations with multiple input channels ourselves. Notice that all we are doing is performing one
cross-correlation operation per channel and then adding up the results using the add_n function.

import d2l
from mxnet import np, npx
npx.set_np()

def corr2d_multi_in(X, K):
First, traverse along the 0th dimension (channel dimension) of X and K.
Then, add them together by using * to turn the result list into a
positional argument of the add_n function
return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

We can construct the input array X and the kernel array K corresponding to the values in the above
diagram to validate the output of the cross-correlation operation.

242 Chapter 6. Convolutional Neural Networks

X = np.array([[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]])

K = np.array([[[0, 1], [2, 3]], [[1, 2], [3, 4]]])

corr2d_multi_in(X, K)

array([[56., 72.],
[104., 120.]])

6.4.2 Multiple Output Channels

Regardless of the number of input channels, so far we always ended up with one output chan-
nel. However, as we discussed earlier, it turns out to be essential to have multiple channels at
each layer. In the most popular neural network architectures, we actually increase the channel
dimension as we go higher up in the neural network, typically downsampling to trade off spatial
resolution for greater channel depth. Intuitively, you could think of each channel as responding to
some different set of features. Reality is a bit more complicated than the most naive interpreta-
tions of this intuition since representations are not learned independent but are rather optimized
to be jointly useful. So it may not be that a single channel learns an edge detector but rather that
some direction in channel space corresponds to detecting edges.

Denote by ci and co the number of input and output channels, respectively, and let kh and kw
be the height and width of the kernel. To get an output with multiple channels, we can create a
kernel array of shape ci × kh × kw for each output channel. We concatenate them on the output
channel dimension, so that the shape of the convolution kernel is co × ci × kh × kw. In cross-
correlation operations, the result on each output channel is calculated from the convolution kernel
corresponding to that output channel and takes input from all channels in the input array.

We implement a cross-correlation function to calculate the output of multiple channels as shown
below.

def corr2d_multi_in_out(X, K):
Traverse along the 0th dimension of K, and each time, perform
cross-correlation operations with input X. All of the results are merged
together using the stack function
return np.stack([corr2d_multi_in(X, k) for k in K])

We construct a convolution kernel with 3 output channels by concatenating the kernel array Kwith
K+1 (plus one for each element in K) and K+2.

K = np.stack((K, K + 1, K + 2))
K.shape

(3, 2, 2, 2)

Below, we perform cross-correlation operations on the input array X with the kernel array K. Now
the output contains 3 channels. The result of the first channel is consistent with the result of the
previous input array X and the multi-input channel, single-output channel kernel.

6.4. Multiple Input and Output Channels 243

corr2d_multi_in_out(X, K)

array([[[56., 72.],
[104., 120.]],

[[76., 100.],
[148., 172.]],

[[96., 128.],
[192., 224.]]])

6.4.3 1× 1 Convolutional Layer

At first, a 1 × 1 convolution, i.e., kh = kw = 1, does not seem to make much sense. After all, a
convolution correlates adjacent pixels. A 1× 1 convolution obviously does not. Nonetheless, they
are popular operations that are sometimes included in the designs of complex deep networks.
Let s̓ see in some detail what it actually does.

Because the minimum window is used, the 1 × 1 convolution loses the ability of larger convo-
lutional layers to recognize patterns consisting of interactions among adjacent elements in the
height and width dimensions. The only computation of the 1× 1 convolution occurs on the chan-
nel dimension.

Fig. 6.4.2 shows the cross-correlation computation using the 1×1 convolution kernel with 3 input
channels and 2 output channels. Note that the inputs and outputs have the same height and width.
Each element in the output is derived from a linear combination of elements at the same position in
the input image. You could think of the 1× 1 convolutional layer as constituting a fully-connected
layer applied at every single pixel location to transform the c_i corresponding input values into c_o
output values. Because this is still a convolutional layer, the weights are tied across pixel location
Thus the 1× 1 convolutional layer requires co × ci weights (plus the bias terms).

Fig. 6.4.2: The cross-correlation computation uses the 1× 1 convolution kernel with 3 input chan-
nels and 2 output channels. The inputs and outputs have the same height and width.

Let s̓ check whether this works in practice: we implement the 1 × 1 convolution using a fully-
connected layer. The only thing is that we need to make some adjustments to the data shape
before and after the matrix multiplication.

def corr2d_multi_in_out_1x1(X, K):
c_i, h, w = X.shape
c_o = K.shape[0]

(continues on next page)

244 Chapter 6. Convolutional Neural Networks

(continued from previous page)

X = X.reshape(c_i, h * w)
K = K.reshape(c_o, c_i)
Y = np.dot(K, X) # Matrix multiplication in the fully connected layer
return Y.reshape(c_o, h, w)

When performing 1 × 1 convolution, the above function is equivalent to the previously imple-
mented cross-correlation function corr2d_multi_in_out. Let s̓ check this with some reference
data.

X = np.random.uniform(size=(3, 3, 3))
K = np.random.uniform(size=(2, 3, 1, 1))

Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)

np.abs(Y1 - Y2).sum() < 1e-6

array(True)

Summary

• Multiple channels can be used to extend the model parameters of the convolutional layer.

• The 1 × 1 convolutional layer is equivalent to the fully-connected layer, when applied on a
per pixel basis.

• The 1 × 1 convolutional layer is typically used to adjust the number of channels between
network layers and to control model complexity.

Exercises

1. Assume that we have two convolutional kernels of size k1 and k2 respectively (with no non-
linearity in between).

• Prove that the result of the operation can be expressed by a single convolution.

• What is the dimensionality of the equivalent single convolution?

• Is the converse true?

2. Assume an input shape of ci×h×w and a convolution kernel with the shape co×ci×kh×kw,
padding of (ph, pw), and stride of (sh, sw).

• What is the computational cost (multiplications and additions) for the forward compu-
tation?

• What is the memory footprint?

• What is the memory footprint for the backward computation?

• What is the computational cost for the backward computation?

3. By what factor does the number of calculations increase if we double the number of input
channels ci and the number of output channels co? What happens if we double the padding?

6.4. Multiple Input and Output Channels 245

4. If the height and width of the convolution kernel is kh = kw = 1, what is the complexity of
the forward computation?

5. Are the variables Y1 and Y2 in the last example of this section exactly the same? Why?

6. How would you implement convolutions using matrix multiplication when the convolution
window is not 1× 1?

6.5 Pooling

Often, as we process images, we want to gradually reduce the spatial resolution of our hidden
representations, aggregating information so that the higher up we go in the network, the larger
the receptive field (in the input) to which each hidden node is sensitive.

Often our ultimate task asks some global question about the image, e.g., does it contain a cat? So
typically the nodes of our final layer should be sensitive to the entire input. By gradually aggregat-
ing information, yielding coarser and coarser maps, we accomplish this goal of ultimately learning
a global representation, while keeping all of the advantages of convolutional layers at the inter-
mediate layers of processing.

Moreover, when detecting lower-level features, such as edges (as discussed in Section 6.2), we
often want our representations to be somewhat invariant to translation. For instance, if we take
the image X with a sharp delineation between black and white and shift the whole image by one
pixel to the right, i.e., Z[i, j] = X[i, j+1], then the output for the new image Z might be vastly
different. The edge will have shifted by one pixel and with it all the activations. In reality, objects
hardly ever occur exactly at the same place. In fact, even with a tripod and a stationary object,
vibration of the camera due to the movement of the shutter might shift everything by a pixel or so
(high-end cameras are loaded with special features to address this problem).

This section introduces pooling layers, which serve the dual purposes of mitigating the sensitivity
of convolutional layers to location and of spatially downsampling representations.

6.5.1 Maximum Pooling and Average Pooling

Like convolutional layers, pooling operators consist of a fixed-shape window that is slid over all
regions in the input according to its stride, computing a single output for each location traversed
by the fixed-shape window (sometimes known as the pooling window). However, unlike the cross-
correlation computation of the inputs and kernels in the convolutional layer, the pooling layer
contains no parameters (there is no filter). Instead, pooling operators are deterministic, typically
calculating either the maximum or the average value of the elements in the pooling window. These
operations are called maximum pooling (max pooling for short) and average pooling, respectively.

In both cases, as with the cross-correlation operator, we can think of the pooling window as start-
ing from the top left of the input array and sliding across the input array from left to right and
top to bottom. At each location that the pooling window hits, it computes the maximum or aver-
age value of the input subarray in the window (depending on whether max or average pooling is
employed).

246 Chapter 6. Convolutional Neural Networks

Fig. 6.5.1: Maximum pooling with a pooling window shape of 2×2. The shaded portions represent
the first output element and the input element used for its computation: max(0, 1, 3, 4) = 4

The output array in Fig. 6.5.1 above has a height of 2 and a width of 2. The four elements are
derived from the maximum value of max:

max(0, 1, 3, 4) = 4,

max(1, 2, 4, 5) = 5,

max(3, 4, 6, 7) = 7,

max(4, 5, 7, 8) = 8.

(6.5.1)

A pooling layer with a pooling window shape of p × q is called a p × q pooling layer. The pooling
operation is called p× q pooling.

Let s̓ return to the object edge detection example mentioned at the beginning of this section. Now
we will use the output of the convolutional layer as the input for 2× 2 maximum pooling. Set the
convolutional layer input as X and the pooling layer output as Y. Whether or not the values of X[i,
j] and X[i, j+1] are different, or X[i, j+1] and X[i, j+2] are different, the pooling layer outputs
all include Y[i, j]=1. That is to say, using the 2× 2 maximum pooling layer, we can still detect if
the pattern recognized by the convolutional layer moves no more than one element in height and
width.

In the code below, we implement the forward computation of the pooling layer in the pool2d
function. This function is similar to the corr2d function in Section 6.2. However, here we have no
kernel, computing the output as either the max or the average of each region in the input..

from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

def pool2d(X, pool_size, mode='max'):
p_h, p_w = pool_size
Y = np.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
for i in range(Y.shape[0]):

for j in range(Y.shape[1]):
if mode == 'max':

Y[i, j] = np.max(X[i: i + p_h, j: j + p_w])
elif mode == 'avg':

Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
return Y

We can construct the input array X in the above diagram to validate the output of the two-
dimensional maximum pooling layer.

X = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
pool2d(X, (2, 2))

6.5. Pooling 247

array([[4., 5.],
[7., 8.]])

At the same time, we experiment with the average pooling layer.

pool2d(X, (2, 2), 'avg')

array([[2., 3.],
[5., 6.]])

6.5.2 Padding and Stride

As with convolutional layers, pooling layers can also change the output shape. And as before,
we can alter the operation to achieve a desired output shape by padding the input and adjust-
ing the stride. We can demonstrate the use of padding and strides in pooling layers via the two-
dimensional maximum pooling layer MaxPool2D shipped in MXNet Gluons̓ nn module. We first
construct an input data of shape (1, 1, 4, 4), where the first two dimensions are batch and
channel.

X = np.arange(16).reshape(1, 1, 4, 4)
X

array([[[[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]]]])

By default, the stride in the MaxPool2D class has the same shape as the pooling window. Below, we
use a pooling window of shape (3, 3), so we get a stride shape of (3, 3) by default.

pool2d = nn.MaxPool2D(3)
Because there are no model parameters in the pooling layer, we do not need
to call the parameter initialization function
pool2d(X)

array([[[[10.]]]])

The stride and padding can be manually specified.

pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)

array([[[[5., 7.],
[13., 15.]]]])

Of course, we can specify an arbitrary rectangular pooling window and specify the padding and
stride for height and width, respectively.

248 Chapter 6. Convolutional Neural Networks

pool2d = nn.MaxPool2D((2, 3), padding=(1, 2), strides=(2, 3))
pool2d(X)

array([[[[0., 3.],
[8., 11.],
[12., 15.]]]])

6.5.3 Multiple Channels

When processing multi-channel input data, the pooling layer pools each input channel separately,
rather than adding the inputs of each channel by channel as in a convolutional layer. This means
that the number of output channels for the pooling layer is the same as the number of input chan-
nels. Below, we will concatenate arrays X and X+1 on the channel dimension to construct an input
with 2 channels.

X = np.concatenate((X, X + 1), axis=1)
X

array([[[[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]],

[[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.],
[13., 14., 15., 16.]]]])

As we can see, the number of output channels is still 2 after pooling.

pool2d = nn.MaxPool2D(3, padding=1, strides=2)
pool2d(X)

array([[[[5., 7.],
[13., 15.]],

[[6., 8.],
[14., 16.]]]])

Summary

• Taking the input elements in the pooling window, the maximum pooling operation assigns
the maximum value as the output and the average pooling operation assigns the average
value as the output.

• One of the major functions of a pooling layer is to alleviate the excessive sensitivity of the
convolutional layer to location.

• We can specify the padding and stride for the pooling layer.

6.5. Pooling 249

• Maximum pooling, combined with a stride larger than 1 can be used to reduce the resolution.

• The pooling layer s̓ number of output channels is the same as the number of input channels.

Exercises

1. Can you implement average pooling as a special case of a convolution layer? If so, do it.

2. Can you implement max pooling as a special case of a convolution layer? If so, do it.

3. What is the computational cost of the pooling layer? Assume that the input to the pooling
layer is of size c×h×w, the pooling window has a shape of ph×pw with a padding of (ph, pw)
and a stride of (sh, sw).

4. Why do you expect maximum pooling and average pooling to work differently?

5. Do we need a separate minimum pooling layer? Can you replace it with another operation?

6. Is there another operation between average and maximum pooling that you could consider
(hint: recall the softmax)? Why might it not be so popular?

6.6 Convolutional Neural Networks (LeNet)

We are now ready to put all of the tools together to deploy your first fully-functional convolu-
tional neural network. In our first encounter with image data we applied a multilayer perceptron
(Section 4.2) to pictures of clothing in the Fashion-MNIST dataset. Each image in Fashion-MNIST
consisted of a two-dimensional 28× 28 matrix. To make this data amenable to multilayer percep-
trons which anticipate receiving inputs as one-dimensional fixed-length vectors, we first flattened
each image, yielding vectors of length 784, before processing them with a series of fully-connected
layers.

Now that we have introduced convolutional layers, we can keep the image in its original spatially-
organized grid, processing it with a series of successive convolutional layers. Moreover, because
we are using convolutional layers, we can enjoy a considerable savings in the number of param-
eters required.

In this section, we will introduce one of the first published convolutional neural networks whose
benefit was first demonstrated by Yann Lecun, then a researcher at AT&T Bell Labs, for the pur-
pose of recognizing handwritten digits in images—LeNet5102. In the 90s, their experiments with
LeNet gave the first compelling evidence that it was possible to train convolutional neural net-
works by backpropagation. Their model achieved outstanding results at the time (only matched
by Support Vector Machines at the time) and was adopted to recognize digits for processing de-
posits in ATM machines. Some ATMs still run the code that Yann and his colleague Leon Bottou
wrote in the 1990s!

102 http://yann.lecun.com/exdb/lenet/

250 Chapter 6. Convolutional Neural Networks

http://yann.lecun.com/exdb/lenet/

6.6.1 LeNet

In a rough sense, we can think LeNet as consisting of two parts: (i) a block of convolutional layers;
and (ii) a block of fully-connected layers. Before getting into the weeds, let s̓ briefly review the
model in Fig. 6.6.1.

Fig. 6.6.1: Data flow in LeNet 5. The input is a handwritten digit, the output a probabilitiy over 10
possible outcomes.

The basic units in the convolutional block are a convolutional layer and a subsequent average pool-
ing layer (note that max-pooling works better, but it had not been invented in the 90s yet). The
convolutional layer is used to recognize the spatial patterns in the image, such as lines and the
parts of objects, and the subsequent average pooling layer is used to reduce the dimensionality.
The convolutional layer block is composed of repeated stacks of these two basic units. Each con-
volutional layer uses a 5× 5 kernel and processes each output with a sigmoid activation function
(again, note that ReLUs are now known to work more reliably, but had not been invented yet). The
first convolutional layer has 6 output channels, and second convolutional layer increases channel
depth further to 16.

However, coinciding with this increase in the number of channels, the height and width are
shrunk considerably. Therefore, increasing the number of output channels makes the param-
eter sizes of the two convolutional layers similar. The two average pooling layers are of size 2× 2
and take stride 2 (note that this means they are non-overlapping). In other words, the pooling
layer downsamples the representation to be precisely one quarter the pre-pooling size.

The convolutional block emits an output with size given by (batch size, channel, height, width).
Before we can pass the convolutional block s̓ output to the fully-connected block, we must flatten
each example in the minibatch. In other words, we take this 4D input and transform it into the 2D
input expected by fully-connected layers: as a reminder, the first dimension indexes the examples
in the minibatch and the second gives the flat vector representation of each example. LeNet s̓ fully-
connected layer block has three fully-connected layers, with 120, 84, and 10 outputs, respectively.
Because we are still performing classification, the 10 dimensional output layer corresponds to the
number of possible output classes.

While getting to the point where you truly understand what is going on inside LeNet may have
taken a bit of work, you can see below that implementing it in a modern deep learning library is
remarkably simple. Again, we will rely on the Sequential class.

6.6. Convolutional Neural Networks (LeNet) 251

import d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()

net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='sigmoid'),

nn.AvgPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'),
nn.AvgPool2D(pool_size=2, strides=2),
Dense will transform the input of the shape (batch size, channel,
height, width) into the input of the shape (batch size,
channel * height * width) automatically by default
nn.Dense(120, activation='sigmoid'),
nn.Dense(84, activation='sigmoid'),
nn.Dense(10))

As compared to the original network, we took the liberty of replacing the Gaussian activation in
the last layer by a regular dense layer, which tends to be significantly more convenient to train.
Other than that, this network matches the historical definition of LeNet5.

Next, let s̓ take a look of an example. As shown in Fig. 6.6.2, we feed a single-channel example
of size 28 × 28 into the network and perform a forward computation layer by layer printing the
output shape at each layer to make sure we understand what is happening here.

X = np.random.uniform(size=(1, 1, 28, 28))
net.initialize()
for layer in net:

X = layer(X)
print(layer.name, 'output shape:\t', X.shape)

Note that the height and width of the representation at each layer throughout the convolutional
block is reduced (compared to the previous layer). The convolutional layer uses a kernel with a
height and width of 5, which with only 2 pixels of padding in the first convolutional layer and none
in the second convolutional layer leads to reductions in both height and width by 2 and 4 pixels,
respectively. Moreover each pooling layer halves the height and width. However, as we go up the
stack of layers, the number of channels increases layer-over-layer from 1 in the input to 6 after
the first convolutional layer and 16 after the second layer. Then, the fully-connected layer reduces
dimensionality layer by layer, until emitting an output that matches the number of image classes.

252 Chapter 6. Convolutional Neural Networks

Fig. 6.6.2: Compressed notation for LeNet5

6.6.2 Data Acquisition and Training

Now that we have implemented the model, we might as well run some experiments to see what
we can accomplish with the LeNet model. While it might serve nostalgia to train LeNet on the
original MNIST dataset, that dataset has become too easy, with MLPs getting over 98% accuracy,
so it would be hard to see the benefits of convolutional networks. Thus we will stick with Fashion-
MNIST as our dataset because while it has the same shape (28× 28 images), this dataset is notably
more challenging.

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

While convolutional networks may have few parameters, they can still be significantly more ex-
pensive to compute than a similarly deep multilayer perceptron so if you have access to a GPU,
this might be a good time to put it into action to speed up training.

For evaluation, we need to make a slight modification to the evaluate_accuracy function that we
described in Section 3.6. Since the full dataset lives on the CPU, we need to copy it to the GPU be-
fore we can compute our models. This is accomplished via the as_in_context function described
in Section 5.6.

Saved in the d2l package for later use
def evaluate_accuracy_gpu(net, data_iter, ctx=None):

if not ctx: # Query the first device the first parameter is on
ctx = list(net.collect_params().values())[0].list_ctx()[0]

metric = d2l.Accumulator(2) # num_corrected_examples, num_examples
for X, y in data_iter:

X, y = X.as_in_context(ctx), y.as_in_context(ctx)
metric.add(d2l.accuracy(net(X), y), y.size)

return metric[0]/metric[1]

6.6. Convolutional Neural Networks (LeNet) 253

We also need to update our training function to deal with GPUs. Unlike the train_epoch_ch3 de-
fined in Section 3.6, we now need to move each batch of data to our designated context (hopefully,
the GPU) prior to making the forward and backward passes.

The training function train_ch5 is also very similar to train_ch3 defined in Section 3.6. Since
we will deal with networks with tens of layers now, the function will only support Gluon models.
We initialize the model parameters on the device indicated by ctx, this time using the Xavier ini-
tializer. The loss function and the training algorithm still use the cross-entropy loss function and
minibatch stochastic gradient descent. Since each epoch takes tens of seconds to run, we visualize
the training loss in a finer granularity.

Saved in the d2l package for later use
def train_ch5(net, train_iter, test_iter, num_epochs, lr, ctx=d2l.try_gpu()):

net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(),

'sgd', {'learning_rate': lr})
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],

legend=['train loss', 'train acc', 'test acc'])
timer = d2l.Timer()
for epoch in range(num_epochs):

metric = d2l.Accumulator(3) # train_loss, train_acc, num_examples
for i, (X, y) in enumerate(train_iter):

timer.start()
Here is the only difference compared to train_epoch_ch3
X, y = X.as_in_context(ctx), y.as_in_context(ctx)
with autograd.record():

y_hat = net(X)
l = loss(y_hat, y)

l.backward()
trainer.step(X.shape[0])
metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_loss, train_acc = metric[0]/metric[2], metric[1]/metric[2]
if (i+1) % 50 == 0:

animator.add(epoch + i/len(train_iter),
(train_loss, train_acc, None))

test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch+1, (None, None, test_acc))

print('loss %.3f, train acc %.3f, test acc %.3f' % (
train_loss, train_acc, test_acc))

print('%.1f exampes/sec on %s' % (metric[2]*num_epochs/timer.sum(), ctx))

Now let s̓ train the model.

lr, num_epochs = 0.9, 10
train_ch5(net, train_iter, test_iter, num_epochs, lr)

254 Chapter 6. Convolutional Neural Networks

Summary

• A convolutional neural network (in short, ConvNet) is a network using convolutional layers.

• In a ConvNet we alternate between convolutions, nonlinearities and often also pooling op-
erations.

• Ultimately the resolution is reduced prior to emitting an output via one (or more) dense
layers.

• LeNet was the first successful deployment of such a network.

Exercises

1. Replace the average pooling with max pooling. What happens?

2. Try to construct a more complex network based on LeNet to improve its accuracy.

• Adjust the convolution window size.

• Adjust the number of output channels.

• Adjust the activation function (ReLU?).

• Adjust the number of convolution layers.

• Adjust the number of fully connected layers.

• Adjust the learning rates and other training details (initialization, epochs, etc.)

3. Try out the improved network on the original MNIST dataset.

4. Display the activations of the first and second layer of LeNet for different inputs (e.g.,
sweaters, coats).

6.6. Convolutional Neural Networks (LeNet) 255

256 Chapter 6. Convolutional Neural Networks

7 | Modern Convolutional Neural Net-
works

Now that we understand the basics of wiring together convolutional neural networks, we will take
you through a tour of modern deep learning. In this chapter, each section will correspond to a
significant neural network architecture that was at some point (or currently) the base model upon
which an enormous amount of research and projects were built. Each of these networks was at
briefly a dominant architecture and many were at one point winners or runners-up in the famous
ImageNet competition, which has served as a barometer of progress on supervised learning in
computer vision since 2010.

These models include AlexNet, the first large-scale network deployed to beat conventional com-
puter vision methods on a large-scale vision challenge; the VGG network, which makes use of a
number of repeating blocks of elements; the network in network (NiN) which convolves whole
neural networks patch-wise over inputs; the GoogLeNet, which makes use of networks with par-
allel concatenations (GoogLeNet); residual networks (ResNet) which are currently the most pop-
ular go-to architecture today, and densely connected networks (DenseNet), which are expensive
to compute but have set some recent benchmarks.

7.1 Deep Convolutional Neural Networks (AlexNet)

Although convolutional neural networks were well known in the computer vision and machine
learning communities following the introduction of LeNet, they did not immediately dominate
the field. Although LeNet achieved good results on early small datasets, the performance and
feasability of training convolutional networks on larger, more realistic datasets had yet to be es-
tablished In fact, for much of the intervening time between the early 1990s and the watershed
results of 2012, neural networks were often surpassed by other machine learning methods, such
as support vector machines.

For computer vision, this comparison is perhaps not fair. That is although the inputs to convolu-
tional networks consist of raw or lightly-processed (e.g., by centering) pixel values, practitioners
would never feed raw pixels into traditional models. Instead, typical computer vision pipelines
consisted of manually engineering feature extraction pipelines. Rather than learn the features, the
features were crafted. Most of the progress came from having more clever ideas for features, and
the learning algorithm was often relegated to an afterthought.

Although some neural network accelerators were available in the 1990s, they were not yet suf-
ficiently powerful to make deep multichannel, multilayer convolutional neural networks with a
large number of parameters. Moreover, datasets were still relatively small. Added to these obsta-
cles, key tricks for training neural networks including parameter initialization heuristics, clever

257

variants of stochastic gradient descent, non-squashing activation functions, and effective regular-
ization techniques were still missing.

Thus, rather than training end-to-end (pixel to classification) systems, classical pipelines looked
more like this:

1. Obtain an interesting dataset. In early days, these datasets required expensive sensors (at
the time, 1 megapixel images were state of the art).

2. Preprocess the dataset with hand-crafted features based on some knowledge of optics, geom-
etry, other analytic tools, and occasionally on the serendipitous discoveries of lucky gradu-
ate students.

3. Feed the data through a standard set of feature extractors such as SIFT104, the Scale-Invariant
Feature Transform, or SURF105, the Speeded-Up Robust Features, or any number of other
hand-tuned pipelines.

4. Dummp the resulting representations into your favorite classifier, likely a linear model or
kernel method, to learn a classifier.

If you spoke to machine learning researchers, they believed that machine learning was both im-
portant and beautiful. Elegant theories proved the properties of various classifiers. The field
of machine learning was thriving, rigorous and eminently useful. However, if you spoke to a
computer vision researcher, youd̓ hear a very different story. The dirty truth of image recog-
nition, they d̓ tell you, is that features, not learning algorithms, drove progress. Computer vi-
sion researchers justifiably believed that a slightly bigger or cleaner dataset or a slightly improved
feature-extraction pipeline mattered far more to the final accuracy than any learning algorithm.

7.1.1 Learning Feature Representation

Another way to cast the state of affairs is that the most important part of the pipeline was the rep-
resentation. And up until 2012 the representation was calculated mechanically. In fact, engineer-
ing a new set of feature functions, improving results, and writing up the method was a prominent
genre of paper. SIFT106, SURF107, HOG108, Bags of visual words109 and similar feature extractors
ruled the roost.

Another group of researchers, including Yann LeCun, Geoff Hinton, Yoshua Bengio, Andrew Ng,
Shun-ichi Amari, and Juergen Schmidhuber, had different plans. They believed that features
themselves ought to be learned. Moreover, they believed that to be reasonably complex, the fea-
tures ought to be hierarchically composed with multiple jointly learned layers, each with learn-
able parameters. In the case of an image, the lowest layers might come to detect edges, colors,
and textures. Indeed, (Krizhevsky et al., 2012) proposed a new variant of a convolutional neural
network which achieved excellent performance in the ImageNet challenge.

Interestingly in the lowest layers of the network, the model learned feature extractors that resem-
bled some traditional filters. Fig. 7.1.1 is reproduced from this paper and describes lower-level
image descriptors.

104 https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
105 https://en.wikipedia.org/wiki/Speeded_up_robust_features
106 https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
107 https://en.wikipedia.org/wiki/Speeded_up_robust_features
108 https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
109 https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision

258 Chapter 7. Modern Convolutional Neural Networks

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Speeded_up_robust_features
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Speeded_up_robust_features
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision

Fig. 7.1.1: Image filters learned by the first layer of AlexNet

Higher layers in the network might build upon these representations to represent larger struc-
tures, like eyes, noses, blades of grass, etc. Even higher layers might represent whole objects like
people, airplanes, dogs, or frisbees. Ultimately, the final hidden state learns a compact represen-
tation of the image that summarizes its contents such that data belonging to different categories
be separated easily.

While the ultimate breakthrough for many-layered convolutional networks came in 2012, a core
group of researchers had dedicated themselves to this idea, attempting to learn hierarchical rep-
resentations of visual data for many years. The ultimate breakthrough in 2012 can be attributed
to two key factors.

Missing Ingredient - Data

Deep models with many layers require large amounts of data in order to enter the regime where
they signficantly outperform traditional methods based on convex optimizations (e.g., linear and
kernel methods). However, given the limited storage capacity of computers, the relative expense
of sensors, and the comparatively tighter research budgets in the 1990s, most research relied on
tiny datasets. Numerous papers addressed the UCI collection of datasets, many of which contained
only hundreds or (a few) thousands of images captured in unnatural settings with low resolution.

In 2009, the ImageNet dataset was released, challenging researchers to learn models from 1 mil-
lion examples, 1,000 each from 1,000 distinct categories of objects. The researchers, led by Fei-Fei
Li, who introduced this dataset leveraged Google Image Search to prefilter large candidate sets for
each category and employed the Amazon Mechanical Turk crowdsourcing pipeline to confirm for
each image whether it belonged to the associated category. This scale was unprecedented. The
associated competition, dubbed the ImageNet Challenge pushed computer vision and machine
learning research forward, challenging researchers to identify which models performed best at a
greater scale than academics had previously considered.

7.1. Deep Convolutional Neural Networks (AlexNet) 259

Missing Ingredient - Hardware

Deep learning models are varacious consumers of compute cycles. Training can take hundreds
of epochs, and each iteration requires passing data through many layers of computationally-
expensive linear algebra operations. This is one of the main reasons why in the 90s and early 2000s,
simple algorithms based on the more-efficiently optimized convex objectives were preferred.

Graphical processing units (GPUs) proved to be a game changer in make deep learning feasible.
These chips had long been developed for accelerating graphics processing to benefit computer
games. In particular, they were optimized for high throughput 4x4 matrix-vector products, which
are needed for many computer graphics tasks. Fortunately, this math is strikingly similar to that
required to calculate convolutional layers. Around that time, NVIDIA and ATI had begun opti-
mizing GPUs for general compute operations, going as far as to market them as General Purpose
GPUs (GPGPU).

To provide some intuition, consider the cores of a modern microprocessor (CPU). Each of the cores
is fairly powerful running at a high clock frequency and sporting large caches (up to several MB
of L3). Each core is well-suited to executing a wide range of instructions, with branch predictors,
a deep pipeline, and other bells and whistles that enable it to run a large variety of programs. This
apparent strength, however, is also its Achilles heel: general purpose cores are very expensive
to build. They require lots of chip area, a sophisticated support structure (memory interfaces,
caching logic between cores, high speed interconnects, etc.), and they are comparatively bad at
any single task. Modern laptops have up to 4 cores, and even high end servers rarely exceed 64
cores, simply because it is not cost effective.

By comparison, GPUs consist of 100-1000 small processing elements (the details differ somewhat
between NVIDIA, ATI, ARM and other chip vendors), often grouped into larger groups (NVIDIA
calls them warps). While each core is relatively weak, sometimes even running at sub-1GHz clock
frequency, it is the total number of such cores that makes GPUs orders of magnitude faster than
CPUs. For instance, NVIDIA̓s latest Volta generation offers up to 120 TFlops per chip for spe-
cialized instructions (and up to 24 TFlops for more general purpose ones), while floating point
performance of CPUs has not exceeded 1 TFlop to date. The reason for why this is possible is ac-
tually quite simple: first, power consumption tends to grow quadratically with clock frequency.
Hence, for the power budget of a CPU core that runs 4x faster (a typical number), you can use
16 GPU cores at 1/4 the speed, which yields 16 x 1/4 = 4x the performance. Furthermore, GPU
cores are much simpler (in fact, for a long time they werenʼt even able to execute general purpose
code), which makes them more energy efficient. Last, many operations in deep learning require
high memory bandwidth. Again, GPUs shine here with buses that are at least 10x as wide as many
CPUs.

Back to 2012. A major breakthrough came when Alex Krizhevsky and Ilya Sutskever implemented
a deep convolutional neural network that could run on GPU hardware. They realized that the
computational bottlenecks in CNNs (convolutions and matrix multiplications) are all operations
that could be parallelized in hardware. Using two NIVIDA GTX 580s with 3GB of memory, they
implemented fast convolutions. The code cuda-convnet110 was good enough that for several years
it was the industry standard and powered the first couple years of the deep learning boom.

110 https://code.google.com/archive/p/cuda-convnet/

260 Chapter 7. Modern Convolutional Neural Networks

https://code.google.com/archive/p/cuda-convnet/

7.1.2 AlexNet

AlexNet was introduced in 2012, named after Alex Krizhevsky, the first author of the breakthrough
ImageNet classification paper (Krizhevsky et al., 2012). AlexNet, which employed an 8-layer con-
volutional neural network, won the ImageNet Large Scale Visual Recognition Challenge 2012 by a
phenomenally large margin. This network proved, for the first time, that the features obtained by
learning can transcend manually-design features, breaking the previous paradigm in computer
vision. The architectures of AlexNet and LeNet are very similar, as Fig. 7.1.2 illustrates. Note that
we provide a slightly streamlined version of AlexNet removing some of the design quirks that were
needed in 2012 to make the model fit on two small GPUs.

Fig. 7.1.2: LeNet (left) and AlexNet (right)

The design philosophies of AlexNet and LeNet are very similar, but there are also significant dif-
ferences. First, AlexNet is much deeper than the comparatively small LeNet5. AlexNet consists of
eight layers: five convolutional layers, two fully-connected hidden layers, and one fully-connected
output layer. Second, AlexNet used the ReLU instead of the sigmoid as its activation function. Let s̓
delve into the details below.

7.1. Deep Convolutional Neural Networks (AlexNet) 261

Architecture

In AlexNet s̓ first layer, the convolution window shape is 11× 11. Since most images in ImageNet
are more than ten times higher and wider than the MNIST images, objects in ImageNet data tend
to occupy more pixels. Consequently, a larger convolution window is needed to capture the object.
The convolution window shape in the second layer is reduced to 5×5, followed by 3×3. In addition,
after the first, second, and fifth convolutional layers, the network adds maximum pooling layers
with a window shape of 3×3 and a stride of 2. Moreover, AlexNet has ten times more convolution
channels than LeNet.

After the last convolutional layer are two fully-connected layers with 4096 outputs. These two huge
fully-connected layers produce model parameters of nearly 1 GB. Due to the limited memory in
early GPUs, the original AlexNet used a dual data stream design, so that each of their two GPUs
could be responsible for storing and computing only its half of the model. Fortunately, GPU mem-
ory is comparatively abundant now, so we rarely need to break up models across GPUs these days
(our version of the AlexNet model deviates from the original paper in this aspect).

Activation Functions

Second, AlexNet changed the sigmoid activation function to a simpler ReLU activation function.
On the one hand, the computation of the ReLU activation function is simpler. For example, it does
not have the exponentiation operation found in the sigmoid activation function. On the other
hand, the ReLU activation function makes model training easier when using different parameter
initialization methods. This is because, when the output of the sigmoid activation function is very
close to 0 or 1, the gradient of these regions is almost 0, so that back propagation cannot continue
to update some of the model parameters. In contrast, the gradient of the ReLU activation function
in the positive interval is always 1. Therefore, if the model parameters are not properly initialized,
the sigmoid function may obtain a gradient of almost 0 in the positive interval, so that the model
cannot be effectively trained.

Capacity Control and Preprocessing

AlexNet controls the model complexity of the fully-connected layer by dropout (Section 4.6), while
LeNet only uses weight decay. To augment the data even further, the training loop of AlexNet
added a great deal of image augmentation, such as flipping, clipping, and color changes. This
makes the model more robust and the larger sample size effectively reduces overfitting. We will
discuss data augmentation in greater detail in Section 13.1.

import d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

net = nn.Sequential()
Here, we use a larger 11 x 11 window to capture objects. At the same time,
we use a stride of 4 to greatly reduce the height and width of the output.
Here, the number of output channels is much larger than that in LeNet
net.add(nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),

nn.MaxPool2D(pool_size=3, strides=2),
Make the convolution window smaller, set padding to 2 for consistent

(continues on next page)

262 Chapter 7. Modern Convolutional Neural Networks

(continued from previous page)

height and width across the input and output, and increase the
number of output channels
nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
Use three successive convolutional layers and a smaller convolution
window. Except for the final convolutional layer, the number of
output channels is further increased. Pooling layers are not used to
reduce the height and width of input after the first two
convolutional layers
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2),
Here, the number of outputs of the fully connected layer is several
times larger than that in LeNet. Use the dropout layer to mitigate
overfitting
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
Output layer. Since we are using Fashion-MNIST, the number of
classes is 10, instead of 1000 as in the paper
nn.Dense(10))

We construct a single-channel data instance with both height and width of 224 to observe the out-
put shape of each layer. It matches our diagram above.

X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:

X = layer(X)
print(layer.name, 'output shape:\t', X.shape)

conv0 output shape: (1, 96, 54, 54)
pool0 output shape: (1, 96, 26, 26)
conv1 output shape: (1, 256, 26, 26)
pool1 output shape: (1, 256, 12, 12)
conv2 output shape: (1, 384, 12, 12)
conv3 output shape: (1, 384, 12, 12)
conv4 output shape: (1, 256, 12, 12)
pool2 output shape: (1, 256, 5, 5)
dense0 output shape: (1, 4096)
dropout0 output shape: (1, 4096)
dense1 output shape: (1, 4096)
dropout1 output shape: (1, 4096)
dense2 output shape: (1, 10)

7.1. Deep Convolutional Neural Networks (AlexNet) 263

7.1.3 Reading the Dataset

Although AlexNet uses ImageNet in the paper, we use Fashion-MNIST here since training an Ima-
geNet model to convergence could take hours or days even on a modern GPU. One of the problems
with applying AlexNet directly on Fashion-MNIST is that our images are lower resolution (28× 28
pixels) than ImageNet images. To make things work, we upsample them to 244 × 244 (generally
not a smart practice, but we do it here to be faithful to the AlexNet architecture). We perform this
resizing with the resize argument in load_data_fashion_mnist.

batch_size = 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)

7.1.4 Training

Now, we can start training AlexNet. Compared to LeNet in the previous section, the main change
here is the use of a smaller learning rate and much slower training due to the deeper and wider
network, the higher image resolution and the more costly convolutions.

lr, num_epochs = 0.01, 10
d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

loss 0.333, train acc 0.879, test acc 0.891
4206.3 exampes/sec on gpu(0)

Summary

• AlexNet has a similar structure to that of LeNet, but uses more convolutional layers and a
larger parameter space to fit the large-scale dataset ImageNet.

• Today AlexNet has been surpassed by much more effective architectures but it is a key step
from shallow to deep networks that are used nowadays.

• Although it seems that there are only a few more lines in AlexNet s̓ implementation than in
LeNet, it took the academic community many years to embrace this conceptual change and

264 Chapter 7. Modern Convolutional Neural Networks

take advantage of its excellent experimental results. This was also due to the lack of efficient
computational tools.

• Dropout, ReLU and preprocessing were the other key steps in achieving excellent perfor-
mance in computer vision tasks.

Exercises

1. Try increasing the number of epochs. Compared with LeNet, how are the results different?
Why?

2. AlexNet may be too complex for the Fashion-MNIST dataset.

• Try to simplify the model to make the training faster, while ensuring that the accuracy
does not drop significantly.

• Can you design a better model that works directly on 28× 28 images.

3. Modify the batch size, and observe the changes in accuracy and GPU memory.

4. Rooflines:

• What is the dominant part for the memory footprint of AlexNet?

• What is the dominant part for computation in AlexNet?

• How about memory bandwidth when computing the results?

5. Apply dropout and ReLU to LeNet5. Does it improve? How about preprocessing?

7.2 Networks Using Blocks (VGG)

While AlexNet proved that deep convolutional neural networks can achieve good results, it did
not offer a general template to guide subsequent researchers in designing new networks. In the
following sections, we will introduce several heuristic concepts commonly used to design deep
networks.

Progress in this field mirrors that in chip design where engineers went from placing transistors to
logical elements to logic blocks. Similarly, the design of neural network architectures had grown
progressively more abstract, with researchers moving from thinking in terms of individual neu-
rons to whole layers, and now to blocks, repeating patterns of layers.

The idea of using blocks first emerged from the Visual Geometry Group112 (VGG) at Oxford Univer-
sity. In their eponymously-named VGG network, It is easy to implement these repeated structures
in code with any modern deep learning framework by using loops and subroutines.

112 http://www.robots.ox.ac.uk/~vgg/

7.2. Networks Using Blocks (VGG) 265

http://www.robots.ox.ac.uk/~vgg/

7.2.1 VGG Blocks

The basic building block of classic convolutional networks is a sequence of the following layers: (i)
a convolutional layer (with padding to maintain the resolution), (ii) a nonlinearity such as a ReLU,
One VGG block consists of a sequence of convolutional layers, followed by a max pooling layer
for spatial downsampling. In the original VGG paper (Simonyan & Zisserman, 2014), the authors
employed convolutions with 3× 3 kernels and 2× 2 max pooling with stride of 2 (halving the res-
olution after each block). In the code below, we define a function called vgg_block to implement
one VGG block. The function takes two arguments corresponding to the number of convolutional
layers num_convs and the number of output channels num_channels.

import d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

def vgg_block(num_convs, num_channels):
blk = nn.Sequential()
for _ in range(num_convs):

blk.add(nn.Conv2D(num_channels, kernel_size=3,
padding=1, activation='relu'))

blk.add(nn.MaxPool2D(pool_size=2, strides=2))
return blk

7.2.2 VGG Network

Like AlexNet and LeNet, the VGG Network can be partitioned into two parts: the first consisting
mostly of convolutional and pooling layers and a second consisting of fully-connected layers. The
convolutional portion of the net connects several vgg_block modules in succession. In Fig. 7.2.1,
the variable conv_arch consists of a list of tuples (one per block), where each contains two values:
the number of convolutional layers and the number of output channels, which are precisely the
arguments requires to call the vgg_block function. The fully-connected module is identical to that
covered in AlexNet.

266 Chapter 7. Modern Convolutional Neural Networks

Fig. 7.2.1: Designing a network from building blocks

The original VGG network had 5 convolutional blocks, among which the first two have one convo-
lutional layer each and the latter three contain two convolutional layers each. The first block has
64 output channels and each subsequent block doubles the number of output channels, until that
number reaches 512. Since this network uses 8 convolutional layers and 3 fully-connected layers,
it is often called VGG-11.

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

The following code implements VGG-11. This is a simple matter of executing a for loop over
conv_arch.

def vgg(conv_arch):
net = nn.Sequential()
The convolutional layer part
for (num_convs, num_channels) in conv_arch:

net.add(vgg_block(num_convs, num_channels))
The fully connected layer part
net.add(nn.Dense(4096, activation='relu'), nn.Dropout(0.5),

nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
nn.Dense(10))

return net

net = vgg(conv_arch)

Next, we will construct a single-channel data example with a height and width of 224 to observe
the output shape of each layer.

net.initialize()
X = np.random.uniform(size=(1, 1, 224, 224))
for blk in net:

(continues on next page)

7.2. Networks Using Blocks (VGG) 267

(continued from previous page)

X = blk(X)
print(blk.name, 'output shape:\t', X.shape)

sequential1 output shape: (1, 64, 112, 112)
sequential2 output shape: (1, 128, 56, 56)
sequential3 output shape: (1, 256, 28, 28)
sequential4 output shape: (1, 512, 14, 14)
sequential5 output shape: (1, 512, 7, 7)
dense0 output shape: (1, 4096)
dropout0 output shape: (1, 4096)
dense1 output shape: (1, 4096)
dropout1 output shape: (1, 4096)
dense2 output shape: (1, 10)

As you can see, we halve height and width at each block, finally reaching a height and width of 7
before flattening the representations for processing by the fully-connected layer.

7.2.3 Model Training

Since VGG-11 is more computationally-heavy than AlexNet we construct a network with a smaller
number of channels. This is more than sufficient for training on Fashion-MNIST.

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

Apart from using a slightly larger learning rate, the model training process is similar to that of
AlexNet in the last section.

lr, num_epochs, batch_size = 0.05, 10, 128,
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

loss 0.186, train acc 0.931, test acc 0.925
1815.7 exampes/sec on gpu(0)

268 Chapter 7. Modern Convolutional Neural Networks

Summary

• VGG-11 constructs a network using reusable convolutional blocks. Different VGG models can
be defined by the differences in the number of convolutional layers and output channels in
each block.

• The use of blocks leads to very compact representations of the network definition. It allows
for efficient design of complex networks.

• In their work Simonyan and Ziserman experimented with various architectures. In partic-
ular, they found that several layers of deep and narrow convolutions (i.e., 3× 3) were more
effective than fewer layers of wider convolutions.

Exercises

1. When printing out the dimensions of the layers we only saw 8 results rather than 11. Where
did the remaining 3 layer informations go?

2. Compared with AlexNet, VGG is much slower in terms of computation, and it also needs
more GPU memory. Try to analyze the reasons for this.

3. Try to change the height and width of the images in Fashion-MNIST from 224 to 96. What
influence does this have on the experiments?

4. Refer to Table 1 in (Simonyan & Zisserman, 2014) to construct other common models, such
as VGG-16 or VGG-19.

7.3 Network in Network (NiN)

LeNet, AlexNet, and VGG all share a common design pattern: extract features exploiting spatial
structure via a sequence of convolutions and pooling layers and then post-process the representa-
tions via fully-connected layers. The improvements upon LeNet by AlexNet and VGG mainly lie in
how these later networks widen and deepen these two modules. Alternatively, one could imagine
using fully-connected layers earlier in the process. However, a careless use of dense layers might
give up the spatial structure of the representation entirely, Network in Network (NiN) blocks offer
an alternative. They were proposed in (Lin et al., 2013) based on a very simple insight—to use an
MLP on the channels for each pixel separately.

7.3. Network in Network (NiN) 269

7.3.1 NiN Blocks

Recall that the inputs and outputs of convolutional layers consist of four-dimensional arrays with
axes corresponding to the batch, channel, height, and width. Also recall that the inputs and out-
puts of fully-connected layers are typically two-dimensional arrays corresponding to the batch,
and features. The idea behind NiN is to apply a fully-connected layer at each pixel location (for
each height and width). If we tie the weights across each spatial location, we could think of this
as a 1× 1 convolutional layer (as described in Section 6.4) or as a fully-connected layer acting in-
dependently on each pixel location. Another way to view this is to think of each element in the
spatial dimension (height and width) as equivalent to an example and the channel as equivalent
to a feature. Fig. 7.3.1 illustrates the main structural differences between NiN and AlexNet, VGG,
and other networks.

Fig. 7.3.1: The figure on the left shows the network structure of AlexNet and VGG, and the figure
on the right shows the network structure of NiN.

The NiN block consists of one convolutional layer followed by two 1× 1 convolutional layers that
act as per-pixel fully-connected layers with ReLU activations. The convolution width of the first
layer is typically set by the user. The subsequent widths are fixed to 1× 1.

import d2l
from mxnet import np, npx
from mxnet.gluon import nn

(continues on next page)

270 Chapter 7. Modern Convolutional Neural Networks

(continued from previous page)

npx.set_np()

def nin_block(num_channels, kernel_size, strides, padding):
blk = nn.Sequential()
blk.add(nn.Conv2D(num_channels, kernel_size, strides, padding,

activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
nn.Conv2D(num_channels, kernel_size=1, activation='relu'))

return blk

7.3.2 NiN Model

The original NiN network was proposed shortly after AlexNet and clearly draws some inspiration.
NiN uses convolutional layers with window shapes of 11×11, 5×5, and 3×3, and the corresponding
numbers of output channels are the same as in AlexNet. Each NiN block is followed by a maximum
pooling layer with a stride of 2 and a window shape of 3× 3.

Once significant difference between NiN and AlexNet is that NiN avoids dense connections alto-
gether. Instead, NiN uses an NiN block with a number of output channels equal to the number
of label classes, followed by a global average pooling layer, yielding a vector of logits114. One ad-
vantage of NiN s̓ design is that it significantly reduces the number of required model parameters.
However, in practice, this design sometimes requires increased model training time.

net = nn.Sequential()
net.add(nin_block(96, kernel_size=11, strides=4, padding=0),

nn.MaxPool2D(pool_size=3, strides=2),
nin_block(256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2D(pool_size=3, strides=2),
nin_block(384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2D(pool_size=3, strides=2),
nn.Dropout(0.5),
There are 10 label classes
nin_block(10, kernel_size=3, strides=1, padding=1),
The global average pooling layer automatically sets the window shape
to the height and width of the input
nn.GlobalAvgPool2D(),
Transform the four-dimensional output into two-dimensional output
with a shape of (batch size, 10)
nn.Flatten())

We create a data example to see the output shape of each block.

X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:

X = layer(X)
print(layer.name, 'output shape:\t', X.shape)

114 https://en.wikipedia.org/wiki/Logit

7.3. Network in Network (NiN) 271

https://en.wikipedia.org/wiki/Logit

sequential1 output shape: (1, 96, 54, 54)
pool0 output shape: (1, 96, 26, 26)
sequential2 output shape: (1, 256, 26, 26)
pool1 output shape: (1, 256, 12, 12)
sequential3 output shape: (1, 384, 12, 12)
pool2 output shape: (1, 384, 5, 5)
dropout0 output shape: (1, 384, 5, 5)
sequential4 output shape: (1, 10, 5, 5)
pool3 output shape: (1, 10, 1, 1)
flatten0 output shape: (1, 10)

7.3.3 Data Acquisition and Training

As before we use Fashion-MNIST to train the model. NiN s̓ training is similar to that for AlexNet
and VGG, but it often uses a larger learning rate.

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

loss 0.657, train acc 0.744, test acc 0.762
3024.6 exampes/sec on gpu(0)

Summary

• NiN uses blocks consisting of a convolutional layer and multiple 1 × 1 convolutional layer.
This can be used within the convolutional stack to allow for more per-pixel nonlinearity.

• NiN removes the fully connected layers and replaces them with global average pooling (i.e.,
summing over all locations) after reducing the number of channels to the desired number
of outputs (e.g., 10 for Fashion-MNIST).

• Removing the dense layers reduces overfitting. NiN has dramatically fewer parameters.

• The NiN design influenced many subsequent convolutional neural networks designs.

272 Chapter 7. Modern Convolutional Neural Networks

Exercises

1. Tune the hyper-parameters to improve the classification accuracy.

2. Why are there two 1 × 1 convolutional layers in the NiN block? Remove one of them, and
then observe and analyze the experimental phenomena.

3. Calculate the resource usage for NiN

• What is the number of parameters?

• What is the amount of computation?

• What is the amount of memory needed during training?

• What is the amount of memory needed during inference?

4. What are possible problems with reducing the 384 × 5 × 5 representation to a 10 × 5 × 5
representation in one step?

7.4 Networks with Parallel Concatenations (GoogLeNet)

In 2014, (Szegedy et al., 2015) won the ImageNet Challenge, proposing a structure that combined
the strengths of the NiN and repeated blocks paradigms. One focus of the paper was to address
the question of which sized convolutional kernels are best. After all, previous popular networks
employed choices as small as 1×1 and as large as 11×11. One insight in this paper was that some-
times it can be advantageous to employ a combination of variously-sized kernels. In this section,
we will introduce GoogLeNet, presenting a slightly simplified version of the original model—we
omit a few ad hoc features that were added to stabilize training but are unnecessary now with
better training algorithms available.

7.4.1 Inception Blocks

The basic convolutional block in GoogLeNet is called an Inception block, likely named due to a
quote from the movie Inception (“We Need To Go Deeper”), which launched a viral meme.

Fig. 7.4.1: Structure of the Inception block.

7.4. Networks with Parallel Concatenations (GoogLeNet) 273

As depicted in the figure above, the inception block consists of four parallel paths. The first three
paths use convolutional layers with window sizes of 1× 1, 3× 3, and 5× 5 to extract information
from different spatial sizes. The middle two paths perform a 1 × 1 convolution on the input to
reduce the number of input channels, reducing the model s̓ complexity. The fourth path uses a
3 × 3 maximum pooling layer, followed by a 1 × 1 convolutional layer to change the number of
channels. The four paths all use appropriate padding to give the input and output the same height
and width. Finally, the outputs along each path are concatenated along the channel dimension
and comprise the block s̓ output. The commonly-tuned parameters of the Inception block are the
number of output channels per layer.

import d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

class Inception(nn.Block):
c1 - c4 are the number of output channels for each layer in the path
def __init__(self, c1, c2, c3, c4, **kwargs):

super(Inception, self).__init__(**kwargs)
Path 1 is a single 1 x 1 convolutional layer
self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
Path 2 is a 1 x 1 convolutional layer followed by a 3 x 3
convolutional layer
self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1,

activation='relu')
Path 3 is a 1 x 1 convolutional layer followed by a 5 x 5
convolutional layer
self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2,

activation='relu')
Path 4 is a 3 x 3 maximum pooling layer followed by a 1 x 1
convolutional layer
self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')

def forward(self, x):
p1 = self.p1_1(x)
p2 = self.p2_2(self.p2_1(x))
p3 = self.p3_2(self.p3_1(x))
p4 = self.p4_2(self.p4_1(x))
Concatenate the outputs on the channel dimension
return np.concatenate((p1, p2, p3, p4), axis=1)

To gain some intuition for why this network works so well, consider the combination of the filters.
They explore the image in varying ranges. This means that details at different extents can be
recognized efficiently by different filters. At the same time, we can allocate different amounts of
parameters for different ranges (e.g., more for short range but not ignore the long range entirely).

274 Chapter 7. Modern Convolutional Neural Networks

7.4.2 GoogLeNet Model

As shown in Fig. 7.4.2, GoogLeNet uses a stack of a total of 9 inception blocks and global aver-
age pooling to generate its estimates. Maximum pooling between inception blocks reduced the
dimensionality. The first part is identical to AlexNet and LeNet, the stack of blocks is inherited
from VGG and the global average pooling avoids a stack of fully-connected layers at the end. The
architecture is depicted below.

Fig. 7.4.2: Full GoogLeNet Model

We can now implement GoogLeNet piece by piece. The first component uses a 64-channel 7×7
convolutional layer.

b1 = nn.Sequential()
b1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'),

nn.MaxPool2D(pool_size=3, strides=2, padding=1))

The second component uses two convolutional layers: first, a 64-channel 1×1 convolutional layer,
then a 3×3 convolutional layer that triples the number of channels. This corresponds to the second
path in the Inception block.

b2 = nn.Sequential()
b2.add(nn.Conv2D(64, kernel_size=1, activation='relu'),

nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

7.4. Networks with Parallel Concatenations (GoogLeNet) 275

The third component connects two complete Inception blocks in series. The number of output
channels of the first Inception block is 64 + 128 + 32 + 32 = 256, and the ratio to the output
channels of the four paths is 64 : 128 : 32 : 32 = 2 : 4 : 1 : 1. The second and third paths first
reduce the number of input channels to 96/192 = 1/2 and 16/192 = 1/12, respectively, and then
connect the second convolutional layer. The number of output channels of the second Inception
block is increased to 128 + 192 + 96 + 64 = 480, and the ratio to the number of output channels
per path is 128 : 192 : 96 : 64 = 4 : 6 : 3 : 2. The second and third paths first reduce the number of
input channels to 128/256 = 1/2 and 32/256 = 1/8, respectively.

b3 = nn.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32),

Inception(128, (128, 192), (32, 96), 64),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

The fourth block is more complicated. It connects five Inception blocks in series, and they have
192+208+48+64 = 512, 160+224+64+64 = 512, 128+256+64+64 = 512, 112+288+64+64 = 528,
and 256+320+128+128 = 832 output channels, respectively. The number of channels assigned to
these paths is similar to that in the third module: the second path with the 3×3 convolutional layer
outputs the largest number of channels, followed by the first path with only the 1×1 convolutional
layer, the third path with the 5×5 convolutional layer, and the fourth path with the 3×3 maximum
pooling layer. The second and third paths will first reduce the number of channels according the
ratio. These ratios are slightly different in different Inception blocks.

b4 = nn.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64),

Inception(160, (112, 224), (24, 64), 64),
Inception(128, (128, 256), (24, 64), 64),
Inception(112, (144, 288), (32, 64), 64),
Inception(256, (160, 320), (32, 128), 128),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

The fifth block has two Inception blocks with 256+320+128+128 = 832 and 384+384+128+128 =
1024 output channels. The number of channels assigned to each path is the same as that in the
third and fourth modules, but differs in specific values. It should be noted that the fifth block is
followed by the output layer. This block uses the global average pooling layer to change the height
and width of each channel to 1, just as in NiN. Finally, we turn the output into a two-dimensional
array followed by a fully-connected layer whose number of outputs is the number of label classes.

b5 = nn.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128),

Inception(384, (192, 384), (48, 128), 128),
nn.GlobalAvgPool2D())

net = nn.Sequential()
net.add(b1, b2, b3, b4, b5, nn.Dense(10))

The GoogLeNet model is computationally complex, so it is not as easy to modify the number of
channels as in VGG. To have a reasonable training time on Fashion-MNIST, we reduce the input
height and width from 224 to 96. This simplifies the computation. The changes in the shape of the
output between the various modules is demonstrated below.

276 Chapter 7. Modern Convolutional Neural Networks

X = np.random.uniform(size=(1, 1, 96, 96))
net.initialize()
for layer in net:

X = layer(X)
print(layer.name, 'output shape:\t', X.shape)

sequential0 output shape: (1, 64, 24, 24)
sequential1 output shape: (1, 192, 12, 12)
sequential2 output shape: (1, 480, 6, 6)
sequential3 output shape: (1, 832, 3, 3)
sequential4 output shape: (1, 1024, 1, 1)
dense0 output shape: (1, 10)

7.4.3 Data Acquisition and Training

As before, we train our model using the Fashion-MNIST dataset. We transform it to 96 × 96 pixel
resolution before invoking the training procedure.

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

loss 0.648, train acc 0.770, test acc 0.835
2525.2 exampes/sec on gpu(0)

Summary

• The Inception block is equivalent to a subnetwork with four paths. It extracts information
in parallel through convolutional layers of different window shapes and maximum pooling
layers. 1× 1 convolutions reduce channel dimensionality on a per-pixel level. Max-pooling
reduces the resolution.

• GoogLeNet connects multiple well-designed Inception blocks with other layers in series.
The ratio of the number of channels assigned in the Inception block is obtained through a
large number of experiments on the ImageNet dataset.

7.4. Networks with Parallel Concatenations (GoogLeNet) 277

• GoogLeNet, as well as its succeeding versions, was one of the most efficient models on Im-
ageNet, providing similar test accuracy with lower computational complexity.

Exercises

1. There are several iterations of GoogLeNet. Try to implement and run them. Some of them
include the following:

• Add a batch normalization layer (Ioffe & Szegedy, 2015), as described later in Section
7.5.

• Make adjustments to the Inception block (Szegedy et al., 2016).

• Use “label smoothing” for model regularization (Szegedy et al., 2016).

• Include it in the residual connection (Szegedy et al., 2017), as described later in Section
7.6.

2. What is the minimum image size for GoogLeNet to work?

3. Compare the model parameter sizes of AlexNet, VGG, and NiN with GoogLeNet. How do the
latter two network architectures significantly reduce the model parameter size?

4. Why do we need a large range convolution initially?

7.5 Batch Normalization

Training deep neural nets is difficult. And getting them to converge in a reasonable amount of
time can be tricky.
In this section, we describe batch normalization (BN) (Ioffe & Szegedy, 2015), a popular and
effective technique that consistently accelerates the convergence of deep nets. Together with
residual blocks—covered in Section 7.6—BN has made it possible for practitioners to routinely
train networks with over 100 layers.

7.5.1 Training Deep Networks

To motivate batch normalization, let s̓ review a few practical challenges that arise when training
ML models and neural nets in particular.

1. Choices regarding data preprocessing often make an enormous difference in the final re-
sults. Recall our application of multilayer perceptrons to predicting house prices (Section
4.10). Our first step when working with real data was to standardize our input features to
each have a mean of zero and variance of one. Intuitively, this standardization plays nicely
with our optimizers because it puts the parameters are a-priori at a similar scale.

2. For a typical MLP or CNN, as we train, the activations in intermediate layers may take values
with widely varying magnitudes—both along the layers from the input to the output, across

278 Chapter 7. Modern Convolutional Neural Networks

nodes in the same layer, and over time due to our updates to the model s̓ parameters. The
inventors of batch normalization postulated informally that this drift in the distribution of
activations could hamper the convergence of the network. Intuitively, we might conjecture
that if one layer has activation values that are 100x that of another layer, this might necessi-
tate compensatory adjustments in the learning rates.

3. Deeper networks are complex and easily capable of overfitting. This means that regulariza-
tion becomes more critical.

Batch normalization is applied to individual layers (optionally, to all of them) and works as
follows: In each training iteration, for each layer, we first compute its activations as usual. Then,
we normalize the activations of each node by subtracting its mean and dividing by its standard
deviation estimating both quantities based on the statistics of the current the current minibatch.
It is precisely due to this normalization based on batch statistics that batch normalization derives
its name.

Note that if we tried to apply BN with minibatches of size 1, we would not be able to learn anything.
That is because after subtracting the means, each hidden node would take value 0! As you might
guess, since we are devoting a whole section to BN, with large enough minibatches, the approach
proves effective and stable. One takeaway here is that when applying BN, the choice of minibatch
size may be even more significant than without BN.

Formally, BN transforms the activations at a given layer x according to the following expression:

BN(x) = γ ⊙ x− µ̂

σ̂
+ β (7.5.1)

Here, µ̂ is the minibatch sample mean and σ̂ is the minibatch sample variance. After applying BN,
the resulting minibatch of activations has zero mean and unit variance. Because the choice of unit
variance (vs some other magic number) is an arbitrary choice, we commonly include coordinate-
wise scaling coefficients γ and offsetsβ. Consequently, the activation magnitudes for intermediate
layers cannot diverge during training because BN actively centers and rescales them back to a
given mean and size (via µ and σ). One piece of practitioner s̓ intuition/wisdom is that BN seems
to allows for more aggressive learning rates.

Formally, denoting a particular minibatch by B, we calculate µ̂B and σ̂B as follows:

µ̂B ←
1

|B|
∑
x∈B

x and σ̂2
B ←

1

|B|
∑
x∈B

(x− µB)
2 + ϵ (7.5.2)

Note that we add a small constant ϵ > 0 to the variance estimate to ensure that we never attempt
division by zero, even in cases where the empirical variance estimate might vanish. The estimates
µ̂B and σ̂B counteract the scaling issue by using noisy estimates of mean and variance. You might
think that this noisiness should be a problem. As it turns out, this is actually beneficial.

This turns out to be a recurring theme in deep learning. For reasons that are not yet well-
characterized theoretically, various sources of noise in optimization often lead to faster training
and less overfitting. While traditional machine learning theorists might buckle at this character-
ization, this variation appears to act as a form of regularization. In some preliminary research,
(Teye et al., 2018) and (Luo et al., 2018) relate the properties of BN to Bayesian Priors and penalties
respectively. In particular, this sheds some light on the puzzle of why BN works best for moderate
minibatches sizes in the 50–100 range.

7.5. Batch Normalization 279

Fixing a trained model, you might (rightly) think that we would prefer to use the entire dataset to
estimate the mean and variance. Once training is complete, why would we want the same image
to be classified differently, depending on the batch in which it happens to reside? During training,
such exact calculation is infeasible because the activations for all data points change every time we
update our model. However, once the model is trained, we can calculate the means and variances
of each layer s̓ activations based on the entire dataset. Indeed this is standard practice for models
employing batch normalization and thus MXNet s̓ BN layers function differently in training mode
(normalizing by minibatch statistics) and in prediction mode (normalizing by dataset statistics).

We are now ready to take a look at how batch normalization works in practice.

7.5.2 Batch Normalization Layers

Batch normalization implementations for fully-connected layers and convolutional layers are
slightly different. We discuss both cases below. Recall that one key differences between BN and
other layers is that because BN operates on a full minibatch at a time, we cannot just ignore the
batch dimension as we did before when introducing other layers.

Fully-Connected Layers

When applying BN to fully-connected layers, we usually insert BN after the affine transforma-
tion and before the nonlinear activation function. Denoting the input to the layer by x, the linear
transform (with weights θ) by fθ(·), the activation function by ϕ(·), and the BN operation with
parameters β and γ by BNβ,γ, we can express the computation of a BN-enabled, fully-connected
layer h as follows:

h = ϕ(BNβ,γ(fθ(x))) (7.5.3)

Recall that mean and variance are computed on the same minibatchB on which the transformation
is applied. Also recall that the scaling coefficient γ and the offset β are parameters that need to be
learned jointly with the more familiar parameters θ.

Convolutional Layers

Similarly, with convolutional layers, we typically apply BN after the convolution and before the
nonlinear activation function. When the convolution has multiple output channels, we need to
carry out batch normalization for each of the outputs of these channels, and each channel has its
own scale and shift parameters, both of which are scalars. Assume that our minibatches contain
m each and that for each channel, the output of the convolution has height p and width q. For
convolutional layers, we carry out each batch normalization over the m · p · q elements per output
channel simultaneously. Thus we collect the values over all spatial locations when computing the
mean and variance and consequently (within a given channel) apply the same µ̂ and σ̂ to normalize
the values at each spatial location.

280 Chapter 7. Modern Convolutional Neural Networks

Batch Normalization During Prediction

As we mentioned earlier, BN typically behaves differently in training mode and prediction mode.
First, the noise in µ and σ arising from estimating each on minibatches are no longer desirable
once we have trained the model. Second, we might not have the luxury of computing per-batch
normalization statistics, e.g., we might need to apply our model to make one prediction at a time.

Typically, after training, we use the entire dataset to compute stable estimates of the activation
statistics and then fix them at prediction time. Consequently, BN behaves differently during train-
ing and at test time. Recall that dropout also exhibits this characteristic.

7.5.3 Implementation from Scratch

Below, we implement a batch normalization layer with ndarrays from scratch:

import d2l
from mxnet import autograd, np, npx, init
from mxnet.gluon import nn
npx.set_np()

def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
Use autograd to determine whether the current mode is training mode or
prediction mode
if not autograd.is_training():

If it is the prediction mode, directly use the mean and variance
obtained from the incoming moving average
X_hat = (X - moving_mean) / np.sqrt(moving_var + eps)

else:
assert len(X.shape) in (2, 4)
if len(X.shape) == 2:

When using a fully connected layer, calculate the mean and
variance on the feature dimension
mean = X.mean(axis=0)
var = ((X - mean) ** 2).mean(axis=0)

else:
When using a two-dimensional convolutional layer, calculate the
mean and variance on the channel dimension (axis=1). Here we
need to maintain the shape of X, so that the broadcast operation
can be carried out later
mean = X.mean(axis=(0, 2, 3), keepdims=True)
var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)

In training mode, the current mean and variance are used for the
standardization
X_hat = (X - mean) / np.sqrt(var + eps)
Update the mean and variance of the moving average
moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
moving_var = momentum * moving_var + (1.0 - momentum) * var

Y = gamma * X_hat + beta # Scale and shift
return Y, moving_mean, moving_var

We can now create a proper BatchNorm layer. Our layer will maintain poper parameters corre-
sponding for scale gamma and shift beta, both of which will be updated in the course of training.
Additionally, our layer will maintain a moving average of the means and variances for subsequent
use during model prediction. The num_features parameter required by the BatchNorm instance is

7.5. Batch Normalization 281

the number of outputs for a fully-connected layer and the number of output channels for a con-
volutional layer. The num_dims parameter also required by this instance is 2 for a fully-connected
layer and 4 for a convolutional layer.

Putting aside the algorithmic details, note the design pattern underlying our implementation of
the layer. Typically, we define the math in a separate function, say batch_norm. We then inte-
grate this functionality into a custom layer, whose code mostly addresses bookkeeping matters,
such as moving data to the right device context, allocating and initializing any required variables,
keeping track of running averages (here for mean and variance), etc. This pattern enables a clean
separation of math from boilerplate code. Also note that for the sake of convenience we did not
worry about automatically inferring the input shape here, thus our need to specify the number of
features throughout. Do not worry, the Gluon BatchNorm layer will care of this for us.

class BatchNorm(nn.Block):
def __init__(self, num_features, num_dims, **kwargs):

super(BatchNorm, self).__init__(**kwargs)
if num_dims == 2:

shape = (1, num_features)
else:

shape = (1, num_features, 1, 1)
The scale parameter and the shift parameter involved in gradient
finding and iteration are initialized to 0 and 1 respectively
self.gamma = self.params.get('gamma', shape=shape, init=init.One())
self.beta = self.params.get('beta', shape=shape, init=init.Zero())
All the variables not involved in gradient finding and iteration are
initialized to 0 on the CPU
self.moving_mean = np.zeros(shape)
self.moving_var = np.zeros(shape)

def forward(self, X):
If X is not on the CPU, copy moving_mean and moving_var to the
device where X is located
if self.moving_mean.context != X.context:

self.moving_mean = self.moving_mean.copyto(X.context)
self.moving_var = self.moving_var.copyto(X.context)

Save the updated moving_mean and moving_var
Y, self.moving_mean, self.moving_var = batch_norm(

X, self.gamma.data(), self.beta.data(), self.moving_mean,
self.moving_var, eps=1e-5, momentum=0.9)

return Y

7.5.4 Using a Batch Normalization LeNet

To see how to apply BatchNorm in context, below we apply it to a traditional LeNet model (Section
6.6). Recall that BN is typically applied after the convolutional layers and fully-connected layers
but before the corresponding activation functions.

net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),

BatchNorm(6, num_dims=4),
nn.Activation('sigmoid'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5),

(continues on next page)

282 Chapter 7. Modern Convolutional Neural Networks

(continued from previous page)

BatchNorm(16, num_dims=4),
nn.Activation('sigmoid'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Dense(120),
BatchNorm(120, num_dims=2),
nn.Activation('sigmoid'),
nn.Dense(84),
BatchNorm(84, num_dims=2),
nn.Activation('sigmoid'),
nn.Dense(10))

As before, we will train our network on the Fashion-MNIST dataset. This code is virtually identical
to that when we first trained LeNet (Section 6.6). The main difference is the considerably larger
learning rate.

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

Let s̓ have a look at the scale parameter gamma and the shift parameter beta learned from the first
batch normalization layer.

net[1].gamma.data().reshape(-1,), net[1].beta.data().reshape(-1,)

7.5.5 Concise Implementation

Compared with the BatchNorm class, which we just defined ourselves, the BatchNorm class defined
by the nn model in Gluon is easier to use. In Gluon, we do not have to worry about num_features or
num_dims. Instead, these parameter values will be inferred automatically via delayed initialization.
Otherwise, the code looks virtually identical to the application our implementation above.

net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),

nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(16, kernel_size=5),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Dense(120),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.Dense(84),
nn.BatchNorm(),
nn.Activation('sigmoid'),
nn.Dense(10))

Below, we use the same hyper-parameters to train out model. Note that as usual, the Gluon variant
runs much faster because its code has been compiled to C++/CUDA while our custom implemen-
tation must be interpreted by Python.

7.5. Batch Normalization 283

d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

7.5.6 Controversy

Intuitively, batch normalization is thought to make the optimization landscape smoother. How-
ever, we must be careful to distinguish between speculative intuitions and true explanations for
the phenomena that we observe when training deep models. Recall that we do not even know why
simpler deep neural networks (MLPs and conventional CNNs) generalize well in the first place.
Even with dropout and L2 regularization, they remain so flexible that their ability to generalize to
unseen data cannot be explained via conventional learning-theoretic generalization guarantees.

In the original paper proposing batch normalization, the authors, in addition to introducing a
powerful and useful tool, offered an explanation for why it works: by reducing internal covari-
ate shift. Presumably by internal covariate shift the authors meant something like the intuition
expressed above—the notion that the distribution of activations changes over the course of train-
ing. However there were two problems with this explanation: (1) This drift is very different from
covariate shift, rendering the name a misnomer. (2) The explanation offers an under-specified in-
tuition but leaves the question of why precisely this technique works an open question wanting for
a rigorous explanation. Throughout this book, we aim to convey the intuitions that practitioners
use to guide their development of deep neural networks. However, we believe that it is important
to separate these guiding intuitions from established scientific fact. Eventually, when you master
this material and start writing your own research papers you will want to be clear to delineate
between technical claims and hunches.

Following the success of batch normalization, its explanation in terms of internal covariate shift
has repeatedly surfaced in debates in the technical literature and broader discourse about how
to present machine learning research. In a memorable speech given while accepting a Test of
Time Award at the 2017 NeurIPS conference, Ali Rahimi used internal covariate shift as a focal
point in an argument likening the modern practice of deep learning to alchemy. Subsequently,
the example was revisited in detail in a position paper outlining troubling trends in machine
learning (Lipton & Steinhardt, 2018).
In the technical literature other authors ((Santurkar et al., 2018)) have proposed alternative
explanations for the success of BN, some claiming that BN s̓ success comes despite exhibiting
behavior that is in some ways opposite to those claimed in the original paper.

We note that the internal covariate shift is no more worthy of criticism than any of thousands of
similarly vague claims made every year in the technical ML literature. Likely, its resonance as a
focal point of these debates owes to its broad recognizability to the target audience. Batch nor-
malization has proven an indispensable method, applied in nearly all deployed image classifiers,
earning the paper that introduced the technique tens of thousands of citations.

284 Chapter 7. Modern Convolutional Neural Networks

Summary

• During model training, batch normalization continuously adjusts the intermediate output
of the neural network by utilizing the mean and standard deviation of the minibatch, so that
the values of the intermediate output in each layer throughout the neural network are more
stable.

• The batch normalization methods for fully connected layers and convolutional layers are
slightly different.

• Like a dropout layer, batch normalization layers have different computation results in train-
ing mode and prediction mode.

• Batch Normalization has many beneficial side effects, primarily that of regularization. On
the other hand, the original motivation of reducing covariate shift seems not to be a valid
explanation.

Exercises

1. Can we remove the fully connected affine transformation before the batch normalization or
the bias parameter in convolution computation?

• Find an equivalent transformation that applies prior to the fully connected layer.

• Is this reformulation effective. Why (not)?

2. Compare the learning rates for LeNet with and without batch normalization.

• Plot the decrease in training and test error.

• What about the region of convergence? How large can you make the learning rate?

3. Do we need Batch Normalization in every layer? Experiment with it?

4. Can you replace Dropout by Batch Normalization? How does the behavior change?

5. Fix the coefficients beta and gamma (add the parameter grad_req='null' at the time of con-
struction to avoid calculating the gradient), and observe and analyze the results.

6. Review the Gluon documentation for BatchNorm to see the other applications for Batch Nor-
malization.

7. Research ideas: think of other normalization transforms that you can apply? Can you apply
the probability integral transform? How about a full rank covariance estimate?

7.5. Batch Normalization 285

7.6 Residual Networks (ResNet)

As we design increasingly deeper networks it becomes imperative to understand how adding lay-
ers can increase the complexity and expressiveness of the network. Even more important is the
ability to design networks where adding layers makes networks strictly more expressive rather
than just different. To make some progress we need a bit of theory.

7.6.1 Function Classes

Consider F , the class of functions that a specific network architecture (together with learning
rates and other hyperparameter settings) can reach. That is, for all f ∈ F there exists some set of
parameters W that can be obtained through training on a suitable dataset. Let s̓ assume that f∗ is
the function that we really would like to find. If it is in F , we are in good shape but typically we
will not be quite so lucky. Instead, we will try to find some f∗

F which is our best bet within F . For
instance, we might try finding it by solving the following optimization problem:

f∗
F := argmin

f
L(X,Y, f) subject to f ∈ F . (7.6.1)

It is only reasonable to assume that if we design a different and more powerful architectureF ′ we
should arrive at a better outcome. In other words, we would expect that f∗

F ′ is “better” than f∗
F .

However, if F ̸⊆ F ′ there is no guarantee that this should even happen. In fact, f∗
F ′ might well be

worse. This is a situation that we often encounter in practice—adding layers does not only make
the network more expressive, it also changes it in sometimes not quite so predictable ways. Fig.
7.6.1illustrates this in slightly abstract terms.

Fig. 7.6.1: Left: non-nested function classes. The distance may in fact increase as the complexity
increases. Right: with nested function classes this does not happen.

Only if larger function classes contain the smaller ones are we guaranteed that increasing them
strictly increases the expressive power of the network. This is the question that He et al, 2016
considered when working on very deep computer vision models. At the heart of ResNet is the
idea that every additional layer should contain the identity function as one of its elements. This
means that if we can train the newly-added layer into an identity mapping f(x) = x, the new
model will be as effective as the original model. As the new model may get a better solution to fit
the training dataset, the added layer might make it easier to reduce training errors. Even better,

286 Chapter 7. Modern Convolutional Neural Networks

the identity function rather than the null f(x) = 0 should be the the simplest function within a
layer.

These considerations are rather profound but they led to a surprisingly simple solution, a residual
block. With it, (He et al., 2016a) won the ImageNet Visual Recognition Challenge in 2015. The
design had a profound influence on how to build deep neural networks.

7.6.2 Residual Blocks

Let s̓ focus on a local neural network, as depicted below. Denote the input by x. We assume that
the ideal mapping we want to obtain by learning is f(x), to be used as the input to the activation
function. The portion within the dotted-line box in the left image must directly fit the mapping
f(x). This can be tricky if we do not need that particular layer and we would much rather retain the
input x. The portion within the dotted-line box in the right image now only needs to parametrize
the deviation from the identity, since we return x+f(x). In practice, the residual mapping is often
easier to optimize. We only need to set f(x) = 0. The right image in Fig. 7.6.2 illustrates the basic
Residual Block of ResNet. Similar architectures were later proposed for sequence models which
we will study later.

Fig. 7.6.2: The difference between a regular block (left) and a residual block (right). In the latter
case, we can short-circuit the convolutions.

ResNet follows VGG s̓ full 3×3 convolutional layer design. The residual block has two 3×3 convo-
lutional layers with the same number of output channels. Each convolutional layer is followed by
a batch normalization layer and a ReLU activation function. Then, we skip these two convolution
operations and add the input directly before the final ReLU activation function. This kind of de-
sign requires that the output of the two convolutional layers be of the same shape as the input, so
that they can be added together. If we want to change the number of channels or the the stride, we
need to introduce an additional 1 × 1 convolutional layer to transform the input into the desired
shape for the addition operation. Let s̓ have a look at the code below.

7.6. Residual Networks (ResNet) 287

import d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

Saved in the d2l package for later use
class Residual(nn.Block):

def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
super(Residual, self).__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,

strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:

self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)

else:
self.conv3 = None

self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()

def forward(self, X):
Y = npx.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:

X = self.conv3(X)
return npx.relu(Y + X)

This code generates two types of networks: one where we add the input to the output before apply-
ing the ReLU nonlinearity, and whenever use_1x1conv=True, one where we adjust channels and
resolution by means of a 1× 1 convolution before adding. Fig. 7.6.3 illustrates this:

Fig. 7.6.3: Left: regular ResNet block; Right: ResNet block with 1x1 convolution

288 Chapter 7. Modern Convolutional Neural Networks

Now let s̓ look at a situation where the input and output are of the same shape.

blk = Residual(3)
blk.initialize()
X = np.random.uniform(size=(4, 3, 6, 6))
blk(X).shape

(4, 3, 6, 6)

We also have the option to halve the output height and width while increasing the number of
output channels.

blk = Residual(6, use_1x1conv=True, strides=2)
blk.initialize()
blk(X).shape

(4, 6, 3, 3)

7.6.3 ResNet Model

The first two layers of ResNet are the same as those of the GoogLeNet we described before: the
7×7 convolutional layer with 64 output channels and a stride of 2 is followed by the 3×3maximum
pooling layer with a stride of 2. The difference is the batch normalization layer added after each
convolutional layer in ResNet.

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),

nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

GoogLeNet uses four blocks made up of Inception blocks. However, ResNet uses four modules
made up of residual blocks, each of which uses several residual blocks with the same number
of output channels. The number of channels in the first module is the same as the number of
input channels. Since a maximum pooling layer with a stride of 2 has already been used, it is not
necessary to reduce the height and width. In the first residual block for each of the subsequent
modules, the number of channels is doubled compared with that of the previous module, and the
height and width are halved.

Now, we implement this module. Note that special processing has been performed on the first
module.

def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.Sequential()
for i in range(num_residuals):

if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))

else:
blk.add(Residual(num_channels))

return blk

Then, we add all the residual blocks to ResNet. Here, two residual blocks are used for each module.

7.6. Residual Networks (ResNet) 289

net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))

Finally, just like GoogLeNet, we add a global average pooling layer, followed by the fully connected
layer output.

net.add(nn.GlobalAvgPool2D(), nn.Dense(10))

There are 4 convolutional layers in each module (excluding the 1 × 1 convolutional layer). To-
gether with the first convolutional layer and the final fully connected layer, there are 18 layers in
total. Therefore, this model is commonly known as ResNet-18. By configuring different numbers
of channels and residual blocks in the module, we can create different ResNet models, such as
the deeper 152-layer ResNet-152. Although the main architecture of ResNet is similar to that of
GoogLeNet, ResNet s̓ structure is simpler and easier to modify. All these factors have resulted in
the rapid and widespread use of ResNet. Fig. 7.6.4 is a diagram of the full ResNet-18.

290 Chapter 7. Modern Convolutional Neural Networks

Fig. 7.6.4: ResNet 18

Before training ResNet, let s̓ observe how the input shape changes between different modules in
ResNet. As in all previous architectures, the resolution decreases while the number of channels
increases up until the point where a global average pooling layer aggregates all features.

X = np.random.uniform(size=(1, 1, 224, 224))
net.initialize()
for layer in net:

X = layer(X)
print(layer.name, 'output shape:\t', X.shape)

7.6. Residual Networks (ResNet) 291

conv5 output shape: (1, 64, 112, 112)
batchnorm4 output shape: (1, 64, 112, 112)
relu0 output shape: (1, 64, 112, 112)
pool0 output shape: (1, 64, 56, 56)
sequential1 output shape: (1, 64, 56, 56)
sequential2 output shape: (1, 128, 28, 28)
sequential3 output shape: (1, 256, 14, 14)
sequential4 output shape: (1, 512, 7, 7)
pool1 output shape: (1, 512, 1, 1)
dense0 output shape: (1, 10)

7.6.4 Data Acquisition and Training

We train ResNet on the Fashion-MNIST dataset, just like before. The only thing that has changed
is the learning rate that decreased again, due to the more complex architecture.

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

loss 0.013, train acc 0.997, test acc 0.892
4931.7 exampes/sec on gpu(0)

Summary

• Residual blocks allow for a parametrization relative to the identity function f(x) = x.

• Adding residual blocks increases the function complexity in a well-defined manner.

• We can train an effective deep neural network by having residual blocks pass through cross-
layer data channels.

• ResNet had a major influence on the design of subsequent deep neural networks, both for
convolutional and sequential nature.

292 Chapter 7. Modern Convolutional Neural Networks

Exercises

1. Refer to Table 1 in the (He et al., 2016a) to implement different variants.

2. For deeper networks, ResNet introduces a “bottleneck” architecture to reduce model com-
plexity. Try to implement it.

3. In subsequent versions of ResNet, the author changed the “convolution, batch normaliza-
tion, and activation” architecture to the “batch normalization, activation, and convolution”
architecture. Make this improvement yourself. See Figure 1 in (He et al., 2016b) for details.

4. Prove that if x is generated by a ReLU, the ResNet block does indeed include the identity
function.

5. Why cannot we just increase the complexity of functions without bound, even if the function
classes are nested?

7.7 Densely Connected Networks (DenseNet)

ResNet significantly changed the view of how to parametrize the functions in deep networks.
DenseNet is to some extent the logical extension of this. To understand how to arrive at it, let s̓
take a small detour to theory. Recall the Taylor expansion for functions. For scalars it can be
written as

f(x) = f(0) + f ′(x)x+
1

2
f ′′(x)x2 +

1

6
f ′′′(x)x3 + o(x3). (7.7.1)

7.7.1 Function Decomposition

The key point is that it decomposes the function into increasingly higher order terms. In a similar
vein, ResNet decomposes functions into

f(x) = x+ g(x). (7.7.2)

That is, ResNet decomposes f into a simple linear term and a more complex nonlinear one. What
if we want to go beyond two terms? A solution was proposed by (Huang et al., 2017) in the form of
DenseNet, an architecture that reported record performance on the ImageNet dataset.

Fig. 7.7.1: The main difference between ResNet (left) and DenseNet (right) in cross-layer connec-
tions: use of addition and use of concatenation.

7.7. Densely Connected Networks (DenseNet) 293

As shown in Fig. 7.7.1, the key difference between ResNet and DenseNet is that in the latter case
outputs are concatenated rather than added. As a result we perform a mapping from x to its values
after applying an increasingly complex sequence of functions.

x→ [x, f1(x), f2(x, f1(x)), f3(x, f1(x), f2(x, f1(x)), . . .] . (7.7.3)

In the end, all these functions are combined in an MLP to reduce the number of features again.
In terms of implementation this is quite simple—rather than adding terms, we concatenate them.
The name DenseNet arises from the fact that the dependency graph between variables becomes
quite dense. The last layer of such a chain is densely connected to all previous layers. The main
components that compose a DenseNet are dense blocks and transition layers. The former defines
how the inputs and outputs are concatenated, while the latter controls the number of channels so
that it is not too large. The dense connections are shown in Fig. 7.7.2.

Fig. 7.7.2: Dense connections in DenseNet

7.7.2 Dense Blocks

DenseNet uses the modified “batch normalization, activation, and convolution” architecture of
ResNet (see the exercise in Section 7.6). First, we implement this architecture in the conv_block
function.

import d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

def conv_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(),

nn.Activation('relu'),
nn.Conv2D(num_channels, kernel_size=3, padding=1))

return blk

A dense block consists of multiple conv_block units, each using the same number of output chan-
nels. In the forward computation, however, we concatenate the input and output of each block
on the channel dimension.

class DenseBlock(nn.Block):
def __init__(self, num_convs, num_channels, **kwargs):

super(DenseBlock, self).__init__(**kwargs)
self.net = nn.Sequential()
for _ in range(num_convs):

self.net.add(conv_block(num_channels))

(continues on next page)

294 Chapter 7. Modern Convolutional Neural Networks

(continued from previous page)

def forward(self, X):
for blk in self.net:

Y = blk(X)
Concatenate the input and output of each block on the channel
dimension
X = np.concatenate((X, Y), axis=1)

return X

In the following example, we define a convolution block with two blocks of 10 output channels.
When using an input with 3 channels, we will get an output with the 3+2×10 = 23 channels. The
number of convolution block channels controls the increase in the number of output channels
relative to the number of input channels. This is also referred to as the growth rate.

blk = DenseBlock(2, 10)
blk.initialize()
X = np.random.uniform(size=(4, 3, 8, 8))
Y = blk(X)
Y.shape

(4, 23, 8, 8)

7.7.3 Transition Layers

Since each dense block will increase the number of channels, adding too many of them will lead to
an excessively complex model. A transition layer is used to control the complexity of the model.
It reduces the number of channels by using the 1 × 1 convolutional layer and halves the height
and width of the average pooling layer with a stride of 2, further reducing the complexity of the
model.

def transition_block(num_channels):
blk = nn.Sequential()
blk.add(nn.BatchNorm(), nn.Activation('relu'),

nn.Conv2D(num_channels, kernel_size=1),
nn.AvgPool2D(pool_size=2, strides=2))

return blk

Apply a transition layer with 10 channels to the output of the dense block in the previous example.
This reduces the number of output channels to 10, and halves the height and width.

blk = transition_block(10)
blk.initialize()
blk(Y).shape

(4, 10, 4, 4)

7.7. Densely Connected Networks (DenseNet) 295

7.7.4 DenseNet Model

Next, we will construct a DenseNet model. DenseNet first uses the same single convolutional layer
and maximum pooling layer as ResNet.

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),

nn.BatchNorm(), nn.Activation('relu'),
nn.MaxPool2D(pool_size=3, strides=2, padding=1))

Then, similar to the four residual blocks that ResNet uses, DenseNet uses four dense blocks. Sim-
ilar to ResNet, we can set the number of convolutional layers used in each dense block. Here, we
set it to 4, consistent with the ResNet-18 in the previous section. Furthermore, we set the number
of channels (i.e., growth rate) for the convolutional layers in the dense block to 32, so 128 channels
will be added to each dense block.

In ResNet, the height and width are reduced between each module by a residual block with a
stride of 2. Here, we use the transition layer to halve the height and width and halve the number
of channels.

Num_channels: the current number of channels
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
net.add(DenseBlock(num_convs, growth_rate))
This is the number of output channels in the previous dense block
num_channels += num_convs * growth_rate
A transition layer that haves the number of channels is added between
the dense blocks
if i != len(num_convs_in_dense_blocks) - 1:

num_channels //= 2
net.add(transition_block(num_channels))

Similar to ResNet, a global pooling layer and fully connected layer are connected at the end to
produce the output.

net.add(nn.BatchNorm(),
nn.Activation('relu'),
nn.GlobalAvgPool2D(),
nn.Dense(10))

7.7.5 Data Acquisition and Training

Since we are using a deeper network here, in this section, we will reduce the input height and
width from 224 to 96 to simplify the computation.

lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, num_epochs, lr)

296 Chapter 7. Modern Convolutional Neural Networks

loss 0.144, train acc 0.947, test acc 0.896
5628.8 exampes/sec on gpu(0)

Summary

• In terms of cross-layer connections, unlike ResNet, where inputs and outputs are added to-
gether, DenseNet concatenates inputs and outputs on the channel dimension.

• The main units that compose DenseNet are dense blocks and transition layers.

• We need to keep the dimensionality under control when composing the network by adding
transition layers that shrink the number of channels again.

Exercises

1. Why do we use average pooling rather than max-pooling in the transition layer?

2. One of the advantages mentioned in the DenseNet paper is that its model parameters are
smaller than those of ResNet. Why is this the case?

3. One problem for which DenseNet has been criticized is its high memory consumption.

• Is this really the case? Try to change the input shape to 224×224 to see the actual (GPU)
memory consumption.

• Can you think of an alternative means of reducing the memory consumption? How
would you need to change the framework?

4. Implement the various DenseNet versions presented in Table 1 of (Huang et al., 2017).

5. Why do we not need to concatenate terms if we are just interested in x and f(x) for ResNet?
Why do we need this for more than two layers in DenseNet?

6. Design a DenseNet for fully connected networks and apply it to the Housing Price prediction
task.

7.7. Densely Connected Networks (DenseNet) 297

298 Chapter 7. Modern Convolutional Neural Networks

8 | Recurrent Neural Networks

So far we encountered two types of data: generic vectors and images. For the latter we designed
specialized layers to take advantage of the regularity properties in them. In other words, if we were
to permute the pixels in an image, it would be much more difficult to reason about its content of
something that would look much like the background of a test pattern in the times of analog TV.

Most importantly, so far we tacitly assumed that our data is generated i.i.d., i.e., independently
and identically distributed, all drawn from some distribution. Unfortunately, this is not true for
most data. For instance, the words in this paragraph are written in sequence, and it would be
quite difficult to decipher its meaning if they were permuted randomly. Likewise, image frames
in a video, the audio signal in a conversation, or the browsing behavior on a website, all follow
sequential order. It is thus only reasonable to assume that specialized models for such data will
do better at describing it and at solving estimation problems.

Another issue arises from the fact that we might not only receive a sequence as an input but rather
might be expected to continue the sequence. For instance, the task could be to continue the series
2, 4, 6, 8, 10, … This is quite common in time series analysis, to predict the stock market, the fever
curve of a patient or the acceleration needed for a race car. Again we want to have models that
can handle such data.

In short, while convolutional neural networks can efficiently process spatial information, recur-
rent neural networks are designed to better handle sequential information. These networks intro-
duce state variables to store past information, and then determine the current outputs, together
with the current inputs.

Many of the examples for using recurrent networks are based on text data. Hence, we will em-
phasize language models in this chapter. After a more formal review of sequence data we discuss
basic concepts of a language model and use this discussion as the inspiration for the design of re-
current neural networks. Next, we describe the gradient calculation method in recurrent neural
networks to explore problems that may be encountered in recurrent neural network training.

8.1 Sequence Models

Imagine that you are watching movies on Netflix. As a good Netflix user, you decide to rate each
of the movies religiously. After all, a good movie is a good movie, and you want to watch more of
them, right? As it turns out, things are not quite so simple. People s̓ opinions on movies can change
quite significantly over time. In fact, psychologists even have names for some of the effects:

• There is anchoring120, based on someone else s̓ opinion. For instance after the Oscar awards,
ratings for the corresponding movie go up, even though it is still the same movie. This effect

120 https://en.wikipedia.org/wiki/Anchoring

299

https://en.wikipedia.org/wiki/Anchoring

persists for a few months until the award is forgotten. (Wu et al., 2017) showed that the effect
lifts rating by over half a point.

• There is the Hedonic adaptation121, where humans quickly adapt to accept an improved (or
a bad) situation as the new normal. For instance, after watching many good movies, the
expectations that the next movie is equally good or better are high, hence even an average
movie might be considered a bad movie after many great ones.

• There is seasonality. Very few viewers like to watch a Santa Claus movie in August.

• In some cases movies become unpopular due to the misbehaviors of directors or actors in
the production.

• Some movies become cult movies, because they were almost comically bad. Plan 9 from
Outer Space and Troll 2 achieved a high degree of notoriety for this reason.

In short, ratings are anything but stationary. Using temporal dynamics helped (Koren, 2009) to
recommend movies more accurately. But it is not just about movies.

• Many users have highly particular behavior when it comes to the time when they open apps.
For instance, social media apps are much more popular after school with students. Stock
market trading apps are more commonly used when the markets are open.

• It is much harder to predict tomorrow s̓ stock prices than to fill in the blanks for a stock price
we missed yesterday, even though both are just a matter of estimating one number. After
all, hindsight is so much easier than foresight. In statistics the former is called extrapolation
whereas the latter is called interpolation.

• Music, speech, text, movies, steps, etc. are all sequential in nature. If we were to permute
them they would make little sense. The headline dog bites man is much less surprising than
man bites dog, even though the words are identical.

• Earthquakes are strongly correlated, i.e., after a massive earthquake there are very likely
several smaller aftershocks, much more so than without the strong quake. In fact, earth-
quakes are spatiotemporally correlated, i.e., the aftershocks typically occur within a short
time span and in close proximity.

• Humans interact with each other in a sequential nature, as can be seen in Twitter fights,
dance patterns and debates.

8.1.1 Statistical Tools

In short, we need statistical tools and new deep neural networks architectures to deal with se-
quence data. To keep things simple, we use the stock price illustrated in Fig. 8.1.1 as an example.

121 https://en.wikipedia.org/wiki/Hedonic_treadmill

300 Chapter 8. Recurrent Neural Networks

https://en.wikipedia.org/wiki/Hedonic_treadmill

Fig. 8.1.1: FTSE 100 index over 30 years

Let s̓ denote the prices by xt ≥ 0, i.e., at time t ∈ N we observe some price xt. For a trader to do
well in the stock market on day t he should want to predict xt via

xt ∼ p(xt | xt−1, . . . , x1). (8.1.1)

Autoregressive Models

In order to achieve this, our trader could use a regressor such as the one we trained in Section
3.3. There is just a major problem: the number of inputs, xt−1, . . . , x1 varies, depending on t.
That is, the number increases with the amount of data that we encounter, and we will need an
approximation to make this computationally tractable. Much of what follows in this chapter will
revolve around how to estimate p(xt | xt−1, . . . , x1) efficiently. In a nutshell it boils down to two
strategies:

1. Assume that the potentially rather long sequence xt−1, . . . , x1 is not really necessary. In this
case we might content ourselves with some timespan τ and only use xt−1, . . . , xt−τ observa-
tions. The immediate benefit is that now the number of arguments is always the same, at
least for t > τ . This allows us to train a deep network as indicated above. Such models will
be called autoregressive models, as they quite literally perform regression on themselves.

2. Another strategy, shown in Fig. 8.1.2, is to try and keep some summary ht of the past obser-
vations, at the same time update ht in addition to the prediction x̂t. This leads to models that
estimate xt with x̂t = p(xt | xt−1, ht) and moreover updates of the form ht = g(ht−1, xt−1).
Since ht is never observed, these models are also called latent autoregressive models. LSTMs
and GRUs are examples of this.

Fig. 8.1.2: A latent autoregressive model.

8.1. Sequence Models 301

Both cases raise the obvious question of how to generate training data. One typically uses histor-
ical observations to predict the next observation given the ones up to right now. Obviously we do
not expect time to stand still. However, a common assumption is that while the specific values of
xt might change, at least the dynamics of the time series itself will not. This is reasonable, since
novel dynamics are just that, novel and thus not predictable using data that we have so far. Statis-
ticians call dynamics that do not change stationary. Regardless of what we do, we will thus get an
estimate of the entire time series via

p(x1, . . . , xT) =
T∏
t=1

p(xt | xt−1, . . . , x1). (8.1.2)

Note that the above considerations still hold if we deal with discrete objects, such as words, rather
than numbers. The only difference is that in such a situation we need to use a classifier rather
than a regressor to estimate p(xt | xt−1, . . . , x1).

Markov Model

Recall the approximation that in an autoregressive model we use only (xt−1, . . . , xt−τ) instead of
(xt−1, . . . , x1) to estimate xt. Whenever this approximation is accurate we say that the sequence
satisfies a Markov condition. In particular, if τ = 1, we have a first order Markov model and p(x) is
given by

p(x1, . . . , xT) =

T∏
t=1

p(xt | xt−1). (8.1.3)

Such models are particularly nice whenever xt assumes only a discrete value, since in this case
dynamic programming can be used to compute values along the chain exactly. For instance, we
can compute p(xt+1 | xt−1) efficiently using the fact that we only need to take into account a very
short history of past observations:

p(xt+1 | xt−1) =
∑
xt

p(xt+1 | xt)p(xt | xt−1). (8.1.4)

Going into details of dynamic programming is beyond the scope of this section, but we will intro-
duce it in Section 9.4. Control and reinforcement learning algorithms use such tools extensively.

Causality

In principle, there is nothing wrong with unfolding p(x1, . . . , xT) in reverse order. After all, by
conditioning we can always write it via

p(x1, . . . , xT) =

1∏
t=T

p(xt | xt+1, . . . , xT). (8.1.5)

In fact, if we have a Markov model, we can obtain a reverse conditional probability distribution,
too. In many cases, however, there exists a natural direction for the data, namely going forward
in time. It is clear that future events cannot influence the past. Hence, if we change xt, we may be
able to influence what happens for xt+1 going forward but not the converse. That is, if we change
xt, the distribution over past events will not change. Consequently, it ought to be easier to explain
p(xt+1 | xt) rather than p(xt | xt+1). For instance, (Hoyer et al., 2009) show that in some cases we
can find xt+1 = f(xt) + ϵ for some additive noise, whereas the converse is not true. This is great
news, since it is typically the forward direction that we are interested in estimating. For more on
this topic see e.g., the book by (Peters et al., 2017). We are barely scratching the surface of it.

302 Chapter 8. Recurrent Neural Networks

8.1.2 A Toy Example

After so much theory, let s̓ try this out in practice. Let s̓ begin by generating some data. To keep
things simple we generate our time series by using a sine function with some additive noise.

%matplotlib inline
import d2l
from mxnet import autograd, np, npx, gluon, init
from mxnet.gluon import nn
npx.set_np()

T = 1000 # Generate a total of 1000 points
time = np.arange(0, T)
x = np.sin(0.01 * time) + 0.2 * np.random.normal(size=T)
d2l.plot(time, [x])

Next we need to turn this time series into features and labels that the network can train on. Based
on the embedding dimension τ we map the data into pairs yt = xt and zt = (xt−1, . . . , xt−τ).
The astute reader might have noticed that this gives us τ fewer data points, since we do not have
sufficient history for the first τ of them. A simple fix, in particular if the time series is long is to
discard those few terms. Alternatively we could pad the time series with zeros. The code below
is essentially identical to the training code in previous sections. We kept the architecture fairly
simple. A few layers of a fully connected network, ReLU activation and ℓ2 loss. Since much of the
modeling is identical to the previous sections when we built regression estimators in Gluon, we
will not delve into much detail.

tau = 4
features = np.zeros((T-tau, tau))
for i in range(tau):

features[:, i] = x[i: T-tau+i]
labels = x[tau:]

batch_size, n_train = 16, 600
train_iter = d2l.load_array((features[:n_train], labels[:n_train]),

batch_size, is_train=True)
test_iter = d2l.load_array((features[:n_train], labels[:n_train]),

batch_size, is_train=False)

Vanilla MLP architecture

(continues on next page)

8.1. Sequence Models 303

(continued from previous page)

def get_net():
net = gluon.nn.Sequential()
net.add(nn.Dense(10, activation='relu'),

nn.Dense(1))
net.initialize(init.Xavier())
return net

Least mean squares loss
loss = gluon.loss.L2Loss()

Now we are ready to train.

def train_net(net, train_iter, loss, epochs, lr):
trainer = gluon.Trainer(net.collect_params(), 'adam',

{'learning_rate': lr})
for epoch in range(1, epochs + 1):

for X, y in train_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
trainer.step(batch_size)

print('epoch %d, loss: %f' % (
epoch, d2l.evaluate_loss(net, train_iter, loss)))

net = get_net()
train_net(net, train_iter, loss, 10, 0.01)

epoch 1, loss: 0.044017
epoch 2, loss: 0.030621
epoch 3, loss: 0.028620
epoch 4, loss: 0.028395
epoch 5, loss: 0.026994
epoch 6, loss: 0.026267
epoch 7, loss: 0.025798
epoch 8, loss: 0.025620
epoch 9, loss: 0.027264
epoch 10, loss: 0.030226

8.1.3 Predictions

Since both training and test loss are small, we would expect our model to work well. Let s̓ see
what this means in practice. The first thing to check is how well the model is able to predict what
happens in the next timestep.

estimates = net(features)
d2l.plot([time, time[tau:]], [x, estimates],

legend=['data', 'estimate'])

304 Chapter 8. Recurrent Neural Networks

This looks nice, just as we expected it. Even beyond 600 observations the estimates still look rather
trustworthy. There is just one little problem to this: if we observe data only until timestep 600, we
cannot hope to receive the ground truth for all future predictions. Instead, we need to work our
way forward one step at a time:

x601 = f(x600, . . . , x597),

x602 = f(x601, . . . , x598),

x603 = f(x602, . . . , x599).

(8.1.6)

In other words, we will have to use our own predictions to make future predictions. Let s̓ see how
well this goes.

predictions = np.zeros(T)
predictions[:n_train] = x[:n_train]
for i in range(n_train, T):

predictions[i] = net(
predictions[(i-tau):i].reshape(1, -1)).reshape(1)

d2l.plot([time, time[tau:], time[n_train:]],
[x, estimates, predictions[n_train:]],
legend=['data', 'estimate', 'multistep'], figsize=(4.5, 2.5))

As the above example shows, this is a spectacular failure. The estimates decay to a constant pretty
quickly after a few prediction steps. Why did the algorithm work so poorly? This is ultimately due
to the fact that the errors build up. Let s̓ say that after step 1 we have some error ϵ1 = ϵ̄. Now

8.1. Sequence Models 305

the input for step 2 is perturbed by ϵ1, hence we suffer some error in the order of ϵ2 = ϵ̄ + Lϵ1,
and so on. The error can diverge rather rapidly from the true observations. This is a common
phenomenon. For instance, weather forecasts for the next 24 hours tend to be pretty accurate but
beyond that the accuracy declines rapidly. We will discuss methods for improving this throughout
this chapter and beyond.

Let s̓ verify this observation by computing the k-step predictions on the entire sequence.

k = 33 # Look up to k - tau steps ahead

features = np.zeros((k, T-k))
for i in range(tau): # Copy the first tau features from x

features[i] = x[i:T-k+i]

for i in range(tau, k): # Predict the (i-tau)-th step
features[i] = net(features[(i-tau):i].T).T

steps = (4, 8, 16, 32)
d2l.plot([time[i:T-k+i] for i in steps], [features[i] for i in steps],

legend=['step %d' % i for i in steps], figsize=(4.5, 2.5))

This clearly illustrates how the quality of the estimates changes as we try to predict further into the
future. While the 8-step predictions are still pretty good, anything beyond that is pretty useless.

Summary

• Sequence models require specialized statistical tools for estimation. Two popular choices
are autoregressive models and latent-variable autoregressive models.

• As we predict further in time, the errors accumulate and the quality of the estimates de-
grades, often dramatically.

• There is quite a difference in difficulty between interpolation and extrapolation. Conse-
quently, if you have a time series, always respect the temporal order of the data when train-
ing, i.e., never train on future data.

• For causal models (e.g., time going forward), estimating the forward direction is typically a
lot easier than the reverse direction.

306 Chapter 8. Recurrent Neural Networks

Exercises

1. Improve the above model.

• Incorporate more than the past 4 observations? How many do you really need?

• How many would you need if there was no noise? Hint: you can write sin and cos as a
differential equation.

• Can you incorporate older features while keeping the total number of features con-
stant? Does this improve accuracy? Why?

• Change the neural network architecture and see what happens.

2. An investor wants to find a good security to buy. She looks at past returns to decide which
one is likely to do well. What could possibly go wrong with this strategy?

3. Does causality also apply to text? To which extent?

4. Give an example for when a latent autoregressive model might be needed to capture the
dynamic of the data.

8.2 Text Preprocessing

Text is an important example of sequence data. An article can be simply viewed as a sequence of
words, or a sequence of characters. Given text data is a major data format besides images we are
using in this book, this section will dedicate to explain the common preprocessing steps for text
data. Such preprocessing often consists of four steps:

1. Load text as strings into memory.

2. Split strings into tokens, where a token could be a word or a character.

3. Build a vocabulary for these tokens to map them into numerical indices.

4. Map all the tokens in data into indices for ease of feeding into models.

8.2.1 Reading the Dataset

To get started we load text from H. G. Wellsʼ Time Machine123. This is a fairly small corpus of just
over 30, 000 words, but for the purpose of what we want to illustrate this is just fine. More realistic
document collections contain many billions of words. The following function reads the dataset
into a list of sentences, each sentence is a string. Here we ignore punctuation and capitalization.

import collections
import re

(continues on next page)

123 http://www.gutenberg.org/ebooks/35

8.2. Text Preprocessing 307

http://www.gutenberg.org/ebooks/35

(continued from previous page)

Saved in the d2l package for later use
def read_time_machine():

"""Load the time machine book into a list of sentences."""
with open('../data/timemachine.txt', 'r') as f:

lines = f.readlines()
return [re.sub('[^A-Za-z]+', ' ', line.strip().lower())

for line in lines]

lines = read_time_machine()
'# sentences %d' % len(lines)

'# sentences 3221'

8.2.2 Tokenization

For each sentence, we split it into a list of tokens. A token is a data point the model will train and
predict. The following function supports split a sentence into words or characters, and returns a
list of split strings.

Saved in the d2l package for later use
def tokenize(lines, token='word'):

"""Split sentences into word or char tokens"""
if token == 'word':

return [line.split(' ') for line in lines]
elif token == 'char':

return [list(line) for line in lines]
else:

print('ERROR: unkown token type '+token)

tokens = tokenize(lines)
tokens[0:2]

[['the', 'time', 'machine', 'by', 'h', 'g', 'wells', ''], ['']]

8.2.3 Vocabulary

The string type of the token is inconvenient to be used by models, which take numerical inputs.
Now let s̓ build a dictionary, often called vocabulary as well, to map string tokens into numerical
indices starting from 0. To do so, we first count the unique tokens in all documents, called cor-
pus, and then assign a numerical index to each unique token according to its frequency. Rarely
appeared tokens are often removed to reduce the complexity. A token does not exist in corpus
or has been removed is mapped into a special unknown (“<unk>”) token. We optionally add an-
other three special tokens: “<pad>” a token for padding, “<bos>” to present the beginning for a
sentence, and “<eos>” for the ending of a sentence.

Saved in the d2l package for later use
class Vocab(object):

def __init__(self, tokens, min_freq=0, use_special_tokens=False):

(continues on next page)

308 Chapter 8. Recurrent Neural Networks

(continued from previous page)

Sort according to frequencies
counter = count_corpus(tokens)
self.token_freqs = sorted(counter.items(), key=lambda x: x[0])
self.token_freqs.sort(key=lambda x: x[1], reverse=True)
if use_special_tokens:

For padding, begin of sentence, end of sentence, and unknown
self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
uniq_tokens = ['<pad>', '<bos>', '<eos>', '<unk>']

else:
self.unk, uniq_tokens = 0, ['<unk>']

uniq_tokens += [token for token, freq in self.token_freqs
if freq >= min_freq and token not in uniq_tokens]

self.idx_to_token, self.token_to_idx = [], dict()
for token in uniq_tokens:

self.idx_to_token.append(token)
self.token_to_idx[token] = len(self.idx_to_token) - 1

def __len__(self):
return len(self.idx_to_token)

def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)):

return self.token_to_idx.get(tokens, self.unk)
return [self.__getitem__(token) for token in tokens]

def to_tokens(self, indices):
if not isinstance(indices, (list, tuple)):

return self.idx_to_token[indices]
return [self.idx_to_token[index] for index in indices]

Saved in the d2l package for later use
def count_corpus(sentences):

Flatten a list of token lists into a list of tokens
tokens = [tk for line in sentences for tk in line]
return collections.Counter(tokens)

We construct a vocabulary with the time machine dataset as the corpus, and then print the map
between a few tokens and their indices.

vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[0:10])

[('<unk>', 0), ('the', 1), ('', 2), ('i', 3), ('and', 4), ('of', 5), ('a', 6), ('to', 7), (
↪→'was', 8), ('in', 9)]

After that, we can convert each sentence into a list of numerical indices. To illustrate in detail, we
print two sentences with their corresponding indices.

for i in range(8, 10):
print('words:', tokens[i])
print('indices:', vocab[tokens[i]])

8.2. Text Preprocessing 309

words: ['the', 'time', 'traveller', 'for', 'so', 'it', 'will', 'be', 'convenient', 'to',
↪→'speak', 'of', 'him', '']
indices: [1, 20, 72, 17, 38, 12, 120, 43, 706, 7, 660, 5, 112, 2]
words: ['was', 'expounding', 'a', 'recondite', 'matter', 'to', 'us', 'his', 'grey', 'eyes',
↪→'shone', 'and']
indices: [8, 1654, 6, 3864, 634, 7, 131, 26, 344, 127, 484, 4]

8.2.4 Putting All Things Together

Using the above functions, we package everything into the load_corpus_time_machine function,
which returns corpus, a list of token indices, and vocab, the vocabulary of the time machine cor-
pus. The modification we did here is that corpus is a single list, not a list of token lists, since we
do not keep the sequence information in the following models. Besides, we use character tokens
to simplify the training in later sections.

Saved in the d2l package for later use
def load_corpus_time_machine(max_tokens=-1):

lines = read_time_machine()
tokens = tokenize(lines, 'char')
vocab = Vocab(tokens)
corpus = [vocab[tk] for line in tokens for tk in line]
if max_tokens > 0:

corpus = corpus[:max_tokens]
return corpus, vocab

corpus, vocab = load_corpus_time_machine()
len(corpus), len(vocab)

(171489, 28)

Summary

• We preprocessed the documents by tokenizing them into words or characters and then map-
ping into indices.

Exercises

1. Tokenization is a key preprocessing step. It varies for different languages. Try to find another
3 commonly used methods to tokenize sentences.

310 Chapter 8. Recurrent Neural Networks

8.3 Language Models and the Dataset

In Section 8.2, we see how to map text data into tokens, and these tokens can be viewed as a time
series of discrete observations. Assuming the tokens in a text of length T are in turn x1, x2, . . . , xT ,
then, in the discrete time series, xt(1 ≤ t ≤ T) can be considered as the output or label of timestep
t. Given such a sequence, the goal of a language model is to estimate the probability

p(x1, x2, . . . , xT). (8.3.1)

Language models are incredibly useful. For instance, an ideal language model would be able
to generate natural text just on its own, simply by drawing one word at a time wt ∼ p(wt |
wt−1, . . . , w1). Quite unlike the monkey using a typewriter, all text emerging from such a model
would pass as natural language, e.g., English text. Furthermore, it would be sufficient for gener-
ating a meaningful dialog, simply by conditioning the text on previous dialog fragments. Clearly
we are still very far from designing such a system, since it would need to understand the text rather
than just generate grammatically sensible content.

Nonetheless language models are of great service even in their limited form. For instance, the
phrases “to recognize speech” and “to wreck a nice beach” sound very similar. This can cause am-
biguity in speech recognition, ambiguity that is easily resolved through a language model which
rejects the second translation as outlandish. Likewise, in a document summarization algorithm it
is worth while knowing that “dog bites man” is much more frequent than “man bites dog”, or that
“let s̓ eat grandma” is a rather disturbing statement, whereas “let s̓ eat, grandma” is much more
benign.

8.3.1 Estimating a Language Model

The obvious question is how we should model a document, or even a sequence of words. We can
take recourse to the analysis we applied to sequence models in the previous section. Let s̓ start by
applying basic probability rules:

p(w1, w2, . . . , wT) = p(w1)
T∏
t=2

p(wt | w1, . . . , wt−1). (8.3.2)

For example, the probability of a text sequence containing four tokens consisting of words and
punctuation would be given as:

p(Statistics, is, fun, .) = p(Statistics)p(is | Statistics)p(fun | Statistics, is)p(. | Statistics, is, fun).
(8.3.3)

In order to compute the language model, we need to calculate the probability of words and the
conditional probability of a word given the previous few words, i.e., language model parameters.
Here, we assume that the training dataset is a large text corpus, such as all Wikipedia entries,
Project Gutenberg125, or all text posted online on the web. The probability of words can be calcu-
lated from the relative word frequency of a given word in the training dataset.

For example, p(Statistics) can be calculated as the probability of any sentence starting with the
word “statistics”. A slightly less accurate approach would be to count all occurrences of the word
“statistics” and divide it by the total number of words in the corpus. This works fairly well, partic-
ularly for frequent words. Moving on, we could attempt to estimate

p̂(is | Statistics) =
n(Statistics is)
n(Statistics)

. (8.3.4)

125 https://en.wikipedia.org/wiki/Project_Gutenberg

8.3. Language Models and the Dataset 311

https://en.wikipedia.org/wiki/Project_Gutenberg

Here n(w) and n(w,w′) are the number of occurrences of singletons and pairs of words respec-
tively. Unfortunately, estimating the probability of a word pair is somewhat more difficult, since
the occurrences of “Statistics is” are a lot less frequent. In particular, for some unusual word
combinations it may be tricky to find enough occurrences to get accurate estimates. Things take
a turn for the worse for 3-word combinations and beyond. There will be many plausible 3-word
combinations that we likely will not see in our dataset. Unless we provide some solution to give
such word combinations nonzero weight, we will not be able to use these as a language model. If
the dataset is small or if the words are very rare, we might not find even a single one of them.

A common strategy is to perform some form of Laplace smoothing. We already encountered this
in our discussion of naive Bayes in Section 17.8 where the solution was to add a small constant to
all counts. This helps with singletons, e.g., via

p̂(w) =
n(w) + ϵ1/m

n+ ϵ1
,

p̂(w′ | w) = n(w,w′) + ϵ2p̂(w
′)

n(w) + ϵ2
,

p̂(w′′ | w′, w) =
n(w,w′, w′′) + ϵ3p̂(w

′, w′′)

n(w,w′) + ϵ3
.

(8.3.5)

Here the coefficients ϵi > 0 determine how much we use the estimate for a shorter sequence
as a fill-in for longer ones. Moreover, m is the total number of words we encounter. The above
is a rather primitive variant of what is Kneser-Ney smoothing and Bayesian nonparametrics can
accomplish. See e.g., (Wood et al., 2011) for more detail of how to accomplish this. Unfortunately,
models like this get unwieldy rather quickly for the following reasons. First, we need to store all
counts. Second, this entirely ignores the meaning of the words. For instance, “cat” and “feline”
should occur in related contexts. It is quite difficult to adjust such models to additional contexts,
whereas, deep learning based language models are well suited to take this into account. Last, long
word sequences are almost certain to be novel, hence a model that simply counts the frequency
of previously seen word sequences is bound to perform poorly there.

8.3.2 Markov Models and n-grams

Before we discuss solutions involving deep learning, we need some more terminology and con-
cepts. Recall our discussion of Markov Models in the previous section. Let s̓ apply this to lan-
guage modeling. A distribution over sequences satisfies the Markov property of first order if
p(wt+1 | wt, . . . , w1) = p(wt+1 | wt). Higher orders correspond to longer dependencies. This
leads to a number of approximations that we could apply to model a sequence:

p(w1, w2, w3, w4) = p(w1)p(w2)p(w3)p(w4),

p(w1, w2, w3, w4) = p(w1)p(w2 | w1)p(w3 | w2)p(w4 | w3),

p(w1, w2, w3, w4) = p(w1)p(w2 | w1)p(w3 | w1, w2)p(w4 | w2, w3).

(8.3.6)

The probability formulae that involve one, two, and three variables are typically referred to as
unigram, bigram, and trigram models respectively. In the following, we will learn how to design
better models.

312 Chapter 8. Recurrent Neural Networks

8.3.3 Natural Language Statistics

Let s̓ see how this works on real data. We construct a vocabulary based on the time machine data
similar to Section 8.2 and print the top 10 most frequent words.

import d2l
from mxnet import np, npx
import random
npx.set_np()

tokens = d2l.tokenize(d2l.read_time_machine())
vocab = d2l.Vocab(tokens)
print(vocab.token_freqs[:10])

[('the', 2261), ('', 1282), ('i', 1267), ('and', 1245), ('of', 1155), ('a', 816), ('to',␣
↪→695), ('was', 552), ('in', 541), ('that', 443)]

As we can see, the most popular words are actually quite boring to look at. They are often re-
ferred to as stop words126 and thus filtered out. That said, they still carry meaning and we will use
them nonetheless. However, one thing that is quite clear is that the word frequency decays rather
rapidly. The 10th most frequent word is less than 1/5 as common as the most popular one. To get
a better idea we plot the graph of the word frequency.

freqs = [freq for token, freq in vocab.token_freqs]
d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)',

xscale='log', yscale='log')

We are on to something quite fundamental here: the word frequency decays rapidly in a well
defined way. After dealing with the first four words as exceptions (ʻthe ,̓ ʻi ,̓ ʻand,̓ ʻof ʼ), all remaining
words follow a straight line on a log-log plot. This means that words satisfy Zipf s̓ law127 which
states that the item frequency is given by

n(x) ∝ (x+ c)−α and hence logn(x) = −α log(x+ c) + const. (8.3.7)

This should already give us pause if we want to model words by count statistics and smoothing.
After all, we will significantly overestimate the frequency of the tail, also known as the infrequent

126 https://en.wikipedia.org/wiki/Stop_words
127 https://en.wikipedia.org/wiki/Zipf%27s_law

8.3. Language Models and the Dataset 313

https://en.wikipedia.org/wiki/Stop_words
https://en.wikipedia.org/wiki/Zipf%27s_law

words. But what about the other word combinations (such as bigrams, trigrams, and beyond)?
Let s̓ see whether the bigram frequency behaves in the same manner as the unigram frequency.

bigram_tokens = [[pair for pair in zip(
line[:-1], line[1:])] for line in tokens]

bigram_vocab = d2l.Vocab(bigram_tokens)
print(bigram_vocab.token_freqs[:10])

[(('of', 'the'), 297), (('in', 'the'), 161), (('i', 'had'), 126), (('and', 'the'), 104), (('i
↪→', 'was'), 104), (('the', 'time'), 97), (('it', 'was'), 94), (('to', 'the'), 81), (('as',
↪→'i'), 75), (('of', 'a'), 69)]

Two things are notable. Out of the 10 most frequent word pairs, 9 are composed of stop words and
only one is relevant to the actual book—“the time”. Furthermore, let s̓ see whether the trigram
frequency behaves in the same manner.

trigram_tokens = [[triple for triple in zip(line[:-2], line[1:-1], line[2:])]
for line in tokens]

trigram_vocab = d2l.Vocab(trigram_tokens)
print(trigram_vocab.token_freqs[:10])

[(('the', 'time', 'traveller'), 53), (('the', 'time', 'machine'), 24), (('the', 'medical',
↪→'man'), 22), (('it', 'seemed', 'to'), 14), (('it', 'was', 'a'), 14), (('i', 'began', 'to'),
↪→ 13), (('i', 'did', 'not'), 13), (('i', 'saw', 'the'), 13), (('here', 'and', 'there'), 12),
↪→ (('i', 'could', 'see'), 12)]

Last, let s̓ visualize the token frequency among these three gram models: unigrams, bigrams, and
trigrams.

bigram_freqs = [freq for token, freq in bigram_vocab.token_freqs]
trigram_freqs = [freq for token, freq in trigram_vocab.token_freqs]
d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token',

ylabel='frequency', xscale='log', yscale='log',
legend=['unigram', 'bigram', 'trigram'])

The graph is quite exciting for a number of reasons. First, beyond unigram words, also sequences
of words appear to be following Zipf s̓ law, albeit with a lower exponent, depending on sequence

314 Chapter 8. Recurrent Neural Networks

length. Second, the number of distinct n-grams is not that large. This gives us hope that there is
quite a lot of structure in language. Third, many n-grams occur very rarely, which makes Laplace
smoothing rather unsuitable for language modeling. Instead, we will use deep learning based
models.

8.3.4 Training Data Preparation

Before introducing the model, let s̓ assume we will use a neural network to train a language model.
Now the question is how to read minibatches of examples and labels at random. Since sequence
data is by its very nature sequential, we need to address the issue of processing it. We did so in a
rather ad-hoc manner when we introduced in Section 8.1. Let s̓ formalize this a bit.

In Fig. 8.3.1, we visualized several possible ways to obtain 5-grams in a sentence, here a token is a
character. Note that we have quite some freedom since we could pick an arbitrary offset.

Fig. 8.3.1: Different offsets lead to different subsequences when splitting up text.

In fact, any one of these offsets is fine. Hence, which one should we pick? In fact, all of them are
equally good. But if we pick all offsets we end up with rather redundant data due to overlap, par-
ticularly if the sequences are long. Picking just a random set of initial positions is no good either
since it does not guarantee uniform coverage of the array. For instance, if we pick n elements at
random out of a set of n with random replacement, the probability for a particular element not
being picked is (1− 1/n)n → e−1 . This means that we cannot expect uniform coverage this way.
Even randomly permuting a set of all offsets does not offer good guarantees. Instead we can use
a simple trick to get both coverage and randomness: use a random offset, after which one uses the
terms sequentially. We describe how to accomplish this for both random sampling and sequential
partitioning strategies below.

Random Sampling

The following code randomly generates a minibatch from the data each time. Here, the batch size
batch_size indicates to the number of examples in each minibatch and num_steps is the length
of the sequence (or timesteps if we have a time series) included in each example. In random
sampling, each example is a sequence arbitrarily captured on the original sequence. The positions
of two adjacent random minibatches on the original sequence are not necessarily adjacent. The
target is to predict the next character based on what we have seen so far, hence the labels are the
original sequence, shifted by one character.

8.3. Language Models and the Dataset 315

Saved in the d2l package for later use
def seq_data_iter_random(corpus, batch_size, num_steps):

Offset the iterator over the data for uniform starts
corpus = corpus[random.randint(0, num_steps):]
Subtract 1 extra since we need to account for label
num_examples = ((len(corpus) - 1) // num_steps)
example_indices = list(range(0, num_examples * num_steps, num_steps))
random.shuffle(example_indices)

def data(pos):
This returns a sequence of the length num_steps starting from pos
return corpus[pos: pos + num_steps]

Discard half empty batches
num_batches = num_examples // batch_size
for i in range(0, batch_size * num_batches, batch_size):

Batch_size indicates the random examples read each time
batch_indices = example_indices[i:(i+batch_size)]
X = [data(j) for j in batch_indices]
Y = [data(j + 1) for j in batch_indices]
yield np.array(X), np.array(Y)

Let s̓ generate an artificial sequence from 0 to 30. We assume that the batch size and numbers
of timesteps are 2 and 5 respectively. This means that depending on the offset we can generate
between 4 and 5 (x, y) pairs. With a minibatch size of 2, we only get 2 minibatches.

my_seq = list(range(30))
for X, Y in seq_data_iter_random(my_seq, batch_size=2, num_steps=6):

print('X: ', X, '\nY:', Y)

X: [[2. 3. 4. 5. 6. 7.]
[20. 21. 22. 23. 24. 25.]]
Y: [[3. 4. 5. 6. 7. 8.]
[21. 22. 23. 24. 25. 26.]]
X: [[14. 15. 16. 17. 18. 19.]
[8. 9. 10. 11. 12. 13.]]
Y: [[15. 16. 17. 18. 19. 20.]
[9. 10. 11. 12. 13. 14.]]

Sequential Partitioning

In addition to random sampling of the original sequence, we can also make the positions of two
adjacent random minibatches adjacent in the original sequence.

Saved in the d2l package for later use
def seq_data_iter_consecutive(corpus, batch_size, num_steps):

Offset for the iterator over the data for uniform starts
offset = random.randint(0, num_steps)
Slice out data - ignore num_steps and just wrap around
num_indices = ((len(corpus) - offset - 1) // batch_size) * batch_size
Xs = np.array(corpus[offset:offset+num_indices])
Ys = np.array(corpus[offset+1:offset+1+num_indices])

(continues on next page)

316 Chapter 8. Recurrent Neural Networks

(continued from previous page)

Xs, Ys = Xs.reshape(batch_size, -1), Ys.reshape(batch_size, -1)
num_batches = Xs.shape[1] // num_steps
for i in range(0, num_batches * num_steps, num_steps):

X = Xs[:, i:(i+num_steps)]
Y = Ys[:, i:(i+num_steps)]
yield X, Y

Using the same settings, print input X and label Y for each minibatch of examples read by random
sampling. The positions of two adjacent minibatches on the original sequence are adjacent.

for X, Y in seq_data_iter_consecutive(my_seq, batch_size=2, num_steps=6):
print('X: ', X, '\nY:', Y)

X: [[4. 5. 6. 7. 8. 9.]
[16. 17. 18. 19. 20. 21.]]
Y: [[5. 6. 7. 8. 9. 10.]
[17. 18. 19. 20. 21. 22.]]
X: [[10. 11. 12. 13. 14. 15.]
[22. 23. 24. 25. 26. 27.]]
Y: [[11. 12. 13. 14. 15. 16.]
[23. 24. 25. 26. 27. 28.]]

Now we wrap the above two sampling functions to a class so that we can use it as a Gluon data
iterator later.

Saved in the d2l package for later use
class SeqDataLoader(object):

"""A iterator to load sequence data"""
def __init__(self, batch_size, num_steps, use_random_iter, max_tokens):

if use_random_iter:
self.data_iter_fn = d2l.seq_data_iter_random

else:
self.data_iter_fn = d2l.seq_data_iter_consecutive

self.corpus, self.vocab = d2l.load_corpus_time_machine(max_tokens)
self.batch_size, self.num_steps = batch_size, num_steps

def __iter__(self):
return self.data_iter_fn(self.corpus, self.batch_size, self.num_steps)

Last, we define a function load_data_time_machine that returns both the data iterator and the
vocabulary, so we can use it similarly as other functions with load_data prefix.

Saved in the d2l package for later use
def load_data_time_machine(batch_size, num_steps, use_random_iter=False,

max_tokens=10000):
data_iter = SeqDataLoader(

batch_size, num_steps, use_random_iter, max_tokens)
return data_iter, data_iter.vocab

8.3. Language Models and the Dataset 317

Summary

• Language models are an important technology for natural language processing.

• n-grams provide a convenient model for dealing with long sequences by truncating the de-
pendence.

• Long sequences suffer from the problem that they occur very rarely or never.

• Zipf s̓ law governs the word distribution for not only unigrams but also the other n-grams.

• There is a lot of structure but not enough frequency to deal with infrequent word combina-
tions efficiently via Laplace smoothing.

• The main choices for sequence partitioning are picking between consecutive and random
sequences.

• Given the overall document length, it is usually acceptable to be slightly wasteful with the
documents and discard half-empty minibatches.

Exercises

1. Suppose there are 100, 000 words in the training dataset. How much word frequency and
multi-word adjacent frequency does a four-gram need to store?

2. Review the smoothed probability estimates. Why are they not accurate? Hint: we are dealing
with a contiguous sequence rather than singletons.

3. How would you model a dialogue?

4. Estimate the exponent of Zipf s̓ law for unigrams, bigrams, and trigrams.

5. What other minibatch data sampling methods can you think of?

6. Why is it a good idea to have a random offset?

• Does it really lead to a perfectly uniform distribution over the sequences on the docu-
ment?

• What would you have to do to make things even more uniform?

7. If we want a sequence example to be a complete sentence, what kinds of problems does this
introduce in minibatch sampling? Why would we want to do this anyway?

318 Chapter 8. Recurrent Neural Networks

8.4 Recurrent Neural Networks

In Section 8.3 we introduced n-gram models, where the conditional probability of word xt at po-
sition t only depends on the n− 1 previous words. If we want to check the possible effect of words
earlier than t − (n − 1) on xt, we need to increase n. However, the number of model parameters
would also increase exponentially with it, as we need to store |V |n numbers for a vocabulary V .
Hence, rather than modeling p(xt | xt−1, . . . , xt−n+1) it is preferable to use a latent variable model
in which we have

p(xt | xt−1, . . . , x1) ≈ p(xt | xt−1, ht). (8.4.1)

Here ht is a latent variable that stores the sequence information. A latent variable is also called as
hidden variable, hidden state or hidden state variable. The hidden state at time t could be computed
based on both input xt and hidden state ht−1, that is

ht = f(xt, ht−1). (8.4.2)

For a sufficiently powerful function f , the latent variable model is not an approximation. After all,
ht could simply store all the data it observed so far. We discussed this in Section 8.1. But it could
potentially makes both computation and storage expensive.

Note that we also use h to denote by the number of hidden units of a hidden layer. Hidden layers
and hidden states refer to two very different concepts. Hidden layers are, as explained, layers that
are hidden from view on the path from input to output. Hidden states are technically speaking
inputs to whatever we do at a given step. Instead, they can only be computed by looking at data
at previous iterations. In this sense they have much in common with latent variable models in
statistics, such as clustering or topic models where the clusters affect the output but cannot be
directly observed.

Recurrent neural networks are neural networks with hidden states. Before introducing this model,
let s̓ first revisit the multi-layer perceptron introduced in Section 4.1.

8.4.1 Recurrent Networks Without Hidden States

Let s̓ take a look at a multilayer perceptron with a single hidden layer. Given a minibatch of the
instances X ∈ Rn×d with sample size n and d inputs. Let the hidden layer s̓ activation function be
ϕ. Hence, the hidden layer s̓ output H ∈ Rn×h is calculated as

H = ϕ(XWxh + bh). (8.4.3)

Here, we have the weight parameter Wxh ∈ Rd×h, bias parameter bh ∈ R1×h, and the number of
hidden units h, for the hidden layer.

The hidden variable H is used as the input of the output layer. The output layer is given by

O = HWhq + bq. (8.4.4)

Here, O ∈ Rn×q is the output variable, Whq ∈ Rh×q is the weight parameter, and bq ∈ R1×q is
the bias parameter of the output layer. If it is a classification problem, we can use softmax(O) to
compute the probability distribution of the output category.

This is entirely analogous to the regression problem we solved previously in Section 8.1, hence we
omit details. Suffice it to say that we can pick (xt, xt−1) pairs at random and estimate the param-
eters W and b of our network via autograd and stochastic gradient descent.

8.4. Recurrent Neural Networks 319

8.4.2 Recurrent Networks with Hidden States

Matters are entirely different when we have hidden states. Let s̓ look at the structure in some more
detail. Remember that we often call iteration t as time t in an optimization algorithm, time in a
recurrent neural network refers to steps within an iteration. Assume that we have Xt ∈ Rn×d,
t = 1, . . . , T , in an iteration. And Ht ∈ Rn×h is the hidden variable of timestep t from the se-
quence. Unlike the multilayer perceptron, here we save the hidden variable Ht−1 from the pre-
vious timestep and introduce a new weight parameter Whh ∈ Rh×h, to describe how to use the
hidden variable of the previous timestep in the current timestep. Specifically, the calculation of
the hidden variable of the current timestep is determined by the input of the current timestep
together with the hidden variable of the previous timestep:

Ht = ϕ(XtWxh +Ht−1Whh + bh). (8.4.5)

Compared with (8.4.3), we added one more Ht−1Whh here. From the relationship between hidden
variables Ht and Ht−1 of adjacent timesteps, we know that those variables captured and retained
the sequence s̓ historical information up to the current timestep, just like the state or memory of
the neural network s̓ current timestep. Therefore, such a hidden variable is called a hidden state.
Since the hidden state uses the same definition of the previous timestep in the current timestep,
the computation of the equation above is recurrent, hence the name recurrent neural network
(RNN).

There are many different RNN construction methods. RNNs with a hidden state defined by the
equation above are very common. For timestep t, the output of the output layer is similar to the
computation in the multilayer perceptron:

Ot = HtWhq + bq. (8.4.6)

RNN parameters include the weight Wxh ∈ Rd×h,Whh ∈ Rh×h of the hidden layer with the bias
bh ∈ R1×h, and the weightWhq ∈ Rh×q of the output layer with the biasbq ∈ R1×q. It is worth men-
tioning that RNNs always use these model parameters, even for different timesteps. Therefore,
the number of RNN model parameters does not grow as the number of timesteps increases.

Fig. 8.4.1 shows the computational logic of an RNN at three adjacent timesteps. In timestep t,
the computation of the hidden state can be treated as an entry of a fully connected layer with the
activation function ϕ after concatenating the input Xt with the hidden state Ht−1 of the previous
timestep. The output of the fully connected layer is the hidden state of the current timestep Ht.
Its model parameter is the concatenation of Wxh and Whh, with a bias of bh. The hidden state of
the current timestep t, Ht, will participate in computing the hidden stateHt+1 of the next timestep
t+1. What is more, Ht will become the input forOt, the fully connected output layer of the current
timestep.

320 Chapter 8. Recurrent Neural Networks

Fig. 8.4.1: An RNN with a hidden state.

8.4.3 Steps in a Language Model

Now we illustrate how RNNs can be used to build a language model. For simplicity of illustration
we use words rather than characters as the inputs, since the former are easier to comprehend. Let
the minibatch size be 1, and the sequence of the text be the beginning of our dataset, i.e., “the time
machine by H. G. Wells”. Fig. 8.4.2 illustrates how to estimate the next word based on the present
and previous words. During the training process, we run a softmax operation on the output from
the output layer for each timestep, and then use the cross-entropy loss function to compute the
error between the result and the label. Due to the recurrent computation of the hidden state in
the hidden layer, the output of timestep 3, O3, is determined by the text sequence “the”, “time”,
and “machine” respectively. Since the next word of the sequence in the training data is “by”, the
loss of timestep 3 will depend on the probability distribution of the next word generated based on
the feature sequence “the”, “time”, “machine” and the label “by” of this timestep.

Fig. 8.4.2: Word-level RNN language model. The input and label sequences are the time machine
by H. and time machine by H. G. respectively.

In practice, each word is presented by a d dimensional vector, and we use a batch size n > 1.
Therefore, the input Xt at timestep t will be a n×d matrix, which is identical to what we discussed
before.

8.4. Recurrent Neural Networks 321

8.4.4 Perplexity

Last, let s̓ discuss about how to measure the sequence model quality. One way is to check how
surprising the text is. A good language model is able to predict with high accuracy tokens that what
we will see next. Consider the following continuations of the phrase “It is raining”, as proposed
by different language models:

1. “It is raining outside”

2. “It is raining banana tree”

3. “It is raining piouw;kcj pwepoiut”

In terms of quality, example 1 is clearly the best. The words are sensible and logically coherent.
While it might not quite accurately reflect which word follows semantically (“in San Francisco” and
“in winter” would have been perfectly reasonable extensions), the model is able to capture which
kind of word follows. Example 2 is considerably worse by producing a nonsensical extension.
Nonetheless, at least the model has learned how to spell words and some degree of correlation
between words. Last, example 3 indicates a poorly trained model that does not fit data properly.

We might measure the quality of the model by computing p(w), i.e., the likelihood of the sequence.
Unfortunately this is a number that is hard to understand and difficult to compare. After all,
shorter sequences are much more likely to occur than the longer ones, hence evaluating the model
on Tolstoy s̓ magnum opus “War and Peace”129 will inevitably produce a much smaller likelihood
than, say, on Saint-Exupery s̓ novella “The Little Prince”130. What is missing is the equivalent of
an average.

Information theory comes handy here and we will introduce more in Section 17.10. If we want to
compress text, we can ask about estimating the next symbol given the current set of symbols. A
lower bound on the number of bits is given by − log2 p(xt | xt−1, . . . , x1). A good language model
should allow us to predict the next word quite accurately. Thus, it should allow us to spend very
few bits on compressing the sequence. So we can measure it by the average number of bits that
we need to spend.

1

n

n∑
t=1

− log p(xt | xt−1, . . . , x1). (8.4.7)

This makes the performance on documents of different lengths comparable. For historical rea-
sons, scientists in natural language processing prefer to use a quantity called perplexity rather than
bitrate. In a nutshell, it is the exponential of the above:

PPL := exp

(
− 1

n

n∑
t=1

log p(xt | xt−1, . . . , x1)

)
. (8.4.8)

It can be best understood as the harmonic mean of the number of real choices that we have when
deciding which word to pick next. Note that perplexity naturally generalizes the notion of the
cross-entropy loss defined when we introduced the softmax regression (Section 3.4). That is, for
a single symbol both definitions are identical bar the fact that one is the exponential of the other.
Let s̓ look at a number of cases:

• In the best case scenario, the model always estimates the probability of the next symbol as
1. In this case the perplexity of the model is 1.

129 https://www.gutenberg.org/files/2600/2600-h/2600-h.htm
130 https://en.wikipedia.org/wiki/The_Little_Prince

322 Chapter 8. Recurrent Neural Networks

https://www.gutenberg.org/files/2600/2600-h/2600-h.htm
https://en.wikipedia.org/wiki/The_Little_Prince

• In the worst case scenario, the model always predicts the probability of the label category
as 0. In this situation, the perplexity is infinite.

• At the baseline, the model predicts a uniform distribution over all tokens. In this case, the
perplexity equals the size of the dictionary len(vocab). In fact, if we were to store the se-
quence without any compression, this would be the best we could do to encode it. Hence,
this provides a nontrivial upper bound that any model must satisfy.

Summary

• A network that uses recurrent computation is called a recurrent neural network (RNN).

• The hidden state of the RNN can capture historical information of the sequence up to the
current timestep.

• The number of RNN model parameters does not grow as the number of timesteps increases.

• We can create language models using a character-level RNN.

Exercises

1. If we use an RNN to predict the next character in a text sequence, how many output dimen-
sions do we need?

2. Can you design a mapping for which an RNN with hidden states is exact? Hint: what about
a finite number of words?

3. What happens to the gradient if you backpropagate through a long sequence?

4. What are some of the problems associated with the simple sequence model described above?

8.5 Implementation of Recurrent Neural Networks from Scratch

In this section we implement a language model introduce in Chapter 8 from scratch. It is based on
a character-level recurrent neural network trained on H. G. Wellsʼ The Time Machine. As before,
we start by reading the dataset first, which is introduced in Section 8.3.

%matplotlib inline
import d2l
import math
from mxnet import autograd, np, npx, gluon
npx.set_np()

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

8.5. Implementation of Recurrent Neural Networks from Scratch 323

8.5.1 One-hot Encoding

Remember that each token is presented as a numerical index in train_iter. Feeding these indices
directly to the neural network might make it hard to learn. We often present each token as a more
expressive feature vector. The easiest presentation is called one-hot encoding.

In a nutshell, we map each index to a different unit vector: assume that the number of different
tokens in the vocabulary is N (the len(vocab)) and the token indices range from 0 to N − 1. If
the index of a token is the integer i, then we create a vector ei of all 0s with a length of N and set
the element at position i to 1. This vector is the one-hot vector of the original token. The one-hot
vectors with indices 0 and 2 are shown below.

npx.one_hot(np.array([0, 2]), len(vocab))

array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

The shape of the minibatch we sample each time is (batch size, timestep). The one_hot function
transforms such a minibatch into a 3-D tensor with the last dimension equals to the vocabulary
size. We often transpose the input so that we will obtain a (timestep, batch size, vocabulary size)
output that fits into a sequence model easier.

X = np.arange(batch_size * num_steps).reshape(batch_size, num_steps)
npx.one_hot(X.T, len(vocab)).shape

(35, 32, 28)

8.5.2 Initializing the Model Parameters

Next, we initialize the model parameters for a RNN model. The number of hidden units
num_hiddens is a tunable parameter.

def get_params(vocab_size, num_hiddens, ctx):
num_inputs = num_outputs = vocab_size

def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=ctx)

Hidden layer parameters
W_xh = normal((num_inputs, num_hiddens))
W_hh = normal((num_hiddens, num_hiddens))
b_h = np.zeros(num_hiddens, ctx=ctx)
Output layer parameters
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=ctx)
Attach gradients
params = [W_xh, W_hh, b_h, W_hq, b_q]
for param in params:

param.attach_grad()
return params

324 Chapter 8. Recurrent Neural Networks

8.5.3 RNNModel

First, we need an init_rnn_state function to return the hidden state at initialization. It returns
an ndarray filled with 0 and with a shape of (batch size, number of hidden units). Using tuples
makes it easier to handle situations where the hidden state contains multiple variables (e.g., when
combining multiple layers in an RNN where each layer requires initializing).

def init_rnn_state(batch_size, num_hiddens, ctx):
return (np.zeros(shape=(batch_size, num_hiddens), ctx=ctx),)

The following rnn function defines how to compute the hidden state and output in a timestep. The
activation function here uses the tanh function. As described in Section 4.1, the mean value of the
tanh function is 0, when the elements are evenly distributed over the real numbers.

def rnn(inputs, state, params):
Inputs shape: (num_steps, batch_size, vocab_size)
W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:

H = np.tanh(np.dot(X, W_xh) + np.dot(H, W_hh) + b_h)
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)

return np.concatenate(outputs, axis=0), (H,)

Now we have all functions defined, next we create a class to wrap these functions and store pa-
rameters.

Saved in the d2l package for later use
class RNNModelScratch(object):

"""A RNN Model based on scratch implementations"""

def __init__(self, vocab_size, num_hiddens, ctx,
get_params, init_state, forward):

self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
self.params = get_params(vocab_size, num_hiddens, ctx)
self.init_state, self.forward_fn = init_state, forward

def __call__(self, X, state):
X = npx.one_hot(X.T, self.vocab_size)
return self.forward_fn(X, state, self.params)

def begin_state(self, batch_size, ctx):
return self.init_state(batch_size, self.num_hiddens, ctx)

Let s̓ do a sanity check whether inputs and outputs have the correct dimensions, e.g., to ensure
that the dimensionality of the hidden state has not changed.

vocab_size, num_hiddens, ctx = len(vocab), 512, d2l.try_gpu()
model = RNNModelScratch(len(vocab), num_hiddens, ctx, get_params,

init_rnn_state, rnn)
state = model.begin_state(X.shape[0], ctx)
Y, new_state = model(X.as_in_context(ctx), state)
Y.shape, len(new_state), new_state[0].shape

8.5. Implementation of Recurrent Neural Networks from Scratch 325

((1120, 28), 1, (32, 512))

We can see that the output shape is (number steps× batch size, vocabulary size), while the hidden
state shape remains the same, i.e., (batch size, number of hidden units).

8.5.4 Prediction

We first explain the predicting function so we can regularly check the prediction during training.
This function predicts the next num_predicts characters based on the prefix (a string containing
several characters). For the beginning of the sequence, we only update the hidden state. After
that we begin generating new characters and emitting them.

Saved in the d2l package for later use
def predict_ch8(prefix, num_predicts, model, vocab, ctx):

state = model.begin_state(batch_size=1, ctx=ctx)
outputs = [vocab[prefix[0]]]

def get_input():
return np.array([outputs[-1]], ctx=ctx).reshape(1, 1)

for y in prefix[1:]: # Warmup state with prefix
_, state = model(get_input(), state)
outputs.append(vocab[y])

for _ in range(num_predicts): # Predict num_predicts steps
Y, state = model(get_input(), state)
outputs.append(int(Y.argmax(axis=1).reshape(1)))

return ''.join([vocab.idx_to_token[i] for i in outputs])

We test the predict_rnn function first. Given that we did not train the network it will generate
nonsensical predictions. We initialize it with the sequence traveller and have it generate 10 ad-
ditional characters.

predict_ch8('time traveller ', 10, model, vocab, ctx)

'time traveller iiiiiiiiii'

8.5.5 Gradient Clipping

For a sequence of lengthT , we compute the gradients over theseT timesteps in an iteration, which
results in a chain of matrix-products with length O(T) during backpropagating. As mentioned
in Section 4.8, it might result in numerical instability, e.g., the gradients may either explode or
vanish, when T is large. Therefore, RNN models often need extra help to stabilize the training.

Recall that when solving an optimization problem, we take update steps for the weights w in the
general direction of the negative gradient gt on a minibatch, say w − η · gt. Let s̓ further assume
that the objective is well behaved, i.e., it is Lipschitz continuous with constant L, i.e.,

|l(w)− l(w′)| ≤ L∥w−w′∥. (8.5.1)

In this case we can safely assume that if we update the weight vector by η ·gt, we will not observe a
change by more than Lη∥gt∥. This is both a curse and a blessing. A curse since it limits the speed

326 Chapter 8. Recurrent Neural Networks

of making progress, whereas a blessing since it limits the extent to which things can go wrong if
we move in the wrong direction.

Sometimes the gradients can be quite large and the optimization algorithm may fail to converge.
We could address this by reducing the learning rate η or by some other higher order trick. But
what if we only rarely get large gradients? In this case such an approach may appear entirely
unwarranted. One alternative is to clip the gradients by projecting them back to a ball of a given
radius, say θ via

g← min
(
1,

θ

∥g∥

)
g. (8.5.2)

By doing so we know that the gradient norm never exceeds θ and that the updated gradient is
entirely aligned with the original direction g. It also has the desirable side-effect of limiting the
influence any given minibatch (and within it any given sample) can exert on the weight vectors.
This bestows a certain degree of robustness to the model. Gradient clipping provides a quick fix to
the gradient exploding. While it does not entire solve the problem, it is one of the many techniques
to alleviate it.

Below we define a function to clip the gradients of a model that is either a RNNModelScratch in-
stance or a Gluon model. Also note that we compute the gradient norm over all parameters.

Saved in the d2l package for later use
def grad_clipping(model, theta):

if isinstance(model, gluon.Block):
params = [p.data() for p in model.collect_params().values()]

else:
params = model.params

norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))
if norm > theta:

for param in params:
param.grad[:] *= theta / norm

8.5.6 Training

Let s̓ first define the function to train the model on one data epoch. It differs from the models
training of Section 3.6 in three places:

1. Different sampling methods for sequential data (independent sampling and sequential par-
titioning) will result in differences in the initialization of hidden states.

2. We clip the gradients before updating the model parameters. This ensures that the model
does not diverge even when gradients blow up at some point during the training process,
and it effectively reduces the step size automatically.

3. We use perplexity to evaluate the model. This ensures that sequences of different length are
comparable.

When the consecutive sampling is used, we initialize the hidden state at the beginning of each
epoch. Since the ith example in the next minibatch is adjacent to the current ith example, so the
next minibatch can use the current hidden state directly, we only detach the gradient so that we
compute the gradients within a minibatch. When using the random sampling, we need to re-
initialize the hidden state for each iteration since each example is sampled with a random position.
Same as the train_epoch_ch3 function in Section 3.6, we use generalized updater, which could be
either a Gluon trainer or a scratched implementation.

8.5. Implementation of Recurrent Neural Networks from Scratch 327

Saved in the d2l package for later use
def train_epoch_ch8(model, train_iter, loss, updater, ctx, use_random_iter):

state, timer = None, d2l.Timer()
metric = d2l.Accumulator(2) # loss_sum, num_examples
for X, Y in train_iter:

if state is None or use_random_iter:
Initialize state when either it is the first iteration or
using random sampling.
state = model.begin_state(batch_size=X.shape[0], ctx=ctx)

else:
for s in state:

s.detach()
y = Y.T.reshape(-1)
X, y = X.as_in_context(ctx), y.as_in_context(ctx)
with autograd.record():

py, state = model(X, state)
l = loss(py, y).mean()

l.backward()
grad_clipping(model, 1)
updater(batch_size=1) # Since used mean already
metric.add(l * y.size, y.size)

return math.exp(metric[0]/metric[1]), metric[1]/timer.stop()

The training function again supports either we implement the model from scratch or using Gluon.

Saved in the d2l package for later use
def train_ch8(model, train_iter, vocab, lr, num_epochs, ctx,

use_random_iter=False):
Initialize
loss = gluon.loss.SoftmaxCrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',

legend=['train'], xlim=[1, num_epochs])
if isinstance(model, gluon.Block):

model.initialize(ctx=ctx, force_reinit=True, init=init.Normal(0.01))
trainer = gluon.Trainer(model.collect_params(),

'sgd', {'learning_rate': lr})

def updater(batch_size):
return trainer.step(batch_size)

else:
def updater(batch_size):

return d2l.sgd(model.params, lr, batch_size)

def predict(prefix):
return predict_ch8(prefix, 50, model, vocab, ctx)

Train and check the progress.
for epoch in range(num_epochs):

ppl, speed = train_epoch_ch8(
model, train_iter, loss, updater, ctx, use_random_iter)

if epoch % 10 == 0:
print(predict('time traveller'))
animator.add(epoch+1, [ppl])

print('Perplexity %.1f, %d tokens/sec on %s' % (ppl, speed, ctx))
print(predict('time traveller'))
print(predict('traveller'))

328 Chapter 8. Recurrent Neural Networks

Now we can train a model. Since we only use 10, 000 tokens in the dataset, so here the model needs
more epochs to converge.

num_epochs, lr = 500, 1
train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.0, 38730 tokens/sec on gpu(0)
time traveller it s against reason said filby what reason said
traveller it s against reason said filby what reason said

Finally let s̓ check the results to use a random sampling iterator.

train_ch8(model, train_iter, vocab, lr, num_epochs, ctx, use_random_iter=True)

Perplexity 1.3, 38212 tokens/sec on gpu(0)
time traveller after the pauserequired for the proper assimilati
traveller you can show black is white by argument said fil

While implementing the above RNN model from scratch is instructive, it is not convenient. In the
next section we will see how to improve significantly on the current model and how to make it
faster and easier to implement.

8.5. Implementation of Recurrent Neural Networks from Scratch 329

Summary

• Sequence models need state initialization for training.

• Between sequential models you need to ensure to detach the gradients, to ensure that the
automatic differentiation does not propagate effects beyond the current sample.

• A simple RNN language model consists of an encoder, an RNN model, and a decoder.

• Gradient clipping prevents gradient explosion (but it cannot fix vanishing gradients).

• Perplexity calibrates model performance across different sequence length. It is the expo-
nentiated average of the cross-entropy loss.

• Sequential partitioning typically leads to better models.

Exercises

1. Show that one-hot encoding is equivalent to picking a different embedding for each object.

2. Adjust the hyperparameters to improve the perplexity.

• How low can you go? Adjust embeddings, hidden units, learning rate, etc.

• How well will it work on other books by H. G. Wells, e.g., The War of the Worlds132.

3. Modify the predict function such as to use sampling rather than picking the most likely next
character.

• What happens?

• Bias the model towards more likely outputs, e.g., by sampling from q(wt |
wt−1, . . . , w1) ∝ pα(wt | wt−1, . . . , w1) for α > 1.

4. Run the code in this section without clipping the gradient. What happens?

5. Change adjacent sampling so that it does not separate hidden states from the computational
graph. Does the running time change? How about the accuracy?

6. Replace the activation function used in this section with ReLU and repeat the experiments
in this section.

7. Prove that the perplexity is the inverse of the harmonic mean of the conditional word prob-
abilities.

132 http://www.gutenberg.org/ebooks/36

330 Chapter 8. Recurrent Neural Networks

http://www.gutenberg.org/ebooks/36

8.6 Concise Implementation of Recurrent Neural Networks

While Section 8.5 was instructive to see how recurrent neural networks (RNNs) are implemented,
this is not convenient or fast. This section will show how to implement the same language model
more efficiently using functions provided by Gluon. We begin as before by reading the “Time
Machine” corpus.

import d2l
from mxnet import np, npx
from mxnet.gluon import nn, rnn
npx.set_np()

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

8.6.1 Defining the Model

Gluons̓ rnn module provides a recurrent neural network implementation (beyond many other se-
quence models). We construct the recurrent neural network layer rnn_layer with a single hidden
layer and 256 hidden units, and initialize the weights.

num_hiddens = 256
rnn_layer = rnn.RNN(num_hiddens)
rnn_layer.initialize()

Initializing the state is straightforward. We invoke the member function rnn_layer.
begin_state(batch_size). This returns an initial state for each element in the minibatch. That
is, it returns an object of size (hidden layers, batch size, number of hidden units). The number of
hidden layers defaults to be 1. In fact, we have not even discussed yet what it means to have mul-
tiple layers—this will happen in Section 9.3. For now, suffice it to say that multiple layers simply
amount to the output of one RNN being used as the input for the next RNN.

batch_size = 1
state = rnn_layer.begin_state(batch_size=batch_size)
len(state), state[0].shape

(1, (1, 1, 256))

With a state variable and an input, we can compute the output with the updated state.

num_steps = 1
X = np.random.uniform(size=(num_steps, batch_size, len(vocab)))
Y, state_new = rnn_layer(X, state)
Y.shape, len(state_new), state_new[0].shape

((1, 1, 256), 1, (1, 1, 256))

Similar to Section 8.5, we define an RNNModel block by subclassing the Block class for a complete
recurrent neural network. Note that rnn_layer only contains the hidden recurrent layers, we need

8.6. Concise Implementation of Recurrent Neural Networks 331

to create a separate output layer. While in the previous section, we have the output layer within
the rnn block.

Saved in the d2l package for later use
class RNNModel(nn.Block):

def __init__(self, rnn_layer, vocab_size, **kwargs):
super(RNNModel, self).__init__(**kwargs)
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.dense = nn.Dense(vocab_size)

def forward(self, inputs, state):
X = npx.one_hot(inputs.T, self.vocab_size)
Y, state = self.rnn(X, state)
The fully connected layer will first change the shape of Y to
(num_steps * batch_size, num_hiddens). Its output shape is
(num_steps * batch_size, vocab_size).
output = self.dense(Y.reshape(-1, Y.shape[-1]))
return output, state

def begin_state(self, *args, **kwargs):
return self.rnn.begin_state(*args, **kwargs)

8.6.2 Training and Predicting

Before training the model, let s̓ make a prediction with the a model that has random weights.

ctx = d2l.try_gpu()
model = RNNModel(rnn_layer, len(vocab))
model.initialize(force_reinit=True, ctx=ctx)
d2l.predict_ch8('time traveller', 10, model, vocab, ctx)

'time travellervmjznnngii'

As is quite obvious, this model does not work at all. Next, we call train_ch8 with the same hyper-
parameters defined in Section 8.5 and train our model with Gluon.

num_epochs, lr = 500, 1
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.2, 195791 tokens/sec on gpu(0)
time traveller you can show black is white by argument said fil
travellerepresent moment aut for the historian thepsycholog

332 Chapter 8. Recurrent Neural Networks

Compared with the last section, this model achieves comparable perplexity, albeit within a shorter
period of time, due to the code being more optimized.

Summary

• Gluons̓ rnn module provides an implementation at the recurrent neural network layer.

• Gluons̓ nn.RNN instance returns the output and hidden state after forward computation. This
forward computation does not involve output layer computation.

• As before, the computational graph needs to be detached from previous steps for reasons of
efficiency.

Exercises

1. Compare the implementation with the previous section.

• Why does Gluons̓ implementation run faster?

• If you observe a significant difference beyond speed, try to find the reason.

2. Can you make the model overfit?

• Increase the number of hidden units.

• Increase the number of iterations.

• What happens if you adjust the clipping parameter?

3. Implement the autoregressive model of the introduction to the current chapter using an
RNN.

4. What happens if you increase the number of hidden layers in the RNN model? Can you make
the model work?

5. How well can you compress the text using this model?

• How many bits do you need?

• Why does not everyone use this model for text compression? Hint: what about the
compressor itself?

8.6. Concise Implementation of Recurrent Neural Networks 333

8.7 Backpropagation Through Time

So far we repeatedly alluded to things like exploding gradients, vanishing gradients, truncating back-
prop, and the need to detach the computational graph. For instance, in the previous section we in-
voked s.detach() on the sequence. None of this was really fully explained, in the interest of being
able to build a model quickly and to see how it works. In this section we will delve a bit more deeply
into the details of backpropagation for sequence models and why (and how) the math works. For a
more detailed discussion about randomization and backpropagation also see the paper by (Tallec
& Ollivier, 2017).

We encountered some of the effects of gradient explosion when we first implemented recurrent
neural networks (Section 8.5). In particular, if you solved the problems in the problem set, you
would have seen that gradient clipping is vital to ensure proper convergence. To provide a bet-
ter understanding of this issue, this section will review how gradients are computed for sequence
models. Note that there is nothing conceptually new in how it works. After all, we are still merely
applying the chain rule to compute gradients. Nonetheless, it is worth while reviewing backprop-
agation (Section 4.7) again.

Forward propagation in a recurrent neural network is relatively straightforward. Backpropagation
through time is actually a specific application of back propagation in recurrent neural networks. It
requires us to expand the recurrent neural network one timestep at a time to obtain the dependen-
cies between model variables and parameters. Then, based on the chain rule, we apply backprop-
agation to compute and store gradients. Since sequences can be rather long, the dependency can
be rather lengthy. For instance, for a sequence of 1000 characters, the first symbol could poten-
tially have significant influence on the symbol at position 1000. This is not really computationally
feasible (it takes too long and requires too much memory) and it requires over 1000 matrix-vector
products before we would arrive at that very elusive gradient. This is a process fraught with com-
putational and statistical uncertainty. In the following we will elucidate what happens and how
to address this in practice.

8.7.1 A Simplified Recurrent Network

We start with a simplified model of how an RNN works. This model ignores details about the
specifics of the hidden state and how it is updated. These details are immaterial to the analysis
and would only serve to clutter the notation, but make it look more intimidating. In this simplified
model, we denote ht as the hidden state, xt as the input, and ot as the output at timestep t. In
addition, wh and wo indicate the weights of hidden states and the output layer, respectively. As a
result, the hidden states and outputs at each timesteps can be explained as

ht = f(xt, ht−1, wh) and ot = g(ht, wo). (8.7.1)

Hence, we have a chain of values {. . . , (ht−1, xt−1, ot−1), (ht, xt, ot), . . .} that depend on each other
via recursive computation. The forward pass is fairly straightforward. All we need is to loop

334 Chapter 8. Recurrent Neural Networks

through the (xt, ht, ot) triples one step at a time. The discrepancy between outputs ot and the
desired targets yt is then evaluated by an objective function as

L(x, y, wh, wo) =
T∑
t=1

l(yt, ot). (8.7.2)

For backpropagation, matters are a bit more tricky, especially when we compute the gradients
with regard to the parameters wh of the objective function L. To be specific, by the chain rule,

∂wh
L =

T∑
t=1

∂wh
l(yt, ot)

=
T∑
t=1

∂ot l(yt, ot)∂htg(ht, wh) [∂wh
ht] .

(8.7.3)

The first and the second part of the derivative is easy to compute. The third part ∂wh
ht is where

things get tricky, since we need to compute the effect of the parameters on ht.

To derive the above gradient, assume that we have three sequences {at}, {bt}, {ct} satisfying a0 =
0, a1 = b1, and at = bt + ctat−1 for t = 1, 2, Then for t ≥ 1, it is easy to show

at = bt +
t−1∑
i=1

 t∏
j=i+1

cj

 bi. (8.7.4)

Now let s̓ apply (8.7.4) with

at = ∂wh
ht, (8.7.5)

bt = ∂wh
f(xt, ht−1, wh), (8.7.6)

ct = ∂ht−1f(xt, ht−1, wh). (8.7.7)

Therefore, at = bt + ctat−1 becomes the following recursion

∂wh
ht = ∂wh

f(xt, ht−1, w) + ∂hf(xt, ht−1, wh)∂wh
ht−1. (8.7.8)

By (8.7.4), the third part will be

∂wh
ht = ∂wh

f(xt, ht−1, wh) +

t−1∑
i=1

 t∏
j=i+1

∂hj−1
f(xj , hj−1, wh)

 ∂wh
f(xi, hi−1, wh). (8.7.9)

While we can use the chain rule to compute ∂wht recursively, this chain can get very long whenever
t is large. Let s̓ discuss a number of strategies for dealing with this problem.

• Compute the full sum. This is very slow and gradients can blow up, since subtle changes in
the initial conditions can potentially affect the outcome a lot. That is, we could see things
similar to the butterfly effect where minimal changes in the initial conditions lead to dispro-
portionate changes in the outcome. This is actually quite undesirable in terms of the model
that we want to estimate. After all, we are looking for robust estimators that generalize well.
Hence this strategy is almost never used in practice.

8.7. Backpropagation Through Time 335

• Truncate the sum after τ steps. This is what we have been discussing so far. This leads to
an approximation of the true gradient, simply by terminating the sum above at ∂wht−τ . The
approximation error is thus given by ∂hf(xt, ht−1, w)∂wht−1 (multiplied by a product of gra-
dients involving ∂hf). In practice this works quite well. It is what is commonly referred to as
truncated BPTT (backpropgation through time). One of the consequences of this is that the
model focuses primarily on short-term influence rather than long-term consequences. This
is actually desirable, since it biases the estimate towards simpler and more stable models.

• Randomized Truncation. Last we can replace ∂wh
ht by a random variable which is correct

in expectation but which truncates the sequence. This is achieved by using a sequence of ξt
where E[ξt] = 1 and P (ξt = 0) = 1 − π and furthermore P (ξt = π−1) = π. We use this to
replace the gradient:

zt = ∂wf(xt, ht−1, w) + ξt∂hf(xt, ht−1, w)∂wht−1. (8.7.10)

It follows from the definition of ξt that E[zt] = ∂wht. Whenever ξt = 0 the expansion terminates at
that point. This leads to a weighted sum of sequences of varying lengths where long sequences are
rare but appropriately overweighted. (Tallec & Ollivier, 2017) proposed this in their paper. Unfor-
tunately, while appealing in theory, the model does not work much better than simple truncation,
most likely due to a number of factors. First, the effect of an observation after a number of back-
propagation steps into the past is quite sufficient to capture dependencies in practice. Second,
the increased variance counteracts the fact that the gradient is more accurate. Third, we actually
want models that have only a short range of interaction. Hence, BPTT has a slight regularizing
effect which can be desirable.

Fig. 8.7.1: From top to bottom: randomized BPTT, regularly truncated BPTT and full BPTT

Fig. 8.7.1 illustrates the three cases when analyzing the first few words of The Time Machine: * The
first row is the randomized truncation which partitions the text into segments of varying length. *
The second row is the regular truncated BPTT which breaks it into sequences of the same length.
* The third row is the full BPTT that leads to a computationally infeasible expression.

8.7.2 The Computational Graph

In order to visualize the dependencies between model variables and parameters during computa-
tion in a recurrent neural network, we can draw a computational graph for the model, as shown
in Fig. 8.7.2. For example, the computation of the hidden states of timestep 3, h3, depends on
the model parameters Whx and Whh, the hidden state of the last timestep h2, and the input of the
current timestep x3.

336 Chapter 8. Recurrent Neural Networks

Fig. 8.7.2: Computational dependencies for a recurrent neural network model with three
timesteps. Boxes represent variables (not shaded) or parameters (shaded) and circles represent
operators.

8.7.3 BPTT in Detail

After discussing the general principle, let s̓ discuss BPTT in detail. By decomposing W into differ-
ent sets of weight matrices (Whx,Whh and Woh), we will get a simple linear latent variable model:

ht = Whxxt +Whhht−1 and ot = Wohht. (8.7.11)

Following the discussion in Section 4.7, we compute the gradients ∂L
∂Whx

, ∂L
∂Whh

, ∂L
∂Woh

for

L(x, y,W) =

T∑
t=1

l(ot, yt), (8.7.12)

where l(·) denotes the chosen loss function. Taking the derivatives with respect to Woh is fairly
straightforward and we obtain

∂Woh
L =

T∑
t=1

prod (∂ot l(ot, yt),ht) , (8.7.13)

where prod(·) indicates the product of two or more matrices.

The dependency on Whx and Whh is a bit more tricky since it involves a chain of derivatives. We
begin with

∂Whh
L =

T∑
t=1

prod (∂ot l(ot, yt),Woh, ∂Whh
ht) ,

∂Whx
L =

T∑
t=1

prod (∂ot l(ot, yt),Woh, ∂Whx
ht) .

(8.7.14)

After all, hidden states depend on each other and on past inputs. The key quantity is how past
hidden states affect future hidden states.

∂ht
ht+1 = W⊤

hh and thus ∂ht
hT =

(
W⊤

hh

)T−t
. (8.7.15)

8.7. Backpropagation Through Time 337

Chaining terms together yields

∂Whh
ht =

t∑
j=1

(
W⊤

hh

)t−j
hj

∂Whx
ht =

t∑
j=1

(
W⊤

hh

)t−j
xj .

(8.7.16)

A number of things follow from this potentially very intimidating expression. First, it pays to store
intermediate results, i.e., powers of Whh as we work our way through the terms of the loss func-
tion L. Second, this simple linear example already exhibits some key problems of long sequence
models: it involves potentially very large powers Wj

hh. In it, eigenvalues smaller than 1 vanish
for large j and eigenvalues larger than 1 diverge. This is numerically unstable and gives undue
importance to potentially irrelevant past detail. One way to address this is to truncate the sum
at a computationally convenient size. Later on in Chapter 9 we will see how more sophisticated
sequence models such as LSTMs can alleviate this further. In practice, this truncation is effected
by detaching the gradient after a given number of steps.

Summary

• Backpropagation through time is merely an application of backprop to sequence models
with a hidden state.

• Truncation is needed for computational convenience and numerical stability.

• High powers of matrices can lead to divergent and vanishing eigenvalues. This manifests
itself in the form of exploding or vanishing gradients.

• For efficient computation, intermediate values are cached.

Exercises

1. Assume that we have a symmetric matrix M ∈ Rn×n with eigenvalues λi. Without loss of
generality, assume that they are ordered in ascending order λi ≤ λi+1. Show that Mk has
eigenvalues λk

i .

2. Prove that for a random vector x ∈ Rn, with high probability Mkx will be very much aligned
with the largest eigenvector vn of M. Formalize this statement.

3. What does the above result mean for gradients in a recurrent neural network?

4. Besides gradient clipping, can you think of any other methods to cope with gradient explo-
sion in recurrent neural networks?

338 Chapter 8. Recurrent Neural Networks

9 | Modern Recurrent Neural Networks

Although we have learned the basics of recurrent neural networks, they are not sufficient for a
practitioner to solve today s̓ sequence learning problems. For instance, given the numerical un-
stability during gradient calculation, gated recurrent neural networks much more common in
practice. We will begin by introducing two of such widely-used networks, namely gated recurrent
units (GRUs) and long short term memory (LSTM), with illustrations using the same language
modeling problem as introduced in Chapter 8.

Furthermore, we will modify recurrent neural networks with a single undirectional hidden layer.
We will describe deep architectures, and discuss the bidirectional design with both forward and
backward recursion. They are frequently adopted in modern recurrent networks.

In fact, a large portion of sequence learning problems such as automatic speech recognition, text
to speech, and machine translation, consider both inputs and outputs to be sequences of arbi-
trary length. Finally, we will take machine translation as an example, and introduce the encoder-
decoder architecture based on recurrent neural networks and modern practices for such sequence
to sequence learning problems.

9.1 Gated Recurrent Units (GRU)

In the previous section, we discussed how gradients are calculated in a recurrent neural network.
In particular we found that long products of matrices can lead to vanishing or divergent gradients.
Let s̓ briefly think about what such gradient anomalies mean in practice:

• We might encounter a situation where an early observation is highly significant for predict-
ing all future observations. Consider the somewhat contrived case where the first observa-
tion contains a checksum and the goal is to discern whether the checksum is correct at the
end of the sequence. In this case, the influence of the first token is vital. We would like to
have some mechanisms for storing vital early information in a memory cell. Without such a
mechanism, we will have to assign a very large gradient to this observation, since it affects
all subsequent observations.

• We might encounter situations where some symbols carry no pertinent observation. For
instance, when parsing a web page there might be auxiliary HTML code that is irrelevant
for the purpose of assessing the sentiment conveyed on the page. We would like to have
some mechanism for skipping such symbols in the latent state representation.

• We might encounter situations where there is a logical break between parts of a sequence.
For instance, there might be a transition between chapters in a book, or a transition between
a bear, and a bull market for securities. In this case it would be nice to have a means of
resetting our internal state representation.

339

A number of methods have been proposed to address this. One of the earliest is Long Short Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) which we will discuss in Section 9.2. Gated
Recurrent Unit (GRU) (Cho et al., 2014) is a slightly more streamlined variant that often offers
comparable performance and is significantly faster to compute. See also (Chung et al., 2014) for
more details. Due to its simplicity, let s̓ start with the GRU.

9.1.1 Gating the Hidden State

The key distinction between regular RNNs and GRUs is that the latter support gating of the hidden
state. This means that we have dedicated mechanisms for when a hidden state should be updated
and also when it should be reset. These mechanisms are learned and they address the concerns
listed above. For instance, if the first symbol is of great importance we will learn not to update
the hidden state after the first observation. Likewise, we will learn to skip irrelevant temporary
observations. Last, we will learn to reset the latent state whenever needed. We discuss this in
detail below.

Reset Gates and Update Gates

The first thing we need to introduce are reset and update gates. We engineer them to be vectors
with entries in (0, 1) such that we can perform convex combinations. For instance, a reset vari-
able would allow us to control how much of the previous state we might still want to remember.
Likewise, an update variable would allow us to control how much of the new state is just a copy of
the old state.

We begin by engineering gates to generate these variables. Fig. 9.1.1 illustrates the inputs for
both reset and update gates in a GRU, given the current timestep input Xt and the hidden state of
the previous timestep Ht−1. The output is given by a fully connected layer with a sigmoid as its
activation function.

Fig. 9.1.1: Reset and update gate in a GRU.

For a given timestep t, the minibatch input is Xt ∈ Rn×d (number of examples: n, number of
inputs: d) and the hidden state of the last timestep is Ht−1 ∈ Rn×h (number of hidden states: h).

340 Chapter 9. Modern Recurrent Neural Networks

Then, the reset gate Rt ∈ Rn×h and update gate Zt ∈ Rn×h are computed as follows:

Rt = σ(XtWxr +Ht−1Whr + br),

Zt = σ(XtWxz +Ht−1Whz + bz).
(9.1.1)

Here, Wxr,Wxz ∈ Rd×h and Whr,Whz ∈ Rh×h are weight parameters and br,bz ∈ R1×h are biases.
We use a sigmoid function (as introduced in Section 4.1) to transform input values to the interval
(0, 1).

Reset Gates in Action

We begin by integrating the reset gate with a regular latent state updating mechanism. In a con-
ventional RNN, we would have an hidden state update of the form

Ht = tanh(XtWxh +Ht−1Whh + bh). (9.1.2)

This is essentially identical to the discussion of the previous section, albeit with a nonlinearity
in the form of tanh to ensure that the values of the hidden states remain in the interval (−1, 1).
If we want to be able to reduce the influence of the previous states we can multiply Ht−1 with Rt

elementwise. Whenever the entries in the reset gate Rt are close to 1, we recover a conventional
RNN. For all entries of the reset gate Rt that are close to 0, the hidden state is the result of an MLP
with Xt as input. Any pre-existing hidden state is thus reset to defaults. This leads to the following
candidate hidden state (it is a candidate since we still need to incorporate the action of the update
gate).

H̃t = tanh(XtWxh + (Rt ⊙Ht−1)Whh + bh). (9.1.3)

Fig. 9.1.2 illustrates the computational flow after applying the reset gate. The symbol ⊙ indicates
pointwise multiplication between tensors.

Fig. 9.1.2: Candidate hidden state computation in a GRU. The multiplication is carried out ele-
mentwise.

9.1. Gated Recurrent Units (GRU) 341

Update Gates in Action

Next we need to incorporate the effect of the update gateZt, as shown in Fig. 9.1.3. This determines
the extent to which the new state Ht is just the old state Ht−1 and by how much the new candidate
state H̃t is used. The gating variable Zt can be used for this purpose, simply by taking elementwise
convex combinations between both candidates. This leads to the final update equation for the
GRU.

Ht = Zt ⊙Ht−1 + (1− Zt)⊙ H̃t. (9.1.4)

Fig. 9.1.3: Hidden state computation in a GRU. As before, the multiplication is carried out elemen-
twise.

Whenever the update gate Zt is close to 1, we simply retain the old state. In this case the infor-
mation from Xt is essentially ignored, effectively skipping timestep t in the dependency chain. In
contrast, whenever Zt is close to 0, the new latent stateHt approaches the candidate latent state H̃t.
These designs can help us cope with the vanishing gradient problem in RNNs and better capture
dependencies for time series with large timestep distances. In summary, GRUs have the following
two distinguishing features:

• Reset gates help capture short-term dependencies in time series.

• Update gates help capture long-term dependencies in time series.

9.1.2 Implementation from Scratch

To gain a better understanding of the model, let s̓ implement a GRU from scratch.

342 Chapter 9. Modern Recurrent Neural Networks

Reading the Dataset

We begin by reading The Time Machine corpus that we used in Section 8.5. The code for reading
the dataset is given below:

import d2l
from mxnet import np, npx
from mxnet.gluon import rnn
npx.set_np()

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

Initializing Model Parameters

The next step is to initialize the model parameters. We draw the weights from a Gaussian with
variance to be 0.01 and set the bias to 0. The hyperparameter num_hiddens defines the number of
hidden units. We instantiate all weights and biases relating to the update gate, the reset gate, and
the candidate hidden state itself. Subsequently, we attach gradients to all the parameters.

def get_params(vocab_size, num_hiddens, ctx):
num_inputs = num_outputs = vocab_size

def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=ctx)

def three():
return (normal((num_inputs, num_hiddens)),

normal((num_hiddens, num_hiddens)),
np.zeros(num_hiddens, ctx=ctx))

W_xz, W_hz, b_z = three() # Update gate parameter
W_xr, W_hr, b_r = three() # Reset gate parameter
W_xh, W_hh, b_h = three() # Candidate hidden state parameter
Output layer parameters
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=ctx)
Attach gradients
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:

param.attach_grad()
return params

9.1. Gated Recurrent Units (GRU) 343

Defining the Model

Now we will define the hidden state initialization function init_gru_state. Just like the
init_rnn_state function defined in Section 8.5, this function returns an ndarray with a shape
(batch size, number of hidden units) whose values are all zeros.

def init_gru_state(batch_size, num_hiddens, ctx):
return (np.zeros(shape=(batch_size, num_hiddens), ctx=ctx),)

Now we are ready to define the GRU model. Its structure is the same as the basic RNN cell, except
that the update equations are more complex.

def gru(inputs, state, params):
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state
outputs = []
for X in inputs:

Z = npx.sigmoid(np.dot(X, W_xz) + np.dot(H, W_hz) + b_z)
R = npx.sigmoid(np.dot(X, W_xr) + np.dot(H, W_hr) + b_r)
H_tilda = np.tanh(np.dot(X, W_xh) + np.dot(R * H, W_hh) + b_h)
H = Z * H + (1 - Z) * H_tilda
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)

return np.concatenate(outputs, axis=0), (H,)

Training and Prediction

Training and prediction work in exactly the same manner as before. After training for one epoch,
the perplexity and the output sentence will be like the following.

vocab_size, num_hiddens, ctx = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, ctx, get_params,

init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.1, 14158 tokens/sec on gpu(0)
time traveller it s against reason said filby what reason said
traveller it s against reason said filby what reason said

344 Chapter 9. Modern Recurrent Neural Networks

9.1.3 Concise Implementation

In Gluon, we can directly call the GRU class in the rnn module. This encapsulates all the config-
uration detail that we made explicit above. The code is significantly faster as it uses compiled
operators rather than Python for many details that we spelled out in detail before.

gru_layer = rnn.GRU(num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.1, 198954 tokens/sec on gpu(0)
time traveller it s against reason said filby what reason said
traveller smiled round at us then still smiling faintly and

9.1. Gated Recurrent Units (GRU) 345

Summary

• Gated recurrent neural networks are better at capturing dependencies for time series with
large timestep distances.

• Reset gates help capture short-term dependencies in time series.

• Update gates help capture long-term dependencies in time series.

• GRUs contain basic RNNs as their extreme case whenever the reset gate is switched on. They
can ignore sequences as needed.

Exercises

1. Compare runtime, perplexity, and the output strings for rnn.RNN and rnn.GRU implementa-
tions with each other.

2. Assume that we only want to use the input for timestep t′ to predict the output at timestep
t > t′. What are the best values for the reset and update gates for each timestep?

3. Adjust the hyperparameters and observe and analyze the impact on running time, perplex-
ity, and the written lyrics.

4. What happens if you implement only parts of a GRU? That is, implement a recurrent cell
that only has a reset gate. Likewise, implement a recurrent cell only with an update gate.

9.2 Long Short TermMemory (LSTM)

The challenge to address long-term information preservation and short-term input skipping in
latent variable models has existed for a long time. One of the earliest approaches to address this
was the LSTM (Hochreiter & Schmidhuber, 1997). It shares many of the properties of the Gated Re-
current Unit (GRU). Interestingly, LSTM s̓ design is slightly more complex than GRU but predates
GRU by almost two decades.

Arguably it is inspired by logic gates of a computer. To control a memory cell we need a number
of gates. One gate is needed to read out the entries from the cell (as opposed to reading any other
cell). We will refer to this as the output gate. A second gate is needed to decide when to read data
into the cell. We refer to this as the input gate. Last, we need a mechanism to reset the contents of
the cell, governed by a forget gate. The motivation for such a design is the same as before, namely
to be able to decide when to remember and when to ignore inputs in the latent state via a dedicated
mechanism. Let s̓ see how this works in practice.

346 Chapter 9. Modern Recurrent Neural Networks

9.2.1 Gated Memory Cells

Three gates are introduced in LSTMs: the input gate, the forget gate, and the output gate. In addi-
tion to that we will introduce the memory cell that has the same shape as the hidden state. Strictly
speaking this is just a fancy version of a hidden state, engineered to record additional information.

Input Gates, Forget Gates, and Output Gates

Just like with GRUs, the data feeding into the LSTM gates is the input at the current timestepXt and
the hidden state of the previous timestep Ht−1. These inputs are processed by a fully connected
layer and a sigmoid activation function to compute the values of input, forget and output gates. As
a result, the three gates all output values in the range of [0, 1]. Fig. 9.2.1 illustrates the data flow
for the input, forget, and output gates.

Fig. 9.2.1: Calculation of input, forget, and output gates in an LSTM.

We assume that there are h hidden units, the minibatch is of size n, and number of inputs is d.
Thus, the input is Xt ∈ Rn×d and the hidden state of the last timestep is Ht−1 ∈ Rn×h. Correspond-
ingly, the gates are defined as follows: the input gate is It ∈ Rn×h, the forget gate is Ft ∈ Rn×h,
and the output gate is Ot ∈ Rn×h. They are calculated as follows:

It = σ(XtWxi +Ht−1Whi + bi),

Ft = σ(XtWxf +Ht−1Whf + bf),

Ot = σ(XtWxo +Ht−1Who + bo),

(9.2.1)

where Wxi,Wxf ,Wxo ∈ Rd×h and Whi,Whf ,Who ∈ Rh×h are weight parameters and bi,bf ,bo ∈
R1×h are bias parameters.

9.2. Long Short TermMemory (LSTM) 347

Candidate Memory Cell

Next we design the memory cell. Since we have not specified the action of the various gates yet,
we first introduce the candidate memory cell C̃t ∈ Rn×h. Its computation is similar to the three
gates described above, but using a tanh function with a value range for [−1, 1] as the activation
function. This leads to the following equation at timestep t.

C̃t = tanh(XtWxc +Ht−1Whc + bc). (9.2.2)

Here Wxc ∈ Rd×h and Whc ∈ Rh×h are weight parameters and bc ∈ R1×h is a bias parameter.

A quick illustration of the candidate memory cell is shown in Fig. 9.2.2.

Fig. 9.2.2: Computation of candidate memory cells in LSTM.

Memory Cell

In GRUs, we had a single mechanism to govern input and forgetting. Here in LSTMs we have two
parameters, It which governs how much we take new data into account via C̃t and the forget pa-
rameter Ft which addresses how much of the old memory cell content Ct−1 ∈ Rn×h we retain.
Using the same pointwise multiplication trick as before, we arrive at the following update equa-
tion.

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t. (9.2.3)

If the forget gate is always approximately 1 and the input gate is always approximately 0, the past
memory cells Ct−1 will be saved over time and passed to the current timestep. This design was
introduced to alleviate the vanishing gradient problem and to better capture dependencies for
time series with long range dependencies. We thus arrive at the flow diagram in Fig. 9.2.3.

348 Chapter 9. Modern Recurrent Neural Networks

Fig. 9.2.3: Computation of memory cells in an LSTM. Here, the multiplication is carried out ele-
mentwise.

Hidden States

Last, we need to define how to compute the hidden state Ht ∈ Rn×h. This is where the output
gate comes into play. In LSTM it is simply a gated version of the tanh of the memory cell. This
ensures that the values of Ht are always in the interval (−1, 1). Whenever the output gate is 1 we
effectively pass all memory information through to the predictor, whereas for output 0 we retain
all the information only within the memory cell and perform no further processing. Fig. 9.2.4 has
a graphical illustration of the data flow.

Ht = Ot ⊙ tanh(Ct). (9.2.4)

Fig. 9.2.4: Computation of the hidden state. Multiplication is elementwise.

9.2. Long Short TermMemory (LSTM) 349

9.2.2 Implementation from Scratch

Now let s̓ implement an LSTM from scratch. As same as the experiments in the previous sections,
we first load data of The Time Machine.

import d2l
from mxnet import np, npx
from mxnet.gluon import rnn
npx.set_np()

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

Initializing Model Parameters

Next we need to define and initialize the model parameters. As previously, the hyperparameter
num_hiddens defines the number of hidden units. We initialize weights following a Gaussian dis-
tribution with 0.01 standard deviation, and we set the biases to 0.

def get_lstm_params(vocab_size, num_hiddens, ctx):
num_inputs = num_outputs = vocab_size

def normal(shape):
return np.random.normal(scale=0.01, size=shape, ctx=ctx)

def three():
return (normal((num_inputs, num_hiddens)),

normal((num_hiddens, num_hiddens)),
np.zeros(num_hiddens, ctx=ctx))

W_xi, W_hi, b_i = three() # Input gate parameters
W_xf, W_hf, b_f = three() # Forget gate parameters
W_xo, W_ho, b_o = three() # Output gate parameters
W_xc, W_hc, b_c = three() # Candidate cell parameters
Output layer parameters
W_hq = normal((num_hiddens, num_outputs))
b_q = np.zeros(num_outputs, ctx=ctx)
Attach gradients
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,

b_c, W_hq, b_q]
for param in params:

param.attach_grad()
return params

350 Chapter 9. Modern Recurrent Neural Networks

Defining the Model

In the initialization function, the hidden state of the LSTM needs to return an additional mem-
ory cell with a value of 0 and a shape of (batch size, number of hidden units). Hence we get the
following state initialization.

def init_lstm_state(batch_size, num_hiddens, ctx):
return (np.zeros(shape=(batch_size, num_hiddens), ctx=ctx),

np.zeros(shape=(batch_size, num_hiddens), ctx=ctx))

The actual model is defined just like what we discussed before: providing three gates and an auxil-
iary memory cell. Note that only the hidden state is passed to the output layer. The memory cells
Ct do not participate in the output computation directly.

def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:

I = npx.sigmoid(np.dot(X, W_xi) + np.dot(H, W_hi) + b_i)
F = npx.sigmoid(np.dot(X, W_xf) + np.dot(H, W_hf) + b_f)
O = npx.sigmoid(np.dot(X, W_xo) + np.dot(H, W_ho) + b_o)
C_tilda = np.tanh(np.dot(X, W_xc) + np.dot(H, W_hc) + b_c)
C = F * C + I * C_tilda
H = O * np.tanh(C)
Y = np.dot(H, W_hq) + b_q
outputs.append(Y)

return np.concatenate(outputs, axis=0), (H, C)

Training and Prediction

Let s̓ train an LSTM as same as what we did in Section 9.1, by calling the RNNModelScratch function
as introduced in Section 8.5.

vocab_size, num_hiddens, ctx = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, ctx, get_lstm_params,

init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.1, 12735 tokens/sec on gpu(0)
time traveller smiled round at us then still smiling faintly and
traveller and which as regh arefichion simee it raspons the

9.2. Long Short TermMemory (LSTM) 351

9.2.3 Concise Implementation

In Gluon, we can directly call the LSTM class in the rnn module. This encapsulates all the config-
uration details that we made explicit above. The code is significantly faster as it uses compiled
operators rather than Python for many details that we spelled out in detail before.

lstm_layer = rnn.LSTM(num_hiddens)
model = d2l.RNNModel(lstm_layer, len(vocab))
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.2, 196700 tokens/sec on gpu(0)
time traveller smiled ror time bacnimestler you say four dimensi
traveller fom s accour existence they time drivelyor pe can

In many cases, LSTMs perform slightly better than GRUs but they are more costly to train and
execute due to the larger latent state size. LSTMs are the prototypical latent variable autoregressive
model with nontrivial state control. Many variants thereof have been proposed over the years, e.g.,
multiple layers, residual connections, different types of regularization. However, training LSTMs
and other sequence models (such as GRU) are quite costly due to the long range dependency of
the sequence. Later we will encounter alternative models such as Transformers that can be used
in some cases.

352 Chapter 9. Modern Recurrent Neural Networks

Summary

• LSTMs have three types of gates: input gates, forget gates, and output gates which control
the flow of information.

• The hidden layer output of LSTM includes hidden states and memory cells. Only hidden
states are passed into the output layer. Memory cells are entirely internal.

• LSTMs can cope with vanishing and exploding gradients.

Exercises

1. Adjust the hyperparameters. Observe and analyze the impact on runtime, perplexity, and
the generated output.

2. How would you need to change the model to generate proper words as opposed to sequences
of characters?

3. Compare the computational cost for GRUs, LSTMs, and regular RNNs for a given hidden
dimension. Pay special attention to the training and inference cost.

4. Since the candidate memory cells ensure that the value range is between−1 and 1 by using
the tanh function, why does the hidden state need to use the tanh function again to ensure
that the output value range is between−1 and 1?

5. Implement an LSTM for time series prediction rather than character sequence prediction.

9.3 Deep Recurrent Neural Networks

Up to now, we only discussed recurrent neural networks with a single unidirectional hidden layer.
In it the specific functional form of how latent variables and observations interact was rather ar-
bitrary. This is not a big problem as long as we have enough flexibility to model different types of
interactions. With a single layer, however, this can be quite challenging. In the case of the per-
ceptron, we fixed this problem by adding more layers. Within RNNs this is a bit more tricky, since
we first need to decide how and where to add extra nonlinearity. Our discussion below focuses
primarily on LSTMs, but it applies to other sequence models, too.

• We could add extra nonlinearity to the gating mechanisms. That is, instead of using a single
perceptron we could use multiple layers. This leaves the mechanism of the LSTM unchanged.
Instead it makes it more sophisticated. This would make sense if we were led to believe
that the LSTM mechanism describes some form of universal truth of how latent variable
autoregressive models work.

• We could stack multiple layers of LSTMs on top of each other. This results in a mechanism
that is more flexible, due to the combination of several simple layers. In particular, data
might be relevant at different levels of the stack. For instance, we might want to keep high-
level data about financial market conditions (bear or bull market) available, whereas at a
lower level we only record shorter-term temporal dynamics.

9.3. Deep Recurrent Neural Networks 353

Beyond all this abstract discussion it is probably easiest to understand the family of models we are
interested in by reviewing Fig. 9.3.1. It describes a deep recurrent neural network with L hidden
layers. Each hidden state is continuously passed to both the next timestep of the current layer and
the current timestep of the next layer.

Fig. 9.3.1: Architecture of a deep recurrent neural network.

9.3.1 Functional Dependencies

At timestep t we assume that we have a minibatch Xt ∈ Rn×d (number of examples: n, number of
inputs: d). The hidden state of hidden layer ℓ (ℓ = 1, . . . , T) isH(ℓ)

t ∈ Rn×h (number of hidden units:
h), the output layer variable is Ot ∈ Rn×q (number of outputs: q) and a hidden layer activation
function fl for layer l. We compute the hidden state of layer 1 as before, using Xt as input. For all
subsequent layers, the hidden state of the previous layer is used in its place.

H(1)
t = f1

(
Xt,H

(1)
t−1

)
,

H(l)
t = fl

(
H(l−1)

t ,H(l)
t−1

)
.

(9.3.1)

Finally, the output layer is only based on the hidden state of hidden layer L. We use the output
function g to address this:

Ot = g
(
H(L)

t

)
. (9.3.2)

Just as with multilayer perceptrons, the number of hidden layers L and number of hidden units h
are hyper parameters. In particular, we can pick a regular RNN, a GRU, or an LSTM to implement
the model.

354 Chapter 9. Modern Recurrent Neural Networks

9.3.2 Concise Implementation

Fortunately many of the logistical details required to implement multiple layers of an RNN are
readily available in Gluon. To keep things simple we only illustrate the implementation using
such built-in functionality. The code is very similar to the one we used previously for LSTMs. In
fact, the only difference is that we specify the number of layers explicitly rather than picking the
default of a single layer. Let s̓ begin by importing the appropriate modules and loading data.

import d2l
from mxnet import npx
from mxnet.gluon import rnn
npx.set_np()

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

The architectural decisions (such as choosing parameters) are very similar to those of previous
sections. We pick the same number of inputs and outputs as we have distinct tokens, i.e., vo-
cab_size. The number of hidden units is still 256. The only difference is that we now select a
nontrivial number of layers num_layers = 2.

vocab_size, num_hiddens, num_layers, ctx = len(vocab), 256, 2, d2l.try_gpu()
lstm_layer = rnn.LSTM(num_hiddens, num_layers)
model = d2l.RNNModel(lstm_layer, len(vocab))

9.3.3 Training

The actual invocation logic is identical to before. The only difference is that we now instantiate
two layers with LSTMs. This rather more complex architecture and the large number of epochs
slow down training considerably.

num_epochs, lr = 500, 2
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.0, 145196 tokens/sec on gpu(0)
time traveller for so it will be convenient to speak of him was
traveller smiled round at us then still smiling faintly and

9.3. Deep Recurrent Neural Networks 355

Summary

• In deep recurrent neural networks, hidden state information is passed to the next timestep
of the current layer and the current timestep of the next layer.

• There exist many different flavors of deep RNNs, such as LSTMs, GRUs, or regular RNNs.
Conveniently these models are all available as parts of the rnn module in Gluon.

• Initialization of the models requires care. Overall, deep RNNs require considerable amount
of work (such as learning rate and clipping) to ensure proper convergence.

Exercises

1. Try to implement a two-layer RNN from scratch using the single layer implementation we
discussed in Section 8.5.

2. Replace the LSTM by a GRU and compare the accuracy.

3. Increase the training data to include multiple books. How low can you go on the perplexity
scale?

4. Would you want to combine sources of different authors when modeling text? Why is this a
good idea? What could go wrong?

356 Chapter 9. Modern Recurrent Neural Networks

9.4 Bidirectional Recurrent Neural Networks

So far we assumed that our goal is to model the next word given what we have seen so far, e.g., in
the context of a time series or in the context of a language model. While this is a typical scenario,
it is not the only one we might encounter. To illustrate the issue, consider the following three tasks
of filling in the blanks in a text:

1. I am _____

2. I am _____ very hungry.

3. I am _____ very hungry, I could eat half a pig.

Depending on the amount of information available, we might fill the blanks with very different
words such as “happy”, “not”, and “very”. Clearly the end of the phrase (if available) conveys sig-
nificant information about which word to pick. A sequence model that is incapable of taking
advantage of this will perform poorly on related tasks. For instance, to do well in named entity
recognition (e.g., to recognize whether “Green” refers to “Mr. Green” or to the color) longer-range
context is equally vital. To get some inspiration for addressing the problem let s̓ take a detour to
graphical models.

9.4.1 Dynamic Programming

This section serves to illustrate the dynamic programming problem. The specific technical details
do not matter for understanding the deep learning counterpart but they help in motivating why
one might use deep learning and why one might pick specific architectures.

If we want to solve the problem using graphical models we could for instance design a latent vari-
able model as follows. We assume that there exists some latent variable ht which governs the
emissions xt that we observe via p(xt | ht). Moreover, the transitions ht → ht+1 are given by some
state transition probability p(ht + 1 | ht). The graphical model then looks as Fig. 9.4.1.

Fig. 9.4.1: Hidden Markov Model.

Thus, for a sequence of T observations we have the following joint probability distribution over
observed and hidden states:

p(x, h) = p(h1)p(x1 | h1)
T∏
t=2

p(ht | ht−1)p(xt | ht). (9.4.1)

Now assume that we observe all xi with the exception of some xj and it is our goal to compute
p(xj | x−j), where x−j = (x1, x2, . . . , xj−1). To accomplish this we need to sum over all possible
choices of h = (h1, . . . , hT). In case hi can take on k distinct values, this means that we need to
sum over kT terms—mission impossible! Fortunately there is an elegant solution for this: dynamic
programming. To see how it works, consider summing over the first two hidden variable h1 and

9.4. Bidirectional Recurrent Neural Networks 357

h2. This yields:

p(x) =
∑

h1,...,hT

p(x1, . . . , xT ;h1, . . . , hT)

=
∑

h1,...,hT

p(h1)p(x1 | h1)
T∏
t=2

p(ht | ht−1)p(xt | ht)

=
∑

h2,...,hT

∑
h1

p(h1)p(x1 | h1)p(h2 | h1)


︸ ︷︷ ︸

=:π2(h2)

p(x2 | h2)
T∏
t=3

p(ht | ht−1)p(xt | ht)

=
∑

h3,...,hT

∑
h2

π2(h2)p(x2 | h2)p(h3 | h2)


︸ ︷︷ ︸

=:π3(h3)

p(x3 | h3)
T∏
t=4

p(ht | ht−1)p(xt | ht)

= . . .

=
∑
hT

πT (hT)p(xT | hT).

(9.4.2)

In general we have the forward recursion as

πt+1(ht+1) =
∑
ht

πt(ht)p(xt | ht)p(ht+1 | ht). (9.4.3)

The recursion is initialized as π1(h1) = p(h1). In abstract terms this can be written as πt+1 =
f(πt, xt), where f is some learnable function. This looks very much like the update equation in
the hidden variable models we discussed so far in the context of RNNs. Entirely analogously to
the forward recursion, we can also start a backward recursion. This yields:

p(x) =
∑

h1,...,hT

p(x1, . . . , xT ;h1, . . . , hT)

=
∑

h1,...,hT

T−1∏
t=1

p(ht | ht−1)p(xt | ht) · p(hT | hT−1)p(xT | hT)

=
∑

h1,...,hT−1

T−1∏
t=1

p(ht | ht−1)p(xt | ht) ·

∑
hT

p(hT | hT−1)p(xT | hT)


︸ ︷︷ ︸

=:ρT−1(hT−1)

=
∑

h1,...,hT−2

T−2∏
t=1

p(ht | ht−1)p(xt | ht) ·

∑
hT−1

p(hT−1 | hT−2)p(xT−1 | hT−1)ρT−1(hT−1)


︸ ︷︷ ︸

=:ρT−2(hT−2)

= . . .

=
∑
h1

p(h1)p(x1 | h1)ρ1(h1).

(9.4.4)

We can thus write the backward recursion as

ρt−1(ht−1) =
∑
ht

p(ht | ht−1)p(xt | ht)ρt(ht), (9.4.5)

358 Chapter 9. Modern Recurrent Neural Networks

with initialization ρT (hT) = 1. These two recursions allow us to sum over T variables in O(kT)
(linear) time over all values of (h1, . . . , hT) rather than in exponential time. This is one of the
great benefits of the probabilistic inference with graphical models. It is a very special instance
of the (Aji & McEliece, 2000) proposed in 2000 by Aji and McEliece. Combining both forward and
backward pass, we are able to compute

p(xj | x−j) ∝
∑
hj

πj(hj)ρj(hj)p(xj | hj). (9.4.6)

Note that in abstract terms the backward recursion can be written as ρt−1 = g(ρt, xt), where g is a
learnable function. Again, this looks very much like an update equation, just running backwards
unlike what we have seen so far in RNNs. Indeed, HMMs benefit from knowing future data when
it is available. Signal processing scientists distinguish between the two cases of knowing and not
knowing future observations as interpolation v.s. extrapolation. See the introductory chapter of
the book by (Doucet et al., 2001) on sequential Monte Carlo algorithms for more details.

9.4.2 Bidirectional Model

If we want to have a mechanism in RNNs that offers comparable look-ahead ability as in HMMs,
we need to modify the recurrent net design that we have seen so far. Fortunately, this is easy con-
ceptually. Instead of running an RNN only in the forward mode starting from the first symbol, we
start another one from the last symbol running from back to front. Bidirectional recurrent neural
networks add a hidden layer that passes information in a backward direction to more flexibly pro-
cess such information. Fig. 9.4.2 illustrates the architecture of a bidirectional recurrent neural
network with a single hidden layer.

Fig. 9.4.2: Architecture of a bidirectional recurrent neural network.

In fact, this is not too dissimilar to the forward and backward recursion we encountered above.
The main distinction is that in the previous case these equations had a specific statistical meaning.
Now they are devoid of such easily accessible interpretation and we can just treat them as generic
functions. This transition epitomizes many of the principles guiding the design of modern deep
networks: first, use the type of functional dependencies of classical statistical models, and then
use the models in a generic form.

9.4. Bidirectional Recurrent Neural Networks 359

Definition

Bidirectional RNNs were introduced by (Schuster & Paliwal, 1997). For a detailed discussion of
the various architectures see also the paper by (Graves & Schmidhuber, 2005). Let s̓ look at the
specifics of such a network.

For a given timestep t, the minibatch input is Xt ∈ Rn×d (number of examples: n, number of in-
puts: d) and the hidden layer activation function is ϕ. In the bidirectional architecture, we assume
that the forward and backward hidden states for this timestep are −→H t ∈ Rn×h and←−H t ∈ Rn×h re-
spectively. Here h indicates the number of hidden units. We compute the forward and backward
hidden state updates as follows:

−→H t = ϕ(XtW
(f)
xh +

−→H t−1W
(f)
hh + b(f)

h),
←−H t = ϕ(XtW

(b)
xh +

←−H t+1W
(b)
hh + b(b)

h).
(9.4.7)

Here, the weight parameters W(f)
xh ∈ Rd×h,W(f)

hh ∈ Rh×h,W(b)
xh ∈ Rd×h, and W(b)

hh ∈ Rh×h, and bias
parameters b(f)

h ∈ R1×h and b(b)
h ∈ R1×h are all model parameters.

Then we concatenate the forward and backward hidden states −→H t and ←−H t to obtain the hidden
state Ht ∈ Rn×2h and feed it to the output layer. In deep bidirectional RNNs, the information
is passed on as input to the next bidirectional layer. Last, the output layer computes the output
Ot ∈ Rn×q (number of outputs: q):

Ot = HtWhq + bq. (9.4.8)

Here, the weight parameter Whq ∈ R2h×q and the bias parameter bq ∈ R1×q are the model param-
eters of the output layer. The two directions can have different numbers of hidden units.

Computational Cost and Applications

One of the key features of a bidirectional RNN is that information from both ends of the sequence
is used to estimate the output. That is, we use information from both future and past observations
to predict the current one (a smoothing scenario). In the case of language models this is not quite
what we want. After all, we do not have the luxury of knowing the next to next symbol when
predicting the next one. Hence, if we were to use a bidirectional RNN naively we would not get a
very good accuracy: during training we have past and future data to estimate the present. During
test time we only have past data and thus poor accuracy (we will illustrate this in an experiment
below).

To add insult to injury bidirectional RNNs are also exceedingly slow. The main reason for this is
that they require both a forward and a backward pass and that the backward pass is dependent on
the outcomes of the forward pass. Hence, gradients will have a very long dependency chain.

In practice bidirectional layers are used very sparingly and only for a narrow set of applications,
such as filling in missing words, annotating tokens (e.g., for named entity recognition), or encod-
ing sequences wholesale as a step in a sequence processing pipeline (e.g., for machine transla-
tion). In short, handle with care!

360 Chapter 9. Modern Recurrent Neural Networks

Training a Bidirectional RNN for the Wrong Application

If we were to ignore all advice regarding the fact that bidirectional LSTMs use past and future
data and simply apply it to language models, we will get estimates with acceptable perplexity.
Nonetheless, the ability of the model to predict future symbols is severely compromised as the
example below illustrates. Despite reasonable perplexity, it only generates gibberish even after
many iterations. We include the code below as a cautionary example against using them in the
wrong context.

import d2l
from mxnet import npx
from mxnet.gluon import rnn
npx.set_np()

Load data
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
Define the model
vocab_size, num_hiddens, num_layers, ctx = len(vocab), 256, 2, d2l.try_gpu()
lstm_layer = rnn.LSTM(num_hiddens, num_layers, bidirectional=True)
model = d2l.RNNModel(lstm_layer, len(vocab))
Train the model
num_epochs, lr = 500, 1
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, ctx)

Perplexity 1.2, 84692 tokens/sec on gpu(0)
time traveller
traveller

The output is clearly unsatisfactory for the reasons described above. For a discussion of more
effective uses of bidirectional models, please see the sentiment classification in Section 14.9.

9.4. Bidirectional Recurrent Neural Networks 361

Summary

• In bidirectional recurrent neural networks, the hidden state for each timestep is simultane-
ously determined by the data prior to and after the current timestep.

• Bidirectional RNNs bear a striking resemblance with the forward-backward algorithm in
graphical models.

• Bidirectional RNNs are mostly useful for sequence embedding and the estimation of obser-
vations given bidirectional context.

• Bidirectional RNNs are very costly to train due to long gradient chains.

Exercises

1. If the different directions use a different number of hidden units, how will the shape of Ht

change?

2. Design a bidirectional recurrent neural network with multiple hidden layers.

3. Implement a sequence classification algorithm using bidirectional RNNs. Hint: use the RNN
to embed each word and then aggregate (average) all embedded outputs before sending the
output into an MLP for classification. For instance, if we have (o1,o2,o3), we compute ō =
1
3

∑
i oi first and then use the latter for sentiment classification.

9.5 Machine Translation and the Dataset

So far we see how to use recurrent neural networks for language models, in which we predict the
next token given all previous tokens in an article. Now let s̓ have a look at a different application,
machine translation, whose predict output is no longer a single token, but a list of tokens.

Machine translation (MT) refers to the automatic translation of a segment of text from one lan-
guage to another. Solving this problem with neural networks is often called neural machine trans-
lation (NMT). Compared to language models (Section 8.3), in which the corpus only contains a
single language, machine translation dataset has at least two languages, the source language and
the target language. In addition, each sentence in the source language is mapped to the accord-
ing translation in the target language. Therefore, the data preprocessing for machine translation
data is different to the one for language models. This section is dedicated to demonstrate how to
pre-process such a dataset and then load into a set of minibatches.

import d2l
import zipfile

from mxnet import np, npx, gluon
npx.set_np()

362 Chapter 9. Modern Recurrent Neural Networks

9.5.1 Reading and Preprocessing the Dataset

We first download a dataset that contains a set of English sentences with the corresponding French
translations. As can be seen that each line contains a English sentence with its French translation,
which are separated by a TAB.

Saved in the d2l package for later use
def read_data_nmt():

fname = gluon.utils.download('http://data.mxnet.io/data/fra-eng.zip')
with zipfile.ZipFile(fname, 'r') as f:

return f.read('fra.txt').decode("utf-8")

raw_text = read_data_nmt()
print(raw_text[0:106])

Downloading fra-eng.zip from http://data.mxnet.io/data/fra-eng.zip...
Go. Va !
Hi. Salut !
Run! Cours�!
Run! Courez�!
Who? Qui ?
Wow! Ça alors�!
Fire! Au feu !
Help! À l'aide�!

We perform several preprocessing steps on the raw text data, including ignoring cases, replacing
UTF-8 non-breaking space with space, and adding space between words and punctuation marks.

Saved in the d2l package for later use
def preprocess_nmt(text):

text = text.replace('\u202f', ' ').replace('\xa0', ' ')

def no_space(char, prev_char):
return (True if char in (',', '!', '.')

and prev_char != ' ' else False)

out = [' '+char if i > 0 and no_space(char, text[i-1]) else char
for i, char in enumerate(text.lower())]

return ''.join(out)

text = preprocess_nmt(raw_text)
print(text[0:95])

go . va !
hi . salut !
run ! cours !
run ! courez !
who? qui ?
wow ! ça alors !
fire ! au feu !

9.5. Machine Translation and the Dataset 363

9.5.2 Tokenization

Different to using character tokens in Section 8.3, here a token is either a word or a punctuation
mark. The following function tokenizes the text data to return source and target. Each one is a list
of token list, with source[i] is the ith sentence in the source language and target[i] is the ith sen-
tence in the target language. To make the latter training faster, we sample the first num_examples
sentences pairs.

Saved in the d2l package for later use
def tokenize_nmt(text, num_examples=None):

source, target = [], []
for i, line in enumerate(text.split('\n')):

if num_examples and i > num_examples:
break

parts = line.split('\t')
if len(parts) == 2:

source.append(parts[0].split(' '))
target.append(parts[1].split(' '))

return source, target

source, target = tokenize_nmt(text)
source[0:3], target[0:3]

([['go', '.'], ['hi', '.'], ['run', '!']],
[['va', '!'], ['salut', '!'], ['cours', '!']])

We visualize the histogram of the number of tokens per sentence the following figure. As can be
seen that a sentence in average contains 5 tokens, and most of them have less than 10 tokens.

d2l.set_figsize((3.5, 2.5))
d2l.plt.hist([[len(l) for l in source], [len(l) for l in target]],

label=['source', 'target'])
d2l.plt.legend(loc='upper right');

364 Chapter 9. Modern Recurrent Neural Networks

9.5.3 Vocabulary

Since the tokens in the source language could be different to the ones in the target language, we
need to build a vocabulary for each of them. Since we are using words instead of characters as
tokens, it makes the vocabulary size significantly large. Here we map every token that appears
less than 3 times into the <unk> token Section 8.2. In addition, we need other special tokens such
as padding and sentence beginnings.

src_vocab = d2l.Vocab(source, min_freq=3, use_special_tokens=True)
len(src_vocab)

9140

9.5.4 Loading the Dataset

In language models, each example is a num_steps length sequence from the corpus, which may
be a segment of a sentence, or span over multiple sentences. In machine translation, an exam-
ple should contain a pair of source sentence and target sentence. These sentences might have
different lengths, while we need same length examples to form a minibatch.

One way to solve this problem is that if a sentence is longer than num_steps, we trim it is length,
otherwise pad with a special <pad> token to meet the length. Therefore we could transform any
sentence to a fixed length.

Saved in the d2l package for later use
def trim_pad(line, num_steps, padding_token):

if len(line) > num_steps:
return line[:num_steps] # Trim

return line + [padding_token] * (num_steps - len(line)) # Pad

trim_pad(src_vocab[source[0]], 10, src_vocab.pad)

[47, 4, 0, 0, 0, 0, 0, 0, 0, 0]

Now we can convert a list of sentences into an (num_example, num_steps) index array. We also
record the length of each sentence without the padding tokens, called valid length, which might
be used by some models. In addition, we add the special “<bos>” and “<eos>” tokens to the target
sentences so that our model will know the signals for starting and ending predicting.

Saved in the d2l package for later use
def build_array(lines, vocab, num_steps, is_source):

lines = [vocab[l] for l in lines]
if not is_source:

lines = [[vocab.bos] + l + [vocab.eos] for l in lines]
array = np.array([trim_pad(l, num_steps, vocab.pad) for l in lines])
valid_len = (array != vocab.pad).sum(axis=1)
return array, valid_len

Then we can construct minibatches based on these arrays.

9.5. Machine Translation and the Dataset 365

9.5.5 Putting All Things Together

Finally, we define the function load_data_nmt to return the data iterator with the vocabularies for
source language and target language.

Saved in the d2l package for later use
def load_data_nmt(batch_size, num_steps, num_examples=1000):

text = preprocess_nmt(read_data_nmt())
source, target = tokenize_nmt(text, num_examples)
src_vocab = d2l.Vocab(source, min_freq=3, use_special_tokens=True)
tgt_vocab = d2l.Vocab(target, min_freq=3, use_special_tokens=True)
src_array, src_valid_len = build_array(

source, src_vocab, num_steps, True)
tgt_array, tgt_valid_len = build_array(

target, tgt_vocab, num_steps, False)
data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
data_iter = d2l.load_array(data_arrays, batch_size)
return src_vocab, tgt_vocab, data_iter

Let s̓ read the first batch.

src_vocab, tgt_vocab, train_iter = load_data_nmt(batch_size=2, num_steps=8)
for X, X_vlen, Y, Y_vlen, in train_iter:

print('X =', X.astype('int32'), '\nValid lengths for X =', X_vlen,
'\nY =', Y.astype('int32'), '\nValid lengths for Y =', Y_vlen)

break

X = [[96 9 4 0 0 0 0 0]
[30 37 4 0 0 0 0 0]]
Valid lengths for X = [3 3]
Y = [[1 3 5 2 0 0 0 0]
[1 67 59 3 4 2 0 0]]
Valid lengths for Y = [4 6]

Summary

• Machine translation (MT) refers to the automatic translation of a segment of text from one
language to another.

• We read, preprocess, and tokenize the datasets from both source language and target lan-
guage.

Exercises

1. Find a machine translation dataset online and process it.

366 Chapter 9. Modern Recurrent Neural Networks

9.6 Encoder-Decoder Architecture

The encoder-decoder architecture is a neural network design pattern. As shown in Fig. 9.6.1, the
architecture is partitioned into two parts, the encoder and the decoder. The encoder s̓ role is to
encode the inputs into state, which often contains several tensors. Then the state is passed into
the decoder to generate the outputs. In machine translation, the encoder transforms a source
sentence, e.g., “Hello world.”, into state, e.g., a vector, that captures its semantic information. The
decoder then uses this state to generate the translated target sentence, e.g., “Bonjour le monde.”.

Fig. 9.6.1: The encoder-decoder architecture.

In this section, we will show an interface to implement this encoder-decoder architecture.

9.6.1 Encoder

The encoder is a normal neural network that takes inputs, e.g., a source sentence, to return out-
puts.

from mxnet.gluon import nn

Saved in the d2l package for later use
class Encoder(nn.Block):

"""The base encoder interface for the encoder-decoder architecture."""
def __init__(self, **kwargs):

super(Encoder, self).__init__(**kwargs)

def forward(self, X):
raise NotImplementedError

9.6.2 Decoder

The decoder has an additional method init_state to parse the outputs of the encoder with pos-
sible additional information, e.g., the valid lengths of inputs, to return the state it needs. In the
forward method, the decoder takes both inputs, e.g., a target sentence and the state. It returns
outputs, with potentially modified state if the encoder contains RNN layers.

Saved in the d2l package for later use
class Decoder(nn.Block):

"""The base decoder interface for the encoder-decoder architecture."""
def __init__(self, **kwargs):

super(Decoder, self).__init__(**kwargs)

def init_state(self, enc_outputs, *args):
raise NotImplementedError

def forward(self, X, state):
raise NotImplementedError

9.6. Encoder-Decoder Architecture 367

9.6.3 Model

The encoder-decoder model contains both an encoder and an decoder. We implement its forward
method for training. It takes both encoder inputs and decoder inputs, with optional additional
arguments. During computation, it first compute encoder outputs to initialize the decoder state,
and then returns the decoder outputs.

Saved in the d2l package for later use
class EncoderDecoder(nn.Block):

"""The base class for the encoder-decoder architecture."""
def __init__(self, encoder, decoder, **kwargs):

super(EncoderDecoder, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder

def forward(self, enc_X, dec_X, *args):
enc_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_outputs, *args)
return self.decoder(dec_X, dec_state)

Summary

• An encoder-decoder architecture is a neural network design pattern mainly in natural lan-
guage processing.

• An encoder is a network (FC, CNN, RNN, etc.) that takes the input, and output a feature map,
a vector or a tensor.

• An decoder is a network (usually the same network structure as encoder) that takes the fea-
ture vector from the encoder, and gives the best closest match to the actual input or intended
output.

Exercises

1. Besides machine translation, can you think of another application scenarios where an
encoder-decoder architecture can fit?

2. Can you design a deep encoder-decoder architecture?

368 Chapter 9. Modern Recurrent Neural Networks

9.7 Sequence to Sequence

The sequence to sequence (seq2seq) model is based on the encoder-decoder architecture to gen-
erate a sequence output for a sequence input, as demonstrated in Fig. 9.7.1. Both the encoder and
the decoder use recurrent neural networks (RNNs) to handle sequence inputs of variable length.
The hidden state of the encoder is used directly to initialize the decoder hidden state to pass in-
formation from the encoder to the decoder.

Fig. 9.7.1: The sequence to sequence model architecture.

The layers in the encoder and the decoder are illustrated in Fig. 9.7.2.

Fig. 9.7.2: Layers in the encoder and the decoder.

In this section we will explain and implement the seq2seq model to train on the machine transla-
tion dataset.

import d2l
from mxnet import np, npx, init, gluon, autograd
from mxnet.gluon import nn, rnn
npx.set_np()

9.7. Sequence to Sequence 369

9.7.1 Encoder

Recall that the encoder of seq2seq can transform the inputs of variable length to a fixed-length
context vector c by encoding the sequence information into c. We usually use RNN layers within
the encoder. Suppose that we have an input sequence x1, . . . , xT , where xt is the tth word. At
timestep t, the RNN will have two vectors as the input: the feature vector xt of xt and the hidden
state of the last timestep ht−1. Let s̓ denote the transformation of the RNN s̓ hidden states by a
function f :

ht = f(xt,ht−1). (9.7.1)

Next, the encoder captures information of all the hidden states and encodes it into the context
vector c with a function q:

c = q(h1, . . . ,hT). (9.7.2)

For example, if we choose q as q(h1, . . . ,hT) = hT , then the context vector will be the final hidden
state hT .

So far what we describe above is a unidirectional RNN, where each timestep s̓ hidden state only
depends on the previous timesteps .̓ We can also use other forms of RNNs such as GRUs, LSTMs
and, bidirectional RNNs to encode the sequential input.

Now let s̓ implement the seq2seq s̓ encoder. Here we use the word embedding layer to obtain the
feature vector according to the word index of the input language. Those feature vectors will be
fed to a multi-layer LSTM. The input for the encoder is a batch of sequences, which is 2-D tensor
with shape (batch size, sequence length). The encoder returns both the LSTM outputs, i.e., hidden
states of all the timesteps, as well as the hidden state and the memory cell of the final timestep.

Saved in the d2l package for later use
class Seq2SeqEncoder(d2l.Encoder):

def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):

super(Seq2SeqEncoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)

def forward(self, X, *args):
X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size)
RNN needs first axes to be timestep, i.e., seq_len
X = X.swapaxes(0, 1)
state = self.rnn.begin_state(batch_size=X.shape[1], ctx=X.context)
out, state = self.rnn(X, state)
out shape: (seq_len, batch_size, num_hiddens)
state shape: (num_layers, batch_size, num_hiddens),
where "state" contains the hidden state and the memory cell
return out, state

Next, we will create a minibatch sequence input with a batch size of 4 and 7 timesteps. We assume
the number of hidden layers of the LSTM unit is 2 and the number of hidden units is 16. The out-
put shape returned by the encoder after performing forward calculation on the input is (number
of timesteps, batch size, number of hidden units). The shape of the multi-layer hidden state of
the gated recurrent unit in the final timestep is (number of hidden layers, batch size, number of
hidden units). For the gated recurrent unit, the state list contains only one element, which is the
hidden state. If long short-term memory is used, the state list will also contain another element,
which is the memory cell.

370 Chapter 9. Modern Recurrent Neural Networks

encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,
num_layers=2)

encoder.initialize()
X = np.zeros((4, 7))
output, state = encoder(X)
output.shape

(7, 4, 16)

Since an LSTM is used, the state list will contain both the hidden state and the memory cell with
same shape (number of hidden layers, batch size, number of hidden units). However, if a GRU
is used, the state list will contain only one element—the hidden state in the final timestep with
shape (number of hidden layers, batch size, number of hidden units).

len(state), state[0].shape, state[1].shape

(2, (2, 4, 16), (2, 4, 16))

9.7.2 Decoder

As we just introduced, the context vector c encodes the information from the whole input se-
quence x1, . . . , xT . Suppose that the given outputs in the training set are y1, . . . , yT ′ . At each
timestep t′, the conditional probability of output yt′ will depend on the previous output sequence
y1, . . . , yt′−1 and the context vector c, i.e.,

P (yt′ | y1, . . . , yt′−1, c). (9.7.3)

Hence, we can use another RNN as the decoder. At timestep t′, the decoder will update its hidden
state st′ using three inputs: the feature vector yt′−1 of yt′−1, the context vector c, and the hidden
state of the last timestep st′−1. Let s̓ denote the transformation of the RNN s̓ hidden states within
the decoder by a function g:

st′ = g(yt′−1, c, st′−1). (9.7.4)

When implementing the decoder, we directly use the hidden state of the encoder in the final
timestep as the initial hidden state of the decoder. This requires that the encoder and decoder
RNNs have the same numbers of layers and hidden units. The LSTM forward calculation of the
decoder is similar to that of the encoder. The only difference is that we add a dense layer after
the LSTM layers, where the hidden size is the vocabulary size. The dense layer will predict the
confidence score for each word.

Saved in the d2l package for later use
class Seq2SeqDecoder(d2l.Decoder):

def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):

super(Seq2SeqDecoder, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)
self.dense = nn.Dense(vocab_size, flatten=False)

(continues on next page)

9.7. Sequence to Sequence 371

(continued from previous page)

def init_state(self, enc_outputs, *args):
return enc_outputs[1]

def forward(self, X, state):
X = self.embedding(X).swapaxes(0, 1)
out, state = self.rnn(X, state)
Make the batch to be the first dimension to simplify loss
computation
out = self.dense(out).swapaxes(0, 1)
return out, state

We create an decoder with the same hyper-parameters as the encoder. As we can see, the output
shape is changed to (batch size, the sequence length, vocabulary size).

decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8,
num_hiddens=16, num_layers=2)

decoder.initialize()
state = decoder.init_state(encoder(X))
out, state = decoder(X, state)
out.shape, len(state), state[0].shape, state[1].shape

((4, 7, 10), 2, (2, 4, 16), (2, 4, 16))

9.7.3 The Loss Function

For each timestep, the decoder outputs a vocabulary-size confidence score vector to predict words.
Similar to language modeling, we can apply softmax to obtain the probabilities and then use cross-
entropy loss to calculate the loss. Note that we padded the target sentences to make them have
the same length, but we do not need to compute the loss on the padding symbols.

To implement the loss function that filters out some entries, we will use an operator called Se-
quenceMask. It can specify to mask the first dimension (axis=0) or the second one (axis=1). If the
second one is chosen, given a valid length vector len and 2-dim input X, this operator sets X[i,
len[i]:] = 0 for all i s̓.

X = np.array([[1, 2, 3], [4, 5, 6]])
npx.sequence_mask(X, np.array([1, 2]), True, axis=1)

array([[1., 0., 0.],
[4., 5., 0.]])

Apply to n-dim tensor X, it sets X[i, len[i]:, :, ..., :] = 0. In addition, we can specify the
filling value such as−1 as shown below.

X = np.ones((2, 3, 4))
npx.sequence_mask(X, np.array([1, 2]), True, value=-1, axis=1)

372 Chapter 9. Modern Recurrent Neural Networks

array([[[1., 1., 1., 1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[-1., -1., -1., -1.]]])

Now we can implement the masked version of the softmax cross-entropy loss. Note that each
Gluon loss function allows to specify per-example weights, in default they are 1s. Then we can
just use a zero weight for each example we would like to remove. So our customized loss function
accepts an additional valid_length argument to ignore some failing elements in each sequence.

Saved in the d2l package for later use
class MaskedSoftmaxCELoss(gluon.loss.SoftmaxCELoss):

pred shape: (batch_size, seq_len, vocab_size)
label shape: (batch_size, seq_len)
valid_length shape: (batch_size,)
def forward(self, pred, label, valid_length):

weights shape: (batch_size, seq_len, 1)
weights = np.expand_dims(np.ones_like(label), axis=-1)
weights = npx.sequence_mask(weights, valid_length, True, axis=1)
return super(MaskedSoftmaxCELoss, self).forward(pred, label, weights)

For a sanity check, we create identical three sequences, keep 4 elements for the first sequence, 2
elements for the second sequence, and none for the last one. Then the first example loss should
be 2 times larger than the second one, and the last loss should be 0.

loss = MaskedSoftmaxCELoss()
loss(np.ones((3, 4, 10)), np.ones((3, 4)), np.array([4, 2, 0]))

array([2.3025851, 1.1512926, 0.])

9.7.4 Training

During training, if the target sequence has length n, we feed the first n−1 tokens into the decoder
as inputs, and the last n− 1 tokens are used as ground truth label.

Saved in the d2l package for later use
def train_s2s_ch9(model, data_iter, lr, num_epochs, ctx):

model.initialize(init.Xavier(), force_reinit=True, ctx=ctx)
trainer = gluon.Trainer(model.collect_params(),

'adam', {'learning_rate': lr})
loss = MaskedSoftmaxCELoss()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[1, num_epochs], ylim=[0, 0.25])
for epoch in range(1, num_epochs + 1):

timer = d2l.Timer()
metric = d2l.Accumulator(2) # loss_sum, num_tokens
for batch in data_iter:

X, X_vlen, Y, Y_vlen = [x.as_in_context(ctx) for x in batch]

(continues on next page)

9.7. Sequence to Sequence 373

(continued from previous page)

Y_input, Y_label, Y_vlen = Y[:, :-1], Y[:, 1:], Y_vlen-1
with autograd.record():

Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
l = loss(Y_hat, Y_label, Y_vlen)

l.backward()
d2l.grad_clipping(model, 1)
num_tokens = Y_vlen.sum()
trainer.step(num_tokens)
metric.add(l.sum(), num_tokens)

if epoch % 10 == 0:
animator.add(epoch, (metric[0]/metric[1],))

print('loss %.3f, %d tokens/sec on %s ' % (
metric[0]/metric[1], metric[1]/timer.stop(), ctx))

Next, we create a model instance and set hyper-parameters. Then, we can train the model.

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0
batch_size, num_steps = 64, 10
lr, num_epochs, ctx = 0.005, 300, d2l.try_gpu()

src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt(batch_size, num_steps)
encoder = Seq2SeqEncoder(

len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqDecoder(

len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
model = d2l.EncoderDecoder(encoder, decoder)
train_s2s_ch9(model, train_iter, lr, num_epochs, ctx)

loss 0.026, 8820 tokens/sec on gpu(0)

374 Chapter 9. Modern Recurrent Neural Networks

9.7.5 Predicting

Here we implement the simplest method, greedy search, to generate an output sequence. As illus-
trated in Fig. 9.7.3, during predicting, we feed the same “<bos>” token to the decoder as training
at timestep 0. But the input token for a later timestep is the predicted token from the previous
timestep.

Fig. 9.7.3: Sequence to sequence model predicting with greedy search

Saved in the d2l package for later use
def predict_s2s_ch9(model, src_sentence, src_vocab, tgt_vocab, num_steps,

ctx):
src_tokens = src_vocab[src_sentence.lower().split(' ')]
enc_valid_length = np.array([len(src_tokens)], ctx=ctx)
src_tokens = d2l.trim_pad(src_tokens, num_steps, src_vocab.pad)
enc_X = np.array(src_tokens, ctx=ctx)
Add the batch_size dimension
enc_outputs = model.encoder(np.expand_dims(enc_X, axis=0),

enc_valid_length)
dec_state = model.decoder.init_state(enc_outputs, enc_valid_length)
dec_X = np.expand_dims(np.array([tgt_vocab.bos], ctx=ctx), axis=0)
predict_tokens = []
for _ in range(num_steps):

Y, dec_state = model.decoder(dec_X, dec_state)
The token with highest score is used as the next timestep input
dec_X = Y.argmax(axis=2)
py = dec_X.squeeze(axis=0).astype('int32').item()
if py == tgt_vocab.eos:

break
predict_tokens.append(py)

return ' '.join(tgt_vocab.to_tokens(predict_tokens))

Try several examples:

for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
print(sentence + ' => ' + predict_s2s_ch9(

model, sentence, src_vocab, tgt_vocab, num_steps, ctx))

Go . => va !
Wow ! => <unk> !
I'm OK . => ça va .
I won ! => je l'ai emporté !

9.7. Sequence to Sequence 375

Summary

• The sequence to sequence (seq2seq) model is based on the encoder-decoder architecture to
generate a sequence output from a sequence input.

• We use multiple LSTM layers for both the encoder and decoder.

Exercises

1. Can you think of other use cases of seq2seq besides neural machine translation?

2. What if the input sequence in the example of this section is longer?

3. If we do not use the SequenceMask in the loss function, what may happen?

9.8 Beam Search

In Section 9.7, we discussed how to train an encoder-decoder with input and output sequences
that are both of variable length. In this section, we are going to introduce how to use the encoder-
decoder to predict sequences of variable length.

As in Section 9.5, when preparing to train the dataset, we normally attach a special symbol “<eos>”
after each sentence to indicate the termination of the sequence. We will continue to use this math-
ematical symbol in the discussion below. For ease of discussion, we assume that the output of the
decoder is a sequence of text. Let the size of output text dictionary Y (contains special symbol
“<eos>”) be |Y|, and the maximum length of the output sequence be T ′. There are a totalO(|Y|T

′
)

types of possible output sequences. All the subsequences after the special symbol “<eos>” in these
output sequences will be discarded. Besides, we still denote the context vector as c, which encodes
information of all the hidden states from the input.

9.8.1 Greedy Search

First, we will take a look at a simple solution: greedy search. For any timestep t′ of the output
sequence, we are going to search for the word with the highest conditional probability from |Y|
numbers of words, with

yt′ = argmax
y∈Y

P (y | y1, . . . , yt′−1, c) (9.8.1)

as the output. Once the “<eos>” symbol is detected, or the output sequence has reached its maxi-
mum length T ′, the output is completed.

As we mentioned in our discussion of the decoder, the conditional probability of generating an
output sequence based on the input sequence is

∏T ′

t′=1 P (yt′ | y1, . . . , yt′−1, c). We will take the out-
put sequence with the highest conditional probability as the optimal sequence. The main problem
with greedy search is that there is no guarantee that the optimal sequence will be obtained.

376 Chapter 9. Modern Recurrent Neural Networks

Take a look at the example below. We assume that there are four words “A”, “B”, “C”, and “<eos>”
in the output dictionary. The four numbers under each timestep in Fig. 9.8.1 represent the condi-
tional probabilities of generating “A”, “B”, “C”, and “<eos>” at that timestep, respectively. At each
timestep, greedy search selects the word with the highest conditional probability. Therefore, the
output sequence “A”, “B”, “C”, and “<eos>” will be generated in Fig. 9.8.1. The conditional proba-
bility of this output sequence is 0.5× 0.4× 0.4× 0.6 = 0.048.

Fig. 9.8.1: The four numbers under each timestep represent the conditional probabilities of gen-
erating “A”, “B”, “C”, and “<eos>” at that timestep, respectively. At each timestep, greedy search
selects the word with the highest conditional probability.

Now, we will look at another example shown in Fig. 9.8.2. Unlike in Fig. 9.8.1, the following figure
Fig. 9.8.2 selects the word “C”, which has the second highest conditional probability at timestep
2. Since the output subsequences of timesteps 1 and 2, on which timestep 3 is based, are changed
from “A” and “B” in Fig. 9.8.1 to “A” and “C” in Fig. 9.8.2, the conditional probability of each word
generated at timestep 3 has also changed in Fig. 9.8.2. We choose the word “B”, which has the high-
est conditional probability. Now, the output subsequences of timestep 4 based on the first three
timesteps are “A”, “C”, and “B”, which are different from “A”, “B”, and “C” in Fig. 9.8.1. Therefore,
the conditional probability of generating each word in timestep 4 in Fig. 9.8.2 is also different
from that in Fig. 9.8.1. We find that the conditional probability of the output sequence “A”, “C”,
“B”, and “<eos>” at the current timestep is 0.5 × 0.3 × 0.6 × 0.6 = 0.054, which is higher than the
conditional probability of the output sequence obtained by greedy search. Therefore, the output
sequence “A”, “B”, “C”, and “<eos>” obtained by the greedy search is not an optimal sequence.

Fig. 9.8.2: The four numbers under each timestep represent the conditional probabilities of gener-
ating “A”, “B”, “C”, and “<eos>” at that timestep. At timestep 2, the word “C”, which has the second
highest conditional probability, is selected.

9.8. Beam Search 377

9.8.2 Exhaustive Search

If the goal is to obtain the optimal sequence, we may consider using exhaustive search: an exhaus-
tive examination of all possible output sequences, which outputs the sequence with the highest
conditional probability.

Although we can use an exhaustive search to obtain the optimal sequence, its computational over-
head O(|Y|T

′
) is likely to be excessively high. For example, when |Y| = 10000 and T ′ = 10, we

will need to evaluate 1000010 = 1040 sequences. This is next to impossible to complete. The
computational overhead of greedy search isO(|Y|T ′), which is usually significantly less than the
computational overhead of an exhaustive search. For example, when |Y| = 10000 and T ′ = 10,
we only need to evaluate 10000× 10 = 1× 105 sequences.

9.8.3 Beam Search

Beam search is an improved algorithm based on greedy search. It has a hyper-parameter named
beam size, k. At timestep 1, we select k words with the highest conditional probability to be the first
word of the k candidate output sequences. For each subsequent timestep, we are going to select
the k output sequences with the highest conditional probability from the total of k |Y| possible
output sequences based on the k candidate output sequences from the previous timestep. These
will be the candidate output sequence for that timestep. Finally, we will filter out the sequences
containing the special symbol “<eos>” from the candidate output sequences of each timestep and
discard all the subsequences after it to obtain a set of final candidate output sequences.

Fig. 9.8.3: The beam search process. The beam size is 2 and the maximum length of the output
sequence is 3. The candidate output sequences are A, C, AB, CE, ABD, and CED.

Fig. 9.8.3 demonstrates the process of beam search with an example. Suppose that the vocabulary
of the output sequence only contains five elements: Y = {A,B,C,D,E} where one of them is
a special symbol “<eos>”. Set beam size to 2, the maximum length of the output sequence to 3.
At timestep 1 of the output sequence, suppose the words with the highest conditional probability

378 Chapter 9. Modern Recurrent Neural Networks

P (y1 | c) are A and C. At timestep 2, for all y2 ∈ Y, we compute

P (A, y2 | c) = P (A | c)P (y2 | A, c) (9.8.2)

and

P (C, y2 | c) = P (C | c)P (y2 | C, c), (9.8.3)

and pick the largest two among these 10 values, say

P (A,B | c) and P (C,E | c). (9.8.4)

Then at timestep 3, for all y3 ∈ Y, we compute

P (A,B, y3 | c) = P (A,B | c)P (y3 | A,B, c) (9.8.5)

and

P (C,E, y3 | c) = P (C,E | c)P (y3 | C,E, c), (9.8.6)

and pick the largest two among these 10 values, say

P (A,B,D | c) and P (C,E,D | c). (9.8.7)

As a result, we obtain 6 candidates output sequences: (1) A; (2) C; (3) A, B; (4) C, E; (5) A, B, D;
and (6) C, E, D. In the end, we will get the set of final candidate output sequences based on these
6 sequences.

In the set of final candidate output sequences, we will take the sequence with the highest score as
the output sequence from those below:

1

Lα
logP (y1, . . . , yL) =

1

Lα

L∑
t′=1

logP (yt′ | y1, . . . , yt′−1, c), (9.8.8)

Here, L is the length of the final candidate sequence and the selection for α is generally 0.75. The
Lα on the denominator is a penalty on the logarithmic addition scores for the longer sequences
above. The computational overheadO(k |Y|T ′) of the beam search can be obtained through anal-
ysis. The result is between the computational overhead of greedy search and exhaustive search.
In addition, greedy search can be treated as a beam search with a beam size of 1. Beam search
strikes a balance between computational overhead and search quality using a flexible beam size
of k.

Summary

• Methods for predicting variable-length sequences include greedy search, exhaustive search,
and beam search.

• Beam search strikes a balance between computational overhead and search quality using a
flexible beam size.

9.8. Beam Search 379

Exercises

1. Can we treat an exhaustive search as a beam search with a special beam size? Why?

2. We used language models to generate sentences in Section 8.5. Which kind of search does
this output use? Can you improve it?

380 Chapter 9. Modern Recurrent Neural Networks

10 | AttentionMechanisms

As a bit of a historical digression, attention research is an enormous field with a long history in
cognitive neuroscience. Focalization, concentration of consciousness are of the essence of atten-
tion, which enable the human to prioritize the perception in order to deal effectively with others.
As a result, we do not process all the information that is available in the sensory input. At any
time, we are aware of only a small fraction of the information in the environment. In cognitive
neuroscience, there are several types of attention such as selective attention, covert attention, and
spatial attention. The theory ignites the spark in recent deep learning is the feature integration the-
ory of the selective attention, which was developed by Anne Treisman and Garry Gelade through
the paper (Treisman & Gelade, 1980) in 1980. This paper declares that when perceiving a stimulus,
features are registered early, automatically, and in parallel, while objects are identified separately
and at a later stage in processing. The theory has been one of the most influential psychological
models of human visual attention.

However, we will not indulge in too much theory of attention in neuroscience, but rather focus on
applying the attention idea in deep learning, where attention can be seen as a generalized pooling
method with bias alignment over inputs. In this chapter, we will provide you with some intuition
about how to transform the attention idea to the concrete mathematics models, and make them
work.

10.1 Attention Mechanisms

In Section 9.7, we encode the source sequence input information in the recurrent unit state and
then pass it to the decoder to generate the target sequence. A token in the target sequence may
closely relate to one or more tokens in the source sequence, instead of the whole source sequence.
For example, when translating “Hello world.” to “Bonjour le monde.”, “Bonjour” maps to “Hello”
and “monde” maps to “world”. In the seq2seq model, the decoder may implicitly select the corre-
sponding information from the state passed by the encoder. The attention mechanism, however,
makes this selection explicit.

Attention is a generalized pooling method with bias alignment over inputs. The core component
in the attention mechanism is the attention layer, or called attention for simplicity. An input of the
attention layer is called a query. For a query, attention returns an output based on the memory—a
set of key-value pairs encoded in the attention layer. To be more specific, assume that the memory
contains n key-value pairs, (k1, v1), . . . , (kn, vn), with ki ∈ Rdk , vi ∈ Rdv . Given a query q ∈ Rdq ,
the attention layer returns an output o ∈ Rdv with the same shape as the value.

381

Fig. 10.1.1: The attention layer returns an output based on the input query and its memory.

The full process of attention mechanism is expressed in Fig. 10.1.2. To compute the output of
attention, we first use a score function α that measures the similarity between the query and key.
Then for each key (k1, v1), . . . , (kn, vn), we compute the scores a1, . . . , an by

ai = α(q,ki). (10.1.1)

Next we use softmax to obtain the attention weights, i.e.,

b = softmax(a) , where bi =
exp(ai)∑
j exp(aj)

,b = [b1, . . . , bn]
T . (10.1.2)

Finally, the output is a weighted sum of the values:

o =

n∑
i=1

bivi. (10.1.3)

Fig. 10.1.2: The attention output is a weighted sum of the values.

Different choices of the score function lead to different attention layers. Below, we introduce two
commonly used attention layers. Before diving into the implementation, we first express two op-
erators to get you up and running: a masked version of the softmax operator masked_softmax and
a specialized dot operator batched_dot.

382 Chapter 10. Attention Mechanisms

import math
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

The masked softmax takes a 3-dimensional input and enables us to filter out some elements by
specifying a valid length for the last dimension. (Refer to Section 9.5 for the definition of a valid
length.) As a result, any value outside the valid length will be masked as 0. Let s̓ implement the
masked_softmax function.

Saved in the d2l package for later use
def masked_softmax(X, valid_length):

X: 3-D tensor, valid_length: 1-D or 2-D tensor
if valid_length is None:

return npx.softmax(X)
else:

shape = X.shape
if valid_length.ndim == 1:

valid_length = valid_length.repeat(shape[1], axis=0)
else:

valid_length = valid_length.reshape(-1)
Fill masked elements with a large negative, whose exp is 0
X = npx.sequence_mask(X.reshape(-1, shape[-1]), valid_length, True,

axis=1, value=-1e6)
return npx.softmax(X).reshape(shape)

To illustrate how this function works, we construct two 2×4 matrices as the input. In addition, we
specify that the valid length equals to 2 for the first example, and 3 for the second example. Then,
as we can see from the following outputs, the values outside valid lengths are masked as zero.

masked_softmax(np.random.uniform(size=(2, 2, 4)), np.array([2, 3]))

array([[[0.488994 , 0.511006 , 0. , 0.],
[0.43654838, 0.56345165, 0. , 0.]],

[[0.28817102, 0.3519408 , 0.3598882 , 0.],
[0.29034293, 0.25239873, 0.45725834, 0.]]])

Moreover, the second operator batched_dot takes two inputs X and Y with shapes (b, n,m) and
(b,m, k), respectively, and returns an output with shape (b, n, k). To be specific, it computes b dot
products for i = {1, . . . , b}, i.e.,

Z[i, :, :] = X[i, :, :]Y [i, :, :]. (10.1.4)

npx.batch_dot(np.ones((2, 1, 3)), np.ones((2, 3, 2)))

array([[[3., 3.]],

[[3., 3.]]])

10.1. Attention Mechanisms 383

10.1.1 Dot Product Attention

Equipped with the above two operators: masked_softmax and batched_dot, let s̓ dive into the details
of two widely used attentions layers. The first one is the dot product attention: it assumes that the
query has the same dimension as the keys, namely q,ki ∈ Rd for all i. The dot product attention
computes the scores by an dot product between the query and a key, which is then divided by

√
d

to minimize the unrelated influence of the dimension d on the scores. In other words,

α(q,k) = ⟨q,k⟩/
√
d. (10.1.5)

Beyond the single-dimensional queries and keys, we can always generalize them to multi-
dimensional queries and keys. Assume that Q ∈ Rm×d contains m queries and K ∈ Rn×d has
all the n keys. We can compute all mn scores by

α(Q,K) = QK⊤/
√
d. (10.1.6)

With (10.1.6), we can implement the dot product attention layer DotProductAttention that sup-
ports a batch of queries and key-value pairs. In addition, for regularization we also use a dropout
layer.

Saved in the d2l package for later use
class DotProductAttention(nn.Block):

def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)

query: (batch_size, #queries, d)
key: (batch_size, #kv_pairs, d)
value: (batch_size, #kv_pairs, dim_v)
valid_length: either (batch_size,) or (batch_size, xx)
def forward(self, query, key, value, valid_length=None):

d = query.shape[-1]
Set transpose_b=True to swap the last two dimensions of key
scores = npx.batch_dot(query, key, transpose_b=True) / math.sqrt(d)
attention_weights = self.dropout(masked_softmax(scores, valid_length))
return npx.batch_dot(attention_weights, value)

Let s̓ test the class DotProductAttention in a toy example. First, create two batches, where each
batch has one query and 10 key-value pairs.
Via the valid_length argument, we specify that we will check the first 2 key-value pairs for the
first batch and 6 for the second one. Therefore, even though both batches have the same query
and key-value pairs, we obtain different outputs.

atten = DotProductAttention(dropout=0.5)
atten.initialize()
keys = np.ones((2, 10, 2))
values = np.arange(40).reshape(1, 10, 4).repeat(2, axis=0)
atten(np.ones((2, 1, 2)), keys, values, np.array([2, 6]))

384 Chapter 10. Attention Mechanisms

array([[[2. , 3. , 4. , 5.]],

[[10. , 11. , 12.000001, 13.]]])

As we can see above, dot product attention simply multiplies the query and key together, and
hopes to derive their similarities from there. Whereas, the query and key may not be of the same
dimension. To address such an issue, we may resort to the multilayer perceptron attention.

10.1.2 Multilayer Perceptron Attention

In multilayer perceptron attention, we project both query and keys into Rh by learnable weights
parameters. Assume that the learnable weights are Wk ∈ Rh×dk , Wq ∈ Rh×dq , and v ∈ Rh. Then
the score function is defined by

α(k,q) = v⊤tanh(Wkk+Wqq). (10.1.7)

Intuitively, you can imagine Wkk+Wqq as concatenating the key and value in the feature dimen-
sion and feeding them to a single hidden layer perceptron with hidden layer size h and output
layer size 1. In this hidden layer, the activation function is tanh and no bias is applied. Now let s̓
implement the multilayer perceptron attention.

Saved in the d2l package for later use
class MLPAttention(nn.Block):

def __init__(self, units, dropout, **kwargs):
super(MLPAttention, self).__init__(**kwargs)
Use flatten=True to keep query's and key's 3-D shapes
self.W_k = nn.Dense(units, activation='tanh',

use_bias=False, flatten=False)
self.W_q = nn.Dense(units, activation='tanh',

use_bias=False, flatten=False)
self.v = nn.Dense(1, use_bias=False, flatten=False)
self.dropout = nn.Dropout(dropout)

def forward(self, query, key, value, valid_length):
query, key = self.W_k(query), self.W_q(key)
Expand query to (batch_size, #querys, 1, units), and key to
(batch_size, 1, #kv_pairs, units). Then plus them with broadcast
features = np.expand_dims(query, axis=2) + np.expand_dims(key, axis=1)
scores = np.squeeze(self.v(features), axis=-1)
attention_weights = self.dropout(masked_softmax(scores, valid_length))
return npx.batch_dot(attention_weights, value)

To test the above MLPAttention class, we use the same inputs as in the previous toy example. As
we can see below, despite MLPAttention containing an additional MLP model, we obtain the same
outputs as for DotProductAttention.

atten = MLPAttention(units=8, dropout=0.1)
atten.initialize()
atten(np.ones((2, 1, 2)), keys, values, np.array([2, 6]))

10.1. Attention Mechanisms 385

array([[[2. , 3. , 4. , 5.]],

[[10. , 11. , 12.000001, 13.]]])

Summary

• An attention layer explicitly selects related information.

• An attention layer s̓ memory consists of key-value pairs, so its output is close to the values
whose keys are similar to the queries.

• Two commonly used attention models are dot product attention and multilayer perceptron
attention.

Exercises

1. What are the advantages and disadvantages for dot product attention and multilayer percep-
tron attention, respectively?

10.2 Sequence to Sequence with Attention Mechanisms

In this section, we add the attention mechanism to the sequence to sequence (seq2seq) model as
introduced in Section 9.7 to explicitly aggregate states with weights. Fig. 10.2.1 shows the model
architecture for encoding and decoding at the timestep t. Here, the memory of the attention layer
consists of all the information that the encoder has seen—the encoder output at each timestep.
During the decoding, the decoder output from the previous timestep t − 1 is used as the query.
The output of the attention model is viewed as the context information, and such context is con-
catenated with the decoder input Dt. Finally, we feed the concatenation into the decoder.

386 Chapter 10. Attention Mechanisms

Fig. 10.2.1: The second timestep in decoding for the sequence to sequence model with attention
mechanism.

To illustrate the overall architecture of seq2seq with attention model, the layer structure of its
encoder and decoder is shown in Fig. 10.2.2.

Fig. 10.2.2: The layers in the sequence to sequence model with attention mechanism.

import d2l
from mxnet import np, npx
from mxnet.gluon import rnn, nn
npx.set_np()

10.2. Sequence to Sequence with Attention Mechanisms 387

10.2.1 Decoder

Since the encoder of seq2seq with attention mechanisms is the same as Seq2SeqEncoder in Section
9.7, we will just focus on the decoder. We add an MLP attention layer (MLPAttention) which has
the same hidden size as the LSTM layer in the decoder. Then we initialize the state of the decoder
by passing three items from the encoder:

• the encoder outputs of all timesteps: they are used as the attention layer s̓ memory with
identical keys and values;

• the hidden state of the encoder s̓ final timestep: it is used as the initial decoder s̓ hidden
state;

• the encoder valid length: so the attention layer will not consider the padding tokens with
in the encoder outputs.

At each timestep of the decoding, we use the output of the decoder s̓ last RNN layer as the query
for the attention layer. The attention model s̓ output is then concatenated with the input embed-
ding vector to feed into the RNN layer. Although the RNN layer hidden state also contains history
information from decoder, the attention output explicitly selects the encoder outputs based on
enc_valid_len, so that the attention output suspends other irrelevant information.

Let s̓ implement the Seq2SeqAttentionDecoder, and see how it differs from the decoder in seq2seq
from Section 9.7.2.

class Seq2SeqAttentionDecoder(d2l.Decoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,

dropout=0, **kwargs):
super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
self.attention_cell = d2l.MLPAttention(num_hiddens, dropout)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)
self.dense = nn.Dense(vocab_size, flatten=False)

def init_state(self, enc_outputs, enc_valid_len, *args):
outputs, hidden_state = enc_outputs
Transpose outputs to (batch_size, seq_len, hidden_size)
return (outputs.swapaxes(0, 1), hidden_state, enc_valid_len)

def forward(self, X, state):
enc_outputs, hidden_state, enc_valid_len = state
X = self.embedding(X).swapaxes(0, 1)
outputs = []
for x in X:

query shape: (batch_size, 1, hidden_size)
query = np.expand_dims(hidden_state[0][-1], axis=1)
context has same shape as query
context = self.attention_cell(

query, enc_outputs, enc_outputs, enc_valid_len)
Concatenate on the feature dimension
x = np.concatenate((context, np.expand_dims(x, axis=1)), axis=-1)
Reshape x to (1, batch_size, embed_size+hidden_size)
out, hidden_state = self.rnn(x.swapaxes(0, 1), hidden_state)
outputs.append(out)

outputs = self.dense(np.concatenate(outputs, axis=0))
return outputs.swapaxes(0, 1), [enc_outputs, hidden_state,

enc_valid_len]

388 Chapter 10. Attention Mechanisms

Now we can test the seq2seq with attention model. To be consistent with the model without atten-
tion in Section 9.7, we use the same hyper-parameters for vocab_size, embed_size, num_hiddens,
and num_layers. As a result, we get the same decoder output shape, but the state structure is
changed.

encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8,
num_hiddens=16, num_layers=2)

encoder.initialize()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8,

num_hiddens=16, num_layers=2)
decoder.initialize()
X = np.zeros((4, 7))
state = decoder.init_state(encoder(X), None)
out, state = decoder(X, state)
out.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape

((4, 7, 10), 3, (4, 7, 16), 2, (2, 4, 16))

10.2.2 Training

Similar to Section 9.7.4, we try a toy model by applying the same training hyperparameters and
the same training loss. As we can see from the result, since the sequences in the training dataset
are relative short, the additional attention layer does not lead to a significant improvement. Due
to the computational overhead of both the encoder s̓ and the decoder s̓ attention layers, this model
is much slower than the seq2seq model without attention.

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0
batch_size, num_steps = 64, 10
lr, num_epochs, ctx = 0.005, 200, d2l.try_gpu()

src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(

len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqAttentionDecoder(

len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
model = d2l.EncoderDecoder(encoder, decoder)
d2l.train_s2s_ch9(model, train_iter, lr, num_epochs, ctx)

loss 0.032, 3714 tokens/sec on gpu(0)

10.2. Sequence to Sequence with Attention Mechanisms 389

Last, we predict several sample examples.

for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
print(sentence + ' => ' + d2l.predict_s2s_ch9(

model, sentence, src_vocab, tgt_vocab, num_steps, ctx))

Go . => va !
Wow ! => <unk> !
I'm OK . => ça va .
I won ! => il est tard !

Summary

• The seq2seq model with attention adds an additional attention layer to the model without
attention.

• The decoder of the seq2seq with attention model passes three items from the encoder: the
encoder outputs of all timesteps, the hidden state of the encoder s̓ final timestep, and the
encoder valid length.

Exercises

1. Compare Seq2SeqAttentionDecoder and Seq2seqDecoder by using the same parameters and
checking their losses.

2. Can you think of any use cases where Seq2SeqAttentionDecoder will outperform
Seq2seqDecoder?

390 Chapter 10. Attention Mechanisms

10.3 Transformer

In previous chapters, we have covered major neural network architectures such as convolution
neural networks (CNNs) and recurrent neural networks (RNNs). Let s̓ recap their pros and cons:

• CNNs are easy to parallelize at a layer but cannot capture the variable-length sequential de-
pendency very well.

• RNNs are able to capture the long-range, variable-length sequential information, but suffer
from inability to parallelize within a sequence.

To combine the advantages from both CNNs and RNNs, (Vaswani et al., 2017) designed a novel
architecture using the attention mechanism. This architecture, which is called as Transformer,
achieves parallelization by capturing recurrence sequence with attention and at the same time
encodes each items̓ position in the sequence. As a result, Transformer leads to a compatible model
with significantly shorter training time.

Similar to the seq2seq model in Section 9.7, Transformer is also based on the encoder-decoder
architecture. However, Transformer differs to the former by replacing the recurrent layers in
seq2seq with multi-head attention layers, incorporating the position-wise information through po-
sition encoding, and applying layer normalization. We compare Transformer and seq2seq side-by-
side in Fig. 10.3.1.

Overall, these two models are similar to each other: the source sequence embeddings are fed
into n repeated blocks. The outputs of the last block are then used as attention memory for the
decoder. The target sequence embeddings are similarly fed into n repeated blocks in the decoder,
and the final outputs are obtained by applying a dense layer with vocabulary size to the last block s̓
outputs.

Multi-head
attention

Add & norm

Positional
encoding

Embedding

Position-
wise FFN

Add & norm

Muti-head
attention

Add & norm

Position-
wise FFN

Add & norm

Sources

Dense

Masked
multi-head
attention

Add & norm

Embedding

Targets

x n

n x

State

Embedding

Sources

Decoder

n x

Embedding

Targets

Dense

Encoder

Attention

Recurrent layer Recurrent layer x n

Seq2seq with Attention

Transformer

Positional
encoding + +

Fig. 10.3.1: The Transformer architecture.

On the flip side, Transformer differs from the seq2seq with attention model in the following:

1. Transformer block: a recurrent layer in seq2seq is replaced by a Transformer block. This
block contains a multi-head attention layer and a network with two position-wise feed-forward

10.3. Transformer 391

network layers for the encoder. For the decoder, another multi-head attention layer is used
to take the encoder state.

2. Addandnorm: the inputs and outputs of both the multi-head attention layer or the position-
wise feed-forward network, are processed by two “add and norm” layer that contains a resid-
ual structure and a layer normalization layer.

3. Position encoding: since the self-attention layer does not distinguish the item order in a se-
quence, a positional encoding layer is used to add sequential information into each sequence
item.

In the rest of this section, we will equip you with each new component introduced by Transformer,
and get you up and running to construct a machine translation model.

import d2l
import math
from mxnet import autograd, np, npx
from mxnet.gluon import nn
npx.set_np()

10.3.1 Multi-Head Attention

Before the discussion of the multi-head attention layer, let s̓ quick express the self-attention archi-
tecture. The self-attention model is a normal attention model, with its query, its key, and its value
being copied exactly the same from each item of the sequential inputs. As we illustrate in Fig.
10.3.2, self-attention outputs a same-length sequential output for each input item. Compared with
a recurrent layer, output items of a self-attention layer can be computed in parallel and, therefore,
it is easy to obtain a highly-efficient implementation.

Fig. 10.3.2: Self-attention architecture.

The multi-head attention layer consists of h parallel self-attention layers, each one is called a head.
For each head, before feeding into the attention layer, we project the queries, keys, and values with
three dense layers with hidden sizes pq, pk, and pv, respectively. The outputs of these h attention
heads are concatenated and then processed by a final dense layer.

392 Chapter 10. Attention Mechanisms

Fig. 10.3.3: Multi-head attention

Assume that the dimension for a query, a key, and a value are dq, dk, and dv, respectively. Then,
for each head i = 1, . . . , h, we can train learnable parameters W(i)

q ∈ Rpq×dq , W(i)
k ∈ Rpk×dk , and

W(i)
v ∈ Rpv×dv . Therefore, the output for each head is

o(i) = attention(W(i)
q q,W(i)

k k,W(i)
v v), (10.3.1)

where attention can be any attention layer, such as the DotProductAttention and MLPAttention as
we introduced in

After that, the output with length pv from each of the h attention heads are concatenated to be an
output of length hpv, which is then passed the final dense layer with do hidden units. The weights
of this dense layer can be denoted by Wo ∈ Rdo×hpv . As a result, the multi-head attention output
will be

o = Wo

o
(1)

...
o(h)

 . (10.3.2)

Now we can implement the multi-head attention. Assume that the multi-head attention contain
the number heads num_heads = h, the hidden size hidden_size = pq = pk = pv are the same
for the query, key, and value dense layers. In addition, since the multi-head attention keeps the
same dimensionality between its input and its output, we have the output feature size $d_o = $
hidden_size as well.

class MultiHeadAttention(nn.Block):
def __init__(self, hidden_size, num_heads, dropout, **kwargs):

super(MultiHeadAttention, self).__init__(**kwargs)
self.num_heads = num_heads
self.attention = d2l.DotProductAttention(dropout)
self.W_q = nn.Dense(hidden_size, use_bias=False, flatten=False)
self.W_k = nn.Dense(hidden_size, use_bias=False, flatten=False)
self.W_v = nn.Dense(hidden_size, use_bias=False, flatten=False)
self.W_o = nn.Dense(hidden_size, use_bias=False, flatten=False)

def forward(self, query, key, value, valid_length):
query, key, and value shape: (batch_size, seq_len, dim),
where seq_len is the length of input sequence
valid_length shape is either (batch_size,)

(continues on next page)

10.3. Transformer 393

(continued from previous page)

or (batch_size, seq_len).

Project and transpose query, key, and value from
(batch_size, seq_len, hidden_size * num_heads) to
(batch_size * num_heads, seq_len, hidden_size).
query = transpose_qkv(self.W_q(query), self.num_heads)
key = transpose_qkv(self.W_k(key), self.num_heads)
value = transpose_qkv(self.W_v(value), self.num_heads)

if valid_length is not None:
Copy valid_length by num_heads times
if valid_length.ndim == 1:

valid_length = np.tile(valid_length, self.num_heads)
else:

valid_length = np.tile(valid_length, (self.num_heads, 1))

output = self.attention(query, key, value, valid_length)

Transpose from (batch_size * num_heads, seq_len, hidden_size) back
to (batch_size, seq_len, hidden_size * num_heads)
output_concat = transpose_output(output, self.num_heads)
return self.W_o(output_concat)

Here are the definitions of the transpose functions transpose_qkv and transpose_output, who are
the inverse of each other.

def transpose_qkv(X, num_heads):
Original X shape: (batch_size, seq_len, hidden_size * num_heads),
-1 means inferring its value, after first reshape, X shape:
(batch_size, seq_len, num_heads, hidden_size)
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)

After transpose, X shape: (batch_size, num_heads, seq_len, hidden_size)
X = X.transpose(0, 2, 1, 3)

Merge the first two dimensions. Use reverse=True to infer shape from
right to left.
output shape: (batch_size * num_heads, seq_len, hidden_size)
output = X.reshape(-1, X.shape[2], X.shape[3])
return output

def transpose_output(X, num_heads):
A reversed version of transpose_qkv
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
X = X.transpose(0, 2, 1, 3)
return X.reshape(X.shape[0], X.shape[1], -1)

Let s̓ test the MultiHeadAttention model in the a toy example. Create a multi-head attention with
the hidden size do = 100, the output will share the same batch size and sequence length as the
input, but the last dimension will be equal to the hidden_size= 100.

cell = MultiHeadAttention(100, 10, 0.5)
cell.initialize()

(continues on next page)

394 Chapter 10. Attention Mechanisms

(continued from previous page)

X = np.ones((2, 4, 5))
valid_length = np.array([2, 3])
cell(X, X, X, valid_length).shape

(2, 4, 100)

10.3.2 Position-wise Feed-Forward Networks

Another key component in the Transformer block is called position-wise feed-forward network
(FFN). It accepts a 3-dimensional input with shape (batch size, sequence length, feature size). The
position-wise FFN consists of two dense layers that applies to the last dimension. Since the same
two dense layers are used for each position item in the sequence, we referred to it as position-wise.
Indeed, it is equivalent to applying two 1× 1 convolution layers.

Below, the PositionWiseFFN shows how to implement a position-wise FFN with two dense layers
of hidden size ffn_hidden_size and hidden_size_out, respectively.

class PositionWiseFFN(nn.Block):
def __init__(self, ffn_hidden_size, hidden_size_out, **kwargs):

super(PositionWiseFFN, self).__init__(**kwargs)
self.ffn_1 = nn.Dense(ffn_hidden_size, flatten=False,

activation='relu')
self.ffn_2 = nn.Dense(hidden_size_out, flatten=False)

def forward(self, X):
return self.ffn_2(self.ffn_1(X))

Similar to the multi-head attention, the position-wise feed-forward network will only change the
last dimension size of the input—the feature dimension. In addition, if two items in the input
sequence are identical, the according outputs will be identical as well.

ffn = PositionWiseFFN(4, 8)
ffn.initialize()
ffn(np.ones((2, 3, 4)))[0]

array([[-0.00073839, 0.00923239, -0.00016378, 0.00091236, -0.00763499,
0.00199923, 0.00446541, 0.00189135],

[-0.00073839, 0.00923239, -0.00016378, 0.00091236, -0.00763499,
0.00199923, 0.00446541, 0.00189135],

[-0.00073839, 0.00923239, -0.00016378, 0.00091236, -0.00763499,
0.00199923, 0.00446541, 0.00189135]])

10.3. Transformer 395

10.3.3 Add and Norm

Besides the above two components in the Transformer block, the “add and norm” within the block
also plays a key role to connect the inputs and outputs of other layers smoothly. To explain, we
add a layer that contains a residual structure and a layer normalization after both the multi-head
attention layer and the position-wise FFN network. Layer normalization is similar to batch normal-
ization in Section 7.5. One difference is that the mean and variances for the layer normalization
are calculated along the last dimension, e.g X.mean(axis=-1) instead of the first batch dimension,
e.g., X.mean(axis=0). Layer normalization prevents the range of values in the layers from chang-
ing too much, which means that faster training and better generalization ability.

MXNet has both LayerNorm and BatchNorm implemented within the nn block. Let s̓ call both of
them and see the difference in the example below.

layer = nn.LayerNorm()
layer.initialize()
batch = nn.BatchNorm()
batch.initialize()
X = np.array([[1, 2], [2, 3]])
Compute mean and variance from X in the training mode
with autograd.record():

print('layer norm:', layer(X), '\nbatch norm:', batch(X))

layer norm: [[-0.99998 0.99998]
[-0.99998 0.99998]]
batch norm: [[-0.99998 -0.99998]
[0.99998 0.99998]]

Now let s̓ implement the connection block AddNorm together. AddNorm accepts two inputs X and Y .
We can deem X as the original input in the residual network, and Y as the outputs from either the
multi-head attention layer or the position-wise FFN network. In addition, we apply dropout on Y
for regularization.

class AddNorm(nn.Block):
def __init__(self, dropout, **kwargs):

super(AddNorm, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
self.norm = nn.LayerNorm()

def forward(self, X, Y):
return self.norm(self.dropout(Y) + X)

Due to the residual connection, X and Y should have the same shape.

add_norm = AddNorm(0.5)
add_norm.initialize()
add_norm(np.ones((2, 3, 4)), np.ones((2, 3, 4))).shape

(2, 3, 4)

396 Chapter 10. Attention Mechanisms

10.3.4 Positional Encoding

Unlike the recurrent layer, both the multi-head attention layer and the position-wise feed-forward
network compute the output of each item in the sequence independently. This feature enables
us to parallelize the computation, but it fails to model the sequential information for a given se-
quence. To better capture the sequential information, the Transformer model uses the positional
encoding to maintain the positional information of the input sequence.

To explain, assume that X ∈ Rl×d is the embedding of an example, where l is the sequence length
and d is the embedding size. This positional encoding layer encodes X s̓ position P ∈ Rl×d and
outputs P +X.

The position P is a 2-D matrix, where i refers to the order in the sentence, and j refers to the
position along the embedding vector dimension. In this way, each value in the origin sequence is
then maintained using the equations below:

Pi,2j = sin(i/100002j/d), (10.3.3)

Pi,2j+1 = cos(i/100002j/d), (10.3.4)

for i = 0, . . . , l − 1 and j = 0, . . . , ⌊(d− 1)/2⌋.

Fig. 10.3.4 illustrates the positional encoding.

Fig. 10.3.4: Positional encoding.

class PositionalEncoding(nn.Block):
def __init__(self, embedding_size, dropout, max_len=1000):

super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(dropout)
Create a long enough P
self.P = np.zeros((1, max_len, embedding_size))
X = np.arange(0, max_len).reshape(-1, 1) / np.power(

10000, np.arange(0, embedding_size, 2)/embedding_size)
self.P[:, :, 0::2] = np.sin(X)
self.P[:, :, 1::2] = np.cos(X)

def forward(self, X):
X = X + self.P[:, :X.shape[1], :].as_in_context(X.context)
return self.dropout(X)

Now we test the PositionalEncoding class with a toy model for 4 dimensions. As we can see, the 4th

dimension has the same frequency as the 5th but with different offset. The 5th and 6th dimensions
have a lower frequency.

10.3. Transformer 397

pe = PositionalEncoding(20, 0)
pe.initialize()
Y = pe(np.zeros((1, 100, 20)))
d2l.plot(np.arange(100), Y[0, :, 4:8].T, figsize=(6, 2.5),

legend=["dim %d" % p for p in [4, 5, 6, 7]])

10.3.5 Encoder

Armed with all the essential components of Transformer, let s̓ first build a Transformer encoder
block. This encoder contains a multi-head attention layer, a position-wise feed-forward network,
and two “add and norm” connection blocks. As shown in the code, for both of the attention model
and the positional FFN model in the EncoderBlock, their outputsʼ dimension are equal to the em-
bedding_size. This is due to the nature of the residual block, as we need to add these outputs back
to the original value during “add and norm”.

class EncoderBlock(nn.Block):
def __init__(self, embedding_size, ffn_hidden_size, num_heads,

dropout, **kwargs):
super(EncoderBlock, self).__init__(**kwargs)
self.attention = MultiHeadAttention(embedding_size, num_heads,

dropout)
self.addnorm_1 = AddNorm(dropout)
self.ffn = PositionWiseFFN(ffn_hidden_size, embedding_size)
self.addnorm_2 = AddNorm(dropout)

def forward(self, X, valid_length):
Y = self.addnorm_1(X, self.attention(X, X, X, valid_length))
return self.addnorm_2(Y, self.ffn(Y))

Due to the residual connections, this block will not change the input shape. It means that the em-
bedding_size argument should be equal to the input size of the last dimension. In our toy example
below, embedding_size= 24, ffn_hidden_size= 48, num_heads= 8, and dropout = 0.5.

X = np.ones((2, 100, 24))
encoder_blk = EncoderBlock(24, 48, 8, 0.5)
encoder_blk.initialize()
encoder_blk(X, valid_length).shape

398 Chapter 10. Attention Mechanisms

(2, 100, 24)

Now it comes to the implementation of the entire Transformer encoder. With the Transformer
encoder, n blocks of EncoderBlock stack up one after another. Because of the residual connection,
the embedding layer size d is same as the Transformer block output size. Also note that we multiply
the embedding output by

√
d to prevent its values from being too small.

class TransformerEncoder(d2l.Encoder):
def __init__(self, vocab_size, embedding_size, ffn_hidden_size,

num_heads, num_layers, dropout, **kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self.embedding_size = embedding_size
self.embed = nn.Embedding(vocab_size, embedding_size)
self.pos_encoding = PositionalEncoding(embedding_size, dropout)
self.blks = nn.Sequential()
for i in range(num_layers):

self.blks.add(
EncoderBlock(embedding_size, ffn_hidden_size,

num_heads, dropout))

def forward(self, X, valid_length, *args):
X = self.pos_encoding(self.embed(X) * math.sqrt(self.embedding_size))
for blk in self.blks:

X = blk(X, valid_length)
return X

Let s̓ create an encoder with two stacked Transformer encoder blocks, whose hyperparameters are
the same as before. Similar to the previous toy example s̓ parameters, we add two more parameters
vocab_size to be 200 and num_layers to be 2 here.

encoder = TransformerEncoder(200, 24, 48, 8, 2, 0.5)
encoder.initialize()
encoder(np.ones((2, 100)), valid_length).shape

(2, 100, 24)

10.3.6 Decoder

The Transformer decoder block looks similar to the Transformer encoder block. However, be-
sides the two sub-layers—the multi-head attention layer and the positional encoding network, the
decoder Transformer block contains a third sub-layer, which applies multi-head attention on the
output of the encoder stack. Similar to the Transformer encoder block, the Transformer decoder
block employs “add and norm”, i.e., the residual connections and the layer normalization to con-
nect each of the sub-layers.

To be specific, at timestep t, assume that xt is the current input, i.e., the query. As illustrated in
Fig. 10.3.5, the keys and values of the self-attention layer consist of the current query with all the
past queries x1, . . . , xt−1.

10.3. Transformer 399

Fig. 10.3.5: Predict at timestep t for a self-attention layer.

During training, the output for the t-query could observe all the previous key-value pairs. It results
in an different behavior from prediction. Thus, during prediction we can eliminate the unneces-
sary information by specifying the valid length to be t for the tth query.

class DecoderBlock(nn.Block):
i means it is the i-th block in the decoder
def __init__(self, embedding_size, ffn_hidden_size, num_heads,

dropout, i, **kwargs):
super(DecoderBlock, self).__init__(**kwargs)
self.i = i
self.attention_1 = MultiHeadAttention(embedding_size, num_heads,

dropout)
self.addnorm_1 = AddNorm(dropout)
self.attention_2 = MultiHeadAttention(embedding_size, num_heads,

dropout)
self.addnorm_2 = AddNorm(dropout)
self.ffn = PositionWiseFFN(ffn_hidden_size, embedding_size)
self.addnorm_3 = AddNorm(dropout)

def forward(self, X, state):
enc_outputs, enc_valid_lengh = state[0], state[1]
state[2][i] contains the past queries for this block
if state[2][self.i] is None:

key_values = X
else:

key_values = np.concatenate((state[2][self.i], X), axis=1)
state[2][self.i] = key_values
if autograd.is_training():

batch_size, seq_len, _ = X.shape
Shape: (batch_size, seq_len), the values in the j-th column
are j+1
valid_length = np.tile(np.arange(1, seq_len+1, ctx=X.context),

(batch_size, 1))
else:

valid_length = None

X2 = self.attention_1(X, key_values, key_values, valid_length)
Y = self.addnorm_1(X, X2)
Y2 = self.attention_2(Y, enc_outputs, enc_outputs, enc_valid_lengh)
Z = self.addnorm_2(Y, Y2)
return self.addnorm_3(Z, self.ffn(Z)), state

Similar to the Transformer encoder block, embedding_size should be equal to the last dimension
size of X.

400 Chapter 10. Attention Mechanisms

decoder_blk = DecoderBlock(24, 48, 8, 0.5, 0)
decoder_blk.initialize()
X = np.ones((2, 100, 24))
state = [encoder_blk(X, valid_length), valid_length, [None]]
decoder_blk(X, state)[0].shape

(2, 100, 24)

The construction of the entire Transformer decoder is identical to the Transformer encoder, ex-
cept for the additional dense layer to obtain the output confidence scores.

Let s̓ implement the Transformer decoder TransformerDecoder. Besides the regular hyperparame-
ters such as the vocab_size and embedding_size, the Transformer decoder also needs the encoder
Transformer s̓ outputs enc_outputs and env_valid_lengh.

class TransformerDecoder(d2l.Decoder):
def __init__(self, vocab_size, embedding_size, ffn_hidden_size,

num_heads, num_layers, dropout, **kwargs):
super(TransformerDecoder, self).__init__(**kwargs)
self.embedding_size = embedding_size
self.num_layers = num_layers
self.embed = nn.Embedding(vocab_size, embedding_size)
self.pos_encoding = PositionalEncoding(embedding_size, dropout)
self.blks = nn.Sequential()
for i in range(num_layers):

self.blks.add(
DecoderBlock(embedding_size, ffn_hidden_size, num_heads,

dropout, i))
self.dense = nn.Dense(vocab_size, flatten=False)

def init_state(self, enc_outputs, env_valid_lengh, *args):
return [enc_outputs, env_valid_lengh, [None]*self.num_layers]

def forward(self, X, state):
X = self.pos_encoding(self.embed(X) * math.sqrt(self.embedding_size))
for blk in self.blks:

X, state = blk(X, state)
return self.dense(X), state

10.3.7 Training

Finally, we can build a encoder-decoder model with Transformer architecture. Similar to the
seq2seq with attention model in Section 10.2, we use the following hyperparameters: two Trans-
former blocks with both the embedding size and the block output size to be 32. In addition, we
use 4 heads, and set the hidden size to be twice larger than the output size.

embed_size, embedding_size, num_layers, dropout = 32, 32, 2, 0.0
batch_size, num_steps = 64, 10
lr, num_epochs, ctx = 0.005, 100, d2l.try_gpu()
num_hiddens, num_heads = 64, 4

src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt(batch_size, num_steps)

(continues on next page)

10.3. Transformer 401

(continued from previous page)

encoder = TransformerEncoder(
len(src_vocab), embedding_size, num_hiddens, num_heads, num_layers,
dropout)

decoder = TransformerDecoder(
len(src_vocab), embedding_size, num_hiddens, num_heads, num_layers,
dropout)

model = d2l.EncoderDecoder(encoder, decoder)
d2l.train_s2s_ch9(model, train_iter, lr, num_epochs, ctx)

loss 0.033, 3453 tokens/sec on gpu(0)

As we can see from the training time and accuracy, compared with the seq2seq model with atten-
tion model, Transformer runs faster per epoch, and converges faster at the beginning.

We can use the trained Transformer to translate some simple sentences.

for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
print(sentence + ' => ' + d2l.predict_s2s_ch9(

model, sentence, src_vocab, tgt_vocab, num_steps, ctx))

Go . => va !
Wow ! => <unk> !
I'm OK . => je vais bien .
I won ! => j'ai gagné !

402 Chapter 10. Attention Mechanisms

Summary

• The Transformer model is based on the encoder-decoder architecture.

• Multi-head attention layer contains h parallel attention layers.

• Position-wise feed-forward network consists of two dense layers that apply to the last dimen-
sion.

• Layer normalization differs from batch normalization by normalizing along the last dimen-
sion (the feature dimension) instead of the first (batch size) dimension.

• Positional encoding is the only place that adds positional information to the Transformer
model.

Exercises

1. Try a larger size of epochs and compare the loss between seq2seq model and Transformer
model.

2. Can you think of any other benefit of positional encoding?

3. Compare layer normalization and batch normalization, when shall we apply which?

10.3. Transformer 403

404 Chapter 10. Attention Mechanisms

11 | Optimization Algorithms

If you read the book in sequence up to this point you already used a number of advanced optimiza-
tion algorithms to train deep learning models. They were the tools that allowed us to continue
updating model parameters and to minimize the value of the loss function, as evaluated on the
training set. Indeed, anyone content with treating optimization as a black box device to minimize
objective functions in a simple setting might well content oneself with the knowledge that there
exists an array of incantations of such a procedure (with names such as “Adam”, “NAG”, or “SGD”).

To do well, however, some deeper knowledge is required. Optimization algorithms are important
for deep learning. On one hand, training a complex deep learning model can take hours, days, or
even weeks. The performance of the optimization algorithm directly affects the model s̓ training
efficiency. On the other hand, understanding the principles of different optimization algorithms
and the role of their parameters will enable us to tune the hyperparameters in a targeted manner
to improve the performance of deep learning models.

In this chapter, we explore common deep learning optimization algorithms in depth. Almost all
optimization problems arising in deep learning are nonconvex. Nonetheless, the design and anal-
ysis of algorithms in the context of convex problems has proven to be very instructive. It is for
that reason that this section includes a primer on convex optimization and the proof for a very
simple stochastic gradient descent algorithm on a convex objective function.

11.1 Optimization and Deep Learning

In this section, we will discuss the relationship between optimization and deep learning as well
as the challenges of using optimization in deep learning. For a deep learning problem, we will
usually define a loss function first. Once we have the loss function, we can use an optimization
algorithm in attempt to minimize the loss. In optimization, a loss function is often referred to as
the objective function of the optimization problem. By tradition and convention most optimiza-
tion algorithms are concerned with minimization. If we ever need to maximize an objective there
is a simple solution: just flip the sign on the objective.

405

11.1.1 Optimization and Estimation

Although optimization provides a way to minimize the loss function for deep learning, in essence,
the goals of optimization and deep learning are fundamentally different. The former is primarily
concerned with minimizing an objective whereas the latter is concerned with finding a suitable
model, given a finite amount of data. In Section 4.4, we discussed the difference between these
two goals in detail. For instance, training error and generalization error generally differ: since the
objective function of the optimization algorithm is usually a loss function based on the training
dataset, the goal of optimization is to reduce the training error. However, the goal of statistical
inference (and thus of deep learning) is to reduce the generalization error. To accomplish the
latter we need to pay attention to overfitting in addition to using the optimization algorithm to
reduce the training error. We begin by importing a few libraries with a function to annotate in a
figure.

%matplotlib inline
import d2l
from mpl_toolkits import mplot3d
from mxnet import np, npx
npx.set_np()

Saved in the d2l package for later use
def annotate(text, xy, xytext):

d2l.plt.gca().annotate(text, xy=xy, xytext=xytext,
arrowprops=dict(arrowstyle='->'))

The graph below illustrates the issue in some more detail. Since we have only a finite amount of
data the minimum of the training error may be at a different location than the minimum of the
expected error (or of the test error).

def f(x): return x * np.cos(np.pi * x)
def g(x): return f(x) + 0.2 * np.cos(5 * np.pi * x)

d2l.set_figsize((4.5, 2.5))
x = np.arange(0.5, 1.5, 0.01)
d2l.plot(x, [f(x), g(x)], 'x', 'risk')
annotate('empirical risk', (1.0, -1.2), (0.5, -1.1))
annotate('expected risk', (1.1, -1.05), (0.95, -0.5))

406 Chapter 11. Optimization Algorithms

11.1.2 Optimization Challenges in Deep Learning

In this chapter, we are going to focus specifically on the performance of the optimization algorithm
in minimizing the objective function, rather than a model s̓ generalization error. In Section 3.1
we distinguished between analytical solutions and numerical solutions in optimization problems.
In deep learning, most objective functions are complicated and do not have analytical solutions.
Instead, we must use numerical optimization algorithms. The optimization algorithms below all
fall into this category.

There are many challenges in deep learning optimization. Some of the most vexing ones are local
minima, saddle points and vanishing gradients. Let s̓ have a look at a few of them.

Local Minima

For the objective function f(x), if the value of f(x) at x is smaller than the values of f(x) at any
other points in the vicinity of x, then f(x) could be a local minimum. If the value of f(x) at x is
the minimum of the objective function over the entire domain, then f(x) is the global minimum.

For example, given the function

f(x) = x · cos(πx) for − 1.0 ≤ x ≤ 2.0, (11.1.1)

we can approximate the local minimum and global minimum of this function.

x = np.arange(-1.0, 2.0, 0.01)
d2l.plot(x, [f(x),], 'x', 'f(x)')
annotate('local minimum', (-0.3, -0.25), (-0.77, -1.0))
annotate('global minimum', (1.1, -0.95), (0.6, 0.8))

The objective function of deep learning models usually has many local optima. When the nu-
merical solution of an optimization problem is near the local optimum, the numerical solution
obtained by the final iteration may only minimize the objective function locally, rather than glob-
ally, as the gradient of the objective functions̓ solutions approaches or becomes zero. Only some
degree of noise might knock the parameter out of the local minimum. In fact, this is one of the
beneficial properties of stochastic gradient descent where the natural variation of gradients over
minibatches is able to dislodge the parameters from local minima.

11.1. Optimization and Deep Learning 407

Saddle Points

Besides local minima, saddle points are another reason for gradients to vanish. A saddle point147

is any location where all gradients of a function vanish but which is neither a global nor a local
minimum. Consider the function f(x) = x3. Its first and second derivative vanish for x = 0.
Optimization might stall at the point, even though it is not a minimum.

x = np.arange(-2.0, 2.0, 0.01)
d2l.plot(x, [x**3], 'x', 'f(x)')
annotate('saddle point', (0, -0.2), (-0.52, -5.0))

Saddle points in higher dimensions are even more insidious, as the example below shows. Con-
sider the function f(x, y) = x2 − y2. It has its saddle point at (0, 0). This is a maximum with
respect to y and a minimum with respect to x. Moreover, it looks like a saddle, which is where this
mathematical property got its name.

x, y = np.meshgrid(np.linspace(-1, 1, 101), np.linspace(-1, 1, 101),
indexing='ij')

z = x**2 - y**2

ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
ax.plot([0], [0], [0], 'rx')
ticks = [-1, 0, 1]
d2l.plt.xticks(ticks)
d2l.plt.yticks(ticks)
ax.set_zticks(ticks)
d2l.plt.xlabel('x')
d2l.plt.ylabel('y');

147 https://en.wikipedia.org/wiki/Saddle_point

408 Chapter 11. Optimization Algorithms

https://en.wikipedia.org/wiki/Saddle_point

We assume that the input of a function is a k-dimensional vector and its output is a scalar, so its
Hessian matrix will have k eigenvalues (refer to Section 17.1). The solution of the function could
be a local minimum, a local maximum, or a saddle point at a position where the function gradient
is zero:

• When the eigenvalues of the functions̓ Hessian matrix at the zero-gradient position are all
positive, we have a local minimum for the function.

• When the eigenvalues of the functions̓ Hessian matrix at the zero-gradient position are all
negative, we have a local maximum for the function.

• When the eigenvalues of the functions̓ Hessian matrix at the zero-gradient position are neg-
ative and positive, we have a saddle point for the function.

For high-dimensional problems the likelihood that at least some of the eigenvalues are negative
is quite high. This makes saddle points more likely than local minima. We will discuss some ex-
ceptions to this situation in the next section when introducing convexity. In short, convex func-
tions are those where the eigenvalues of the Hessian are never negative. Sadly, though, most deep
learning problems do not fall into this category. Nonetheless it is a great tool to study optimization
algorithms.

Vanishing Gradients

Probably the most insidious problem to encounter are vanishing gradients. For instance, assume
that we want to minimize the function f(x) = tanh(x) and we happen to get started at x = 4.
As we can see, the gradient of f is close to nil. More specifically f ′(x) = 1 − tanh2(x) and thus
f ′(4) = 0.0013. Consequently optimization will get stuck for a long time before we make progress.
This turns out to be one of the reasons that training deep learning models was quite tricky prior
to the introduction of the ReLU activation function.

x = np.arange(-2.0, 5.0, 0.01)
d2l.plot(x, [np.tanh(x)], 'x', 'f(x)')
annotate('vanishing gradient', (4, 1), (2, 0.0))

11.1. Optimization and Deep Learning 409

As we saw, optimization for deep learning is full of challenges. Fortunately there exists a robust
range of algorithms that perform well and that are easy to use even for beginners. Furthermore,
it is not really necessary to find the best solution. Local optima or even approximate solutions
thereof are still very useful.

Summary

• Minimizing the training error does not guarantee that we find the best set of parameters to
minimize the expected error.

• The optimization problems may have many local minima.

• The problem may have even more saddle points, as generally the problems are not convex.

• Vanishing gradients can cause optimization to stall. Often a reparametrization of the prob-
lem helps. Good initialization of the parameters can be beneficial, too.

Exercises

1. Consider a simple multilayer perceptron with a single hidden layer of, say, d dimensions in
the hidden layer and a single output. Show that for any local minimum there are at least d!
equivalent solutions that behave identically.

2. Assume that we have a symmetric random matrix M where the entries Mij = Mji are each
drawn from some probability distribution pij. Furthermore assume that pij(x) = pij(−x),
i.e., that the distribution is symmetric (see e.g., (Wigner, 1958) for details).

• Prove that the distribution over eigenvalues is also symmetric. That is, for any eigen-
vector v the probability that the associated eigenvalue λ satisfies P (λ > 0) = P (λ < 0).

• Why does the above not imply P (λ > 0) = 0.5?

3. What other challenges involved in deep learning optimization can you think of?

4. Assume that you want to balance a (real) ball on a (real) saddle.

• Why is this hard?

• Can you exploit this effect also for optimization algorithms?

410 Chapter 11. Optimization Algorithms

11.2 Convexity

Convexity plays a vital role in the design of optimization algorithms. This is largely due to the fact
that it is much easier to analyze and test algorithms in this context. In other words, if the algorithm
performs poorly even in the convex setting we should not hope to see great results otherwise.
Furthermore, even though the optimization problems in deep learning are generally nonconvex,
they often exhibit some properties of convex ones near local minima. This can lead to exciting
new optimization variants such as (Izmailov et al., 2018).

11.2.1 Basics

Let s̓ begin with the basics.

Sets

Sets are the basis of convexity. Simply put, a set X in a vector space is convex if for any a, b ∈ X
the line segment connecting a and b is also in X. In mathematical terms this means that for all
λ ∈ [0, 1] we have

λ · a+ (1− λ) · b ∈ X whenever a, b ∈ X. (11.2.1)

This sounds a bit abstract. Consider the picture Fig. 11.2.1. The first set is not convex since there
are line segments that are not contained in it. The other two sets suffer no such problem.

Fig. 11.2.1: Three shapes, the left one is nonconvex, the others are convex

Definitions on their own are not particularly useful unless you can do something with them. In
this case we can look at unions and intersections as shown in Fig. 11.2.2. Assume that X and Y
are convex sets. Then X ∩ Y is also convex. To see this, consider any a, b ∈ X ∩ Y . Since X and Y
are convex, the line segments connecting a and b are contained in both X and Y . Given that, they
also need to be contained in X ∩ Y , thus proving our first theorem.

11.2. Convexity 411

Fig. 11.2.2: The intersection between two convex sets is convex

We can strengthen this result with little effort: given convex sets Xi, their intersection ∩iXi is
convex. To see that the converse is not true, consider two disjoint sets X ∩Y = ∅. Now pick a ∈ X
and b ∈ Y . The line segment in Fig. 11.2.3 connecting a and b needs to contain some part that is
neither in X nor Y , since we assumed that X ∩ Y = ∅. Hence the line segment is not in X ∪ Y
either, thus proving that in general unions of convex sets need not be convex.

Fig. 11.2.3: The union of two convex sets need not be convex

Typically the problems in deep learning are defined on convex domains. For instance Rd is a
convex set (after all, the line between any two points in Rd remains in Rd). In some cases we work
with variables of bounded length, such as balls of radius r as defined by {x|x ∈ Rd and ∥x∥2 ≤ r}.

Functions

Now that we have convex sets we can introduce convex functions f . Given a convex set X a func-
tion defined on it f : X → R is convex if for all x, x′ ∈ X and for all λ ∈ [0, 1] we have

λf(x) + (1− λ)f(x′) ≥ f(λx+ (1− λ)x′). (11.2.2)

To illustrate this let s̓ plot a few functions and check which ones satisfy the requirement. We need
to import a few libraries.

%matplotlib inline
import d2l
from mpl_toolkits import mplot3d
from mxnet import np, npx
npx.set_np()

Let s̓ define a few functions, both convex and nonconvex.

412 Chapter 11. Optimization Algorithms

def f(x):
return 0.5 * x**2 # Convex

def g(x):
return np.cos(np.pi * x) # Nonconvex

def h(x):
return np.exp(0.5 * x) # Convex

x, segment = np.arange(-2, 2, 0.01), np.array([-1.5, 1])
d2l.use_svg_display()
_, axes = d2l.plt.subplots(1, 3, figsize=(9, 3))

for ax, func in zip(axes, [f, g, h]):
d2l.plot([x, segment], [func(x), func(segment)], axes=ax)

As expected, the cosine function is nonconvex, whereas the parabola and the exponential function
are. Note that the requirement that X is necessary for the condition to make sense. Otherwise
the outcome of f(λx + (1 − λ)x′) might not be well defined. Convex functions have a number of
desirable properties.

Jensen’s Inequality

One of the most useful tools is Jensens̓ inequality. It amounts to a generalization of the definition
of convexity:

∑
i

αif(xi) ≥ f

(∑
i

αixi

)
and Ex[f(x)] ≥ f (Ex[x]) . (11.2.3)

In other words, the expectation of a convex function is larger than the convex function of an ex-
pectation. To prove the first inequality we repeatedly apply the definition of convexity to one term
in the sum at a time. The expectation can be proven by taking the limit over finite segments.

One of the common applications of Jensens̓ inequality is with regard to the log-likelihood of par-
tially observed random variables. That is, we use

Ey∼P (y)[− logP (x | y)] ≥ − logP (x). (11.2.4)

11.2. Convexity 413

This follows since
∫
P (y)P (x | y)dy = P (x). This is used in variational methods. Here y is typically

the unobserved random variable, P (y) is the best guess of how it might be distributed and P (x) is
the distribution with y integrated out. For instance, in clustering y might be the cluster labels and
P (x | y) is the generative model when applying cluster labels.

11.2.2 Properties

Convex functions have a few useful properties. We describe them as follows.

No Local Minima

In particular, convex functions do not have local minima. Let s̓ assume the contrary and prove
it wrong. If x ∈ X is a local minimum there exists some neighborhood of x for which f(x) is
the smallest value. Since x is only a local minimum there has to be another x′ ∈ X for which
f(x′) < f(x). However, by convexity the function values on the entire line λx + (1 − λ)x′ have to
be less than f(x′) since for λ ∈ [0, 1)

f(x) > λf(x) + (1− λ)f(x′) ≥ f(λx+ (1− λ)x′). (11.2.5)

This contradicts the assumption that f(x) is a local minimum. For instance, the function f(x) =
(x+ 1)(x− 1)2 has a local minimum for x = 1. However, it is not a global minimum.

def f(x):
return (x-1)**2 * (x+1)

d2l.set_figsize((3.5, 2.5))
d2l.plot([x, segment], [f(x), f(segment)], 'x', 'f(x)')

The fact that convex functions have no local minima is very convenient. It means that if we min-
imize functions we cannot “get stuck”. Note, though, that this does not mean that there cannot
be more than one global minimum or that there might even exist one. For instance, the function
f(x) = max(|x|−1, 0) attains its minimum value over the interval [−1, 1]. Conversely, the function
f(x) = exp(x) does not attain a minimum value on R. For x → −∞ it asymptotes to 0, however
there is no x for which f(x) = 0.

414 Chapter 11. Optimization Algorithms

Convex Functions and Sets

Convex functions define convex sets as below-sets. They are defined as

Sb := {x|x ∈ X and f(x) ≤ b}. (11.2.6)

Such sets are convex. Let s̓ prove this quickly. Remember that for any x, x′ ∈ Sb we need to show
thatλx+(1−λ)x′ ∈ Sb as long asλ ∈ [0, 1]. But this follows directly from the definition of convexity
since f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) ≤ b.

Have a look at the function f(x, y) = 0.5x2 + cos(2πy) below. It is clearly nonconvex. The level
sets are correspondingly nonconvex. In fact, they are typically composed of disjoint sets.

x, y = np.meshgrid(np.linspace(-1, 1, 101), np.linspace(-1, 1, 101),
indexing='ij')

z = x**2 + 0.5 * np.cos(2 * np.pi * y)

Plot the 3D surface
d2l.set_figsize((6, 4))
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
ax.contour(x, y, z, offset=-1)
ax.set_zlim(-1, 1.5)

Adjust labels
for func in [d2l.plt.xticks, d2l.plt.yticks, ax.set_zticks]:

func([-1, 0, 1])

11.2. Convexity 415

Derivatives and Convexity

Whenever the second derivative of a function exists it is very easy to check for convexity. All we
need to do is check whether ∂2

xf(x) ⪰ 0, i.e., whether all of its eigenvalues are nonnegative. For
instance, the function f(x) = 1

2∥x∥
2
2 is convex since ∂2

xf = 1, i.e., its derivative is the identity
matrix.

The first thing to realize is that we only need to prove this property for one-dimensional functions.
After all, in general we can always define some function g(z) = f(x+ z · v). This function has the
first and second derivatives g′ = (∂xf)

⊤v and g′′ = v⊤(∂2
xf)v respectively. In particular, g′′ ≥ 0 for

all v whenever the Hessian of f is positive semidefinite, i.e., whenever all of its eigenvalues are
greater equal than zero. Hence back to the scalar case.

To see that f ′′(x) ≥ 0 for convex functions we use the fact that

1

2
f(x+ ϵ) +

1

2
f(x− ϵ) ≥ f

(
x+ ϵ

2
+

x− ϵ

2

)
= f(x). (11.2.7)

Since the second derivative is given by the limit over finite differences it follows that

f ′′(x) = lim
ϵ→0

f(x+ ϵ) + f(x− ϵ)− 2f(x)

ϵ2
≥ 0. (11.2.8)

To see that the converse is true we use the fact that f ′′ ≥ 0 implies that f ′ is a monotonically
increasing function. Let a < x < b be three points in R. We use the mean value theorem to
express

f(x)− f(a) = (x− a)f ′(α) for some α ∈ [a, x] and
f(b)− f(x) = (b− x)f ′(β) for some β ∈ [x, b].

(11.2.9)

By monotonicity f ′(β) ≥ f ′(α), hence

f(b)− f(a) = f(b)− f(x) + f(x)− f(a)

= (b− x)f ′(β) + (x− a)f ′(α)

≥ (b− a)f ′(α).

(11.2.10)

By geometry it follows that f(x) is below the line connecting f(a) and f(b), thus proving convexity.
We omit a more formal derivation in favor of a graph below.

def f(x):
return 0.5 * x**2

x = np.arange(-2, 2, 0.01)
axb, ab = np.array([-1.5, -0.5, 1]), np.array([-1.5, 1])

d2l.set_figsize((3.5, 2.5))
d2l.plot([x, axb, ab], [f(x) for x in [x, axb, ab]], 'x', 'f(x)')
d2l.annotate('a', (-1.5, f(-1.5)), (-1.5, 1.5))
d2l.annotate('b', (1, f(1)), (1, 1.5))
d2l.annotate('x', (-0.5, f(-0.5)), (-1.5, f(-0.5)))

416 Chapter 11. Optimization Algorithms

11.2.3 Constraints

One of the nice properties of convex optimization is that it allows us to handle constraints effi-
ciently. That is, it allows us to solve problems of the form:

minimize
x

f(x)

subject to ci(x) ≤ 0 for all i ∈ {1, . . . , N}.
(11.2.11)

Here f is the objective and the functions ci are constraint functions. To see what this does consider
the case where c1(x) = ∥x∥2−1. In this case the parameters x are constrained to the unit ball. If a
second constraint is c2(x) = v⊤x+b, then this corresponds to all x lying on a halfspace. Satisfying
both constraints simultaneously amounts to selecting a slice of a ball as the constraint set.

Lagrange Function

In general, solving a constrained optimization problem is difficult. One way of addressing it stems
from physics with a rather simple intuition. Imagine a ball inside a box. The ball will roll to the
place that is lowest and the forces of gravity will be balanced out with the forces that the sides of
the box can impose on the ball. In short, the gradient of the objective function (i.e., gravity) will
be offset by the gradient of the constraint function (need to remain inside the box by virtue of the
walls “pushing back”). Note that any constraint that is not active (i.e., the ball does not touch the
wall) will not be able to exert any force on the ball.

Skipping over the derivation of the Lagrange function L (see e.g., the book by Boyd and Vanden-
berghe for details (Boyd & Vandenberghe, 2004)) the above reasoning can be expressed via the
following saddlepoint optimization problem:

L(x, α) = f(x) +
∑
i

αici(x) where αi ≥ 0. (11.2.12)

Here the variablesαi are the so-called LagrangeMultipliers that ensure that a constraint is properly
enforced. They are chosen just large enough to ensure that ci(x) ≤ 0 for all i. For instance, for
any x for which ci(x) < 0 naturally, we d̓ end up picking αi = 0. Moreover, this is a saddlepoint
optimization problem where one wants to maximize L with respect to α and simultaneously mini-
mize it with respect to x. There is a rich body of literature explaining how to arrive at the function
L(x, α). For our purposes it is sufficient to know that the saddlepoint of L is where the original
constrained optimization problem is solved optimally.

11.2. Convexity 417

Penalties

One way of satisfying constrained optimization problems at least approximately is to adapt the La-
grange function L. Rather than satisfying ci(x) ≤ 0 we simply add αici(x) to the objective function
f(x). This ensures that the constraints will not be violated too badly.

In fact, we have been using this trick all along. Consider weight decay in Section 4.5. In it we add
λ
2∥w∥

2 to the objective function to ensure that w does not grow too large. Using the constrained
optimization point of view we can see that this will ensure that ∥w∥2 − r2 ≤ 0 for some radius r.
Adjusting the value of λ allows us to vary the size of w.

In general, adding penalties is a good way of ensuring approximate constraint satisfaction. In
practice this turns out to be much more robust than exact satisfaction. Furthermore, for noncon-
vex problems many of the properties that make the exact approach so appealing in the convex
case (e.g., optimality) no longer hold.

Projections

An alternative strategy for satisfying constraints are projections. Again, we encountered them
before, e.g., when dealing with gradient clipping in Section 8.5. There we ensured that a gradient
has length bounded by c via

g← g ·min(1, c/∥g∥). (11.2.13)

This turns out to be a projection of g onto the ball of radius c. More generally, a projection on a
(convex) set X is defined as

ProjX(x) = argmin
x′∈X

∥x− x′∥2. (11.2.14)

It is thus the closest point in X to x. This sounds a bit abstract. Fig. 11.2.4 explains it somewhat
more clearly. In it we have two convex sets, a circle and a diamond. Points inside the set (yellow)
remain unchanged. Points outside the set (black) are mapped to the closest point inside the set
(red). While for ℓ2 balls this leaves the direction unchanged, this need not be the case in general,
as can be seen in the case of the diamond.

Fig. 11.2.4: Convex Projections

One of the uses for convex projections is to compute sparse weight vectors. In this case we project
w onto an ℓ1 ball (the latter is a generalized version of the diamond in the picture above).

418 Chapter 11. Optimization Algorithms

Summary

In the context of deep learning the main purpose of convex functions is to motivate optimiza-
tion algorithms and help us understand them in detail. In the following we will see how gradient
descent and stochastic gradient descent can be derived accordingly.

• Intersections of convex sets are convex. Unions are not.

• The expectation of a convex function is larger than the convex function of an expectation
(Jensens̓ inequality).

• A twice-differentiable function is convex if and only if its second derivative has only non-
negative eigenvalues throughout.

• Convex constraints can be added via the Lagrange function. In practice simply add them
with a penalty to the objective function.

• Projections map to points in the (convex) set closest to the original point.

Exercises

1. Assume that we want to verify convexity of a set by drawing all lines between points within
the set and checking whether the lines are contained.

• Prove that it is sufficient to check only the points on the boundary.

• Prove that it is sufficient to check only the vertices of the set.

2. Denote by Bp[r] := {x|x ∈ Rd and ∥x∥p ≤ r} the ball of radius r using the p-norm. Prove that
Bp[r] is convex for all p ≥ 1.

3. Given convex functions f and g show that max(f, g) is convex, too. Prove that min(f, g) is
not convex.

4. Prove that the normalization of the softmax function is convex. More specifically prove the
convexity of f(x) = log

∑
i exp(xi).

5. Prove that linear subspaces are convex sets, i.e., X = {x|Wx = b}.

6. Prove that in the case of linear subspaces with b = 0 the projection ProjX can be written as
Mx for some matrix M.

7. Show that for convex twice differentiable functions f we can write f(x+ϵ) = f(x)+ϵf ′(x)+
1
2ϵ

2f ′′(x+ ξ) for some ξ ∈ [0, ϵ].

8. Given a vector w ∈ Rd with ∥w∥1 > 1 compute the projection on the ℓ1 unit ball.

• As intermediate step write out the penalized objective ∥w−w′∥22+λ∥w′∥1 and compute
the solution for a given λ > 0.

• Can you find the ʻrightʼ value of λ without a lot of trial and error?

9. Given a convex setX and two vectors x and yprove that projections never increase distances,
i.e., ∥x− y∥ ≥ ∥ProjX(x)− ProjX(y)∥.

11.2. Convexity 419

11.3 Gradient Descent

In this section we are going to introduce the basic concepts underlying gradient descent. This is
brief by necessity. See e.g., (Boyd & Vandenberghe, 2004) for an in-depth introduction to convex
optimization. Although the latter is rarely used directly in deep learning, an understanding of
gradient descent is key to understanding stochastic gradient descent algorithms. For instance,
the optimization problem might diverge due to an overly large learning rate. This phenomenon
can already be seen in gradient descent. Likewise, preconditioning is a common technique in
gradient descent and carries over to more advanced algorithms. Let s̓ start with a simple special
case.

11.3.1 Gradient Descent in One Dimension

Gradient descent in one dimension is an excellent example to explain why the gradient descent
algorithm may reduce the value of the objective function. Consider some continuously differen-
tiable real-valued function f : R→ R. Using a Taylor expansion (Section 17.3) we obtain that

f(x+ ϵ) = f(x) + ϵf ′(x) +O(ϵ2). (11.3.1)

That is, in first approximation f(x+ ϵ) is given by the function value f(x) and the first derivative
f ′(x) at x. It is not unreasonable to assume that for small ϵ moving in the direction of the negative
gradient will decrease f . To keep things simple we pick a fixed step size η > 0 and choose ϵ =
−ηf ′(x). Plugging this into the Taylor expansion above we get

f(x− ηf ′(x)) = f(x)− ηf ′2(x) +O(η2f ′2(x)). (11.3.2)

If the derivative f ′(x) ̸= 0 does not vanish we make progress since ηf ′2(x) > 0. Moreover, we can
always choose η small enough for the higher order terms to become irrelevant. Hence we arrive
at

f(x− ηf ′(x)) ⪅ f(x). (11.3.3)

This means that, if we use

x← x− ηf ′(x) (11.3.4)

to iteratex, the value of function f(x)might decline. Therefore, in gradient descent we first choose
an initial value x and a constant η > 0 and then use them to continuously iterate x until the stop
condition is reached, for example, when the magnitude of the gradient |f ′(x)| is small enough or
the number of iterations has reached a certain value.

For simplicity we choose the objective function f(x) = x2 to illustrate how to implement gradient
descent. Although we know that x = 0 is the solution to minimize f(x), we still use this simple
function to observe how x changes. As always, we begin by importing all required modules.

420 Chapter 11. Optimization Algorithms

%matplotlib inline
import d2l
from mxnet import np, npx
npx.set_np()

def f(x):
return x**2 # Objective function

def gradf(x):
return 2 * x # Its derivative

Next, we use x = 10 as the initial value and assume η = 0.2. Using gradient descent to iterate x for
10 times we can see that, eventually, the value of x approaches the optimal solution.

def gd(eta):
x = 10
results = [x]
for i in range(10):

x -= eta * gradf(x)
results.append(x)

print('epoch 10, x:', x)
return results

res = gd(0.2)

epoch 10, x: 0.06046617599999997

The progress of optimizing over x can be plotted as follows.

def show_trace(res):
n = max(abs(min(res)), abs(max(res)))
f_line = np.arange(-n, n, 0.01)
d2l.set_figsize((3.5, 2.5))
d2l.plot([f_line, res], [[f(x) for x in f_line], [f(x) for x in res]],

'x', 'f(x)', fmts=['-', '-o'])

show_trace(res)

11.3. Gradient Descent 421

Learning Rate

The learning rate η can be set by the algorithm designer. If we use a learning rate that is too small,
it will cause x to update very slowly, requiring more iterations to get a better solution. To show
what happens in such a case, consider the progress in the same optimization problem for η = 0.05.
As we can see, even after 10 steps we are still very far from the optimal solution.

show_trace(gd(0.05))

epoch 10, x: 3.4867844009999995

Conversely, if we use an excessively high learning rate, |ηf ′(x)|might be too large for the first-order
Taylor expansion formula. That is, the term O(η2f ′2(x)) in (11.3.1) might become significant. In
this case, we cannot guarantee that the iteration of x will be able to lower the value of f(x). For
example, when we set the learning rate to η = 1.1, x overshoots the optimal solution x = 0 and
gradually diverges.

show_trace(gd(1.1))

epoch 10, x: 61.917364224000096

422 Chapter 11. Optimization Algorithms

Local Minima

To illustrate what happens for nonconvex functions consider the case of f(x) = x · cos cx. This
function has infinitely many local minima. Depending on our choice of learning rate and de-
pending on how well conditioned the problem is, we may end up with one of many solutions.
The example below illustrates how an (unrealistically) high learning rate will lead to a poor local
minimum.

c = 0.15 * np.pi

def f(x):
return x * np.cos(c * x)

def gradf(x):
return np.cos(c * x) - c * x * np.sin(c * x)

show_trace(gd(2))

epoch 10, x: -1.528165927635083

11.3.2 Multivariate Gradient Descent

Now that have a better intuition of the univariate case, let s̓ consider the situation where x ∈ Rd.
That is, the objective function f : Rd → R maps vectors into scalars. Correspondingly its gradient
is multivariate, too. It is a vector consisting of d partial derivatives:

∇f(x) =
[
∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xd

]⊤
. (11.3.5)

Each partial derivative element ∂f(x)/∂xi in the gradient indicates the rate of change of f at x
with respect to the input xi. As before in the univariate case we can use the corresponding Taylor
approximation for multivariate functions to get some idea of what we should do. In particular, we
have that

f(x+ ϵ) = f(x) + ϵ⊤∇f(x) +O(∥ϵ∥2). (11.3.6)

11.3. Gradient Descent 423

In other words, up to second order terms in epsilon the direction of steepest descent is given by
the negative gradient −∇f(x). Choosing a suitable learning rate η > 0 yields the prototypical
gradient descent algorithm:

x← x− η∇f(x).

To see how the algorithm behaves in practice let s̓ construct an objective function f(x) = x21+2x22
with a two-dimensional vector x = [x1, x2]

⊤ as input and a scalar as output. The gradient is given
by ∇f(x) = [2x1, 4x2]

⊤. We will observe the trajectory of x by gradient descent from the initial
position [−5,−2]. We need two more helper functions. The first uses an update function and
applies it 20 times to the initial value. The second helper visualizes the trajectory of x.

Saved in the d2l package for later use
def train_2d(trainer, steps=20):

"""Optimize a 2-dim objective function with a customized trainer."""
s1 and s2 are internal state variables and will
be used later in the chapter
x1, x2, s1, s2 = -5, -2, 0, 0
results = [(x1, x2)]
for i in range(steps):

x1, x2, s1, s2 = trainer(x1, x2, s1, s2)
results.append((x1, x2))

print('epoch %d, x1 %f, x2 %f' % (i + 1, x1, x2))
return results

Saved in the d2l package for later use
def show_trace_2d(f, results):

"""Show the trace of 2D variables during optimization."""
d2l.set_figsize((3.5, 2.5))
d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1))
d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
d2l.plt.xlabel('x1')
d2l.plt.ylabel('x2')

Next, we observe the trajectory of the optimization variable x for learning rate η = 0.1. We can see
that after 20 steps the value of x approaches its minimum at [0, 0]. Progress is fairly well-behaved
albeit rather slow.

def f(x1, x2):
return x1 ** 2 + 2 * x2 ** 2 # Objective

def gradf(x1, x2):
return (2 * x1, 4 * x2) # Gradient

def gd(x1, x2, s1, s2):
(g1, g2) = gradf(x1, x2) # Compute gradient
return (x1 - eta * g1, x2 - eta * g2, 0, 0) # Update variables

eta = 0.1
show_trace_2d(f, train_2d(gd))

epoch 20, x1 -0.057646, x2 -0.000073

424 Chapter 11. Optimization Algorithms

11.3.3 Adaptive Methods

As we could see in Section 11.3.1, getting the learning rate η “just right” is tricky. If we pick it too
small, we make no progress. If we pick it too large, the solution oscillates and in the worst case it
might even diverge. What if we could determine η automatically or get rid of having to select a step
size at all? Second order methods that look not only at the value and gradient of the objective but
also at its curvature can help in this case. While these methods cannot be applied to deep learning
directly due to the computational cost, they provide useful intuition into how to design advanced
optimization algorithms that mimic many of the desirable properties of the algorithms outlined
below.

Newton’s Method

Reviewing the Taylor expansion of f there is no need to stop after the first term. In fact, we can
write it as

f(x+ ϵ) = f(x) + ϵ⊤∇f(x) + 1

2
ϵ⊤∇∇⊤f(x)ϵ+O(∥ϵ∥3). (11.3.7)

To avoid cumbersome notation we define Hf := ∇∇⊤f(x) to be the Hessian of f . This is a d × d
matrix. For small d and simple problems Hf is easy to compute. For deep networks, on the other
hand, Hf may be prohibitively large, due to the cost of storingO(d2) entries. Furthermore it may
be too expensive to compute via backprop as we would need to apply backprop to the backpropa-
gation call graph. For now let s̓ ignore such considerations and look at what algorithm we d̓ get.

After all, the minimum of f satisfies∇f(x) = 0. Taking derivatives of (11.3.7) with regard to ϵ and
ignoring higher order terms we arrive at

∇f(x) +Hf ϵ = 0 and hence ϵ = −H−1
f ∇f(x). (11.3.8)

That is, we need to invert the Hessian Hf as part of the optimization problem.

For f(x) = 1
2x

2 we have∇f(x) = x andHf = 1. Hence for any xwe obtain ϵ = −x. In other words,
a single step is sufficient to converge perfectly without the need for any adjustment! Alas, we got
a bit lucky here since the Taylor expansion was exact. Let s̓ see what happens in other problems.

11.3. Gradient Descent 425

c = 0.5

def f(x):
return np.cosh(c * x) # Objective

def gradf(x):
return c * np.sinh(c * x) # Derivative

def hessf(x):
return c**2 * np.cosh(c * x) # Hessian

Hide learning rate for now
def newton(eta=1):

x = 10
results = [x]
for i in range(10):

x -= eta * gradf(x) / hessf(x)
results.append(x)

print('epoch 10, x:', x)
return results

show_trace(newton())

epoch 10, x: 0.0

Now let s̓ see what happens when we have a nonconvex function, such as f(x) = x cos(cx). After
all, note that in Newtons̓ method we end up dividing by the Hessian. This means that if the second
derivative is negative we would walk into the direction of increasing f . That is a fatal flaw of the
algorithm. Let s̓ see what happens in practice.

c = 0.15 * np.pi

def f(x):
return x * np.cos(c * x)

def gradf(x):
return np.cos(c * x) - c * x * np.sin(c * x)

(continues on next page)

426 Chapter 11. Optimization Algorithms

(continued from previous page)

def hessf(x):
return - 2 * c * np.sin(c * x) - x * c**2 * np.cos(c * x)

show_trace(newton())

epoch 10, x: 26.83413291324767

This went spectacularly wrong. How can we fix it? One way would be to “fix” the Hessian by taking
its absolute value instead. Another strategy is to bring back the learning rate. This seems to defeat
the purpose, but not quite. Having second order information allows us to be cautious whenever
the curvature is large and to take longer steps whenever the objective is flat. Let s̓ see how this
works with a slightly smaller learning rate, say η = 0.5. As we can see, we have quite an efficient
algorithm.

show_trace(newton(0.5))

epoch 10, x: 7.269860168684531

11.3. Gradient Descent 427

Convergence Analysis

We only analyze the convergence rate for convex and three times differentiable f , where at its
minimum x∗ the second derivative is nonzero, i.e., where f ′′(x∗) > 0. The multivariate proof is a
straightforward extension of the argument below and omitted since it does not help us much in
terms of intuition.

Denote byxk the value ofx at the k-th iteration and let ek := xk−x∗ be the distance from optimality.
By Taylor series expansion we have that the condition f ′(x∗) = 0 can be written as

0 = f ′(xk − ek) = f ′(xk)− ekf
′′(xk) +

1

2
e2kf

′′′(ξk). (11.3.9)

This holds for some ξk ∈ [xk − ek, xk]. Recall that we have the update xk+1 = xk − f ′(xk)/f
′′(xk).

Dividing the above expansion by f ′′(xk) yields

ek − f ′(xk)/f
′′(xk) =

1

2
e2kf

′′′(ξk)/f
′′(xk). (11.3.10)

Plugging in the update equations leads to the following bound ek+1 ≤ e2kf
′′′(ξk)/f

′(xk). Conse-
quently, whenever we are in a region of bounded f ′′′(ξk)/f

′′(xk) ≤ c, we have a quadratically
decreasing error ek+1 ≤ ce2k.

As an aside, optimization researchers call this linear convergence, whereas a condition such as
ek+1 ≤ αek would be called a constant rate of convergence. Note that this analysis comes with
a number of caveats: We do not really have much of a guarantee when we will reach the region
of rapid convergence. Instead, we only know that once we reach it, convergence will be very
quick. Second, this requires that f is well-behaved up to higher order derivatives. It comes down
to ensuring that f does not have any “surprising” properties in terms of how it might change its
values.

Preconditioning

Quite unsurprisingly computing and storing the full Hessian is very expensive. It is thus desir-
able to find alternatives. One way to improve matters is by avoiding to compute the Hessian in
its entirety but only compute the diagonal entries. While this is not quite as good as the full New-
ton method, it is still much better than not using it. Moreover, estimates for the main diagonal
elements are what drives some of the innovation in stochastic gradient descent optimization al-
gorithms. This leads to update algorithms of the form

x← x− ηdiag(Hf)
−1∇x. (11.3.11)

To see why this might be a good idea consider a situation where one variable denotes height in mil-
limeters and the other one denotes height in kilometers. Assuming that for both the natural scale
is in meters we have a terrible mismatch in parameterizations. Using preconditioning removes
this. Effectively preconditioning with gradient descent amounts to selecting a different learning
rate for each coordinate.

428 Chapter 11. Optimization Algorithms

Gradient Descent with Line Search

One of the key problems in gradient descent was that we might overshoot the goal or make insuf-
ficient progress. A simple fix for the problem is to use line search in conjunction with gradient
descent. That is, we use the direction given by∇f(x) and then perform binary search as to which
step length η minimizes f(x− η∇f(x)).

This algorithm converges rapidly (for an analysis and proof see e.g., (Boyd & Vandenberghe,
2004)). However, for the purpose of deep learning this is not quite so feasible, since each step
of the line search would require us to evaluate the objective function on the entire dataset. This is
way too costly to accomplish.

Summary

• Learning rates matter. Too large and we diverge, too small and we do not make progress.

• Gradient descent can get stuck in local minima.

• In high dimensions adjusting learning the learning rate is complicated.

• Preconditioning can help with scale adjustment.

• Newtons̓ method is a lot faster once it has started working properly in convex problems.

• Beware of using Newtons̓ method without any adjustments for nonconvex problems.

Exercises

1. Experiment with different learning rates and objective functions for gradient descent.

2. Implement line search to minimize a convex function in the interval [a, b].

• Do you need derivatives for binary search, i.e., to decide whether to pick [a, (a + b)/2]
or [(a+ b)/2, b].

• How rapid is the rate of convergence for the algorithm?

• Implement the algorithm and apply it to minimizing log(exp(x) + exp(−2 ∗ x− 3)).

3. Design an objective function defined on R2 where gradient descent is exceedingly slow. Hint
- scale different coordinates differently.

4. Implement the lightweight version of Newtons̓ method using preconditioning:

• Use diagonal Hessian as preconditioner.

• Use the absolute values of that rather than the actual (possibly signed) values.

• Apply this to the problem above.

5. Apply the algorithm above to a number of objective functions (convex or not). What happens
if you rotate coordinates by 45 degrees?

11.3. Gradient Descent 429

11.4 Stochastic Gradient Descent

In this section, we are going to introduce the basic principles of stochastic gradient descent.

%matplotlib inline
import d2l
import math
from mxnet import np, npx
npx.set_np()

11.4.1 Stochastic Gradient Updates

In deep learning, the objective function is usually the average of the loss functions for each exam-
ple in the training dataset. We assume that fi(x) is the loss function of the training data instance
with n examples, an index of i, and parameter vector of x, then we have the objective function

f(x) =
1

n

n∑
i=1

fi(x). (11.4.1)

The gradient of the objective function at x is computed as

∇f(x) = 1

n

n∑
i=1

∇fi(x). (11.4.2)

If gradient descent is used, the computing cost for each independent variable iteration is O(n),
which grows linearly with n. Therefore, when the model training data instance is large, the cost
of gradient descent for each iteration will be very high.

Stochastic gradient descent (SGD) reduces computational cost at each iteration. At each iteration
of stochastic gradient descent, we uniformly sample an index i ∈ {1, . . . , n} for data instances at
random, and compute the gradient∇fi(x) to update x:

x← x− η∇fi(x). (11.4.3)

Here, η is the learning rate. We can see that the computing cost for each iteration drops from
O(n) of the gradient descent to the constantO(1). We should mention that the stochastic gradient
∇fi(x) is the unbiased estimate of gradient∇f(x).

Ei∇fi(x) =
1

n

n∑
i=1

∇fi(x) = ∇f(x). (11.4.4)

This means that, on average, the stochastic gradient is a good estimate of the gradient.

Now, we will compare it to gradient descent by adding random noise with a mean of 0 to the gra-
dient to simulate a SGD.

def f(x1, x2):
return x1 ** 2 + 2 * x2 ** 2 # Objective

def gradf(x1, x2):
return (2 * x1, 4 * x2) # Gradient

(continues on next page)

430 Chapter 11. Optimization Algorithms

(continued from previous page)

def sgd(x1, x2, s1, s2): # Simulate noisy gradient
global lr # Learning rate scheduler
(g1, g2) = gradf(x1, x2) # Compute gradient
(g1, g2) = (g1 + np.random.normal(0.1), g2 + np.random.normal(0.1))
eta_t = eta * lr() # Learning rate at time t
return (x1 - eta_t * g1, x2 - eta_t * g2, 0, 0) # Update variables

eta = 0.1
lr = (lambda: 1) # Constant learning rate
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=50))

epoch 50, x1 -0.522513, x2 0.085780

As we can see, the trajectory of the variables in the SGD is much more noisy than the one we
observed in gradient descent in the previous section. This is due to the stochastic nature of the
gradient. That is, even when we arrive near the minimum, we are still subject to the uncertainty
injected by the instantaneous gradient via η∇fi(x). Even after 50 steps the quality is still not so
good. Even worse, it will not improve after additional steps (we encourage the reader to exper-
iment with a larger number of steps to confirm this on his own). This leaves us with the only
alternative—change the learning rate η. However, if we pick this too small, we will not make any
meaningful progress initially. On the other hand, if we pick it too large, we will not get a good
solution, as seen above. The only way to resolve these conflicting goals is to reduce the learning
rate dynamically as optimization progresses.

This is also the reason for adding a learning rate function lr into the sgd step function. In the
example above any functionality for learning rate scheduling lies dormant as we set the associated
lr function to be constant, i.e., lr = (lambda: 1).

11.4. Stochastic Gradient Descent 431

11.4.2 Dynamic Learning Rate

Replacing η with a time-dependent learning rate η(t) adds to the complexity of controlling conver-
gence of an optimization algorithm. In particular, need to figure out how rapidly η should decay.
If it is too quick, we will stop optimizing prematurely. If we decrease it too slowly, we waste too
much time on optimization. There are a few basic strategies that are used in adjusting η over time
(we will discuss more advanced strategies in a later chapter):

η(t) = ηi if ti ≤ t ≤ ti+1 piecewise constant
η(t) = η0 · e−λt exponential
η(t) = η0 · (βt+ 1)−α polynomial

(11.4.5)

In the first scenario we decrease the learning rate, e.g., whenever progress in optimization has
stalled. This is a common strategy for training deep networks. Alternatively we could decrease it
much more aggressively by an exponential decay. Unfortunately this leads to premature stopping
before the algorithm has converged. A popular choice is polynomial decay with α = 0.5. In the
case of convex optimization there are a number of proofs which show that this rate is well behaved.
Let s̓ see what this looks like in practice.

def exponential():
global ctr
ctr += 1
return math.exp(-0.1 * ctr)

ctr = 1
lr = exponential # Set up learning rate
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=1000))

epoch 1000, x1 -0.862200, x2 -0.019736

As expected, the variance in the parameters is significantly reduced. However, this comes at the
expense of failing to converge to the optimal solution x = (0, 0). Even after 1000 steps are we are
still very far away from the optimal solution. Indeed, the algorithm fails to converge at all. On the
other hand, if we use a polynomial decay where the learning rate decays with the inverse square
root of the number of steps convergence is good.

432 Chapter 11. Optimization Algorithms

def polynomial():
global ctr
ctr += 1
return (1 + 0.1 * ctr)**(-0.5)

ctr = 1
lr = polynomial # Set up learning rate
d2l.show_trace_2d(f, d2l.train_2d(sgd, steps=50))

epoch 50, x1 -0.024847, x2 0.090820

There exist many more choices for how to set the learning rate. For instance, we could start with a
small rate, then rapidly ramp up and then decrease it again, albeit more slowly. We could even al-
ternate between smaller and larger learning rates. There exists a large variety of such schedules.
For now let s̓ focus on learning rate schedules for which a comprehensive theoretical analysis is
possible, i.e., on learning rates in a convex setting. For general nonconvex problems it is very
difficult to obtain meaningful convergence guarantees, since in general minimizing nonlinear
nonconvex problems is NP hard. For a survey see e.g., the excellent lecture notes151 of Tibshirani
2015.

11.4.3 Convergence Analysis for Convex Objectives

The following is optional and primarily serves to convey more intuition about the problem. We
limit ourselves to one of the simplest proofs, as described by (Nesterov & Vial, 2000). Significantly
more advanced proof techniques exist, e.g., whenever the objective function is particularly well
behaved. (Hazan et al., 2008) show that for strongly convex functions, i.e., for functions that can
be bounded from below by x⊤Qx, it is possible to minimize them in a small number of steps while
decreasing the learning rate like η(t) = η0/(βt+1). Unfortunately this case never really occurs in
deep learning and we are left with a much more slowly decreasing rate in practice.

Consider the case where

wt+1 = wt − ηt∂wl(xt,w). (11.4.6)
151 https://www.stat.cmu.edu/~ryantibs/convexopt-F15/lectures/26-nonconvex.pdf

11.4. Stochastic Gradient Descent 433

https://www.stat.cmu.edu/~ryantibs/convexopt-F15/lectures/26-nonconvex.pdf

In particular, assume that xt is drawn from some distribution P (x) and that l(x,w) is a convex
function in w for all x. Last denote by

R(w) = Ex∼P [l(x,w)] (11.4.7)

the expected risk and by R∗ its minimum with regard to w. Last let w∗ be the minimizer (we
assume that it exists within the domain which w is defined). In this case we can track the distance
between the current parameter wt and the risk minimizer w∗ and see whether it improves over
time:

∥wt+1 −w∗∥2 = ∥wt − ηt∂wl(xt,w)−w∗∥2

= ∥wt −w∗∥2 + η2t ∥∂wl(xt,w)∥2 − 2ηt ⟨wt −w∗, ∂wl(xt,w)⟩ .
(11.4.8)

The gradient ∂wl(xt,w) can be bounded from above by some Lipschitz constant L, hence we have
that

η2t ∥∂wl(xt,w)∥2 ≤ η2tL
2. (11.4.9)

We are mostly interested in how the distance between wt and w∗ changes in expectation. In fact,
for any specific sequence of steps the distance might well increase, depending on whichever xt
we encounter. Hence we need to bound the inner product. By convexity we have that

l(xt,w∗) ≥ l(xt,wt) + ⟨w∗ −wt, ∂wl(xt,wt)⟩ . (11.4.10)

Using both inequalities and plugging it into the above we obtain a bound on the distance between
parameters at time t+ 1 as follows:

∥wt −w∗∥2 − ∥wt+1 −w∗∥2 ≥ 2ηt(l(xt,wt)− l(xt,w∗))− η2tL
2. (11.4.11)

This means that we make progress as long as the expected difference between current loss and
the optimal loss outweighs ηtL

2. Since the former is bound to converge to 0 it follows that the
learning rate ηt also needs to vanish.

Next we take expectations over this expression. This yields

Ewt

[
∥wt −w∗∥2

]
− Ewt+1|wt

[
∥wt+1 −w∗∥2

]
≥ 2ηt[E[R[wt]]−R∗]− η2tL

2. (11.4.12)

The last step involves summing over the inequalities for t ∈ {t, . . . , T}. Since the sum telescopes
and by dropping the lower term we obtain

∥w0 −w∗∥2 ≥ 2

T∑
t=1

ηt[E[R[wt]]−R∗]− L2
T∑
t=1

η2t . (11.4.13)

Note that we exploited that w0 is given and thus the expectation can be dropped. Last define

w̄ :=

∑T
t=1 ηtwt∑T
t=1 ηt

. (11.4.14)

Then by convexity it follows that∑
t

ηtE[R[wt]] ≥
∑

ηt · [E[w̄]] . (11.4.15)

Plugging this into the above inequality yields the bound

[E[w̄]]−R∗ ≤
r2 + L2

∑T
t=1 η

2
t

2
∑T

t=1 ηt
. (11.4.16)

434 Chapter 11. Optimization Algorithms

Here r2 := ∥w0 − w∗∥2 is a bound on the distance between the initial choice of parameters and
the final outcome. In short, the speed of convergence depends on how rapidly the loss function
changes via the Lipschitz constant L and how far away from optimality the initial value is r. Note
that the bound is in terms of w̄ rather than wT . This is the case since w̄ is a smoothed version of
the optimization path. Now let s̓ analyze some choices for ηt.

• KnownTimeHorizon. Whenever r, L and T are known we can pick η = r/L
√
T . This yields

as upper bound rL(1+ 1/T)/2
√
T < rL/

√
T . That is, we converge with rateO(1/

√
T) to the

optimal solution.

• Unknown Time Horizon. Whenever we want to have a good solution for any time T we can
pick η = O(1/

√
T). This costs us an extra logarithmic factor and it leads to an upper bound

of the formO(logT/
√
T).

Note that for strongly convex losses l(x,w′) ≥ l(x,w) + ⟨w′ − w, ∂wl(x,w)⟩ + λ
2∥w − w′∥2 we can

design even more rapidly converging optimization schedules. In fact, an exponential decay in η
leads to a bound of the formO(logT/T).

11.4.4 Stochastic Gradients and Finite Samples

So far we have played a bit fast and loose when it comes to talking about stochastic gradient de-
scent. We posited that we draw instances xi, typically with labels yi from some distribution p(x, y)
and that we use this to update the weights w in some manner. In particular, for a finite sample size
we simply argued that the discrete distribution p(x, y) = 1

n

∑n
i=1 δxi(x)δyi(y) allows us to perform

SGD over it.

However, this is not really what we did. In the toy examples in the current section we simply
added noise to an otherwise non-stochastic gradient, i.e., we pretended to have pairs (xi, yi). It
turns out that this is justified here (see the exercises for a detailed discussion). More troubling is
that in all previous discussions we clearly did not do this. Instead we iterated over all instances
exactly once. To see why this is preferable consider the converse, namely that we are sampling
n observations from the discrete distribution with replacement. The probability of choosing an
element i at random is N−1. Thus to choose it at least once is

P (choose i) = 1− P (omit i) = 1− (1−N−1)N ≈ 1− e−1 ≈ 0.63. (11.4.17)

A similar reasoning shows that the probability of picking a sample exactly once is given by(
N
1

)
N−1(1 − N−1)N−1 = N−1

N (1 − N−1)N ≈ e−1 ≈ 0.37. This leads to an increased variance
and decreased data efficiency relative to sampling without replacement. Hence, in practice we
perform the latter (and this is the default choice throughout this book). Last note that repeated
passes through the dataset traverse it in a different random order.

Summary

• For convex problems we can prove that for a wide choice of learning rates Stochastic Gradi-
ent Descent will converge to the optimal solution.

• For deep learning this is generally not the case. However, the analysis of convex problems
gives us useful insight into how to approach optimization, namely to reduce the learning
rate progressively, albeit not too quickly.

• Problems occur when the learning rate is too small or too large. In practice a suitable learn-
ing rate is often found only after multiple experiments.

11.4. Stochastic Gradient Descent 435

• When there are more examples in the training dataset, it costs more to compute each itera-
tion for gradient descent, so SGD is preferred in these cases.

• Optimality guarantees for SGD are in general not available in nonconvex cases since the
number of local minima that require checking might well be exponential.

Exercises

1. Experiment with different learning rate schedules for SGD and with different numbers of
iterations. In particular, plot the distance from the optimal solution (0, 0) as a function of
the number of iterations.

2. Prove that for the function f(x1, x2) = x21+2x22 adding normal noise to the gradient is equiv-
alent to minimizing a loss function l(x,w) = (x1−w1)

2+2(x2−w2)
2 where x is drawn from

a normal distribution.

• Derive mean and variance of the distribution for x.

• Show that this property holds in general for objective functions f(x) = 1
2(x−µ)⊤Q(x−

µ) for Q ⪰ 0.

3. Compare convergence of SGD when you sample from {(x1, y1), . . . , (xm, ym)} with replace-
ment and when you sample without replacement.

4. How would you change the SGD solver if some gradient (or rather some coordinate associ-
ated with it) was consistently larger than all other gradients?

5. Assume that f(x) = x2(1 + sinx). How many local minima does f have? Can you change f
in such a way that to minimize it one needs to evaluate all local minima?

11.5 Minibatch Stochastic Gradient Descent

So far we encountered two extremes in the approach to gradient based learning: Section 11.3 uses
the full dataset to compute gradients and to update parameters, one pass at a time. Conversely
Section 11.4 processes one observation at a time to make progress. Each of them has its own draw-
backs. Gradient Descent is not particularly data efficient whenever data is very similar. Stochastic
Gradient Descent is not particularly computationally efficient since CPUs and GPUs cannot exploit
the full power of vectorization. This suggests that there might be a happy medium, and in fact,
that s̓ what weʼve been using so far in the examples we discussed.

436 Chapter 11. Optimization Algorithms

11.5.1 Vectorization and Caches

At the heart of the decision to use minibatches is computational efficiency. This is most easily
understood when considering parallelization to multiple GPUs and multiple servers. In this case
we need to send at least one image to each GPU. With 8 GPUs per server and 16 servers we already
arrive at a minibatch size of 128.

Things are a bit more subtle when it comes to single GPUs or even CPUs. These devices have mul-
tiple types of memory, often multiple type of compute units and different bandwidth constraints
between them. For instance, a CPU has a small number of registers and then L1, L2 and in some
cases even L3 cache (which is shared between the different processor cores). These caches are of
increasing size and latency (and at the same time theyʼre of decreasing bandwidth). Suffice it to
say, the processor is capable of performing many more operations than what the main memory
interface is able to provide.

• A 2GHz CPU with 16 cores and AVX-512 vectorization can process up to 2 · 109 · 16 · 32 = 1012

bytes per second. The capability of GPUs easily exceeds this number by a factor of 100.
On the other hand, a midrange server processor might not have much more than 100 GB/s
bandwidth, i.e., less than one tenth of what would be required to keep the processor fed. To
make matters worse, not all memory access is created equal: first, memory interfaces are
typically 64 bit wide or wider (e.g., on GPUs up to 384 bit), hence reading a single byte incurs
the cost of a much wider access.

• There is significant overhead for the first access whereas sequential access is relatively cheap
(this is often called a burst read). There are many more things to keep in mind, such as
caching when we have multiple sockets, chiplets and other structures. A detailed discussion
of this is beyond the scope of this section. See e.g., this Wikipedia article153 for a more in-
depth discussion.

The way to alleviate these constraints is to use a hierarchy of CPU caches which are actually fast
enough to supply the processor with data. This is the driving force behind batching in deep learn-
ing. To keep matters simple, consider matrix-matrix multiplication, say A = BC. We have a num-
ber of options for calculating A. For instance we could try the following:

1. We could compute Aij = Bi,:C⊤
:,j, i.e., we could compute it element-wise by means of dot

products.

2. We could compute A:,j = BC⊤
:,j, i.e., we could compute it one column at a time. Likewise we

could compute A one row Ai,: at a time.

3. We could simply compute A = BC.

4. We could break B and C into smaller block matrices and compute A one block at a time.

If we follow the first option, we will need to copy one row and one column vector into the CPU
each time we want to compute an element Aij. Even worse, due to the fact that matrix elements
are aligned sequentially we are thus required to access many disjoint locations for one of the two
vectors as we read them from memory. The second option is much more favorable. In it, we
are able to keep the column vector C:,j in the CPU cache while we keep on traversing through B.
This halves the memory bandwidth requirement with correspondingly faster access. Of course,
option 3 is most desirable. Unfortunately, most matrices might not entirely fit into cache (this is
what weʼre discussing after all). However, option 4 offers a practically useful alternative: we can
move blocks of the matrix into cache and multiply them locally. Optimized libraries take care of
this for us. Let s̓ have a look at how efficient these operations are in practice.

153 https://en.wikipedia.org/wiki/Cache_hierarchy

11.5. Minibatch Stochastic Gradient Descent 437

https://en.wikipedia.org/wiki/Cache_hierarchy

Beyond computational efficiency, the overhead introduced by Python and by the deep learning
framework itself is considerable. Recall that each time we execute a command the Python inter-
preter sends a command to the MXNet engine which needs to insert it into the compute graph
and deal with it during scheduling. Such overhead can be quite detrimental. In short, it is highly
advisable to use vectorization (and matrices) whenever possible.

%matplotlib inline
import d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()

timer = d2l.Timer()
A = np.zeros((1024, 1024))
B = np.random.normal(0, 1, (1024, 1024))
C = np.random.normal(0, 1, (1024, 1024))

Element-wise assignment simply iterates over all rows and columns of B and C respectively to
assign the value to A.

Compute A = B C one element at a time
timer.start()
for i in range(1024):

for j in range(1024):
A[i, j] = np.dot(B[i, :], C[:, j])

A.wait_to_read()
timer.stop()

931.6748354434967

A faster strategy is to perform column-wise assignment.

Compute A = B C one column at a time
timer.start()
for j in range(1024):

A[:, j] = np.dot(B, C[:, j])
A.wait_to_read()
timer.stop()

0.6227929592132568

Last, the most effective manner is to perform the entire operation in one block. Let s̓ see what the
respective speed of the operations is.

Compute A = B C in one go
timer.start()
A = np.dot(B, C)
A.wait_to_read()
timer.stop()

Multiply and add count as separate operations (fused in practice)
gigaflops = [2/i for i in timer.times]

(continues on next page)

438 Chapter 11. Optimization Algorithms

(continued from previous page)

print("Performance in Gigaflops: element {:.3f}, \
column {:.3f}, full {:.3f}".format(*gigaflops))

Performance in Gigaflops: element 0.002, column 3.211, full 383.707

11.5.2 Minibatches

In the past we took it for granted that we would read minibatches of data rather than single observa-
tions to update parameters. We now give a brief justification for it. Processing single observations
requires us to perform many single matrix-vector (or even vector-vector) multiplications, which is
quite expensive and which incurs a significant overhead on behalf of the underlying deep learning
framework. This applies both to evaluating a network when applied to data (often referred to as
inference) and when computing gradients to update parameters. That is, this applies whenever
we perform w← w− ηtgt where

gt = ∂wf(xt,w) (11.5.1)

We can increase the computational efficiency of this operation by applying it to a minibatch of
observations at a time. That is, we replace the gradient gt over a single observation by one over a
small batch

gt = ∂w
1

|Bt|
∑
i∈Bt

f(xi,w) (11.5.2)

Let s̓ see what this does to the statistical properties of gt: since both xt and also all elements of
the minibatch Bt are drawn uniformly at random from the training set, the expectation of the
gradient remains unchanged. The variance, on the other hand, is reduced significantly. Since the
minibatch gradient is composed of b := |Bt| independent gradients which are being averaged, its
standard deviation is reduced by a factor of b−

1
2 . This, by itself, is a good thing, since it means that

the updates are more reliably aligned with the full gradient.

Naively this would indicate that choosing a large minibatch Bt would be universally desirable.
Alas, after some point, the additional reduction in standard deviation is minimal when compared
to the linear increase in computational cost. In practice we pick a minibatch that is large enough
to offer good computational efficiency while still fitting into the memory of a GPU. To illustrate the
savings let s̓ have a look at some code. In it we perform the same matrix-matrix multiplication,
but this time broken up into “minibatches” of 64 columns at a time.

timer.start()
for j in range(0, 1024, 64):

A[:, j:j+64] = np.dot(B, C[:, j:j+64])
timer.stop()
print("Performance in Gigaflops: block {:.3f}".format(2/timer.times[3]))

Performance in Gigaflops: block 232.842

As we can see, the computation on the minibatch is essentially as efficient as on the full matrix. A
word of caution is in order. In Section 7.5 we used a type of regularization that was heavily depen-
dent on the amount of variance in a minibatch. As we increase the latter, the variance decreases
and with it the benefit of the noise-injection due to batch normalization. See e.g., (Ioffe, 2017) for
details on how to rescale and compute the appropriate terms.

11.5. Minibatch Stochastic Gradient Descent 439

11.5.3 Reading the Dataset

Let s̓ have a look at how minibatches are efficiently generated from data. In the following we use a
dataset developed by NASA to test the wing noise from different aircraft154 to compare these opti-
mization algorithms. For convenience we only use the first 1, 500 examples. The data is whitened
for preprocessing, i.e., we remove the mean and rescale the variance to 1 per coordinate.

Saved in the d2l package for later use
def get_data_ch11(batch_size=10, n=1500):

data = np.genfromtxt('../data/airfoil_self_noise.dat',
dtype=np.float32, delimiter='\t')

data = (data - data.mean(axis=0)) / data.std(axis=0)
data_iter = d2l.load_array(

(data[:n, :-1], data[:n, -1]), batch_size, is_train=True)
return data_iter, data.shape[1]-1

11.5.4 Implementation from Scratch

Recall the minibatch SGD implementation from Section 3.2. In the following we provide a slightly
more general implementation. For convenience it has the same call signature as the other opti-
mization algorithms introduced later in this chapter. Specifically, we add the status input states
and place the hyperparameter in dictionary hyperparams. In addition, we will average the loss of
each minibatch example in the training function, so the gradient in the optimization algorithm
does not need to be divided by the batch size.

def sgd(params, states, hyperparams):
for p in params:

p[:] -= hyperparams['lr'] * p.grad

Next, we implement a generic training function to facilitate the use of the other optimization al-
gorithms introduced later in this chapter. It initializes a linear regression model and can be used
to train the model with minibatch SGD and other algorithms introduced subsequently.

Saved in the d2l package for later use
def train_ch11(trainer_fn, states, hyperparams, data_iter,

feature_dim, num_epochs=2):
Initialization
w = np.random.normal(scale=0.01, size=(feature_dim, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
Train
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):

for X, y in data_iter:
with autograd.record():

l = loss(net(X), y).mean()

(continues on next page)

154 https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

440 Chapter 11. Optimization Algorithms

https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

(continued from previous page)

l.backward()
trainer_fn([w, b], states, hyperparams)
n += X.shape[0]
if n % 200 == 0:

timer.stop()
animator.add(n/X.shape[0]/len(data_iter),

(d2l.evaluate_loss(net, data_iter, loss),))
timer.start()

print('loss: %.3f, %.3f sec/epoch' % (animator.Y[0][-1], timer.avg()))
return timer.cumsum(), animator.Y[0]

Let s̓ see how optimization proceeds for batch gradient descent. This can be achieved by setting
the minibatch size to 1500 (i.e., to the total number of examples). As a result the model parameters
are updated only once per epoch. There is little progress. In fact, after 6 steps progress stalls.

def train_sgd(lr, batch_size, num_epochs=2):
data_iter, feature_dim = get_data_ch11(batch_size)
return train_ch11(

sgd, None, {'lr': lr}, data_iter, feature_dim, num_epochs)

gd_res = train_sgd(1, 1500, 10)

loss: 0.248, 0.075 sec/epoch

When the batch size equals 1, we use SGD for optimization. For simplicity of implementation we
picked a constant (albeit small) learning rate. In SGD, the model parameters are updated when-
ever an example is processed. In our case this amounts to 1500 updates per epoch. As we can see,
the decline in the value of the objective function slows down after one epoch. Although both the
procedures processed 1500 examples within one epoch, SGD consumes more time than gradient
descent in our experiment. This is because SGD updated the parameters more frequently and
since it is less efficient to process single observations one at a time.

sgd_res = train_sgd(0.005, 1)

11.5. Minibatch Stochastic Gradient Descent 441

loss: 0.246, 0.328 sec/epoch

Last, when the batch size equals 100, we use minibatch SGD for optimization. The time required
per epoch is longer than the time needed for SGD and the time for batch gradient descent.

mini1_res = train_sgd(.4, 100)

loss: 0.245, 0.008 sec/epoch

Reducing the batch size to 10, the time for each epoch increases because the workload for each
batch is less efficient to execute.

mini2_res = train_sgd(.05, 10)

loss: 0.245, 0.042 sec/epoch

442 Chapter 11. Optimization Algorithms

Finally, we compare the time versus loss for the preview four experiments. As can be seen, despite
SGD converges faster than GD in terms of number of examples processed, it uses more time to
reach the same loss than GD because that computing gradient example by example is not efficient.
Minibatch SGD is able to trade-off the convergence speed and computation efficiency. A minibatch
size 10 is more efficient than SGD; a minibatch size 100 even outperforms GD in terms of runtime.

d2l.set_figsize([6, 3])
d2l.plot(*list(map(list, zip(gd_res, sgd_res, mini1_res, mini2_res))),

'time (sec)', 'loss', xlim=[1e-2, 10],
legend=['gd', 'sgd', 'batch size=100', 'batch size=10'])

d2l.plt.gca().set_xscale('log')

11.5. Minibatch Stochastic Gradient Descent 443

11.5.5 Concise Implementation

In Gluon, we can use the Trainer class to call optimization algorithms. This is used to implement
a generic training function. We will use this throughout the current chapter.

Saved in the d2l package for later use
def train_gluon_ch11(tr_name, hyperparams, data_iter, num_epochs=2):

Initialization
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=0.01))
trainer = gluon.Trainer(net.collect_params(), tr_name, hyperparams)
loss = gluon.loss.L2Loss()
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[0, num_epochs], ylim=[0.22, 0.35])
n, timer = 0, d2l.Timer()
for _ in range(num_epochs):

for X, y in data_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
trainer.step(X.shape[0])
n += X.shape[0]
if n % 200 == 0:

timer.stop()
animator.add(n/X.shape[0]/len(data_iter),

(d2l.evaluate_loss(net, data_iter, loss),))
timer.start()

print('loss: %.3f, %.3f sec/epoch' % (animator.Y[0][-1], timer.avg()))

Using Gluon to repeat the last experiment shows identical behavior.

data_iter, _ = get_data_ch11(10)
train_gluon_ch11('sgd', {'learning_rate': 0.05}, data_iter)

loss: 0.244, 0.035 sec/epoch

444 Chapter 11. Optimization Algorithms

Summary

• Vectorization makes code more efficient due to reduced overhead arising from the deep
learning framework and due to better memory locality and caching on CPUs and GPUs.

• There is a trade-off between statistical efficiency arising from SGD and computational effi-
ciency arising from processing large batches of data at a time.

• Minibatch stochastic gradient descent offers the best of both worlds: computational and
statistical efficiency.

• In minibatch SGD we process batches of data obtained by a random permutation of the train-
ing data (i.e., each observation is processed only once per epoch, albeit in random order).

• It is advisable to decay the learning rates during training.

• In general, minibatch SGD is faster than SGD and gradient descent for convergence to a
smaller risk, when measured in terms of clock time.

Exercises

1. Modify the batch size and learning rate and observe the rate of decline for the value of the
objective function and the time consumed in each epoch.

2. Read the MXNet documentation and use the Trainer class set_learning_rate function to
reduce the learning rate of the minibatch SGD to 1/10 of its previous value after each epoch.

3. Compare minibatch SGD with a variant that actually samples with replacement from the train-
ing set. What happens?

4. An evil genie replicates your dataset without telling you (i.e., each observation occurs twice
and your dataset grows to twice its original size, but nobody told you). How does the behavior
of SGD, minibatch SGD and that of gradient descent change?

11.6 Momentum

In Section 11.4 we reviewed what happens when performing stochastic gradient descent, i.e.,
when performing optimization where only a noisy variant of the gradient is available. In partic-
ular, we noticed that for noisy gradients we need to be extra cautious when it comes to choosing
the learning rate in the face of noise. If we decrease it too rapidly, convergence stalls. If we are
too lenient, we fail to converge to a good enough solution since noise keeps on driving us away
from optimality.

11.6. Momentum 445

11.6.1 Basics

In this section, we will explore more effective optimization algorithms, especially for certain types
of optimization problems that are common in practice.

Leaky Averages

The previous section saw us discussing minibatch SGD as a means for accelerating computation.
It also had the nice side-effect that averaging gradients reduced the amount of variance.

gt = ∂w
1

|Bt|
∑
i∈Bt

f(xi,wt−1) =
1

|Bt|
∑
i∈Bt

gi,t−1. (11.6.1)

Here we used gii = ∂wf(xi,wt) to keep the notation simple. It would be nice if we could bene-
fit from the effect of variance reduction even beyond averaging gradients on a mini-batch. One
option to accomplish this task is to replace the gradient computation by a “leaky average”:

vt = βvt−1 + gt,t−1 (11.6.2)

for some β ∈ (0, 1). This effectively replaces the instantaneous gradient by one that s̓ been aver-
aged over multiple past gradients. v is called momentum. It accumulates past gradients similar to
how a heavy ball rolling down the objective function landscape integrates over past forces. To see
what is happening in more detail let s̓ expand vt recursively into

vt = β2vt−2 + βgt−1,t−2 + gt,t−1 = . . . =

t−1∑
τ=0

βτgt−τ,t−τ−1. (11.6.3)

Large β amounts to a long-range average, whereas small β amounts to only a slight correction
relative to a gradient method. The new gradient replacement no longer points into the direction
of steepest descent on a particular instance any longer but rather in the direction of a weighted
average of past gradients. This allows us to realize most of the benefits of averaging over a batch
without the cost of actually computing the gradients on it. We will revisit this averaging procedure
in more detail later.

The above reasoning formed the basis for what is now known as accelerated gradient methods,
such as gradients with momentum. They enjoy the additional benefit of being much more effec-
tive in cases where the optimization problem is ill-conditioned (i.e., where there are some direc-
tions where progress is much slower than in others, resembling a narrow canyon). Furthermore,
they allow us to average over subsequent gradients to obtain more stable directions of descent.
Indeed, the aspect of acceleration even for noise-free convex problems is one of the key reasons
why momentum works and why it works so well.

As one would expect, due to its efficacy momentum is a well-studied subject in optimization for
deep learning and beyond. See e.g., the beautiful expository article156 by (Goh, 2017) for an in-
depth analysis and interactive animation. It was proposed by (Polyak, 1964). (Nesterov, 2018)
has a detailed theoretical discussion in the context of convex optimization. Momentum in deep
learning has been known to be beneficial for a long time. See e.g., the discussion by (Sutskever et
al., 2013) for details.

156 https://distill.pub/2017/momentum/

446 Chapter 11. Optimization Algorithms

https://distill.pub/2017/momentum/

An Ill-conditioned Problem

To get a better understanding of the geometric properties of the momentum method we revisit
gradient descent, albeit with a significantly less pleasant objective function. Recall that in Section
11.3 we used f(x) = x21 + 2x22, i.e., a moderately distorted ellipsoid objective. We distort this
function further by stretching it out in the x1 direction via

f(x) = 0.1x21 + 2x22. (11.6.4)

As before f has its minimum at (0, 0). This function is very flat in the direction of x1. Let s̓ see what
happens when we perform gradient descent as before on this new function. We pick a learning
rate of 0.4.

%matplotlib inline
import d2l
from mxnet import np, npx
npx.set_np()

eta = 0.4
def f_2d(x1, x2):

return 0.1 * x1 ** 2 + 2 * x2 ** 2
def gd_2d(x1, x2, s1, s2):

return (x1 - eta * 0.2 * x1, x2 - eta * 4 * x2, 0, 0)

d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))

epoch 20, x1 -0.943467, x2 -0.000073

By construction, the gradient in the x2 direction is much higher and changes much more rapidly
than in the horizontal x1 direction. Thus we are stuck between two undesirable choices: if we pick
a small learning rate we ensure that the solution does not diverge in the x2 direction but weʼre sad-
dled with slow convergence in the x1 direction. Conversely, with a large learning rate we progress
rapidly in the x1 direction but diverge in x2. The example below illustrates what happens even af-
ter a slight increase in learning rate from 0.4 to 0.6. Convergence in the x1 direction improves but
the overall solution quality is much worse.

11.6. Momentum 447

eta = 0.6
d2l.show_trace_2d(f_2d, d2l.train_2d(gd_2d))

epoch 20, x1 -0.387814, x2 -1673.365109

The MomentumMethod

The momentum method allows us to solve the gradient descent problem described above. Look-
ing at the optimization trace above we might intuit that averaging gradients over the past would
work well. After all, in the x1 direction this will aggregate well-aligned gradients, thus increasing
the distance we cover with every step. Conversely, in the x2 direction where gradients oscillate,
an aggregate gradient will reduce step size due to oscillations that cancel each other out. Using vt
instead of the gradient gt yields the following update equations:

vt ← βvt−1 + gt,t−1,

xt ← xt−1 − ηtvt.
(11.6.5)

Note that for β = 0 we recover regular gradient descent. Before delving deeper into the mathe-
matical properties let s̓ have a quick look at how the algorithm behaves in practice.

def momentum_2d(x1, x2, v1, v2):
v1 = beta * v1 + 0.2 * x1
v2 = beta * v2 + 4 * x2
return x1 - eta * v1, x2 - eta * v2, v1, v2

eta, beta = 0.6, 0.5
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

epoch 20, x1 0.007188, x2 0.002553

448 Chapter 11. Optimization Algorithms

As we can see, even with the same learning rate that we used before, momentum still converges
well. Let s̓ see what happens when we decrease the momentum parameter. Halving it to β =
0.25 leads to a trajectory that barely converges at all. Nonetheless, it s̓ a lot better than without
momentum (when the solution diverges).

eta, beta = 0.6, 0.25
d2l.show_trace_2d(f_2d, d2l.train_2d(momentum_2d))

epoch 20, x1 -0.126340, x2 -0.186632

Note that we can combine momentum with SGD and in particular, minibatch-SGD. The only
change is that in that case we replace the gradients gt,t−1 with gt. Last, for convenience we initial-
ize v0 = 0 at time t = 0. Let s̓ look at what leaky averaging actually does to the updates.

11.6. Momentum 449

Effective Sample Weight

Recall that vt =
∑t−1

τ=0 β
τgt−τ,t−τ−1. In the limit the terms add up to

∑∞
τ=0 β

τ = 1
1−β . In other

words, rather than taking a step of size η in GD or SGD we take a step of size η
1−β while at the same

time, dealing with a potentially much better behaved descent direction. These are two benefits in
one. To illustrate how weighting behaves for different choices of β consider the diagram below.

gammas = [0.95, 0.9, 0.6, 0]
d2l.set_figsize((3.5, 2.5))
for gamma in gammas:

x = np.arange(40).asnumpy()
d2l.plt.plot(x, gamma ** x, label='gamma = %.2f' % gamma)

d2l.plt.xlabel('time')
d2l.plt.legend();

11.6.2 Practical Experiments

Let s̓ see how momentum works in practice, i.e., when used within the context of a proper opti-
mizer. For this we need a somewhat more scalable implementation.

Implementation from Scratch

Compared with (minibatch) SGD the momentum method needs to maintain a set of auxiliary vari-
ables, i.e., velocity. It has the same shape as the gradients (and variables of the optimization prob-
lem). In the implementation below we call these variables states.

def init_momentum_states(feature_dim):
v_w = np.zeros((feature_dim, 1))
v_b = np.zeros(1)
return (v_w, v_b)

def sgd_momentum(params, states, hyperparams):
for p, v in zip(params, states):

v[:] = hyperparams['momentum'] * v + p.grad
p[:] -= hyperparams['lr'] * v

450 Chapter 11. Optimization Algorithms

Let s̓ see how this works in practice.

def train_momentum(lr, momentum, num_epochs=2):
d2l.train_ch11(sgd_momentum, init_momentum_states(feature_dim),

{'lr': lr, 'momentum': momentum}, data_iter,
feature_dim, num_epochs)

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
train_momentum(0.02, 0.5)

loss: 0.244, 0.053 sec/epoch

When we increase the momentum hyperparameter momentum to 0.9, it amounts to a significantly
larger effective sample size of 1

1−0.9 = 10. We reduce the learning rate slightly to 0.01 to keep
matters under control.

train_momentum(0.01, 0.9)

loss: 0.249, 0.054 sec/epoch

11.6. Momentum 451

Reducing the learning rate further addresses any issue of non-smooth optimization problems.
Setting it to 0.005 yields good convergence properties.

train_momentum(0.005, 0.9)

loss: 0.243, 0.053 sec/epoch

Concise Implementation

There s̓ very little to do in Gluon since the standard sgd solver already had momentum built in.
Setting matching parameters yields a very similar trajectory.

d2l.train_gluon_ch11('sgd', {'learning_rate': 0.005, 'momentum': 0.9},
data_iter)

loss: 0.246, 0.035 sec/epoch

452 Chapter 11. Optimization Algorithms

11.6.3 Theoretical Analysis

So far the 2D example of f(x) = 0.1x21 + 2x22 seemed rather contrived. We will now see that this is
actually quite representative of the types of problem one might encounter, at least in the case of
minimizing convex quadratic objective functions.

Quadratic Convex Functions

Consider the function

h(x) =
1

2
x⊤Qx+ x⊤c+ b. (11.6.6)

This is a general quadratic function. For positive semidefinite matrices Q ≻ 0, i.e., for matrices
with positive eigenvalues this has a minimizer at x∗ = −Q−1c with minimum value b− 1

2c
⊤Q−1c.

Hence we can rewrite h as

h(x) =
1

2
(x− Q−1c)⊤Q(x− Q−1c) + b− 1

2
c⊤Q−1c. (11.6.7)

The gradient is given by ∂xf(x) = Q(x − Q−1c). That is, it is given by the distance between x
and the minimizer, multiplied by Q. Consequently also the momentum is a linear combination of
terms Q(xt − Q−1c).

Since Q is positive definite it can be decomposed into its eigensystem via Q = O⊤ΛO for an or-
thogonal (rotation) matrix O and a diagonal matrix Λ of positive eigenvalues. This allows us to
perform a change of variables from x to z := O(x−Q−1c) to obtain a much simplified expression:

h(z) =
1

2
z⊤Λz+ b′. (11.6.8)

Here c′ = b− 1
2c

⊤Q−1c. Since O is only an orthogonal matrix this doesnʼt perturb the gradients in
a meaningful way. Expressed in terms of z gradient descent becomes

zt = zt−1 −Λzt−1 = (I−Λ)zt−1. (11.6.9)

The important fact in this expression is that gradient descent does not mix between different
eigenspaces. That is, when expressed in terms of the eigensystem of Q the optimization prob-
lem proceeds in a coordinate-wise manner. This also holds for momentum.

vt = βvt−1 +Λzt−1

zt = zt−1 − η (βvt−1 +Λzt−1)

= (I− ηΛ)zt−1 − ηβvt−1.

(11.6.10)

In doing this we just proved the following theorem: Gradient Descent with and without momen-
tum for a convex quadratic function decomposes into coordinate-wise optimization in the direc-
tion of the eigenvectors of the quadratic matrix.

11.6. Momentum 453

Scalar Functions

Given the above result let s̓ see what happens when we minimize the function f(x) = λ
2x

2. For
gradient descent we have

xt+1 = xt − ηλxt = (1− ηλ)xt. (11.6.11)

Whenever |1 − ηλ| < 1 this optimization converges at an exponential rate since after t steps we
have xt = (1 − ηλ)tx0. This shows how the rate of convergence improves initially as we increase
the learning rate η until ηλ = 1. Beyond that things diverge and for ηλ > 2 the optimization
problem diverges.

lambdas = [0.1, 1, 10, 19]
eta = 0.1
d2l.set_figsize((6, 4))
for lam in lambdas:

t = np.arange(20).asnumpy()
d2l.plt.plot(t, (1 - eta * lam) ** t, label='lambda = %.2f' % lam)

d2l.plt.xlabel('time')
d2l.plt.legend();

To analyze convergence in the case of momentum we begin by rewriting the update equations in
terms of two scalars: one for x and one for the momentum v. This yields:[

vt+1

xt+1

]
=

[
β λ
−ηβ (1− ηλ)

] [
vt
xt

]
= R(β, η, λ)

[
vt
xt

]
. (11.6.12)

We used R to denote the 2 × 2 governing convergence behavior. After t steps the initial choice
[v0, x0] becomes R(β, η, λ)t[v0, x0]. Hence, it is up to the eigenvalues of R to detmine the speed of
convergence. See the Distill post157 of (Goh, 2017) for a great animation and (Flammarion & Bach,

157 https://distill.pub/2017/momentum/

454 Chapter 11. Optimization Algorithms

https://distill.pub/2017/momentum/

2015) for a detailed analysis. One can show that 0 < ηλ < 2 + 2β momentum converges. This is
a larger range of feasible parameters when compared to 0 < ηλ < 2 for gradient descent. It also
suggests that in general large values of β are desirable. Further details require a fair amount of
technical detail and we suggest that the interested reader consult the original publications.

Summary

• Momentum replaces gradients with a leaky average over past gradients. This accelerates
convergence significantly.

• It is desirable for both noise-free gradient descent and (noisy) stochastic gradient descent.

• Momentum prevents stalling of the optimization process that is much more likely to occur
for stochastic gradient descent.

• The effective number of gradients is given by 1
1−β due to exponentiated downweighting of

past data.

• In the case of convex quadratic problems this can be analyzed explicitly in detail.

• Implementation is quite straightforward but it requires us to store an additional state vector
(momentum v).

Exercises

1. Use other combinations of momentum hyperparameters and learning rates and observe and
analyze the different experimental results.

2. Try out GD and momentum for a quadratic problem where you have multiple eigenvalues,
i.e., f(x) = 1

2

∑
i λix

2
i , e.g., λi = 2−i. Plot how the values of x decrease for the initialization

xi = 1.

3. Derive minimum value and minimizer for h(x) = 1
2x

⊤Qx+ x⊤c+ b.

4. What changes when we perform SGD with momentum? What happens when we use mini-
batch SGD with momentum? Experiment with the parameters?

11.7 Adagrad

Let us begin by considering learning problems with features that occur infrequently.

11.7. Adagrad 455

11.7.1 Sparse Features and Learning Rates

Imagine that weʼre training a language model. To get good accuracy we typically want to decrease
the learning rate as we keep on training, usually at a rate of O(t−

1
2) or slower. Now consider a

model training on sparse features, i.e., features that occur only infrequently. This is common for
natural language, e.g., it is a lot less likely that weʼll see the word preconditioning than learning.
However, it is also common in other areas such as computational advertising and personalized
collaborative filtering. After all, there are many things that are of interest only for a small number
of people.

Parameters associated with infrequent features only receive meaningful updates whenever these
features occur. Given a decreasing learning rate we might end up in a situation where the parame-
ters for common features converge rather quickly to their optimal values, whereas for infrequent
features we are still short of observing them sufficiently frequently before their optimal values can
be determined. In other words, the learning rate either decreases too slowly for frequent features
or too slowly for infrequent ones.

A possible hack to redress this issue would be to count the number of times we see a particular
feature and to use this as a clock for adjusting learning rates. That is, rather than choosing a
learning rate of the form η = η0√

t+c
we could use ηi =

η0√
s(i,t)+c

. Here s(i, t) counts the number of

nonzeros for feature i that we have observed up to time t. This is actually quite easy to implement
at no meaningful overhead. However, it fails whenever we donʼt quite have sparsity but rather just
data where the gradients are often very small and only rarely large. After all, it is unclear where
one would draw the line between something that qualifies as an observed feature or not.

Adagrad by (Duchi et al., 2011) addresses this by replacing the rather crude counter s(i, t) by an
aggregate of the squares of previously observed gradients. In particular, it uses s(i, t + 1) =
s(i, t) + (∂if(x))2 as a means to adjust the learning rate. This has two benefits: first, we no longer
need to decide just when a gradient is large enough. Second, it scales automatically with the mag-
nitude of the gradients. Coordinates that routinely correspond to large gradients are scaled down
significantly, whereas others with small gradients receive a much more gentle treatment. In prac-
tice this leads to a very effective optimization procedure for computational advertising and related
problems. But this hides some of the additional benefits inherent in Adagrad that are best under-
stood in the context of preconditioning.

11.7.2 Preconditioning

Convex optimization problems are good for analyzing the characteristics of algorithms. After all,
for most nonconvex problems it is difficult to derive meaningful theoretical guarantees, but intu-
ition and insight often carry over. Let s̓ look at the problem of minimizing f(x) = 1

2x
⊤Qx+c⊤x+b.

As we saw in Section 11.6, it is possible to rewrite this problem in terms of its eigendecompo-
sition Q = U⊤ΛU to arrive at a much simplified problem where each coordinate can be solved
individually:

f(x) = f̄(x̄) =
1

2
x̄⊤Λx̄+ c̄⊤x̄+ b. (11.7.1)

Here we used x = Ux and consequently c = Uc. The modified problem has as its minimizer
x̄ = −Λ−1c̄ and minimum value −1

2 c̄
⊤Λ−1c̄ + b. This is much easier to compute since Λ is a

diagonal matrix containing the eigenvalues of Q.

If we perturb c slightly we would hope to find only slight changes in the minimizer of f . Unfortu-
nately this is not the case. While slight changes in c lead to equally slight changes in c̄, this is not

456 Chapter 11. Optimization Algorithms

the case for the minimizer of f (and of f̄ respectively). Whenever the eigenvalues Λi are large we
will see only small changes in x̄i and in the minimum of f̄ . Conversely, for small Λi changes in x̄i
can be dramatic. The ratio between the largest and the smallest eigenvalue is called the condition
number of an optimization problem.

κ =
Λ1

Λd
. (11.7.2)

If the condition number κ is large, it is difficult to solve the optimization problem accurately. We
need to ensure that we are careful in getting a large dynamic range of values right. Our analysis
leads to an obvious, albeit somewhat naive question: couldnʼt we simply “fix” the problem by dis-
torting the space such that all eigenvalues are 1. In theory this is quite easy: we only need the
eigenvalues and eigenvectors of Q to rescale the problem from x to one in z := Λ

1
2Ux. In the

new coordinate system x⊤Qx could be simplified to ∥z∥2. Alas, this is a rather impractical sugges-
tion. Computing eigenvalues and eigenvectors is in general much more expensive than solving the
actual problem.

While computing eigenvalues exactly might be expensive, guessing them and computing them
even somewhat approximately may already be a lot better than not doing anything at all. In par-
ticular, we could use the diagonal entries of Q and rescale it accordingly. This is much cheaper
than computing eigenvalues.

Q̃ = diag− 1
2 (Q)Qdiag− 1

2 (Q). (11.7.3)

In this case we have Q̃ij = Qij/
√
QiiQjj and specifically Q̃ii = 1 for all i. In most cases this

simplifies the condition number considerably. For instance, the the cases we discussed previously,
this would entirely eliminate the problem at hand since the problem is axis aligned.

Unfortunately we face yet another problem: in deep learning we typically donʼt even have access
to the second derivative of the objective function: for x ∈ Rd the second derivative even on a
minibatch may require O(d2) space and work to compute, thus making it practically infeasible.
The ingenious idea of Adagrad is to use a proxy for that elusive diagonal of the Hessian that is both
relatively cheap to compute and effective—the magnitude of the gradient itself.

In order to see why this works, let s̓ look at f̄(x̄). We have that

∂x̄f̄(x̄) = Λx̄+ c̄ = Λ (x̄− x̄0) , (11.7.4)

where x̄0 is the minimizer of f̄ . Hence the magnitude of the gradient depends both on Λ and the
distance from optimality. If x̄− x̄0 didnʼt change, this would be all that s̓ needed. After all, in this
case the magnitude of the gradient ∂x̄f̄(x̄) suffices. Since AdaGrad is a stochastic gradient descent
algorithm, we will see gradients with nonzero variance even at optimality. As a result we can safely
use the variance of the gradients as a cheap proxy for the scale of the Hessian. A thorough analysis
is beyond the scope of this section (it would be several pages). We refer the reader to (Duchi et al.,
2011) for details.

11.7. Adagrad 457

11.7.3 The Algorithm

Let s̓ formalize the discussion from above. We use the variable st to accumulate past gradient
variance as follows.

gt = ∂wl(yt, f(xt,w)),

st = st−1 + g2t ,

wt = wt−1 −
η√

st + ϵ
· gt.

(11.7.5)

Here the operation are applied coordinate wise. That is, v2 has entries v2i . Likewise 1√
v

has entries
1√
vi

and u · v has entries uivi. As before η is the learning rate and ϵ is an additive constant that
ensures that we do not divide by 0. Last, we initialize s0 = 0.

Just like in the case of momentum we need to keep track of an auxiliary variable, in this case to
allow for an individual learning rate per coordinate. This doesnʼt increase the cost of Adagrad
significantly relative to SGD, simply since the main cost is typically to compute l(yt, f(xt,w)) and
its derivative.

Note that accumulating squared gradients in st means that st grows essentially at linear rate (some-
what slower than linearly in practice, since the gradients initially diminish). This leads to an
O(t−

1
2) learning rate, albeit adjusted on a per coordinate basis. For convex problems this is per-

fectly adequate. In deep learning, though, we might want to decrease the learning rate rather
more slowly. This led to a number of Adagrad variants that we will discuss in the subsequent
chapters. For now let s̓ see how it behaves in a quadratic convex problem. We use the same prob-
lem as before:

f(x) = 0.1x21 + 2x22. (11.7.6)

We are going to implement Adagrad using the same learning rate previously, i.e., η = 0.4. As
we can see, the iterative trajectory of the independent variable is smoother. However, due to the
cumulative effect of st, the learning rate continuously decays, so the independent variable does
not move as much during later stages of iteration.

%matplotlib inline
import d2l
import math
from mxnet import np, npx
npx.set_np()

def adagrad_2d(x1, x2, s1, s2):
eps = 1e-6
g1, g2 = 0.2 * x1, 4 * x2
s1 += g1 ** 2
s2 += g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1, x2, s1, s2

def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2

eta = 0.4
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad_2d))

458 Chapter 11. Optimization Algorithms

epoch 20, x1 -2.382563, x2 -0.158591

As we increase the learning rate to 2 we see much better behavior. This already indicates that the
decrease in learning rate might be rather aggressive, even in the noise-free case and we need to
ensure that parameters converge appropriately.

eta = 2
d2l.show_trace_2d(f_2d, d2l.train_2d(adagrad_2d))

epoch 20, x1 -0.002295, x2 -0.000000

11.7. Adagrad 459

11.7.4 Implementation from Scratch

Just like the momentum method, Adagrad needs to maintain a state variable of the same shape as
the parameters.

def init_adagrad_states(feature_dim):
s_w = np.zeros((feature_dim, 1))
s_b = np.zeros(1)
return (s_w, s_b)

def adagrad(params, states, hyperparams):
eps = 1e-6
for p, s in zip(params, states):

s[:] += np.square(p.grad)
p[:] -= hyperparams['lr'] * p.grad / np.sqrt(s + eps)

Compared to the experiment in Section 11.5 we use a larger learning rate to train the model.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adagrad, init_adagrad_states(feature_dim),

{'lr': 0.1}, data_iter, feature_dim);

loss: 0.244, 0.052 sec/epoch

11.7.5 Concise Implementation

Using the Trainer instance of the algorithm adagrad, we can invoke the Adagrad algorithm in
Gluon.

d2l.train_gluon_ch11('adagrad', {'learning_rate': 0.1}, data_iter)

loss: 0.244, 0.069 sec/epoch

460 Chapter 11. Optimization Algorithms

Summary

• Adagrad decreases the learning rate dynamically on a per-coordinate basis.

• It uses the magnitude of the gradient as a means of adjusting how quickly progress is
achieved - coordinates with large gradients are compensated with a smaller learning rate.

• Computing the exact second derivative is typically infeasible in deep learning problems due
to memory and computational constraints. The gradient can be a useful proxy.

• If the optimization problem has a rather uneven uneven structure Adagrad can help mitigate
the distortion.

• Adagrad is particularly effective for sparse features where the learning rate needs to decrease
more slowly for infrequently occurring terms.

• On deep learning problems Adagrad can sometimes be too aggressive in reducing learning
rates. We will discuss strategies for mitigating this in the context of Section 11.10.

Exercises

1. Prove that for an orthogonal matrix U and a vector c the following holds: ∥c− δ∥2 = ∥Uc−
Uδ∥2. Why does this mean that the magnitude of perturbations does not change after an
orthogonal change of variables?

2. Try out Adagrad for f(x) = 0.1x21 + 2x22 and also for the objective function was rotated by 45
degrees, i.e., f(x) = 0.1(x1 + x2)

2 + 2(x1 − x2)
2. Does it behave differently?

3. Prove Gerschgorins̓ circle theorem159 which states that eigenvalues λi of a matrix M satisfy
|λi −Mjj | ≤

∑
k ̸=j |Mjk| for at least one choice of j.

4. What does Gerschgorins̓ theorem tell us about the eigenvalues of the diagonally precondi-
tioned matrix diag− 1

2 (M)Mdiag− 1
2 (M)?

5. Try out Adagrad for a proper deep network, such as Section 6.6 when applied to Fashion
MNIST.

6. How would you need to modify Adagrad to achieve a less aggressive decay in learning rate?
159 https://en.wikipedia.org/wiki/Gershgorin_circle_theorem

11.7. Adagrad 461

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem

11.8 RMSProp

One of the key issues in Section 11.7 is that the learning rate decreases at a predefined schedule
of effectively O(t−

1
2). While this is generally appropriate for convex problems, it might not be

ideal for nonconvex ones, such as those encountered in deep learning. Yet, the coordinate-wise
adaptivity of Adagrad is highly desirable as a preconditioner.

(Tieleman & Hinton, 2012) proposed the RMSProp algorithm as a simple fix to decouple rate
scheduling from coordinate-adaptive learning rates. The issue is that Adagrad accumulates the
squares of the gradient gt into a state vector st = st−1+g2t . As a result st keeps on growing without
bound due to the lack of normalization, essentially linarly as the algorithm converges.

One way of fixing this problem would be to use st/t. For reasonable distributions of gt this will
converge. Unfortunately it might take a very long time until the limit behavior starts to matter
since the procedure remembers the full trajectory of values. An alternative is to use a leaky av-
erage in the same way we used in the momentum method, i.e., st ← γst−1 + (1 − γ)g2t for some
parameter γ > 0. Keeping all other parts unchanged yields RMSProp.

11.8.1 The Algorithm

Let s̓ write out the equations in detail.

st ← γst−1 + (1− γ)g2t ,

xt ← xt−1 −
η√

st + ϵ
⊙ gt.

(11.8.1)

The constant ϵ > 0 is typically set to 10−6 to ensure that we donʼt suffer from division by zero
or overly large step sizes. Given this expansion we are now free to control the learning rate η
independently of the scaling that is applied on a per-coordinate basis. In terms of leaky averages
we can apply the same reasoning as previously applied in the case of the momentum method.
Expanding the definition of st yields

st = (1− γ)g2t + γst−1

= (1− γ)
(
g2t + γg2t−1 + γ2gt−2 + . . .

)
.

(11.8.2)

As before in Section 11.6 we use 1+γ+γ2+ . . . = 1
1−γ . Hence the sum of weights is normalized to

1 with a half-life time of an observation of γ−1. Let s̓ visualize the weights for the past 40 timesteps
for various choices of γ.

%matplotlib inline
import d2l
import math
from mxnet import np, npx

(continues on next page)

462 Chapter 11. Optimization Algorithms

(continued from previous page)

npx.set_np()
d2l.set_figsize((3.5, 2.5))

gammas = [0.95, 0.9, 0.8, 0.7]
for gamma in gammas:

x = np.arange(40).asnumpy()
d2l.plt.plot(x, (1-gamma) * gamma ** x, label='gamma = %.2f' % gamma)

d2l.plt.xlabel('time');

11.8.2 Implementation from Scratch

As before we use the quadratic function f(x) = 0.1x21 + 2x22 to observe the trajectory of RMSProp.
Recall that in Section 11.7, when we used Adagrad with a learning rate of 0.4, the variables moved
only very slowly in the later stages of the algorithm since the learning rate decreased too quickly.
Since η is controlled separately this does not happen with RMSProp.

def rmsprop_2d(x1, x2, s1, s2):
g1, g2, eps = 0.2 * x1, 4 * x2, 1e-6
s1 = gamma * s1 + (1 - gamma) * g1 ** 2
s2 = gamma * s2 + (1 - gamma) * g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1, x2, s1, s2

def f_2d(x1, x2):
return 0.1 * x1 ** 2 + 2 * x2 ** 2

eta, gamma = 0.4, 0.9
d2l.show_trace_2d(f_2d, d2l.train_2d(rmsprop_2d))

11.8. RMSProp 463

epoch 20, x1 -0.010599, x2 0.000000

Next, we implement RMSProp to be used in a deep network. This is equally straightforward.

def init_rmsprop_states(feature_dim):
s_w = np.zeros((feature_dim, 1))
s_b = np.zeros(1)
return (s_w, s_b)

def rmsprop(params, states, hyperparams):
gamma, eps = hyperparams['gamma'], 1e-6
for p, s in zip(params, states):

s[:] = gamma * s + (1 - gamma) * np.square(p.grad)
p[:] -= hyperparams['lr'] * p.grad / np.sqrt(s + eps)

We set the initial learning rate to 0.01 and the weighting term γ to 0.9. That is, s aggregates on
average over the past 1/(1− γ) = 10 observations of the square gradient.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(rmsprop, init_rmsprop_states(feature_dim),

{'lr': 0.01, 'gamma': 0.9}, data_iter, feature_dim);

loss: 0.244, 0.067 sec/epoch

464 Chapter 11. Optimization Algorithms

11.8.3 Concise Implementation

Since RMSProp is a rather popular algorithm it is also available in the Trainer instance. All we
need to do is instantiate it using an algorithm named rmsprop, assigning γ to the parameter gamma1.

d2l.train_gluon_ch11('rmsprop', {'learning_rate': 0.01, 'gamma1': 0.9},
data_iter)

loss: 0.243, 0.036 sec/epoch

Summary

• RMSProp is very similar to Adagrad insofar as both use the square of the gradient to scale
coefficients.

• RMSProp shares with momentum the leaky averaging. However, RMSProp uses the tech-
nique to adjust the coefficient-wise preconditioner.

• The learning rate needs to be scheduled by the experimenter in practice.

11.8. RMSProp 465

• The coefficient γ determines how long the history is when adjusting the per-coordinate
scale.

Exercises

1. What happens experimentally if we set γ = 1? Why?

2. Rotate the optimization problem to minimize f(x) = 0.1(x1 + x2)
2 + 2(x1 − x2)

2. What
happens to the convergence?

3. Try out what happens to RMSProp on a real machine learning problem, such as training on
FashionMNIST. Experiment with different choices for adjusting the learning rate.

4. Would you want to adjust γ as optimization progresses? How sensitive is RMSProp to this?

11.9 Adadelta

Adadelta is yet another variant of AdaGrad. The main difference lies in the fact that it decreases
the amount by which the learning rate is adaptive to coordinates. Moreover, traditionally it re-
ferred to as not having a learning rate since it uses the amount of change itself as calibration for
future change. The algorithm was proposed in (Zeiler, 2012). It is fairly straightforward, given the
discussion of previous algorithms so far.

11.9.1 The Algorithm

In a nutshell Adadelta uses two state variables, st to store a leaky average of the second moment of
the gradient and ∆xt to store a leaky average of the second moment of the change of parameters
in the model itself. Note that we use the original notation and naming of the authors for compat-
ibility with other publications and implementations (there s̓ no other real reason why one should
use different Greek variables to indicate a parameter serving the same purpose in momentum,
Adagrad, RMSProp, and Adadelta). The parameter du jour is ρ. We obtain the following leaky
updates:

st = ρst−1 + (1− ρ)g2t ,

g′t =
√

∆xt−1 + ϵ

st + ϵ
⊙ gt,

xt = xt−1 − g′t,
∆xt = ρ∆xt−1 + (1− ρ)x2t .

(11.9.1)

The difference to before is that we perform updates with the rescaled gradient g′t which is com-
puted by taking the ratio between the average squared rate of change and the average second
moment of the gradient. The use of g′t is purely for notational convenience. In practice we can
implement this algorithm without the need to use additional temporary space for g′t. As before η
is a parameter ensuring nontrivial numerical results, i.e., avoiding zero step size or infinite vari-
ance. Typically we set this to η = 10−5.

466 Chapter 11. Optimization Algorithms

11.9.2 Implementation

Adadelta needs to maintain two state variables for each variable, st and ∆xt. This yields the fol-
lowing implementation.

%matplotlib inline
import d2l
from mxnet import np, npx
npx.set_np()

def init_adadelta_states(feature_dim):
s_w, s_b = np.zeros((feature_dim, 1)), np.zeros(1)
delta_w, delta_b = np.zeros((feature_dim, 1)), np.zeros(1)
return ((s_w, delta_w), (s_b, delta_b))

def adadelta(params, states, hyperparams):
rho, eps = hyperparams['rho'], 1e-5
for p, (s, delta) in zip(params, states):

In-place updates via [:]
s[:] = rho * s + (1 - rho) * np.square(p.grad)
g = (np.sqrt(delta + eps) / np.sqrt(s + eps)) * p.grad
p[:] -= g
delta[:] = rho * delta + (1 - rho) * g * g

Choosing ρ = 0.9 amounts to a half-life time of 10 for each parameter update. This tends to work
quite well. We get the following behavior.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adadelta, init_adadelta_states(feature_dim),

{'rho': 0.9}, data_iter, feature_dim);

loss: 0.245, 0.089 sec/epoch

For a concise implementation we simply use the adadelta algorithm from the Trainer class. This
yields the following one-liner for a much more compact invocation.

11.9. Adadelta 467

d2l.train_gluon_ch11('adadelta', {'rho': 0.9}, data_iter)

loss: 0.243, 0.089 sec/epoch

Summary

• Adadelta has no learning rate parameter. Instead, it uses the rate of change in the parame-
ters itself to adapt the learning rate.

• Adadelta requires two state variables to store the second moments of gradient and the
change in parameters.

• Adadelta uses leaky averages to keep a running estimate of the appropriate statistics.

Exercises

1. Adjust the value of ρ. What happens?

2. Show how to implement the algorithm without the use of g′t. Why might this be a good idea?

3. Is Adadelta really learning rate free? Could you find optimization problems that break
Adadelta?

4. Compare Adadelta to Adagrad and RMS prop to discuss their convergence behavior.

468 Chapter 11. Optimization Algorithms

11.10 Adam

In the discussions leading up to this section we encountered a number of techniques for efficient
optimization. Let s̓ recap them in detail here:

• We saw that Section 11.4 is more effective than Gradient Descent when solving optimization
problems, e.g., due to its inherent resilience to redundant data.

• We saw that Section 11.5 affords significant additional efficiency arising from vectorization,
using larger sets of observations in one minibatch. This is the key to efficient multi-machine,
multi-GPU and overall parallel processing.

• Section 11.6 added a mechanism for aggregating a history of past gradients to accelerate
convergence.

• Section 11.7 used per-coordinate scaling to allow for a computationally efficient precondi-
tioner.

• Section 11.8 decoupled per-coordinate scaling from a learning rate adjustment.

Adam (Kingma & Ba, 2014) combines all these techniques into one efficient learning algorithm.
As expected, this is an algorithm that has become rather popular as one of the more robust and
effective optimization algorithms to use in deep learning. It is not without issues, though. In
particular, (Reddi et al., 2019) show that there are situations where Adam can diverge due to poor
variance control. In a follow-up work (Zaheer et al., 2018) proposed a hotfix to Adam, called Yogi
which addresses these issues. More on this later. For now let s̓ review the Adam algorithm.

11.10.1 The Algorithm

One of the key components of Adam is that it uses exponential weighted moving averages (also
known as leaky averaging) to obtain an estimate of both the momentum and also the second mo-
ment of the gradient. That is, it uses the state variables

vt ← β1vt−1 + (1− β1)gt,
st ← β2st−1 + (1− β2)g2t .

(11.10.1)

Here β1 and β2 are nonnegative weighting parameters. Common choices for them are β1 = 0.9
and β2 = 0.999. That is, the variance estimate moves much more slowly than the momentum term.
Note that if we initialize v0 = s0 = 0 we have a significant amount of bias initially towards smaller
values. This can be addressed by using the fact that

∑t
i=0 β

i = 1−βt

1−β to re-normalize terms. Cor-
respondingly the normalized state variables are given by

v̂t =
vt

1− βt
1

and ŝt =
st

1− βt
2

. (11.10.2)

Armed with the proper estimates we can now write out the update equations. First, we rescale the
gradient in a manner very much akin to that of RMSProp to obtain

g′t =
ηv̂t√
ŝt + ϵ

. (11.10.3)

Unlike RMSProp our update uses the momentum v̂t rather than the gradient itself. Moreover,
there s̓ a slight cosmetic difference as the rescaling happens using 1√

ŝt+ϵ
instead of 1√

ŝt+ϵ
. The

former works arguably slightly better in practice, hence the deviation from RMSProp. Typically
we pick ϵ = 10−6 for a good trade-off between numerical stability and fidelity.

11.10. Adam 469

Now we have all the pieces in place to compute updates. This is slightly anticlimactic and we have
a simple update of the form

xt ← xt−1 − g′t. (11.10.4)

Reviewing the design of Adam its inspiration is clear. Momentum and scale are clearly visible in
the state variables. Their rather peculiar definition forces us to debias terms (this could be fixed
by a slightly different initialization and update condition). Second, the combination of both terms
is pretty straightforward, given RMSProp. Last, the explicit learning rate η allows us to control the
step length to address issues of convergence.

11.10.2 Implementation

Implementing Adam from scratch isnʼt very daunting. For convenience we store the timestep
counter t in the hyperparams dictionary. Beyond that all is straightforward.

%matplotlib inline
import d2l
from mxnet import np, npx
npx.set_np()

def init_adam_states(feature_dim):
v_w, v_b = np.zeros((feature_dim, 1)), np.zeros(1)
s_w, s_b = np.zeros((feature_dim, 1)), np.zeros(1)
return ((v_w, s_w), (v_b, s_b))

def adam(params, states, hyperparams):
beta1, beta2, eps = 0.9, 0.999, 1e-6
for p, (v, s) in zip(params, states):

v[:] = beta1 * v + (1 - beta1) * p.grad
s[:] = beta2 * s + (1 - beta2) * np.square(p.grad)
v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
p[:] -= hyperparams['lr'] * v_bias_corr / (np.sqrt(s_bias_corr) + eps)

hyperparams['t'] += 1

We are ready to use Adam to train the model. We use a learning rate of η = 0.01.

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(adam, init_adam_states(feature_dim),

{'lr': 0.01, 't': 1}, data_iter, feature_dim);

loss: 0.244, 0.091 sec/epoch

470 Chapter 11. Optimization Algorithms

A more concise implementation is straightforward since adam is one of the algorithms provided
as part of the Gluon trainer optimization library. Hence we only need to pass configuration pa-
rameters for an implementation in Gluon.

d2l.train_gluon_ch11('adam', {'learning_rate': 0.01}, data_iter)

loss: 0.244, 0.039 sec/epoch

11.10.3 Yogi

One of the problems of Adam is that it can fail to converge even in convex settings when the second
moment estimate in st blows up. As a fix (Zaheer et al., 2018) proposed a refined update (and
initialization) for st. To understand what s̓ going on, let s̓ rewrite the Adam update as follows:

st ← st−1 + (1− β2)
(
g2t − st−1

)
. (11.10.5)

Whenever g2t has high variance or updates are sparse, st might forget past values too quickly. A
possible fix for this is to replace g2t − st−1 by g2t ⊙ sgn(g2t − st−1). Now the magnitude of the update
no longer depends on the amount of deviation. This yields the Yogi updates

st ← st−1 + (1− β2)g2t ⊙ sgn(g2t − st−1). (11.10.6)

11.10. Adam 471

The authors furthermore advise to initialize the momentum on a larger initial batch rather than
just initial pointwise estimate. We omit the details since they are not material to the discussion
and since even without this convergence remains pretty good.

def yogi(params, states, hyperparams):
beta1, beta2, eps = 0.9, 0.999, 1e-3
for p, (v, s) in zip(params, states):

v[:] = beta1 * v + (1 - beta1) * p.grad
s[:] = s + (1 - beta2) * np.sign(

np.square(p.grad) - s) * np.square(p.grad)
v_bias_corr = v / (1 - beta1 ** hyperparams['t'])
s_bias_corr = s / (1 - beta2 ** hyperparams['t'])
p[:] -= hyperparams['lr'] * v_bias_corr / (np.sqrt(s_bias_corr) + eps)

hyperparams['t'] += 1

data_iter, feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(yogi, init_adam_states(feature_dim),

{'lr': 0.01, 't': 1}, data_iter, feature_dim);

loss: 0.244, 0.092 sec/epoch

Summary

• Adam combines features of many optimization algorithms into a fairly robust update rule.

• Created on the basis of RMSProp, Adam also uses EWMA on the minibatch stochastic gradi-
ent

• Adam uses bias correction to adjust for a slow startup when estimating momentum and a
second moment.

• For gradients with significant variance we may encounter issues with convergence. They
can be amended by using larger minibatches or by switching to an improved estimate for st.
Yogi offers such an alternative.

472 Chapter 11. Optimization Algorithms

Exercises

1. Adjust the learning rate and observe and analyze the experimental results.

2. Can you rewrite momentum and second moment updates such that it doesnʼt require bias
correction?

3. Why do you need to reduce the learning rate η as we converge?

4. Try to construct a case for which Adam diverges and Yogi converges?

11.11 Learning Rate Scheduling

So far we primarily focused on optimization algorithms for how to update the weight vectors rather
than on the rate at which theyʼre being updated. Nonetheless, adjusting the learning rate is often
just as important as the actual algorithm. There are a number of aspects to consider:

• Most obviously the magnitude of the learning rate matters. If it s̓ too large, optimization di-
verges, if it s̓ too small, it takes too long to train or we end up with a suboptimal result. We
saw previously that the condition number of the problem matters (see e.g., Section 11.6 for
details). Intuitively it s̓ the ratio of the amount of change in the least sensitive direction vs. the
most sensitive one.

• Secondly, the rate of decay is just as important. If the learning rate remains large we may
simply end up bouncing around the minimum and thus not reach optimality. Section 11.5
discussed this in some detail and we analyzed performance guarantees in Section 11.4. In
short, we want the rate to decay, but probably more slowly than O(t−

1
2) which would be a

good choice for convex problems.

• Another aspect that is equally important is initialization. This pertains both to how the pa-
rameters are set initially (review Section 4.8 for details) and also how they evolve initially.
This goes under the moniker of warmup, i.e., how rapidly we start moving towards the so-
lution initially. Large steps in the beginning might not be beneficial, in particular since the
initial set of parameters is random. The initial update directions might be quite meaning-
less, too.

• Lastly, there are a number of optimization variants that perform cyclical learning rate ad-
justment. This is beyond the scope of the current chapter. We recommend the reader to
review details in (Izmailov et al., 2018), e.g., how to obtain better solutions by averaging
over an entire path of parameters.

Given the fact that there s̓ a lot of detail needed to manage learning rates, most deep learning
frameworks have tools to deal with this automatically. In the current chapter we will review the
effects that different schedules have on accuracy and also show how this can be managed effi-
ciently via a learning rate scheduler.

11.11. Learning Rate Scheduling 473

11.11.1 Toy Problem

We begin with a toy problem that is cheap enough to compute easily, yet sufficiently nontrivial
to illustrate some of the key aspects. For that we pick a slightly modernized version of LeNet
(relu instead of sigmoid activation, MaxPooling rather than AveragePooling), as applied to Fashion
MNIST. Moreover, we hybridize the network for performance. Since most of the code is standard
we just introduce the basics without further detailed discussion. See Chapter 6 for a refresher as
needed.

%matplotlib inline
import d2l
from mxnet import autograd, gluon, init, lr_scheduler, np, npx
from mxnet.gluon import nn
npx.set_np()

net = nn.HybridSequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, padding=2, activation='relu'),

nn.MaxPool2D(pool_size=2, strides=2),
nn.Conv2D(channels=16, kernel_size=5, activation='relu'),
nn.MaxPool2D(pool_size=2, strides=2),
nn.Dense(120, activation='relu'),
nn.Dense(84, activation='relu'),
nn.Dense(10))

net.hybridize()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
ctx = d2l.try_gpu()

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

The code is almost identical to "d2l.train_ch5" that defined in the lenet
section of chapter convolutional neural networks
def train(net, train_iter, test_iter, num_epochs, loss, trainer, ctx):

net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],

legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):

metric = d2l.Accumulator(3) # train_loss, train_acc, num_examples
for i, (X, y) in enumerate(train_iter):

X, y = X.as_in_context(ctx), y.as_in_context(ctx)
with autograd.record():

y_hat = net(X)
l = loss(y_hat, y)

l.backward()
trainer.step(X.shape[0])
metric.add(l.sum(), d2l.accuracy(y_hat, y), X.shape[0])
train_loss, train_acc = metric[0]/metric[2], metric[1]/metric[2]
if (i+1) % 50 == 0:

animator.add(epoch + i/len(train_iter),
(train_loss, train_acc, None))

test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch+1, (None, None, test_acc))

print('train loss %.3f, train acc %.3f, test acc %.3f' % (
train_loss, train_acc, test_acc))

Let s̓ have a look at what happens if we invoke this algorithm with default settings, such as a learn-

474 Chapter 11. Optimization Algorithms

ing rate of 0.5 and train for 40 iterations. Note how the training accuracy keeps on increasing while
progress in terms of test accuracy stalls beyond a point. The gap between both curves indicates
overfitting.

lr, num_epochs = 0.5, 40
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train(net, train_iter, test_iter, num_epochs, loss, trainer, ctx)

train loss 2.303, train acc 0.101, test acc 0.100

11.11.2 Schedulers

One way of adjusting the learning rate is to set it explicitly at each step. This is conveniently
achieved by the set_learning_rate method. We could adjust it downward after every epoch (or
even after every minibatch), e.g., in a dynamic manner in response to how optimization is pro-
gressing.

trainer.set_learning_rate(0.1)
print('Learning rate is now %.2f' % trainer.learning_rate)

Learning rate is now 0.10

More generally we want to define a scheduler. When invoked with the number of updates it returns
the appropriate value of the learning rate. Let s̓ define a simple one that sets the learning rate to
η = η0(t+ 1)−

1
2 .

class SquareRootScheduler(object):
def __init__(self, lr=0.1):

self.lr = lr

def __call__(self, num_update):
return self.lr * pow(num_update + 1.0, -0.5)

Let s̓ plot its behavior over a range of values.

11.11. Learning Rate Scheduling 475

scheduler = SquareRootScheduler(lr=1.0)
d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

Now let s̓ see how this plays out for training on FashionMNIST. We simply provide the scheduler
as an additional argument to the training algorithm.

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, ctx)

train loss 0.271, train acc 0.902, test acc 0.893

This worked quite a bit better than previously. Two things stand out: the curve was rather more
smooth than previously. Secondly, there was less overfitting. Unfortunately it is not a well-
resolved question as to why certain strategies lead to less overfitting in theory. There is some
argument that a smaller stepsize will lead to parameters that are closer to zero and thus simpler.
However, this doesnʼt explain the phenomenon entirely since we donʼt really stop early but simply
reduce the learning rate gently.

476 Chapter 11. Optimization Algorithms

11.11.3 Policies

While we cannot possibly cover the entire variety of learning rate schedulers, we attempt to give
a brief overview of popular policies below. Common choices are polynomial decay and piecewise
constant schedules. Beyond that, cosine learning rate schedules have been found to work well
empirically on some problems. Lastly, on some problems it is beneficial to warm up the optimizer
prior to using large learning rates.

Factor Scheduler

One alternative to a polynomial decay would be a multiplicative one, that is ηt+1 ← ηt · α for
α ∈ (0, 1). To prevent the learning rate from decaying beyond a reasonable lower bound the
update equation is often modified to ηt+1 ← max(ηmin, ηt · α).

class FactorScheduler(object):
def __init__(self, factor=1, stop_factor_lr=1e-7, base_lr=0.1):

self.factor = factor
self.stop_factor_lr = stop_factor_lr
self.base_lr = base_lr

def __call__(self, num_update):
self.base_lr = max(self.stop_factor_lr, self.base_lr * self.factor)
return self.base_lr

scheduler = FactorScheduler(factor=0.9, stop_factor_lr=1e-2, base_lr=2.0)
d2l.plot(np.arange(50), [scheduler(t) for t in range(50)])

This can also be accomplished by a built-in scheduler in MXNet via the lr_scheduler.
FactorScheduler object. It takes a few more parameters, such as warmup period, warmup mode
(linear or constant), the maximum number of desired updates, etc.; Going forward we will use
the built-in schedulers as appropriate and only explain their functionality here. As illustrated, it
is fairly straightforward to build your own scheduler if needed.

11.11. Learning Rate Scheduling 477

Multi Factor Scheduler

A common strategy for training deep networks is to keep the learning rate piecewise constant and
to decrease it by a given amount every so often. That is, given a set of times when to decrease the
rate, such as s = {5, 10, 20} decrease ηt+1 ← ηt · α whenever t ∈ s. Assuming that the values are
halved at each step we can implement this as follows.

scheduler = lr_scheduler.MultiFactorScheduler(step=[15, 30], factor=0.5,
base_lr=0.5)

d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

The intuition behind this piecewise constant learning rate schedule is that one lets optimization
proceed until a stationary point has been reached in terms of the distribution of weight vectors.
Then (and only then) do we decrease the rate such as to obtain a higher quality proxy to a good
local minimum. The example below shows how this can produce ever slightly better solutions.

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, ctx)

train loss 0.149, train acc 0.945, test acc 0.892

478 Chapter 11. Optimization Algorithms

Cosine Scheduler

A rather perplexing heuristic was proposed by (Loshchilov & Hutter, 2016). It relies on the obser-
vation that we might not want to decrease the learning rate too drastically in the beginning and
moreover, that we might want to “refine” the solution in the end using a very small learning rate.
This results in a cosine-like schedule with the following functional form for learning rates in the
range t ∈ [0, T].

ηt = ηT +
η0 − ηT

2
(1 + cos(πt/T)) (11.11.1)

Here η0 is the initial learning rate, ηT is the target rate at time T . Furthermore, for t > T we simply
pin the value to ηT without increasing it again. In the following example, we set the max update
step T = 40.

scheduler = lr_scheduler.CosineScheduler(max_update=40, base_lr=0.5,
final_lr=0.01)

d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

In the context of computer vision this schedule can lead to improved results. Note, though, that
such improvements are not guaranteed (as can be seen below).

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, ctx)

train loss 0.342, train acc 0.876, test acc 0.867

11.11. Learning Rate Scheduling 479

Warmup

In some cases initializing the parameters is not sufficient to guarantee a good solution. This par-
ticularly a problem for some advanced network designs that may lead to unstable optimization
problems. We could address this by choosing a sufficiently small learning rate to prevent diver-
gence in the beginning. Unfortunately this means that progress is slow. Conversely, a large learn-
ing rate initially leads to divergence.

A rather simple fix for this dilemma is to use a warmup period during which the learning rate
increases to its initial maximum and to cool down the rate until the end of the optimization process.
For simplicity one typically uses a linear increase for this purpose. This leads to a schedule of the
form indicated below.

scheduler = lr_scheduler.CosineScheduler(40, warmup_steps=5, base_lr=0.5,
final_lr=0.01)

d2l.plot(np.arange(num_epochs), [scheduler(t) for t in range(num_epochs)])

Note that the network converges better initially (in particular observe the performance during the
first 5 epochs).

480 Chapter 11. Optimization Algorithms

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'lr_scheduler': scheduler})

train(net, train_iter, test_iter, num_epochs, loss, trainer, ctx)

train loss 0.380, train acc 0.862, test acc 0.843

Warmup can be applied to any scheduler (not just cosine). For a more detailed discussion of learn-
ing rate schedules and many more experiments see also (Gotmare et al., 2018). In particular they
find that a warmup phase limits the amount of divergence of parameters in very deep networks.
This makes intuitively sense since we would expect significant divergence due to random initial-
ization in those parts of the network that take the most time to make progress in the beginning.

Summary

• Decreasing the learning rate during training can lead to improved accuracy and (most per-
plexingly) reduced overfitting of the model.

• A piecewise decrease of the learning rate whenever progress has plateaued is effective in
practice. Essentially this ensures that we converge efficiently to a suitable solution and only
then reduce the inherent variance of the parameters by reducing the learning rate.

• Cosine schedulers are popular for some computer vision problems. See e.g., GluonCV164 for
details of such a scheduler.

• A warmup period before optimization can prevent divergence.

• Optimization serves multiple purposes in deep learning. Besides minimizing the training
objective, different choices of optimization algorithms and learning rate scheduling can lead
to rather different amounts of generalization and overfitting on the test set (for the same
amount of training error).

164 http://gluon-cv.mxnet.io

11.11. Learning Rate Scheduling 481

http://gluon-cv.mxnet.io

Exercises

1. Experiment with the optimization behavior for a given fixed learning rate. What is the best
model you can obtain this way?

2. How does convergence change if you change the exponent of the decrease in the learning
rate? Use PolyScheduler for your convenience in the experiments.

3. Apply the cosine scheduler to large computer vision problems, e.g., training ImageNet. How
does it affect performance relative to other schedulers?

4. How long should warmup last?

5. Can you connect optimization and sampling? Start by using results from (Welling & Teh,
2011) on Stochastic Gradient Langevin Dynamics.

482 Chapter 11. Optimization Algorithms

12 | Computational Performance

In deep learning, datasets are usually large and model computation is complex. Therefore, we
are always very concerned about computing performance. This chapter will focus on the impor-
tant factors that affect computing performance: imperative programming, symbolic program-
ming, asynchronous programing, automatic parallel computation, and multi-GPU computation.
By studying this chapter, you should be able to further improve the computing performance of
the models that have been implemented in the previous chapters, for example, by reducing the
model training time without affecting the accuracy of the model.

12.1 Compilers and Interpreters

So far, this book has focused on imperative programming, which makes use of statements such as
print, + or if to change a programs̓ state. Consider the following example of a simple imperative
program.

def add(a, b):
return a + b

def fancy_func(a, b, c, d):
e = add(a, b)
f = add(c, d)
g = add(e, f)
return g

print(fancy_func(1, 2, 3, 4))

10

Python is an interpreted language. When evaluating fancy_func it performs the operations mak-
ing up the functions̓ body in sequence. That is, it will evaluate e = add(a, b) and it will store the
results as variable e, thereby changing the programs̓ state. The next two statements f = add(c,
d) and g = add(e, f) will be excecuted similarly, performing additions and storing the results as
variables. Fig. 12.1.1 illustrates the flow of data.

483

Fig. 12.1.1: Data flow in an imperative program.

Although imperative programming is convenient, it may be inefficient. On one hand, even if the
add function is repeatedly called throughout fancy_func, Python will execute the three function
calls individually. If these are executed, say, on a GPU (or even on multiple GPUs), the overhead
arising from the Python interpreter can become overwhelming. Moreover, it will need to save
the variable values of e and f until all the statements in fancy_func have been executed. This is
because we do not know whether the variables e and f will be used by other parts of the program
after the statements e = add(a, b) and f = add(c, d) have been executed.

12.1.1 Symbolic Programming

Consider the alternative, symbolic programming where computation is usually performed only
once the process has been fully defined. This strategy is used by multiple deep learning frame-
works, including Theano, Keras and TensorFlow (the latter two have since acquired imperative
extensions). It usually involves the following steps:

1. Define the operations to be executed.

2. Compile the operations into an executable program.

3. Provide the required inputs and call the compiled program for execution.

This allows for a significant amount of optimization. First off, we can skip the Python interpreter
in many cases, thus removing a performance bottleneck that can become significant on multiple
fast GPUs paired with a single Python thread on a CPU. Secondly, a compiler might optimize and
rewrite the above code into print((1 + 2) + (3 + 4)) or even print(10). This is possible since a
compiler gets to see the full code before turning it into machine instructions. For instance, it can
release memory (or never allocate it) whenever a variable is no longer needed. Or it can transform
the code entirely into an equivalent piece. To get a better idea consider the following simulation
of imperative programming (it s̓ Python after all) below.

def add_():
return '''

def add(a, b):
return a + b

'''

def fancy_func_():
return '''

def fancy_func(a, b, c, d):
e = add(a, b)
f = add(c, d)

(continues on next page)

484 Chapter 12. Computational Performance

(continued from previous page)

g = add(e, f)
return g

'''

def evoke_():
return add_() + fancy_func_() + 'print(fancy_func(1, 2, 3, 4))'

prog = evoke_()
print(prog)
y = compile(prog, '', 'exec')
exec(y)

def add(a, b):
return a + b

def fancy_func(a, b, c, d):
e = add(a, b)
f = add(c, d)
g = add(e, f)
return g

print(fancy_func(1, 2, 3, 4))
10

The differences between imperative (interpreted) programming and symbolic programming are
as follows:

• Imperative programming is easier. When imperative programming is used in Python, the
majority of the code is straightforward and easy to write. It is also easier to debug imperative
programming code. This is because it is easier to obtain and print all relevant intermediate
variable values, or use Pythons̓ built-in debugging tools.

• Symbolic programming is more efficient and easier to port. It makes it easier to optimize
the code during compilation, while also having the ability to port the program into a format
independent of Python. This allows the program to be run in a non-Python environment,
thus avoiding any potential performance issues related to the Python interpreter.

12.1.2 Hybrid Programming

Historically most deep learning frameworks choose between an imperative or a symbolic ap-
proach. For example, Theano, TensorFlow (inspired by the latter), Keras and CNTK formulate
models symbolically. Conversely Chainer and PyTorch take an imperative approach. An imper-
ative mode was added TensorFlow 2.0 (via Eiger) and Keras in later revisions. When designing
Gluon, developers considered whether it would be possible to combine the benefits of both pro-
gramming models. This led to a hybrid model that lets users develop and debug using pure imper-
ative programming, while having the ability to convert most programs into symbolic programs to
be run when product-level computing performance and deployment are required.

In practice this means that we build models using either the HybridBlock or the HybridSequential
and HybridConcurrent classes. By default, they are executed in the same way Block or Sequential
and Concurrent classes are executed in imperative programming. HybridSequential is a subclass
of HybridBlock (just like Sequential subclasses Block). When the hybridize function is called,

12.1. Compilers and Interpreters 485

Gluon compiles the model into the form used in symbolic programming. This allows one to op-
timize the compute-intensive components without sacrifices in the way a model is implemented.
We will illustrate the benefits below, focusing on sequential models and blocks only (the concur-
rent composition works analogously).

12.1.3 HybridSequential

The easiest way to get a feel for how hybridization works is to consider deep networks with mul-
tiple layers. Conventionally the Python interpreter will need to execute the code for all layers to
generate an instruction that can then be forwarded to a CPU or a GPU. For a single (fast) com-
pute device this doesnʼt cause any major issues. On the other hand, if we use an advanced 8-GPU
server such as an AWS P3dn.24xlarge instance Python will struggle to keep all GPUs busy. The
single-threaded Python interpreter becomes the bottleneck here. Let s̓ see how we can address
this for significant parts of the code by replacing Sequential by HybridSequential. We begin by
defining a simple MLP.

import d2l
from mxnet import np, npx
from mxnet.gluon import nn
npx.set_np()

factory for networks
def get_net():

net = nn.HybridSequential()
net.add(nn.Dense(256, activation='relu'),

nn.Dense(128, activation='relu'),
nn.Dense(2))

net.initialize()
return net

x = np.random.normal(size=(1, 512))
net = get_net()
net(x)

array([[0.16526176, -0.14005631]])

By calling the hybridize function, we are able to compile and optimize the computation in the
MLP. The model s̓ computation result remains unchanged.

net.hybridize()
net(x)

array([[0.16526176, -0.14005631]])

This seems almost too good to be true: simply designate a block to be HybridSequential, write
the same code as before and invoke hybridize. Once this happens the network is optimized (we
will benchmark the performance below). Unfortunately this doesnʼt work magically for every
layer. That said, the blocks provided by Gluon are by default subclasses of HybridBlock and thus
hybridizable. A layer will not be optimized if it inherits from the Block instead.

486 Chapter 12. Computational Performance

Acceleration by Hybridization

To demonstrate the performance improvement gained by compilation we compare the time
needed to evaluate net(x) before and after hybridization. Let s̓ define a function to measure this
time first. It will come handy throughout the chapter as we set out to measure (and improve)
performance.

Saved in the d2l package for later use
class benchmark:

def __init__(self, description = 'Done in %.4f sec'):
self.description = description

def __enter__(self):
self.timer = d2l.Timer()
return self

def __exit__(self, *args):
print(self.description % self.timer.stop())

Now we can invoke the network twice, once with and once without hybridization.

net = get_net()
with benchmark('Without hybridization: %.4f sec'):

for i in range(1000): net(x)
npx.waitall()

net.hybridize()
with benchmark('With hybridization: %.4f sec'):

for i in range(1000): net(x)
npx.waitall()

Without hybridization: 0.5402 sec
With hybridization: 0.2650 sec

As is observed in the above results, after a HybridSequential instance calls the hybridize function,
computing performance is improved through the use of symbolic programming.

Serialization

One of the benefits of compiling the models is that we can serialize (save) the model and its pa-
rameters to disk. This allows us to store a model in a manner that is independent of the front-end
language of choice. This allows us to deploy trained models to other devices and easily use other
front-end programming languages. At the same time the code is often faster than what can be
achieved in imperative programming. Let s̓ see the export method in action.

net.export('my_mlp')
!ls -lh my_mlp*

-rw-r--r-- 1 jenkins jenkins 643K Dec 17 22:22 my_mlp-0000.params
-rw-r--r-- 1 jenkins jenkins 3.0K Dec 17 22:22 my_mlp-symbol.json

12.1. Compilers and Interpreters 487

The model is decomposed into a (large binary) parameter file and a JSON description of the pro-
gram required to execute to compute the model. The files can be read by other front-end lan-
guages supported by Python or MXNet, such as C++, R, Scala, and Perl. Let s̓ have a look at the
model description.

!head my_mlp-symbol.json

{
"nodes": [

{
"op": "null",
"name": "data",
"inputs": []

},
{
"op": "null",
"name": "dense3_weight",

Things are slightly more tricky when it comes to models that resemble code more closely. Basically
hybridization needs to deal with control flow and Python overhead in a much more immediate
manner. Moreover,

Contrary to the Block instance, which needs to use the forward function, for a HybridBlock in-
stance we need to use the hybrid_forward function.

Earlier, we demonstrated that, after calling the hybridize method, the model is able to achieve su-
perior computing performance and portability. Note, though that hybridization can affect model
flexibility, in particular in terms of control flow. We will illustrate how to design more general
models and also how compilation will remove spurious Python elements.

class HybridNet(nn.HybridBlock):
def __init__(self, **kwargs):

super(HybridNet, self).__init__(**kwargs)
self.hidden = nn.Dense(4)
self.output = nn.Dense(2)

def hybrid_forward(self, F, x):
print('module F: ', F)
print('value x: ', x)
x = F.npx.relu(self.hidden(x))
print('result : ', x)
return self.output(x)

The code above implements a simple network with 4 hidden units and 2 outputs. hybrid_forward
takes an additional argument - the module F. This is needed since, depending on whether the code
has been hybridized or not, it will use a slightly different library (ndarrayor symbol) for processing.
Both classes perform very similar functions and MXNet automatically determines the argument.
To understand what is going on we print the arguments as part of the function invocation.

net = HybridNet()
net.initialize()
x = np.random.normal(size=(1, 3))
net(x)

488 Chapter 12. Computational Performance

module F: <module 'mxnet.ndarray' from '/var/lib/jenkins/miniconda3/envs/d2l-en-1/lib/
↪→python3.7/site-packages/mxnet/ndarray/__init__.py'>
value x: [[-0.6338663 0.40156594 0.46456942]]
result : [[0.01641375 0. 0. 0.]]

array([[0.00097611, 0.00019453]])

Repeating the forward computation will lead to the same output (we omit details). Now let s̓ see
what happens if we invoke the hybridize method.

net.hybridize()
net(x)

module F: <module 'mxnet.symbol' from '/var/lib/jenkins/miniconda3/envs/d2l-en-1/lib/
↪→python3.7/site-packages/mxnet/symbol/__init__.py'>
value x: <_Symbol data>
result : <_Symbol hybridnet0_relu0>

array([[0.00097611, 0.00019453]])

Instead of using ndarray we now use the symbol module for F. Moreover, even though the input is
of ndarray type, the data flowing through the network is now converted to symbol type as part of
the compilation process. Repeating the function call leads to a surprising outcome:

net(x)

array([[0.00097611, 0.00019453]])

This is quite different from what we saw previously. All print statements, as defined in hy-
brid_forward are omitted. Indeed, after hybridization the execution of net(x) does not involve
the Python interpreter any longer. This means that any spurious Python code is omitted (such
as print statements) in favor of a much more streamlined execution and better performance. In-
stead, MXNet directly calls the C++ backend. Also note that some functions are not supported in
the symbol module (like asnumpy) and operations in-place like a += b and a[:] = a + b must
be rewritten as a = a + b. Nonetheless, compilation of models is worth the effort whenever
speed matters. The benefit can range from small percentage points to more than twice the speed,
depending on the complexity of the model, the speed of the CPU and the speed and number of
GPUs.

Summary

• Imperative programming makes it easy to design new models since it is possible to write
code with control flow and the ability to use a large amount of the Python software ecosys-
tem.

• Symbolic programming requires that we specify the program and compile it before execut-
ing it. The benefit is improved performance.

• MXNet is able to combine the advantages of both approaches as needed.

12.1. Compilers and Interpreters 489

• Models constructed by the HybridSequential and HybridBlock classes are able to convert
imperative programs into symbolic programs by calling the hybridize method.

Exercises

1. Design a network using the HybridConcurrent class. Alternatively look at Networks with Par-
allel Concatenations (GoogLeNet) (page 273) for a network to compose.

2. Add x.asnumpy() to the first line of the hybrid_forward function of the HybridNet class in
this section. Execute the code and observe the errors you encounter. Why do they happen?

3. What happens if we add control flow, i.e. the Python statements if and for in the hy-
brid_forward function?

4. Review the models that interest you in the previous chapters and use the HybridBlock class
or HybridSequential class to implement them.

12.2 Asynchronous Computation

Today s̓ computers are highly parallel systems, consisting of multiple CPU cores (often multiple
threads per core), multiple processing elements per GPU and often multiple GPUs per device. In
short, we can process many different things at the same time, often on different devices. Unfor-
tunately Python is not a great way of writing parallel and asynchronous code, at least not with
some extra help. After all, Python is single-threaded and this is unlikely to change in the future.
Deep learning frameworks such as MXNet and TensorFlow utilize an asynchronous programming
model to improve performance (PyTorch uses Pythons̓ own scheduler leading to a different per-
formance trade-off). Hence, understanding how asynchronous programming works helps us to
develop more efficient programs, by proactively reducing computational requirements and mu-
tual dependencies. This allows us to reduce memory overhead and increase processor utilization.
We begin by importing the necessary libraries.

import d2l, numpy, os, subprocess
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
npx.set_np()

490 Chapter 12. Computational Performance

12.2.1 Asynchrony via Backend

For a warmup consider the following toy problem - we want to generate a random matrix and
multiply it. Let s̓ do that both in NumPy and in MXNet NP to see the difference.

with d2l.benchmark('numpy : %.4f sec'):
for _ in range(10):

a = numpy.random.normal(size=(1000, 1000))
b = numpy.dot(a, a)

with d2l.benchmark('mxnet.np: %.4f sec'):
for _ in range(10):

a = np.random.normal(size=(1000, 1000))
b = np.dot(a, a)

numpy : 0.5854 sec
mxnet.np: 0.0031 sec

This is orders of magnitude faster. At least it seems to be so. Since both are executed on the same
processor something else must be going on. Forcing MXNet to finish all computation prior to
returning shows what happened previously: computation is being executed by the backend while
the frontend returns control to Python.

with d2l.benchmark():
for _ in range(10):

a = np.random.normal(size=(1000, 1000))
b = np.dot(a, a)

npx.waitall()

Done in 0.6616 sec

Broadly speaking, MXNet has a frontend for direct interaction with the users, e.g., via Python, as
well as a backend used by the system to perform the computation. The backend possesses its own
threads that continuously collect and execute queued tasks. Note that for this to work the backend
must be able to keep track of the dependencies between various steps in the computational graph.
Hence it is ony possible to parallelize operations that do not depend on each other.

As shown in Fig. 12.2.1, users can write MXNet programs in various frontend languages, such as
Python, R, Scala and C++. Regardless of the front-end programming language used, the execution
of MXNet programs occurs primarily in the back-end of C++ implementations. Operations issued
by the frontend language are passed on to the backend for execution. The backend manages its
own threads that continuously collect and execute queued tasks. Note that for this to work the
backend must be able to keep track of the dependencies between various steps in the computa-
tional graph. That is, it is not possible to parallelize operations that depend on each other.

12.2. Asynchronous Computation 491

Fig. 12.2.1: Programming Frontends.

Let s̓ look at another toy example to understand the dependency graph a bit better.

x = np.ones((1, 2))
y = np.ones((1, 2))
z = x * y + 2
z

array([[3., 3.]])

Fig. 12.2.2: Dependencies.

The code snippet above is also illustrated in Fig. 12.2.2. Whenever the Python frontend thread
executes one of the first three statements, it simply returns the task to the backend queue. When
the last statement s̓ results need to be printed, the Python frontend thread will wait for the C++
backend thread to finish computing result of the variable z. One benefit of this design is that the
Python frontend thread does not need to perform actual computations. Thus, there is little impact
on the programs̓ overall performance, regardless of Pythons̓ performance. Fig. 12.2.3 illustrates
how frontend and backend interact.

492 Chapter 12. Computational Performance

Fig. 12.2.3: Frontend and Backend.

12.2.2 Barriers and Blockers

There are a number of operations that will force Python to wait for completion: * Most obviously
npx.waitall() waits until all computation has completed, regardless of when the compute in-
structions were issued. In practice it is a bad idea to use this operator unless absolutely necessary
since it can lead to poor performance. * If we just want to wait until a specific variable is available
we can call z.wait_to_read(). In this case MXNet blocks return to Python until the variable z has
been computed. Other computation may well continue afterwards.

Let s̓ see how this works in practice:

with d2l.benchmark('waitall : %.4f sec'):
b = np.dot(a, a)
npx.waitall()

with d2l.benchmark('wait_to_read: %.4f sec'):
b = np.dot(a, a)
b.wait_to_read()

waitall : 0.0105 sec
wait_to_read: 0.0042 sec

Both operations take approximately the same time to complete. Besides the obvious blocking
operations we recommend that the reader is aware of implicit blockers. Printing a variable clearly
requires the variable to be avaialable and is thus a blocker. Lastly, conversions to NumPy via z.
asnumpy() and conversions to scalars via z.item() are blocking, since NumPy has no notion of
asynchrony. It needs access to the values just like the print function. Copying small amounts of
data frequently from MXNet s̓ scope to NumPy and back can destroy performance of an otherwise
efficient code, since each such operation requires the compute graph to evaluate all intermediate
results needed to get the relevant term before anything else can be done.

with d2l.benchmark('numpy conversion: %.4f sec'):
b = np.dot(a, a)
b.asnumpy()

with d2l.benchmark('scalar conversion: %.4f sec'):
b = np.dot(a, a)
b.sum().item()

12.2. Asynchronous Computation 493

numpy conversion: 0.0064 sec
scalar conversion: 0.0134 sec

12.2.3 Improving Computation

On a heavily multithreaded system (even regular laptops have 4 threads or more and on multi-
socket servers this number can exceed 256) the overhead of scheduling operations can become
significant. This is why it s̓ highly desirable to have computation and scheduling occur asyn-
chronously and in parallel. To illustrate the benefit of doing this let s̓ see what happens if we
increment a variable by 1 multiple times, both in sequence or asynchronously. We simulate syn-
chronous execution by inserting a wait_to_read() barrier in between each addition.

with d2l.benchmark('Synchronous : %.4f sec'):
for _ in range(1000):

y = x + 1
y.wait_to_read()

with d2l.benchmark('Asynchronous: %.4f sec'):
for _ in range(1000):

y = x + 1
y.wait_to_read()

Synchronous : 0.0553 sec
Asynchronous: 0.0537 sec

A slightly simplified interaction between the Python front-end thread and the C++ back-end thread
can be summarized as follows:

1. The front-end orders the back-end to insert the calculation task y = x + 1 into the queue.

2. The back-end then receives the computation tasks from the queue and performs the actual
computations.

3. The back-end then returns the computation results to the front-end.

Assume that the durations of these three stages are t1, t2 and t3, respectively. If we do not use
asynchronous programming, the total time taken to perform 1000 computations is approximately
1000(t1 + t2 + t3). If asynchronous programming is used, the total time taken to perform 1000
computations can be reduced to t1 + 1000t2 + t3 (assuming 1000t2 > 999t1), since the front-end
does not have to wait for the back-end to return computation results for each loop.

12.2.4 Improving Memory Footprint

Imagine a situation where we keep on inserting operations into the backend by executing Python
code on the frontend. For instance, the frontend might insert a large number of minibatch tasks
within a very short time. After all, if no meaningful computation happens in Python this can
be done quite quickly. If each of these tasks can be launched quickly at the same time this may
cause a spike in memory usage. Given a finite amount of memory available on GPUs (and even
on CPUs) this can lead to resource contention or even program crashes. Some readers might have
noticed that previous training routines made use of synchronization methods such as item or even
asnumpy.

494 Chapter 12. Computational Performance

We recommend to use these operations carefully, e.g., for each minibatch, such as to balance
computational efficiency and memory footprint. To illustrate what happens let s̓ implement a
simple training loop for a deep network and measure its memory consumption and timing. Below
is the mock data generator and deep network.

def data_iter():
timer = d2l.Timer()
num_batches, batch_size = 150, 1024
for i in range(num_batches):

X = np.random.normal(size=(batch_size, 512))
y = np.ones((batch_size,))
yield X, y
if (i + 1) % 50 == 0:

print('batch %d, time %.4f sec' % (i + 1, timer.stop()))

net = nn.Sequential()
net.add(nn.Dense(2048, activation='relu'),

nn.Dense(512, activation='relu'), nn.Dense(1))
net.initialize()
trainer = gluon.Trainer(net.collect_params(), 'sgd')
loss = gluon.loss.L2Loss()

Next we need a tool to measure the memory footprint of our code. We use a relatively primitive
ps call to accomplish this (note that the latter only works on Linux and MacOS). For a much more
detailed analysis of what is going on here use e.g., Nvidia s̓ Nsight167 or Intel s̓ vTune168.

def get_mem():
res = subprocess.check_output(['ps', 'u', '-p', str(os.getpid())])
return int(str(res).split()[15]) / 1e3

Before we can begin testing we need to initialize the parameters of the network and process one
batch. Otherwise it would be tricky to see what the additional memory consumption is. See Sec-
tion 5.3 for further details related to initialization.

for X, y in data_iter():
break

loss(y, net(X)).wait_to_read()

To ensure that we donʼt overflow the task buffer on the backend we insert a wait_to_read call for
the loss function at the end of each loop. This forces the forward pass to complete before a new
forward pass is commenced. Note that a (possibly more elegant) alternative would have been to
track the loss in a scalar variable and to force a barrier via the item call.

mem = get_mem()
with d2l.benchmark('Time per epoch: %.4f sec'):

for X, y in data_iter():
with autograd.record():

l = loss(y, net(X))
l.backward()
trainer.step(X.shape[0])
l.wait_to_read() # barrier before new batch

(continues on next page)

167 https://developer.nvidia.com/nsight-compute-2019_5
168 https://software.intel.com/en-us/vtune

12.2. Asynchronous Computation 495

https://developer.nvidia.com/nsight-compute-2019_5
https://software.intel.com/en-us/vtune

(continued from previous page)

npx.waitall()
print('increased memory: %f MB' % (get_mem() - mem))

batch 50, time 2.3893 sec
batch 100, time 4.7343 sec
batch 150, time 7.2224 sec
Time per epoch: 7.2520 sec
increased memory: 7.216000 MB

As we see, the timing of the minibatches lines up quite nicely with the overall runtime of the opti-
mization code. Moreover, memory footprint only increases slightly. Now let s̓ see what happens
if we drop the barrier at the end of each minibatch.

mem = get_mem()
with d2l.benchmark('Time per epoch: %.4f sec'):

for X, y in data_iter():
with autograd.record():

l = loss(y, net(X))
l.backward()
trainer.step(X.shape[0])

npx.waitall()
print('increased memory: %f MB' % (get_mem() - mem))

batch 50, time 0.1010 sec
batch 100, time 0.1986 sec
batch 150, time 0.2984 sec
Time per epoch: 7.8668 sec
increased memory: 0.020000 MB

Even though the time to issue instructions for the backend is an order of magnitude smaller, we
still need to perform computation. Consequently a large amount of intermediate results cannot
be released and may pile up in memory. While this didnʼt cause any issues in the toy example
above, it might well have resulted in out of memory situations when left unchecked in real world
scenarios.

Summary

• MXNet decouples the Python frontend from an execution backend. This allows for fast asyn-
chronous insertion of commands into the backend and associated parallelism.

• Asynchrony leads to a rather responsive frontend. However, use caution not to overfill the
task queue since it may lead to excessive memory consumption.

• It is recommended to synchronize for each minibatch to keep frontend and backend approx-
imately synchronized.

• Be aware of the fact that conversions from MXNet s̓ memory management to Python will
force the backend to wait until the specific variable is ready. print, asnumpy and item all have
this effect. This can be desirable but a carless use of synchronization can ruin performance.

• Chip vendors offer sophisticated performance analysis tools to obtain a much more fine-
grained insight into the efficiency of deep learning.

496 Chapter 12. Computational Performance

Exercises

1. We mentioned above that using asynchronous computation can reduce the total amount of
time needed to perform 1000 computations to t1 + 1000t2 + t3. Why do we have to assume
1000t2 > 999t1 here?

2. How would you need to modify the training loop if you wanted to have an overlap of one
minibatch each? I.e., if you wanted to ensure that batch bt finishes before batch bt+2 com-
mences?

3. What might happen if we want to execute code on CPUs and GPUs simultaneously? Should
you still insist on synchronizing after every minibatch has been issued?

4. Measure the difference between waitall and wait_to_read. Hint - perform a number of
instructions and synchronize for an intermediate result.

12.3 Automatic Parallelism

MXNet automatically constructs computational graphs at the backend. Using a computational
graph, the system is aware of all the dependencies, and can selectively execute multiple non-
interdependent tasks in parallel to improve speed. For instance, Fig. 12.2.2 in Section 12.2 ini-
tializes two variables independently. Consequently the system can choose to execute them in
parallel.

Typically, a single operator will use all the computational resources on all CPUs or on a single
GPU. For example, the dot operator will use all cores (and threads) on all CPUs, even if there
are multiple CPU processors on a single machine. The same applies to a single GPU. Hence paral-
lelization isnʼt quite so useful single-device computers. With multiple devices things matter more.
While parallelization is typically most relevant between multiple GPUs, adding the local CPU will
increase performance slightly. See e.g., (Hadjis et al., 2016) for a paper that focuses on training
computer vision models combining a GPU and a CPU. With the convenience of an automatically
parallelizing framework we can accomplish the same goal in a few lines of Python code. More
broadly, our discussion of automatic parallel computation focuses on parallel computation using
both CPUs and GPUs, as well as the parallelization of computation and communication. We begin
by importing the required packages and modules. Note that we need at least one GPU to run the
experiments in this section.

import d2l
from mxnet import np, npx
npx.set_np()

12.3. Automatic Parallelism 497

12.3.1 Parallel Computation on CPUs and GPUs

Let s̓ start by defining a reference workload to test - the run function below performs 10 matrix-
matrix multiplications on the device of our choosing using data allocated into two variables, x_cpu
and x_gpu.

def run(x):
return [x.dot(x) for _ in range(10)]

x_cpu = np.random.uniform(size=(2000, 2000))
x_gpu = np.random.uniform(size=(6000, 6000), ctx=d2l.try_gpu())

Now we apply the function to the data. To ensure that caching doesnʼt play a role in the results we
warm up the devices by performing a single pass on each of them prior to measuring.

run(x_cpu) # Warm-up both devices
run(x_gpu)
npx.waitall()

with d2l.benchmark('CPU time: %.4f sec'):
run(x_cpu)
npx.waitall()

with d2l.benchmark('GPU time: %.4f sec'):
run(x_gpu)
npx.waitall()

CPU time: 0.3072 sec
GPU time: 0.3030 sec

If we remove the waitall() between both tasks the system is free to parallelize computation on
both devices automatically.

with d2l.benchmark('CPU&GPU : %.4f sec'):
run(x_cpu)
run(x_gpu)
npx.waitall()

CPU&GPU : 0.3074 sec

In the above case the total execution time is less than the sum of its parts, since MXNet automat-
ically schedules computation on both CPU and GPU devices without the need for sophisticated
code on behalf of the user.

498 Chapter 12. Computational Performance

12.3.2 Parallel Computation and Communication

In many cases we need to move data between different devices, say between CPU and GPU, or be-
tween different GPUs. This occurs e.g., when we want to perform distributed optimization where
we need to aggregate the gradients over multiple accelerator cards. Let s̓ simulate this by comput-
ing on the GPU and then copying the results back to the CPU.

def copy_to_cpu(x):
return [y.copyto(npx.cpu()) for y in x]

with d2l.benchmark('Run on GPU: %.4f sec'):
y = run(x_gpu)
npx.waitall()

with d2l.benchmark('Copy to CPU: %.4f sec'):
y_cpu = copy_to_cpu(y)
npx.waitall()

Run on GPU: 0.3125 sec
Copy to CPU: 1.0149 sec

This is somewhat inefficient. Note that we could already start copying parts of y to the CPU while
the remainder of the list is still being computed. This situatio occurs, e.g., when we compute the
(backprop) gradient on a minibatch. The gradients of some of the parameters will be available
earlier than that of others. Hence it works to our advantage to start using PCI-Express bus band-
width while the GPU is still running. Removing waitall between both parts allows us to simulate
this scenario.

with d2l.benchmark('Run on GPU and copy to CPU: %.4f sec'):
y = run(x_gpu)
y_cpu = copy_to_cpu(y)
npx.waitall()

Run on GPU and copy to CPU: 1.0901 sec

The total time required for both operations is (as expected) significantly less than the sum of their
parts. Note that this task is different from parallel computation as it uses a different resource: the
bus between CPU and GPUs. In fact, we could compute on both devices and communicate, all at
the same time. As noted above, there is a dependency between computation and communication:
y[i]must be computed before it can be copied to the CPU. Fortunately, the system can copy y[i-1]
while computing y[i] to reduce the total running time.

We conclude with an illustration of the computational graph and its dependencies for a simple
two-layer MLP when training on a CPU and two GPUs, as depicted in Fig. 12.3.1. It would be quite
painful to schedule the parallel program resulting from this manually. This is where it is advan-
tageous to have a graph based compute backend for optimization.

12.3. Automatic Parallelism 499

Fig. 12.3.1: Two layer MLP on a CPU and 2 GPUs.

Summary

• Modern systems have a variety of devices, such as multiple GPUs and CPUs. They can be
used in parallel, asynchronously.

• Modern systems also have a variety of resources for communication, such as PCI Express,
storage (typically SSD or via network), and network bandwidth. They can be used in parallel
for peak efficiency.

• The backend can improve performance through through automatic parallel computation
and communication.

500 Chapter 12. Computational Performance

Exercises

1. 10 operations were performed in the run function defined in this section. There are no de-
pendencies between them. Design an experiment to see if MXNet will automatically execute
them in parallel.

2. When the workload of an individual operator is sufficiently small, parallelization can help
even on a single CPU or GPU. Design an experiment to verify this.

3. Design an experiment that uses parallel computation on CPU, GPU and communication be-
tween both devices.

4. Use a debugger such as NVIDIA̓s Nsight to verify that your code is efficient.

5. Designing computation tasks that include more complex data dependencies, and run exper-
iments to see if you can obtain the correct results while improving performance.

12.4 Hardware

Building systems with great performance requires a good understanding of the algorithms and
models to capture the statistical aspects of the problem. At the same time it is also indispensable
to have at least a modicum of knowledge of the underlying hardware. The current section is no
substitute for a proper course on hardware and systems design. Instead, it might serve as a starting
point for understanding why some algorithms are more efficient than others and how to achieve
good throughput. Good design can easily make a difference of an order of magnitude and, in turn,
this can make the difference between being able to train a network (e.g., in a week) or not at all (in
3 months, thus missing the deadline). Weʼll start by looking at computers. Then we will zoom in
to look more carefully at CPUs and GPUs. Lastly we zoom out to review how multiple computers
are connected in a server center or in the cloud. This is not a GPU purchase guide. For this review
Section 18.5. An introduction to cloud computing with AWS can be found in Section 18.3.

Impatient readers may be able to get by with Fig. 12.4.1. It is taken from Colin Scott s̓ interactive
post171 which gives a good overview of the progress over the past decade. The original numbers are
due to Jeff Deans̓ Stanford talk from 2010172. The discussion below explains some of the rationale
for these numbers and how they can guide us in designing algorithms. The discussion below is
very high level and cursory. It is clearly no substitute for a proper course but rather just meant to
provide enough information for a statistical modeler to make suitable design decisions. For an
in-depth overview of computer architecture we refer the reader to (Hennessy & Patterson, 2011)
or a recent course on the subject, such as the one by Arste Asanovic173.

171 https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
172 https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
173 http://inst.eecs.berkeley.edu/~cs152/sp19/

12.4. Hardware 501

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://static.googleusercontent.com/media/research.google.com/en//people/jeff/Stanford-DL-Nov-2010.pdf
http://inst.eecs.berkeley.edu/~cs152/sp19/

Fig. 12.4.1: Latency Numbers every Programmer should know.

12.4.1 Computers

Most deep learning researchers have access to a computer with a fair amount of memory, com-
pute, some form of an accelerator such as a GPU, or multiples thereof. It consists of several key
components:

• A processor, also referred to as CPU which is able to execute the programs we give it (in
addition to running an operating system and many other things), typically consisting of 8 or
more cores.

• Memory (RAM) to store and retrieve the results from computation, such as weight vectors,
activations, often training data.

• An Ethernet network connection (sometimes multiple) with speeds ranging from 1Gbit/s to
100Gbit/s (on high end servers more advanced interconnects can be found).

• A high speed expansion bus (PCIe) to connect the system to one or more GPUs. Severs have
up to 8 accelerators, often connected in an advanced topology, desktop systems have 1-2,
depending on the budget of the user and the size of the power supply.

• Durable storage, such as a magnetic harddrive (HDD), solid state (SSD), in many cases con-
nected using the PCIe bus, provides efficient transfer of training data to the system and stor-
age of intermediate checkpoints as needed.

Fig. 12.4.2: Connectivity of components

As Fig. 12.4.2 indicates, most components (network, GPU, storage) are connected to the CPU across
the PCI Express bus. It consists of multiple lanes that are directly attached to the CPU. For instance
AMD s̓ Threadripper 3 has 64 PCIe 4.0 lanes, each of which is capable 16 Gbit/s data transfer in both
directions. The memory is directly attached to the CPU with a total bandwidth of up to 100 GB/s.

502 Chapter 12. Computational Performance

When we run code on a computer we need to shuffle data to the processors (CPU or GPU), perform
computation and then move the results off the processor back to RAM and durable storage. Hence,
in order to get good performance we need to make sure that this works seamlessly without any
one of the systems becoming a major bottleneck. For instance, if we cannot load images quickly
enough the processor wonʼt have any work to do. Likewise, if we cannot move matrices quickly
enough to the CPU (or GPU), its processing elements will starve. Finally, if we want to synchronize
multiple computers across the network, the latter shouldnʼt slow down computation. One option
is to interleave communication and computation. Let s̓ have a look at the various components in
more detail.

12.4.2 Memory

At its most basic memory is used to store data that needs to be readily accessible. At present CPU
RAM is typically of the DDR4174 variety, offering 20-25GB/s bandwidth per module. Each module
has a 64 bit wide bus. Typically pairs of memory modules are used to allow for multiple channels.
CPUs have between 2 and 4 memory channels, i.e., they have between 40GB/s and 100GB/s peak
memory bandwidth. Often there are two banks per channel. For instance AMD s̓ Zen 3 Thread-
ripper has 8 slots.

While these numbers are impressive, indeed, they only tell part of the story. When we want to
read a portion from memory we first need to tell the memory module where the information can
be found. That is, we first need to send the address to RAM. Once this accomplished we can choose
to read just a single 64bit record or a long sequence of records. The latter is called burst read. In
a nutshell, sending an address to memory and setting up the transfer takes approximately 100ns
(details depend on the specific timing coefficients of the memory chips used), every subsequent
transfer takes only 0.2ns. In short, the first read is 500 times as expensive as subsequent ones! We
could perform up to 10, 000, 000 random reads per second. This suggests that we avoid random
memory access as far as possible and use burst reads (and writes) instead.

Matters are a bit more complex when we take into account that we have multiple banks. Each bank
can read memory largely independently. This means two things: the effective number of random
reads is up to 4x higher, provided that they are spread evenly across memory. It also means that
it s̓ still a bad idea to perform random reads since burst reads are 4x faster, too. Secondly, due
to memory alignment to 64 bit boundaries it is a good idea to align any datastructures with the
same boundaries. Compilers do this pretty much automatically175 when the appropriate flags are
set. Curious readers are encouraged to review a lecture on DRAMs such as the one by Zeshan
Chishti176.

GPU memory is subject to even higher bandwidth requirements since they have many more pro-
cessing elements than CPUs. By and large there are two options to address them. One is to make
the memory bus significantly wider. For instance NVIDIA̓s RTX 2080 Ti has a 352 bit wide bus.
This allows for much more information to be transferred at the same time. Secondly, GPUs use
specific high-performance memory. Consumer grade devices, such as NVIDIA̓s RTX and Titan
series typically use GDDR6177 chips with over 500 GB/s aggregate bandwidth. An alternative is to
use HBM (high bandwidth memory) modules. They use a very different interface and connect
directly with GPUs on a dedicated silicon wafer. This makes them very expensive and their use is
typically limited to high end server chips, such as the NVIDIA Volta V100 series of accelerators.
Quite unsurprisingly GPU memory is much smaller than CPU memory due to its higher cost. For

174 https://en.wikipedia.org/wiki/DDR4_SDRAM
175 https://en.wikipedia.org/wiki/Data_structure_alignment
176 http://web.cecs.pdx.edu/~zeshan/ece585_lec5.pdf
177 https://en.wikipedia.org/wiki/GDDR6_SDRAM

12.4. Hardware 503

https://en.wikipedia.org/wiki/DDR4_SDRAM
https://en.wikipedia.org/wiki/Data_structure_alignment
http://web.cecs.pdx.edu/~zeshan/ece585_lec5.pdf
http://web.cecs.pdx.edu/~zeshan/ece585_lec5.pdf
https://en.wikipedia.org/wiki/GDDR6_SDRAM

our purposes, by and large their performance characteristics are similar, just a lot faster. We can
safely ignore the details for the purpose of this book. They only matter when tuning GPU kernels
for high throughput.

12.4.3 Storage

We saw that some of the key characteristics of RAM were bandwidth and latency. The same is true
for storage devices, just that the differences can be even more extreme.

Hard Disks have been in use for over half a century. In a nutshell they contain a number of spin-
ning platters with heads that can be positioned to read / write at any given track. High end end
disks hold up to 16TB on 9 platters. One of the key benefits of HDDs is that they are relatively in-
expensive. One of their many downsides are their typically catastrophic failure modes and their
relatively high read latency.

To understand the latter, consider the fact that HDDs spin at around 7,200 RPM. If they were much
faster they would shatter due to the centrifugal force exerted on the platters. This has a major
downside when it comes to accessing a specific sector on the disk: we need to wait until the platter
has rotated in position (we can move the heads but not accelerate the actual disks). Hence it can
take over 8ms until the requested data is available. A common way this is expressed is to say that
HDDs can operate at approximately 100 IOPs. This number has essentially remained unchanged
for the past two decades. Worse still, it is equally difficult to increase bandwidth (it is in the order
of 100-200 MB/s). After all, each head reads a track of bits, hence the bit rate only scales with
the square root of the information density. As a result HDDs are quickly becoming relegated to
archival storage and low-grade storage for very large datasets.

Solid State Drives use Flash memory to store information persistently. This allows for much faster
access to stored records. Modern SSDs can operate at 100,000 to 500,000 IOPs, i.e., up to 3 orders
of magnitude faster than HDDs. Furthermore, their bandwidth can reach 1-3GB/s, i.e., one order
of magnitude faster than HDDs. These improvements sound almost too good to be true. Indeed,
they come with a number of caveats, due to the way SSDs are designed.

• SSDs store information in blocks (256 KB or larger). They can only be written as a whole,
which takes significant time. Consequently bit-wise random writes on SSD have very poor
performance. Likewise, writing data in general takes significant time since the block has
to be read, erased and then rewritten with new information. By now SSD controllers and
firmware have developed algorithms to mitigate this. Nonetheless writes can be much
slower, in particular for QLC (quad level cell) SSDs. The key for improved performance is to
maintain a queue of operations, to prefer reads and to write in large blocks if possible.

• The memory cells in SSDs wear out relatively quickly (often already after a few thousand
writes). Wear-level protection algorithms are able to spread the degradation over many cells.
That said, it is not recommended to use SSDs for swap files or for large aggregations of log-
files.

• Lastly, the massive increase in bandwidth has forced computer designers to attach SSDs di-
rectly to the PCIe bus. The drives capable of handling this, referred to as NVMe (Non Volatile
Memory enhanced), can use up to 4 PCIe lanes. This amounts to up to 8GB/s on PCIe 4.0.

Cloud Storage provides a configurable range of performance. That is, the assignment of storage
to virtual machines is dynamic, both in terms of quantity and in terms speed, as chosen by the
user. We recommend that the user increase the provisioned number of IOPs whenever latency is
too high, e.g., during training with many small records.

504 Chapter 12. Computational Performance

12.4.4 CPUs

Central Processing Units (CPUs) are the centerpiece of any computer (as before we give a very
high level description focusing primarily on what matters for efficient deep learning models).
They consist of a number of key components: processor cores which are able to execute machine
code, a bus connecting them (the specific topology differs significantly between processor mod-
els, generations and vendors), and caches to allow for higher bandwidth and lower latency mem-
ory access than what is possible by reads from main memory. Lastly, almost all modern CPUs
contain vector processing units to aid with high performance linear algebra and convolutions, as
they are common in media processing and machine learning.

Fig. 12.4.3: Intel Skylake consumer quad-core CPU

Fig. 12.4.3 depicts an Intel Skylake consumer grade quad-core CPU. It has an integrated GPU,
caches, and a ringbus connecting the four cores. Peripherals (Ethernet, WiFi, Bluetooth, SSD
controller, USB, etc.) are either part of the chipset or directly attached (PCIe) to the CPU.

Microarchitecture

Each of the processor cores consists of a rather sophisticated set of components. While details
differ between generations and vendors, the basic functionality is pretty much standard. The
front end loads instructions and tries to predict which path will be taken (e.g., for control flow).
Instructions are then decoded from assembly code to microinstructions. Assembly code is often
not the lowest level code that a processor executes. Instead, complex instructions may be decoded
into a set of more lower level operations. These are then processed by the actual execution core.
Often the latter is capable of performing many operations simultaneously. For instance, the ARM
Cortex A77 core of Fig. 12.4.4 is able to perform up to 8 operations simultaneously.

12.4. Hardware 505

Fig. 12.4.4: ARM Cortex A77 Microarchitecture Overview

This means that efficient programs might be able to perform more than one instruction per clock
cycle, provided that they can be carried out independently. Not all units are created equal. Some
specialize in integer instructions whereas others are optimized for floating point performcne.
To increase throughput the processor might also follow multiple codepaths simultaneously in a
branching instruction and then discard the results of the branch not taken. This is why branch
prediction units matter (on the frontend) such that only the most promising paths are pursued.

Vectorization

Deep learning is extremely compute hungry. Hence, to make CPUs suitable for machine learning
one needs to perform many operations in one clock cycle. This is achieved via vector units. They
have different names: on ARM theyʼre called NEON, on x86 the latest generation is referred to as
AVX2178 units. A common aspect is that they are able to perform SIMD (single instruction multiple
data) operations. Fig. 12.4.5 shows how 8 short integers can be added in one clock cycle on ARM.

Fig. 12.4.5: 128 bit NEON vectorization
178 https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

506 Chapter 12. Computational Performance

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

Depending on architecture choices such registers are up to 512 bit long, allowing for the combina-
tion of up to 64 pairs of numbers. For instance, we might be multiplying two numbers and adding
them to a third, which is also known as a fused multiply-add. Intel s̓ OpenVino179 uses these to
achieve respectable throughput for deep learning on server grade CPUs. Note, though, that this
number is entirely dwarved by what GPUs are capable of achieving. For instance, NVIDIA̓s RTX
2080 Ti has 4,352 CUDA cores, each of which is capable of processing such an operation at any
time.

Cache

Consider the following situation: we have a modest CPU core with 4 cores as depicted in Fig. 12.4.3
above, running at 2GHz frequency. Moreover, let s̓ assume that we have an IPC (instructions per
clock) count of 1 and that the units have AVX2 with 256bit width enabled. Let s̓ furthermore assume
that at least one of the registers used for AVX2 operations needs to be retrieved from memory.
This means that the CPU consumes 4x256bit = 1kbit of data per clock cycle. Unless we are able
to transfer 2 · 109 · 128 = 256 · 109 bytes to the processor per second the processing elements are
going to starve. Unfortunately the memory interface of such a chip only supports 20-40 GB/s data
transfer, i.e., one order of magnitude less. The fix is to avoid loading new data from memory as
far as possible and rather to cache it locally on the CPU. This is where caches come in handy (see
this Wikipedia article180 for a primer). Commonly the following names / concepts are used:

• Registers are strictly speaking not part of the cache. They help stage instructions. That said,
CPU registers are memory locations that a CPU can access at clock speed without any delay
penalty. CPUs have tens of registers. It is up to the compiler (or programmer) to use registers
efficiently. For instance the C programming language has a register keyword.

• L1 caches are the first line of defense against high memory bandwidth requirements. L1
caches are tiny (typical sizes might be 32-64kB) and often split into data and instructions
caches. When data is found in the L1 cache access is very fast. If it cannot be found there,
the search progresses down the cache hierarchy.

• L2 caches are the next stop. Depending on architecture design and processor size they might
be exclusive. They might be accessible only by a given core or shared between multiple
cores. L2 caches are larger (typically 256-512kB per core) and slower than L1. Furthermore,
to access something in L2 we first need to check to realize that the data isnʼt in L1, which
adds a small amount of extra latency.

• L3 caches are shared between multiple cores and can be quite large. AMD s̓ Epyc 3 server
CPUs have a whopping 256MB of cache spread across multiple chiplets. More typical num-
bers are in the 4-8MB range.

Predicting which memory elements will be needed next is one of the key optimization parame-
ters in chip design. For instance, it is advisable to traverse memory in a forward direction since
most caching algorithms will try to read ahead rather than backwards. Likewise, keeping memory
access patterns local is agood way of improving performance. Adding caches is a double-edge
sword. On one hand they ensure that the processor cores donʼt starve of data. At the same time
they increase chip size, using up area that otherwise could have been spent on increasing process-
ing power. Moreover, cache misses can be expensive. Consider the worst case scenario, depicted
in Fig. 12.4.6. A memory location is cached on processor 0 when a thread on processor 1 requests
the data. To obtain it, processor 0 needs to stop what it s̓ doing, write the information back to main

179 https://01.org/openvinotoolkit
180 https://en.wikipedia.org/wiki/Cache_hierarchy

12.4. Hardware 507

https://01.org/openvinotoolkit
https://en.wikipedia.org/wiki/Cache_hierarchy

memory and then let processor 1 read it from memoruy. During this operation both processors
wait. Quite potentially such code runs more slowly on multiple processors when compared to an
efficient single-processor implementation. This is one more reason for why there is a practical
limit to cache sizes (besides their physical size).

Fig. 12.4.6: False sharing (image courtesy of Intel)

12.4.5 GPUs and other Accelerators

It is not an exaggeration to claim that deep learning would not have been successful without GPUs.
By the same token, it is quite reasonable to argue that GPU manufacturersʼ fortunes have been
increased significantly due to deep learning. This co-evolution of hardware and algorithms has
led to a situation where for better or worse deep learning is the preferable statistical modeling
paradigm. Hence it pays to understand the specific benefits that GPUs and related accelerators
such as the TPU (Jouppi et al., 2017) offer.

Of note is a distinction that is often made in practice: accelerators are optimized either for training
or inference. For the latter we only need to compute the forward pass in a network. No storage
of intermediate data is needed for backpropagation. Moreover, we may not need very precise
computation (FP16 or INT8 typically suffice). On the other hand, during training all intermedi-
ate results need storing to compute gradients. Moreover, accumulating gradients requires higher
precision to avoid numerical underflow (or overflow). This means that FP16 (or mixed precision
with FP32) is the minimum required. All of this necessitates faster and larger memory (HBM2
vs. GDDR6) and more processing power. For instance, NVIDIA̓s Turing181 T4 GPUs are optimized
for inference whereas the V100 GPUs are preferable for training.

Recall Fig. 12.4.5. Adding vector units to a processor core allowed us to increase throughput sig-
nificantly (in the example in the figure we were able to perform 16 operations simultaneously).
What if we added operations that optimized not just operations between vectors but also between
matrices? This strategy led to Tensor Cores (more on this shortly). Secondly, what if we added
many more cores? In a nutshell, these two strategies summarize the design decisions in GPUs.
Fig. 12.4.7 gives an overview over a basic processing block. It contains 16 integer and 16 float-
ing point units. In addition to that, two Tensor Cores accelerate a narrow subset of additional
operations relevant for deep learning. Each Streaming Multiprocessor (SM) consists of four such
blocks.

181 https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

508 Chapter 12. Computational Performance

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

Fig. 12.4.7: NVIDIA Turing Processing Block (image courtesy of NVIDIA)

12 streaming multiprocessors are then grouped into graphics processing clusters which make up
the high-end TU102 processors. Ample memory channels and an L2 cache complement the setup.
Fig. 12.4.8 has the relevant details. One of the reasons for designing such a device is that individual
blocks can be added or removed as needed to allow for more compact chips and to deal with yield
issues (faulty modules might not be activated). Fortunately programming such devices is well
hidden from the casual deep learning researcher beneath layers of CUDA and framework code.
In particular, more than one of the programs might well be executed simultaneously on the GPU,
provided that there are available resources. Nonetheless it pays to be aware of the limitations of
the devices to avoid picking models that do not fit into device memory.

Fig. 12.4.8: NVIDIA Turing Architecture (image courtesy of NVIDIA)

A last aspect that is worth mentioning in more detail are TensorCores. They are an example of
a recent trend of adding more optimized circuits that are specifically effective for deep learning.
For instance, the TPU added a systolic array (Kung, 1988) for fast matrix multiplication. There
the design was to support a very small number (one for the first generation of TPUs) of large op-
erations. TensorCores are at the other end. They are optimized for small operations involving
between 4x4 and 16x16 matrices, depending on their numerical precision. Fig. 12.4.9 gives an
overview of the optimizations.

12.4. Hardware 509

Fig. 12.4.9: NVIDIA TensorCores in Turing (image courtesy of NVIDIA)

Obviously when optimizing for computation we end up making certain compomises. One of them
is that GPUs are not very good at handling interrupts and sparse data. While there are notable ex-
ceptions, such as Gunrock182 (Wang et al., 2016), the access pattern of sparse matrices and vectors
do not go well with the high bandwidth burst read operations where GPUs excel. Matching both
goals is an area of active research. See e.g., DGL183, a library tuned for deep learning on graphs.

12.4.6 Networks and Buses

Whenever a single device is insufficient for optimization we need to transfer data to and from it
to synchronize processing. This is where networks and buses come in handy. We have a number
of design parameters: bandwidth, cost, distance and flexibility. On one end we have WiFi which
has a pretty good range, is very easy to use (no wires, after all), cheap but it offers comparatively
mediocre bandwidth and latency. No machine learning researcher within their right mind would
use it to build a cluster of servers. In what follows we focus on interconnects that are suitable for
deep learning.

• PCIe is a dedicated bus for very high bandwidth point to point connections (up to 16 Gbs on
PCIe 4.0) per lane. Latency is in the order of single-digit microseconds (5 µs). PCIe links
are precious. Processors only have a limited number of them: AMD s̓ EPYC 3 has 128 lanes,
Intel s̓ Xeon has up to 48 lanes per chip; on desktop grade CPUs the numbers are 20 (Ryzen
9) and 16 (Core i9) respectively. Since GPUs have typically 16 lanes this limits the number of
GPUs that can connect to the CPU at full bandwidth. After all, they need to share the links
with other high bandwidth peripherals such as storage and Ethernet. Just like with RAM
access, large bulk transfers are preferable due to reduced packet overhead.

• Ethernet is the most commonly used way of connecting computers. While it is significantly
slower than PCIe, it is very cheap and resilient to install and covers much longer distances.
Typical bandwidth for low-grade servers is 1 GBit/s. Higher end devices (e.g., C5 instances184

in the cloud) offer between 10 and 100 GBit/s bandwidth. As in all previous cases data trans-
mission has significant overheads. Note that we almost never use raw Ethernet directly but
rather a protocol that is executed on top of the physical interconnect (such as UDP or TCP/IP).

182 https://github.com/gunrock/gunrock
183 http://dgl.ai
184 https://aws.amazon.com/ec2/instance-types/c5/

510 Chapter 12. Computational Performance

https://github.com/gunrock/gunrock
http://dgl.ai
https://aws.amazon.com/ec2/instance-types/c5/

This adds further overhead. Like PCIe, Ethernet is designed to connect two devices, e.g., a
computer and a switch.

• Switches allow us to connect multiple devices in a manner where any pair of them can
carry out a (typically full bandwidth) point to point connection simultaneously. For in-
stance, Ethernet switches might connect 40 servers at high cross-sectional bandwidth. Note
that switches are not unique to traditional computer networks. Even PCIe lanes can be
switched185. This occurs e.g., to connect a large number of GPUs to a host processor, as
is the case for the P2 instances186.

• NVLink is an alternative to PCIe when it comes to very high bandwidth interconnects. It
offers up to 300 Gbit/s data transfer rate per link. Server GPUs (Volta V100) have 6 links
whereas consumer grade GPUs (RTX 2080 Ti) have only one link, operating at a reduced 100
Gbit/s rate. We recommend to use NCCL187 to achieve high data transfer between GPUs.

Summary

• Devices have overheads for operations. Hence it is important to aim for a small number of
large transfers rather than many small ones. This applies to RAM, SSDs, Networks and GPUs.

• Vectorization is key for performance. Make sure youʼre aware of the specific abilities of your
accelerator. E.g., some Intel Xeon CPUs are particularly good for INT8 operations, NVIDIA
Volta GPUs excel at FP16 matrix-matrix operations and NVIDIA Turing shines at FP16, INT8
and INT4 operations.

• Numerical overflow due to small datatypes can be a problem during training (and to a lesser
extent during inference).

• Aliasing can significantly degrade performance. For instance, memory alignment on 64 bit
CPUs should be done with respect to 64 bit boundaries. On GPUs it s̓ a good idea to keep
convolution sizes aligned e.g., to TensorCores.

• Match your algorithms to the hardware (memory footprint, bandwidth, etc.). Great speedup
(orders of magnitude) can be achieved when fitting the parameters into caches.

• We recommend that you sketch out the performance of a novel algorithm on paper before
verifying the experimental results. Discrepancies of an order-of-magnitude or more are rea-
sons for concern.

• Use profilers to debug performance bottlenecks.

• Training and inference hardware have different sweet spots in terms of price / performance.
185 https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches
186 https://aws.amazon.com/ec2/instance-types/p2/
187 https://github.com/NVIDIA/nccl

12.4. Hardware 511

https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches
https://aws.amazon.com/ec2/instance-types/p2/
https://github.com/NVIDIA/nccl

12.4.7 More Latency Numbers

The summary in Table 12.4.1 and Table 12.4.2 are due to Eliot Eshelman188 who maintains an
updated version of the numbers as a GitHub Gist189.

Table 12.4.1: Common Latency Numbers.
Action Time Notes
L1 cache reference/hit 1.5 ns 4 cycles
Floating-point add/mult/FMA 1.5 ns 4 cycles
L2 cache reference/hit 5 ns 12 ~ 17 cycles
Branch mispredict 6 ns 15 ~ 20 cycles
L3 cache hit (unshared cache) 16 ns 42 cycles
L3 cache hit (shared in another core) 25 ns 65 cycles
Mutex lock/unlock 25 ns
L3 cache hit (modified in another core) 29 ns 75 cycles
L3 cache hit (on a remote CPU socket) 40 ns 100 ~ 300 cycles (40 ~ 116 ns)
QPI hop to a another CPU (per hop) 40 ns
64MB memory ref. (local CPU) 46 ns TinyMemBench on Broadwell E5-2690v4
64MB memory ref. (remote CPU) 70 ns TinyMemBench on Broadwell E5-2690v4
256MB memory ref. (local CPU) 75 ns TinyMemBench on Broadwell E5-2690v4
Intel Optane random write 94 ns UCSD Non-Volatile Systems Lab
256MB memory ref. (remote CPU) 120 ns TinyMemBench on Broadwell E5-2690v4
Intel Optane random read 305 ns UCSD Non-Volatile Systems Lab
Send 4KB over 100 Gbps HPC fabric 1 µs MVAPICH2 over Intel Omni-Path
Compress 1KB with Google Snappy 3 µs
Send 4KB over 10 Gbps ethernet 10 µs
Write 4KB randomly to NVMe SSD 30 µs DC P3608 NVMe SSD (QOS 99% is 500µs)
Transfer 1MB to/from NVLink GPU 30 µs ~33GB/s on NVIDIA 40GB NVLink
Transfer 1MB to/from PCI-E GPU 80 µs ~12GB/s on PCIe 3.0 x16 link
Read 4KB randomly from NVMe SSD 120 µs DC P3608 NVMe SSD (QOS 99%)
Read 1MB sequentially from NVMe SSD 208 µs ~4.8GB/s DC P3608 NVMe SSD
Write 4KB randomly to SATA SSD 500 µs DC S3510 SATA SSD (QOS 99.9%)
Read 4KB randomly from SATA SSD 500 µs DC S3510 SATA SSD (QOS 99.9%)
Round trip within same datacenter 500 µs One-way ping is ~250µs
Read 1MB sequentially from SATA SSD 2 ms ~550MB/s DC S3510 SATA SSD
Read 1MB sequentially from disk 5 ms ~200MB/s server HDD
Random Disk Access (seek+rotation) 10 ms
Send packet CA->Netherlands->CA 150 ms

Table 12.4.2: Latency Numbers for NVIDIA Tesla GPUs.
Action Time Notes
GPU Shared Memory access 30 ns 30~90 cycles (bank conflicts add latency)
GPU Global Memory access 200 ns 200~800 cycles
Launch CUDA kernel on GPU 10 µs Host CPU instructs GPU to start kernel
Transfer 1MB to/from NVLink GPU 30 µs ~33GB/s on NVIDIA 40GB NVLink
Transfer 1MB to/from PCI-E GPU 80 µs ~12GB/s on PCI-Express x16 link

188 https://gist.github.com/eshelman
189 https://gist.github.com/eshelman/343a1c46cb3fba142c1afdcdeec17646

512 Chapter 12. Computational Performance

https://gist.github.com/eshelman
https://gist.github.com/eshelman/343a1c46cb3fba142c1afdcdeec17646

Exercises

1. Write C code to test whether there is any difference in speed between accessing memory
aligned or misaligned relative to the external memory interface. Hint - be careful of caching
effects.

2. Test the difference in speed between accessing memory in sequence or with a given stride.

3. How could you measure the cache sizes on a CPU?

4. How would you lay out data across multiple memory channels for maximum bandwidth?
How would you lay it out if you had many small threads?

5. An enterprise class HDD is spinning at 10,000 rpm. What is the absolutely minimum time
an HDD needs to spend worst case before it can read data (you can assume that heads move
almost instantaneously)? Why are 2.5” HDDs becoming popular for commercial servers (rel-
ative to 3.5” and 5.25” drives)?

6. Assume that an HDD manufacturer increases the storage density from 1 Tbit per square inch
to 5 Tbit per square inch. How much information can you store on a ring on a 2.5” HDD? Is
there a difference between the inner and outer tracks?

7. The AWS P2 instances have 16 K80 Kepler GPUs. Use lspci on a p2.16xlarge and a p2.8xlarge
instance to understand how the GPUs are connected to the CPUs. Hint - keep your eye out
for PCI PLX bridges.

8. Going from 8 bit to 16 bit datatypes increases the amount of silicon approximately by 4x.
Why? Why might NVIDIA have added INT4 operations to their Turing GPUs.

9. Given 6 high speed links between GPUs (such as for the Volta V100 GPUs), how would you
connect 8 of them? Look up the connectivity used in the P3.16xlarge servers.

10. How much faster is it to read forward through memory vs. reading backwards? Does this
number differ between different computers and CPU vendors? Why? Write C code and ex-
periment with it.

11. Can you measure the cache size of your disk? What is it for a typical HDD? Do SSDs need a
cache?

12. Measure the packet overhead when sending messages across the Ethernet. Look up the dif-
ference between UDP and TCP/IP connections.

13. Direct Memory Access allows devices other than the CPU to write (and read) directly to
(from) memory. Why is this a good idea?

14. Look at the performance numbers for the Turing T4 GPU. Why does the performance ʻonlyʼ
double as you go from FP16 to INT8 and INT4?

15. What is the shortest time it should take for a packet on a roundtrip between San Francisco
and Amsterdam? Hint - you can assume that the distance is 10,000km.

12.4. Hardware 513

12.5 Training on Multiple GPUs

So far we discussed how to train models efficiently on CPUs and GPUs. We even showed how
deep learning frameworks such as MXNet (and TensorFlow) allow one to parallelize computation
and communication automatically between them in Section 12.3. Lastly, we showed in Section
5.6 how to list all available GPUs on a computer using nvidia-smi. What we did not discuss is
how to actually parallelize deep learning training (we omit any discussion of inference on multiple
GPUs here as it s̓ a rather rarely used and advanced topic that goes beyond the scope of this book).
Instead, we implied in passing that one would somehow split the data across multiple devices and
make it work. The present section fills in the details and shows how to train a network in parallel
when starting from scratch. Details on how to take advantage of functionality in Gluon is relegated
to Section 12.6. We assume that the reader is familiar with minibatch SGD algorithms such as the
ones described in Section 11.5.

12.5.1 Splitting the Problem

Let s̓ start with a simple computer vision problem and a slightly archaic network, e.g., with mul-
tiple layers of convolutions, pooling, and possibly a few dense layers in the end. That is, let s̓
start with a network that looks quite similar to LeNet (LeCun et al., 1998) or AlexNet (Krizhevsky
et al., 2012). Given multiple GPUs (2 if it s̓ a desktop server, 4 on a g4dn.12xlarge, 8 on an AWS
p3.16xlarge, or 16 on a p2.16xlarge), we want to partition training in a manner as to achieve good
speedup while simultaneously benefitting from simple and reproducible design choices. Multi-
ple GPUs, after all, increase both memory and compute ability. In a nutshell, we have a number of
choices, given a minibatch of training data that we want to classify.

Fig. 12.5.1: Model parallelism in the original AlexNet design due to limited GPU memory.

• We could partition the network layers across multiple GPUs. That is, each GPU takes as input
the data flowing into a particular layer, processes data across a number of subsequent layers
and then sends the data to the next GPU.

– This allows us to process data with larger networks when compared to what a single
GPU could handle.

– Memory footprint per GPU can be well controlled (it s̓ a fraction of the total network
footprint)

– The interface between layers (and thus GPUs) requires tight synchronization. This can
be tricky, in particular if the computational workloads are not properly matched be-
tween layers. The problem is exacerbated for large numbers of GPUs.

514 Chapter 12. Computational Performance

– The interface between layers requires large amounts of data transfer (activations, gra-
dients). This may overwhelm the bandwidth of the GPU buses.

– Compute intensive, yet sequential operations are nontrivial to partition. See e.g.,
(Mirhoseini et al., 2017) for a best effort in this regard. It remains a difficult problem
and it is unclear whether it is possible to achieve good (linear) scaling on nontrivial
problems. We do not recommend it unless there is excellent framework / OS support
for chaining together multiple GPUs.

• We could split the work required by individual layers. For instance, rather than computing
64 channels on a single GPU we could split up the problem across 4 GPUs, each of which
generate data for 16 channels. Likewise, for a dense layer we could split the number of
output neurons. Fig. 12.5.1 illustrates this design. The figure is taken from (Krizhevsky et al.,
2012) where this strategy was used to deal with GPUs that had a very small memory footprint
(2GB at the time).

– This allows for good scaling in terms of computation, provided that the number of chan-
nels (or neurons) is not too small.

– Multiple GPUs can process increasingly larger networks since the memory available
scales linearly.

– We need a very large number of synchronization / barrier operations since each layer
depends on the results from all other layers.

– The amount of data that needs to be transferred is potentially even larger than when
distributing layers across GPUs. We do not recommend this approach due to its band-
width cost and complexity.

• Lastly we could partition data across multiple GPUs. This way all GPUs perform the same
type of work, albeit on different observations. Gradients are aggregated between GPUs after
each minibatch.

– This is the simplest approach and it can be applied in any situation.

– Adding more GPUs does not allow us to train larger models.

– We only need to synchronize after each minibatch. That said, it s̓ highly desirable to
start exchanging gradients parameters already while others are still being computed.

– Large numbers of GPUs lead to very large minibatch sizes, thus reducing training effi-
ciency.

12.5. Training on Multiple GPUs 515

Fig. 12.5.2: Parallelization on multiple GPUs. From left to right - original problem, network parti-
tioning, layer partitioning, data parallelism.

By and large, data parallelism is the most convenient way to proceed, provided that we have ac-
cess to GPUs with sufficiently large memory. See also (Li et al., 2014) for a detailed description of
partitioning for distributed training. GPU memory used to be a problem in the early days of deep
learning. By now this issue has been resolved for all but the most unusual cases. We focus on data
parallelism in what follows.

12.5.2 Data Parallelism

Assume that there are k GPUs on a machine. Given the model to be trained, each GPU will maintain
a complete set of model parameters independently. Training proceeds as follows (see Fig. 12.5.3
for details on data parallel training on two GPUs):

• In any iteration of training, given a random minibatch, we split the examples in the batch
into k portions and distribute them evenly across the GPUs.

• Each GPU calculates loss and gradient of the model parameters based on the minibatch sub-
set it was assigned and the model parameters it maintains.

• The local gradients of each of the k GPUs are aggregated to obtain the current minibatch
stochastic gradient.

• The aggregate gradient is re-distributed to each GPU.

• Each GPU uses this minibatch stochastic gradient to update the complete set of model pa-
rameters that it maintains.

516 Chapter 12. Computational Performance

Fig. 12.5.3: Calculation of minibatch stochastic gradient using data parallelism and two GPUs.

A comparison of different ways of parallelization on multiple GPUs is depicted in Fig. 12.5.2. Note
that in practice we increase the minibatch size k-fold when training on k GPUs such that each GPU
has the same amount of work to do as if we were training on a single GPU only. On a 16 GPU server
this can increase the minibatch size considerably and we may have to increase the learning rate
accordingly. Also note that Section 7.5 needs to be adjusted (e.g., by keeping a separate batch
norm coefficient per GPU). In what follows we will use Section 6.6 as the toy network to illustrate
multi-GPU training. As always we begin by importing the relevant packages and modules.

%matplotlib inline
import d2l
from mxnet import autograd, gluon, np, npx
npx.set_np()

12.5.3 A Toy Network

We use LeNet as introduced in Section 6.6. We define it from scratch to illustrate parameter ex-
change and synchronization in detail.

Initialize model parameters
scale = 0.01
W1 = np.random.normal(scale=scale, size=(20, 1, 3, 3))
b1 = np.zeros(20)
W2 = np.random.normal(scale=scale, size=(50, 20, 5, 5))
b2 = np.zeros(50)
W3 = np.random.normal(scale=scale, size=(800, 128))
b3 = np.zeros(128)
W4 = np.random.normal(scale=scale, size=(128, 10))
b4 = np.zeros(10)
params = [W1, b1, W2, b2, W3, b3, W4, b4]

Define the model
def lenet(X, params):

h1_conv = npx.convolution(data=X, weight=params[0], bias=params[1],
kernel=(3, 3), num_filter=20)

h1_activation = npx.relu(h1_conv)

(continues on next page)

12.5. Training on Multiple GPUs 517

(continued from previous page)

h1 = npx.pooling(data=h1_activation, pool_type='avg', kernel=(2, 2),
stride=(2, 2))

h2_conv = npx.convolution(data=h1, weight=params[2], bias=params[3],
kernel=(5, 5), num_filter=50)

h2_activation = npx.relu(h2_conv)
h2 = npx.pooling(data=h2_activation, pool_type='avg', kernel=(2, 2),

stride=(2, 2))
h2 = h2.reshape(h2.shape[0], -1)
h3_linear = np.dot(h2, params[4]) + params[5]
h3 = npx.relu(h3_linear)
y_hat = np.dot(h3, params[6]) + params[7]
return y_hat

Cross-entropy loss function
loss = gluon.loss.SoftmaxCrossEntropyLoss()

12.5.4 Data Synchronization

For efficient multi-GPU training we need two basic operations: firstly we need to have the ability
to distribute a list of parameters to multiple devices and to attach gradients (get_params). Without
parameters it s̓ impossible to evaluate the network on a GPU. Secondly, we need the ability to sum
parameters across multiple devices, i.e., we need an allreduce function.

def get_params(params, ctx):
new_params = [p.copyto(ctx) for p in params]
for p in new_params:

p.attach_grad()
return new_params

Let s̓ try it out by copying the model parameters of lenet to gpu(0).

new_params = get_params(params, d2l.try_gpu(0))
print('b1 weight:', new_params[1])
print('b1 grad:', new_params[1].grad)

b1 weight: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] @gpu(0)
b1 grad: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] @gpu(0)

Since we didnʼt perform any computation yet, the gradient with regard to the bias weights is still 0.
Now let s̓ assume that we have a vector distributed across multiple GPUs. The following allreduce
function adds up all vectors and broadcasts the result back to all GPUs. Note that for this to work
we need to copy the data to the device accumulating the results.

def allreduce(data):
for i in range(1, len(data)):

data[0][:] += data[i].copyto(data[0].context)
for i in range(1, len(data)):

data[0].copyto(data[i])

Let s̓ test this by creating vectors with different values on different devices and aggregate them.

518 Chapter 12. Computational Performance

data = [np.ones((1, 2), ctx=d2l.try_gpu(i)) * (i + 1) for i in range(2)]
print('before allreduce:\n', data[0], '\n', data[1])
allreduce(data)
print('after allreduce:\n', data[0], '\n', data[1])

before allreduce:
[[1. 1.]] @gpu(0)
[[2. 2.]] @gpu(1)
after allreduce:
[[3. 3.]] @gpu(0)
[[3. 3.]] @gpu(1)

12.5.5 Distributing Data

We need a simple utility function to distribute a minibatch evenly across multiple GPUs. For in-
stance, on 2 GPUs we d̓ like to have half of the data to be copied to each of the GPUs. Since it s̓ more
convenient and more concise, we use the built-in split and load function in Gluon (to try it out on
a 4× 5 matrix).

data = np.arange(20).reshape(4, 5)
ctx = [npx.gpu(0), npx.gpu(1)]
split = gluon.utils.split_and_load(data, ctx)
print('input :', data)
print('load into', ctx)
print('output:', split)

input : [[0. 1. 2. 3. 4.]
[5. 6. 7. 8. 9.]
[10. 11. 12. 13. 14.]
[15. 16. 17. 18. 19.]]
load into [gpu(0), gpu(1)]
output: [array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]], ctx=gpu(0)), array([[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.]], ctx=gpu(1))]

For later reuse we define a split_batch function which splits both data and labels.

Saved in the d2l package for later use
def split_batch(X, y, ctx_list):

"""Split X and y into multiple devices specified by ctx."""
assert X.shape[0] == y.shape[0]
return (gluon.utils.split_and_load(X, ctx_list),

gluon.utils.split_and_load(y, ctx_list))

12.5. Training on Multiple GPUs 519

12.5.6 Training

Now we can implement multi-GPU training on a single minibatch. Its implementation is primar-
ily based on the data parallelism approach described in this section. We will use the auxiliary
functions we just discussed, allreduce and split_and_load, to synchronize the data among mul-
tiple GPUs. Note that we donʼt need to write any specific code to achieve parallelism. Since the
compute graph doesnʼt have any dependencies across devices within a minibatch, it is executed
in parallel automatically.

def train_batch(X, y, gpu_params, ctx_list, lr):
gpu_Xs, gpu_ys = split_batch(X, y, ctx_list)
with autograd.record(): # Loss is calculated separately on each GPU

losses = [loss(lenet(gpu_X, gpu_W), gpu_y)
for gpu_X, gpu_y, gpu_W in zip(gpu_Xs, gpu_ys, gpu_params)]

for l in losses: # Back Propagation is performed separately on each GPU
l.backward()

Sum all gradients from each GPU and broadcast them to all GPUs
for i in range(len(gpu_params[0])):

allreduce([gpu_params[c][i].grad for c in range(len(ctx_list))])
The model parameters are updated separately on each GPU
for param in gpu_params:

d2l.sgd(param, lr, X.shape[0]) # Here, we use a full-size batch

Now, we can define the training function. It is slightly different from the ones used in the previous
chapters: we need to allocate the GPUs and copy all the model parameters to all devices. Obvi-
ously each batch is processed using train_batch to deal with multiple GPUs. For convenience
(and conciseness of code) we compute the accuracy on a single GPU (this is inefficient since the
other GPUs are idle).

def train(num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
ctx_list = [d2l.try_gpu(i) for i in range(num_gpus)]
Copy model parameters to num_gpus GPUs
gpu_params = [get_params(params, c) for c in ctx_list]
num_epochs, times, acces = 10, [], []
num_epochs = 10
animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
timer = d2l.Timer()
for epoch in range(num_epochs):

timer.start()
for X, y in train_iter:

Perform multi-GPU training for a single minibatch
train_batch(X, y, gpu_params, ctx_list, lr)
npx.waitall()

timer.stop()
Verify the model on GPU 0
animator.add(epoch+1, (d2l.evaluate_accuracy_gpu(

lambda x: lenet(x, gpu_params[0]), test_iter, ctx[0]),))
print('test acc: %.2f, %.1f sec/epoch on %s' % (

animator.Y[0][-1], timer.avg(), ctx_list))

520 Chapter 12. Computational Performance

12.5.7 Experiment

Let s̓ see how well this works on a single GPU. We use a batch size of 256 and a learning rate of 0.2.

train(num_gpus=1, batch_size=256, lr=0.2)

test acc: 0.85, 2.0 sec/epoch on [gpu(0)]

By keeping the batch size and learning rate unchanged and changing the number of GPUs to 2,
we can see that the improvement in test accuracy is roughly the same as in the results from the
previous experiment. In terms of the optimization algorithms, they are identical. Unfortunately
there s̓ no meaningful speedup to be gained here: the model is simply too small; moreover we
only have a small dataset, where our slightly unsophisticated approach to implementing multi-
GPU training suffered from significant Python overhead. We will encounter more complex models
and more sophisticated ways of parallelization going forward. Let s̓ see what happens nonetheless
for MNIST.

train(num_gpus=2, batch_size=256, lr=0.2)

test acc: 0.85, 3.9 sec/epoch on [gpu(0), gpu(1)]

12.5. Training on Multiple GPUs 521

Summary

• There are multiple ways to split deep network training over multiple GPUs. We could split
them between layers, across layers, or across data. The former two require tightly chore-
ographed data transfers. Data parallelism is the simplest strategy.

• Data parallel training is straightforward. However, it increases the effective minibatch size
to be efficient.

• Data is split across multiple GPUs, each GPU executes its own forward and backward opera-
tion and subsequently gradients are aggregated and results broadcast back to the GPUs.

• Large minibatches may require a slightly increased learning rate.

Exercises

1. When training on multiple GPUs, change the minibatch size from b to k · b, i.e., scale it up by
the number of GPUs.

2. Compare accuracy for different learning rates. How does it scale with the number of GPUs.

3. Implement a more efficient allreduce that aggregates different parameters on different GPUs
(why is this more efficient in the first place).

4. Implement multi-GPU test accuracy computation.

12.6 Concise Implementation for Multiple GPUs

Implementing parallelism from scratch for every new model is no fun. Moreover, there s̓ signif-
icant benefit in optimizing synchronization tools for high performance. In the following weʼll
show how to do this using Gluon. The math and the algorithms are the same as in Section 12.5.
As before we begin by importing the required modules (quite unsurprisingly youʼll need at least
two GPUs to run this notebook).

import d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()

522 Chapter 12. Computational Performance

12.6.1 A Toy Network

Let s̓ use a slightly more meaningful network than LeNet from the previous section that s̓ still suf-
ficiently easy and quick to train. We pick a ResNet-18 variant (He et al., 2016a). Since the input
images are tiny we modify it slightly. In particular, the difference to Section 7.6 is that we use
a smaller convolution kernel, stride, and padding at the beginning. Moreover, we remove the
max-pooling layer.

Saved in the d2l package for later use
def resnet18(num_classes):

"""A slightly modified ResNet-18 model."""
def resnet_block(num_channels, num_residuals, first_block=False):

blk = nn.Sequential()
for i in range(num_residuals):

if i == 0 and not first_block:
blk.add(d2l.Residual(

num_channels, use_1x1conv=True, strides=2))
else:

blk.add(d2l.Residual(num_channels))
return blk

net = nn.Sequential()
This model uses a smaller convolution kernel, stride, and padding and
removes the maximum pooling layer
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),

nn.BatchNorm(), nn.Activation('relu'))
net.add(resnet_block(64, 2, first_block=True),

resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))

net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net

12.6.2 Parameter Initialization and Logistics

The initialize method allows us to set initial defaults for parameters on a device of our choice.
For a refresher see Section 4.8. What is particularly convenient is that it also lets us initialize the
network on multiple devices simultaneously. Let s̓ try how this works in practice.

net = resnet18(10)
get a list of GPUs
ctx = d2l.try_all_gpus()
initialize the network on all of them
net.initialize(init=init.Normal(sigma=0.01), ctx=ctx)

Using the split_and_load function introduced in the previous section we can divide a minibatch of
data and copy portions to the list of devices provided by the context variable. The network object
automatically uses the appropriate GPU to compute the value of the forward pass. As before we
generate 4 observations and split them over the GPUs.

x = np.random.uniform(size=(4, 1, 28, 28))
gpu_x = gluon.utils.split_and_load(x, ctx)
net(gpu_x[0]), net(gpu_x[1])

12.6. Concise Implementation for Multiple GPUs 523

(array([[2.2610193e-06, 2.2045974e-06, -5.4046782e-06, 1.2869954e-06,
5.1373149e-06, -3.8298003e-06, 1.4339014e-07, 5.4683451e-06,
-2.8279194e-06, -3.9651113e-06],
[2.0698667e-06, 2.0084665e-06, -5.6382501e-06, 1.0498469e-06,
5.5506416e-06, -4.1065468e-06, 6.0830143e-07, 5.4521765e-06,
-3.7365030e-06, -4.1891640e-06]], ctx=gpu(0)),

array([[2.4629794e-06, 2.6015521e-06, -5.4362622e-06, 1.2938231e-06,
5.6387898e-06, -4.1360104e-06, 3.5758922e-07, 5.5125238e-06,
-3.1957329e-06, -4.2976321e-06],
[1.9431675e-06, 2.2600425e-06, -5.2698206e-06, 1.4807410e-06,
5.4830930e-06, -3.9678889e-06, 7.5752268e-08, 5.6764361e-06,
-3.2530238e-06, -4.0943960e-06]], ctx=gpu(1)))

Once data passes through the network, the corresponding parameters are initialized on the device
the data passed through. This means that initialization happens on a per-device basis. Since we
picked GPU 0 and GPU 1 for initialization, the network is initialized only there, and not on the
CPU. In fact, the parameters donʼt even exist on the device. We can verify this by printing out the
parameters and observing any errors that might arise.

weight = net[0].params.get('weight')

try:
weight.data()

except RuntimeError:
print('not initialized on cpu')

weight.data(ctx[0])[0], weight.data(ctx[1])[0]

not initialized on cpu

(array([[[0.01382882, -0.01183044, 0.01417866],
[-0.00319718, 0.00439528, 0.02562625],
[-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(0)),

array([[[0.01382882, -0.01183044, 0.01417866],
[-0.00319718, 0.00439528, 0.02562625],
[-0.00835081, 0.01387452, -0.01035946]]], ctx=gpu(1)))

Lastly let s̓ replace the code to evaluate the accuracy by one that works in parallel across multiple
devices. This serves as a replacement of the evaluate_accuracy_gpu function from Section 6.6.
The main difference is that we split a batch before invoking the network. All else is essentially
identical.

Saved in the d2l package for later use
def evaluate_accuracy_gpus(net, data_iter, split_f=d2l.split_batch):

Query the list of devices
ctx = list(net.collect_params().values())[0].list_ctx()
metric = d2l.Accumulator(2) # num_corrected_examples, num_examples
for features, labels in data_iter:

Xs, ys = split_f(features, labels, ctx)
pys = [net(X) for X in Xs] # Run in parallel
metric.add(sum(float(d2l.accuracy(py, y)) for py, y in zip(pys, ys)),

labels.size)
return metric[0]/metric[1]

524 Chapter 12. Computational Performance

12.6.3 Training

As before, the training code needs to perform a number of basic functions for efficient parallelism:

• Network parameters need to be initialized across all devices.

• While iterating over the dataset minibatches are to be divided across all devices.

• We compute the loss and its gradient in parallel across devices.

• Losses are aggregated (by the trainer method) and parameters are updated accordingly.

In the end we compute the accuracy (again in parallel) to report the final value of the network.
The training routine is quite similar to implementations in previous chapters, except that we need
to split and aggregate data.

def train(num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
ctx = [d2l.try_gpu(i) for i in range(num_gpus)]
net.initialize(init=init.Normal(sigma=0.01), ctx=ctx, force_reinit=True)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
timer, num_epochs = d2l.Timer(), 10
animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs])
for epoch in range(num_epochs):

timer.start()
for features, labels in train_iter:

Xs, ys = d2l.split_batch(features, labels, ctx)
with autograd.record():

losses = [loss(net(X), y) for X, y in zip(Xs, ys)]
for l in losses:

l.backward()
trainer.step(batch_size)

npx.waitall()
timer.stop()
animator.add(epoch+1, (evaluate_accuracy_gpus(net, test_iter),))

print('test acc: %.2f, %.1f sec/epoch on %s' % (
animator.Y[0][-1], timer.avg(), ctx))

12.6.4 Experiments

Let s̓ see how this works in practice. As a warmup we train the network on a single GPU.

train(num_gpus=1, batch_size=256, lr=0.1)

test acc: 0.92, 13.1 sec/epoch on [gpu(0)]

12.6. Concise Implementation for Multiple GPUs 525

Next we use 2 GPUs for training. Compared to LeNet the model for ResNet-18 is considerably
more complex. This is where parallelization shows its advantage. The time for computation is
meaningfully larger than the time for synchronizing parameters. This improves scalability since
the overhead for parallelization is less relevant.

train(num_gpus=2, batch_size=512, lr=0.2)

test acc: 0.93, 6.7 sec/epoch on [gpu(0), gpu(1)]

Summary

• Gluon provides primitives for model initialization across multiple devices by providing a
context list.

• Data is automatically evaluated on the devices where the data can be found.

• Take care to initialize the networks on each device before trying to access the parameters on
that device. Otherwise you will encounter an error.

• The optimization algorithms automatically aggregate over multiple GPUs.

526 Chapter 12. Computational Performance

Exercises

1. This section uses ResNet-18. Try different epochs, batch sizes, and learning rates. Use more
GPUs for computation. What happens if you try this on a p2.16xlarge instance with 16 GPUs?

2. Sometimes, different devices provide different computing power. We could use the GPUs
and the CPU at the same time. How should we divide the work? Is it worth the effort? Why?
Why not?

3. What happens if we drop npx.waitall()? How would you modify training such that you have
an overlap of up to two steps for parallelism?

12.7 Parameter Servers

As we move from single GPUs to multiple GPUs and then to multiple servers containing multi-
ple GPUs, possibly all spread out across multiple racks and network switches our algorithms for
distributed and parallel training need to become much more sophisticated. Details matter since
different interconnects have very different bandwidth (e.g. NVLink can offer up to 100GB/s across
6 links in an appropriate setting, PCIe 3.0 16x lanes offer 16GB/s while even high speed 100 GbE
Ethernet only amounts to 10GB/s). At the same time it s̓ unreasonable to expect that a statistical
modeler be an expert in networking and systems.

The core idea of the parameter server was introduced in (Smola & Narayanamurthy, 2010) in the
context of distributed latent variable models. A description of the push and pull semantics then
followed in (Ahmed et al., 2012) and a description of the system and an open source library fol-
lowed in (Li et al., 2014). In the following we will motivate the components needed for efficiency.

12.7.1 Data Parallel Training

Let s̓ review the data parallel training approach to distributed training. We will use this to the ex-
clusion of all others in this section since it s̓ significantly simpler to implement in practice. There
are virtually no use cases (besides deep learning on graphs) where any other strategy for paral-
lelism is preferred since GPUs have plenty of memory nowadays. Fig. 12.7.1 describes the variant
of data parallelism that we implemented in the previous section. The key aspect in it is that the
aggregation of gradients occurs on GPU0 before the updated parameters are rebroadcast to all
GPUs.

12.7. Parameter Servers 527

Fig. 12.7.1: Left: single GPU training; Right: a variant of multi-GPU training. It proceeds as fol-
lows. (1) we compute loss and gradient, (2) all gradients are aggregated on one GPU, (3) parameter
update happens and the parameters are re-distributed to all GPUs.

In retrospect, the decision to aggregate on GPU0 seems rather ad-hoc. After all, we might just
as well aggregate on the CPU. In fact, we could even decide to aggregate some of the parameters
on one GPU and some others on another. Provided that the optimization algorithm supports this,
there s̓ no real reason for why we couldnʼt. For instance, if we have four parameter vectors v1, . . . v4
with associated gradients g1, . . . g4 we could aggregate the gradients on one GPU each.

gi =
∑

j∈GPUs
gij (12.7.1)

This reasoning seems arbitrary and frivolous. After all, the math is the same throughout. How-
ever, we are dealing with real physical hardware where different buses have different bandwidth
as discussed in Section 12.4. Consider a real 4-way GPU server as described in Fig. 12.7.2. If it s̓
particularly well connected, it might have a 100 GbE network card. More typical numbers are in
the 1-10 GbE range with an effective bandwidth of 100MB/s to 1GB/s. Since the CPUs have too
few PCIe lanes to connect to all GPUs directly (e.g. consumer grade Intel CPUs have 24 lanes) we
need a multiplexer193. The bandwidth from the CPU on a 16x Gen3 link is 16GB/s. This is also the
speed at which each of the GPUs is connected to the switch. This means that it s̓ more effective to
communicate between the

193 https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches

528 Chapter 12. Computational Performance

https://www.broadcom.com/products/pcie-switches-bridges/pcie-switches

Fig. 12.7.2: Foo.

For the sake of the argument let s̓ assume that the gradients ʻweighʼ 160MB. In this case it takes
30ms to send the gradients from all 3 remaining GPUs to the fourth one (each transfer takes 10ms
= 160MB / 16 GB/s). Add another 30ms to transmit the weight vectors back we arrive at a total of
60ms. If we send all data to the CPU we incur a penalty of 40ms since each of the four GPUs needs
to send the data to the CPU, yielding a total of 80ms. Lastly assume that we are able to split the
gradients into 4 parts of 40MB each. Now we can aggregate each of the parts on a different GPU
simultaneously since the PCIe switch offers a full-bandwidth operation between all links. Instead
of 30ms this takes 7.5ms, yielding a total of 15ms for a synchronization operation. In short, de-
pending on how we synchronize parameters the same operation can take anywhere from 15ms to
80ms. Fig. 12.7.3 depicts the different strategies for exchanging parameters.

Fig. 12.7.3: Synchronization strategies.

Note that we have yet another tool at our disposal when it comes to improving performance: in a
deep network it takes some time to compute all gradients from the top to the bottom. We can begin
synchronizing gradients for some parameter groups even while weʼre still busy computing them
for others (the technical details for that are somewhat involved). See e.g. (Sergeev & DelBalso,
2018) for details on how to do this in Horovod194.

194 https://github.com/horovod/horovod

12.7. Parameter Servers 529

https://github.com/horovod/horovod

12.7.2 Ring Synchronization

When it comes to synchronization on modern deep learning hardware we often encounter sig-
nificantly bespoke network connectivity. For instance, the AWS P3.16xlarge and NVIDIA DGX-2
instances share the connectivity structure of Fig. 12.7.4. Each GPU connects to a host CPU via a
PCIe link which operates at best at 16 GB/s. Additionally each GPU also has 6 NVLink connections,
each of which is capable of transferring 300 Gbit/s bidirectionally. This amounts to around 18 GB/s
per link per direction. In short, the aggregate NVLink bandwidth is significantly higher than the
PCIe bandwidth. The question is how to use it most efficiently.

Fig. 12.7.4: NVLink connectivity on 8GPU V100 servers (image courtesy of NVIDIA).

It turns out (Wang et al., 2018) that the optimal synchronization strategy is to decompose the net-
work into two rings and to use them to synchronize data directly. Fig. 12.7.5 illustrates that the
network can be decomposed into one ring (1-2-3-4-5-6-7-8-1) with double NVLink bandwidth and
into one (1-4-6-3-5-8-2-7-1) with regular bandwidth. Designing an efficient synchronization proto-
col in this case is nontrivial.

530 Chapter 12. Computational Performance

Fig. 12.7.5: Decomposition of the NVLink network into two rings.

Consider the following thought experiment: given a ring of n compute nodes (or GPUs) we can
send gradients from the first to the second node. There it is added to the local gradient and sent
on to the third node, and so on. After n − 1 steps the aggregate gradient can be found in the last-
visited node. That is, the time to aggregate gradients grows linearly with the number of nodes. But
if we do this the algorithm is quite inefficient. After all, at any time there s̓ only one of the nodes
communicating. What if we broke the gradients into n chunks and started synchronizing chunk
i starting at node i. Since each chunk is of site 1/n the total time is now (n − 1)/n ≈ 1. In other
words, the time spent to aggregate gradients does not grow as we increase the size of the ring. This
is quite an astonishing result. Fig. 12.7.6 illustrates the sequence of steps on n = 4 nodes.

12.7. Parameter Servers 531

Fig. 12.7.6: Ring synchronization across 4 nodes. Each node starts transmitting parts of gradients
to its left neighbor until the assembled gradient can be found in its right neighbor.

If we use the same example of synchronizing 160MB across 8 V100 GPUs we arrive at approximately
2 ·160MB/(3 ·18GB/s) ≈ 6ms This is quite a bit better than using the PCIe bus, even though we are
now using 8 GPUs. Note that in practice these numbers are quite a bit worse, since deep learning
frameworks often fail to assemble communication into large burst transfers. Moreover, timing is
critical. Note that there is a common misconception that ring synchronization is fundamentally
different from other synchronization algorithms. The only difference is that the synchronization
path is somewhat more elaborate when compared to a simple tree.

12.7.3 Multi-Machine Training

Distributed training on multiple machines adds a further challenge: we need to communicate
with servers that are only connected across a comparatively lower bandwidth fabric which can be
over an order of magnitude slower in some cases. Synchronization across devices is tricky. After
all, different machines running training code will have subtly different speed. Hence we need to
synchronize them if we want to use synchronous distributed optimization. Fig. 12.7.7 illustrates
how distributed parallel training occurs.

1. A (different) batch of data is read on each machine, split across multiple GPUs and trans-
ferred to GPU memory. There predictions and gradients are computed on each GPU batch
separately.

2. The gradients from all local GPUs are aggregated on one GPU (or alternatively parts of it are
aggregated over different GPUs.

3. The gradients are sent to the CPU.

4. The CPU sends the gradients to a central parameter server which aggregates all the gradi-
ents.

532 Chapter 12. Computational Performance

5. The aggregate gradients are then used to update the weight vectors and the updated weight
vectors are broadcast back to the individual CPUs.

6. The information is sent to one (or multiple) GPUs.

7. The updated weight vectors are spread across all GPUs.

Fig. 12.7.7: Multi-machine multi-GPU distributed parallel training.

Each of these operations seems rather straightforward. And, indeed, they can be carried out ef-
ficiently within a single machine. Once we look at multiple machines, though, we can see that
the central parameter server becomes the bottleneck. After all, the bandwidth per server is lim-
ited, hence for m workers the time it takes to send all gradients to the server is O(m). We can
break through this barrier by increasing the number of servers to n. At this point each server only
needs to store O(1/n) of the parameters, hence the total time for updates and optimization be-
comes O(m/n). Matching both numbers yields constant scaling regardless of how many workers
we are dealing with. In practice we use the same machines both as workers and as servers. Fig.
12.7.8 illustrates the design. See also (Li et al., 2014) for details. In particular, ensuring that mul-
tiple machines work without unreasonable delays is nontrivial. We omit details on barriers and
will only briefly touch on synchronous and asynchronous updates below.

12.7. Parameter Servers 533

Fig. 12.7.8: Top - a single parameter server is a bottleneck since its bandwidth is finite. Bottom -
multiple parameter servers store parts of the parameters with aggregate bandwidth.

12.7.4 (key,value) Stores

Implementing the steps required for distributed multi-GPU training in practice is nontrivial. In
particular, given the many different choices that we might encounter. This is why it pays to use a
common abstraction, namely that of a (key,value) store with redefined update semantics. Across
many servers and many GPUs the gradient computation can be defined as

gi =
∑

k∈workers

∑
j∈GPUs

gijk. (12.7.2)

The key aspect in this operation is that it is a commutative reduction, that is, it turns many vectors
into one and the order in which the operation is applied doesnʼt matter. This is great for our pur-
poses since we donʼt (need to) have fine grained control over when which gradient is received.
Note that it s̓ possible for us to perform the reduction stagewise. Furthermore, note that this op-
eration is independent between blocks i pertaining to different parameters (and gradients).

This allows us to define the following two operations: push, which accumulates gradients, and
pull, which retrieves aggregate gradients. Since we have many different sets of gradients (after
all, we have many layers), we need to index the gradients with a key i. This similarity to (key,value)
stores, such as the one introduced in Dynamo (DeCandia et al., 2007) is not by coincidence. They,

534 Chapter 12. Computational Performance

too, satisfy many similar characteristics, in particular when it comes to distributing the parame-
ters across multiple servers.

• push(key, value) sends a particular gradient (the value) from a worker to a common storage.
There the parameter is aggregated, e.g. by summing it up.

• pull(key, value) retrieves an aggregate parameter from common storage, e.g. after combin-
ing the gradients from all workers.

By hiding all the complexity about synchronization behind a simple push and pull operation we
can decouple the concerns of the statistical modeler who wants to be able to express optimization
in simple terms and the systems engineer who needs to deal with the complexity inherent in dis-
tributed synchronization. In the next section we will experiment with such a (key,value) store in
practice.

Summary

• Synchronization needs to be highly adaptive to specific network infrastructure and connec-
tivity within a server. This can make a significant difference to the time it takes to synchro-
nize.

• Ring-synchronization can be optimal for P3 and DGX-2 servers. For others possibly not so
much.

• A hierarchical synchronization strategy works well when adding multiple parameter servers
for increased bandwidth.

• Asynchronous communication (while computation is still ongoing) can improve perfor-
mance.

Exercises

1. Can you increase the ring synchronization even further? Hint - you can send messages in
both directions.

2. Fully asynchronous. Some delays permitted?

3. Fault tolerance. How? What if we lose a server? Is this a problem?

4. Checkpointing

5. Tree aggregation. Can you do it faster?

6. Other reductions (commutative semiring).

12.7. Parameter Servers 535

536 Chapter 12. Computational Performance

13 | Computer Vision

Many applications in the area of computer vision are closely related to our daily lives, now and in
the future, whether medical diagnostics, driverless vehicles, camera monitoring, or smart filters.
In recent years, deep learning technology has greatly enhanced computer vision systemsʼ perfor-
mance. It can be said that the most advanced computer vision applications are nearly inseparable
from deep learning.

We have introduced deep learning models commonly used in the area of computer vision in the
chapter “Convolutional Neural Networks” and have practiced simple image classification tasks. In
this chapter, we will introduce image augmentation and fine tuning methods and apply them to
image classification. Then, we will explore various methods of object detection. After that, we
will learn how to use fully convolutional networks to perform semantic segmentation on images.
Then, we explain how to use style transfer technology to generate images that look like the cover of
this book. Finally, we will perform practice exercises on two important computer vision datasets
to review the content of this chapter and the previous chapters.

13.1 Image Augmentation

We mentioned that large-scale datasets are prerequisites for the successful application of deep
neural networks in Section 7.1. Image augmentation technology expands the scale of training
datasets by making a series of random changes to the training images to produce similar, but dif-
ferent, training examples. Another way to explain image augmentation is that randomly changing
training examples can reduce a model s̓ dependence on certain properties, thereby improving its
capability for generalization. For example, we can crop the images in different ways, so that the
objects of interest appear in different positions, reducing the model s̓ dependence on the posi-
tion where objects appear. We can also adjust the brightness, color, and other factors to reduce
model s̓ sensitivity to color. It can be said that image augmentation technology contributed greatly
to the success of AlexNet. In this section we will discuss this technology, which is widely used in
computer vision.

First, import the packages or modules required for the experiment in this section.

%matplotlib inline
import d2l
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn

npx.set_np()

537

13.1.1 Common Image Augmentation Method

In this experiment, we will use an image with a shape of 400× 500 as an example.

d2l.set_figsize((3.5, 2.5))
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

Most image augmentation methods have a certain degree of randomness. To make it easier for
us to observe the effect of image augmentation, we next define the auxiliary function apply. This
function runs the image augmentation method aug multiple times on the input image img and
shows all results.

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)

Flipping and Cropping

Flipping the image left and right usually does not change the category of the object. This is one
of the earliest and most widely used methods of image augmentation. Next, we use the trans-
forms module to create the RandomFlipLeftRight instance, which introduces a 50% chance that
the image is flipped left and right.

apply(img, gluon.data.vision.transforms.RandomFlipLeftRight())

538 Chapter 13. Computer Vision

Flipping up and down is not as commonly used as flipping left and right. However, at least for this
example image, flipping up and down does not hinder recognition. Next, we create a RandomFlip-
TopBottom instance for a 50% chance of flipping the image up and down.

apply(img, gluon.data.vision.transforms.RandomFlipTopBottom())

In the example image we used, the cat is in the middle of the image, but this may not be the case
for all images. In Section 6.5, we explained that the pooling layer can reduce the sensitivity of the
convolutional layer to the target location. In addition, we can make objects appear at different
positions in the image in different proportions by randomly cropping the image. This can also
reduce the sensitivity of the model to the target position.

In the following code, we randomly crop a region with an area of 10% to 100% of the original
area, and the ratio of width to height of the region is randomly selected from between 0.5 and 2.
Then, the width and height of the region are both scaled to 200 pixels. Unless otherwise stated, the
random number between a and b in this section refers to a continuous value obtained by uniform
sampling in the interval [a, b].

shape_aug = gluon.data.vision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))

apply(img, shape_aug)

13.1. Image Augmentation 539

Changing the Color

Another augmentation method is changing colors. We can change four aspects of the image color:
brightness, contrast, saturation, and hue. In the example below, we randomly change the bright-
ness of the image to a value between 50% (1− 0.5) and 150% (1 + 0.5) of the original image.

apply(img, gluon.data.vision.transforms.RandomBrightness(0.5))

Similarly, we can randomly change the hue of the image.

apply(img, gluon.data.vision.transforms.RandomHue(0.5))

540 Chapter 13. Computer Vision

We can also create a RandomColorJitter instance and set how to randomly change the brightness,
contrast, saturation, and hue of the image at the same time.

color_aug = gluon.data.vision.transforms.RandomColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)

apply(img, color_aug)

Overlying Multiple Image Augmentation Methods

In practice, we will overlay multiple image augmentation methods. We can overlay the different
image augmentation methods defined above and apply them to each image by using a Compose
instance.

augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(), color_aug, shape_aug])

apply(img, augs)

13.1. Image Augmentation 541

13.1.2 Using an Image Augmentation Training Model

Next, we will look at how to apply image augmentation in actual training. Here, we use the CIFAR-
10 dataset, instead of the Fashion-MNIST dataset we have been using. This is because the position
and size of the objects in the Fashion-MNIST dataset have been normalized, and the differences in
color and size of the objects in CIFAR-10 dataset are more significant. The first 32 training images
in the CIFAR-10 dataset are shown below.

d2l.show_images(gluon.data.vision.CIFAR10(
train=True)[0:32][0], 4, 8, scale=0.8);

In order to obtain a definitive results during prediction, we usually only apply image augmenta-
tion to the training example, and do not use image augmentation with random operations during
prediction. Here, we only use the simplest random left-right flipping method. In addition, we
use a ToTensor instance to convert minibatch images into the format required by MXNet, i.e., 32-
bit floating point numbers with the shape of (batch size, number of channels, height, width) and
value range between 0 and 1.

542 Chapter 13. Computer Vision

train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor()])

test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor()])

Next, we define an auxiliary function to make it easier to read the image and apply image augmen-
tation. The transform_first function provided by Gluons̓ dataset applies image augmentation to
the first element of each training example (image and label), i.e., the element at the top of the
image. For detailed description of DataLoader, refer to Section 3.5.

def load_cifar10(is_train, augs, batch_size):
return gluon.data.DataLoader(

gluon.data.vision.CIFAR10(train=is_train).transform_first(augs),
batch_size=batch_size, shuffle=is_train,
num_workers=d2l.get_dataloader_workers())

Using a Multi-GPU Training Model

We train the ResNet-18 model described in Section 7.6 on the CIFAR-10 dataset. We will also apply
the methods described in Section 12.6 and use a multi-GPU training model.

Next, we define the training function to train and evaluate the model using multiple GPUs.

Saved in the d2l package for later use
def train_batch_ch13(net, features, labels, loss, trainer, ctx_list,

split_f=d2l.split_batch):
Xs, ys = split_f(features, labels, ctx_list)
with autograd.record():

pys = [net(X) for X in Xs]
ls = [loss(py, y) for py, y in zip(pys, ys)]

for l in ls:
l.backward()

trainer.step(features.shape[0])
train_loss_sum = sum([float(l.sum()) for l in ls])
train_acc_sum = sum(d2l.accuracy(py, y) for py, y in zip(pys, ys))
return train_loss_sum, train_acc_sum

Saved in the d2l package for later use
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,

ctx_list=d2l.try_all_gpus(), split_f=d2l.split_batch):
num_batches, timer = len(train_iter), d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs], ylim=[0, 1],

legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):

Store training_loss, training_accuracy, num_examples, num_features
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):

timer.start()
l, acc = train_batch_ch13(

net, features, labels, loss, trainer, ctx_list, split_f)

(continues on next page)

13.1. Image Augmentation 543

(continued from previous page)

metric.add(l, acc, labels.shape[0], labels.size)
timer.stop()
if (i+1) % (num_batches // 5) == 0:

animator.add(epoch+i/num_batches,
(metric[0]/metric[2], metric[1]/metric[3], None))

test_acc = d2l.evaluate_accuracy_gpus(net, test_iter, split_f)
animator.add(epoch+1, (None, None, test_acc))

print('loss %.3f, train acc %.3f, test acc %.3f' % (
metric[0]/metric[2], metric[1]/metric[3], test_acc))

print('%.1f exampes/sec on %s' % (
metric[2]*num_epochs/timer.sum(), ctx_list))

Now, we can define the train_with_data_aug function to use image augmentation to train the
model. This function obtains all available GPUs and uses Adam as the optimization algorithm for
training. It then applies image augmentation to the training dataset, and finally calls the train
function just defined to train and evaluate the model.

batch_size, ctx, net = 256, d2l.try_all_gpus(), d2l.resnet18(10)
net.initialize(init=init.Xavier(), ctx=ctx)

def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'adam',

{'learning_rate': lr})
train_ch13(net, train_iter, test_iter, loss, trainer, 10, ctx)

Now we train the model using image augmentation of random flipping left and right.

train_with_data_aug(train_augs, test_augs, net)

loss 0.177, train acc 0.939, test acc 0.844
5011.9 exampes/sec on [gpu(0), gpu(1)]

544 Chapter 13. Computer Vision

Summary

• Image augmentation generates random images based on existing training data to cope with
overfitting.

• In order to obtain a definitive results during prediction, we usually only apply image aug-
mentation to the training example, and do not use image augmentation with random oper-
ations during prediction.

• We can obtain classes related to image augmentation from Gluons̓ transforms module.

Exercises

1. Train the model without using image augmentation: train_with_data_aug(no_aug,
no_aug). Compare training and testing accuracy when using and not using image augmenta-
tion. Can this comparative experiment support the argument that image augmentation can
mitigate overfitting? Why?

2. Add different image augmentation methods in model training based on the CIFAR-10
dataset. Observe the implementation results.

3. With reference to the MXNet documentation, what other image augmentation methods are
provided in Gluons̓ transforms module?

13.2 Fine Tuning

In earlier chapters, we discussed how to train models on the Fashion-MNIST training dataset,
which only has 60,000 images. We also described ImageNet, the most widely used large-scale
image dataset in the academic world, with more than 10 million images and objects of over 1000
categories. However, the size of datasets that we often deal with is usually larger than the first, but
smaller than the second.

Assume we want to identify different kinds of chairs in images and then push the purchase link
to the user. One possible method is to first find a hundred common chairs, take one thousand
different images with different angles for each chair, and then train a classification model on the
collected image dataset. Although this dataset may be larger than Fashion-MNIST, the number of
examples is still less than one tenth of ImageNet. This may result in the overfitting of the com-
plicated model applicable to ImageNet on this dataset. At the same time, because of the limited
amount of data, the accuracy of the final trained model may not meet the practical requirements.

In order to deal with the above problems, an obvious solution is to collect more data. However,
collecting and labeling data can consume a lot of time and money. For example, in order to collect
the ImageNet datasets, researchers have spent millions of dollars of research funding. Although,
recently, data collection costs have dropped significantly, the costs still cannot be ignored.

Another solution is to apply transfer learning to migrate the knowledge learned from the source
dataset to the target dataset. For example, although the images in ImageNet are mostly unrelated

13.2. Fine Tuning 545

to chairs, models trained on this dataset can extract more general image features that can help
identify edges, textures, shapes, and object composition. These similar features may be equally
effective for recognizing a chair.

In this section, we introduce a common technique in transfer learning: fine tuning. As shown in
Fig. 13.2.1, fine tuning consists of the following four steps:

1. Pre-train a neural network model, i.e., the source model, on a source dataset (e.g., the Ima-
geNet dataset).

2. Create a new neural network model, i.e., the target model. This replicates all model designs
and their parameters on the source model, except the output layer. We assume that these
model parameters contain the knowledge learned from the source dataset and this knowl-
edge will be equally applicable to the target dataset. We also assume that the output layer
of the source model is closely related to the labels of the source dataset and is therefore not
used in the target model.

3. Add an output layer whose output size is the number of target dataset categories to the target
model, and randomly initialize the model parameters of this layer.

4. Train the target model on a target dataset, such as a chair dataset. We will train the output
layer from scratch, while the parameters of all remaining layers are fine tuned based on the
parameters of the source model.

Fig. 13.2.1: Fine tuning.

13.2.1 Hot Dog Recognition

Next, we will use a specific example for practice: hot dog recognition. We will fine tune the ResNet
model trained on the ImageNet dataset based on a small dataset. This small dataset contains thou-
sands of images, some of which contain hot dogs. We will use the model obtained by fine tuning
to identify whether an image contains a hot dog.

First, import the packages and modules required for the experiment. Gluons̓ model_zoo package
provides a common pre-trained model. If you want to get more pre-trained models for computer

546 Chapter 13. Computer Vision

vision, you can use the GluonCV Toolkit197.

%matplotlib inline
import d2l
from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
import os
import zipfile

npx.set_np()

Obtaining the Dataset

The hot dog dataset we use was taken from online images and contains 1, 400 positive images
containing hot dogs and same number of negative images containing other foods. 1, 000 images
of various classes are used for training and the rest are used for testing.

We first download the compressed dataset to the path ../data. Then, we unzip the downloaded
dataset in this path and get two folders, hotdog/train and hotdog/test. Both folders have hotdog
and not-hotdog category subfolders, each of which has corresponding image files.

data_dir = '../data'
base_url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/'
fname = gluon.utils.download(

base_url + 'gluon/dataset/hotdog.zip',
path=data_dir, sha1_hash='fba480ffa8aa7e0febbb511d181409f899b9baa5')

with zipfile.ZipFile(fname, 'r') as z:
z.extractall(data_dir)

Downloading ../data/hotdog.zip from https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/
↪→dataset/hotdog.zip...

We create two ImageFolderDataset instances to read all the image files in the training dataset and
testing dataset, respectively.

train_imgs = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'hotdog/train'))

test_imgs = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'hotdog/test'))

The first 8 positive examples and the last 8 negative images are shown below. As you can see, the
images vary in size and aspect ratio.

hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);

197 https://gluon-cv.mxnet.io

13.2. Fine Tuning 547

https://gluon-cv.mxnet.io

During training, we first crop a random area with random size and random aspect ratio from the
image and then scale the area to an input with a height and width of 224 pixels. During testing,
we scale the height and width of images to 256 pixels, and then crop the center area with height
and width of 224 pixels to use as the input. In addition, we normalize the values of the three RGB
(red, green, and blue) color channels. The average of all values of the channel is subtracted from
each value and then the result is divided by the standard deviation of all values of the channel to
produce the output.

We specify the mean and variance of the three RGB channels to normalize the
image channel
normalize = gluon.data.vision.transforms.Normalize(

[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomResizedCrop(224),
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor(),
normalize])

test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(256),
gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
normalize])

Defining and Initializing the Model

We use ResNet-18, which was pre-trained on the ImageNet dataset, as the source model. Here, we
specify pretrained=True to automatically download and load the pre-trained model parameters.
The first time they are used, the model parameters need to be downloaded from the Internet.

pretrained_net = gluon.model_zoo.vision.resnet18_v2(pretrained=True)

The pre-trained source model instance contains two member variables: features and output.
The former contains all layers of the model, except the output layer, and the latter is the output
layer of the model. The main purpose of this division is to facilitate the fine tuning of the model
parameters of all layers except the output layer. The member variable output of source model is
given below. As a fully connected layer, it transforms ResNet s̓ final global average pooling layer
output into 1000 class output on the ImageNet dataset.

548 Chapter 13. Computer Vision

pretrained_net.output

Dense(512 -> 1000, linear)

We then build a new neural network to use as the target model. It is defined in the same way as the
pre-trained source model, but the final number of outputs is equal to the number of categories in
the target dataset. In the code below, the model parameters in the member variable features of
the target model instance finetune_net are initialized to model parameters of the corresponding
layer of the source model. Because the model parameters in features are obtained by pre-training
on the ImageNet dataset, it is good enough. Therefore, we generally only need to use small learn-
ing rates to “fine tune” these parameters. In contrast, model parameters in the member variable
output are randomly initialized and generally require a larger learning rate to learn from scratch.
Assume the learning rate in the Trainer instance is η and use a learning rate of 10η to update the
model parameters in the member variable output.

finetune_net = gluon.model_zoo.vision.resnet18_v2(classes=2)
finetune_net.features = pretrained_net.features
finetune_net.output.initialize(init.Xavier())
The model parameters in output will be updated using a learning rate ten
times greater
finetune_net.output.collect_params().setattr('lr_mult', 10)

Fine Tuning the Model

We first define a training function train_fine_tuning that uses fine tuning so it can be called
multiple times.

def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5):
train_iter = gluon.data.DataLoader(

train_imgs.transform_first(train_augs), batch_size, shuffle=True)
test_iter = gluon.data.DataLoader(

test_imgs.transform_first(test_augs), batch_size)
ctx = d2l.try_all_gpus()
net.collect_params().reset_ctx(ctx)
net.hybridize()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {

'learning_rate': learning_rate, 'wd': 0.001})
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, ctx)

We set the learning rate in the Trainer instance to a smaller value, such as 0.01, in order to fine tune
the model parameters obtained in pre-training. Based on the previous settings, we will train the
output layer parameters of the target model from scratch using a learning rate ten times greater.

train_fine_tuning(finetune_net, 0.01)

loss 0.276, train acc 0.909, test acc 0.889
696.4 exampes/sec on [gpu(0), gpu(1)]

13.2. Fine Tuning 549

For comparison, we define an identical model, but initialize all of its model parameters to random
values. Since the entire model needs to be trained from scratch, we can use a larger learning rate.

scratch_net = gluon.model_zoo.vision.resnet18_v2(classes=2)
scratch_net.initialize(init=init.Xavier())
train_fine_tuning(scratch_net, 0.1)

loss 0.401, train acc 0.818, test acc 0.864
739.8 exampes/sec on [gpu(0), gpu(1)]

As you can see, the fine-tuned model tends to achieve higher precision in the same epoch because
the initial values of the parameters are better.

550 Chapter 13. Computer Vision

Summary

• Transfer learning migrates the knowledge learned from the source dataset to the target
dataset. Fine tuning is a common technique for transfer learning.

• The target model replicates all model designs and their parameters on the source model,
except the output layer, and fine tunes these parameters based on the target dataset. In
contrast, the output layer of the target model needs to be trained from scratch.

• Generally, fine tuning parameters use a smaller learning rate, while training the output layer
from scratch can use a larger learning rate.

Exercises

1. Keep increasing the learning rate of finetune_net. How does the precision of the model
change?

2. Further tune the hyper-parameters of finetune_net and scratch_net in the comparative
experiment. Do they still have different precisions?

3. Set the parameters in finetune_net.features to the parameters of the source model and do
not update them during training. What will happen? You can use the following code.

finetune_net.features.collect_params().setattr('grad_req', 'null')

4. In fact, there is also a “hotdog” class in the ImageNet dataset. Its corresponding weight pa-
rameter at the output layer can be obtained by using the following code. How can we use
this parameter?

weight = pretrained_net.output.weight
hotdog_w = np.split(weight.data(), 1000, axis=0)[713]
hotdog_w.shape

(1, 512)

13.3 Object Detection and Bounding Boxes

In the previous section, we introduced many models for image classification. In image classifica-
tion tasks, we assume that there is only one main target in the image and we only focus on how to
identify the target category. However, in many situations, there are multiple targets in the image
that we are interested in. We not only want to classify them, but also want to obtain their specific
positions in the image. In computer vision, we refer to such tasks as object detection (or object
recognition).

Object detection is widely used in many fields. For example, in self-driving technology, we need
to plan routes by identifying the locations of vehicles, pedestrians, roads, and obstacles in the

13.3. Object Detection and Bounding Boxes 551

captured video image. Robots often perform this type of task to detect targets of interest. Systems
in the security field need to detect abnormal targets, such as intruders or bombs.

In the next few sections, we will introduce multiple deep learning models used for object detec-
tion. Before that, we should discuss the concept of target location. First, import the packages and
modules required for the experiment.

%matplotlib inline
import d2l
from mxnet import image, npx

npx.set_np()

Next, we will load the sample images that will be used in this section. We can see there is a dog
on the left side of the image and a cat on the right. They are the two main targets in this image.

d2l.set_figsize((3.5, 2.5))
img = image.imread('../img/catdog.jpg').asnumpy()
d2l.plt.imshow(img);

13.3.1 Bounding Box

In object detection, we usually use a bounding box to describe the target location. The bounding
box is a rectangular box that can be determined by the x and y axis coordinates in the upper-left
corner and the x and y axis coordinates in the lower-right corner of the rectangle. We will define
the bounding boxes of the dog and the cat in the image based on the coordinate information in the
above image. The origin of the coordinates in the above image is the upper left corner of the image,
and to the right and down are the positive directions of the x axis and the y axis, respectively.

bbox is the abbreviation for bounding box
dog_bbox, cat_bbox = [60, 45, 378, 516], [400, 112, 655, 493]

We can draw the bounding box in the image to check if it is accurate. Before drawing the box, we
will define a helper function bbox_to_rect. It represents the bounding box in the bounding box
format of matplotlib.

552 Chapter 13. Computer Vision

Saved in the d2l package for later use
def bbox_to_rect(bbox, color):

"""Convert bounding box to matplotlib format."""
Convert the bounding box (top-left x, top-left y, bottom-right x,
bottom-right y) format to matplotlib format: ((upper-left x,
upper-left y), width, height)
return d2l.plt.Rectangle(

xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
fill=False, edgecolor=color, linewidth=2)

After loading the bounding box on the image, we can see that the main outline of the target is
basically inside the box.

fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'));

Summary

• In object detection, we not only need to identify all the objects of interest in the image, but
also their positions. The positions are generally represented by a rectangular bounding box.

Exercises

1. Find some images and try to label a bounding box that contains the target. Compare the
difference between the time it takes to label the bounding box and label the category.

13.3. Object Detection and Bounding Boxes 553

13.4 Anchor Boxes

Object detection algorithms usually sample a large number of regions in the input image, deter-
mine whether these regions contain objects of interest, and adjust the edges of the regions so as
to predict the ground-truth bounding box of the target more accurately. Different models may
use different region sampling methods. Here, we introduce one such method: it generates mul-
tiple bounding boxes with different sizes and aspect ratios while centering on each pixel. These
bounding boxes are called anchor boxes. We will practice object detection based on anchor boxes
in the following sections.

First, import the packages or modules required for this section. Here, we have introduced the
contrib package, and modified the printing accuracy of NumPy. Because printing ndarrays ac-
tually calls the print function of NumPy, the floating-point numbers in ndarrays printed in this
section are more concise.

%matplotlib inline
import d2l
from mxnet import contrib, gluon, image, np, npx

np.set_printoptions(2)
npx.set_np()

13.4.1 Generating Multiple Anchor Boxes

Assume that the input image has a height of h and width of w. We generate anchor boxes with
different shapes centered on each pixel of the image. Assume the size is s ∈ (0, 1], the aspect ratio
is r > 0, and the width and height of the anchor box are ws

√
r and hs/

√
r, respectively. When the

center position is given, an anchor box with known width and height is determined.

Below we set a set of sizes s1, . . . , sn and a set of aspect ratios r1, . . . , rm. If we use a combination
of all sizes and aspect ratios with each pixel as the center, the input image will have a total of
whnm anchor boxes. Although these anchor boxes may cover all ground-truth bounding boxes,
the computational complexity is often excessive. Therefore, we are usually only interested in a
combination containing s1 or r1 sizes and aspect ratios, that is:

(s1, r1), (s1, r2), . . . , (s1, rm), (s2, r1), (s3, r1), . . . , (sn, r1). (13.4.1)

That is, the number of anchor boxes centered on the same pixel is n+m− 1. For the entire input
image, we will generate a total of wh(n+m− 1) anchor boxes.

The above method of generating anchor boxes has been implemented in the MultiBoxPrior func-
tion. We specify the input, a set of sizes, and a set of aspect ratios, and this function will return
all the anchor boxes entered.

img = image.imread('../img/catdog.jpg').asnumpy()
h, w = img.shape[0:2]

print(h, w)
X = np.random.uniform(size=(1, 3, h, w)) # Construct input data
Y = npx.multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape

554 Chapter 13. Computer Vision

561 728

(1, 2042040, 4)

We can see that the shape of the returned anchor box variable y is (batch size, number of an-
chor boxes, 4). After changing the shape of the anchor box variable y to (image height, image
width, number of anchor boxes centered on the same pixel, 4), we can obtain all the anchor boxes
centered on a specified pixel position. In the following example, we access the first anchor box
centered on (250, 250). It has four elements: the x, y axis coordinates in the upper-left corner and
the x, y axis coordinates in the lower-right corner of the anchor box. The coordinate values of the
x and y axis are divided by the width and height of the image, respectively, so the value range is
between 0 and 1.

boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]

array([0.06, 0.07, 0.63, 0.82])

In order to describe all anchor boxes centered on one pixel in the image, we first define the
show_bboxes function to draw multiple bounding boxes on the image.

Saved in the d2l package for later use
def show_bboxes(axes, bboxes, labels=None, colors=None):

"""Show bounding boxes."""
def _make_list(obj, default_values=None):

if obj is None:
obj = default_values

elif not isinstance(obj, (list, tuple)):
obj = [obj]

return obj
labels = _make_list(labels)
colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
for i, bbox in enumerate(bboxes):

color = colors[i % len(colors)]
rect = d2l.bbox_to_rect(bbox.asnumpy(), color)
axes.add_patch(rect)
if labels and len(labels) > i:

text_color = 'k' if color == 'w' else 'w'
axes.text(rect.xy[0], rect.xy[1], labels[i],

va='center', ha='center', fontsize=9, color=text_color,
bbox=dict(facecolor=color, lw=0))

As we just saw, the coordinate values of the x and y axis in the variable boxes have been divided
by the width and height of the image, respectively. When drawing images, we need to restore
the original coordinate values of the anchor boxes and therefore define the variable bbox_scale.
Now, we can draw all the anchor boxes centered on (250, 250) in the image. As you can see, the
blue anchor box with a size of 0.75 and an aspect ratio of 1 covers the dog in the image well.

d2l.set_figsize((3.5, 2.5))
bbox_scale = np.array((w, h, w, h))
fig = d2l.plt.imshow(img)

(continues on next page)

13.4. Anchor Boxes 555

(continued from previous page)

show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,
['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
's=0.75, r=0.5'])

13.4.2 Intersection over Union

We just mentioned that the anchor box covers the dog in the image well. If the ground-truth
bounding box of the target is known, how can “well” here be quantified? An intuitive method
is to measure the similarity between anchor boxes and the ground-truth bounding box. We know
that the Jaccard index can measure the similarity between two sets. Given sets A and B, their
Jaccard index is the size of their intersection divided by the size of their union:

J(A,B) = |A ∩ B|
|A ∪ B|

. (13.4.2)

In fact, we can consider the pixel area of a bounding box as a collection of pixels. In this way,
we can measure the similarity of the two bounding boxes by the Jaccard index of their pixel sets.
When we measure the similarity of two bounding boxes, we usually refer the Jaccard index as
intersection over union (IoU), which is the ratio of the intersecting area to the union area of the
two bounding boxes, as shown in Fig. 13.4.1. The value range of IoU is between 0 and 1: 0 means
that there are no overlapping pixels between the two bounding boxes, while 1 indicates that the
two bounding boxes are equal.

Fig. 13.4.1: IoU is the ratio of the intersecting area to the union area of two bounding boxes.

556 Chapter 13. Computer Vision

For the remainder of this section, we will use IoU to measure the similarity between anchor boxes
and ground-truth bounding boxes, and between different anchor boxes.

13.4.3 Labeling Training Set Anchor Boxes

In the training set, we consider each anchor box as a training example. In order to train the object
detection model, we need to mark two types of labels for each anchor box: first, the category of the
target contained in the anchor box (category) and, second, the offset of the ground-truth bounding
box relative to the anchor box (offset). In object detection, we first generate multiple anchor boxes,
predict the categories and offsets for each anchor box, adjust the anchor box position according
to the predicted offset to obtain the bounding boxes to be used for prediction, and finally filter out
the prediction bounding boxes that need to be output.

We know that, in the object detection training set, each image is labelled with the location of the
ground-truth bounding box and the category of the target contained. After the anchor boxes are
generated, we primarily label anchor boxes based on the location and category information of
the ground-truth bounding boxes similar to the anchor boxes. So how do we assign ground-truth
bounding boxes to anchor boxes similar to them?

Assume that the anchor boxes in the image are A1, A2, . . . , Ana and the ground-truth bounding
boxes are B1, B2, . . . , Bnb

and na ≥ nb. Define matrix X ∈ Rna×nb , where element xij in the ith row
and jth column is the IoU of the anchor box Ai to the ground-truth bounding box Bj. First, we find
the largest element in the matrix X and record the row index and column index of the element
as i1, j1. We assign the ground-truth bounding box Bj1 to the anchor box Ai1 . Obviously, anchor
box Ai1 and ground-truth bounding box Bj1 have the highest similarity among all the “anchor
box–ground-truth bounding box” pairings. Next, discard all elements in the i1th row and the j1th
column in the matrix X. Find the largest remaining element in the matrix X and record the row
index and column index of the element as i2, j2. We assign ground-truth bounding box Bj2 to
anchor box Ai2 and then discard all elements in the i2th row and the j2th column in the matrix X.
At this point, elements in two rows and two columns in the matrix X have been discarded.

We proceed until all elements in the nb column in the matrixX are discarded. At this time, we have
assigned a ground-truth bounding box to each of the nb anchor boxes. Next, we only traverse the
remaining na − nb anchor boxes. Given anchor box Ai, find the bounding box Bj with the largest
IoU with Ai according to the ith row of the matrix X, and only assign ground-truth bounding box
Bj to anchor box Ai when the IoU is greater than the predetermined threshold.

As shown in Fig. 13.4.2 (left), assuming that the maximum value in the matrix X is x23, we will
assign ground-truth bounding box B3 to anchor box A2. Then, we discard all the elements in
row 2 and column 3 of the matrix, find the largest element x71 of the remaining shaded area, and
assign ground-truth bounding box B1 to anchor box A7. Then, as shown in Fig. 13.4.2 (middle),
discard all the elements in row 7 and column 1 of the matrix, find the largest element x54 of the
remaining shaded area, and assign ground-truth bounding box B4 to anchor box A5. Finally, as
shown in Fig. 13.4.2 (right), discard all the elements in row 5 and column 4 of the matrix, find the
largest element x92 of the remaining shaded area, and assign ground-truth bounding box B2 to
anchor box A9. After that, we only need to traverse the remaining anchor boxes of A2, A5, A7, A9

and determine whether to assign ground-truth bounding boxes to the remaining anchor boxes
according to the threshold.

13.4. Anchor Boxes 557

Fig. 13.4.2: Assign ground-truth bounding boxes to anchor boxes.

Now we can label the categories and offsets of the anchor boxes. If an anchor box A is assigned
ground-truth bounding box B, the category of the anchor box A is set to the category of B. And
the offset of the anchor box A is set according to the relative position of the central coordinates of
B and A and the relative sizes of the two boxes. Because the positions and sizes of various boxes
in the dataset may vary, these relative positions and relative sizes usually require some special
transformations to make the offset distribution more uniform and easier to fit. Assume the center
coordinates of anchor box A and its assigned ground-truth bounding box B are (xa, ya), (xb, yb),
the widths of A and B are wa, wb, and their heights are ha, hb, respectively. In this case, a common
technique is to label the offset of A as(

xb−xa

wa
− µx

σx
,

yb−ya
ha
− µy

σy
,

log wb
wa
− µw

σw
,

log hb
ha
− µh

σh

)
, (13.4.3)

The default values of the constant are µx = µy = µw = µh = 0, σx = σy = 0.1, andσw = σh = 0.2.
If an anchor box is not assigned a ground-truth bounding box, we only need to set the category of
the anchor box to background. Anchor boxes whose category is background are often referred to
as negative anchor boxes, and the rest are referred to as positive anchor boxes.

Below we demonstrate a detailed example. We define ground-truth bounding boxes for the cat and
dog in the read image, where the first element is category (0 for dog, 1 for cat) and the remaining
four elements are the x, y axis coordinates at top-left corner and x, y axis coordinates at lower-
right corner (the value range is between 0 and 1). Here, we construct five anchor boxes to be
labeled by the coordinates of the upper-left corner and the lower-right corner, which are recorded
as A0, . . . , A4, respectively (the index in the program starts from 0). First, draw the positions of
these anchor boxes and the ground-truth bounding boxes in the image.

ground_truth = np.array([[0, 0.1, 0.08, 0.52, 0.92],
[1, 0.55, 0.2, 0.9, 0.88]])

anchors = np.array([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
[0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],

(continues on next page)

558 Chapter 13. Computer Vision

(continued from previous page)

[0.57, 0.3, 0.92, 0.9]])

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

We can label categories and offsets for anchor boxes by using the MultiBoxTarget function in the
contrib.nd module. This function sets the background category to 0 and increments the integer
index of the target category from zero by 1 (1 for dog and 2 for cat). We add example dimensions to
the anchor boxes and ground-truth bounding boxes and construct random predicted results with
a shape of (batch size, number of categories including background, number of anchor boxes) by
using the expand_dims function.

labels = npx.multibox_target(np.expand_dims(anchors, axis=0),
np.expand_dims(ground_truth, axis=0),
np.zeros((1, 3, 5)))

There are three items in the returned result, all of which are in the ndarray format. The third item
is represented by the category labeled for the anchor box.

labels[2]

array([[0., 1., 2., 0., 2.]])

We analyze these labelled categories based on positions of anchor boxes and ground-truth bound-
ing boxes in the image. First, in all “anchor box–ground-truth bounding box” pairs, the IoU of
anchor box A4 to the ground-truth bounding box of the cat is the largest, so the category of an-
chor box A4 is labeled as cat. Without considering anchor box A4 or the ground-truth bounding
box of the cat, in the remaining “anchor box–ground-truth bounding box” pairs, the pair with the
largest IoU is anchor box A1 and the ground-truth bounding box of the dog, so the category of
anchor box A1 is labeled as dog. Next, traverse the remaining three unlabeled anchor boxes. The
category of the ground-truth bounding box with the largest IoU with anchor box A0 is dog, but
the IoU is smaller than the threshold (the default is 0.5), so the category is labeled as background;
the category of the ground-truth bounding box with the largest IoU with anchor box A2 is cat and
the IoU is greater than the threshold, so the category is labeled as cat; the category of the ground-

13.4. Anchor Boxes 559

truth bounding box with the largest IoU with anchor box A3 is cat, but the IoU is smaller than the
threshold, so the category is labeled as background.

The second item of the return value is a mask variable, with the shape of (batch size, four times
the number of anchor boxes). The elements in the mask variable correspond one-to-one with the
four offset values of each anchor box. Because we do not care about background detection, offsets
of the negative class should not affect the target function. By multiplying by element, the 0 in the
mask variable can filter out negative class offsets before calculating target function.

labels[1]

array([[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0.,
1., 1., 1., 1.]])

The first item returned is the four offset values labeled for each anchor box, with the offsets of
negative class anchor boxes labeled as 0.

labels[0]

array([[0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 1.40e+00, 1.00e+01,
2.59e+00, 7.18e+00, -1.20e+00, 2.69e-01, 1.68e+00, -1.57e+00,
0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, -5.71e-01, -1.00e+00,
-8.94e-07, 6.26e-01]])

13.4.4 Bounding Boxes for Prediction

During model prediction phase, we first generate multiple anchor boxes for the image and then
predict categories and offsets for these anchor boxes one by one. Then, we obtain prediction
bounding boxes based on anchor boxes and their predicted offsets. When there are many anchor
boxes, many similar prediction bounding boxes may be output for the same target. To simplify
the results, we can remove similar prediction bounding boxes. A commonly used method is called
non-maximum suppression (NMS).

Let s̓ take a look at how NMS works. For a prediction bounding box B, the model calculates the
predicted probability for each category. Assume the largest predicted probability is p, the cat-
egory corresponding to this probability is the predicted category of B. We also refer to p as the
confidence level of prediction bounding box B. On the same image, we sort the prediction bound-
ing boxes with predicted categories other than background by confidence level from high to low,
and obtain the list L. Select the prediction bounding box B1 with highest confidence level from
L as a baseline and remove all non-benchmark prediction bounding boxes with an IoU with B1

greater than a certain threshold from L. The threshold here is a preset hyperparameter. At this
point, L retains the prediction bounding box with the highest confidence level and removes other
prediction bounding boxes similar to it. Next, select the prediction bounding box B2 with the
second highest confidence level from L as a baseline, and remove all non-benchmark prediction
bounding boxes with an IoU with B2 greater than a certain threshold from L. Repeat this process
until all prediction bounding boxes in L have been used as a baseline. At this time, the IoU of any
pair of prediction bounding boxes in L is less than the threshold. Finally, output all prediction
bounding boxes in the list L.

Next, we will look at a detailed example. First, construct four anchor boxes. For the sake of sim-
plicity, we assume that predicted offsets are all 0. This means that the prediction bounding boxes

560 Chapter 13. Computer Vision

are anchor boxes. Finally, we construct a predicted probability for each category.

anchors = np.array([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
[0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])

offset_preds = np.array([0] * anchors.size)
cls_probs = np.array([[0] * 4, # Predicted probability for background

[0.9, 0.8, 0.7, 0.1], # Predicted probability for dog
[0.1, 0.2, 0.3, 0.9]]) # Predicted probability for cat

Print prediction bounding boxes and their confidence levels on the image.

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,

['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

We use the MultiBoxDetection function of the contrib.nd module to perform NMS and set the
threshold to 0.5. This adds an example dimension to the ndarray input. We can see that the shape
of the returned result is (batch size, number of anchor boxes, 6). The 6 elements of each row
represent the output information for the same prediction bounding box. The first element is the
predicted category index, which starts from 0 (0 is dog, 1 is cat). The value -1 indicates background
or removal in NMS. The second element is the confidence level of prediction bounding box. The
remaining four elements are the x, y axis coordinates of the upper-left corner and the x, y axis
coordinates of the lower-right corner of the prediction bounding box (the value range is between
0 and 1).

output = npx.multibox_detection(
np.expand_dims(cls_probs, axis=0),
np.expand_dims(offset_preds, axis=0),
np.expand_dims(anchors, axis=0),
nms_threshold=0.5)

output

array([[[0. , 0.9 , 0.1 , 0.08, 0.52, 0.92],
[1. , 0.9 , 0.55, 0.2 , 0.9 , 0.88],
[-1. , 0.8 , 0.08, 0.2 , 0.56, 0.95],
[-1. , 0.7 , 0.15, 0.3 , 0.62, 0.91]]])

We remove the prediction bounding boxes of category -1 and visualize the results retained by NMS.

13.4. Anchor Boxes 561

fig = d2l.plt.imshow(img)
for i in output[0].asnumpy():

if i[0] == -1:
continue

label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
show_bboxes(fig.axes, [np.array(i[2:]) * bbox_scale], label)

In practice, we can remove prediction bounding boxes with lower confidence levels before per-
forming NMS, thereby reducing the amount of computation for NMS. We can also filter the output
of NMS, for example, by only retaining results with higher confidence levels as the final output.

Summary

• We generate multiple anchor boxes with different sizes and aspect ratios, centered on each
pixel.

• IoU, also called Jaccard index, measures the similarity of two bounding boxes. It is the ratio
of the intersecting area to the union area of two bounding boxes.

• In the training set, we mark two types of labels for each anchor box: one is the category of the
target contained in the anchor box and the other is the offset of the ground-truth bounding
box relative to the anchor box.

• When predicting, we can use non-maximum suppression (NMS) to remove similar predic-
tion bounding boxes, thereby simplifying the results.

Exercises

1. Change the sizes and ratios values in contrib.nd.MultiBoxPrior and observe the changes
to the generated anchor boxes.

2. Construct two bounding boxes with and IoU of 0.5, and observe their coincidence.

3. Verify the output of offset labels[0] by marking the anchor box offsets as defined in this
section (the constant is the default value).

4. Modify the variable anchors in the “Labeling Training Set Anchor Boxes” and “Output Bound-
ing Boxes for Prediction” sections. How do the results change?

562 Chapter 13. Computer Vision

13.5 Multiscale Object Detection

In Section 13.4, we generated multiple anchor boxes centered on each pixel of the input image.
These anchor boxes are used to sample different regions of the input image. However, if anchor
boxes are generated centered on each pixel of the image, soon there will be too many anchor boxes
for us to compute. For example, we assume that the input image has a height and a width of 561
and 728 pixels respectively. If five different shapes of anchor boxes are generated centered on
each pixel, over two million anchor boxes (561× 728× 5) need to be predicted and labeled on the
image.

It is not difficult to reduce the number of anchor boxes. An easy way is to apply uniform sampling
on a small portion of pixels from the input image and generate anchor boxes centered on the sam-
pled pixels. In addition, we can generate anchor boxes of varied numbers and sizes on multiple
scales. Notice that smaller objects are more likely to be positioned on the image than larger ones.
Here, we will use a simple example: Objects with shapes of 1 × 1, 1 × 2, and 2 × 2 may have 4, 2,
and 1 possible position(s) on an image with the shape 2×2. Therefore, when using smaller anchor
boxes to detect smaller objects, we can sample more regions; when using larger anchor boxes to
detect larger objects, we can sample fewer regions.

To demonstrate how to generate anchor boxes on multiple scales, let s̓ read an image first. It has
a height and width of 561× 728 pixels.

%matplotlib inline
import d2l
from mxnet import contrib, image, np, npx

npx.set_np()

img = image.imread('../img/catdog.jpg')
h, w = img.shape[0:2]
h, w

(561, 728)

In Section 6.2, the 2D array output of the convolutional neural network (CNN) is called a feature
map. We can determine the midpoints of anchor boxes uniformly sampled on any image by defin-
ing the shape of the feature map.

The function display_anchors is defined below. We are going to generate anchor boxes anchors
centered on each unit (pixel) on the feature map fmap. Since the coordinates of axes x and y in
anchor boxes anchors have been divided by the width and height of the feature map fmap, values
between 0 and 1 can be used to represent relative positions of anchor boxes in the feature map.
Since the midpoints of anchor boxes anchors overlap with all the units on feature map fmap, the
relative spatial positions of the midpoints of the anchors on any image must have a uniform dis-
tribution. Specifically, when the width and height of the feature map are set to fmap_w and fmap_h
respectively, the function will conduct uniform sampling for fmap_h rows and fmap_w columns of

13.5. Multiscale Object Detection 563

pixels and use them as midpoints to generate anchor boxes with size s (we assume that the length
of list s is 1) and different aspect ratios (ratios).

def display_anchors(fmap_w, fmap_h, s):
d2l.set_figsize((3.5, 2.5))
The values from the first two dimensions will not affect the output
fmap = np.zeros((1, 10, fmap_w, fmap_h))
anchors = npx.multibox_prior(fmap, sizes=s, ratios=[1, 2, 0.5])
bbox_scale = np.array((w, h, w, h))
d2l.show_bboxes(d2l.plt.imshow(img.asnumpy()).axes,

anchors[0] * bbox_scale)

We will first focus on the detection of small objects. In order to make it easier to distinguish upon
display, the anchor boxes with different midpoints here do not overlap. We assume that the size
of the anchor boxes is 0.15 and the height and width of the feature map are 4. We can see that the
midpoints of anchor boxes from the 4 rows and 4 columns on the image are uniformly distributed.

display_anchors(fmap_w=4, fmap_h=4, s=[0.15])

We are going to reduce the height and width of the feature map by half and use a larger anchor
box to detect larger objects. When the size is set to 0.4, overlaps will occur between regions of
some anchor boxes.

display_anchors(fmap_w=2, fmap_h=2, s=[0.4])

564 Chapter 13. Computer Vision

Finally, we are going to reduce the height and width of the feature map by half and increase the
anchor box size to 0.8. Now the midpoint of the anchor box is the center of the image.

display_anchors(fmap_w=1, fmap_h=1, s=[0.8])

Since we have generated anchor boxes of different sizes on multiple scales, we will use them to
detect objects of various sizes at different scales. Now we are going to introduce a method based
on convolutional neural networks (CNNs).

At a certain scale, suppose we generate h×w sets of anchor boxes with different midpoints based
on ci feature maps with the shape h × w and the number of anchor boxes in each set is a. For
example, for the first scale of the experiment, we generate 16 sets of anchor boxes with different
midpoints based on 10 (number of channels) feature maps with a shape of 4 × 4, and each set
contains 3 anchor boxes. Next, each anchor box is labeled with a category and offset based on
the classification and position of the ground-truth bounding box. At the current scale, the object
detection model needs to predict the category and offset ofh×w sets of anchor boxes with different
midpoints based on the input image.

We assume that the ci feature maps are the intermediate output of the CNN based on the input
image. Since each feature map has h×w different spatial positions, the same position will have ci
units. According to the definition of receptive field in the Section 6.2, the ci units of the feature map
at the same spatial position have the same receptive field on the input image. Thus, they represent
the information of the input image in this same receptive field. Therefore, we can transform the ci
units of the feature map at the same spatial position into the categories and offsets of the a anchor
boxes generated using that position as a midpoint. It is not hard to see that, in essence, we use the
information of the input image in a certain receptive field to predict the category and offset of the
anchor boxes close to the field on the input image.

When the feature maps of different layers have receptive fields of different sizes on the input im-
age, they are used to detect objects of different sizes. For example, we can design a network to
have a wider receptive field for each unit in the feature map that is closer to the output layer, to
detect objects with larger sizes in the input image.

We will implement a multiscale object detection model in the following section.

13.5. Multiscale Object Detection 565

Summary

• We can generate anchor boxes with different numbers and sizes on multiple scales to detect
objects of different sizes on multiple scales.

• The shape of the feature map can be used to determine the midpoint of the anchor boxes
that uniformly sample any image.

• We use the information for the input image from a certain receptive field to predict the cat-
egory and offset of the anchor boxes close to that field on the image.

Exercises

1. Given an input image, assume 1× ci×h×w to be the shape of the feature map while ci, h, w
are the number, height, and width of the feature map. What methods can you think of to
convert this variable into the anchor box s̓ category and offset? What is the shape of the
output?

13.6 The Object Detection Dataset (Pikachu)

There are no small datasets, like MNIST or Fashion-MNIST, in the object detection field. In order
to quickly test models, we are going to assemble a small dataset. First, we generate 1000 Pikachu
images of different angles and sizes using an open source 3D Pikachu model. Then, we collect
a series of background images and place a Pikachu image at a random position on each image.
We use the im2rec tool202 provided by MXNet to convert the images to binary RecordIO format[1].
This format can reduce the storage overhead of the dataset on the disk and improve the reading
efficiency. If you want to learn more about how to read images, refer to the documentation for the
GluonCV Toolkit203.

13.6.1 Downloading the Dataset

The Pikachu dataset in RecordIO format can be downloaded directly from the Internet. The op-
eration for downloading the dataset is defined in the function _download_pikachu.

%matplotlib inline
import d2l
from mxnet import gluon, image, np, npx
import os

npx.set_np()

(continues on next page)

202 https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py
203 https://gluon-cv.mxnet.io/

566 Chapter 13. Computer Vision

https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py
https://gluon-cv.mxnet.io/

(continued from previous page)

Saved in the d2l package for later use
def download_pikachu(data_dir):

root_url = ('https://apache-mxnet.s3-accelerate.amazonaws.com/'
'gluon/dataset/pikachu/')

dataset = {'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8',
'train.idx': 'dcf7318b2602c06428b9988470c731621716c393',
'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520'}

for k, v in dataset.items():
gluon.utils.download(

root_url + k, os.path.join(data_dir, k), sha1_hash=v)

13.6.2 Reading the Dataset

We are going to read the object detection dataset by creating the instance ImageDetIter. The “Det”
in the name refers to Detection. We will read the training dataset in random order. Since the for-
mat of the dataset is RecordIO, we need the image index file 'train.idx' to read random mini-
batches. In addition, for each image of the training set, we will use random cropping and require
the cropped image to cover at least 95% of each object. Since the cropping is random, this re-
quirement is not always satisfied. We preset the maximum number of random cropping attempts
to 200. If none of them meets the requirement, the image will not be cropped. To ensure the cer-
tainty of the output, we will not randomly crop the images in the test dataset. We also do not need
to read the test dataset in random order.

Saved in the d2l package for later use
def load_data_pikachu(batch_size, edge_size=256):

"""Load the pikachu dataset"""
data_dir = '../data/pikachu'
download_pikachu(data_dir)
train_iter = image.ImageDetIter(

path_imgrec=os.path.join(data_dir, 'train.rec'),
path_imgidx=os.path.join(data_dir, 'train.idx'),
batch_size=batch_size,
data_shape=(3, edge_size, edge_size), # The shape of the output image
shuffle=True, # Read the dataset in random order
rand_crop=1, # The probability of random cropping is 1
min_object_covered=0.95, max_attempts=200)

val_iter = image.ImageDetIter(
path_imgrec=os.path.join(data_dir, 'val.rec'), batch_size=batch_size,
data_shape=(3, edge_size, edge_size), shuffle=False)

return train_iter, val_iter

Below, we read a minibatch and print the shape of the image and label. The shape of the image
is the same as in the previous experiment (batch size, number of channels, height, width). The
shape of the label is (batch size, m, 5), where m is equal to the maximum number of bounding
boxes contained in a single image in the dataset. Although computation for the minibatch is very
efficient, it requires each image to contain the same number of bounding boxes so that they can be
placed in the same batch. Since each image may have a different number of bounding boxes, we
can add illegal bounding boxes to images that have less than m bounding boxes until each image
containsm bounding boxes. Thus, we can read a minibatch of images each time. The label of each
bounding box in the image is represented by an array of length 5. The first element in the array is
the category of the object contained in the bounding box. When the value is -1, the bounding box

13.6. The Object Detection Dataset (Pikachu) 567

is an illegal bounding box for filling purpose. The remaining four elements of the array represent
the x, y axis coordinates of the upper-left corner of the bounding box and the x, y axis coordinates
of the lower-right corner of the bounding box (the value range is between 0 and 1). The Pikachu
dataset here has only one bounding box per image, so m = 1.

batch_size, edge_size = 32, 256
train_iter, _ = load_data_pikachu(batch_size, edge_size)
batch = train_iter.next()
batch.data[0].shape, batch.label[0].shape

Downloading ../data/pikachu/train.rec from https://apache-mxnet.s3-accelerate.amazonaws.com/
↪→gluon/dataset/pikachu/train.rec...
Downloading ../data/pikachu/train.idx from https://apache-mxnet.s3-accelerate.amazonaws.com/
↪→gluon/dataset/pikachu/train.idx...
Downloading ../data/pikachu/val.rec from https://apache-mxnet.s3-accelerate.amazonaws.com/
↪→gluon/dataset/pikachu/val.rec...

((32, 3, 256, 256), (32, 1, 5))

13.6.3 Demonstration

We have ten images with bounding boxes on them. We can see that the angle, size, and position of
Pikachu are different in each image. Of course, this is a simple artificial dataset. In actual practice,
the data are usually much more complicated.

imgs = (batch.data[0][0:10].transpose(0, 2, 3, 1)) / 255
axes = d2l.show_images(imgs, 2, 5, scale=2)
for ax, label in zip(axes, batch.label[0][0:10]):

d2l.show_bboxes(ax, [label[0][1:5] * edge_size], colors=['w'])

568 Chapter 13. Computer Vision

Summary

• The Pikachu dataset we synthesized can be used to test object detection models.

• The data reading for object detection is similar to that for image classification. However,
after we introduce bounding boxes, the label shape and image augmentation (e.g., random
cropping) are changed.

Exercises

1. Referring to the MXNet documentation, what are the parameters for the constructors of the
image.ImageDetIter and image.CreateDetAugmenter classes? What is their significance?

13.7 Single Shot Multibox Detection (SSD)

In the previous few sections, we have introduced bounding boxes, anchor boxes, multiscale ob-
ject detection, and datasets. Now, we will use this background knowledge to construct an object
detection model: single shot multibox detection (SSD) (Liu et al., 2016). This quick and easy model
is already widely used. Some of the design concepts and implementation details of this model are
also applicable to other object detection models.

13.7.1 Model

Fig. 13.7.1 shows the design of an SSD model. The model s̓ main components are a base network
block and several multiscale feature blocks connected in a series. Here, the base network block is
used to extract features of original images, and it generally takes the form of a deep convolutional
neural network. The paper on SSDs chooses to place a truncated VGG before the classification
layer (Liu et al., 2016), but this is now commonly replaced by ResNet. We can design the base
network so that it outputs larger heights and widths. In this way, more anchor boxes are gen-
erated based on this feature map, allowing us to detect smaller objects. Next, each multiscale
feature block reduces the height and width of the feature map provided by the previous layer (for
example, it may reduce the sizes by half). The blocks then use each element in the feature map to
expand the receptive field on the input image. In this way, the closer a multiscale feature block
is to the top of Fig. 13.7.1 the smaller its output feature map, and the fewer the anchor boxes that
are generated based on the feature map. In addition, the closer a feature block is to the top, the
larger the receptive field of each element in the feature map and the better suited it is to detect
larger objects. As the SSD generates different numbers of anchor boxes of different sizes based
on the base network block and each multiscale feature block and then predicts the categories and
offsets (i.e., predicted bounding boxes) of the anchor boxes in order to detect objects of different
sizes, SSD is a multiscale object detection model.

13.7. Single Shot Multibox Detection (SSD) 569

Fig. 13.7.1: The SSD is composed of a base network block and several multiscale feature blocks
connected in a series.

Next, we will describe the implementation of the modules in Fig. 13.7.1. First, we need to discuss
the implementation of category prediction and bounding box prediction.

Category Prediction Layer

Set the number of object categories to q. In this case, the number of anchor box categories is
q + 1, with 0 indicating an anchor box that only contains background. For a certain scale, set
the height and width of the feature map to h and w, respectively. If we use each element as the
center to generate a anchor boxes, we need to classify a total of hwa anchor boxes. If we use a
fully connected layer (FCN) for the output, this will likely result in an excessive number of model
parameters. Recall how we used convolutional layer channels to output category predictions in
Section 7.3. SSD uses the same method to reduce the model complexity.

Specifically, the category prediction layer uses a convolutional layer that maintains the input
height and width. Thus, the output and input have a one-to-one correspondence to the spatial
coordinates along the width and height of the feature map. Assuming that the output and input
have the same spatial coordinates (x, y), the channel for the coordinates (x, y) on the output fea-
ture map contains the category predictions for all anchor boxes generated using the input feature
map coordinates (x, y) as the center. Therefore, there are a(q + 1) output channels, with the out-
put channels indexed as i(q+1)+ j (0 ≤ j ≤ q) representing the predictions of the category index
j for the anchor box index i.

Now, we will define a category prediction layer of this type. After we specify the parameters a and
q, it uses a 3× 3 convolutional layer with a padding of 1. The heights and widths of the input and
output of this convolutional layer remain unchanged.

%matplotlib inline
import d2l
from mxnet import autograd, contrib, gluon, image, init, np, npx

(continues on next page)

570 Chapter 13. Computer Vision

(continued from previous page)

from mxnet.gluon import nn

npx.set_np()

def cls_predictor(num_anchors, num_classes):
return nn.Conv2D(num_anchors * (num_classes + 1), kernel_size=3,

padding=1)

Bounding Box Prediction Layer

The design of the bounding box prediction layer is similar to that of the category prediction layer.
The only difference is that, here, we need to predict 4 offsets for each anchor box, rather than q+1
categories.

def bbox_predictor(num_anchors):
return nn.Conv2D(num_anchors * 4, kernel_size=3, padding=1)

Concatenating Predictions for Multiple Scales

As we mentioned, SSD uses feature maps based on multiple scales to generate anchor boxes and
predict their categories and offsets. Because the shapes and number of anchor boxes centered on
the same element differ for the feature maps of different scales, the prediction outputs at different
scales may have different shapes.

In the following example, we use the same batch of data to construct feature maps of two different
scales, Y1 and Y2. Here, Y2 has half the height and half the width of Y1. Using category prediction
as an example, we assume that each element in the Y1 and Y2 feature maps generates five (Y1) or
three (Y2) anchor boxes. When there are 10 object categories, the number of category prediction
output channels is either 5 × (10 + 1) = 55 or 3 × (10 + 1) = 33. The format of the prediction
output is (batch size, number of channels, height, width). As you can see, except for the batch
size, the sizes of the other dimensions are different. Therefore, we must transform them into a
consistent format and concatenate the predictions of the multiple scales to facilitate subsequent
computation.

def forward(x, block):
block.initialize()
return block(x)

Y1 = forward(np.zeros((2, 8, 20, 20)), cls_predictor(5, 10))
Y2 = forward(np.zeros((2, 16, 10, 10)), cls_predictor(3, 10))
(Y1.shape, Y2.shape)

((2, 55, 20, 20), (2, 33, 10, 10))

The channel dimension contains the predictions for all anchor boxes with the same center. We
first move the channel dimension to the final dimension. Because the batch size is the same for
all scales, we can convert the prediction results to binary format (batch size, height × width ×
number of channels) to facilitate subsequent concatenation on the 1st dimension.

13.7. Single Shot Multibox Detection (SSD) 571

def flatten_pred(pred):
return npx.batch_flatten(pred.transpose(0, 2, 3, 1))

def concat_preds(preds):
return np.concatenate([flatten_pred(p) for p in preds], axis=1)

Thus, regardless of the different shapes of Y1 and Y2, we can still concatenate the prediction results
for the two different scales of the same batch.

concat_preds([Y1, Y2]).shape

(2, 25300)

Height andWidth Downsample Block

For multiscale object detection, we define the following down_sample_blk block, which reduces
the height and width by 50%. This block consists of two 3× 3 convolutional layers with a padding
of 1 and a 2× 2 maximum pooling layer with a stride of 2 connected in a series. As we know, 3× 3
convolutional layers with a padding of 1 do not change the shape of feature maps. However, the
subsequent pooling layer directly reduces the size of the feature map by half. Because 1 × 2 +
(3 − 1) + (3 − 1) = 6, each element in the output feature map has a receptive field on the input
feature map of the shape 6× 6. As you can see, the height and width downsample block enlarges
the receptive field of each element in the output feature map.

def down_sample_blk(num_channels):
blk = nn.Sequential()
for _ in range(2):

blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1),
nn.BatchNorm(in_channels=num_channels),
nn.Activation('relu'))

blk.add(nn.MaxPool2D(2))
return blk

By testing forward computation in the height and width downsample block, we can see that it
changes the number of input channels and halves the height and width.

forward(np.zeros((2, 3, 20, 20)), down_sample_blk(10)).shape

(2, 10, 10, 10)

572 Chapter 13. Computer Vision

Base Network Block

The base network block is used to extract features from original images. To simplify the compu-
tation, we will construct a small base network. This network consists of three height and width
downsample blocks connected in a series, so it doubles the number of channels at each step.
When we input an original image with the shape 256 × 256, the base network block outputs a
feature map with the shape 32× 32.

def base_net():
blk = nn.Sequential()
for num_filters in [16, 32, 64]:

blk.add(down_sample_blk(num_filters))
return blk

forward(np.zeros((2, 3, 256, 256)), base_net()).shape

(2, 64, 32, 32)

The Complete Model

The SSD model contains a total of five modules. Each module outputs a feature map used to gen-
erate anchor boxes and predict the categories and offsets of these anchor boxes. The first module
is the base network block, modules two to four are height and width downsample blocks, and the
fifth module is a global maximum pooling layer that reduces the height and width to 1. Therefore,
modules two to five are all multiscale feature blocks shown in Fig. 13.7.1.

def get_blk(i):
if i == 0:

blk = base_net()
elif i == 4:

blk = nn.GlobalMaxPool2D()
else:

blk = down_sample_blk(128)
return blk

Now, we will define the forward computation process for each module. In contrast to the
previously-described convolutional neural networks, this module not only returns feature map
Y output by convolutional computation, but also the anchor boxes of the current scale generated
from Y and their predicted categories and offsets.

def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):
Y = blk(X)
anchors = npx.multibox_prior(Y, sizes=size, ratios=ratio)
cls_preds = cls_predictor(Y)
bbox_preds = bbox_predictor(Y)
return (Y, anchors, cls_preds, bbox_preds)

As we mentioned, the closer a multiscale feature block is to the top in Fig. 13.7.1, the larger the
objects it detects and the larger the anchor boxes it must generate. Here, we first divide the interval
from 0.2 to 1.05 into five equal parts to determine the sizes of smaller anchor boxes at different
scales: 0.2, 0.37, 0.54, etc. Then, according to

√
0.2× 0.37 = 0.272,

√
0.37× 0.54 = 0.447, and

similar formulas, we determine the sizes of larger anchor boxes at the different scales.

13.7. Single Shot Multibox Detection (SSD) 573

sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],
[0.88, 0.961]]

ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1

Now, we can define the complete model, TinySSD.

class TinySSD(nn.Block):
def __init__(self, num_classes, **kwargs):

super(TinySSD, self).__init__(**kwargs)
self.num_classes = num_classes
for i in range(5):

The assignment statement is self.blk_i = get_blk(i)
setattr(self, 'blk_%d' % i, get_blk(i))
setattr(self, 'cls_%d' % i, cls_predictor(num_anchors,

num_classes))
setattr(self, 'bbox_%d' % i, bbox_predictor(num_anchors))

def forward(self, X):
anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5
for i in range(5):

getattr(self, 'blk_%d' % i) accesses self.blk_i
X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(

X, getattr(self, 'blk_%d' % i), sizes[i], ratios[i],
getattr(self, 'cls_%d' % i), getattr(self, 'bbox_%d' % i))

In the reshape function, 0 indicates that the batch size remains
unchanged
anchors = np.concatenate(anchors, axis=1)
cls_preds = concat_preds(cls_preds)
cls_preds = cls_preds.reshape(

cls_preds.shape[0], -1, self.num_classes + 1)
bbox_preds = concat_preds(bbox_preds)
return anchors, cls_preds, bbox_preds

We now create an SSD model instance and use it to perform forward computation on image mini-
batch X, which has a height and width of 256 pixels. As we verified previously, the first module
outputs a feature map with the shape 32× 32. Because modules two to four are height and width
downsample blocks, module five is a global pooling layer, and each element in the feature map is
used as the center for 4 anchor boxes, a total of (322 + 162 + 82 + 42 + 1)× 4 = 5444 anchor boxes
are generated for each image at the five scales.

net = TinySSD(num_classes=1)
net.initialize()
X = np.zeros((32, 3, 256, 256))
anchors, cls_preds, bbox_preds = net(X)

print('output anchors:', anchors.shape)
print('output class preds:', cls_preds.shape)
print('output bbox preds:', bbox_preds.shape)

output anchors: (1, 5444, 4)
output class preds: (32, 5444, 2)
output bbox preds: (32, 21776)

574 Chapter 13. Computer Vision

13.7.2 Training

Now, we will explain, step by step, how to train the SSD model for object detection.

Data Reading and Initialization

We read the Pikachu dataset we created in the previous section.

batch_size = 32
train_iter, _ = d2l.load_data_pikachu(batch_size)

There is 1 category in the Pikachu dataset. After defining the module, we need to initialize the
model parameters and define the optimization algorithm.

ctx, net = d2l.try_gpu(), TinySSD(num_classes=1)
net.initialize(init=init.Xavier(), ctx=ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd',

{'learning_rate': 0.2, 'wd': 5e-4})

Defining Loss and Evaluation Functions

Object detection is subject to two types of losses. The first is anchor box category loss. For this, we
can simply reuse the cross-entropy loss function we used in image classification. The second loss
is positive anchor box offset loss. Offset prediction is a normalization problem. However, here,
we do not use the squared loss introduced previously. Rather, we use the L1 norm loss, which
is the absolute value of the difference between the predicted value and the ground-truth value.
The mask variable bbox_masks removes negative anchor boxes and padding anchor boxes from
the loss calculation. Finally, we add the anchor box category and offset losses to find the final loss
function for the model.

cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()
bbox_loss = gluon.loss.L1Loss()

def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
cls = cls_loss(cls_preds, cls_labels)
bbox = bbox_loss(bbox_preds * bbox_masks, bbox_labels * bbox_masks)
return cls + bbox

We can use the accuracy rate to evaluate the classification results. As we use the L1 norm loss, we
will use the average absolute error to evaluate the bounding box prediction results.

def cls_eval(cls_preds, cls_labels):
Because the category prediction results are placed in the final
dimension, argmax must specify this dimension
return float((cls_preds.argmax(axis=-1) == cls_labels).sum())

def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
return float((np.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())

13.7. Single Shot Multibox Detection (SSD) 575

Training the Model

During model training, we must generate multiscale anchor boxes (anchors) in the model s̓ for-
ward computation process and predict the category (cls_preds) and offset (bbox_preds) for each
anchor box. Afterwards, we label the category (cls_labels) and offset (bbox_labels) of each gen-
erated anchor box based on the label information Y. Finally, we calculate the loss function using
the predicted and labeled category and offset values. To simplify the code, we do not evaluate the
training dataset here.

num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],

legend=['class error', 'bbox mae'])
for epoch in range(num_epochs):

accuracy_sum, mae_sum, num_examples, num_labels
metric = d2l.Accumulator(4)
train_iter.reset() # Read data from the start.
for batch in train_iter:

timer.start()
X = batch.data[0].as_in_context(ctx)
Y = batch.label[0].as_in_context(ctx)
with autograd.record():

Generate multiscale anchor boxes and predict the category and
offset of each
anchors, cls_preds, bbox_preds = net(X)
Label the category and offset of each anchor box
bbox_labels, bbox_masks, cls_labels = npx.multibox_target(

anchors, Y, cls_preds.transpose(0, 2, 1))
Calculate the loss function using the predicted and labeled
category and offset values
l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,

bbox_masks)
l.backward()
trainer.step(batch_size)
metric.add(cls_eval(cls_preds, cls_labels), cls_labels.size,

bbox_eval(bbox_preds, bbox_labels, bbox_masks),
bbox_labels.size)

cls_err, bbox_mae = 1-metric[0]/metric[1], metric[2]/metric[3]
animator.add(epoch+1, (cls_err, bbox_mae))

print('class err %.2e, bbox mae %.2e' % (cls_err, bbox_mae))
print('%.1f exampes/sec on %s' % (train_iter.num_image/timer.stop(), ctx))

class err 2.38e-03, bbox mae 2.63e-03
4249.8 exampes/sec on gpu(0)

576 Chapter 13. Computer Vision

13.7.3 Prediction

In the prediction stage, we want to detect all objects of interest in the image. Below, we read the
test image and transform its size. Then, we convert it to the four-dimensional format required by
the convolutional layer.

img = image.imread('../img/pikachu.jpg')
feature = image.imresize(img, 256, 256).astype('float32')
X = np.expand_dims(feature.transpose(2, 0, 1), axis=0)

Using the MultiBoxDetection function, we predict the bounding boxes based on the anchor boxes
and their predicted offsets. Then, we use non-maximum suppression to remove similar bounding
boxes.

def predict(X):
anchors, cls_preds, bbox_preds = net(X.as_in_context(ctx))
cls_probs = npx.softmax(cls_preds).transpose(0, 2, 1)
output = npx.multibox_detection(cls_probs, bbox_preds, anchors)
idx = [i for i, row in enumerate(output[0]) if row[0] != -1]
return output[0, idx]

output = predict(X)

Finally, we take all the bounding boxes with a confidence level of at least 0.3 and display them as
the final output.

def display(img, output, threshold):
d2l.set_figsize((5, 5))
fig = d2l.plt.imshow(img.asnumpy())
for row in output:

score = float(row[1])
if score < threshold:

continue
h, w = img.shape[0:2]
bbox = [row[2:6] * np.array((w, h, w, h), ctx=row.context)]
d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')

display(img, output, threshold=0.3)

13.7. Single Shot Multibox Detection (SSD) 577

Summary

• SSD is a multiscale object detection model. This model generates different numbers of an-
chor boxes of different sizes based on the base network block and each multiscale feature
block and predicts the categories and offsets of the anchor boxes to detect objects of different
sizes.

• During SSD model training, the loss function is calculated using the predicted and labeled
category and offset values.

Exercises

1. Due to space limitations, we have ignored some of the implementation details of SSD models
in this experiment. Can you further improve the model in the following areas?

Loss Function

For the predicted offsets, replace L1 norm loss with L1 regularization loss. This loss function uses
a square function around zero for greater smoothness. This is the regularized area controlled by
the hyperparameter σ:

f(x) =

{
(σx)2/2, if |x| < 1/σ2

|x| − 0.5/σ2, otherwise
(13.7.1)

When σ is large, this loss is similar to the L1 norm loss. When the value is small, the loss function
is smoother.

578 Chapter 13. Computer Vision

sigmas = [10, 1, 0.5]
lines = ['-', '--', '-.']
x = np.arange(-2, 2, 0.1)
d2l.set_figsize()

for l, s in zip(lines, sigmas):
y = npx.smooth_l1(x, scalar=s)
d2l.plt.plot(x.asnumpy(), y.asnumpy(), l, label='sigma=%.1f' % s)

d2l.plt.legend();

In the experiment, we used cross-entropy loss for category prediction. Now, assume that the pre-
diction probability of the actual category j is pj and the cross-entropy loss is− log pj. We can also
use the focal loss (Lin et al., 2017). Given the positive hyper-parameters γ andα, this loss is defined
as:

−α(1− pj)
γ log pj . (13.7.2)

As you can see, by increasing γ, we can effectively reduce the loss when the probability of predict-
ing the correct category is high.

def focal_loss(gamma, x):
return -(1 - x) ** gamma * np.log(x)

x = np.arange(0.01, 1, 0.01)
for l, gamma in zip(lines, [0, 1, 5]):

y = d2l.plt.plot(x.asnumpy(), focal_loss(gamma, x).asnumpy(), l,
label='gamma=%.1f' % gamma)

d2l.plt.legend();

13.7. Single Shot Multibox Detection (SSD) 579

Training and Prediction

2. When an object is relatively large compared to the image, the model normally adopts a larger
input image size.

3. This generally produces a large number of negative anchor boxes when labeling anchor box
categories. We can sample the negative anchor boxes to better balance the data categories.
To do this, we can set the MultiBoxTarget functions̓ negative_mining_ratio parameter.

4. Assign hyper-parameters with different weights to the anchor box category loss and positive
anchor box offset loss in the loss function.

5. Refer to the SSD paper. What methods can be used to evaluate the precision of object detec-
tion models (Liu et al., 2016)?

13.8 Region-based CNNs (R-CNNs)

Region-based convolutional neural networks or regions with CNN features (R-CNNs) are a pio-
neering approach that applies deep models to object detection (Girshick et al., 2014). In this sec-
tion, we will discuss R-CNNs and a series of improvements made to them: Fast R-CNN (Girshick,
2015), Faster R-CNN (Ren et al., 2015), and Mask R-CNN (He et al., 2017a). Due to space limitations,
we will confine our discussion to the designs of these models.

580 Chapter 13. Computer Vision

13.8.1 R-CNNs

R-CNN models first select several proposed regions from an image (for example, anchor boxes are
one type of selection method) and then label their categories and bounding boxes (e.g., offsets).
Then, they use a CNN to perform forward computation to extract features from each proposed
area. Afterwards, we use the features of each proposed region to predict their categories and
bounding boxes. Fig. 13.8.1 shows an R-CNN model.

Fig. 13.8.1: R-CNN model.

Specifically, R-CNNs are composed of four main parts:

1. Selective search is performed on the input image to select multiple high-quality proposed
regions (Uijlings et al., 2013). These proposed regions are generally selected on multiple
scales and have different shapes and sizes. The category and ground-truth bounding box of
each proposed region is labeled.

2. A pre-trained CNN is selected and placed, in truncated form, before the output layer. It
transforms each proposed region into the input dimensions required by the network and
uses forward computation to output the features extracted from the proposed regions.

3. The features and labeled category of each proposed region are combined as an example to
train multiple support vector machines for object classification. Here, each support vector
machine is used to determine whether an example belongs to a certain category.

4. The features and labeled bounding box of each proposed region are combined as an example
to train a linear regression model for ground-truth bounding box prediction.

Although R-CNN models use pre-trained CNNs to effectively extract image features, the main
downside is the slow speed. As you can imagine, we can select thousands of proposed regions
from a single image, requiring thousands of forward computations from the CNN to perform ob-
ject detection. This massive computing load means that R-CNNs are not widely used in actual
applications.

13.8. Region-based CNNs (R-CNNs) 581

13.8.2 Fast R-CNN

The main performance bottleneck of an R-CNN model is the need to independently extract fea-
tures for each proposed region. As these regions have a high degree of overlap, independent
feature extraction results in a high volume of repetitive computations. Fast R-CNN improves on
the R-CNN by only performing CNN forward computation on the image as a whole.

Fig. 13.8.2: Fast R-CNN model.

Fig. 13.8.2 shows a Fast R-CNN model. It is primary computation steps are described below:

1. Compared to an R-CNN model, a Fast R-CNN model uses the entire image as the CNN input
for feature extraction, rather than each proposed region. Moreover, this network is gener-
ally trained to update the model parameters. As the input is an entire image, the CNN output
shape is 1× c× h1 × w1.

2. Assuming selective search generates n proposed regions, their different shapes indicate re-
gions of interests (RoIs) of different shapes on the CNN output. Features of the same shapes
must be extracted from these RoIs (here we assume that the height is h2 and the width is
w2). Fast R-CNN introduces RoI pooling, which uses the CNN output and RoIs as input to
output a concatenation of the features extracted from each proposed region with the shape
n× c× h2 × w2.

3. A fully connected layer is used to transform the output shape to n×d, where d is determined
by the model design.

4. During category prediction, the shape of the fully connected layer output is again trans-
formed to n × q and we use softmax regression (q is the number of categories). During
bounding box prediction, the shape of the fully connected layer output is again transformed
ton×4. This means that we predict the category and bounding box for each proposed region.

The RoI pooling layer in Fast R-CNN is somewhat different from the pooling layers we have dis-
cussed before. In a normal pooling layer, we set the pooling window, padding, and stride to con-
trol the output shape. In an RoI pooling layer, we can directly specify the output shape of each
region, such as specifying the height and width of each region as h2, w2. Assuming that the height
and width of the RoI window are h and w, this window is divided into a grid of sub-windows with
the shape h2×w2. The size of each sub-window is about (h/h2)× (w/w2). The sub-window height

582 Chapter 13. Computer Vision

and width must always be integers and the largest element is used as the output for a given sub-
window. This allows the RoI pooling layer to extract features of the same shape from RoIs of
different shapes.

In Fig. 13.8.3, we select an 3× 3 region as an RoI of the 4× 4 input. For this RoI, we use a 2× 2 RoI
pooling layer to obtain a single 2 × 2 output. When we divide the region into four sub-windows,
they respectively contain the elements 0, 1, 4, and 5 (5 is the largest); 2 and 6 (6 is the largest); 8
and 9 (9 is the largest); and 10.

Fig. 13.8.3: 2× 2 RoI pooling layer.

We use the ROIPooling function to demonstrate the RoI pooling layer computation. Assume that
the CNN extracts the feature X with both a height and width of 4 and only a single channel.

from mxnet import np, npx

npx.set_np()

X = np.arange(16).reshape(1, 1, 4, 4)
X

array([[[[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]]]])

Assume that the height and width of the image are both 40 pixels and that selective search gener-
ates two proposed regions on the image. Each region is expressed as five elements: the regions̓
object category and the x, y coordinates of its upper-left and bottom-right corners.

rois = np.array([[0, 0, 0, 20, 20], [0, 0, 10, 30, 30]])

Because the height and width of X are 1/10 of the height and width of the image, the coordinates
of the two proposed regions are multiplied by 0.1 according to the spatial_scale, and then the
RoIs are labeled on X as X[:, :, 0:3, 0:3] and X[:, :, 1:4, 0:4], respectively. Finally, we
divide the two RoIs into a sub-window grid and extract features with a height and width of 2.

npx.roi_pooling(X, rois, pooled_size=(2, 2), spatial_scale=0.1)

array([[[[5., 6.],
[9., 10.]]],

[[[9., 11.],
[13., 15.]]]])

13.8. Region-based CNNs (R-CNNs) 583

13.8.3 Faster R-CNN

In order to obtain precise object detection results, Fast R-CNN generally requires that many pro-
posed regions be generated in selective search. Faster R-CNN replaces selective search with a re-
gion proposal network. This reduces the number of proposed regions generated, while ensuring
precise object detection.

Fig. 13.8.4: Faster R-CNN model.

Fig. 13.8.4 shows a Faster R-CNN model. Compared to Fast R-CNN, Faster R-CNN only changes the
method for generating proposed regions from selective search to region proposal network. The
other parts of the model remain unchanged. The detailed region proposal network computation
process is described below:

1. We use a 3× 3 convolutional layer with a padding of 1 to transform the CNN output and set
the number of output channels to c. This way, each element in the feature map the CNN
extracts from the image is a new feature with a length of c.

2. We use each element in the feature map as a center to generate multiple anchor boxes of
different sizes and aspect ratios and then label them.

3. We use the features of the elements of length c at the center on the anchor boxes to predict
the binary category (object or background) and bounding box for their respective anchor
boxes.

4. Then, we use non-maximum suppression to remove similar bounding box results that corre-
spond to category predictions of “object”. Finally, we output the predicted bounding boxes
as the proposed regions required by the RoI pooling layer.

It is worth noting that, as a part of the Faster R-CNN model, the region proposal network is trained
together with the rest of the model. In addition, the Faster R-CNN object functions include the
category and bounding box predictions in object detection, as well as the binary category and
bounding box predictions for the anchor boxes in the region proposal network. Finally, the region
proposal network can learn how to generate high-quality proposed regions, which reduces the
number of proposed regions while maintaining the precision of object detection.

584 Chapter 13. Computer Vision

13.8.4 Mask R-CNN

If training data is labeled with the pixel-level positions of each object in an image, a Mask R-CNN
model can effectively use these detailed labels to further improve the precision of object detection.

Fig. 13.8.5: Mask R-CNN model.

As shown in Fig. 13.8.5, Mask R-CNN is a modification to the Faster R-CNN model. Mask R-CNN
models replace the RoI pooling layer with an RoI alignment layer. This allows the use of bilinear
interpolation to retain spatial information on feature maps, making Mask R-CNN better suited
for pixel-level predictions. The RoI alignment layer outputs feature maps of the same shape for
all RoIs. This not only predicts the categories and bounding boxes of RoIs, but allows us to use
an additional fully convolutional network to predict the pixel-level positions of objects. We will
describe how to use fully convolutional networks to predict pixel-level semantics in images later
in this chapter.

Summary

• An R-CNN model selects several proposed regions and uses a CNN to perform forward com-
putation and extract the features from each proposed region. It then uses these features to
predict the categories and bounding boxes of proposed regions.

• Fast R-CNN improves on the R-CNN by only performing CNN forward computation on the
image as a whole. It introduces an RoI pooling layer to extract features of the same shape
from RoIs of different shapes.

• Faster R-CNN replaces the selective search used in Fast R-CNN with a region proposal net-
work. This reduces the number of proposed regions generated, while ensuring precise ob-
ject detection.

• Mask R-CNN uses the same basic structure as Faster R-CNN, but adds a fully convolution
layer to help locate objects at the pixel level and further improve the precision of object
detection.

13.8. Region-based CNNs (R-CNNs) 585

Exercises

1. Study the implementation of each model in the GluonCV toolkit206 related to this section.

13.9 Semantic Segmentation and the Dataset

In our discussion of object detection issues in the previous sections, we only used rectangular
bounding boxes to label and predict objects in images. In this section, we will look at seman-
tic segmentation, which attempts to segment images into regions with different semantic cate-
gories. These semantic regions label and predict objects at the pixel level. Fig. 13.9.1 shows a
semantically-segmented image, with areas labeled “dog”, “cat”, and “background”. As you can
see, compared to object detection, semantic segmentation labels areas with pixel-level borders,
for significantly greater precision.

Fig. 13.9.1: Semantically-segmented image, with areas labeled “dog”, “cat”, and “background”.

13.9.1 Image Segmentation and Instance Segmentation

In the computer vision field, there are two important methods related to semantic segmentation:
image segmentation and instance segmentation. Here, we will distinguish these concepts from
semantic segmentation as follows:

• Image segmentation divides an image into several constituent regions. This method gen-
erally uses the correlations between pixels in an image. During training, labels are not
needed for image pixels. However, during prediction, this method cannot ensure that the
segmented regions have the semantics we want. If we input the image in 9.10, image seg-
mentation might divide the dog into two regions, one covering the dog s̓ mouth and eyes
where black is the prominent color and the other covering the rest of the dog where yellow
is the prominent color.

• Instance segmentation is also called simultaneous detection and segmentation. This
method attempts to identify the pixel-level regions of each object instance in an image. In
contrast to semantic segmentation, instance segmentation not only distinguishes semantics,

206 https://github.com/dmlc/gluon-cv/

586 Chapter 13. Computer Vision

https://github.com/dmlc/gluon-cv/

but also different object instances. If an image contains two dogs, instance segmentation
will distinguish which pixels belong to which dog.

13.9.2 The Pascal VOC2012 Semantic Segmentation Dataset

In the semantic segmentation field, one important dataset is Pascal VOC2012208. To better under-
stand this dataset, we must first import the package or module needed for the experiment.

%matplotlib inline
import d2l
from mxnet import gluon, image, np, npx
import os
import tarfile

npx.set_np()

The original site might be unstable, we download the data from a mirror site. We download the
archive to the ../data path. The archive is about 2GB, so it will take some time to download. After
you decompress the archive, the dataset is located in the ../data/VOCdevkit/VOC2012 path.

Saved in the d2l package for later use
def download_voc_pascal(data_dir='../data'):

"""Download the VOC2012 segmentation dataset."""
voc_dir = os.path.join(data_dir, 'VOCdevkit/VOC2012')
url = ('http://data.mxnet.io/data/VOCtrainval_11-May-2012.tar')
sha1 = '4e443f8a2eca6b1dac8a6c57641b67dd40621a49'
fname = gluon.utils.download(url, data_dir, sha1_hash=sha1)
with tarfile.open(fname, 'r') as f:

f.extractall(data_dir)
return voc_dir

voc_dir = download_voc_pascal()

Go to ../data/VOCdevkit/VOC2012 to see the different parts of the dataset. The ImageSets/
Segmentation path contains text files that specify the training and testing examples. The JPEGIm-
ages and SegmentationClass paths contain the example input images and labels, respectively.
These labels are also in image format, with the same dimensions as the input images to which
they correspond. In the labels, pixels with the same color belong to the same semantic category.
The read_voc_images function defined below reads all input images and labels to the memory.

Saved in the d2l package for later use
def read_voc_images(root='../data/VOCdevkit/VOC2012', is_train=True):

"""Read all VOC feature and label images."""
txt_fname = '%s/ImageSets/Segmentation/%s' % (

root, 'train.txt' if is_train else 'val.txt')
with open(txt_fname, 'r') as f:

images = f.read().split()
features, labels = [None] * len(images), [None] * len(images)
for i, fname in enumerate(images):

features[i] = image.imread('%s/JPEGImages/%s.jpg' % (root, fname))
labels[i] = image.imread(

(continues on next page)

208 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

13.9. Semantic Segmentation and the Dataset 587

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

(continued from previous page)

'%s/SegmentationClass/%s.png' % (root, fname))
return features, labels

train_features, train_labels = read_voc_images(voc_dir, True)

We draw the first five input images and their labels. In the label images, white represents borders
and black represents the background. Other colors correspond to different categories.

n = 5
imgs = train_features[0:n] + train_labels[0:n]
d2l.show_images(imgs, 2, n);

Next, we list each RGB color value in the labels and the categories they label.

Saved in the d2l package for later use
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],

[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]]

Saved in the d2l package for later use
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',

'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person',
'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']

After defining the two constants above, we can easily find the category index for each pixel in the
labels.

Saved in the d2l package for later use
def build_colormap2label():

"""Build a RGB color to label mapping for segmentation."""
colormap2label = np.zeros(256 ** 3)
for i, colormap in enumerate(VOC_COLORMAP):

colormap2label[(colormap[0]*256 + colormap[1])*256 + colormap[2]] = i
return colormap2label

(continues on next page)

588 Chapter 13. Computer Vision

(continued from previous page)

Saved in the d2l package for later use
def voc_label_indices(colormap, colormap2label):

"""Map a RGB color to a label."""
colormap = colormap.astype(np.int32)
idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256

+ colormap[:, :, 2])
return colormap2label[idx]

For example, in the first example image, the category index for the front part of the airplane is 1
and the index for the background is 0.

y = voc_label_indices(train_labels[0], build_colormap2label())
y[105:115, 130:140], VOC_CLASSES[1]

(array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0., 0., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 1., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]]), 'aeroplane')

Data Preprocessing

In the preceding chapters, we scaled images to make them fit the input shape of the model. In
semantic segmentation, this method would require us to re-map the predicted pixel categories
back to the original-size input image. It would be very difficult to do this precisely, especially in
segmented regions with different semantics. To avoid this problem, we crop the images to set
dimensions and do not scale them. Specifically, we use the random cropping method used in
image augmentation to crop the same region from input images and their labels.

Saved in the d2l package for later use
def voc_rand_crop(feature, label, height, width):

"""Randomly crop for both feature and label images."""
feature, rect = image.random_crop(feature, (width, height))
label = image.fixed_crop(label, *rect)
return feature, label

imgs = []
for _ in range(n):

imgs += voc_rand_crop(train_features[0], train_labels[0], 200, 300)
d2l.show_images(imgs[::2] + imgs[1::2], 2, n);

13.9. Semantic Segmentation and the Dataset 589

Dataset Classes for Custom Semantic Segmentation

We use the inherited Dataset class provided by Gluon to customize the semantic segmentation
dataset class VOCSegDataset. By implementing the __getitem__ function, we can arbitrarily access
the input image with the index idx and the category indexes for each of its pixels from the dataset.
As some images in the dataset may be smaller than the output dimensions specified for random
cropping, we must remove these example by using a custom filter function. In addition, we
define the normalize_image function to normalize each of the three RGB channels of the input
images.

Saved in the d2l package for later use
class VOCSegDataset(gluon.data.Dataset):

"""A customized dataset to load VOC dataset."""

def __init__(self, is_train, crop_size, voc_dir):
self.rgb_mean = np.array([0.485, 0.456, 0.406])
self.rgb_std = np.array([0.229, 0.224, 0.225])
self.crop_size = crop_size
features, labels = read_voc_images(root=voc_dir, is_train=is_train)
self.features = [self.normalize_image(feature)

for feature in self.filter(features)]
self.labels = self.filter(labels)
self.colormap2label = build_colormap2label()
print('read ' + str(len(self.features)) + ' examples')

def normalize_image(self, img):
return (img.astype('float32') / 255 - self.rgb_mean) / self.rgb_std

def filter(self, imgs):
return [img for img in imgs if (

img.shape[0] >= self.crop_size[0] and
img.shape[1] >= self.crop_size[1])]

def __getitem__(self, idx):
feature, label = voc_rand_crop(self.features[idx], self.labels[idx],

*self.crop_size)
return (feature.transpose(2, 0, 1),

voc_label_indices(label, self.colormap2label))

def __len__(self):
return len(self.features)

590 Chapter 13. Computer Vision

Reading the Dataset

Using the custom VOCSegDataset class, we create the training set and testing set instances. We
assume the random cropping operation output images in the shape 320× 480. Below, we can see
the number of examples retained in the training and testing sets.

crop_size = (320, 480)
voc_train = VOCSegDataset(True, crop_size, voc_dir)
voc_test = VOCSegDataset(False, crop_size, voc_dir)

read 1114 examples
read 1078 examples

We set the batch size to 64 and define the iterators for the training and testing sets. Print the shape
of the first minibatch. In contrast to image classification and object recognition, labels here are
three-dimensional arrays.

batch_size = 64
train_iter = gluon.data.DataLoader(voc_train, batch_size, shuffle=True,

last_batch='discard',
num_workers=d2l.get_dataloader_workers())

for X, Y in train_iter:
print(X.shape)
print(Y.shape)
break

(64, 3, 320, 480)
(64, 320, 480)

Putting All Things Together

Finally, we define a function load_data_voc that downloads and loads this dataset, and then re-
turns the data loaders.

Saved in the d2l package for later use
def load_data_voc(batch_size, crop_size):

"""Download and load the VOC2012 semantic dataset."""
voc_dir = d2l.download_voc_pascal()
num_workers = d2l.get_dataloader_workers()
train_iter = gluon.data.DataLoader(

VOCSegDataset(True, crop_size, voc_dir), batch_size,
shuffle=True, last_batch='discard', num_workers=num_workers)

test_iter = gluon.data.DataLoader(
VOCSegDataset(False, crop_size, voc_dir), batch_size,
last_batch='discard', num_workers=num_workers)

return train_iter, test_iter

13.9. Semantic Segmentation and the Dataset 591

Summary

• Semantic segmentation looks at how images can be segmented into regions with different
semantic categories.

• In the semantic segmentation field, one important dataset is Pascal VOC2012.

• Because the input images and labels in semantic segmentation have a one-to-one correspon-
dence at the pixel level, we randomly crop them to a fixed size, rather than scaling them.

Exercises

1. Recall the content we covered in Section 13.1. Which of the image augmentation methods
used in image classification would be hard to use in semantic segmentation?

13.10 Transposed Convolution

The layers we introduced so far for convolutional neural networks, including convolutional lay-
ers (Section 6.2) and pooling layers (Section 6.5), often reduce the input width and height, or
keep them unchanged. Applications such as semantic segmentation (Section 13.9) and generative
adversarial networks (Section 16.2), however, require to predict values for each pixel and there-
fore needs to increase input width and height. Transposed convolution, also named fractionally-
strided convolution (Dumoulin & Visin, 2016) or deconvolution (Long et al., 2015), serves this pur-
pose.

from mxnet import np, npx, init
from mxnet.gluon import nn
import d2l

npx.set_np()

13.10.1 Basic 2D Transposed Convolution

Let s̓ consider a basic case that both input and output channels are 1, with 0 padding and 1 stride.
Fig. 13.10.1 illustrates how transposed convolution with a 2 × 2 kernel is computed on the 2 × 2
input matrix.

592 Chapter 13. Computer Vision

Fig. 13.10.1: Transposed convolution layer with a 2× 2 kernel.

We can implement this operation by giving matrix kernel K and matrix input X.

def trans_conv(X, K):
h, w = K.shape
Y = np.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
for i in range(X.shape[0]):

for j in range(X.shape[1]):
Y[i: i + h, j: j + w] += X[i, j] * K

return Y

Remember the convolution computes results by Y[i, j] = (X[i: i + h, j: j + w] * K).
sum() (refer to corr2d in Section 6.2), which summarizes input values through the kernel. While
the transposed convolution broadcasts input values through the kernel, which results in a larger
output shape.

Verify the results in Fig. 13.10.1.

X = np.array([[0, 1], [2, 3]])
K = np.array([[0, 1], [2, 3]])
trans_conv(X, K)

array([[0., 0., 1.],
[0., 4., 6.],
[4., 12., 9.]])

Or we can use nn.Conv2DTranspose to obtain the same results. As nn.Conv2D, both input and kernel
should be 4-D tensors.

X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.Conv2DTranspose(1, kernel_size=2)
tconv.initialize(init.Constant(K))
tconv(X)

array([[[[0., 0., 1.],
[0., 4., 6.],
[4., 12., 9.]]]])

13.10. Transposed Convolution 593

13.10.2 Padding, Strides, and Channels

We apply padding elements to the input in convolution, while they are applied to the output in
transposed convolution. A 1 × 1 padding means we first compute the output as normal, then
remove the first/last rows and columns.

tconv = nn.Conv2DTranspose(1, kernel_size=2, padding=1)
tconv.initialize(init.Constant(K))
tconv(X)

array([[[[4.]]]])

Similarly, strides are applied to outputs as well.

tconv = nn.Conv2DTranspose(1, kernel_size=2, strides=2)
tconv.initialize(init.Constant(K))
tconv(X)

array([[[[0., 0., 0., 1.],
[0., 0., 2., 3.],
[0., 2., 0., 3.],
[4., 6., 6., 9.]]]])

The multi-channel extension of the transposed convolution is the same as the convolution. When
the input has multiple channels, denoted by ci, the transposed convolution assigns a kh×kw kernel
matrix to each input channel. If the output has a channel size co, then we have a ci×kh×kw kernel
for each output channel.

As a result, if we feed X into a convolutional layer f to compute Y = f(X) and create a transposed
convolution layer g with the same hyper-parameters as f except for the output channel set to be
the channel size of X, then g(Y) should has the same shape as X. Let s̓ verify this statement.

X = np.random.uniform(size=(1, 10, 16, 16))
conv = nn.Conv2D(20, kernel_size=5, padding=2, strides=3)
tconv = nn.Conv2DTranspose(10, kernel_size=5, padding=2, strides=3)
conv.initialize()
tconv.initialize()
tconv(conv(X)).shape == X.shape

True

13.10.3 Analogy to Matrix Transposition

The transposed convolution takes its name from the matrix transposition. In fact, convolution
operations can also be achieved by matrix multiplication. In the example below, we define a 3×
input X with a 2× 2 kernel K, and then use corr2d to compute the convolution output.

X = np.arange(9).reshape(3, 3)
K = np.array([[0, 1], [2, 3]])

(continues on next page)

594 Chapter 13. Computer Vision

(continued from previous page)

Y = d2l.corr2d(X, K)
Y

array([[19., 25.],
[37., 43.]])

Next, we rewrite convolution kernel K as a matrix W . Its shape will be (4, 9), where the ith row
present applying the kernel to the input to generate the ith output element.

def kernel2matrix(K):
k, W = np.zeros(5), np.zeros((4, 9))
k[:2], k[3:5] = K[0, :], K[1, :]
W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
return W

W = kernel2matrix(K)
W

array([[0., 1., 0., 2., 3., 0., 0., 0., 0.],
[0., 0., 1., 0., 2., 3., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 2., 3., 0.],
[0., 0., 0., 0., 0., 1., 0., 2., 3.]])

Then the convolution operator can be implemented by matrix multiplication with proper reshap-
ing.

Y == np.dot(W, X.reshape(-1)).reshape(2, 2)

array([[True, True],
[True, True]])

We can implement transposed convolution as a matrix multiplication as well by reusing ker-
nel2matrix. To reuse the generated W , we construct a 2 × 2 input, so the corresponding weight
matrix will have a shape (9, 4), which is W⊤. Let s̓ verify the results.

X = np.array([[0, 1], [2, 3]])
Y = trans_conv(X, K)
Y == np.dot(W.T, X.reshape(-1)).reshape(3, 3)

array([[True, True, True],
[True, True, True],
[True, True, True]])

13.10. Transposed Convolution 595

Summary

• Compared to convolutions that reduce inputs through kernels, transposed convolutions
broadcast inputs.

• If a convolution layer reduces the input width and height by nw and hh time, respectively.
Then a transposed convolution layer with the same kernel sizes, padding and strides will
increase the input width and height by nw and nh, respectively.

• We can implement convolution operations by the matrix multiplication, the corresponding
transposed convolutions can be done by transposed matrix multiplication.

Exercises

1. Is it efficient to use matrix multiplication to implement convolution operations? Why?

13.11 Fully Convolutional Networks (FCN)

We previously discussed semantic segmentation using each pixel in an image for category predic-
tion. A fully convolutional network (FCN) (Long et al., 2015) uses a convolutional neural network
to transform image pixels to pixel categories. Unlike the convolutional neural networks previously
introduced, an FCN transforms the height and width of the intermediate layer feature map back
to the size of input image through the transposed convolution layer, so that the predictions have a
one-to-one correspondence with input image in spatial dimension (height and width). Given a po-
sition on the spatial dimension, the output of the channel dimension will be a category prediction
of the pixel corresponding to the location.

We will first import the package or module needed for the experiment and then explain the trans-
posed convolution layer.

%matplotlib inline
import d2l
from mxnet import gluon, image, init, np, npx
from mxnet.gluon import nn

npx.set_np()

596 Chapter 13. Computer Vision

13.11.1 Constructing a Model

Here, we demonstrate the most basic design of a fully convolutional network model. As shown in
Fig. 13.11.1, the fully convolutional network first uses the convolutional neural network to extract
image features, then transforms the number of channels into the number of categories through
the 1 × 1 convolution layer, and finally transforms the height and width of the feature map to
the size of the input image by using the transposed convolution layer Section 13.10. The model
output has the same height and width as the input image and has a one-to-one correspondence
in spatial positions. The final output channel contains the category prediction of the pixel of the
corresponding spatial position.

Fig. 13.11.1: Fully convolutional network.

Below, we use a ResNet-18 model pre-trained on the ImageNet dataset to extract image features
and record the network instance as pretrained_net. As you can see, the last two layers of the
model member variable features are the global maximum pooling layer GlobalAvgPool2D and
example flattening layer Flatten. The output module contains the fully connected layer used for
output. These layers are not required for a fully convolutional network.

pretrained_net = gluon.model_zoo.vision.resnet18_v2(pretrained=True)
pretrained_net.features[-4:], pretrained_net.output

(HybridSequential(
(0): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False,␣

↪→in_channels=512)
(1): Activation(relu)
(2): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_

↪→pool=True, pool_type=avg, layout=NCHW)
(3): Flatten

), Dense(512 -> 1000, linear))

Next, we create the fully convolutional network instance net. It duplicates all the neural layers

13.11. Fully Convolutional Networks (FCN) 597

except the last two layers of the instance member variable features of pretrained_net and the
model parameters obtained after pre-training.

net = nn.HybridSequential()
for layer in pretrained_net.features[:-2]:

net.add(layer)

Given an input of a height and width of 320 and 480 respectively, the forward computation of net
will reduce the height and width of the input to 1/32 of the original, i.e., 10 and 15.

X = np.random.uniform(size=(1, 3, 320, 480))
net(X).shape

(1, 512, 10, 15)

Next, we transform the number of output channels to the number of categories of Pascal VOC2012
(21) through the 1 × 1 convolution layer. Finally, we need to magnify the height and width of the
feature map by a factor of 32 to change them back to the height and width of the input image.
Recall the calculation method for the convolution layer output shape described in Section 6.3.
Because (320 − 64 + 16 × 2 + 32)/32 = 10 and (480 − 64 + 16 × 2 + 32)/32 = 15, we construct a
transposed convolution layer with a stride of 32 and set the height and width of the convolution
kernel to 64 and the padding to 16. It is not difficult to see that, if the stride is s, the padding is
s/2 (assuming s/2 is an integer), and the height and width of the convolution kernel are 2s, the
transposed convolution kernel will magnify both the height and width of the input by a factor of
s.

num_classes = 21
net.add(nn.Conv2D(num_classes, kernel_size=1),

nn.Conv2DTranspose(
num_classes, kernel_size=64, padding=16, strides=32))

13.11.2 Initializing the Transposed Convolution Layer

We already know that the transposed convolution layer can magnify a feature map. In image pro-
cessing, sometimes we need to magnify the image, i.e., upsampling. There are many methods
for upsampling, and one common method is bilinear interpolation. Simply speaking, in order
to get the pixel of the output image at the coordinates (x, y), the coordinates are first mapped to
the coordinates of the input image (x′, y′). This can be done based on the ratio of the size of thee
input to the size of the output. The mapped values x′ and y′ are usually real numbers. Then,
we find the four pixels closest to the coordinate (x′, y′) on the input image. Finally, the pixels
of the output image at coordinates (x, y) are calculated based on these four pixels on the input
image and their relative distances to (x′, y′). Upsampling by bilinear interpolation can be imple-
mented by transposed convolution layer of the convolution kernel constructed using the following
bilinear_kernel function. Due to space limitations, we only give the implementation of the bi-
linear_kernel function and will not discuss the principles of the algorithm.

def bilinear_kernel(in_channels, out_channels, kernel_size):
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:

(continues on next page)

598 Chapter 13. Computer Vision

(continued from previous page)

center = factor - 1
else:

center = factor - 0.5
og = (np.arange(kernel_size).reshape(-1, 1),

np.arange(kernel_size).reshape(1, -1))
filt = (1 - np.abs(og[0] - center) / factor) * \

(1 - np.abs(og[1] - center) / factor)
weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size))
weight[range(in_channels), range(out_channels), :, :] = filt
return np.array(weight)

Now, we will experiment with bilinear interpolation upsampling implemented by transposed con-
volution layers. Construct a transposed convolution layer that magnifies height and width of input
by a factor of 2 and initialize its convolution kernel with the bilinear_kernel function.

conv_trans = nn.Conv2DTranspose(3, kernel_size=4, padding=1, strides=2)
conv_trans.initialize(init.Constant(bilinear_kernel(3, 3, 4)))

Read the image X and record the result of upsampling as Y. In order to print the image, we need
to adjust the position of the channel dimension.

img = image.imread('../img/catdog.jpg')
X = np.expand_dims(img.astype('float32').transpose(2, 0, 1), axis=0) / 255
Y = conv_trans(X)
out_img = Y[0].transpose(1, 2, 0)

As you can see, the transposed convolution layer magnifies both the height and width of the image
by a factor of 2. It is worth mentioning that, besides to the difference in coordinate scale, the image
magnified by bilinear interpolation and original image printed in Section 13.3 look the same.

d2l.set_figsize((3.5, 2.5))
print('input image shape:', img.shape)
d2l.plt.imshow(img.asnumpy());
print('output image shape:', out_img.shape)
d2l.plt.imshow(out_img.asnumpy());

input image shape: (561, 728, 3)
output image shape: (1122, 1456, 3)

13.11. Fully Convolutional Networks (FCN) 599

In a fully convolutional network, we initialize the transposed convolution layer for upsampled
bilinear interpolation. For a 1× 1 convolution layer, we use Xavier for randomly initialization.

W = bilinear_kernel(num_classes, num_classes, 64)
net[-1].initialize(init.Constant(W))
net[-2].initialize(init=init.Xavier())

13.11.3 Reading the Dataset

We read the dataset using the method described in the previous section. Here, we specify shape
of the randomly cropped output image as 320× 480, so both the height and width are divisible by
32.

batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size)

Downloading ../data/VOCtrainval_11-May-2012.tar from http://data.mxnet.io/data/VOCtrainval_
↪→11-May-2012.tar...
read 1114 examples
read 1078 examples

13.11.4 Training

Now we can start training the model. The loss function and accuracy calculation here are not
substantially different from those used in image classification. Because we use the channel of the
transposed convolution layer to predict pixel categories, the axis=1 (channel dimension) option
is specified in SoftmaxCrossEntropyLoss. In addition, the model calculates the accuracy based on
whether the prediction category of each pixel is correct.

num_epochs, lr, wd, ctx = 5, 0.1, 1e-3, d2l.try_all_gpus()
loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=1)
net.collect_params().reset_ctx(ctx)
trainer = gluon.Trainer(net.collect_params(), 'sgd',

{'learning_rate': lr, 'wd': wd})
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, ctx)

600 Chapter 13. Computer Vision

loss 0.335, train acc 0.891, test acc 0.854
305.6 exampes/sec on [gpu(0), gpu(1)]

13.11.5 Prediction

During predicting, we need to standardize the input image in each channel and transform them
into the four-dimensional input format required by the convolutional neural network.

def predict(img):
X = test_iter._dataset.normalize_image(img)
X = np.expand_dims(X.transpose(2, 0, 1), axis=0)
pred = net(X.as_in_context(ctx[0])).argmax(axis=1)
return pred.reshape(pred.shape[1], pred.shape[2])

To visualize the predicted categories for each pixel, we map the predicted categories back to their
labeled colors in the dataset.

def label2image(pred):
colormap = np.array(d2l.VOC_COLORMAP, ctx=ctx[0], dtype='uint8')
X = pred.astype('int32')
return colormap[X, :]

The size and shape of the images in the test dataset vary. Because the model uses a transposed
convolution layer with a stride of 32, when the height or width of the input image is not divisible
by 32, the height or width of the transposed convolution layer output deviates from the size of the
input image. In order to solve this problem, we can crop multiple rectangular areas in the image
with heights and widths as integer multiples of 32, and then perform forward computation on the
pixels in these areas. When combined, these areas must completely cover the input image. When
a pixel is covered by multiple areas, the average of the transposed convolution layer output in the
forward computation of the different areas can be used as an input for the softmax operation to
predict the category.

For the sake of simplicity, we only read a few large test images and crop an area with a shape of
320×480 from the top-left corner of the image. Only this area is used for prediction. For the input
image, we print the cropped area first, then print the predicted result, and finally print the labeled
category.

13.11. Fully Convolutional Networks (FCN) 601

test_images, test_labels = d2l.read_voc_images(is_train=False)
n, imgs = 4, []
for i in range(n):

crop_rect = (0, 0, 480, 320)
X = image.fixed_crop(test_images[i], *crop_rect)
pred = label2image(predict(X))
imgs += [X, pred, image.fixed_crop(test_labels[i], *crop_rect)]

d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2);

Summary

• The fully convolutional network first uses the convolutional neural network to extract image
features, then transforms the number of channels into the number of categories through the
1 × 1 convolution layer, and finally transforms the height and width of the feature map to
the size of the input image by using the transposed convolution layer to output the category
of each pixel.

• In a fully convolutional network, we initialize the transposed convolution layer for upsam-
pled bilinear interpolation.

602 Chapter 13. Computer Vision

Exercises

1. If we use Xavier to randomly initialize the transposed convolution layer, what will happen
to the result?

2. Can you further improve the accuracy of the model by tuning the hyper-parameters?

3. Predict the categories of all pixels in the test image.

4. The outputs of some intermediate layers of the convolutional neural network are also used
in the paper on fully convolutional networks[1]. Try to implement this idea.

13.12 Neural Style Transfer

If you use social sharing apps or happen to be an amateur photographer, you are familiar with
filters. Filters can alter the color styles of photos to make the background sharper or people s̓
faces whiter. However, a filter generally can only change one aspect of a photo. To create the
ideal photo, you often need to try many different filter combinations. This process is as complex
as tuning the hyper-parameters of a model.

In this section, we will discuss how we can use convolution neural networks (CNNs) to automat-
ically apply the style of one image to another image, an operation known as style transfer (Gatys
et al., 2016). Here, we need two input images, one content image and one style image. We use
a neural network to alter the content image so that its style mirrors that of the style image. In
Fig. 13.12.1, the content image is a landscape photo the author took in Mount Rainier National
Part near Seattle. The style image is an oil painting of oak trees in autumn. The output composite
image retains the overall shapes of the objects in the content image, but applies the oil painting
brushwork of the style image and makes the overall color more vivid.

13.12. Neural Style Transfer 603

Fig. 13.12.1: Content and style input images and composite image produced by style transfer.

13.12.1 Technique

The CNN-based style transfer model is shown in Fig. 13.12.2. First, we initialize the composite
image. For example, we can initialize it as the content image. This composite image is the only
variable that needs to be updated in the style transfer process, i.e., the model parameter to be
updated in style transfer. Then, we select a pre-trained CNN to extract image features. These
model parameters do not need to be updated during training. The deep CNN uses multiple neu-
ral layers that successively extract image features. We can select the output of certain layers to
use as content features or style features. If we use the structure in Fig. 13.12.2, the pre-trained
neural network contains three convolutional layers. The second layer outputs the image content
features, while the outputs of the first and third layers are used as style features. Next, we use for-
ward propagation (in the direction of the solid lines) to compute the style transfer loss function
and backward propagation (in the direction of the dotted lines) to update the model parameter,
constantly updating the composite image. The loss functions used in style transfer generally have
three parts: 1. Content loss is used to make the composite image approximate the content im-
age as regards content features. 2. Style loss is used to make the composite image approximate
the style image in terms of style features. 3. Total variation loss helps reduce the noise in the
composite image. Finally, after we finish training the model, we output the style transfer model
parameters to obtain the final composite image.

604 Chapter 13. Computer Vision

Fig. 13.12.2: CNN-based style transfer process. Solid lines show the direction of forward propaga-
tion and dotted lines show backward propagation.

Next, we will perform an experiment to help us better understand the technical details of style
transfer.

13.12.2 Reading the Content and Style Images

First, we read the content and style images. By printing out the image coordinate axes, we can see
that they have different dimensions.

%matplotlib inline
import d2l
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn

npx.set_np()

d2l.set_figsize((3.5, 2.5))
content_img = image.imread('../img/rainier.jpg')
d2l.plt.imshow(content_img.asnumpy());

13.12. Neural Style Transfer 605

style_img = image.imread('../img/autumn_oak.jpg')
d2l.plt.imshow(style_img.asnumpy());

13.12.3 Preprocessing and Postprocessing

Below, we define the functions for image preprocessing and postprocessing. The preprocess func-
tion normalizes each of the three RGB channels of the input images and transforms the results to
a format that can be input to the CNN. The postprocess function restores the pixel values in the
output image to their original values before normalization. Because the image printing function
requires that each pixel has a floating point value from 0 to 1, we use the clip function to replace
values smaller than 0 or greater than 1 with 0 or 1, respectively.

rgb_mean = np.array([0.485, 0.456, 0.406])
rgb_std = np.array([0.229, 0.224, 0.225])

def preprocess(img, image_shape):
img = image.imresize(img, *image_shape)
img = (img.astype('float32') / 255 - rgb_mean) / rgb_std
return np.expand_dims(img.transpose(2, 0, 1), axis=0)

def postprocess(img):
img = img[0].as_in_context(rgb_std.context)
return (img.transpose(1, 2, 0) * rgb_std + rgb_mean).clip(0, 1)

606 Chapter 13. Computer Vision

13.12.4 Extracting Features

We use the VGG-19 model pre-trained on the ImageNet dataset to extract image features[1].

pretrained_net = gluon.model_zoo.vision.vgg19(pretrained=True)

To extract image content and style features, we can select the outputs of certain layers in the VGG
network. In general, the closer an output is to the input layer, the easier it is to extract image
detail information. The farther away an output is, the easier it is to extract global information. To
prevent the composite image from retaining too many details from the content image, we select
a VGG network layer near the output layer to output the image content features. This layer is
called the content layer. We also select the outputs of different layers from the VGG network for
matching local and global styles. These are called the style layers. As we mentioned in Section 7.2,
VGG networks have five convolutional blocks. In this experiment, we select the last convolutional
layer of the fourth convolutional block as the content layer and the first layer of each block as style
layers. We can obtain the indexes for these layers by printing the pretrained_net instance.

style_layers, content_layers = [0, 5, 10, 19, 28], [25]

During feature extraction, we only need to use all the VGG layers from the input layer to the content
or style layer nearest the output layer. Below, we build a new network, net, which only retains the
layers in the VGG network we need to use. We then use net to extract features.

net = nn.Sequential()
for i in range(max(content_layers + style_layers) + 1):

net.add(pretrained_net.features[i])

Given input X, if we simply call the forward computation net(X), we can only obtain the output of
the last layer. Because we also need the outputs of the intermediate layers, we need to perform
layer-by-layer computation and retain the content and style layer outputs.

def extract_features(X, content_layers, style_layers):
contents = []
styles = []
for i in range(len(net)):

X = net[i](X)
if i in style_layers:

styles.append(X)
if i in content_layers:

contents.append(X)
return contents, styles

Next, we define two functions: The get_contents function obtains the content features extracted
from the content image, while the get_styles function obtains the style features extracted from
the style image. Because we do not need to change the parameters of the pre-trained VGG model
during training, we can extract the content features from the content image and style features
from the style image before the start of training. As the composite image is the model parameter
that must be updated during style transfer, we can only call the extract_features function during
training to extract the content and style features of the composite image.

def get_contents(image_shape, ctx):
content_X = preprocess(content_img, image_shape).copyto(ctx)

(continues on next page)

13.12. Neural Style Transfer 607

(continued from previous page)

contents_Y, _ = extract_features(content_X, content_layers, style_layers)
return content_X, contents_Y

def get_styles(image_shape, ctx):
style_X = preprocess(style_img, image_shape).copyto(ctx)
_, styles_Y = extract_features(style_X, content_layers, style_layers)
return style_X, styles_Y

13.12.5 Defining the Loss Function

Next, we will look at the loss function used for style transfer. The loss function includes the content
loss, style loss, and total variation loss.

Content Loss

Similar to the loss function used in linear regression, content loss uses a square error function
to measure the difference in content features between the composite image and content image.
The two inputs of the square error function are both content layer outputs obtained from the ex-
tract_features function.

def content_loss(Y_hat, Y):
return np.square(Y_hat - Y).mean()

Style Loss

Style loss, similar to content loss, uses a square error function to measure the difference in style
between the composite image and style image. To express the styles output by the style layers,
we first use the extract_features function to compute the style layer output. Assuming that the
output has 1 example, c channels, and a height and width of h and w, we can transform the output
into the matrixX, which has c rows andh·w columns. You can think of matrixX as the combination
of the c vectors x1, . . . , xc, which have a length of hw. Here, the vector xi represents the style
feature of channel i. In the Gram matrix of these vectors XX⊤ ∈ Rc×c, element xij in row i column
j is the inner product of vectors xi and xj. It represents the correlation of the style features of
channels i and j. We use this type of Gram matrix to represent the style output by the style layers.
You must note that, when the h·w value is large, this often leads to large values in the Gram matrix.
In addition, the height and width of the Gram matrix are both the number of channels c. To ensure
that the style loss is not affected by the size of these values, we define the gram function below to
divide the Gram matrix by the number of its elements, i.e., c · h · w.

def gram(X):
num_channels, n = X.shape[1], X.size // X.shape[1]
X = X.reshape(num_channels, n)
return np.dot(X, X.T) / (num_channels * n)

Naturally, the two Gram matrix inputs of the square error function for style loss are taken from
the composite image and style image style layer outputs. Here, we assume that the Gram matrix
of the style image, gram_Y, has been computed in advance.

608 Chapter 13. Computer Vision

def style_loss(Y_hat, gram_Y):
return np.square(gram(Y_hat) - gram_Y).mean()

Total Variance Loss

Sometimes, the composite images we learn have a lot of high-frequency noise, particularly bright
or dark pixels. One common noise reduction method is total variation denoising. We assume that
xi,j represents the pixel value at the coordinate (i, j), so the total variance loss is:∑

i,j

|xi,j − xi+1,j |+ |xi,j − xi,j+1| . (13.12.1)

We try to make the values of neighboring pixels as similar as possible.

def tv_loss(Y_hat):
return 0.5 * (np.abs(Y_hat[:, :, 1:, :] - Y_hat[:, :, :-1, :]).mean() +

np.abs(Y_hat[:, :, :, 1:] - Y_hat[:, :, :, :-1]).mean())

The Loss Function

The loss function for style transfer is the weighted sum of the content loss, style loss, and total
variance loss. By adjusting these weight hyper-parameters, we can balance the retained content,
transferred style, and noise reduction in the composite image according to their relative impor-
tance.

content_weight, style_weight, tv_weight = 1, 1e3, 10

def compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram):
Calculate the content, style, and total variance losses respectively
contents_l = [content_loss(Y_hat, Y) * content_weight for Y_hat, Y in zip(

contents_Y_hat, contents_Y)]
styles_l = [style_loss(Y_hat, Y) * style_weight for Y_hat, Y in zip(

styles_Y_hat, styles_Y_gram)]
tv_l = tv_loss(X) * tv_weight
Add up all the losses
l = sum(styles_l + contents_l + [tv_l])
return contents_l, styles_l, tv_l, l

13.12.6 Creating and Initializing the Composite Image

In style transfer, the composite image is the only variable that needs to be updated. Therefore, we
can define a simple model, GeneratedImage, and treat the composite image as a model parameter.
In the model, forward computation only returns the model parameter.

class GeneratedImage(nn.Block):
def __init__(self, img_shape, **kwargs):

super(GeneratedImage, self).__init__(**kwargs)
self.weight = self.params.get('weight', shape=img_shape)

(continues on next page)

13.12. Neural Style Transfer 609

(continued from previous page)

def forward(self):
return self.weight.data()

Next, we define the get_inits function. This function creates a composite image model instance
and initializes it to the image X. The Gram matrix for the various style layers of the style image,
styles_Y_gram, is computed prior to training.

def get_inits(X, ctx, lr, styles_Y):
gen_img = GeneratedImage(X.shape)
gen_img.initialize(init.Constant(X), ctx=ctx, force_reinit=True)
trainer = gluon.Trainer(gen_img.collect_params(), 'adam',

{'learning_rate': lr})
styles_Y_gram = [gram(Y) for Y in styles_Y]
return gen_img(), styles_Y_gram, trainer

13.12.7 Training

During model training, we constantly extract the content and style features of the composite im-
age and calculate the loss function. Recall our discussion of how synchronization functions force
the front end to wait for computation results in Section 12.2. Because we only call the asscalar
synchronization function every 50 epochs, the process may occupy a great deal of memory. There-
fore, we call the waitall synchronization function during every epoch.

def train(X, contents_Y, styles_Y, ctx, lr, num_epochs, lr_decay_epoch):
X, styles_Y_gram, trainer = get_inits(X, ctx, lr, styles_Y)
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[1, num_epochs],
legend=['content', 'style', 'TV'],
ncols=2, figsize=(7, 2.5))

for epoch in range(1, num_epochs+1):
with autograd.record():

contents_Y_hat, styles_Y_hat = extract_features(
X, content_layers, style_layers)

contents_l, styles_l, tv_l, l = compute_loss(
X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram)

l.backward()
trainer.step(1)
npx.waitall()
if epoch % lr_decay_epoch == 0:

trainer.set_learning_rate(trainer.learning_rate * 0.1)
if epoch % 10 == 0:

animator.axes[1].imshow(postprocess(X).asnumpy())
animator.add(epoch, [float(sum(contents_l)),

float(sum(styles_l)),
float(tv_l)])

return X

Next, we start to train the model. First, we set the height and width of the content and style images
to 150 by 225 pixels. We use the content image to initialize the composite image.

610 Chapter 13. Computer Vision

ctx, image_shape = d2l.try_gpu(), (225, 150)
net.collect_params().reset_ctx(ctx)
content_X, contents_Y = get_contents(image_shape, ctx)
_, styles_Y = get_styles(image_shape, ctx)
output = train(content_X, contents_Y, styles_Y, ctx, 0.01, 500, 200)

As you can see, the composite image retains the scenery and objects of the content image, while
introducing the color of the style image. Because the image is relatively small, the details are a bit
fuzzy.

To obtain a clearer composite image, we train the model using a larger image size: 900× 600. We
increase the height and width of the image used before by a factor of four and initialize a larger
composite image.

image_shape = (900, 600)
_, content_Y = get_contents(image_shape, ctx)
_, style_Y = get_styles(image_shape, ctx)
X = preprocess(postprocess(output) * 255, image_shape)
output = train(X, content_Y, style_Y, ctx, 0.01, 300, 100)
d2l.plt.imsave('../img/neural-style.png', postprocess(output).asnumpy())

As you can see, each epoch takes more time due to the larger image size. As shown in Fig. 13.12.3,

13.12. Neural Style Transfer 611

the composite image produced retains more detail due to its larger size. The composite image not
only has large blocks of color like the style image, but these blocks even have the subtle texture of
brush strokes.

Fig. 13.12.3: 900× 600 composite image.

Summary

• The loss functions used in style transfer generally have three parts: 1. Content loss is used
to make the composite image approximate the content image as regards content features. 2.
Style loss is used to make the composite image approximate the style image in terms of style
features. 3. Total variation loss helps reduce the noise in the composite image.

• We can use a pre-trained CNN to extract image features and minimize the loss function to
continuously update the composite image.

• We use a Gram matrix to represent the style output by the style layers.

Exercises

1. How does the output change when you select different content and style layers?

2. Adjust the weight hyper-parameters in the loss function. Does the output retain more con-
tent or have less noise?

3. Use different content and style images. Can you create more interesting composite images?

612 Chapter 13. Computer Vision

13.13 Image Classification (CIFAR-10) on Kaggle

So far, we have been using Gluons̓ data package to directly obtain image datasets in the ndar-
ray format. In practice, however, image datasets often exist in the format of image files. In this
section, we will start with the original image files and organize, read, and convert the files to the
ndarray format step by step.

We performed an experiment on the CIFAR-10 dataset in Section 13.1. This is an important data set
in the computer vision field. Now, we will apply the knowledge we learned in the previous sections
in order to participate in the Kaggle competition, which addresses CIFAR-10 image classification
problems. The competitions̓ web address is

https://www.kaggle.com/c/cifar-10

Fig. 13.13.1 shows the information on the competitions̓ webpage. In order to submit the results,
please register an account on the Kaggle website first.

Fig. 13.13.1: CIFAR-10 image classification competition webpage information. The dataset for the
competition can be accessed by clicking the “Data” tab.

First, import the packages or modules required for the competition.

import d2l
from mxnet import autograd, gluon, init, npx
from mxnet.gluon import nn
import os
import pandas as pd
import shutil
import time

npx.set_np()

13.13. Image Classification (CIFAR-10) on Kaggle 613

https://www.kaggle.com/c/cifar-10

13.13.1 Obtaining and Organizing the Dataset

The competition data is divided into a training set and testing set. The training set contains 50, 000
images. The testing set contains 300, 000 images, of which 10, 000 images are used for scoring,
while the other 290, 000 non-scoring images are included to prevent the manual labeling of the
testing set and the submission of labeling results. The image formats in both datasets are PNG,
with heights and widths of 32 pixels and three color channels (RGB). The images cover 10$ cate-
gories: planes, cars, birds, cats, deer, dogs, frogs, horses, boats, and trucks. The upper-left corner
of Figure 9.16 shows some images of planes, cars, and birds in the dataset.

Downloading the Dataset

After logging in to Kaggle, we can click on the “Data” tab on the CIFAR-10 image classification com-
petition webpage shown in Figure 9.16 and download the training dataset “train.7z”, the testing
dataset “test.7z”, and the training dataset labels “trainlabels.csv”.

Unzipping the Dataset

The training dataset “train.7z” and the test dataset “test.7z” need to be unzipped after download-
ing. After unzipping the datasets, store the training dataset, test dataset, and training dataset
labels in the following respective paths:

• ../data/kaggle_cifar10/train/[1-50000].png

• ../data/kaggle_cifar10/test/[1-300000].png

• ../data/kaggle_cifar10/trainLabels.csv

To make it easier to get started, we provide a small-scale sample of the dataset mentioned above.
“train_tiny.zip” contains 100 training examples, while “test_tiny.zip” contains only one test exam-
ple. Their unzipped folder names are “train_tiny” and “test_tiny”, respectively. In addition, unzip
the zip file of the training dataset labels to obtain the file “trainlabels.csv”. If you are going to use
the full dataset of the Kaggle competition, you will also need to change the following demo variable
to False.

If you use the full dataset downloaded for the Kaggle competition, change
the demo variable to False
demo = True
if demo:

import zipfile
for f in ['train_tiny.zip', 'test_tiny.zip', 'trainLabels.csv.zip']:

with zipfile.ZipFile('../data/kaggle_cifar10/' + f, 'r') as z:
z.extractall('../data/kaggle_cifar10/')

614 Chapter 13. Computer Vision

Organizing the Dataset

We need to organize datasets to facilitate model training and testing. The following
read_label_file function will be used to read the label file for the training dataset. The parame-
ter valid_ratio in this function is the ratio of the number of examples in the validation set to the
number of examples in the original training set.

def read_label_file(data_dir, label_file, train_dir, valid_ratio):
with open(os.path.join(data_dir, label_file), 'r') as f:

Skip the file header line (column name)
lines = f.readlines()[1:]
tokens = [l.rstrip().split(',') for l in lines]
idx_label = dict(((int(idx), label) for idx, label in tokens))

labels = set(idx_label.values())
n_train_valid = len(os.listdir(os.path.join(data_dir, train_dir)))
n_train = int(n_train_valid * (1 - valid_ratio))
assert 0 < n_train < n_train_valid
return n_train // len(labels), idx_label

Below we define a helper function to create a path only if the path does not already exist.

save to the d2l package.
def mkdir_if_not_exist(path):

if not os.path.exists(os.path.join(*path)):
os.makedirs(os.path.join(*path))

Next, we define the reorg_train_valid function to segment the validation set from the original
training set. Here, we use valid_ratio=0.1 as an example. Since the original training set has
50, 000 images, there will be 45, 000 images used for training and stored in the path “input_dir/
train” when tuning hyper-parameters, while the other 5, 000 images will be stored as validation set
in the path “input_dir/valid”. After organizing the data, images of the same type will be placed
under the same folder so that we can read them later.

def reorg_train_valid(data_dir, train_dir, input_dir, n_train_per_label,
idx_label):

label_count = {}
for train_file in os.listdir(os.path.join(data_dir, train_dir)):

idx = int(train_file.split('.')[0])
label = idx_label[idx]
mkdir_if_not_exist([data_dir, input_dir, 'train_valid', label])
shutil.copy(os.path.join(data_dir, train_dir, train_file),

os.path.join(data_dir, input_dir, 'train_valid', label))
if label not in label_count or label_count[label] < n_train_per_label:

mkdir_if_not_exist([data_dir, input_dir, 'train', label])
shutil.copy(os.path.join(data_dir, train_dir, train_file),

os.path.join(data_dir, input_dir, 'train', label))
label_count[label] = label_count.get(label, 0) + 1

else:
mkdir_if_not_exist([data_dir, input_dir, 'valid', label])
shutil.copy(os.path.join(data_dir, train_dir, train_file),

os.path.join(data_dir, input_dir, 'valid', label))

The reorg_test function below is used to organize the testing set to facilitate the reading during
prediction.

13.13. Image Classification (CIFAR-10) on Kaggle 615

def reorg_test(data_dir, test_dir, input_dir):
mkdir_if_not_exist([data_dir, input_dir, 'test', 'unknown'])
for test_file in os.listdir(os.path.join(data_dir, test_dir)):

shutil.copy(os.path.join(data_dir, test_dir, test_file),
os.path.join(data_dir, input_dir, 'test', 'unknown'))

Finally, we use a function to call the previously defined reorg_test, reorg_train_valid, and re-
org_test functions.

def reorg_cifar10_data(data_dir, label_file, train_dir, test_dir, input_dir,
valid_ratio):

n_train_per_label, idx_label = read_label_file(data_dir, label_file,
train_dir, valid_ratio)

reorg_train_valid(data_dir, train_dir, input_dir, n_train_per_label,
idx_label)

reorg_test(data_dir, test_dir, input_dir)

We use only 100 training example and one test example here. The folder names for the training
and testing datasets are “train_tiny” and “test_tiny”, respectively. Accordingly, we only set the
batch size to 1. During actual training and testing, the complete dataset of the Kaggle competition
should be used and batch_size should be set to a larger integer, such as 128. We use 10% of the
training examples as the validation set for tuning hyper-parameters.

if demo:
Note: Here, we use small training sets and small testing sets and the
batch size should be set smaller. When using the complete dataset for
the Kaggle competition, the batch size can be set to a large integer
train_dir, test_dir, batch_size = 'train_tiny', 'test_tiny', 1

else:
train_dir, test_dir, batch_size = 'train', 'test', 128

data_dir, label_file = '../data/kaggle_cifar10', 'trainLabels.csv'
input_dir, valid_ratio = 'train_valid_test', 0.1
reorg_cifar10_data(data_dir, label_file, train_dir, test_dir, input_dir,

valid_ratio)

13.13.2 Image Augmentation

To cope with overfitting, we use image augmentation. For example, by adding transforms.
RandomFlipLeftRight(), the images can be flipped at random. We can also perform normalization
for the three RGB channels of color images using transforms.Normalize(). Below, we list some
of these operations that you can choose to use or modify depending on requirements.

transform_train = gluon.data.vision.transforms.Compose([
Magnify the image to a square of 40 pixels in both height and width
gluon.data.vision.transforms.Resize(40),
Randomly crop a square image of 40 pixels in both height and width to
produce a small square of 0.64 to 1 times the area of the original
image, and then shrink it to a square of 32 pixels in both height and
width
gluon.data.vision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),

ratio=(1.0, 1.0)),
gluon.data.vision.transforms.RandomFlipLeftRight(),

(continues on next page)

616 Chapter 13. Computer Vision

(continued from previous page)

gluon.data.vision.transforms.ToTensor(),
Normalize each channel of the image
gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],

[0.2023, 0.1994, 0.2010])])

In order to ensure the certainty of the output during testing, we only perform normalization on
the image.

transform_test = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],

[0.2023, 0.1994, 0.2010])])

13.13.3 Reading the Dataset

Next, we can create the ImageFolderDataset instance to read the organized dataset containing the
original image files, where each data instance includes the image and label.

Read the original image file. Flag=1 indicates that the input image has
three channels (color)
train_ds = gluon.data.vision.ImageFolderDataset(

os.path.join(data_dir, input_dir, 'train'), flag=1)
valid_ds = gluon.data.vision.ImageFolderDataset(

os.path.join(data_dir, input_dir, 'valid'), flag=1)
train_valid_ds = gluon.data.vision.ImageFolderDataset(

os.path.join(data_dir, input_dir, 'train_valid'), flag=1)
test_ds = gluon.data.vision.ImageFolderDataset(

os.path.join(data_dir, input_dir, 'test'), flag=1)

We specify the defined image augmentation operation in DataLoader. During training, we only use
the validation set to evaluate the model, so we need to ensure the certainty of the output. During
prediction, we will train the model on the combined training set and validation set to make full
use of all labelled data.

train_iter = gluon.data.DataLoader(train_ds.transform_first(transform_train),
batch_size, shuffle=True,
last_batch='keep')

valid_iter = gluon.data.DataLoader(valid_ds.transform_first(transform_test),
batch_size, shuffle=True,
last_batch='keep')

train_valid_iter = gluon.data.DataLoader(train_valid_ds.transform_first(
transform_train), batch_size, shuffle=True, last_batch='keep')

test_iter = gluon.data.DataLoader(test_ds.transform_first(transform_test),
batch_size, shuffle=False,
last_batch='keep')

13.13. Image Classification (CIFAR-10) on Kaggle 617

13.13.4 Defining the Model

Here, we build the residual blocks based on the HybridBlock class, which is slightly different than
the implementation described in Section 7.6. This is done to improve execution efficiency.

class Residual(nn.HybridBlock):
def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):

super(Residual, self).__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,

strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:

self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)

else:
self.conv3 = None

self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()

def hybrid_forward(self, F, X):
Y = F.npx.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:

X = self.conv3(X)
return F.npx.relu(Y + X)

Next, we define the ResNet-18 model.

def resnet18(num_classes):
net = nn.HybridSequential()
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),

nn.BatchNorm(), nn.Activation('relu'))

def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.HybridSequential()
for i in range(num_residuals):

if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))

else:
blk.add(Residual(num_channels))

return blk

net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))

net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net

The CIFAR-10 image classification challenge uses 10 categories. We will perform Xavier random
initialization on the model before training begins.

def get_net(ctx):
num_classes = 10
net = resnet18(num_classes)

(continues on next page)

618 Chapter 13. Computer Vision

(continued from previous page)

net.initialize(ctx=ctx, init=init.Xavier())
return net

loss = gluon.loss.SoftmaxCrossEntropyLoss()

13.13.5 Defining the Training Functions

We will select the model and tune hyper-parameters according to the model s̓ performance on the
validation set. Next, we define the model training function train. We record the training time of
each epoch, which helps us compare the time costs of different models.

def train(net, train_iter, valid_iter, num_epochs, lr, wd, ctx, lr_period,
lr_decay):

trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': lr, 'momentum': 0.9, 'wd': wd})

for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
if epoch > 0 and epoch % lr_period == 0:

trainer.set_learning_rate(trainer.learning_rate * lr_decay)
for X, y in train_iter:

y = y.astype('float32').as_in_context(ctx)
with autograd.record():

y_hat = net(X.as_in_context(ctx))
l = loss(y_hat, y).sum()

l.backward()
trainer.step(batch_size)
train_l_sum += float(l)
train_acc_sum += float((y_hat.argmax(axis=1) == y).sum())
n += y.size

time_s = "time %.2f sec" % (time.time() - start)
if valid_iter is not None:

valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)
epoch_s = ("epoch %d, loss %f, train acc %f, valid acc %f, "

% (epoch + 1, train_l_sum / n, train_acc_sum / n,
valid_acc))

else:
epoch_s = ("epoch %d, loss %f, train acc %f, " %

(epoch + 1, train_l_sum / n, train_acc_sum / n))
print(epoch_s + time_s + ', lr ' + str(trainer.learning_rate))

13.13.6 Training and Validating the Model

Now, we can train and validate the model. The following hyper-parameters can be tuned. For
example, we can increase the number of epochs. Because lr_period and lr_decay are set to 80
and 0.1 respectively, the learning rate of the optimization algorithm will be multiplied by 0.1 after
every 80 epochs. For simplicity, we only train one epoch here.

ctx, num_epochs, lr, wd = d2l.try_gpu(), 1, 0.1, 5e-4
lr_period, lr_decay, net = 80, 0.1, get_net(ctx)
net.hybridize()

(continues on next page)

13.13. Image Classification (CIFAR-10) on Kaggle 619

(continued from previous page)

train(net, train_iter, valid_iter, num_epochs, lr, wd, ctx, lr_period,
lr_decay)

epoch 1, loss 25.188189, train acc 0.077778, valid acc 0.200000, time 1.41 sec, lr 0.1

13.13.7 Classifying the Testing Set and Submitting Results on Kaggle

After obtaining a satisfactory model design and hyper-parameters, we use all training datasets
(including validation sets) to retrain the model and classify the testing set.

net, preds = get_net(ctx), []
net.hybridize()
train(net, train_valid_iter, None, num_epochs, lr, wd, ctx, lr_period,

lr_decay)

for X, _ in test_iter:
y_hat = net(X.as_in_context(ctx))
preds.extend(y_hat.argmax(axis=1).astype(int).asnumpy())

sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id': sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.synsets[x])
df.to_csv('submission.csv', index=False)

epoch 1, loss 6.266124, train acc 0.070000, time 1.09 sec, lr 0.1

After executing the above code, we will get a “submission.csv” file. The format of this file is con-
sistent with the Kaggle competition requirements. The method for submitting results is similar
to method in Section 4.10.

Summary

• We can create an ImageFolderDataset instance to read the dataset containing the original
image files.

• We can use convolutional neural networks, image augmentation, and hybrid programming
to take part in an image classification competition.

Exercises

1. Use the complete CIFAF-10 dataset for the Kaggle competition. Change the batch_size and
number of epochs num_epochs to 128 and 100, respectively. See what accuracy and ranking
you can achieve in this competition.

2. What accuracy can you achieve when not using image augmentation?

3. Scan the QR code to access the relevant discussions and exchange ideas about the meth-
ods used and the results obtained with the community. Can you come up with any better
techniques?

620 Chapter 13. Computer Vision

13.14 Dog Breed Identification (ImageNet Dogs) on Kaggle

In this section, we will tackle the dog breed identification challenge in the Kaggle Competition.
The competitions̓ web address is

https://www.kaggle.com/c/dog-breed-identification

In this competition, we attempt to identify 120 different breeds of dogs. The dataset used in this
competition is actually a subset of the famous ImageNet dataset. Different from the images in the
CIFAR-10 dataset used in the previous section, the images in the ImageNet dataset are higher and
wider and their dimensions are inconsistent.

Fig. 13.14.1 shows the information on the competitions̓ webpage. In order to submit the results,
please register an account on the Kaggle website first.

Fig. 13.14.1: Dog breed identification competition website. The dataset for the competition can
be accessed by clicking the “Data” tab.

First, import the packages or modules required for the competition.

import collections
import d2l
import math
from mxnet import autograd, gluon, init, npx
from mxnet.gluon import nn

(continues on next page)

13.14. Dog Breed Identification (ImageNet Dogs) on Kaggle 621

https://www.kaggle.com/c/dog-breed-identification

(continued from previous page)

import os
import shutil
import time
import zipfile

npx.set_np()

13.14.1 Obtaining and Organizing the Dataset

The competition data is divided into a training set and testing set. The training set contains 10, 222
images and the testing set contains 10, 357 images. The images in both sets are in JPEG format.
These images contain three RGB channels (color) and they have different heights and widths.
There are 120 breeds of dogs in the training set, including Labradors, Poodles, Dachshunds,
Samoyeds, Huskies, Chihuahuas, and Yorkshire Terriers.

Downloading the Dataset

After logging in to Kaggle, we can click on the “Data” tab on the dog breed identification com-
petition webpage shown in Fig. 13.14.1 and download the training dataset “train.zip”, the testing
dataset “test.zip”, and the training dataset labels “label.csv.zip”. After downloading the files, place
them in the three paths below:

• ../data/kaggle_dog/train.zip

• ../data/kaggle_dog/test.zip

• ../data/kaggle_dog/labels.csv.zip

To make it easier to get started, we provide a small-scale sample of the dataset mentioned above,
“train_valid_test_tiny.zip”. If you are going to use the full dataset for the Kaggle competition, you
will also need to change the demo variable below to False.

If you use the full dataset downloaded for the Kaggle competition, change
the variable below to False
demo = True
data_dir = '../data/kaggle_dog'
if demo:

zipfiles = ['train_valid_test_tiny.zip']
else:

zipfiles = ['train.zip', 'test.zip', 'labels.csv.zip']
for f in zipfiles:

with zipfile.ZipFile(data_dir + '/' + f, 'r') as z:
z.extractall(data_dir)

622 Chapter 13. Computer Vision

Organizing the Dataset

Next, we define the reorg_train_valid function to segment the validation set from the original
Kaggle competition training set. The parameter valid_ratio in this function is the ratio of the
number of examples of each dog breed in the validation set to the number of examples of the
breed with the least examples (66) in the original training set. After organizing the data, images
of the same breed will be placed in the same folder so that we can read them later.

def reorg_train_valid(data_dir, train_dir, input_dir, valid_ratio, idx_label):
The number of examples of the least represented breed in the training
set
min_n_train_per_label = (

collections.Counter(idx_label.values()).most_common()[:-2:-1][0][1])
The number of examples of each breed in the validation set
n_valid_per_label = math.floor(min_n_train_per_label * valid_ratio)
label_count = {}
for train_file in os.listdir(os.path.join(data_dir, train_dir)):

idx = train_file.split('.')[0]
label = idx_label[idx]
d2l.mkdir_if_not_exist([data_dir, input_dir, 'train_valid', label])
shutil.copy(os.path.join(data_dir, train_dir, train_file),

os.path.join(data_dir, input_dir, 'train_valid', label))
if label not in label_count or label_count[label] < n_valid_per_label:

d2l.mkdir_if_not_exist([data_dir, input_dir, 'valid', label])
shutil.copy(os.path.join(data_dir, train_dir, train_file),

os.path.join(data_dir, input_dir, 'valid', label))
label_count[label] = label_count.get(label, 0) + 1

else:
d2l.mkdir_if_not_exist([data_dir, input_dir, 'train', label])
shutil.copy(os.path.join(data_dir, train_dir, train_file),

os.path.join(data_dir, input_dir, 'train', label))

The reorg_dog_data function below is used to read the training data labels, segment the validation
set, and organize the training set.

def reorg_dog_data(data_dir, label_file, train_dir, test_dir, input_dir,
valid_ratio):

Read the training data labels
with open(os.path.join(data_dir, label_file), 'r') as f:

Skip the file header line (column name)
lines = f.readlines()[1:]
tokens = [l.rstrip().split(',') for l in lines]
idx_label = dict(((idx, label) for idx, label in tokens))

reorg_train_valid(data_dir, train_dir, input_dir, valid_ratio, idx_label)
Organize the training set
d2l.mkdir_if_not_exist([data_dir, input_dir, 'test', 'unknown'])
for test_file in os.listdir(os.path.join(data_dir, test_dir)):

shutil.copy(os.path.join(data_dir, test_dir, test_file),
os.path.join(data_dir, input_dir, 'test', 'unknown'))

Because we are using a small dataset, we set the batch size to 1. During actual training and test-
ing, we would use the entire Kaggle Competition dataset and call the reorg_dog_data function to
organize the dataset. Likewise, we would need to set the batch_size to a larger integer, such as
128.

13.14. Dog Breed Identification (ImageNet Dogs) on Kaggle 623

if demo:
Note: Here, we use a small dataset and the batch size should be set
smaller. When using the complete dataset for the Kaggle competition, we
can set the batch size to a larger integer
input_dir, batch_size = 'train_valid_test_tiny', 1

else:
label_file, train_dir, test_dir = 'labels.csv', 'train', 'test'
input_dir, batch_size, valid_ratio = 'train_valid_test', 128, 0.1
reorg_dog_data(data_dir, label_file, train_dir, test_dir, input_dir,

valid_ratio)

13.14.2 Image Augmentation

The size of the images in this section are larger than the images in the previous section. Here are
some more image augmentation operations that might be useful.

transform_train = gluon.data.vision.transforms.Compose([
Randomly crop the image to obtain an image with an area of 0.08 to 1 of
the original area and height to width ratio between 3/4 and 4/3. Then,
scale the image to create a new image with a height and width of 224
pixels each
gluon.data.vision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),

ratio=(3.0/4.0, 4.0/3.0)),
gluon.data.vision.transforms.RandomFlipLeftRight(),
Randomly change the brightness, contrast, and saturation
gluon.data.vision.transforms.RandomColorJitter(brightness=0.4,

contrast=0.4,
saturation=0.4),

Add random noise
gluon.data.vision.transforms.RandomLighting(0.1),
gluon.data.vision.transforms.ToTensor(),
Standardize each channel of the image
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])])

During testing, we only use definite image preprocessing operations.

transform_test = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(256),
Crop a square of 224 by 224 from the center of the image
gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])])

624 Chapter 13. Computer Vision

13.14.3 Reading the Dataset

As in the previous section, we can create an ImageFolderDataset instance to read the dataset con-
taining the original image files.

train_ds = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, input_dir, 'train'), flag=1)

valid_ds = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, input_dir, 'valid'), flag=1)

train_valid_ds = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, input_dir, 'train_valid'), flag=1)

test_ds = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, input_dir, 'test'), flag=1)

Here, we create a DataLoader instance, just like in the previous section.

train_iter = gluon.data.DataLoader(train_ds.transform_first(transform_train),
batch_size, shuffle=True,
last_batch='keep')

valid_iter = gluon.data.DataLoader(valid_ds.transform_first(transform_test),
batch_size, shuffle=True,
last_batch='keep')

train_valid_iter = gluon.data.DataLoader(train_valid_ds.transform_first(
transform_train), batch_size, shuffle=True, last_batch='keep')

test_iter = gluon.data.DataLoader(test_ds.transform_first(transform_test),
batch_size, shuffle=False,
last_batch='keep')

13.14.4 Defining the Model

The dataset for this competition is a subset of the ImageNet data set. Therefore, we can use the
approach discussed in Section 13.2 to select a model pre-trained on the entire ImageNet dataset
and use it to extract image features to be input in the custom small-scale output network. Gluon
provides a wide range of pre-trained models. Here, we will use the pre-trained ResNet-34 model.
Because the competition dataset is a subset of the pre-training dataset, we simply reuse the in-
put of the pre-trained model s̓ output layer, i.e., the extracted features. Then, we can replace the
original output layer with a small custom output network that can be trained, such as two fully
connected layers in a series. Different from the experiment in Section 13.2, here, we do not re-
train the pre-trained model used for feature extraction. This reduces the training time and the
memory required to store model parameter gradients.

You must note that, during image augmentation, we use the mean values and standard deviations
of the three RGB channels for the entire ImageNet dataset for normalization. This is consistent
with the normalization of the pre-trained model.

def get_net(ctx):
finetune_net = gluon.model_zoo.vision.resnet34_v2(pretrained=True)
Define a new output network
finetune_net.output_new = nn.HybridSequential(prefix='')
finetune_net.output_new.add(nn.Dense(256, activation='relu'))
There are 120 output categories
finetune_net.output_new.add(nn.Dense(120))

(continues on next page)

13.14. Dog Breed Identification (ImageNet Dogs) on Kaggle 625

(continued from previous page)

Initialize the output network
finetune_net.output_new.initialize(init.Xavier(), ctx=ctx)
Distribute the model parameters to the CPUs or GPUs used for computation
finetune_net.collect_params().reset_ctx(ctx)
return finetune_net

When calculating the loss, we first use the member variable features to obtain the input of the
pre-trained model s̓ output layer, i.e., the extracted feature. Then, we use this feature as the input
for our small custom output network and compute the output.

loss = gluon.loss.SoftmaxCrossEntropyLoss()

def evaluate_loss(data_iter, net, ctx):
l_sum, n = 0.0, 0
for X, y in data_iter:

y = y.as_in_context(ctx)
output_features = net.features(X.as_in_context(ctx))
outputs = net.output_new(output_features)
l_sum += float(loss(outputs, y).sum())
n += y.size

return l_sum / n

13.14.5 Defining the Training Functions

We will select the model and tune hyper-parameters according to the model s̓ performance on the
validation set. The model training function train only trains the small custom output network.

def train(net, train_iter, valid_iter, num_epochs, lr, wd, ctx, lr_period,
lr_decay):

Only train the small custom output network
trainer = gluon.Trainer(net.output_new.collect_params(), 'sgd',

{'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
for epoch in range(num_epochs):

train_l_sum, n, start = 0.0, 0, time.time()
if epoch > 0 and epoch % lr_period == 0:

trainer.set_learning_rate(trainer.learning_rate * lr_decay)
for X, y in train_iter:

y = y.as_in_context(ctx)
output_features = net.features(X.as_in_context(ctx))
with autograd.record():

outputs = net.output_new(output_features)
l = loss(outputs, y).sum()

l.backward()
trainer.step(batch_size)
train_l_sum += float(l)
n += y.size

time_s = "time %.2f sec" % (time.time() - start)
if valid_iter is not None:

valid_loss = evaluate_loss(valid_iter, net, ctx)
epoch_s = ("epoch %d, train loss %f, valid loss %f, "

% (epoch + 1, train_l_sum / n, valid_loss))
else:

(continues on next page)

626 Chapter 13. Computer Vision

(continued from previous page)

epoch_s = ("epoch %d, train loss %f, "
% (epoch + 1, train_l_sum / n))

print(epoch_s + time_s + ', lr ' + str(trainer.learning_rate))

13.14.6 Training and Validating the Model

Now, we can train and validate the model. The following hyper-parameters can be tuned. For
example, we can increase the number of epochs. Because lr_period and lr_decay are set to 10
and 0.1 respectively, the learning rate of the optimization algorithm will be multiplied by 0.1 after
every 10 epochs.

ctx, num_epochs, lr, wd = d2l.try_gpu(), 1, 0.01, 1e-4
lr_period, lr_decay, net = 10, 0.1, get_net(ctx)
net.hybridize()
train(net, train_iter, valid_iter, num_epochs, lr, wd, ctx, lr_period,

lr_decay)

epoch 1, train loss 5.227054, valid loss 4.753427, time 1.46 sec, lr 0.01

13.14.7 Classifying the Testing Set and Submit Results on Kaggle

After obtaining a satisfactory model design and hyper-parameters, we use all training datasets (in-
cluding validation sets) to retrain the model and then classify the testing set. Note that predictions
are made by the output network we just trained.

net = get_net(ctx)
net.hybridize()
train(net, train_valid_iter, None, num_epochs, lr, wd, ctx, lr_period,

lr_decay)

preds = []
for data, label in test_iter:

output_features = net.features(data.as_in_context(ctx))
output = npx.softmax(net.output_new(output_features))
preds.extend(output.asnumpy())

ids = sorted(os.listdir(os.path.join(data_dir, input_dir, 'test/unknown')))
with open('submission.csv', 'w') as f:

f.write('id,' + ','.join(train_valid_ds.synsets) + '\n')
for i, output in zip(ids, preds):

f.write(i.split('.')[0] + ',' + ','.join(
[str(num) for num in output]) + '\n')

epoch 1, train loss 5.054451, time 2.43 sec, lr 0.01

After executing the above code, we will generate a “submission.csv” file. The format of this file
is consistent with the Kaggle competition requirements. The method for submitting results is
similar to method in Section 4.10.

13.14. Dog Breed Identification (ImageNet Dogs) on Kaggle 627

Summary

• We can use a model pre-trained on the ImageNet dataset to extract features and only train a
small custom output network. This will allow us to classify a subset of the ImageNet dataset
with lower computing and storage overhead.

Exercises

1. When using the entire Kaggle dataset, what kind of results do you get when you increase the
batch_size (batch size) and num_epochs (number of epochs)?

2. Do you get better results if you use a deeper pre-trained model?

3. Scan the QR code to access the relevant discussions and exchange ideas about the meth-
ods used and the results obtained with the community. Can you come up with any better
techniques?

628 Chapter 13. Computer Vision

14 | Natural Language Processing

Natural language processing is concerned with interactions between computers and humans that
use natural language. In practice, it is very common for us to use this technique to process and
analyze large amounts of natural language data, like the language models from Chapter 8

In this chapter, we will discuss how to use vectors to represent words and train the word vectors
on a corpus. We will also use word vectors pre-trained on a larger corpus to find synonyms and
analogies. Then, in the text classification task, we will use word vectors to analyze the emotion
of a text and explain the important ideas of timing data classification based on recurrent neural
networks and the convolutional neural networks.

14.1 Word Embedding (word2vec)

A natural language is a complex system that we use to express meanings. In this system, words
are the basic unit of linguistic meaning. As its name implies, a word vector is a vector used to
represent a word. It can also be thought of as the feature vector of a word. The technique of
mapping words to vectors of real numbers is also known as word embedding. Over the last few
years, word embedding has gradually become basic knowledge in natural language processing.

14.1.1 Why Not Use One-hot Vectors?

We used one-hot vectors to represent words (characters are words) in Section 8.5 . Recall that
when we assume the number of different words in a dictionary (the dictionary size) is N , each
word can correspond one-to-one with consecutive integers from 0 to N − 1. These integers that
correspond to words are called the indices of the words. We assume that the index of a word is i.
In order to get the one-hot vector representation of the word, we create a vector of all 0s with a
length of N and set element i to 1. In this way, each word is represented as a vector of length N
that can be used directly by the neural network.

Although one-hot word vectors are easy to construct, they are usually not a good choice. One of the
major reasons is that the one-hot word vectors cannot accurately express the similarity between
different words, such as the cosine similarity that we commonly use. For the vectors x, y ∈ Rd,
their cosine similarities are the cosines of the angles between them:

x⊤y
∥x∥∥y∥

∈ [−1, 1]. (14.1.1)

Since the cosine similarity between the one-hot vectors of any two different words is 0, it is difficult
to use the one-hot vector to accurately represent the similarity between multiple different words.

629

Word2vec215 is a tool that we came up with to solve the problem above. It represents each word
with a fixed-length vector and uses these vectors to better indicate the similarity and analogy rela-
tionships between different words. The Word2vec tool contains two models: skip-gram (Mikolov
et al., 2013b) and continuous bag of words (CBOW) (Mikolov et al., 2013a). Next, we will take a
look at the two models and their training methods.

14.1.2 The Skip-GramModel

The skip-gram model assumes that a word can be used to generate the words that surround it in a
text sequence. For example, we assume that the text sequence is “the”, “man”, “loves”, “his”, and
“son”. We use “loves” as the central target word and set the context window size to 2. As shown
in Fig. 14.1.1, given the central target word “loves”, the skip-gram model is concerned with the
conditional probability for generating the context words, “the”, “man”, “his” and “son”, that are
within a distance of no more than 2 words, which is

P ("the", "man", "his", "son" | "loves"). (14.1.2)

We assume that, given the central target word, the context words are generated independently of
each other. In this case, the formula above can be rewritten as

P ("the" | "loves") · P ("man" | "loves") · P ("his" | "loves") · P ("son" | "loves"). (14.1.3)

Fig. 14.1.1: The skip-gram model cares about the conditional probability of generating context
words for a given central target word.

In the skip-gram model, each word is represented as two d-dimension vectors, which are used to
compute the conditional probability. We assume that the word is indexed as i in the dictionary, its
vector is represented as vi ∈ Rd when it is the central target word, and ui ∈ Rd when it is a context
word. Let the central target word wc and context word wo be indexed as c and o respectively in the
dictionary. The conditional probability of generating the context word for the given central target
word can be obtained by performing a softmax operation on the vector inner product:

P (wo | wc) =
exp(u⊤

o vc)∑
i∈V exp(u⊤

i vc)
, (14.1.4)

where vocabulary index setV = {0, 1, . . . , |V|−1}. Assume that a text sequence of lengthT is given,
where the word at timestep t is denoted as w(t). Assume that context words are independently

215 https://code.google.com/archive/p/word2vec/

630 Chapter 14. Natural Language Processing

https://code.google.com/archive/p/word2vec/

generated given center words. When context window size is m, the likelihood function of the
skip-gram model is the joint probability of generating all the context words given any center word

T∏
t=1

∏
−m≤j≤m, j ̸=0

P (w(t+j) | w(t)), (14.1.5)

Here, any timestep that is less than 1 or greater than T can be ignored.

Skip-GramModel Training

The skip-gram model parameters are the central target word vector and context word vector for
each individual word. In the training process, we are going to learn the model parameters by
maximizing the likelihood function, which is also known as maximum likelihood estimation. This
is equivalent to minimizing the following loss function:

−
T∑
t=1

∑
−m≤j≤m, j ̸=0

logP (w(t+j) | w(t)). (14.1.6)

If we use the SGD, in each iteration we are going to pick a shorter subsequence through random
sampling to compute the loss for that subsequence, and then compute the gradient to update the
model parameters. The key of gradient computation is to compute the gradient of the logarithmic
conditional probability for the central word vector and the context word vector. By definition, we
first have

logP (wo | wc) = u⊤
o vc − log

(∑
i∈V

exp(u⊤
i vc)

)
. (14.1.7)

Through differentiation, we can get the gradient vc from the formula above.

∂logP (wo | wc)

∂vc
= uo −

∑
j∈V exp(u⊤

j vc)uj∑
i∈V exp(u⊤

i vc)

= uo −
∑
j∈V

(
exp(u⊤

j vc)∑
i∈V exp(u⊤

i vc)

)
uj

= uo −
∑
j∈V

P (wj | wc)uj .

(14.1.8)

Its computation obtains the conditional probability for all the words in the dictionary given the
central target word wc. We then use the same method to obtain the gradients for other word vec-
tors.

After the training, for any word in the dictionary with index i, we are going to get its two word
vector sets vi and ui. In applications of natural language processing (NLP), the central target word
vector in the skip-gram model is generally used as the representation vector of a word.

14.1. Word Embedding (word2vec) 631

14.1.3 The Continuous Bag of Words (CBOW) Model

The continuous bag of words (CBOW) model is similar to the skip-gram model. The biggest dif-
ference is that the CBOW model assumes that the central target word is generated based on the
context words before and after it in the text sequence. With the same text sequence “the”, “man”,
“loves”, “his” and “son”, in which “loves” is the central target word, given a context window size
of 2, the CBOW model is concerned with the conditional probability of generating the target word
“loves” based on the context words “the”, “man”, “his” and “son”(as shown in Fig. 14.1.2), such as

P ("loves" | "the", "man", "his", "son"). (14.1.9)

Fig. 14.1.2: The CBOW model cares about the conditional probability of generating the central
target word from given context words.

Since there are multiple context words in the CBOW model, we will average their word vectors
and then use the same method as the skip-gram model to compute the conditional probability.
We assume that vi ∈ Rd and ui ∈ Rd are the context word vector and central target word vector
of the word with index i in the dictionary (notice that the symbols are opposite to the ones in the
skip-gram model). Let central target word wc be indexed as c, and context words wo1 , . . . , wo2m be
indexed as o1, . . . , o2m in the dictionary. Thus, the conditional probability of generating a central
target word from the given context word is

P (wc | wo1 , . . . , wo2m) =
exp

(
1
2mu⊤

c (vo1 + . . .+ vo2m)
)∑

i∈V exp
(

1
2mu⊤

i (vo1 + . . .+ vo2m)
) . (14.1.10)

For brevity, denoteWo = {wo1 , . . . , wo2m}, and v̄o = (vo1 + . . .+ vo2m) /(2m). The equation above
can be simplified as

P (wc | Wo) =
exp

(
u⊤
c v̄o

)∑
i∈V exp

(
u⊤
i v̄o

) . (14.1.11)

Given a text sequence of length T , we assume that the word at timestep t is w(t), and the context
window size is m. The likelihood function of the CBOW model is the probability of generating any
central target word from the context words.

T∏
t=1

P (w(t) | w(t−m), . . . , w(t−1), w(t+1), . . . , w(t+m)). (14.1.12)

632 Chapter 14. Natural Language Processing

CBOWModel Training

CBOW model training is quite similar to skip-gram model training. The maximum likelihood es-
timation of the CBOW model is equivalent to minimizing the loss function.

−
T∑
t=1

logP (w(t) | w(t−m), . . . , w(t−1), w(t+1), . . . , w(t+m)). (14.1.13)

Notice that

log P (wc | Wo) = u⊤
c v̄o − log

(∑
i∈V

exp
(
u⊤
i v̄o

))
. (14.1.14)

Through differentiation, we can compute the logarithm of the conditional probability of the gra-
dient of any context word vector voi(i = 1, . . . , 2m) in the formula above.

∂ log P (wc | Wo)

∂voi
=

1

2m

uc −
∑
j∈V

exp(u⊤
j v̄o)uj∑

i∈V exp(u⊤
i v̄o)

 =
1

2m

uc −
∑
j∈V

P (wj | Wo)uj

 .

(14.1.15)

We then use the same method to obtain the gradients for other word vectors. Unlike the skip-gram
model, we usually use the context word vector as the representation vector for a word in the CBOW
model.

Summary

• A word vector is a vector used to represent a word. The technique of mapping words to
vectors of real numbers is also known as word embedding.

• Word2vec includes both the continuous bag of words (CBOW) and skip-gram models. The
skip-gram model assumes that context words are generated based on the central target word.
The CBOW model assumes that the central target word is generated based on the context
words.

Exercises

1. What is the computational complexity of each gradient? If the dictionary contains a large
volume of words, what problems will this cause?

2. There are some fixed phrases in the English language which consist of multiple words, such
as “new york”. How can you train their word vectors? Hint: See section 4 in the Word2vec
paper[2].

3. Use the skip-gram model as an example to think about the design of a word2vec model. What
is the relationship between the inner product of two word vectors and the cosine similarity
in the skip-gram model? For a pair of words with close semantical meaning, why it is likely
for their word vector cosine similarity to be high?

14.1. Word Embedding (word2vec) 633

14.2 Approximate Training for Word2vec

Recall content of the last section. The core feature of the skip-gram model is the use of softmax
operations to compute the conditional probability of generating context word wo based on the
given central target word wc.

P (wo | wc) =
exp(u⊤

o vc)∑
i∈V exp(u⊤

i vc)
. (14.2.1)

The logarithmic loss corresponding to the conditional probability is given as

− logP (wo | wc) = −u⊤
o vc + log

(∑
i∈V

exp(u⊤
i vc)

)
. (14.2.2)

Because the softmax operation has considered that the context word could be any word in the
dictionary V, the loss mentioned above actually includes the sum of the number of items in the
dictionary size. From the last section, we know that for both the skip-gram model and CBOW
model, because they both get the conditional probability using a softmax operation, the gradient
computation for each step contains the sum of the number of items in the dictionary size. For
larger dictionaries with hundreds of thousands or even millions of words, the overhead for com-
puting each gradient may be too high. In order to reduce such computational complexity, we will
introduce two approximate training methods in this section: negative sampling and hierarchical
softmax. Since there is no major difference between the skip-gram model and the CBOW model,
we will only use the skip-gram model as an example to introduce these two training methods in
this section.

14.2.1 Negative Sampling

Negative sampling modifies the original objective function. Given a context window for the central
target word wc, we will treat it as an event for context word wo to appear in the context window
and compute the probability of this event from

P (D = 1 | wc, wo) = σ(u⊤
o vc), (14.2.3)

Here, the σ function has the same definition as the sigmoid activation function:

σ(x) =
1

1 + exp(−x)
. (14.2.4)

We will first consider training the word vector by maximizing the joint probability of all events in
the text sequence. Given a text sequence of length T , we assume that the word at timestep t is w(t)

and the context window size is m. Now we consider maximizing the joint probability

T∏
t=1

∏
−m≤j≤m, j ̸=0

P (D = 1 | w(t), w(t+j)). (14.2.5)

However, the events included in the model only consider positive examples. In this case, only
when all the word vectors are equal and their values approach infinity can the joint probabil-
ity above be maximized to 1. Obviously, such word vectors are meaningless. Negative sampling
makes the objective function more meaningful by sampling with an addition of negative exam-
ples. Assume that event P occurs when context word wo appears in the context window of central

634 Chapter 14. Natural Language Processing

target word wc, and we sample K words that do not appear in the context window according to
the distribution P (w) to act as noise words. We assume the event for noise word wk(k = 1, . . . ,K)
to not appear in the context window of central target word wc is Nk. Suppose that events P and
N1, . . . , NK for both positive and negative examples are independent of each other. By considering
negative sampling, we can rewrite the joint probability above, which only considers the positive
examples, as

T∏
t=1

∏
−m≤j≤m, j ̸=0

P (w(t+j) | w(t)), (14.2.6)

Here, the conditional probability is approximated to be

P (w(t+j) | w(t)) = P (D = 1 | w(t), w(t+j))

K∏
k=1, wk∼P (w)

P (D = 0 | w(t), wk). (14.2.7)

Let the text sequence index of word w(t) at timestep t be it and hk for noise word wk in the dictio-
nary. The logarithmic loss for the conditional probability above is

− logP (w(t+j) | w(t)) =− logP (D = 1 | w(t), w(t+j))−
K∑

k=1, wk∼P (w)

logP (D = 0 | w(t), wk)

=− log σ
(
u⊤
it+j

vit
)
−

K∑
k=1, wk∼P (w)

log
(
1− σ

(
u⊤
hk
vit
))

=− log σ
(
u⊤
it+j

vit
)
−

K∑
k=1, wk∼P (w)

logσ
(
−u⊤

hk
vit
)
.

(14.2.8)

Here, the gradient computation in each step of the training is no longer related to the dictionary
size, but linearly related toK. WhenK takes a smaller constant, the negative sampling has a lower
computational overhead for each step.

14.2.2 Hierarchical Softmax

Hierarchical softmax is another type of approximate training method. It uses a binary tree for
data structure as illustrated in Fig. 14.2.1, with the leaf nodes of the tree representing every word
in the dictionary V.

14.2. Approximate Training for Word2vec 635

Fig. 14.2.1: Hierarchical Softmax. Each leaf node of the tree represents a word in the dictionary.

We assume that L(w) is the number of nodes on the path (including the root and leaf nodes) from
the root node of the binary tree to the leaf node of word w. Let n(w, j) be the jth node on this path,
with the context word vectorun(w,j). We use Figure 10.3 as an example, soL(w3) = 4. Hierarchical
softmax will approximate the conditional probability in the skip-gram model as

P (wo | wc) =

L(wo)−1∏
j=1

σ
(
[[n(wo, j + 1) = leftChild(n(wo, j))]] · u⊤

n(wo,j)
vc
)
, (14.2.9)

Here the σ function has the same definition as the sigmoid activation function, and leftChild(n)
is the left child node of node n. If x is true, [[x]] = 1; otherwise [[x]] = −1. Now, we will compute
the conditional probability of generating word w3 based on the given word wc in Figure 10.3. We
need to find the inner product of word vector vc (for word wc) and each non-leaf node vector on
the path from the root node to w3. Because, in the binary tree, the path from the root node to leaf
node w3 needs to be traversed left, right, and left again (the path with the bold line in Figure 10.3),
we get

P (w3 | wc) = σ(u⊤
n(w3,1)

vc) · σ(−u⊤
n(w3,2)

vc) · σ(u⊤
n(w3,3)

vc). (14.2.10)

Because σ(x) + σ(−x) = 1, the condition that the sum of the conditional probability of any word
generated based on the given central target word wc in dictionary V be 1 will also suffice:∑

w∈V
P (w | wc) = 1. (14.2.11)

In addition, because the order of magnitude forL(wo)−1 isO(log2|V|), when the size of dictionary
V is large, the computational overhead for each step in the hierarchical softmax training is greatly
reduced compared to situations where we do not use approximate training.

636 Chapter 14. Natural Language Processing

Summary

• Negative sampling constructs the loss function by considering independent events that con-
tain both positive and negative examples. The gradient computational overhead for each
step in the training process is linearly related to the number of noise words we sample.

• Hierarchical softmax uses a binary tree and constructs the loss function based on the path
from the root node to the leaf node. The gradient computational overhead for each step in
the training process is related to the logarithm of the dictionary size.

Exercises

1. Before reading the next section, think about how we should sample noise words in negative
sampling.

2. What makes the last formula in this section hold?

3. How can we apply negative sampling and hierarchical softmax in the skip-gram model?

14.3 The Dataset for Word2vec

In this section, we will introduce how to preprocess a dataset with negative sampling Section 14.2
and load into minibatches for word2vec training. The dataset we use is Penn Tree Bank (PTB)218,
which is a small but commonly-used corpus. It takes samples from Wall Street Journal articles
and includes training sets, validation sets, and test sets.

First, import the packages and modules required for the experiment.

import d2l
import math
from mxnet import gluon, np
import random
import zipfile

14.3.1 Reading and Preprocessing the Dataset

This dataset has already been preprocessed. Each line of the dataset acts as a sentence. All the
words in a sentence are separated by spaces. In the word embedding task, each word is a token.

Saved in the d2l package for later use
def read_ptb():

with zipfile.ZipFile('../data/ptb.zip', 'r') as f:
raw_text = f.read('ptb/ptb.train.txt').decode("utf-8")

(continues on next page)

218 https://catalog.ldc.upenn.edu/LDC99T42

14.3. The Dataset for Word2vec 637

https://catalog.ldc.upenn.edu/LDC99T42

(continued from previous page)

return [line.split() for line in raw_text.split('\n')]

sentences = read_ptb()
'# sentences: %d' % len(sentences)

'# sentences: 42069'

Next we build a vocabulary with words appeared not greater than 10 times mapped into a “<unk>”
token. Note that the preprocessed PTB data also contains “<unk>” tokens presenting rare words.

vocab = d2l.Vocab(sentences, min_freq=10)
'vocab size: %d' % len(vocab)

'vocab size: 6719'

14.3.2 Subsampling

In text data, there are generally some words that appear at high frequencies, such “the”, “a”, and
“in” in English. Generally speaking, in a context window, it is better to train the word embedding
model when a word (such as “chip”) and a lower-frequency word (such as “microprocessor”) ap-
pear at the same time, rather than when a word appears with a higher-frequency word (such as
“the”). Therefore, when training the word embedding model, we can perform subsampling[2] on
the words. Specifically, each indexed word wi in the dataset will drop out at a certain probability.
The dropout probability is given as:

P (wi) = max

(
1−

√
t

f(wi)
, 0

)
, (14.3.1)

Here, f(wi) is the ratio of the instances of word wi to the total number of words in the dataset,
and the constant t is a hyperparameter (set to 10−4 in this experiment). As we can see, it is only
possible to drop out the word wi in subsampling when f(wi) > t. The higher the words̓ frequency,
the higher its dropout probability.

Saved in the d2l package for later use
def subsampling(sentences, vocab):

Map low frequency words into <unk>
sentences = [[vocab.idx_to_token[vocab[tk]] for tk in line]

for line in sentences]
Count the frequency for each word
counter = d2l.count_corpus(sentences)
num_tokens = sum(counter.values())

Return True if to keep this token during subsampling
def keep(token):

return(random.uniform(0, 1) <
math.sqrt(1e-4 / counter[token] * num_tokens))

Now do the subsampling
return [[tk for tk in line if keep(tk)] for line in sentences]

(continues on next page)

638 Chapter 14. Natural Language Processing

(continued from previous page)

subsampled = subsampling(sentences, vocab)

Compare the sequence lengths before and after sampling, we can see subsampling significantly
reduced the sequence length.

d2l.set_figsize((3.5, 2.5))
d2l.plt.hist([[len(line) for line in sentences],

[len(line) for line in subsampled]])
d2l.plt.xlabel('# tokens per sentence')
d2l.plt.ylabel('count')
d2l.plt.legend(['origin', 'subsampled']);

For individual tokens, the sampling rate of the high-frequency word “the” is less than 1/20.

def compare_counts(token):
return '# of "%s": before=%d, after=%d' % (token, sum(

[line.count(token) for line in sentences]), sum(
[line.count(token) for line in subsampled]))

compare_counts('the')

'# of "the": before=50770, after=2107'

But the low-frequency word “join” is completely preserved.

compare_counts('join')

'# of "join": before=45, after=45'

Last, we map each token into an index to construct the corpus.

corpus = [vocab[line] for line in subsampled]
corpus[0:3]

14.3. The Dataset for Word2vec 639

[[], [71, 392, 2132, 18, 275, 406], [0, 140, 0, 5464, 3080, 1595, 95]]

14.3.3 Loading the Dataset

Next we read the corpus with token indicies into data batches for training.

Extracting Central Target Words and Context Words

We use words with a distance from the central target word not exceeding the context window size
as the context words of the given center target word. The following definition function extracts all
the central target words and their context words. It uniformly and randomly samples an integer to
be used as the context window size between integer 1 and the max_window_size (maximum context
window).

Saved in the d2l package for later use
def get_centers_and_contexts(corpus, max_window_size):

centers, contexts = [], []
for line in corpus:

Each sentence needs at least 2 words to form a
"central target word - context word" pair
if len(line) < 2:

continue
centers += line
for i in range(len(line)): # Context window centered at i

window_size = random.randint(1, max_window_size)
indices = list(range(max(0, i - window_size),

min(len(line), i + 1 + window_size)))
Exclude the central target word from the context words
indices.remove(i)
contexts.append([line[idx] for idx in indices])

return centers, contexts

Next, we create an artificial dataset containing two sentences of 7 and 3 words, respectively. As-
sume the maximum context window is 2 and print all the central target words and their context
words.

tiny_dataset = [list(range(7)), list(range(7, 10))]
print('dataset', tiny_dataset)
for center, context in zip(*get_centers_and_contexts(tiny_dataset, 2)):

print('center', center, 'has contexts', context)

dataset [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]
center 0 has contexts [1, 2]
center 1 has contexts [0, 2]
center 2 has contexts [0, 1, 3, 4]
center 3 has contexts [1, 2, 4, 5]
center 4 has contexts [3, 5]
center 5 has contexts [3, 4, 6]
center 6 has contexts [4, 5]
center 7 has contexts [8, 9]

(continues on next page)

640 Chapter 14. Natural Language Processing

(continued from previous page)

center 8 has contexts [7, 9]
center 9 has contexts [7, 8]

We set the maximum context window size to 5. The following extracts all the central target words
and their context words in the dataset.

all_centers, all_contexts = get_centers_and_contexts(corpus, 5)
'# center-context pairs: %d' % len(all_centers)

'# center-context pairs: 353705'

Negative Sampling

We use negative sampling for approximate training. For a central and context word pair, we ran-
domly sample K noise words (K = 5 in the experiment). According to the suggestion in the
Word2vec paper, the noise word sampling probability P (w) is the ratio of the word frequency of
w to the total word frequency raised to the power of 0.75 [2].

We first define a class to draw a candidate according to the sampling weights. It caches a 10000
size random number bank instead of calling random.choices every time.

Saved in the d2l package for later use
class RandomGenerator(object):

"""Draw a random int in [0, n] according to n sampling weights"""
def __init__(self, sampling_weights):

self.population = list(range(len(sampling_weights)))
self.sampling_weights = sampling_weights
self.candidates = []
self.i = 0

def draw(self):
if self.i == len(self.candidates):

self.candidates = random.choices(
self.population, self.sampling_weights, k=10000)

self.i = 0
self.i += 1
return self.candidates[self.i-1]

generator = RandomGenerator([2, 3, 4])
[generator.draw() for _ in range(10)]

[0, 2, 0, 2, 2, 1, 0, 0, 2, 2]

Saved in the d2l package for later use
def get_negatives(all_contexts, corpus, K):

counter = d2l.count_corpus(corpus)
sampling_weights = [counter[i]**0.75 for i in range(len(counter))]
all_negatives, generator = [], RandomGenerator(sampling_weights)
for contexts in all_contexts:

(continues on next page)

14.3. The Dataset for Word2vec 641

(continued from previous page)

negatives = []
while len(negatives) < len(contexts) * K:

neg = generator.draw()
Noise words cannot be context words
if neg not in contexts:

negatives.append(neg)
all_negatives.append(negatives)

return all_negatives

all_negatives = get_negatives(all_contexts, corpus, 5)

Reading into Batches

We extract all central target words all_centers, and the context words all_contexts and noise
words all_negatives of each central target word from the dataset. We will read them in random
minibatches.

In a minibatch of data, the ith example includes a central word and its corresponding ni con-
text words and mi noise words. Since the context window size of each example may be differ-
ent, the sum of context words and noise words, ni + mi, will be different. When constructing a
minibatch, we concatenate the context words and noise words of each example, and add 0s for
padding until the length of the concatenations are the same, that is, the length of all concate-
nations is maxi ni + mi(max_len). In order to avoid the effect of padding on the loss function
calculation, we construct the mask variable masks, each element of which corresponds to an el-
ement in the concatenation of context and noise words, contexts_negatives. When an element
in the variable contexts_negatives is a padding, the element in the mask variable masks at the
same position will be 0. Otherwise, it takes the value 1. In order to distinguish between positive
and negative examples, we also need to distinguish the context words from the noise words in the
contexts_negatives variable. Based on the construction of the mask variable, we only need to
create a label variable labels with the same shape as the contexts_negatives variable and set the
elements corresponding to context words (positive examples) to 1, and the rest to 0.

Next, we will implement the minibatch reading function batchify. Its minibatch input data is a
list whose length is the batch size, each element of which contains central target words center,
context words context, and noise words negative. The minibatch data returned by this function
conforms to the format we need, for example, it includes the mask variable.

Saved in the d2l package for later use
def batchify(data):

max_len = max(len(c) + len(n) for _, c, n in data)
centers, contexts_negatives, masks, labels = [], [], [], []
for center, context, negative in data:

cur_len = len(context) + len(negative)
centers += [center]
contexts_negatives += [context + negative + [0] * (max_len - cur_len)]
masks += [[1] * cur_len + [0] * (max_len - cur_len)]
labels += [[1] * len(context) + [0] * (max_len - len(context))]

return (np.array(centers).reshape(-1, 1), np.array(contexts_negatives),
np.array(masks), np.array(labels))

Construct two simple examples:

642 Chapter 14. Natural Language Processing

x_1 = (1, [2, 2], [3, 3, 3, 3])
x_2 = (1, [2, 2, 2], [3, 3])
batch = batchify((x_1, x_2))

names = ['centers', 'contexts_negatives', 'masks', 'labels']
for name, data in zip(names, batch):

print(name, '=', data)

centers = [[1.]
[1.]]
contexts_negatives = [[2. 2. 3. 3. 3. 3.]
[2. 2. 2. 3. 3. 0.]]
masks = [[1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 0.]]
labels = [[1. 1. 0. 0. 0. 0.]
[1. 1. 1. 0. 0. 0.]]

We use the batchify function just defined to specify the minibatch reading method in the Dat-
aLoader instance.

14.3.4 Putting All Things Together

Last, we define the load_data_ptb function that read the PTB dataset and return the data loader.

Saved in the d2l package for later use
def load_data_ptb(batch_size, max_window_size, num_noise_words):

sentences = read_ptb()
vocab = d2l.Vocab(sentences, min_freq=10)
subsampled = subsampling(sentences, vocab)
corpus = [vocab[line] for line in subsampled]
all_centers, all_contexts = get_centers_and_contexts(

corpus, max_window_size)
all_negatives = get_negatives(all_contexts, corpus, num_noise_words)
dataset = gluon.data.ArrayDataset(

all_centers, all_contexts, all_negatives)
data_iter = gluon.data.DataLoader(dataset, batch_size, shuffle=True,

batchify_fn=batchify)
return data_iter, vocab

Let s̓ print the first minibatch of the data iterator.

data_iter, vocab = load_data_ptb(512, 5, 5)
for batch in data_iter:

for name, data in zip(names, batch):
print(name, 'shape:', data.shape)

break

centers shape: (512, 1)
contexts_negatives shape: (512, 60)
masks shape: (512, 60)
labels shape: (512, 60)

14.3. The Dataset for Word2vec 643

Summary

• Subsampling attempts to minimize the impact of high-frequency words on the training of a
word embedding model.

• We can pad examples of different lengths to create minibatches with examples of all the
same length and use mask variables to distinguish between padding and non-padding ele-
ments, so that only non-padding elements participate in the calculation of the loss function.

Exercises

1. We use the batchify function to specify the minibatch reading method in the DataLoader
instance and print the shape of each variable in the first batch read. How should these shapes
be calculated?

14.4 Implementation of Word2vec

In this section, we will train a skip-gram model defined in Section 14.1.

First, import the packages and modules required for the experiment, and load the PTB dataset.

import d2l
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
npx.set_np()

batch_size, max_window_size, num_noise_words = 512, 5, 5
data_iter, vocab = d2l.load_data_ptb(512, 5, 5)

14.4.1 The Skip-GramModel

We will implement the skip-gram model by using embedding layers and minibatch multiplication.
These methods are also often used to implement other natural language processing applications.

Embedding Layer

The layer in which the obtained word is embedded is called the embedding layer, which can be
obtained by creating an nn.Embedding instance in Gluon. The weight of the embedding layer is a
matrix whose number of rows is the dictionary size (input_dim) and whose number of columns
is the dimension of each word vector (output_dim). We set the dictionary size to 20 and the word
vector dimension to 4.

644 Chapter 14. Natural Language Processing

embed = nn.Embedding(input_dim=20, output_dim=4)
embed.initialize()
embed.weight

Parameter embedding0_weight (shape=(20, 4), dtype=float32)

The input of the embedding layer is the index of the word. When we enter the index i of a word,
the embedding layer returns the ith row of the weight matrix as its word vector. Below we enter
an index of shape (2, 3) into the embedding layer. Because the dimension of the word vector is 4,
we obtain a word vector of shape (2, 3, 4).

x = np.array([[1, 2, 3], [4, 5, 6]])
embed(x)

array([[[0.01438687, 0.05011239, 0.00628365, 0.04861524],
[-0.01068833, 0.01729892, 0.02042518, -0.01618656],
[-0.00873779, -0.02834515, 0.05484822, -0.06206018]],

[[0.06491279, -0.03182812, -0.01631819, -0.00312688],
[0.0408415 , 0.04370362, 0.00404529, -0.0028032],
[0.00952624, -0.01501013, 0.05958354, 0.04705103]]])

Minibatch Multiplication

We can multiply the matrices in two minibatches one by one, by the minibatch multiplication
operation batch_dot. Suppose the first batch contains n matrices X1, . . . ,Xn with a shape of a× b,
and the second batch contains n matrices Y1, . . . ,Yn with a shape of b × c. The output of matrix
multiplication on these two batches arenmatricesX1Y1, . . . ,XnYn with a shape of a×c. Therefore,
given two ndarrays of shape (n, a, b) and (n, b, c), the shape of the minibatch multiplication output
is (n, a, c).

X = np.ones((2, 1, 4))
Y = np.ones((2, 4, 6))
npx.batch_dot(X, Y).shape

(2, 1, 6)

Skip-gramModel Forward Calculation

In forward calculation, the input of the skip-gram model contains the central target word index
center and the concatenated context and noise word index contexts_and_negatives. In which,
the center variable has the shape (batch size, 1), while the contexts_and_negatives variable has
the shape (batch size, max_len). These two variables are first transformed from word indexes to
word vectors by the word embedding layer, and then the output of shape (batch size, 1, max_len)
is obtained by minibatch multiplication. Each element in the output is the inner product of the
central target word vector and the context word vector or noise word vector.

14.4. Implementation of Word2vec 645

def skip_gram(center, contexts_and_negatives, embed_v, embed_u):
v = embed_v(center)
u = embed_u(contexts_and_negatives)
pred = npx.batch_dot(v, u.swapaxes(1, 2))
return pred

Verify that the output shape should be (batch size, 1, max_len).

skip_gram(np.ones((2, 1)), np.ones((2, 4)), embed, embed).shape

(2, 1, 4)

14.4.2 Training

Before training the word embedding model, we need to define the loss function of the model.

Binary Cross Entropy Loss Function

According to the definition of the loss function in negative sampling, we can directly use Gluons̓
binary cross-entropy loss function SigmoidBinaryCrossEntropyLoss.

loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()

It is worth mentioning that we can use the mask variable to specify the partial predicted value
and label that participate in loss function calculation in the minibatch: when the mask is 1, the
predicted value and label of the corresponding position will participate in the calculation of the
loss function; When the mask is 0, the predicted value and label of the corresponding position do
not participate in the calculation of the loss function. As we mentioned earlier, mask variables
can be used to avoid the effect of padding on loss function calculations.

Given two identical examples, different masks lead to different loss values.

pred = np.array([[.5]*4]*2)
label = np.array([[1, 0, 1, 0]]*2)
mask = np.array([[1, 1, 1, 1], [1, 1, 0, 0]])
loss(pred, label, mask)

array([0.724077 , 0.3620385])

We can normalize the loss in each example due to various lengths in each example.

loss(pred, label, mask) / mask.sum(axis=1) * mask.shape[1]

array([0.724077, 0.724077])

646 Chapter 14. Natural Language Processing

Initializing Model Parameters

We construct the embedding layers of the central and context words, respectively, and set the
hyperparameter word vector dimension embed_size to 100.

embed_size = 100
net = nn.Sequential()
net.add(nn.Embedding(input_dim=len(vocab), output_dim=embed_size),

nn.Embedding(input_dim=len(vocab), output_dim=embed_size))

Training

The training function is defined below. Because of the existence of padding, the calculation of the
loss function is slightly different compared to the previous training functions.

def train(net, data_iter, lr, num_epochs, ctx=d2l.try_gpu()):
net.initialize(ctx=ctx, force_reinit=True)
trainer = gluon.Trainer(net.collect_params(), 'adam',

{'learning_rate': lr})
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[0, num_epochs])
for epoch in range(num_epochs):

timer = d2l.Timer()
metric = d2l.Accumulator(2) # loss_sum, num_tokens
for i, batch in enumerate(data_iter):

center, context_negative, mask, label = [
data.as_in_context(ctx) for data in batch]

with autograd.record():
pred = skip_gram(center, context_negative, net[0], net[1])
l = (loss(pred.reshape(label.shape), label, mask)

/ mask.sum(axis=1) * mask.shape[1])
l.backward()
trainer.step(batch_size)
metric.add(l.sum(), l.size)
if (i+1) % 50 == 0:

animator.add(epoch+(i+1)/len(data_iter),
(metric[0]/metric[1],))

print('loss %.3f, %d tokens/sec on %s ' % (
metric[0]/metric[1], metric[1]/timer.stop(), ctx))

Now, we can train a skip-gram model using negative sampling.

lr, num_epochs = 0.01, 5
train(net, data_iter, lr, num_epochs)

14.4. Implementation of Word2vec 647

loss 0.330, 27378 tokens/sec on gpu(0)

14.4.3 Applying the Word Embedding Model

After training the word embedding model, we can represent similarity in meaning between words
based on the cosine similarity of two word vectors. As we can see, when using the trained word
embedding model, the words closest in meaning to the word “chip” are mostly related to chips.

def get_similar_tokens(query_token, k, embed):
W = embed.weight.data()
x = W[vocab[query_token]]
Compute the cosine similarity. Add 1e-9 for numerical stability
cos = np.dot(W, x) / np.sqrt(np.sum(W * W, axis=1) * np.sum(x * x) + 1e-9)
topk = npx.topk(cos, k=k+1, ret_typ='indices').asnumpy().astype('int32')
for i in topk[1:]: # Remove the input words

print('cosine sim=%.3f: %s' % (cos[i], (vocab.idx_to_token[i])))

get_similar_tokens('chip', 3, net[0])

cosine sim=0.584: intel
cosine sim=0.558: computer
cosine sim=0.524: mips

648 Chapter 14. Natural Language Processing

Summary

• We can use Gluon to train a skip-gram model through negative sampling.

Exercises

1. Set sparse_grad=True when creating an instance of nn.Embedding. Does it accelerate train-
ing? Look up MXNet documentation to learn the meaning of this argument.

2. Try to find synonyms for other words.

3. Tune the hyper-parameters and observe and analyze the experimental results.

4. When the dataset is large, we usually sample the context words and the noise words for the
central target word in the current minibatch only when updating the model parameters. In
other words, the same central target word may have different context words or noise words
in different epochs. What are the benefits of this sort of training? Try to implement this
training method.

14.5 Subword Embedding (fastText)

English words usually have internal structures and formation methods. For example, we can de-
duce the relationship between “dog”, “dogs”, and “dogcatcher” by their spelling. All these words
have the same root, “dog”, but they use different suffixes to change the meaning of the word.
Moreover, this association can be extended to other words. For example, the relationship be-
tween “dog” and “dogs” is just like the relationship between “cat” and “cats”. The relationship
between “boy” and “boyfriend” is just like the relationship between “girl” and “girlfriend”. This
characteristic is not unique to English. In French and Spanish, a lot of verbs can have more than
40 different forms depending on the context. In Finnish, a noun may have more than 15 forms. In
fact, morphology, which is an important branch of linguistics, studies the internal structure and
formation of words.

In word2vec, we did not directly use morphology information. In both the skip-gram model and
continuous bag-of-words model, we use different vectors to represent words with different forms.
For example, “dog” and “dogs” are represented by two different vectors, while the relationship
between these two vectors is not directly represented in the model. In view of this, fastText (Bo-
janowski et al., 2017) proposes the method of subword embedding, thereby attempting to intro-
duce morphological information in the skip-gram model in word2vec.

In fastText, each central word is represented as a collection of subwords. Below we use the word
“where” as an example to understand how subwords are formed. First, we add the special charac-
ters “<” and “>” at the beginning and end of the word to distinguish the subwords used as prefixes
and suffixes. Then, we treat the word as a sequence of characters to extract the n-grams. For
example, when n = 3, we can get all subwords with a length of 3:

"<wh", "whe", "her", "ere", "re>", (14.5.1)

14.5. Subword Embedding (fastText) 649

and the special subword "<where>".

In fastText, for a word w, we record the union of all its subwords with length of 3 to 6 and special
subwords as Gw. Thus, the dictionary is the union of the collection of subwords of all words.
Assume the vector of the subword g in the dictionary is zg. Then, the central word vector uw for
the word w in the skip-gram model can be expressed as

uw =
∑
g∈Gw

zg. (14.5.2)

The rest of the fastText process is consistent with the skip-gram model, so it is not repeated here.
As we can see, compared with the skip-gram model, the dictionary in fastText is larger, resulting
in more model parameters. Also, the vector of one word requires the summation of all subword
vectors, which results in higher computation complexity. However, we can obtain better vectors
for more uncommon complex words, even words not existing in the dictionary, by looking at other
words with similar structures.

Summary

• FastText proposes a subword embedding method. Based on the skip-gram model in
word2vec, it represents the central word vector as the sum of the subword vectors of the
word.

• Subword embedding utilizes the principles of morphology, which usually improves the qual-
ity of representations of uncommon words.

Exercises

1. When there are too many subwords (for example, 6 words in English result in about 3× 108

combinations), what problems arise? Can you think of any methods to solve them? Hint:
Refer to the end of section 3.2 of the fastText paper[1].

2. How can you design a subword embedding model based on the continuous bag-of-words
model?

14.6 Word Embedding with Global Vectors (GloVe)

First, we should review the skip-gram model in word2vec. The conditional probability P (wj | wi)
expressed in the skip-gram model using the softmax operation will be recorded as qij, that is:

qij =
exp(u⊤

j vi)∑
k∈V exp(u⊤

k vi)
, (14.6.1)

where vi and ui are the vector representations of word wi of index i as the center word and context
word respectively, and V = {0, 1, . . . , |V| − 1} is the vocabulary index set.

650 Chapter 14. Natural Language Processing

For word wi, it may appear in the dataset for multiple times. We collect all the context words
every time when wi is a center word and keep duplicates, denoted as multiset Ci. The number
of an element in a multiset is called the multiplicity of the element. For instance, suppose that
word wi appears twice in the dataset: the context windows when these two wi become center
words in the text sequence contain context word indices 2, 1, 5, 2 and 2, 3, 2, 1. Then, multiset
Ci = {1, 1, 2, 2, 2, 2, 3, 5}, where multiplicity of element 1 is 2, multiplicity of element 2 is 4, and
multiplicities of elements 3 and 5 are both 1. Denote multiplicity of element j in multiset Ci as xij:
it is the number of word wj in all the context windows for center word wi in the entire dataset. As
a result, the loss function of the skip-gram model can be expressed in a different way:

−
∑
i∈V

∑
j∈V

xij log qij . (14.6.2)

We add up the number of all the context words for the central target word wi to get xi, and record
the conditional probability xij/xi for generating context word wj based on central target word wi

as pij. We can rewrite the loss function of the skip-gram model as

−
∑
i∈V

xi
∑
j∈V

pij log qij . (14.6.3)

In the formula above,
∑

j∈V pij log qij computes the conditional probability distribution pij for
context word generation based on the central target word wi and the cross-entropy of conditional
probability distribution qij predicted by the model. The loss function is weighted using the sum
of the number of context words with the central target word wi. If we minimize the loss function
from the formula above, we will be able to allow the predicted conditional probability distribution
to approach as close as possible to the true conditional probability distribution.

However, although the most common type of loss function, the cross-entropy loss function is
sometimes not a good choice. On the one hand, as we mentioned in Section 14.2 the cost of letting
the model prediction qij become the legal probability distribution has the sum of all items in the
entire dictionary in its denominator. This can easily lead to excessive computational overhead.
On the other hand, there are often a lot of uncommon words in the dictionary, and they appear
rarely in the dataset. In the cross-entropy loss function, the final prediction of the conditional
probability distribution on a large number of uncommon words is likely to be inaccurate.

14.6.1 The GloVe Model

To address this, GloVe (Pennington et al., 2014), a word embedding model that came after
word2vec, adopts square loss and makes three changes to the skip-gram model based on this loss.

1. Here, we use the non-probability distribution variables p′ij = xij and q′ij = exp(u⊤
j vi) and

take their logs. Therefore, we get the square loss
(

log p′ij − log q′ij

)2
=
(
u⊤
j vi − log xij

)2
.

2. We add two scalar model parameters for each word wi: the bias terms bi (for central target
words) and ci(for context words).

3. Replace the weight of each loss with the function h(xij). The weight function h(x) is a mono-
tone increasing function with the range $[0, 1].

Therefore, the goal of GloVe is to minimize the loss function.∑
i∈V

∑
j∈V

h(xij)
(
u⊤
j vi + bi + cj − log xij

)2
. (14.6.4)

14.6. Word Embedding with Global Vectors (GloVe) 651

Here, we have a suggestion for the choice of weight function h(x): when x < c (e.g c = 100), make
h(x) = (x/c)α (e.g α = 0.75), otherwise make h(x) = 1. Because h(0) = 0, the squared loss term
for xij = 0 can be simply ignored. When we use minibatch SGD for training, we conduct random
sampling to get a non-zero minibatch xij from each timestep and compute the gradient to update
the model parameters. These non-zero xij are computed in advance based on the entire dataset
and they contain global statistics for the dataset. Therefore, the name GloVe is taken from “Global
Vectors”.

Notice that if word wi appears in the context window of word wj, then word wj will also appear in
the context window of word wi. Therefore, xij = xji. Unlike word2vec, GloVe fits the symmetric
log xij in lieu of the asymmetric conditional probability pij. Therefore, the central target word
vector and context word vector of any word are equivalent in GloVe. However, the two sets of word
vectors that are learned by the same word may be different in the end due to different initialization
values. After learning all the word vectors, GloVe will use the sum of the central target word vector
and the context word vector as the final word vector for the word.

14.6.2 Understanding GloVe from Conditional Probability Ratios

We can also try to understand GloVe word embedding from another perspective. We will continue
the use of symbols from earlier in this section, P (wj | wi) represents the conditional probability
of generating context word wj with central target word wi in the dataset, and it will be recorded as
pij. From a real example from a large corpus, here we have the following two sets of conditional
probabilities with “ice” and “steam” as the central target words and the ratio between them:

wk= “solid” “gas” “water” “fashion”
p1 = P (wk | “ice”) 0.00019 0.000066 0.003 0.000017
p2 = P (wk | “steam”) 0.000022 0.00078 0.0022 0.000018
p1/p2 8.9 0.085 1.36 0.96

We will be able to observe phenomena such as:

• For a word wk that is related to “ice” but not to “steam”, such as wk =“solid”, we would expect
a larger conditional probability ratio, like the value 8.9 in the last row of the table above.

• For a word wk that is related to “steam” but not to “ice”, such as wk =“gas”, we would expect
a smaller conditional probability ratio, like the value 0.085 in the last row of the table above.

• For a word wk that is related to both “ice” and “steam”, such as wk =“water”, we would expect
a conditional probability ratio close to 1, like the value 1.36 in the last row of the table above.

• For a word wk that is related to neither “ice” or “steam”, such as wk =“fashion”, we would
expect a conditional probability ratio close to 1, like the value 0.96 in the last row of the table
above.

We can see that the conditional probability ratio can represent the relationship between different
words more intuitively. We can construct a word vector function to fit the conditional probability
ratio more effectively. As we know, to obtain any ratio of this type requires three words wi, wj,
and wk. The conditional probability ratio with wi as the central target word is pij/pik. We can find
a function that uses word vectors to fit this conditional probability ratio.

f(uj ,uk, vi) ≈
pij
pik

. (14.6.5)

652 Chapter 14. Natural Language Processing

The possible design of function f here will not be unique. We only need to consider a more reason-
able possibility. Notice that the conditional probability ratio is a scalar, we can limit f to be a scalar
function: f(uj ,uk, vi) = f

(
(uj − uk)

⊤vi
)
. After exchanging index j with k, we will be able to see

that function f satisfies the condition f(x)f(−x) = 1, so one possibility could be f(x) = exp(x).
Thus:

f(uj ,uk, vi) =
exp

(
u⊤
j vi
)

exp
(
u⊤
k vi
) ≈ pij

pik
. (14.6.6)

One possibility that satisfies the right side of the approximation sign is exp
(
u⊤
j vi
)
≈ αpij, where

α is a constant. Considering that pij = xij/xi, after taking the logarithm we get u⊤
j vi ≈ log α +

log xij− log xi. We use additional bias terms to fit− log α+ log xi, such as the central target word
bias term bi and context word bias term cj:

u⊤
j vi + bi + cj ≈ log(xij). (14.6.7)

By taking the square error and weighting the left and right sides of the formula above, we can get
the loss function of GloVe.

Summary

• In some cases, the cross-entropy loss function may have a disadvantage. GloVe uses squared
loss and the word vector to fit global statistics computed in advance based on the entire
dataset.

• The central target word vector and context word vector of any word are equivalent in GloVe.

Exercises

1. If a word appears in the context window of another word, how can we use the distance be-
tween them in the text sequence to redesign the method for computing the conditional prob-
ability pij? Hint: See section 4.2 from the paper GloVe (Pennington et al., 2014).

2. For any word, will its central target word bias term and context word bias term be equivalent
to each other in GloVe? Why?

14.7 Finding Synonyms and Analogies

In Section 14.4 we trained a word2vec word embedding model on a small-scale dataset and
searched for synonyms using the cosine similarity of word vectors. In practice, word vectors pre-
trained on a large-scale corpus can often be applied to downstream natural language processing
tasks. This section will demonstrate how to use these pre-trained word vectors to find synonyms
and analogies. We will continue to apply pre-trained word vectors in subsequent sections.

14.7. Finding Synonyms and Analogies 653

14.7.1 Using Pre-TrainedWord Vectors

MXNet s̓ contrib.text package provides functions and classes related to natural language pro-
cessing (see the GluonNLP223 tool package for more details). Next, let s̓ check out names of the
provided pre-trained word embeddings.

from mxnet import np, npx
from mxnet.contrib import text
npx.set_np()

text.embedding.get_pretrained_file_names().keys()

dict_keys(['glove', 'fasttext'])

Given the name of the word embedding, we can see which pre-trained models are provided by
the word embedding. The word vector dimensions of each model may be different or obtained by
pre-training on different datasets.

print(text.embedding.get_pretrained_file_names('glove'))

['glove.42B.300d.txt', 'glove.6B.50d.txt', 'glove.6B.100d.txt', 'glove.6B.200d.txt', 'glove.
↪→6B.300d.txt', 'glove.840B.300d.txt', 'glove.twitter.27B.25d.txt', 'glove.twitter.27B.50d.
↪→txt', 'glove.twitter.27B.100d.txt', 'glove.twitter.27B.200d.txt']

The general naming conventions for pre-trained GloVe models are “model.(dataset.)number of
words in dataset.word vector dimension.txt”. For more information, please refer to the GloVe and
fastText project sites [2, 3]. Below, we use a 50-dimensional GloVe word vector based on Wikipedia
subset pre-training. The corresponding word vector is automatically downloaded the first time we
create a pre-trained word vector instance.

glove_6b50d = text.embedding.create(
'glove', pretrained_file_name='glove.6B.50d.txt')

Print the dictionary size. The dictionary contains 400, 000 words and a special unknown token.

len(glove_6b50d)

400001

We can use a word to get its index in the dictionary, or we can get the word from its index.

glove_6b50d.token_to_idx['beautiful'], glove_6b50d.idx_to_token[3367]

(3367, 'beautiful')

223 https://gluon-nlp.mxnet.io/

654 Chapter 14. Natural Language Processing

https://gluon-nlp.mxnet.io/

14.7.2 Applying Pre-TrainedWord Vectors

Below, we demonstrate the application of pre-trained word vectors, using GloVe as an example.

Finding Synonyms

Here, we re-implement the algorithm used to search for synonyms by cosine similarity introduced
in Section 14.1

In order to reuse the logic for seeking the k nearest neighbors when seeking analogies, we encap-
sulate this part of the logic separately in the knn (k-nearest neighbors) function.

def knn(W, x, k):
The added 1e-9 is for numerical stability
cos = np.dot(W, x.reshape(-1,)) / (

np.sqrt(np.sum(W * W, axis=1) + 1e-9) * np.sqrt((x * x).sum()))
topk = npx.topk(cos, k=k, ret_typ='indices')
return topk, [cos[int(i)] for i in topk]

Then, we search for synonyms by pre-training the word vector instance embed.

def get_similar_tokens(query_token, k, embed):
topk, cos = knn(embed.idx_to_vec,

embed.get_vecs_by_tokens([query_token]), k+1)
for i, c in zip(topk[1:], cos[1:]): # Remove input words

print('cosine sim=%.3f: %s' % (c, (embed.idx_to_token[int(i)])))

The dictionary of pre-trained word vector instance glove_6b50d already created contains 400,000
words and a special unknown token. Excluding input words and unknown words, we search for
the three words that are the most similar in meaning to “chip”.

get_similar_tokens('chip', 3, glove_6b50d)

cosine sim=0.856: chips
cosine sim=0.749: intel
cosine sim=0.749: electronics

Next, we search for the synonyms of “baby” and “beautiful”.

get_similar_tokens('baby', 3, glove_6b50d)

cosine sim=0.839: babies
cosine sim=0.800: boy
cosine sim=0.792: girl

get_similar_tokens('beautiful', 3, glove_6b50d)

cosine sim=0.921: lovely
cosine sim=0.893: gorgeous
cosine sim=0.830: wonderful

14.7. Finding Synonyms and Analogies 655

Finding Analogies

In addition to seeking synonyms, we can also use the pre-trained word vector to seek the analo-
gies between words. For example, “man”:“woman”::“son”:“daughter” is an example of analogy,
“man” is to “woman” as “son” is to “daughter”. The problem of seeking analogies can be defined
as follows: for four words in the analogical relationship a : b :: c : d, given the first three words,
a, b and c, we want to find d. Assume the word vector for the word w is vec(w). To solve the
analogy problem, we need to find the word vector that is most similar to the result vector of
vec(c) + vec(b)− vec(a).

def get_analogy(token_a, token_b, token_c, embed):
vecs = embed.get_vecs_by_tokens([token_a, token_b, token_c])
x = vecs[1] - vecs[0] + vecs[2]
topk, cos = knn(embed.idx_to_vec, x, 1)
return embed.idx_to_token[int(topk[0])] # Remove unknown words

Verify the “male-female” analogy.

get_analogy('man', 'woman', 'son', glove_6b50d)

'daughter'

“Capital-country” analogy: “beijing” is to “china” as “tokyo” is to what? The answer should be
“japan”.

get_analogy('beijing', 'china', 'tokyo', glove_6b50d)

'japan'

“Adjective-superlative adjective” analogy: “bad” is to “worst” as “big” is to what? The answer
should be “biggest”.

get_analogy('bad', 'worst', 'big', glove_6b50d)

'biggest'

“Present tense verb-past tense verb” analogy: “do” is to “did” as “go” is to what? The answer should
be “went”.

get_analogy('do', 'did', 'go', glove_6b50d)

'went'

656 Chapter 14. Natural Language Processing

Summary

• Word vectors pre-trained on a large-scale corpus can often be applied to downstream natural
language processing tasks.

• We can use pre-trained word vectors to seek synonyms and analogies.

Exercises

1. Test the fastText results.

2. If the dictionary is extremely large, how can we accelerate finding synonyms and analogies?

14.8 Text Classification and the Dataset

Text classification is a common task in natural language processing, which transforms a sequence
of text of indefinite length into a category of text. It is similar to the image classification, the most
frequently used application in this book, e.g., Section 17.8. The only difference is that, rather than
an image, text classifications̓ example is a text sentence.

This section will focus on loading data for one of the sub-questions in this field: using text senti-
ment classification to analyze the emotions of the text s̓ author. This problem is also called senti-
ment analysis and has a wide range of applications. For example, we can analyze user reviews of
products to obtain user satisfaction statistics, or analyze user sentiments about market conditions
and use it to predict future trends.

import d2l
from mxnet import gluon, np, npx
import os
import tarfile
npx.set_np()

14.8.1 The Text Sentiment Classification Dataset

We use Stanford s̓ Large Movie Review Dataset as the dataset for text sentiment classification[1].
This dataset is divided into two datasets for training and testing purposes, each containing 25,000
movie reviews downloaded from IMDb. In each dataset, the number of comments labeled as
“positive” and “negative” is equal.

14.8. Text Classification and the Dataset 657

Reading the Dataset

We first download this dataset to the “../data” path and extract it to “../data/aclImdb”.

Saved in the d2l package for later use
def download_imdb(data_dir='../data'):

url = 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'
fname = gluon.utils.download(url, data_dir)
with tarfile.open(fname, 'r') as f:

f.extractall(data_dir)

download_imdb()

Next, read the training and test datasets. Each example is a review and its corresponding label: 1
indicates “positive” and 0 indicates “negative”.

Saved in the d2l package for later use
def read_imdb(folder='train', data_dir='../data'):

data, labels = [], []
for label in ['pos', 'neg']:

folder_name = os.path.join(data_dir, 'aclImdb', folder, label)
for file in os.listdir(folder_name):

with open(os.path.join(folder_name, file), 'rb') as f:
review = f.read().decode('utf-8').replace('\n', '')
data.append(review)
labels.append(1 if label == 'pos' else 0)

return data, labels

train_data = read_imdb('train')
print('# trainings:', len(train_data[0]))
for x, y in zip(train_data[0][:3], train_data[1][:3]):

print('label:', y, 'review:', x[0:60])

trainings: 25000
label: 1 review: Normally the best way to annoy me in a film is to include so
label: 1 review: The Bible teaches us that the love of money is the root of a
label: 1 review: Being someone who lists Night of the Living Dead at number t

Tokenization and Vocabulary

We use a word as a token, and then create a dictionary based on the training dataset.

train_tokens = d2l.tokenize(train_data[0], token='word')
vocab = d2l.Vocab(train_tokens, min_freq=5)

d2l.set_figsize((3.5, 2.5))
d2l.plt.hist([len(line) for line in train_tokens], bins=range(0, 1000, 50));

658 Chapter 14. Natural Language Processing

Padding to the Same Length

Because the reviews have different lengths, so they cannot be directly combined into minibatches.
Here we fix the length of each comment to 500 by truncating or adding “<unk>” indices.

num_steps = 500 # sequence length
train_features = np.array([d2l.trim_pad(vocab[line], num_steps, vocab.unk)

for line in train_tokens])
train_features.shape

(25000, 500)

Creating the Data Iterator

Now, we will create a data iterator. Each iteration will return a minibatch of data.

train_iter = d2l.load_array((train_features, train_data[1]), 64)

for X, y in train_iter:
print('X', X.shape, 'y', y.shape)
break

'# batches:', len(train_iter)

X (64, 500) y (64,)

('# batches:', 391)

14.8. Text Classification and the Dataset 659

14.8.2 Putting All Things Together

Last, we will save a function load_data_imdb into d2l, which returns the vocabulary and data iter-
ators.

Saved in the d2l package for later use
def load_data_imdb(batch_size, num_steps=500):

download_imdb()
train_data, test_data = read_imdb('train'), read_imdb('test')
train_tokens = d2l.tokenize(train_data[0], token='word')
test_tokens = d2l.tokenize(test_data[0], token='word')
vocab = d2l.Vocab(train_tokens, min_freq=5)
train_features = np.array([d2l.trim_pad(vocab[line], num_steps, vocab.unk)

for line in train_tokens])
test_features = np.array([d2l.trim_pad(vocab[line], num_steps, vocab.unk)

for line in test_tokens])
train_iter = d2l.load_array((train_features, train_data[1]), batch_size)
test_iter = d2l.load_array((test_features, test_data[1]), batch_size,

is_train=False)
return train_iter, test_iter, vocab

Summary

• Text classification can classify a text sequence into a category.

• To classify a text sentiment, we load an IMDb dataset and tokenize its words. Then we pad
the text sequence for short reviews and create a data iterator.

Exercises

1. Discover a different natural language dataset (such as Amazon reviews225) and build a similar
data_loader function as load_data_imdb.

14.9 Text Sentiment Classification: Using Recurrent Neural Networks

Similar to search synonyms and analogies, text classification is also a downstream application of
word embedding. In this section, we will apply pre-trained word vectors and bidirectional recur-
rent neural networks with multiple hidden layers (Maas et al., 2011). We will use them to deter-
mine whether a text sequence of indefinite length contains positive or negative emotion. Import
the required package or module before starting the experiment.

225 https://snap.stanford.edu/data/web-Amazon.html

660 Chapter 14. Natural Language Processing

https://snap.stanford.edu/data/web-Amazon.html

import d2l
from mxnet import gluon, init, np, npx
from mxnet.gluon import nn, rnn
from mxnet.contrib import text
npx.set_np()

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

14.9.1 Using a Recurrent Neural Network Model

In this model, each word first obtains a feature vector from the embedding layer. Then, we further
encode the feature sequence using a bidirectional recurrent neural network to obtain sequence
information. Finally, we transform the encoded sequence information to output through the fully
connected layer. Specifically, we can concatenate hidden states of bidirectional long-short term
memory in the initial timestep and final timestep and pass it to the output layer classification
as encoded feature sequence information. In the BiRNN class implemented below, the Embedding
instance is the embedding layer, the LSTM instance is the hidden layer for sequence encoding, and
the Dense instance is the output layer for generated classification results.

class BiRNN(nn.Block):
def __init__(self, vocab_size, embed_size, num_hiddens,

num_layers, **kwargs):
super(BiRNN, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
Set Bidirectional to True to get a bidirectional recurrent neural
network
self.encoder = rnn.LSTM(num_hiddens, num_layers=num_layers,

bidirectional=True, input_size=embed_size)
self.decoder = nn.Dense(2)

def forward(self, inputs):
The shape of inputs is (batch size, number of words). Because LSTM
needs to use sequence as the first dimension, the input is
transformed and the word feature is then extracted. The output shape
is (number of words, batch size, word vector dimension).
embeddings = self.embedding(inputs.T)
Since the input (embeddings) is the only argument passed into
rnn.LSTM, it only returns the hidden states of the last hidden layer
at different timestep (outputs). The shape of outputs is
(number of words, batch size, 2 * number of hidden units).
outputs = self.encoder(embeddings)
Concatenate the hidden states of the initial timestep and final
timestep to use as the input of the fully connected layer. Its
shape is (batch size, 4 * number of hidden units)
encoding = np.concatenate((outputs[0], outputs[-1]), axis=1)
outs = self.decoder(encoding)
return outs

Create a bidirectional recurrent neural network with two hidden layers.

14.9. Text Sentiment Classification: Using Recurrent Neural Networks 661

embed_size, num_hiddens, num_layers, ctx = 100, 100, 2, d2l.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)
net.initialize(init.Xavier(), ctx=ctx)

Loading Pre-trainedWord Vectors

Because the training dataset for sentiment classification is not very large, in order to deal with
overfitting, we will directly use word vectors pre-trained on a larger corpus as the feature vectors
of all words. Here, we load a 100-dimensional GloVe word vector for each word in the dictionary
vocab.

glove_embedding = text.embedding.create(
'glove', pretrained_file_name='glove.6B.100d.txt')

Query the word vectors that in our vocabulary.

embeds = glove_embedding.get_vecs_by_tokens(vocab.idx_to_token)
embeds.shape

(49339, 100)

Then, we will use these word vectors as feature vectors for each word in the reviews. Note that
the dimensions of the pre-trained word vectors need to be consistent with the embedding layer
output size embed_size in the created model. In addition, we no longer update these word vectors
during training.

net.embedding.weight.set_data(embeds)
net.embedding.collect_params().setattr('grad_req', 'null')

Training and Evaluating the Model

Now, we can start training.

lr, num_epochs = 0.01, 5
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, ctx)

loss 0.286, train acc 0.882, test acc 0.851
644.1 exampes/sec on [gpu(0), gpu(1)]

662 Chapter 14. Natural Language Processing

Finally, define the prediction function.

Saved in the d2l package for later use
def predict_sentiment(net, vocab, sentence):

sentence = np.array(vocab[sentence.split()], ctx=d2l.try_gpu())
label = np.argmax(net(sentence.reshape(1, -1)), axis=1)
return 'positive' if label == 1 else 'negative'

Then, use the trained model to classify the sentiments of two simple sentences.

predict_sentiment(net, vocab, 'this movie is so great')

'positive'

predict_sentiment(net, vocab, 'this movie is so bad')

'negative'

Summary

• Text classification transforms a sequence of text of indefinite length into a category of text.
This is a downstream application of word embedding.

• We can apply pre-trained word vectors and recurrent neural networks to classify the emo-
tions in a text.

14.9. Text Sentiment Classification: Using Recurrent Neural Networks 663

Exercises

1. Increase the number of epochs. What accuracy rate can you achieve on the training and
testing datasets? What about trying to re-tune other hyper-parameters?

2. Will using larger pre-trained word vectors, such as 300-dimensional GloVe word vectors, im-
prove classification accuracy?

3. Can we improve the classification accuracy by using the spaCy word tokenization tool? You
need to install spaCy: pip install spacy and install the English package: python -m spacy
download en. In the code, first import spacy: import spacy. Then, load the spacy English
package: spacy_en = spacy.load('en'). Finally, define the function def tokenizer(text):
return [tok.text for tok in spacy_en.tokenizer(text)] and replace the original tok-
enizer function. It should be noted that GloVe s̓ word vector uses “-” to connect each word
when storing noun phrases. For example, the phrase “new york” is represented as “new-
york” in GloVe. After using spaCy tokenization, “new york” may be stored as “new york”.

14.10 Text Sentiment Classification: Using Convolutional Neural Networks
(textCNN)

In Chapter 6, we explored how to process two-dimensional image data with two-dimensional con-
volutional neural networks. In the previous language models and text classification tasks, we
treated text data as a time series with only one dimension, and naturally, we used recurrent neural
networks to process such data. In fact, we can also treat text as a one-dimensional image, so that
we can use one-dimensional convolutional neural networks to capture associations between adja-
cent words. This section describes a groundbreaking approach to applying convolutional neural
networks to text analysis: textCNN (Kim, 2014). First, import the packages and modules required
for the experiment.

import d2l
from mxnet import gluon, init, np, npx
from mxnet.contrib import text
from mxnet.gluon import nn
npx.set_np()

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

Downloading ../data/aclImdb_v1.tar.gz from http://ai.stanford.edu/~amaas/data/sentiment/
↪→aclImdb_v1.tar.gz...

664 Chapter 14. Natural Language Processing

14.10.1 One-Dimensional Convolutional Layer

Before introducing the model, let s̓ explain how a one-dimensional convolutional layer works.
Like a two-dimensional convolutional layer, a one-dimensional convolutional layer uses a one-
dimensional cross-correlation operation. In the one-dimensional cross-correlation operation, the
convolution window starts from the leftmost side of the input array and slides on the input array
from left to right successively. When the convolution window slides to a certain position, the in-
put subarray in the window and kernel array are multiplied and summed by element to get the
element at the corresponding location in the output array. As shown in Fig. 14.10.1, the input is
a one-dimensional array with a width of 7 and the width of the kernel array is 2. As we can see,
the output width is 7 − 2 + 1 = 6 and the first element is obtained by performing multiplication
by element on the leftmost input subarray with a width of 2 and kernel array and then summing
the results.

Fig. 14.10.1: One-dimensional cross-correlation operation. The shaded parts are the first output
element as well as the input and kernel array elements used in its calculation: 0× 1 + 1× 2 = 2.

Next, we implement one-dimensional cross-correlation in the corr1d function. It accepts the in-
put array X and kernel array K and outputs the array Y.

def corr1d(X, K):
w = K.shape[0]
Y = np.zeros((X.shape[0] - w + 1))
for i in range(Y.shape[0]):

Y[i] = (X[i: i + w] * K).sum()
return Y

Now, we will reproduce the results of the one-dimensional cross-correlation operation in Fig.
14.10.1.

X, K = np.array([0, 1, 2, 3, 4, 5, 6]), np.array([1, 2])
corr1d(X, K)

array([2., 5., 8., 11., 14., 17.])

The one-dimensional cross-correlation operation for multiple input channels is also similar to
the two-dimensional cross-correlation operation for multiple input channels. On each channel,
it performs the one-dimensional cross-correlation operation on the kernel and its corresponding
input and adds the results of the channels to get the output. Fig. 14.10.2 shows a one-dimensional
cross-correlation operation with three input channels.

14.10. Text Sentiment Classification: Using Convolutional Neural Networks (textCNN) 665

Fig. 14.10.2: One-dimensional cross-correlation operation with three input channels. The shaded
parts are the first output element as well as the input and kernel array elements used in its calcu-
lation: 0× 1 + 1× 2 + 1× 3 + 2× 4 + 2× (−1) + 3× (−3) = 2.

Now, we reproduce the results of the one-dimensional cross-correlation operation with multi-
input channel in Fig. 14.10.2.

def corr1d_multi_in(X, K):
First, we traverse along the 0th dimension (channel dimension) of X and
K. Then, we add them together by using * to turn the result list into a
positional argument of the add_n function
return sum(corr1d(x, k) for x, k in zip(X, K))

X = np.array([[0, 1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6, 7],
[2, 3, 4, 5, 6, 7, 8]])

K = np.array([[1, 2], [3, 4], [-1, -3]])
corr1d_multi_in(X, K)

array([2., 8., 14., 20., 26., 32.])

The definition of a two-dimensional cross-correlation operation tells us that a one-dimensional
cross-correlation operation with multiple input channels can be regarded as a two-dimensional
cross-correlation operation with a single input channel. As shown in Fig. 14.10.3, we can also
present the one-dimensional cross-correlation operation with multiple input channels in Fig.
14.10.2 as the equivalent two-dimensional cross-correlation operation with a single input chan-
nel. Here, the height of the kernel is equal to the height of the input.

Fig. 14.10.3: Two-dimensional cross-correlation operation with a single input channel. The high-
lighted parts are the first output element and the input and kernel array elements used in its cal-
culation: 2× (−1) + 3× (−3) + 1× 3 + 2× 4 + 0× 1 + 1× 2 = 2.

Both the outputs in Fig. 14.10.1 and Fig. 14.10.2 have only one channel. We discussed how to spec-
ify multiple output channels in a two-dimensional convolutional layer in Section 6.4. Similarly, we
can also specify multiple output channels in the one-dimensional convolutional layer to extend
the model parameters in the convolutional layer.

666 Chapter 14. Natural Language Processing

14.10.2 Max-Over-Time Pooling Layer

Similarly, we have a one-dimensional pooling layer. The max-over-time pooling layer used in
TextCNN actually corresponds to a one-dimensional global maximum pooling layer. Assum-
ing that the input contains multiple channels, and each channel consists of values on different
timesteps, the output of each channel will be the largest value of all timesteps in the channel.
Therefore, the input of the max-over-time pooling layer can have different timesteps on each chan-
nel.

To improve computing performance, we often combine timing examples of different lengths into
a minibatch and make the lengths of each timing example in the batch consistent by appending
special characters (such as 0) to the end of shorter examples. Naturally, the added special char-
acters have no intrinsic meaning. Because the main purpose of the max-over-time pooling layer
is to capture the most important features of timing, it usually allows the model to be unaffected
by the manually added characters.

14.10.3 The TextCNNModel

TextCNN mainly uses a one-dimensional convolutional layer and max-over-time pooling layer.
Suppose the input text sequence consists of n words, and each word is represented by a d-
dimension word vector. Then the input example has a width of n, a height of 1, and d input
channels. The calculation of textCNN can be mainly divided into the following steps:

1. Define multiple one-dimensional convolution kernels and use them to perform convolution
calculations on the inputs. Convolution kernels with different widths may capture the cor-
relation of different numbers of adjacent words.

2. Perform max-over-time pooling on all output channels, and then concatenate the pooling
output values of these channels in a vector.

3. The concatenated vector is transformed into the output for each category through the fully
connected layer. A dropout layer can be used in this step to deal with overfitting.

14.10. Text Sentiment Classification: Using Convolutional Neural Networks (textCNN) 667

Fig. 14.10.4: TextCNN design.

Fig. 14.10.4 gives an example to illustrate the textCNN. The input here is a sentence with 11 words,
with each word represented by a 6-dimensional word vector. Therefore, the input sequence has a
width of 11 and 6 input channels. We assume there are two one-dimensional convolution kernels
with widths of 2 and 4, and 4 and 5 output channels, respectively. Therefore, after one-dimensional
convolution calculation, the width of the four output channels is 11− 2 + 1 = 10, while the width
of the other five channels is 11− 4+1 = 8. Even though the width of each channel is different, we
can still perform max-over-time pooling for each channel and concatenate the pooling outputs of
the 9 channels into a 9-dimensional vector. Finally, we use a fully connected layer to transform
the 9-dimensional vector into a 2-dimensional output: positive sentiment and negative sentiment
predictions.

Next, we will implement a textCNN model. Compared with the previous section, in addition to
replacing the recurrent neural network with a one-dimensional convolutional layer, here we use
two embedding layers, one with a fixed weight and another that participates in training.

class TextCNN(nn.Block):
def __init__(self, vocab_size, embed_size, kernel_sizes, num_channels,

**kwargs):
super(TextCNN, self).__init__(**kwargs)
self.embedding = nn.Embedding(vocab_size, embed_size)
The embedding layer does not participate in training
self.constant_embedding = nn.Embedding(vocab_size, embed_size)
self.dropout = nn.Dropout(0.5)
self.decoder = nn.Dense(2)
The max-over-time pooling layer has no weight, so it can share an

(continues on next page)

668 Chapter 14. Natural Language Processing

(continued from previous page)

instance
self.pool = nn.GlobalMaxPool1D()
Create multiple one-dimensional convolutional layers
self.convs = nn.Sequential()
for c, k in zip(num_channels, kernel_sizes):

self.convs.add(nn.Conv1D(c, k, activation='relu'))

def forward(self, inputs):
Concatenate the output of two embedding layers with shape of
(batch size, number of words, word vector dimension) by word vector
embeddings = np.concatenate((

self.embedding(inputs), self.constant_embedding(inputs)), axis=2)
According to the input format required by Conv1D, the word vector
dimension, that is, the channel dimension of the one-dimensional
convolutional layer, is transformed into the previous dimension
embeddings = embeddings.transpose(0, 2, 1)
For each one-dimensional convolutional layer, after max-over-time
pooling, an ndarray with the shape of (batch size, channel size, 1)
can be obtained. Use the flatten function to remove the last
dimension and then concatenate on the channel dimension
encoding = np.concatenate([

np.squeeze(self.pool(conv(embeddings)), axis=-1)
for conv in self.convs], axis=1)

After applying the dropout method, use a fully connected layer to
obtain the output
outputs = self.decoder(self.dropout(encoding))
return outputs

Create a TextCNN instance. It has 3 convolutional layers with kernel widths of 3, 4, and 5, all with
100 output channels.

embed_size, kernel_sizes, nums_channels = 100, [3, 4, 5], [100, 100, 100]
ctx = d2l.try_all_gpus()
net = TextCNN(len(vocab), embed_size, kernel_sizes, nums_channels)
net.initialize(init.Xavier(), ctx=ctx)

Load Pre-trainedWord Vectors

As in the previous section, load pre-trained 100-dimensional GloVe word vectors and initialize the
embedding layers embedding and constant_embedding. Here, the former participates in training
while the latter has a fixed weight.

glove_embedding = text.embedding.create(
'glove', pretrained_file_name='glove.6B.100d.txt')

embeds = glove_embedding.get_vecs_by_tokens(vocab.idx_to_token)
net.embedding.weight.set_data(embeds)
net.constant_embedding.weight.set_data(embeds)
net.constant_embedding.collect_params().setattr('grad_req', 'null')

14.10. Text Sentiment Classification: Using Convolutional Neural Networks (textCNN) 669

Train and Evaluate the Model

Now we can train the model.

lr, num_epochs = 0.001, 5
trainer = gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, ctx)

loss 0.090, train acc 0.968, test acc 0.856
4205.6 exampes/sec on [gpu(0), gpu(1)]

Below, we use the trained model to classify sentiments of two simple sentences.

d2l.predict_sentiment(net, vocab, 'this movie is so great')

'positive'

d2l.predict_sentiment(net, vocab, 'this movie is so bad')

'negative'

Summary

• We can use one-dimensional convolution to process and analyze timing data.

• A one-dimensional cross-correlation operation with multiple input channels can be re-
garded as a two-dimensional cross-correlation operation with a single input channel.

• The input of the max-over-time pooling layer can have different numbers of timesteps on
each channel.

• TextCNN mainly uses a one-dimensional convolutional layer and max-over-time pooling
layer.

670 Chapter 14. Natural Language Processing

Exercises

1. Tune the hyper-parameters and compare the two sentiment analysis methods, using recur-
rent neural networks and using convolutional neural networks, as regards accuracy and op-
erational efficiency.

2. Can you further improve the accuracy of the model on the test set by using the three methods
introduced in the previous section: tuning hyper-parameters, using larger pre-trained word
vectors, and using the spaCy word tokenization tool?

3. What other natural language processing tasks can you use textCNN for?

14.10. Text Sentiment Classification: Using Convolutional Neural Networks (textCNN) 671

672 Chapter 14. Natural Language Processing

15 | Recommender Systems

Shuai Zhang (Amazon), Aston Zhang (Amazon), and Yi Tay (Nanyang Technological University)

Recommender systems are widely employed in industry and are ubiquitous in our daily lives.
These systems are utilized in a number of areas such as online shopping sites (e.g., amazon.com),
music/movie services site (e.g., Netflix and Spotify), mobile application stores (e.g., IOS app store
and google play), online advertising, just to name a few.

The major goal of recommender systems is to help users discover relevant items such as movies
to watch, text to read or products to buy, so as to create a delightful user experience. Moreover,
recommender systems are among the most powerful machine learning systems that online retail-
ers implement in order to drive incremental revenue. Recommender systems are replacements
of search engines by reducing the efforts in proactive searches and surprising users with offers
they never searched for. Many companies managed to position themselves ahead of their com-
petitors with the help of more effective recommender systems. As such, recommender systems
are central to not only our everyday lives but also highly indispensable in some industries.

In this chapter, we will cover the fundamentals and advancements of recommender systems,
along with exploring some common fundamental techniques for building recommender systems
with different data sources available and their implementations. Specifically, you will learn how
to predict the rating a user might give to a prospective item, how to generate a recommendation
list of items and how to predict the click-through rate from abundant features. These tasks are
commonplace in real-world applications. By studying this chapter, you will get hands-on experi-
ence pertaining to solving real world recommendation problems with not only classical methods
but the more advanced deep learning based models as well.

15.1 Overview of Recommender Systems

In the last decade, the Internet has evolved into a platform for large-scale online services, which
profoundly changed the way we communicate, read news, buy products, and watch movies. In
the meanwhile, the unprecedented number of items (we use the term item to refer to movies,
news, books, and products.) offered online requires a system that can help us discover items that
we preferred. Recommender systems are therefore powerful information filtering tools that can
facilitate personalized services and provide tailored experience to individual users. In short, rec-
ommender systems play a pivotal role in utilizing the wealth of data available to make choices
manageable. Nowadays, recommender systems are at the core of a number of online services
providers such as Amazon, Netflix, and YouTube. Recall the example of Deep learning books rec-
ommended by Amazon in Fig. 1.3.3. The benefits of employing recommender systems are two-
folds: On the one hand, it can largely reduce usersʼ effort in finding items and alleviate the issue of
information overload. On the other hand, it can add business value to online service providers and
is an important source of revenue. This chapter will introduce the fundamental concepts, classic

673

models and recent advances with deep learning in the field of recommender systems, together
with implemented examples.

Fig. 15.1.1: Illustration of the Recommendation Process

15.1.1 Collaborative Filtering

We start the journey with the important concept in recommender systems—collaborative filtering
(CF), which was first coined by the Tapestry system (Goldberg et al., 1992), referring to “people
collaborate to help one another perform the filtering process in order to handle the large amounts
of email and messages posted to newsgroups”. This term has been enriched with more senses. In
a broad sense, it is the process of filtering for information or patterns using techniques involving
collaboration among multiple users, agents, and data sources. CF has many forms and numerous
CF methods proposed since its advent.

Overall, CF techniques can be categorized into: memory-based CF, model-based CF, and their
hybrid (Su & Khoshgoftaar, 2009). Representative memory-based CF techniques are nearest
neighbor-based CF such as user-based CF and item-based CF (Sarwar et al., 2001). Latent factor
models such as matrix factorization are examples of model-based CF. Memory-based CF has lim-
itations in dealing with sparse and large-scale data since it computes the similarity values based
on common items. Model-based methods become more popular with its better capability in deal-
ing with sparsity and scalability. Many model-based CF approaches can be extended with neu-
ral networks, leading to more flexible and scalable models with the computation acceleration
in deep learning (Zhang et al., 2019). In general, CF only uses the user-item interaction data to
make predictions and recommendations. Besides CF, content-based and context-based recom-
mender systems are also useful in incorporating the content descriptions of items/users and con-
textual signals such as timestamps and locations. Obviously, we may need to adjust the model
types/structures when different input data is available.

674 Chapter 15. Recommender Systems

15.1.2 Explicit Feedback and Implicit Feedback

To learn the preference of users, the system shall collect feedback from them. The feedback can be
either explicit or implicit (Hu et al., 2008). For example, IMDB229 collects star ratings ranging from
one to ten stars for movies. YouTube provides the thumbs-up and thumbs-down buttons for users
to show their preferences. It is apparent that gathering explicit feedback requires users to indicate
their interests proactively. Nonetheless, explicit feedback is not always readily available as many
users may be reluctant to rate products. Relatively speaking, implicit feedback is often readily
available since it is mainly concerned with modeling implicit behavior such user clicks. As such,
many recommender systems are centered on implicit feedback which indirectly reflects user s̓
opinion through observing user behavior. There are diverse forms of implicit feedback including
purchase history, browsing history, watches and even mouse movements. For example, a user that
purchased many books by the same author probably likes that author. Note that implicit feedback
is inherently noisy. We can only guess their preferences and true motives. A user watched a movie
does not necessarily indicate a positive view of that movie.

15.1.3 Recommendation Tasks

A number of recommendation tasks have been investigated in the past decades. Based on the
domain of applications, there are movies recommendation, news recommendations, point-of-
interest recommendation (Ye et al., 2011) and so forth. It is also possible to differentiate the tasks
based on the types of feedback and input data, for example, the rating prediction task aims to
predict the explicit ratings. Top-n recommendation (item ranking) ranks all items for each user
personally based on the implicit feedback. If time-stamp information is also included, we can
build sequence-aware recommendation (Quadrana et al., 2018). Another popular task is called
click-through rate prediction, which is also based on implicit feedback, but various categorical
features can be utilized. Recommending for new users and recommending new items to existing
users are called cold-start recommendation (Schein et al., 2002).

Summary

• Recommender systems are important for individual users and industries. Collaborative fil-
tering is a key concept in recommendation.

• There are two types of feedbacks: implicit feedback and explicit feedback. A number rec-
ommendation tasks have been explored during the last decade.

Exercises

1. Can you explain how recommender systems influence your daily life?

2. What interesting recommendation tasks do you think can be investigated?

229 https://www.imdb.com/

15.1. Overview of Recommender Systems 675

https://www.imdb.com/

15.2 The MovieLens Dataset

There are a number of datasets that are available for recommendation research. Amongst them,
the MovieLens231 dataset is probably the one of the more popular ones. MovieLens is a non-
commercial web-based movie recommender system. It is created in 1997 and run by GroupLens,
a research lab at the University of Minnesota, in order to gather movie rating data for research
purposes. MovieLens data has been critical for several research studies including personalized
recommendation and social psychology.

15.2.1 Getting the Data

The MovieLens dataset is hosted by the GroupLens232 website. Several versions are available. We
will use the MovieLens 100K dataset (Herlocker et al., 1999). This dataset is comprised of 100, 000
ratings, ranging from 1 to 5 stars, from 943 users on 1682 movies. It has been cleaned up so that
each user has rated at least 20 movies. Some simple demographic information such as age, gender,
genres for the users and items are also available. We can download the ml-100k.zip233 and extract
the u.data file, which contains all the 100, 000 ratings in the csv format. There are many other
files in the folder, a detailed description for each file can be found in the README234 file of the
dataset.

To begin with, let s̓ import the packages required to run this sections̓ experiments.

import d2l
from mxnet import gluon, np
import pandas as pd
import zipfile

Then, we download the MovieLens 100k dataset and load the interactions as DataFrame.

Saved in the d2l package for later use
def read_data_ml100k(path="../data/", member="ml-100k/u.data",

names=['user_id', 'item_id', 'rating', 'timestamp'],
sep="\t"):

fname = gluon.utils.download(
'http://files.grouplens.org/datasets/movielens/ml-100k.zip',
path=path)

with zipfile.ZipFile(fname, 'r') as inzipfile:
inzipfile.extract(member, path)
data = pd.read_csv(path + member, sep, names=names, engine='python')
num_users = data.user_id.unique().shape[0]
num_items = data.item_id.unique().shape[0]
return data, num_users, num_items

231 https://movielens.org/
232 https://grouplens.org/datasets/movielens/
233 http://files.grouplens.org/datasets/movielens/ml-100k.zip
234 http://files.grouplens.org/datasets/movielens/ml-100k-README.txt

676 Chapter 15. Recommender Systems

https://movielens.org/
https://grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/ml-100k.zip
http://files.grouplens.org/datasets/movielens/ml-100k-README.txt

15.2.2 Statistics of the Dataset

Let s̓ load up the data and inspect the first five records manually. It is an effective way to learn the
data structure and verify that they have been loaded properly.

data, num_users, num_items = read_data_ml100k()
sparsity = 1 - len(data) / (num_users * num_items)
print('number of users: %d, number of items: %d.' % (num_users, num_items))
print('matrix sparsity: %f' % sparsity)
print(data.head(5))

number of users: 943, number of items: 1682.
matrix sparsity: 0.936953

user_id item_id rating timestamp
0 196 242 3 881250949
1 186 302 3 891717742
2 22 377 1 878887116
3 244 51 2 880606923
4 166 346 1 886397596

We can see that each line consists of four columns, including “user id” 1-943, “item id” 1-1682,
“rating” 1-5 and “timestamp”. We can construct an interaction matrix of size n×m, where n and
m are the number of users and the number of items respectively. This dataset only records the
existing ratings, so we can also call it rating matrix and we will use interaction matrix and rating
matrix interchangeably in case that the values of this matrix represent exact ratings. Most of the
values in the rating matrix are unknown as users have not rated the majority of movies. We also
show the sparsity of this dataset. The sparsity is defined as 1 - number of nonzero entries / (
number of users * number of items). Clearly, the interaction matrix is extremely sparse (i.e.,
sparsity = 93.695%). Real world datasets may suffer from a greater extent of sparsity and has been
a long-standing challenge in building recommender systems. A viable solution is to use additional
side information such as user/item features to alleviate the sparsity.

We then plot the distribution of the count of different ratings. As expected, it appears to be a
normal distribution, with most ratings centered at 3-4.

d2l.plt.hist(data['rating'], bins=5, ec='black')
d2l.plt.xlabel("Rating")
d2l.plt.ylabel("Count")
d2l.plt.title("Distribution of Ratings in MovieLens 100K")
d2l.plt.show()

15.2. The MovieLens Dataset 677

15.2.3 Splitting the dataset

We split the dataset into training and test sets. The following function provides two split modes
including random and seq-aware. In the random mode, the function splits the 100k interactions
randomly without considering timestamp and uses the 90% of the data as training samples and the
rest 10% as test samples by default. In the seq-aware mode, we leave out the item that a user rated
most recently for test, and usersʼ historical interactions as training set. User historical interactions
are sorted from oldest to newest based on timestamp. This mode will be used in the sequence-
aware recommendation section.

Saved in the d2l package for later use
def split_data_ml100k(data, num_users, num_items,

split_mode="random", test_ratio=0.1):
"""Split the dataset in random mode or seq-aware mode."""
if split_mode == "seq-aware":

train_items, test_items, train_list = {}, {}, []
for line in data.itertuples():

u, i, rating, time = line[1], line[2], line[3], line[4]
train_items.setdefault(u, []).append((u, i, rating, time))
if u not in test_items or test_items[u][-1] < time:

test_items[u] = (i, rating, time)
for u in range(1, num_users + 1):

train_list.extend(sorted(train_items[u], key=lambda k: k[3]))
test_data = [(key, *value) for key, value in test_items.items()]
train_data = [item for item in train_list if item not in test_data]
train_data = pd.DataFrame(train_data)
test_data = pd.DataFrame(test_data)

else:
mask = [True if x == 1 else False for x in np.random.uniform(

0, 1, (len(data))) < 1 - test_ratio]

(continues on next page)

678 Chapter 15. Recommender Systems

(continued from previous page)

neg_mask = [not x for x in mask]
train_data, test_data = data[mask], data[neg_mask]

return train_data, test_data

Note that it is good practice to use a validation set in practice, apart from only a test set. However,
we omit that for the sake of brevity. In this case, our test set can be regarded as our held-out
validation set.

15.2.4 Loading the data

After dataset splitting, we will convert the training set and test set into lists and dictionaries/matrix
for the sake of convenience. The following function reads the dataframe line by line and enu-
merates the index of users/items start from zero. The function then returns lists of users, items,
ratings and a dictionary/matrix that records the interactions. We can specify the type of feedback
to either explicit or implicit.

Saved in the d2l package for later use
def load_data_ml100k(data, num_users, num_items, feedback="explicit"):

users, items, scores = [], [], []
inter = np.zeros((num_items, num_users)) if feedback == "explicit" else {}
for line in data.itertuples():

user_index, item_index = int(line[1] - 1), int(line[2] - 1)
score = int(line[3]) if feedback == "explicit" else 1
users.append(user_index)
items.append(item_index)
scores.append(score)
if feedback == "implicit":

inter.setdefault(user_index, []).append(item_index)
else:

inter[item_index, user_index] = score
return users, items, scores, inter

Afterwards, we put the above steps together and it will be used in the next section. The results are
wrapped with Dataset and DataLoader. Note that the last_batch of DataLoader for training data
is set to the rollover mode (The remaining samples are rolled over to the next epoch.) and orders
are shuffled.

Saved in the d2l package for later use
def split_and_load_ml100k(split_mode="seq-aware", feedback="explicit",

test_ratio=0.1, batch_size=256):
data, num_users, num_items = read_data_ml100k()
train_data, test_data = split_data_ml100k(

data, num_users, num_items, split_mode, test_ratio)
train_u, train_i, train_r, _ = load_data_ml100k(

train_data, num_users, num_items, feedback)
test_u, test_i, test_r, _ = load_data_ml100k(

test_data, num_users, num_items, feedback)
train_set = gluon.data.ArrayDataset(

np.array(train_u), np.array(train_i), np.array(train_r))
test_set = gluon.data.ArrayDataset(

np.array(test_u), np.array(test_i), np.array(test_r))

(continues on next page)

15.2. The MovieLens Dataset 679

(continued from previous page)

train_iter = gluon.data.DataLoader(
train_set, shuffle=True, last_batch="rollover",
batch_size=batch_size)

test_iter = gluon.data.DataLoader(
test_set, batch_size=batch_size)

return num_users, num_items, train_iter, test_iter

Summary

• MovieLens datasets are widely used for recommendation research. It is public available and
free to use.

• We define functions to download and preprocess the MovieLens 100k dataset for further use
in later sections.

Exercises

• What other similar recommendation datasets can you find?

• Go through the https://movielens.org/ site for more information about MovieLens.

15.3 Matrix Factorization

Matrix Factorization (Koren et al., 2009) is a well-established algorithm in the recommender sys-
tems literature. The first version of matrix factorization model is proposed by Simon Funk in a
famous blog post236 in which he described the idea of factorizing the interaction matrix. It then
became widely known due to the Netflix contest which was held in 2006. At that time, Netflix, a
media-streaming and video-rental company, announced a contest to improve its recommender
system performance. The best team that can improve on the Netflix baseline, i.e., Cinematch),
by 10 percent would win a one million USD prize. As such, this contest attracted a lot of atten-
tion to the field of recommender system research. Subsequently, the grand prize was won by the
BellKor s̓ Pragmatic Chaos team, a combined team of BellKor, Pragmatic Theory, and BigChaos
(you do not need to worry about these algorithms now). Although the final score was the result
of an ensemble solution (i.e., a combination of many algorithms), the matrix factorization algo-
rithm played a critical role in the final blend. The technical report the Netflix Grand Prize solution
(Toscher et al., 2009) provides a detailed introduction to the adopted model. In this section, we
will dive into the details of the matrix factorization model and its implementation.

236 https://sifter.org/~simon/journal/20061211.html

680 Chapter 15. Recommender Systems

https://movielens.org/
https://sifter.org/~simon/journal/20061211.html

15.3.1 The Matrix Factorization Model

Matrix factorization is a class of collaborative filtering models. Specifically, the model factorizes
the user-item interaction matrix (e.g., rating matrix) into the product of two lower-rank matrices,
capturing the low-rank structure of the user-item interactions.

Let R ∈ Rm×n denote the interaction matrix with m users and n items, and the values of R
represent explicit ratings. The user-item interaction will be factorized into a user latent matrix
P ∈ Rm×k and an item latent matrix Q ∈ Rn×k, where k ≪ m,n, is the latent factor size. Let pu

denote the uth row of P and qi denote the ith row of Q. For a given item i, the elements of qi mea-
sure the extent to which the item possesses those characteristics such as the genres and languages
of a movie. For a given user u, the elements of pu measure the extent of interest the user has in
itemsʼ corresponding characteristics. These latent factors might measure obvious dimensions as
mentioned in those examples or are completely uninterpretable. The predicted ratings can be
estimated by

R̂ = PQ⊤ (15.3.1)

where R̂ ∈ Rm×n is the predicted rating matrix which has the same shape asR. One major problem
of this prediction rule is that users/items biases can not be modeled. For example, some users
tend to give higher ratings or some items always get lower ratings due to poorer quality. These
biases are commonplace in real-world applications. To capture these biases, user specific and
item specific bias terms are introduced. Specifically, the predicted rating user u gives to item i is
calculated by

R̂ui = puq⊤i + bu + bi (15.3.2)

Then, we train the matrix factorization model by minimizing the mean squared error between
predicted rating scores and real rating scores. The objective function is defined as follows:

argmin
P,Q,b

∑
(u,i)∈K

∥Rui − R̂ui∥2 + λ(∥P∥2F + ∥Q∥2F + b2u + b2i) (15.3.3)

where λ denotes the regularization rate. The regularizing term λ(∥P∥2F + ∥Q∥2F + b2u + b2i) is used
to avoid over-fitting by penalizing the magnitude of the parameters. The (u, i) pairs for which Rui

is known are stored in the set K = {(u, i) | Rui is known}. The model parameters can be learned
with an optimization algorithm, such as Stochastic Gradient Descent and Adam.

An intuitive illustration of the matrix factorization model is shown below:

Fig. 15.3.1: Illustration of matrix factorization model

15.3. Matrix Factorization 681

In the rest of this section, we will explain the implementation of matrix factorization and train the
model on the MovieLens dataset.

import d2l
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
import mxnet as mx
npx.set_np()

15.3.2 Model Implementation

First, we implement the matrix factorization model described above. The user and item latent
factors can be created with the nn.Embedding. The input_dim is the number of items/users and
the (output_dim) is the dimension of the latent factors (k). We can also use nn.Embedding to create
the user/item biases by setting the output_dim to one. In the forward function, user and item ids
are used to look up the embeddings.

class MF(nn.Block):
def __init__(self, num_factors, num_users, num_items, **kwargs):

super(MF, self).__init__(**kwargs)
self.P = nn.Embedding(input_dim=num_users, output_dim=num_factors)
self.Q = nn.Embedding(input_dim=num_items, output_dim=num_factors)
self.user_bias = nn.Embedding(num_users, 1)
self.item_bias = nn.Embedding(num_items, 1)

def forward(self, user_id, item_id):
P_u = self.P(user_id)
Q_i = self.Q(item_id)
b_u = self.user_bias(user_id)
b_i = self.item_bias(item_id)
outputs = (P_u * Q_i).sum(axis=1) + np.squeeze(b_u) + np.squeeze(b_i)
return outputs.flatten()

15.3.3 Evaluation Measures

We then implement the RMSE (root-mean-square error) measure, which is commonly used to
measure the differences between rating scores predicted by the model and the actually observed
ratings (ground truth) (Gunawardana & Shani, 2015). RMSE is defined as:

RMSE =

√√√√ 1

|T |
∑

(u,i)∈T

(Rui − R̂ui)2 (15.3.4)

where T is the set consisting of pairs of users and items that you want to evaluate on. |T | is the
size of this set. We can use the RMSE function provided by mx.metric.

def evaluator(net, test_iter, ctx):
rmse = mx.metric.RMSE() # Get the RMSE
rmse_list = []
for idx, (users, items, ratings) in enumerate(test_iter):

u = gluon.utils.split_and_load(users, ctx, even_split=False)

(continues on next page)

682 Chapter 15. Recommender Systems

(continued from previous page)

i = gluon.utils.split_and_load(items, ctx, even_split=False)
r_ui = gluon.utils.split_and_load(ratings, ctx, even_split=False)
r_hat = [net(u, i) for u, i in zip(u, i)]
rmse.update(labels=r_ui, preds=r_hat)
rmse_list.append(rmse.get()[1])

return float(np.mean(np.array(rmse_list)))

15.3.4 Training and Evaluating the Model

In the training function, we adopt the L2 loss with weight decay. The weight decay mechanism
has the same effect as the L2 regularization.

Saved in the d2l package for later use
def train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

ctx_list=d2l.try_all_gpus(), evaluator=None,
**kwargs):

timer = d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 2],

legend=['train loss', 'test RMSE'])
for epoch in range(num_epochs):

metric, l = d2l.Accumulator(3), 0.
for i, values in enumerate(train_iter):

timer.start()
input_data = []
values = values if isinstance(values, list) else [values]
for v in values:

input_data.append(gluon.utils.split_and_load(v, ctx_list))
train_feat = input_data[0:-1] if len(values) > 1 else input_data
train_label = input_data[-1]
with autograd.record():

preds = [net(*t) for t in zip(*train_feat)]
ls = [loss(p, s) for p, s in zip(preds, train_label)]

[l.backward() for l in ls]
l += sum([l.asnumpy() for l in ls]).mean() / len(ctx_list)
trainer.step(values[0].shape[0])
metric.add(l, values[0].shape[0], values[0].size)
timer.stop()

if len(kwargs) > 0: # it will be used in section AutoRec.
test_rmse = evaluator(net, test_iter, kwargs['inter_mat'],

ctx_list)
else:

test_rmse = evaluator(net, test_iter, ctx_list)
train_l = l / (i + 1)
animator.add(epoch + 1, (train_l, test_rmse))

print('train loss %.3f, test RMSE %.3f'
% (metric[0] / metric[1], test_rmse))

print('%.1f examples/sec on %s'
% (metric[2] * num_epochs / timer.sum(), ctx_list))

Finally, let s̓ put all things together and train the model. Here, we set the latent factor dimension
to 30.

15.3. Matrix Factorization 683

ctx = d2l.try_all_gpus()
num_users, num_items, train_iter, test_iter = d2l.split_and_load_ml100k(

test_ratio=0.1, batch_size=512)
net = MF(30, num_users, num_items)
net.initialize(ctx=ctx, force_reinit=True, init=mx.init.Normal(0.01))
lr, num_epochs, wd, optimizer = 0.002, 20, 1e-5, 'adam'
loss = gluon.loss.L2Loss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})
train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

ctx, evaluator)

train loss 0.066, test RMSE 1.055
78035.0 examples/sec on [gpu(0), gpu(1)]

Below, we use the trained model to predict the rating that a user (ID 20) might give to an item (ID
30).

scores = net(np.array([20], dtype='int', ctx=d2l.try_gpu()),
np.array([30], dtype='int', ctx=d2l.try_gpu()))

scores

array([3.1662967], ctx=gpu(0))

Summary

• The matrix factorization model is widely used in recommender systems. It can be used to
predict ratings that a user might give to an item.

• We can implement and train matrix factorization for recommender systems.

684 Chapter 15. Recommender Systems

Exercise

• Vary the size of latent factors. How does the size of latent factors influence the model per-
formance?

• Try different optimizers, learning rates, and weight decay rates.

• Check the predicted rating scores of other users for a specific movie.

15.4 AutoRec: Rating Prediction with Autoencoders

Although the matrix factorization model achieves decent performance on the rating prediction
task, it is essentially a linear model. Thus, such models are not capable of capturing complex
nonlinear and intricate relationships that may be predictive of usersʼ preferences. In this section,
we introduce a nonlinear neural network collaborative filtering model, AutoRec (Sedhain et al.,
2015). It identifies collaborative filtering (CF) with an autoencoder architecture and aims to inte-
grate nonlinear transformations into CF on the basis of explicit feedback. Neural networks have
been proven to be capable of approximating any continuous function, making it suitable to ad-
dress the limitation of matrix factorization and enrich the expressiveness of matrix factorization.

On one hand, AutoRec has the same structure as an autoencoder which consists of an input layer,
a hidden layer, and a reconstruction (output) layer. An autoencoder is a neural network that
learns to copy its input to its output in order to code the inputs into the hidden (and usually
low-dimensional) representations. In AutoRec, instead of explicitly embedding users/items into
low-dimensional space, it uses the column/row of the interaction matrix as the input, then recon-
structs the interaction matrix in the output layer.

On the other hand, AutoRec differs from a traditional autoencoder: rather than learning the hid-
den representations, AutoRec focuses on learning/reconstructing the output layer. It uses a par-
tially observed interaction matrix as the input, aiming to reconstruct a completed rating matrix.
In the meantime, the missing entries of the input are filled in the output layer via reconstruction
for the purpose of recommendation.

There are two variants of AutoRec: user-based and item-based. For brevity, here we only introduce
the item-based AutoRec. User-based AutoRec can be derived accordingly.

15.4.1 Model

Let R∗i denote the ith column of the rating matrix, where unknown ratings are set to zeros by
default. The neural architecture is defined as:

h(R∗i) = f(W · g(VR∗i + µ) + b) (15.4.1)

where f(·) and g(·) represent activation functions,W andV are weight matrices, µ and b are biases.
Let h(·) denote the whole network of AutoRec. The output h(R∗i) is the reconstruction of the ith

column of the rating matrix.

15.4. AutoRec: Rating Prediction with Autoencoders 685

The following objective function aims to minimize the reconstruction error:

argmin
W,V,µ,b

M∑
i=1

∥ R∗i − h(R∗i) ∥2O + λ(∥W∥2F + ∥V∥2F) (15.4.2)

where ∥ · ∥O means only the contribution of observed ratings are considered, that is, only weights
that are associated with observed inputs are updated during back-propagation.

import d2l
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
import mxnet as mx
import sys
npx.set_np()

15.4.2 Implementing the Model

A typical autoencoder consists of an encoder and a decoder. The encoder projects the input to
hidden representations and the decoder maps the hidden layer to the reconstruction layer. We
follow this practice and create the encoder and decoder with dense layers. The activation of en-
coder is set to sigmoid by default and no activation is applied for decoder. Dropout is included
after the encoding transformation to reduce over-fitting. The gradients of unobserved inputs are
masked out to ensure that only observed ratings contribute to the model learning process.

class AutoRec(nn.Block):
def __init__(self, num_hidden, num_users, dropout_rate=0.05):

super(AutoRec, self).__init__()
self.encoder = gluon.nn.Dense(num_hidden, activation='sigmoid',

use_bias=True)
self.decoder = gluon.nn.Dense(num_users, use_bias=True)
self.dropout_layer = gluon.nn.Dropout(dropout_rate)

def forward(self, input):
hidden = self.dropout_layer(self.encoder(input))
pred = self.decoder(hidden)
if autograd.is_training(): # mask the gradient during training.

return pred * np.sign(input)
else:

return pred

15.4.3 Reimplementing the Evaluator

Since the input and output have been changed, we need to reimplement the evaluation function,
while we still use RMSE as the accuracy measure.

def evaluator(network, inter_matrix, test_data, ctx):
scores = []
for values in inter_matrix:

feat = gluon.utils.split_and_load(values, ctx, even_split=False)
scores.extend([network(i).asnumpy() for i in feat])

(continues on next page)

686 Chapter 15. Recommender Systems

(continued from previous page)

recons = np.array([item for sublist in scores for item in sublist])
Calculate the test RMSE.
rmse = np.sqrt(np.sum(np.square(test_data - np.sign(test_data) * recons))

/ np.sum(np.sign(test_data)))
return float(rmse)

15.4.4 Training and Evaluating the Model

Now, let s̓ train and evaluate AutoRec on the MovieLens dataset. We can clearly see that the test
RMSE is lower than the matrix factorization model, confirming the effectiveness of neural net-
works in the rating prediction task.

ctx = d2l.try_all_gpus()
Load the MovieLens 100K dataset
df, num_users, num_items = d2l.read_data_ml100k()
train_data, test_data = d2l.split_data_ml100k(df, num_users, num_items)
_, _, _, train_inter_mat = d2l.load_data_ml100k(train_data, num_users,

num_items)
_, _, _, test_inter_mat = d2l.load_data_ml100k(test_data, num_users,

num_items)
num_workers = 0 if sys.platform.startswith("win") else 4
train_iter = gluon.data.DataLoader(train_inter_mat, shuffle=True,

last_batch="rollover", batch_size=256,
num_workers=num_workers)

test_iter = gluon.data.DataLoader(np.array(train_inter_mat), shuffle=False,
last_batch="keep", batch_size=1024,
num_workers=num_workers)

Model initialization, training, and evaluation
net = AutoRec(500, num_users)
net.initialize(ctx=ctx, force_reinit=True, init=mx.init.Normal(0.01))
lr, num_epochs, wd, optimizer = 0.002, 25, 1e-5, 'adam'
loss = gluon.loss.L2Loss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})
d2l.train_recsys_rating(net, train_iter, test_iter, loss, trainer, num_epochs,

ctx, evaluator, inter_mat=test_inter_mat)

train loss 0.000, test RMSE 0.900
45418222.5 examples/sec on [gpu(0), gpu(1)]

15.4. AutoRec: Rating Prediction with Autoencoders 687

Summary

• We can frame the matrix factorization algorithm with autoencoders, while integrating non-
linear layers and dropout regularization.

• Experiments on the MovieLens 100K dataset show that AutoRec achieves superior perfor-
mance than matrix factorization.

Exercises

• Vary the hidden dimension of AutoRec to see its impact on the model performance.

• Try to add more hidden layers. Is it helpful to improve the model performance?

• Can you find a better combination of decoder and encoder activation functions?

15.5 Personalized Ranking for Recommender Systems

In the former sections, only explicit feedback was considered and models were trained and tested
on observed ratings only. There are two demerits of such methods: First, most feedback is not
explicit but implicit in real-world scenarios, and explicit feedback can be more expensive to col-
lect. Second, non-observed user-item pairs which may be predictive for usersʼ interests are totally
ignored, making these methods unsuitable for cases where ratings are not missing at random but
because of usersʼ preferences. Non-observed user-item pairs are a mixture of real negative feed-
back (users are not interested in the items) and missing values (the user might interact with the
items in the future). We simply ignore the non-observed pairs in matrix factorization and Au-
toRec. Clearly, these models are incapable of distinguishing between observed and non-observed
pairs and are usually not suitable for personalized ranking tasks.

688 Chapter 15. Recommender Systems

To this end, a class of recommendation models targeting at generating ranked recommendation
lists from implicit feedback have gained popularity. In general, personalized ranking models can
be optimized with pointwise, pairwise or Listwise approaches. Pointwise approaches considers
a single interaction at a time and train a classifier/regressor to predict individual preferences.
Matrix factorization and AutoRec are optimized with pointwise objectives. Pairwise approaches
consider a pair of items for each user and aim to approximate the optimal ordering for that pair.
Usually, pairwise approaches are more suitable for the ranking task because predicting relative
order is reminiscent to the nature of ranking. Listwise approaches approximate the ordering of
the entire list of items, for example, direct optimizing the ranking measures such as Normal-
ized Discounted Cumulative Gain (NDCG239). However, listwise approaches are more complex and
compute-intensive than pointwise or pairwise approaches. In this section, we will introduce two
pairwise objectives/losses, Bayesian Personalized Ranking loss and Hinge loss, and their respec-
tive implementations.

15.5.1 Bayesian Personalized Ranking Loss and its Implementation

Bayesian personalized ranking (BPR) (Rendle et al., 2009) is a pairwise personalized ranking loss
that is derived from the maximum posterior estimator. It has been widely used in many existing
recommendation models. The training data of BPR consists of both positive and negative pairs
(missing values). It assumes that the user prefers the positive item over all other non-observed
items.

In formal, the training data is constructed by tuples in the form of (u, i, j), which represents that
the user u prefers the item i over the item j. The Bayesian formulation of BPR which aims to
maximize the posterior probability is given below:

p(Θ |>u) ∝ p(>u| Θ)p(Θ) (15.5.1)

WhereΘ represents the parameters of an arbitrary recommendation model,>u represents the de-
sired personalized total ranking of all items for user u. We can formulate the maximum posterior
estimator to derive the generic optimization criterion for the personalized ranking task.

BPR-OPT : = ln p(Θ |>u)

= ln p(>u| Θ)p(Θ)

= ln
∏

(u,i,j∈D)

σ(ŷui − ŷuj)p(Θ)

=
∑

(u,i,j∈D)

lnσ(ŷui − ŷuj) + ln p(Θ)

=
∑

(u,i,j∈D)

lnσ(ŷui − ŷuj)− λΘ∥Θ∥2

(15.5.2)

where D := {(u, i, j) | i ∈ I+u ∧ j ∈ I\I+u } is the training set, with I+u denoting the items the user
u liked, I denoting all items, and I\I+u indicating all other items excluding items the user liked.
ŷui and ŷuj are the predicted scores of the user u to item i and j, respectively. The prior p(Θ) is a
normal distribution with zero mean and variance-covariance matrix ΣΘ. Here, we let ΣΘ = λΘI.

239 https://en.wikipedia.org/wiki/Discounted_cumulative_gain

15.5. Personalized Ranking for Recommender Systems 689

https://en.wikipedia.org/wiki/Discounted_cumulative_gain

We will implement the base class mxnet.gluon.loss.Loss and override the forward method to
construct the Bayesian personalized ranking loss. We begin by importing the Loss class and the
np module.

from mxnet import gluon, np, npx
npx.set_np()

The implementation of BPR loss is as follows.

Saved in the d2l package for later use
class BPRLoss(gluon.loss.Loss):

def __init__(self, weight=None, batch_axis=0, **kwargs):
super(BPRLoss, self).__init__(weight=None, batch_axis=0, **kwargs)

def forward(self, positive, negative):
distances = positive - negative
loss = - np.sum(np.log(npx.sigmoid(distances)), 0, keepdims=True)
return loss

15.5.2 Hinge Loss and its Implementation

The Hinge loss for ranking has different form to the hinge loss240 provided within the gluon library
that is often used in classifiers such as SVMs. The loss used for ranking in recommender systems
has the following form. ∑

(u,i,j∈D)

(max(m− ŷui + ŷuj), 0) (15.5.3)

wherem is the safety margin size. It aims to push negative items away from positive items. Similar
to BPR, it aims to optimize for relevant distance between positive and negative samples instead of
absolute outputs, making it well suited to recommender systems.

Saved in the d2l package for later use
class HingeLossbRec(gluon.loss.Loss):

(continues on next page)

240 https://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.HingeLoss

690 Chapter 15. Recommender Systems

https://mxnet.incubator.apache.org/api/python/gluon/loss.html#mxnet.gluon.loss.HingeLoss

(continued from previous page)

def __init__(self, weight=None, batch_axis=0, **kwargs):
super(HingeLossbRec, self).__init__(weight=None, batch_axis=0,

**kwargs)

def forward(self, positive, negative, margin=1):
distances = positive - negative
loss = np.sum(np.maximum(- distances + margin, 0))
return loss

These two losses are interchangeable for personalized ranking in recommendation.

Summary

• There are three types of ranking losses available for the personalized ranking task in recom-
mender systems, namely, pointwise, pairwise and listwise methods.

• The two pairwise loses, Bayesian personalized ranking loss and hinge loss, can be used in-
terchangeably.

Exercises

• Are there any variants of BPR and hinge loss available?

• Can you find any recommendation models that use BPR or hinge loss?

15.6 Neural Collaborative Filtering for Personalized Ranking

This section moves beyond explicit feedback, introducing the neural collaborative filtering (NCF)
framework for recommendation with implicit feedback. Implicit feedback is pervasive in recom-
mender systems. Actions such as Clicks, buys, and watches are common implicit feedback which
are easy to collect and indicative of usersʼ preferences. The model we will introduce, titled NeuMF
(He et al., 2017b), short for neural matrix factorization, aims to address the personalized rank-
ing task with implicit feedback. This model leverages the flexibility and non-linearity of neural
networks to replace dot products of matrix factorization, aiming at enhancing the model expres-
siveness. In specific, this model is structured with two subnetworks including generalized matrix
factorization (GMF) and multilayer perceptron (MLP) and models the interactions from two path-
ways instead of simple inner products. The outputs of these two networks are concatenated for
the final prediction scores calculation. Unlike the rating prediction task in AutoRec, this model
generates a ranked recommendation list to each user based on the implicit feedback. We will use
the personalized ranking loss introduced in the last section to train this model.

15.6. Neural Collaborative Filtering for Personalized Ranking 691

15.6.1 The NeuMFmodel

As aforementioned, NeuMF fuses two subnetworks. The GMF is a generic neural network version
of matrix factorization where the input is the elementwise product of user and item latent factors.
It consists of two neural layers:

x = pu ⊙ qi
ŷui = α(h⊤x),

(15.6.1)

where ⊙ denotes the Hadamard product of vectors. P ∈ Rm×k and Q ∈ Rn×k corespond to user
and item latent matrix respectively. pu ∈ Rk is the uth row of P and qi ∈ Rk is the ith row of Q. α
and h denote the activation function and weight of the output layer. ŷui is the prediction score of
the user u might give to the item i.

Another component of this model is MLP. To enrich model flexibility, the MLP subnetwork does
not share user and item embeddings with GMF. It uses the concatenation of user and item embed-
dings as input. With the complicated connections and nonlinear transformations, it is capable of
eastimating the intricate interactions between users and items. More precisely, the MLP subnet-
work is defined as:

z(1) = ϕ1(Uu,Vi) = [Uu,Vi]

ϕ(2)(z(1)) = α1(W(2)z(1) + b(2))

...

ϕ(L)(z(L−1)) = αL(W(L)z(L−1) + b(L)))

ŷui = α(h⊤ϕL(z(L)))

(15.6.2)

where W∗,b∗ and α∗ denote the weight matrix, bias vector, and activation function. ϕ∗ denotes
the function of the corresponding layer. z∗ denotes the output of corresponding layer.

To fuse the results of GMF and MLP, instead of simple addition, NeuMF concatenates the second
last layers of two subnetworks to create a feature vector which can be passed to the further lay-
ers. Afterwards, the ouputs are projected with matrix h and a sigmoid activation function. The
prediction layer is formulated as:

ŷui = σ(h⊤[x, ϕL(z(L))]). (15.6.3)

The following figure illustrates the model architecture of NeuMF.

692 Chapter 15. Recommender Systems

Fig. 15.6.1: Illustration of the NeuMF model

import d2l
from mxnet import autograd, gluon, np, npx
from mxnet.gluon import nn
import mxnet as mx
import random
import sys
npx.set_np()

15.6.2 Model Implementation

The following code implements the NeuMF model. It consists of a generalized matrix factoriza-
tion model and a multi-layered perceptron with different user and item embedding vectors. The
structure of the MLP is controlled with the parameter mlp_layers. ReLU is used as the default
activation function.

class NeuMF(nn.Block):
def __init__(self, num_factors, num_users, num_items, mlp_layers,

**kwargs):
super(NeuMF, self).__init__(**kwargs)
self.P = nn.Embedding(num_users, num_factors)
self.Q = nn.Embedding(num_items, num_factors)
self.U = nn.Embedding(num_users, num_factors)
self.V = nn.Embedding(num_items, num_factors)
self.mlp = nn.Sequential() # The MLP layers
for i in mlp_layers:

self.mlp.add(gluon.nn.Dense(i, activation='relu', use_bias=True))

def forward(self, user_id, item_id):
p_mf = self.P(user_id)

(continues on next page)

15.6. Neural Collaborative Filtering for Personalized Ranking 693

(continued from previous page)

q_mf = self.Q(item_id)
gmf = p_mf * q_mf
p_mlp = self.U(user_id)
q_mlp = self.V(item_id)
mlp = self.mlp(np.concatenate([p_mlp, q_mlp], axis=1))
con_res = np.concatenate([gmf, mlp], axis=1)
return np.sum(con_res, axis=-1)

15.6.3 Customized Dataset with Negative Sampling

For pairwise ranking loss, an important step is negative sampling. For each user, the items that
a user has not interacted with are candidate items (unobserved entries). The following function
takes users identity and candidate items as input, and samples negative items randomly for each
user from the candidate set of that user. During the training stage, the model ensures that the
items that a user likes to be ranked higher than items she dislikes or has not interacted with.

class PRDataset(gluon.data.Dataset):
def __init__(self, users, items, candidates, num_items):

self.users = users
self.items = items
self.cand = candidates
self.all = set([i for i in range(num_items)])

def __len__(self):
return len(self.users)

def __getitem__(self, idx):
neg_items = list(self.all - set(self.cand[int(self.users[idx])]))
indices = random.randint(0, len(neg_items) - 1)
return self.users[idx], self.items[idx], neg_items[indices]

15.6.4 Evaluator

In this section, we adopt the splitting by time strategy to construct the training and test sets. Two
evaluation measures including hit rate at given cutting off ℓ (Hit@ℓ) and area under the ROC curve
(AUC) are used to assess the model effectiveness. Hit rate at given position ℓ for each user indicates
that whether the recommended item is included in the top ℓ ranked list. The formal definition is
as follows:

Hit@ℓ =
1

m

∑
u∈U

1(ranku,gu <= ℓ), (15.6.4)

where 1 denotes an indicator function that is equal to one if the ground truth item is ranked in the
top ℓ list, otherwise it is equal to zero. ranku,gu denotes the ranking of the ground truth item gu of
the user u in the recommendation list (The ideal ranking is 1). m is the number of users. U is the
user set.

The definition of AUC is as follows:

AUC =
1

m

∑
u∈U

1

|I\Su|
∑

j∈I\Su

1(ranku,gu < ranku,j), (15.6.5)

694 Chapter 15. Recommender Systems

where I is the item set. Su is the candidate items of user u. Note that many other evaluation
protocols such as precision, recall and normalized discounted cumulative gain (NDCG) can also
be used.

The following function calculates the hit counts and AUC for each user.

Saved in the d2l package for later use
def hit_and_auc(rankedlist, test_matrix, k):

hits_k = [(idx, val) for idx, val in enumerate(rankedlist[:k])
if val in set(test_matrix)]

hits_all = [(idx, val) for idx, val in enumerate(rankedlist)
if val in set(test_matrix)]

max = len(rankedlist) - 1
auc = 1.0 * (max - hits_all[0][0]) / max if len(hits_all) > 0 else 0
return len(hits_k), auc

Then, the overall Hit rate and AUC are calculated as follows.

Saved in the d2l package for later use
def evaluate_ranking(net, test_input, seq, candidates, num_users, num_items,

ctx):
ranked_list, ranked_items, hit_rate, auc = {}, {}, [], []
all_items = set([i for i in range(num_users)])
for u in range(num_users):

neg_items = list(all_items - set(candidates[int(u)]))
user_ids, item_ids, x, scores = [], [], [], []
[item_ids.append(i) for i in neg_items]
[user_ids.append(u) for _ in neg_items]
x.extend([np.array(user_ids)])
if seq is not None:

x.append(seq[user_ids, :])
x.extend([np.array(item_ids)])
test_data_iter = gluon.data.DataLoader(gluon.data.ArrayDataset(*x),

shuffle=False,
last_batch="keep",
batch_size=1024)

for index, values in enumerate(test_data_iter):
x = [gluon.utils.split_and_load(v, ctx, even_split=False)

for v in values]
scores.extend([list(net(*t).asnumpy()) for t in zip(*x)])

scores = [item for sublist in scores for item in sublist]
item_scores = list(zip(item_ids, scores))
ranked_list[u] = sorted(item_scores, key=lambda t: t[1], reverse=True)
ranked_items[u] = [r[0] for r in ranked_list[u]]
temp = hit_and_auc(ranked_items[u], test_input[u], 50)
hit_rate.append(temp[0])
auc.append(temp[1])

return np.mean(np.array(hit_rate)), np.mean(np.array(auc))

15.6. Neural Collaborative Filtering for Personalized Ranking 695

15.6.5 Training and Evaluating the Model

The training function is defined below. We train the model in the pairwise manner.

Saved in the d2l package for later use
def train_ranking(net, train_iter, test_iter, loss, trainer, test_seq_iter,

num_users, num_items, num_epochs, ctx_list, evaluator,
candidates, eval_step=1):

timer, hit_rate, auc = d2l.Timer(), 0, 0
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],

legend=['test hit rate', 'test AUC'])
for epoch in range(num_epochs):

metric, l = d2l.Accumulator(3), 0.
for i, values in enumerate(train_iter):

input_data = []
for v in values:

input_data.append(gluon.utils.split_and_load(v, ctx_list))
with autograd.record():

p_pos = [net(*t) for t in zip(*input_data[0:-1])]
p_neg = [net(*t) for t in zip(*input_data[0:-2],

input_data[-1])]
ls = [loss(p, n) for p, n in zip(p_pos, p_neg)]

[l.backward(retain_graph=False) for l in ls]
l += sum([l.asnumpy() for l in ls]).mean()/len(ctx_list)
trainer.step(values[0].shape[0])
metric.add(l, values[0].shape[0], values[0].size)
timer.stop()

with autograd.predict_mode():
if (epoch + 1) % eval_step == 0:

hit_rate, auc = evaluator(net, test_iter, test_seq_iter,
candidates, num_users, num_items,
ctx_list)

animator.add(epoch + 1, (hit_rate, auc))
print('train loss %.3f, test hit rate %.3f, test AUC %.3f'

% (metric[0] / metric[1], hit_rate, auc))
print('%.1f examples/sec on %s'

% (metric[2] * num_epochs / timer.sum(), ctx_list))

Now, we can load the MovieLens 100k dataset and train the model. Since there are only ratings in
the MovieLens dataset, with some losses of accuracy, we binarize these ratings to zeros and ones.
If a user rated an item, we consider the implicit feedback as one, otherwise as zero. The action of
rating an item can be treated as a form of providing implicit feedback. Here, we split the dataset
in the seq-aware mode where usersʼ latest interacted items are left out for test.

batch_size = 1024
df, num_users, num_items = d2l.read_data_ml100k()
train_data, test_data = d2l.split_data_ml100k(df, num_users, num_items,

'seq-aware')
users_train, items_train, ratings_train, candidates = d2l.load_data_ml100k(

train_data, num_users, num_items, feedback="implicit")
users_test, items_test, ratings_test, test_iter = d2l.load_data_ml100k(

test_data, num_users, num_items, feedback="implicit")
num_workers = 0 if sys.platform.startswith("win") else 4
train_iter = gluon.data.DataLoader(PRDataset(users_train, items_train,

candidates, num_items),

(continues on next page)

696 Chapter 15. Recommender Systems

(continued from previous page)

batch_size, True,
last_batch="rollover",
num_workers=num_workers)

We then create and initialize the model. we use a three-layer MLP with constant hidden size 10.

ctx = d2l.try_all_gpus()
net = NeuMF(10, num_users, num_items, mlp_layers=[10, 10, 10])
net.initialize(ctx=ctx, force_reinit=True, init=mx.init.Normal(0.01))

The following code trains the model.

lr, num_epochs, wd, optimizer = 0.01, 10, 1e-5, 'adam'
loss = d2l.BPRLoss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})
train_ranking(net, train_iter, test_iter, loss, trainer, None, num_users,

num_items, num_epochs, ctx, evaluate_ranking, candidates)

train loss 4.381, test hit rate 0.323, test AUC 0.734
15.6 examples/sec on [gpu(0), gpu(1)]

Summary

• Adding nonlinearity to matrix factorization model is beneficial for improving the model ca-
pability and effectiveness.

• NeuMF is a combination of matrix factorization and Multilayer perceptron. The multilayer
perceptron takes the concatenation of user and item embeddings as the input.

15.6. Neural Collaborative Filtering for Personalized Ranking 697

Exercises

• Vary the size of latent factors. How the size of latent factors impact the model performance?

• Vary the architectures (e.g., number of layers, number of neurons of each layer) of the MLP
to check the its impact on the performance.

• Try different optimizers, learning rate and weight decay rate.

• Try to use hinge loss defined in the last section to optimize this model.

15.7 Sequence-Aware Recommender Systems

In previous sections, we abstract the recommendation task as a matrix completion problem with-
out considering usersʼ short-term behaviors. In this section, we will introduce a recommendation
model that takes the sequentially-ordered user interaction logs into account. It is a sequence-
aware recommender (Quadrana et al., 2018) where the input is an ordered and often timestamped
list of past user actions. A number of recent literatures have demonstrated the usefulness of in-
corporating such information in modeling usersʼ temporal behavioral patterns and discovering
their interest drift.

The model we will introduce, Caser (Sedhain et al., 2015), short for convolutional sequence em-
bedding recommendation model, adopts convolutional neural networks capture the dynamic pat-
tern influences of usersʼ recent activities. The main component of Caser consists of a horizontal
convolutional network and a vertical convolutional network, aiming to uncover the union-level
and point-level sequence patterns, respectively. Point-level pattern indicates the impact of single
item in the historical sequence on the target item, while union level pattern implies the influences
of several previous actions on the subsequent target. For example, buying both milk and butter
together leads to higher probability of buying flour than just buying one of them. Moreover, usersʼ
general interests, or long term preferences are also modeled in the last fully-connected layers, re-
sulting in a more comprehensive modeling of user interests. Details of the model are described
as follows.

15.7.1 Model Architectures

In sequence-aware recommendation system, each user is associated with a sequence of some
items from the item set. Let Su = (Su

1 , ...S
u
|Su|) denotes the ordered sequence. The goal of Caser is

to recommend item by considering user general tastes as well as short-term intention. Suppose
we take the previous L items into consideration, an embedding matrix that represents the former
interactions for timestep t can be constructed:

E(u,t) = [qSu
t−L

, ...,qSu
t−2

,qSu
t−1

]⊤, (15.7.1)

where Q ∈ Rn×k represents item embeddings and qi denotes the ith row. E(u,t) ∈ RL×k can be
used to infer the transient interest of user u at time-step t. We can view the input matrix E(u,t) as
an image which is the input of the subsequent two convolutional components.

698 Chapter 15. Recommender Systems

The horizontal convolutional layer has d horizontal filters Fj ∈ Rh×k, 1 ≤ j ≤ d, h = {1, ..., L},
and the vertical convolutional layer has d′ vertical filters Gj ∈ RL×1, 1 ≤ j ≤ d′. After a series of
convolutional and pool operations, we get the two outputs:

o = HConv(E(u,t),F)

o′ = VConv(E(u,t),G),
(15.7.2)

where o ∈ Rd is the output of horizontal convolutional network and o′ ∈ Rkd′ is the output of verti-
cal convolutional network. For simplicity, we omit the details of convolution and pool operations.
They are concatenated and fed into a fully-connected neural network layer to get more high-level
representations.

z = ϕ(W[o,o′]⊤ + b), (15.7.3)

where W ∈ Rk×(d+kd′) is the weight matrix and b ∈ Rk is the bias. The learned vector z ∈ Rk is the
representation of user s̓ short-term intent.

At last, the prediction function combines usersʼ short-term and general taste together, which is
defined as:

ŷuit = vi · [z,pu]
⊤ + b′

i, (15.7.4)

where V ∈ Rn×2k is another item embedding matrix. b′ ∈ Rn is the item specific bias. P ∈ Rm×k

is the user embedding matrix for usersʼ general tastes. pu ∈ Rk is the uth row of P and vi ∈ R2k is
the ith row of V.

The model can be learned with BPR or Hinge loss. The architecture of Caser is shown below:

Fig. 15.7.1: Illustration of the Caser Model

We first import the required libraries.

15.7. Sequence-Aware Recommender Systems 699

import d2l
from mxnet import gluon, np, npx
from mxnet.gluon import nn
import mxnet as mx
import random
import sys
npx.set_np()

15.7.2 Model Implementation

The following code implements the Caser model. It consists of a vertical convolutional layer, a
horizontal convolutional layer, and a full-connected layer.

class Caser(nn.Block):
def __init__(self, num_factors, num_users, num_items, L=5, d=16,

d_prime=4, drop_ratio=0.05, **kwargs):
super(Caser, self).__init__(**kwargs)
self.P = nn.Embedding(num_users, num_factors)
self.Q = nn.Embedding(num_items, num_factors)
self.d_prime, self.d = d_prime, d
Vertical convolution layer
self.conv_v = nn.Conv2D(d_prime, (L, 1), in_channels=1)
Horizontal convolution layer
h = [i + 1 for i in range(L)]
self.conv_h, self.max_pool = nn.Sequential(), nn.Sequential()
for i in h:

self.conv_h.add(nn.Conv2D(d, (i, num_factors), in_channels=1))
self.max_pool.add(nn.MaxPool1D(L - i + 1))

Fully-connected layer
self.fc1_dim_v, self.fc1_dim_h = d_prime * num_factors, d * len(h)
self.fc = nn.Dense(in_units=d_prime * num_factors + d * L,

activation='relu', units=num_factors)
self.Q_prime = nn.Embedding(num_items, num_factors * 2)
self.b = nn.Embedding(num_items, 1)
self.dropout = nn.Dropout(drop_ratio)

def forward(self, user_id, seq, item_id):
item_embs = np.expand_dims(self.Q(seq), 1)
user_emb = self.P(user_id)
out, out_h, out_v, out_hs = None, None, None, []
if self.d_prime:

out_v = self.conv_v(item_embs)
out_v = out_v.reshape(out_v.shape[0], self.fc1_dim_v)

if self.d:
for conv, maxp in zip(self.conv_h, self.max_pool):

conv_out = np.squeeze(npx.relu(conv(item_embs)), axis=3)
t = maxp(conv_out)
pool_out = np.squeeze(t, axis=2)
out_hs.append(pool_out)

out_h = np.concatenate(out_hs, axis=1)
out = np.concatenate([out_v, out_h], axis=1)
z = self.fc(self.dropout(out))
x = np.concatenate([z, user_emb], axis=1)

(continues on next page)

700 Chapter 15. Recommender Systems

(continued from previous page)

q_prime_i = np.squeeze(self.Q_prime(item_id))
b = np.squeeze(self.b(item_id))
res = (x * q_prime_i).sum(1) + b
return res

15.7.3 Sequential Dataset with Negative Sampling

To process the sequential interaction data, we need to reimplement the Dataset class. The fol-
lowing code creates a new dataset class named SeqDataset. In each sample, it outputs the user
identity, her previous L interacted items as a sequence and the next item she interacts as the tar-
get. The following figure demonstrates the data loading process for one user. Suppose that this
user liked 8 movies, we organize these eight movies in chronological order. The latest movie is
left out as the test item. For the remaining seven movies, we can get three training samples, with
each sample containing a sequence of five (L = 5) movies and its subsequent item as the target
item. Negative samples are also included in the Customized dataset.

Fig. 15.7.2: Illustration of the data generation process

class SeqDataset(gluon.data.Dataset):
def __init__(self, user_ids, item_ids, L, num_users, num_items,

candidates):
user_ids, item_ids = np.array(user_ids), np.array(item_ids)
sort_idx = np.array(sorted(range(len(user_ids)),

key=lambda k: user_ids[k]))
u_ids, i_ids = user_ids[sort_idx], item_ids[sort_idx]
temp, u_ids, self.cand = {}, u_ids.asnumpy(), candidates
self.all_items = set([i for i in range(num_items)])
[temp.setdefault(u_ids[i], []).append(i) for i, _ in enumerate(u_ids)]
temp = sorted(temp.items(), key=lambda x: x[0])
u_ids = np.array([i[0] for i in temp])
idx = np.array([i[1][0] for i in temp])
self.ns = ns = int(sum([c - L if c >= L + 1 else 1 for c

in np.array([len(i[1]) for i in temp])]))
self.seq_items = np.zeros((ns, L))
self.seq_users = np.zeros(ns, dtype='int32')
self.seq_tgt = np.zeros((ns, 1))
self.test_seq = np.zeros((num_users, L))

(continues on next page)

15.7. Sequence-Aware Recommender Systems 701

(continued from previous page)

test_users, _uid = np.empty(num_users), None
for i, (uid, i_seq) in enumerate(self._seq(u_ids, i_ids, idx, L + 1)):

if uid != _uid:
self.test_seq[uid][:] = i_seq[-L:]
test_users[uid], _uid = uid, uid

self.seq_tgt[i][:] = i_seq[-1:]
self.seq_items[i][:], self.seq_users[i] = i_seq[:L], uid

def _win(self, tensor, window_size, step_size=1):
if len(tensor) - window_size >= 0:

for i in range(len(tensor), 0, - step_size):
if i - window_size >= 0:

yield tensor[i - window_size:i]
else:

break
else:

yield tensor

def _seq(self, u_ids, i_ids, idx, max_len):
for i in range(len(idx)):

stop_idx = None if i >= len(idx) - 1 else int(idx[i + 1])
for s in self._win(i_ids[int(idx[i]):stop_idx], max_len):

yield (int(u_ids[i]), s)

def __len__(self):
return self.ns

def __getitem__(self, i):
neg = list(self.all_items - set(self.cand[int(self.seq_users[i])]))
idx = random.randint(0, len(neg) - 1)
return self.seq_users[i], self.seq_items[i], self.seq_tgt[i], neg[idx]

15.7.4 Load the MovieLens 100K dataset

Afterwards, we read and split the MovieLens 100K dataset in sequence-aware mode and load the
training data with sequential dataloader implemented above.

TARGET_NUM, L, batch_size = 1, 3, 4096
df, num_users, num_items = d2l.read_data_ml100k()
train_data, test_data = d2l.split_data_ml100k(df, num_users, num_items,

'seq-aware')
users_train, items_train, ratings_train, candidates = d2l.load_data_ml100k(

train_data, num_users, num_items, feedback="implicit")
users_test, items_test, ratings_test, test_iter = d2l.load_data_ml100k(

test_data, num_users, num_items, feedback="implicit")
train_seq_data = SeqDataset(users_train, items_train, L, num_users,

num_items, candidates)
num_workers = 0 if sys.platform.startswith("win") else 4
train_iter = gluon.data.DataLoader(train_seq_data, batch_size, True,

last_batch="rollover",
num_workers=num_workers)

test_seq_iter = train_seq_data.test_seq
train_seq_data[0]

702 Chapter 15. Recommender Systems

(array(0, dtype=int32), array([110., 255., 4.]), array([101.]), 657)

The training data structure is shown above. The first element is the user identity, the next list
indicates the last five items this user liked, and the last element is the item this user liked after the
five items.

15.7.5 Train the Model

Now, let s̓ train the model. We use the same setting as NeuMF, including learning rate, optimizer,
and k, in the last section so that the results are comparable.

ctx = d2l.try_all_gpus()
net = Caser(10, num_users, num_items, L)
net.initialize(ctx=ctx, force_reinit=True, init=mx.init.Normal(0.01))
lr, num_epochs, wd, optimizer = 0.04, 8, 1e-5, 'adam'
loss = d2l.BPRLoss()
trainer = gluon.Trainer(net.collect_params(), optimizer,

{"learning_rate": lr, 'wd': wd})

d2l.train_ranking(net, train_iter, test_iter, loss, trainer, test_seq_iter,
num_users, num_items, num_epochs, ctx, d2l.evaluate_ranking,
candidates, eval_step=1)

train loss 0.859, test hit rate 0.367, test AUC 0.746
35.0 examples/sec on [gpu(0), gpu(1)]

15.7. Sequence-Aware Recommender Systems 703

Summary

• Inferring a user s̓ short-term and long-term interests can make prediction of the next item
that she preferred more effectively.

• Convolutional neural networks can be utilized to capture usersʼ short-term interests from
sequential interactions.

Exercises

• Conduct an ablation study by removing one of the horizontal and vertical convolutional net-
works, which component is the more important ?

• Vary the hyper-parameter L. Does longer historical interactions bring higher accuracy?

• Apart from the sequence-aware recommendation task we introduced above, there is another
type of sequence-aware recommendation task called session-based recommendation (Hi-
dasi et al., 2015). Can you explain the differences between these two tasks?

15.8 Feature-Rich Recommender Systems

Interaction data is the most basic indication of usersʼ preferences and interests. It plays a critical
role in former introduced models. Yet, interaction data is usually extremely sparse and can be
noisy at times. To address this issue, we can integrate side information such as features of items,
profiles of users, and even in which context that the interaction occurred into the recommenda-
tion model. Utilizing these features are helpful in making recommendations in that these features
can be an effective predictor of users interests especially when interaction data is lacking. As such,
it is essential for recommendation models also have the capability to deal with those features and
give the model some content/context awareness. To demonstrate this type of recommendation
models, we introduce another task on click-through rate (CTR) for online advertisement recom-
mendations (McMahan et al., 2013) and present an anonymous advertising data. Targeted adver-
tisement services have attracted widespread attention and are often framed as recommendation
engines. Recommending advertisements that match usersʼ personal taste and interest is impor-
tant for click-through rate improvement.

Digital marketers use online advertising to display advertisements to customers. Click-through
rate is a metric that measures the number of clicks advertisers receive on their ads per number of
impressions and it is expressed as a percentage calculated with the formula:

CTR =
#Clicks

#Impressions
× 100%. (15.8.1)

Click-through rate is an important signal that indicates the effectiveness of prediction algorithms.
Click-through rate prediction is a task of predicting the likelihood that something on a website will
be clicked. Models on CTR prediction can not only be employed in targeted advertising systems
but also in general item (e.g., movies, news, products) recommender systems, email campaigns,

704 Chapter 15. Recommender Systems

and even search engines. It is also closely related to user satisfaction, conversion rate, and can be
helpful in setting campaign goals as it can help advertisers to set realistic expectations.

15.8.1 An Online Advertising Dataset

With the considerable advancements of Internet and mobile technology, online advertising has
become an important income resource and generates vast majority of revenue in the Internet
industry. It is important to display relevant advertisements or advertisements that pique usersʼ
interests so that casual visitors can be converted into paying customers. The dataset we intro-
duced is an online advertising dataset. It consists of 34 fields, with the first column representing
the target variable that indicates if an ad was clicked (1) or not (0). All the other columns are
categorical features. The columns might represent the advertisement id, site or application id,
device id, time, user profiles and so on. The real semantics of the features are undisclosed due to
anonymization and privacy concern.

The following code downloads the dataset from our server and saves it into the local data folder.

from collections import defaultdict
from mxnet import gluon, np
import os

Saved in the d2l package for later use
def read_data_ctr(path="../data/", train="ctr/train.csv",

test="ctr/test.csv"):
data_path = ("https://apache-mxnet.s3-accelerate.amazonaws.com/"

"gluon/dataset/")
train_sha1 = "6dec3052e49ce0d1cec5ebc6f5ded1172be0befb"
test_sha1 = "c265e3c1fad0ed4caf8c1a373c580465a8096eb0"
ctr_path = path+"ctr"
os.makedirs(ctr_path, exist_ok=True)
gluon.utils.download(data_path + train, ctr_path, train_sha1)
gluon.utils.download(data_path + test, ctr_path, test_sha1)

read_data_ctr()

Downloading ../data/ctr/train.csv from https://apache-mxnet.s3-accelerate.amazonaws.com/
↪→gluon/dataset/ctr/train.csv...
Downloading ../data/ctr/test.csv from https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/
↪→dataset/ctr/test.csv...

There are a training set and a test set, consisting of 15000 and 3000 samples/lines, respectively.

15.8.2 Dataset Wrapper

For the convenience of data loading, we implement a CTRDataset which loads the advertising
dataset from the CSV file and can be used by DataLoader.

Saved in the d2l package for later use
class CTRDataset(gluon.data.Dataset):

def __init__(self, data_path, feat_mapper=None, defaults=None,
min_threshold=4, num_feat=34):

(continues on next page)

15.8. Feature-Rich Recommender Systems 705

(continued from previous page)

self.NUM_FEATS, self.count, self.data = num_feat, 0, {}
feat_cnts = defaultdict(lambda: defaultdict(int))
self.feat_mapper, self.defaults = feat_mapper, defaults
self.field_dims = np.zeros(self.NUM_FEATS, dtype=np.int64)
with open(data_path) as f:

for line in f:
instance = {}
values = line.rstrip('\n').split('\t')
if len(values) != self.NUM_FEATS + 1:

continue
label = np.float32([0, 0])
label[int(values[0])] = 1
instance['y'] = [np.float32(values[0])]
for i in range(1, self.NUM_FEATS + 1):

feat_cnts[i][values[i]] += 1
instance.setdefault('x', []).append(values[i])

self.data[self.count] = instance
self.count = self.count + 1

if self.feat_mapper is None and self.defaults is None:
feat_mapper = {i: {feat for feat, c in cnt.items() if c >=

min_threshold} for i, cnt in feat_cnts.items()}
self.feat_mapper = {i: {feat: idx for idx, feat in enumerate(cnt)}

for i, cnt in feat_mapper.items()}
self.defaults = {i: len(cnt) for i, cnt in feat_mapper.items()}

for i, fm in self.feat_mapper.items():
self.field_dims[i - 1] = len(fm) + 1

self.offsets = np.array((0, *np.cumsum(self.field_dims).asnumpy()
[:-1]))

def __len__(self):
return self.count

def __getitem__(self, idx):
feat = np.array([self.feat_mapper[i + 1].get(v, self.defaults[i + 1])

for i, v in enumerate(self.data[idx]['x'])])
return feat + self.offsets, self.data[idx]['y']

The following example loads the training data and print out the first record.

train_data = CTRDataset(data_path="../data/ctr/train.csv")
train_data[0]

(array([143., 145., 227., 236., 957., 1250., 1471., 1566., 1624.,
1933., 2008., 2061., 2256., 2304., 2305., 2360., 2745., 2746.,
2747., 2748., 2892., 2988., 3165., 3184., 3194., 3195., 3527.,
3643., 3687., 3697., 3732., 3740., 3773., 3797.]), [1.0])

As can be seen, all the 34 fields are categorical features. Each value represents the one-hot index
of the corresponding entry. The label 0 means that it is not clicked. This CTRDataset can also
be used to load other datasets such as the Criteo display advertising challenge Dataset244 and the
Avazu click-through rate prediction Dataset245.

244 https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
245 https://www.kaggle.com/c/avazu-ctr-prediction

706 Chapter 15. Recommender Systems

https://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
https://www.kaggle.com/c/avazu-ctr-prediction

Summary

• Click-through rate is an important metric that is used to measure the effectiveness of adver-
tising systems and recommender systems.

• Click-through rate prediction is usually converted to a binary classification problem. The
target is to predict whether an ad/item will be clicked or not based on given features.

Exercise

• Can you load the Criteo and Avazu dataset with the provided CTRDataset. It is worth noting
that the Criteo dataset consisting of real-valued features so you may have to revise the code
a bit.

15.9 Factorization Machines

Factorization machines (FM) (Rendle, 2010), proposed by Steffen Rendle in 2010, is a supervised
algorithm that can be used for classification, regression, and ranking tasks. It quickly took notice
and became a popular and impactful method for making predictions and recommendations. Par-
ticularly, it is a generalization of the linear regression model and the matrix factorization model.
Moreover, it is reminiscent of support vector machines with a polynomial kernel. The strengths of
factorization machines over the linear regression and matrix factorization are: (1) it can model χ-
way variable interactions, where χ is the number of polynomial order and is usually set to two. (2)
A fast optimization algorithm associated with factorization machines can reduce the polynomial
computation time to linear complexity, making it extremely efficient especially for high dimen-
sional sparse inputs. For these reasons, factorization machines are widely employed in modern
advertisement and products recommendations. The technical details and implementations are
described below.

15.9.1 2-Way Factorization Machines

Formally, let x ∈ Rd denote the feature vectors of one sample, and y denote the corresponding
label which can be real-valued label or class label such as binary class “click/non-click”. The model
for a factorization machine of degree two is defined as:

ŷ(x) = w0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=i+1

⟨vi, vj⟩xixj (15.9.1)

where w0 ∈ R is the global bias; w ∈ Rd denotes the weights of the i-th variable; V ∈ Rd×k rep-
resents the feature embeddings; vi represents the ith row of V; k is the dimensionality of latent
factors; ⟨·, ·⟩ is the dot product of two vectors. ⟨vi, vj⟩ model the interaction between the ith and
jth feature. Some feature interactions can be easily understood so they can be designed by ex-
perts. However, most other feature interactions are hidden in data and difficult to identify. So

15.9. Factorization Machines 707

modeling feature interactions automatically can greatly reduce the efforts in feature engineering.
It is obvious that the first two terms correspond to the linear regression model and the last term is
an extension of the matrix factorization model. If the feature i represents a item and the feature
j represents a user, the third term is exactly the dot product between user and item embeddings.
It is worth noting that FM can also generalize to higher orders (degree > 2). Nevertheless, the
numerical stability might weaken the generalization.

15.9.2 An Efficient Optimization Criterion

Optimizing the factorization machines in a straight forward method leads to a complexity of
O(kd2) as all pairwise interactions require to be computed. To solve this inefficiency problem,
we can reorganize the third term of FM which could greatly reduce the computation cost, lead-
ing to a linear time complexity (O(kd)). The reformulation of the pairwise interaction term is as
follows:

d∑
i=1

d∑
j=i+1

⟨vi, vj⟩xixj

=
1

2

d∑
i=1

d∑
j=1

⟨vi, vj⟩xixj −
1

2

d∑
i=1

⟨vi, vi⟩xixi

=
1

2

(d∑
i=1

d∑
j=1

k∑
l=1

vi,lvj,lxixj −
d∑

i=1

k∑
l=1

vi,lvj,lxixi
)

=
1

2

k∑
l=1

(
(

d∑
i=1

vi,lxi)(
d∑

j=1

vj,lxj)−
d∑

i=1

v2i,lx2i
)

=
1

2

k∑
l=1

(
(

d∑
i=1

vi,lxi)2 −
d∑

i=1

v2i,lx2i)

(15.9.2)

With this reformulation, the model complexity are decreased greatly. Moreover, for sparse fea-
tures, only non-zero elements needs to be computed so that the overall complexity is linear to the
number of non-zero features.

To learn the FM model, we can use the MSE loss for regression task, the cross entropy loss for
classification tasks, and the BPR loss for ranking task. Standard optimizers such as SGD and Adam
are viable for optimization.

import d2l
from mxnet import init, gluon, np, npx
from mxnet.gluon import nn
import sys
npx.set_np()

708 Chapter 15. Recommender Systems

15.9.3 Model Implementation

The following code implement the factorization machines. It is clear to see that FM consists a
linear regression block and an efficient feature interaction block. We apply a sigmoid function
over the final score since we treat the CTR prediction as a classification task.

class FM(nn.Block):
def __init__(self, field_dims, num_factors):

super(FM, self).__init__()
input_size = int(sum(field_dims))
self.embedding = nn.Embedding(input_size, num_factors)
self.fc = nn.Embedding(input_size, 1)
self.linear_layer = gluon.nn.Dense(1, use_bias=True)

def forward(self, x):
square_of_sum = np.sum(self.embedding(x), axis=1) ** 2
sum_of_square = np.sum(self.embedding(x) ** 2, axis=1)
x = self.linear_layer(self.fc(x).sum(1)) \

+ 0.5 * (square_of_sum - sum_of_square).sum(1, keepdims=True)
x = npx.sigmoid(x)
return x

15.9.4 Load the Advertising Dataset

We use the CTR data wrapper from the last section to load the online advertising dataset.

batch_size = 2048
d2l.read_data_ctr()
train_data = d2l.CTRDataset(data_path="../data/ctr/train.csv")
test_data = d2l.CTRDataset(data_path="../data/ctr/test.csv",

feat_mapper=train_data.feat_mapper,
defaults=train_data.defaults)

num_workers = 0 if sys.platform.startswith("win") else 4
train_iter = gluon.data.DataLoader(train_data, shuffle=True,

last_batch="rollover",
batch_size=batch_size,
num_workers=num_workers)

test_iter = gluon.data.DataLoader(test_data, shuffle=False,
last_batch="rollover",
batch_size=batch_size,
num_workers=num_workers)

Downloading ../data/ctr/train.csv from https://apache-mxnet.s3-accelerate.amazonaws.com/
↪→gluon/dataset/ctr/train.csv...

/var/lib/jenkins/miniconda3/envs/d2l-en-1/lib/python3.7/site-packages/mxnet/gluon/utils.
↪→py:341: UserWarning: File ../data/ctr/train.csv exists in file system so the downloaded␣
↪→file is deleted
'File {} exists in file system so the downloaded file is deleted'.format(fname))

/var/lib/jenkins/miniconda3/envs/d2l-en-1/lib/python3.7/site-packages/mxnet/gluon/utils.
↪→py:341: UserWarning: File ../data/ctr/test.csv exists in file system so the downloaded␣
↪→file is deleted
'File {} exists in file system so the downloaded file is deleted'.format(fname))

15.9. Factorization Machines 709

Downloading ../data/ctr/test.csv from https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/
↪→dataset/ctr/test.csv...

15.9.5 Train the Model

Afterwards, we train the model. The learning rate is set to 0.01 and the embedding size is set to 20
by default. The Adam optimizer and the SigmoidBinaryCrossEntropyLoss loss are used for model
training.

ctx = d2l.try_all_gpus()
net = FM(train_data.field_dims, num_factors=20)
net.initialize(init.Xavier(), ctx=ctx)
lr, num_epochs, optimizer = 0.02, 30, 'adam'
trainer = gluon.Trainer(net.collect_params(), optimizer,

{'learning_rate': lr})
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, ctx)

loss 0.505, train acc 0.787, test acc 0.775
217142.6 exampes/sec on [gpu(0), gpu(1)]

Summary

• FM is a general framework that can be applied on a variety of tasks such as regression, clas-
sification, and ranking.

• Feature interaction/crossing is important for prediction tasks and the 2-way interaction can
be efficiently modeled with FM.

710 Chapter 15. Recommender Systems

Exercise

• Can you test FM on other dataset such as Avazu, MovieLens, and Criteo datasets?

• Vary the embedding size to check its impact on performance, can you observe a similar
pattern as that of matrix factorization?

15.10 Deep Factorization Machines

Learning effective feature combinations is critical to the success of click-through rate prediction
task. Factorization machines model feature interactions in a linear paradigm (e.g., bilinear in-
teractions). This is often insufficient for real-world data where inherent feature crossing struc-
tures are usually very complex and nonlinear. What s̓ worse, second-order feature interactions
are generally used in factorization machines in practice. Modeling higher degrees of feature com-
binations with factorization machines is possible theoretically but it is usually not adopted due to
numerical instability and high computational complexity.

One effective solution is using deep neural networks. Deep neural networks are powerful in fea-
ture representation learning and have the potential to learn sophisticated feature interactions.
As such, it is natural to integrate deep neural networks to factorization machines. Adding non-
linear transformation layers to factorization machines gives it the capability to model both low-
order feature combinations and high-order feature combinations. Moreover, non-linear inherent
structures from inputs can also be captured with deep neural networks. In this section, we will
introduce a representative model named deep factorization machines (DeepFM) (Guo et al., 2017)
which combine FM and deep neural networks.

15.10.1 Model Architectures

DeepFM consists of an FM component and a deep component which are integrated in a paral-
lel structure. The FM component is the same as the 2-way factorization machines which is used
to model the low-order feature interactions. The deep component is a multi-layered perceptron
that is used to capture high-order feature interactions and nonlinearities. These two components
share the same inputs/embeddings and their outputs are summed up as the final prediction. It
is worth pointing out that the spirit of DeepFM resembles that of the Wide & Deep architecture
which can capture both memorization and generalization. The advantages of DeepFM over the
Wide & Deep model is that it reduces the effort of hand-crafted feature engineering by identifying
feature combinations automatically.

We omit the description of the FM component for brevity and denote the output as ŷ(FM). Readers
are referred to the last section for more details. Let ei ∈ Rk denote the latent feature vector of the
ith field. The input of the deep component is the concatenation of the dense embeddings of all
fields that are looked up with the sparse categorical feature input, denoted as:

z(0) = [e1, e2, ..., ef], (15.10.1)

15.10. Deep Factorization Machines 711

where f is the number of fields. It is then fed into the following neural network:

z(l) = α(W(l)z(l−1) + b(l)), (15.10.2)

where α is the activation function. Wl and bl are the weight and bias at the lth layer. Let yDNN

denote the output of the prediction. The ultimate prediction of DeepFM is the summation of the
outputs from both FM and DNN. So we have:

ŷ = σ(ŷ(FM) + ŷ(DNN)), (15.10.3)

where σ is the sigmoid function. The architecture of DeepFM is illustrated below.

It is worth noting that DeepFM is not the only way to combine deep neural networks with FM. We
can also add nonlinear layers over the feature interactions (He & Chua, 2017).

import d2l
from mxnet import init, gluon, np, npx
from mxnet.gluon import nn
import sys
npx.set_np()

712 Chapter 15. Recommender Systems

15.10.2 Implemenation of DeepFM

The implementation of DeepFM is similar to that of FM. We keep the FM part unchanged and use
an MLP block with relu as the activation function. Dropout is also used to regularize the model.
The number of neurons of the MLP can be adjusted with the mlp_dims hyper-parameter.

class DeepFM(nn.Block):
def __init__(self, field_dims, num_factors, mlp_dims, drop_rate=0.1):

super(DeepFM, self).__init__()
input_size = int(sum(field_dims))
self.embedding = nn.Embedding(input_size, num_factors)
self.fc = nn.Embedding(input_size, 1)
self.linear_layer = gluon.nn.Dense(1, use_bias=True)
input_dim = self.embed_output_dim = len(field_dims) * num_factors
self.mlp = nn.Sequential()
for dim in mlp_dims:

self.mlp.add(nn.Dense(dim, 'relu', True, in_units=input_dim))
self.mlp.add(nn.Dropout(rate=drop_rate))
input_dim = dim

self.mlp.add(nn.Dense(in_units=input_dim, units=1))

def forward(self, x):
embed_x = self.embedding(x)
square_of_sum = np.sum(embed_x, axis=1) ** 2
sum_of_square = np.sum(embed_x ** 2, axis=1)
inputs = np.reshape(embed_x, (-1, self.embed_output_dim))
x = self.linear_layer(self.fc(x).sum(1)) \

+ 0.5 * (square_of_sum - sum_of_square).sum(1, keepdims=True) \
+ self.mlp(inputs)

x = npx.sigmoid(x)
return x

15.10.3 Training and Evaluating the Model

The data loading process is the same as that of FM. We set the MLP component of DeepFM to a
three-layered dense network with the a pyramid structure (30-20-10). All other hyper-parameters
remain the same as FM.

batch_size = 2048
d2l.read_data_ctr()
train_data = d2l.CTRDataset(data_path="../data/ctr/train.csv")
test_data = d2l.CTRDataset(data_path="../data/ctr/test.csv",

feat_mapper=train_data.feat_mapper,
defaults=train_data.defaults)

field_dims = train_data.field_dims
num_workers = 0 if sys.platform.startswith("win") else 4
train_iter = gluon.data.DataLoader(train_data, shuffle=True,

last_batch="rollover",
batch_size=batch_size,
num_workers=num_workers)

test_iter = gluon.data.DataLoader(test_data, shuffle=False,
last_batch="rollover",
batch_size=batch_size,

(continues on next page)

15.10. Deep Factorization Machines 713

(continued from previous page)

num_workers=num_workers)
ctx = d2l.try_all_gpus()
net = DeepFM(field_dims, num_factors=10, mlp_dims=[30, 20, 10])
net.initialize(init.Xavier(), ctx=ctx)
lr, num_epochs, optimizer = 0.01, 30, 'adam'
trainer = gluon.Trainer(net.collect_params(), optimizer,

{'learning_rate': lr})
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, ctx)

loss 0.511, train acc 0.817, test acc 0.837
124928.7 exampes/sec on [gpu(0), gpu(1)]

Compared with FM, DeepFM converges faster and achieves better performance.

Summary

• Integrating neural networks to FM enables it to model complex and high-order interactions.

• DeepFM outperforms the original FM on the advertising dataset.

Exercise

• Vary the structure of the MLP to check its impact on model performance.

• Change the dataset to Criteo and compare it with the original FM model.

714 Chapter 15. Recommender Systems

16 | Generative Adversarial Networks

16.1 Generative Adversarial Networks

Throughout most of this book, we have talked about how to make predictions. In some form or
another, we used deep neural networks learned mappings from data points to labels. This kind
of learning is called discriminative learning, as in, we d̓ like to be able to discriminate between
photos cats and photos of dogs. Classifiers and regressors are both examples of discriminative
learning. And neural networks trained by backpropagation have upended everything we thought
we knew about discriminative learning on large complicated datasets. Classification accuracies
on high-res images has gone from useless to human-level (with some caveats) in just 5-6 years. We
will spare you another spiel about all the other discriminative tasks where deep neural networks
do astoundingly well.

But there is more to machine learning than just solving discriminative tasks. For example, given a
large dataset, without any labels, we might want to learn a model that concisely captures the char-
acteristics of this data. Given such a model, we could sample synthetic data points that resemble
the distribution of the training data. For example, given a large corpus of photographs of faces,
we might want to be able to generate a new photorealistic image that looks like it might plausibly
have come from the same dataset. This kind of learning is called generative modeling.

Until recently, we had no method that could synthesize novel photorealistic images. But the suc-
cess of deep neural networks for discriminative learning opened up new possibilities. One big
trend over the last three years has been the application of discriminative deep nets to overcome
challenges in problems that we do not generally think of as supervised learning problems. The
recurrent neural network language models are one example of using a discriminative network
(trained to predict the next character) that once trained can act as a generative model.

In 2014, a breakthrough paper introduced Generative adversarial networks (GANs) (Goodfellow
et al., 2014), a clever new way to leverage the power of discriminative models to get good gener-
ative models. At their heart, GANs rely on the idea that a data generator is good if we cannot tell
fake data apart from real data. In statistics, this is called a two-sample test - a test to answer the
question whether datasets X = {x1, . . . , xn} and X ′ = {x′1, . . . , x′n}were drawn from the same dis-
tribution. The main difference between most statistics papers and GANs is that the latter use this
idea in a constructive way. In other words, rather than just training a model to say “hey, these two
datasets do not look like they came from the same distribution”, they use the two-sample test249 to
provide training signals to a generative model. This allows us to improve the data generator until
it generates something that resembles the real data. At the very least, it needs to fool the classifier.
Even if our classifier is a state of the art deep neural network.

249 https://en.wikipedia.org/wiki/Two-sample_hypothesis_testing

715

https://en.wikipedia.org/wiki/Two-sample_hypothesis_testing

Fig. 16.1.1: Generative Adversarial Networks

The GAN architecture is illustrated in Fig. 16.1.1. As you can see, there are two pieces in GAN
architecture - first off, we need a device (say, a deep network but it really could be anything, such
as a game rendering engine) that might potentially be able to generate data that looks just like the
real thing. If we are dealing with images, this needs to generate images. If we are dealing with
speech, it needs to generate audio sequences, and so on. We call this the generator network. The
second component is the discriminator network. It attempts to distinguish fake and real data from
each other. Both networks are in competition with each other. The generator network attempts
to fool the discriminator network. At that point, the discriminator network adapts to the new fake
data. This information, in turn is used to improve the generator network, and so on.

The discriminator is a binary classifier to distinguish if the input x is real (from real data) or fake
(from the generator). Typically, the discriminator outputs a scalar prediction o ∈ R for input x,
such as using a dense layer with hidden size 1, and then applies sigmoid function to obtain the
predicted probability D(x) = 1/(1 + e−o). Assume the label y for the true data is 1 and 0 for the
fake data. We train the discriminator to minimize the cross-entropy loss, i.e.,

min
D
{−y logD(x)− (1− y) log(1−D(x))}, (16.1.1)

For the generator, it first draws some parameter z ∈ Rd from a source of randomness, e.g., a
normal distribution z ∼ N (0, 1). We often call z as the latent variable. It then applies a function
to generate x′ = G(z). The goal of the generator is to fool the discriminator to classify x′ = G(z)
as true data, i.e., we want D(G(z)) ≈ 1. In other words, for a given discriminator D, we update
the parameters of the generator G to maximize the cross-entropy loss when y = 0, i.e.,

max
G
{−(1− y) log(1−D(G(z)))} = max

G
{− log(1−D(G(z)))}. (16.1.2)

If the generator does a perfect job, then D(x′) ≈ 1 so the above loss near 0, which results the
gradients are too small to make a good progress for the discriminator. So commonly we minimize
the following loss:

min
G
{−y log(D(G(z)))} = min

G
{− log(D(G(z)))}, (16.1.3)

which is just feed x′ = G(z) into the discriminator but giving label y = 1.

To sum up, D and G are playing a “minimax” game with the comprehensive objective function:

minDmaxG{−Ex∼DatalogD(x)− Ez∼Noiselog(1−D(G(z)))}. (16.1.4)

716 Chapter 16. Generative Adversarial Networks

Many of the GANs applications are in the context of images. As a demonstration purpose, we
are going to content ourselves with fitting a much simpler distribution first. We will illustrate
what happens if we use GANs to build the world s̓ most inefficient estimator of parameters for a
Gaussian. Let s̓ get started.

%matplotlib inline
import d2l
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
npx.set_np()

16.1.1 Generate some “real” data

Since this is going to be the world s̓ lamest example, we simply generate data drawn from a Gaus-
sian.

X = np.random.normal(size=(1000, 2))
A = np.array([[1, 2], [-0.1, 0.5]])
b = np.array([1, 2])
data = X.dot(A) + b

Let s̓ see what we got. This should be a Gaussian shifted in some rather arbitrary way with mean
b and covariance matrix ATA.

d2l.set_figsize((3.5, 2.5))
d2l.plt.scatter(data[:100, 0].asnumpy(), data[:100, 1].asnumpy());
print("The covariance matrix is\n%s" % np.dot(A.T, A))

The covariance matrix is
[[1.01 1.95]
[1.95 4.25]]

batch_size = 8
data_iter = d2l.load_array((data,), batch_size)

16.1. Generative Adversarial Networks 717

16.1.2 Generator

Our generator network will be the simplest network possible - a single layer linear model. This
is since we will be driving that linear network with a Gaussian data generator. Hence, it literally
only needs to learn the parameters to fake things perfectly.

net_G = nn.Sequential()
net_G.add(nn.Dense(2))

16.1.3 Discriminator

For the discriminator we will be a bit more discriminating: we will use an MLP with 3 layers to
make things a bit more interesting.

net_D = nn.Sequential()
net_D.add(nn.Dense(5, activation='tanh'),

nn.Dense(3, activation='tanh'),
nn.Dense(1))

16.1.4 Training

First we define a function to update the discriminator.

Saved in the d2l package for later use
def update_D(X, Z, net_D, net_G, loss, trainer_D):

"""Update discriminator"""
batch_size = X.shape[0]
ones = np.ones((batch_size,), ctx=X.context)
zeros = np.zeros((batch_size,), ctx=X.context)
with autograd.record():

real_Y = net_D(X)
fake_X = net_G(Z)
Do not need to compute gradient for net_G, detach it from
computing gradients.
fake_Y = net_D(fake_X.detach())
loss_D = (loss(real_Y, ones) + loss(fake_Y, zeros)) / 2

loss_D.backward()
trainer_D.step(batch_size)
return float(loss_D.sum())

The generator is updated similarly. Here we reuse the cross-entropy loss but change the label of
the fake data from 0 to 1.

Saved in the d2l package for later use
def update_G(Z, net_D, net_G, loss, trainer_G): # saved in d2l

"""Update generator"""
batch_size = Z.shape[0]
ones = np.ones((batch_size,), ctx=Z.context)
with autograd.record():

We could reuse fake_X from update_D to save computation.
fake_X = net_G(Z)

(continues on next page)

718 Chapter 16. Generative Adversarial Networks

(continued from previous page)

Recomputing fake_Y is needed since net_D is changed.
fake_Y = net_D(fake_X)
loss_G = loss(fake_Y, ones)

loss_G.backward()
trainer_G.step(batch_size)
return float(loss_G.sum())

Both the discriminator and the generator performs a binary logistic regression with the cross-
entropy loss. We use Adam to smooth the training process. In each iteration, we first update the
discriminator and then the generator. We visualize both losses and generated examples.

def train(net_D, net_G, data_iter, num_epochs, lr_D, lr_G, latent_dim, data):
loss = gluon.loss.SigmoidBCELoss()
net_D.initialize(init=init.Normal(0.02), force_reinit=True)
net_G.initialize(init=init.Normal(0.02), force_reinit=True)
trainer_D = gluon.Trainer(net_D.collect_params(),

'adam', {'learning_rate': lr_D})
trainer_G = gluon.Trainer(net_G.collect_params(),

'adam', {'learning_rate': lr_G})
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[1, num_epochs], nrows=2, figsize=(5, 5),
legend=['generator', 'discriminator'])

animator.fig.subplots_adjust(hspace=0.3)
for epoch in range(1, num_epochs+1):

Train one epoch
timer = d2l.Timer()
metric = d2l.Accumulator(3) # loss_D, loss_G, num_examples
for X in data_iter:

batch_size = X.shape[0]
Z = np.random.normal(0, 1, size=(batch_size, latent_dim))
metric.add(update_D(X, Z, net_D, net_G, loss, trainer_D),

update_G(Z, net_D, net_G, loss, trainer_G),
batch_size)

Visualize generated examples
Z = np.random.normal(0, 1, size=(100, latent_dim))
fake_X = net_G(Z).asnumpy()
animator.axes[1].cla()
animator.axes[1].scatter(data[:, 0], data[:, 1])
animator.axes[1].scatter(fake_X[:, 0], fake_X[:, 1])
animator.axes[1].legend(['real', 'generated'])
Show the losses
loss_D, loss_G = metric[0]/metric[2], metric[1]/metric[2]
animator.add(epoch, (loss_D, loss_G))

print('loss_D %.3f, loss_G %.3f, %d examples/sec' % (
loss_D, loss_G, metric[2]/timer.stop()))

Now we specify the hyper-parameters to fit the Gaussian distribution.

lr_D, lr_G, latent_dim, num_epochs = 0.05, 0.005, 2, 20
train(net_D, net_G, data_iter, num_epochs, lr_D, lr_G,

latent_dim, data[:100].asnumpy())

loss_D 0.693, loss_G 0.693, 628 examples/sec

16.1. Generative Adversarial Networks 719

Summary

• Generative adversarial networks (GANs) composes of two deep networks, the generator and
the discriminator.

• The generator generates the image as much closer to the true image as possible to fool the
discriminator, via maximizing the cross-entropy loss, i.e., max log(D(x′)).

• The discriminator tries to distinguish the generated images from the true images, via mini-
mizing the cross-entropy loss, i.e., min−y logD(x)− (1− y) log(1−D(x)).

Exercises

• Does an equilibrium exist where the generator wins, i.e. the discriminator ends up unable
to distinguish the two distributions on finite samples?

720 Chapter 16. Generative Adversarial Networks

16.2 Deep Convolutional Generative Adversarial Networks

In Section 16.1, we introduced the basic ideas behind how GANs work. We showed that they can
draw samples from some simple, easy-to-sample distribution, like a uniform or normal distribu-
tion, and transform them into samples that appear to match the distribution of some dataset. And
while our example of matching a 2D Gaussian distribution got the point across, it is not especially
exciting.

In this section, we will demonstrate how you can use GANs to generate photorealistic images. We
will be basing our models on the deep convolutional GANs (DCGAN) introduced in (Radford et
al., 2015). We will borrow the convolutional architecture that have proven so successful for dis-
criminative computer vision problems and show how via GANs, they can be leveraged to generate
photorealistic images.

from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
import d2l
import zipfile

npx.set_np()

16.2.1 The Pokemon Dataset

The dataset we will use is a collection of Pokemon sprites obtained from pokemondb251. First
download, extract and load this dataset.

data_dir = '../data/'
url = 'http://data.mxnet.io/data/pokemon.zip'
sha1 = 'c065c0e2593b8b161a2d7873e42418bf6a21106c'
fname = gluon.utils.download(url, data_dir, sha1_hash=sha1)
with zipfile.ZipFile(fname) as f:

f.extractall(data_dir)
pokemon = gluon.data.vision.datasets.ImageFolderDataset(data_dir+'pokemon')

Downloading ../data/pokemon.zip from http://data.mxnet.io/data/pokemon.zip...

We resize each image into 64 × 64. The ToTensor transformation will project the pixel value into
[0, 1], while our generator will use the tanh function to obtain outputs in [−1, 1]. Therefore we
normalize the data with 0.5 mean and 0.5 standard deviation to match the value range.

batch_size = 256
transformer = gluon.data.vision.transforms.Compose([

gluon.data.vision.transforms.Resize(64),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize(0.5, 0.5)

])
data_iter = gluon.data.DataLoader(

pokemon.transform_first(transformer), batch_size=batch_size,
shuffle=True, num_workers=d2l.get_dataloader_workers())

251 https://pokemondb.net/sprites

16.2. Deep Convolutional Generative Adversarial Networks 721

https://pokemondb.net/sprites

Let s̓ visualize the first 20 images.

d2l.set_figsize((4, 4))
for X, y in data_iter:

imgs = X[0:20,:,:,:].transpose(0, 2, 3, 1)/2+0.5
d2l.show_images(imgs, num_rows=4, num_cols=5)
break

16.2.2 The Generator

The generator needs to map the noise variable z ∈ Rd, a length-d vector, to a RGB image with width
and height to be 64×64 . In Section 13.11 we introduced the fully convolutional network that uses
transposed convolution layer (refer to Section 13.10) to enlarge input size. The basic block of the
generator contains a transposed convolution layer followed by the batch normalization and ReLU
activation.

class G_block(nn.Block):
def __init__(self, channels, kernel_size=4,

strides=2, padding=1, **kwargs):
super(G_block, self).__init__(**kwargs)
self.conv2d_trans = nn.Conv2DTranspose(

channels, kernel_size, strides, padding, use_bias=False)
self.batch_norm = nn.BatchNorm()
self.activation = nn.Activation('relu')

(continues on next page)

722 Chapter 16. Generative Adversarial Networks

(continued from previous page)

def forward(self, X):
return self.activation(self.batch_norm(self.conv2d_trans(X)))

In default, the transposed convolution layer uses a kh = kw = 4 kernel, a sh = sw = 2 strides, and
a ph = pw = 1 padding. With a input shape of n′

h × n
′
w = 16× 16, the generator block will double

input s̓ width and height.

n
′
h × n

′
w = [(nhkh − (nh − 1)(kh − sh)− 2ph]× [(nwkw − (nw − 1)(kw − sw)− 2pw]

= [(kh + sh(nh − 1)− 2ph]× [(kw + sw(nw − 1)− 2pw]

= [(4 + 2× (16− 1)− 2× 1]× [(4 + 2× (16− 1)− 2× 1]

= 32× 32.

(16.2.1)

x = np.zeros((2, 3, 16, 16))
g_blk = G_block(20)
g_blk.initialize()
g_blk(x).shape

(2, 20, 32, 32)

If changing the transposed convolution layer to a 4×4 kernel, 1×1 strides and zero padding. With
a input size of 1× 1, the output will have its width and height increased by 3 respectively.

x = np.zeros((2, 3, 1, 1))
g_blk = G_block(20, strides=1, padding=0)
g_blk.initialize()
g_blk(x).shape

(2, 20, 4, 4)

The generator consists of four basic blocks that increase input s̓ both width and height from 1
to 32. At the same time, it first projects the latent variable into 64 × 8 channels, and then halve
the channels each time. At last, a transposed convolution layer is used to generate the output. It
further doubles the width and height to match the desired 64×64 shape, and reduces the channel
size to 3. The tanh activation function is applied to project output values into the (−1, 1) range.

n_G = 64
net_G = nn.Sequential()
net_G.add(G_block(n_G*8, strides=1, padding=0), # output: (64*8, 4, 4)

G_block(n_G*4), # output: (64*4, 8, 8)
G_block(n_G*2), # output: (64*2, 16, 16)
G_block(n_G), # output: (64, 32, 32)
nn.Conv2DTranspose(

3, kernel_size=4, strides=2, padding=1, use_bias=False,
activation='tanh')) # output: (3, 64, 64)

Generate a 100 dimensional latent variable to verify the generator s̓ output shape.

16.2. Deep Convolutional Generative Adversarial Networks 723

x = np.zeros((1, 100, 1, 1))
net_G.initialize()
net_G(x).shape

(1, 3, 64, 64)

16.2.3 Discriminator

The discriminator is a normal convolutional network network except that it uses a leaky ReLU as
its activation function. Given α ∈ [0, 1], its definition is

leaky ReLU(x) =

{
x if x > 0

αx otherwise
. (16.2.2)

As it can be seen, it is normal ReLU if α = 0, and an identity function if α = 1. For α ∈ (0, 1), leaky
ReLU is a nonlinear function that give a non-zero output for a negative input. It aims to fix the
“dying ReLU” problem that a neuron might always output a negative value and therefore cannot
make any progress since the gradient of ReLU is 0.

alphas = [0, 0.2, 0.4, .6, .8, 1]
x = np.arange(-2, 1, 0.1)
Y = [nn.LeakyReLU(alpha)(x).asnumpy() for alpha in alphas]
d2l.plot(x.asnumpy(), Y, 'x', 'y', alphas)

The basic block of the discriminator is a convolution layer followed by a batch normalization layer
and a leaky ReLU activation. The hyper-parameters of the convolution layer are similar to the
transpose convolution layer in the generator block.

class D_block(nn.Block):
def __init__(self, channels, kernel_size=4, strides=2,

padding=1, alpha=0.2, **kwargs):
super(D_block, self).__init__(**kwargs)
self.conv2d = nn.Conv2D(

channels, kernel_size, strides, padding, use_bias=False)

(continues on next page)

724 Chapter 16. Generative Adversarial Networks

(continued from previous page)

self.batch_norm = nn.BatchNorm()
self.activation = nn.LeakyReLU(alpha)

def forward(self, X):
return self.activation(self.batch_norm(self.conv2d(X)))

A basic block with default settings will halve the width and height of the inputs, as we demon-
strated in Section 6.3. For example, given a input shape $n_h = n_w = 16 $, with a kernel shape
kh = kw = 4, a stride shape sh = sw = 2, and a padding shape ph = pw = 1, the output shape will
be:

n
′
h × n

′
w = ⌊(nh − kh + 2ph + sh)/sh⌋ × ⌊(nw − kw + 2pw + sw)/sw⌋
= ⌊(16− 4 + 2× 1 + 2)/2⌋ × ⌊(16− 4 + 2× 1 + 2)/2⌋
= 8× 8.

(16.2.3)

x = np.zeros((2, 3, 16, 16))
d_blk = D_block(20)
d_blk.initialize()
d_blk(x).shape

(2, 20, 8, 8)

The discriminator is a mirror of the generator.

n_D = 64
net_D = nn.Sequential()
net_D.add(D_block(n_D), # output: (64, 32, 32)

D_block(n_D*2), # output: (64*2, 16, 16)
D_block(n_D*4), # output: (64*4, 8, 8)
D_block(n_D*8), # output: (64*8, 4, 4)
nn.Conv2D(1, kernel_size=4, use_bias=False)) # output: (1, 1, 1)

It uses a convolution layer with output channel 1 as the last layer to obtain a single prediction
value.

x = np.zeros((1, 3, 64, 64))
net_D.initialize()
net_D(x).shape

(1, 1, 1, 1)

16.2. Deep Convolutional Generative Adversarial Networks 725

16.2.4 Training

Compared to the basic GAN in Section 16.1, we use the same learning rate for both generator and
discriminator since they are similar to each other. In addition, we change β1 in Adam (Section
11.10) from 0.9 to 0.5. It decreases the smoothness of the momentum, the exponentially weighted
moving average of past gradients, to take care of the rapid changing gradients because the gener-
ator and the discriminator fight with each other. Besides, the random generated noise Z, is a 4-D
tensor and we are using GPU to accelerate the computation.

def train(net_D, net_G, data_iter, num_epochs, lr, latent_dim,
ctx=d2l.try_gpu()):

loss = gluon.loss.SigmoidBCELoss()
net_D.initialize(init=init.Normal(0.02), force_reinit=True, ctx=ctx)
net_G.initialize(init=init.Normal(0.02), force_reinit=True, ctx=ctx)
trainer_hp = {'learning_rate': lr, 'beta1': 0.5}
trainer_D = gluon.Trainer(net_D.collect_params(), 'adam', trainer_hp)
trainer_G = gluon.Trainer(net_G.collect_params(), 'adam', trainer_hp)
animator = d2l.Animator(xlabel='epoch', ylabel='loss',

xlim=[1, num_epochs], nrows=2, figsize=(5, 5),
legend=['discriminator', 'generator'])

animator.fig.subplots_adjust(hspace=0.3)
for epoch in range(1, num_epochs+1):

Train one epoch
timer = d2l.Timer()
metric = d2l.Accumulator(3) # loss_D, loss_G, num_examples
for X, _ in data_iter:

batch_size = X.shape[0]
Z = np.random.normal(0, 1, size=(batch_size, latent_dim, 1, 1))
X, Z = X.as_in_context(ctx), Z.as_in_context(ctx),
metric.add(d2l.update_D(X, Z, net_D, net_G, loss, trainer_D),

d2l.update_G(Z, net_D, net_G, loss, trainer_G),
batch_size)

Show generated examples
Z = np.random.normal(0, 1, size=(21, latent_dim, 1, 1), ctx=ctx)
Noramlize the synthetic data to N(0, 1)
fake_x = net_G(Z).transpose(0, 2, 3, 1)/2+0.5
imgs = np.concatenate(

[np.concatenate([fake_x[i * 7 + j] for j in range(7)], axis=1)
for i in range(len(fake_x)//7)], axis=0)

animator.axes[1].cla()
animator.axes[1].imshow(imgs.asnumpy())
Show the losses
loss_D, loss_G = metric[0]/metric[2], metric[1]/metric[2]
animator.add(epoch, (loss_D, loss_G))

print('loss_D %.3f, loss_G %.3f, %d examples/sec on %s' % (
loss_D, loss_G, metric[2]/timer.stop(), ctx))

Now let s̓ train the model.

latent_dim, lr, num_epochs = 100, 0.005, 40
train(net_D, net_G, data_iter, num_epochs, lr, latent_dim)

loss_D 0.373, loss_G 6.242, 2687 examples/sec on gpu(0)

726 Chapter 16. Generative Adversarial Networks

Summary

• DCGAN architecture has four convolutional layers for the Discriminator and four
“fractionally-strided” convolutional layers for the Generator.

• The Discriminator is a 4-layer strided convolutions with batch normalization (except its input
layer) and leaky ReLU activations.

• Leaky ReLU is a nonlinear function that give a non-zero output for a negative input. It aims
to fix the “dying ReLU” problem and helps the gradients flow easier through the architecture.

Exercises

• What will happen if we use standard ReLU activation rather than leaky ReLU?

• Apply DCGAN on Fashion-MNIST and see which category works well and which does not.

16.2. Deep Convolutional Generative Adversarial Networks 727

728 Chapter 16. Generative Adversarial Networks

17 | Appendix: Mathematics for Deep
Learning

BrentWerness (Amazon), Rachel Hu (Amazon), and authors of this book

One of the wonderful parts of modern deep learning is the fact that much of it can be understood
and used without a full understanding of the mathematics below it. This is a sign that the field
is maturing. Just as most software developers no longer need to worry about the theory of com-
putable functions, neither should deep learning practitioners need to worry about the theoretical
foundations of maximum likelihood learning.

But, we are not quite there yet.

In practice, you will sometimes need to understand how architectural choices influence gradient
flow, or the implicit assumptions you make by training with a certain loss function. You might
need to know what in the world entropy measures, and how it can help you understand exactly
what bits-per-character means in your model. These all require deeper mathematical understand-
ing.

This appendix aims to provide you the mathematical background you need to understand the core
theory of modern deep learning, but it is not exhaustive. We will begin with examining linear al-
gebra in greater depth. We develop a geometric understanding of all the common linear algebraic
objects and operations that will enable us to visualize the effects of various transformations on our
data. A key element is the development of the basics of eigen-decompositions.

We next develop the theory of differential calculus to the point that we can fully understand why
the gradient is the direction of steepest descent, and why back-propagation takes the form it does.
Integral calculus is then discussed to the degree needed to support our next topic, probability
theory.

Problems encountered in practice frequently are not certain, and thus we need a language to speak
about uncertain things. We review the theory of random variables and the most commonly en-
countered distributions so we may discuss models probabilistically. This provides the foundation
for the naive Bayes classifier, a probabilistic classification technique.

Closely related to probability theory is the study of statistics. While statistics is far too large a field
to do justice in a short section, we will introduce fundamental concepts that all machine learning
practitioners should be aware of, in particular: evaluating and comparing estimators, conducting
hypothesis tests, and constructing confidence intervals.

Last, we turn to the topic of information theory, which is the mathematical study of information
storage and transmission. This provides the core language by which we may discuss quantitatively
how much information a model holds on a domain of discourse.

729

Taken together, these form the core of the mathematical concepts needed to begin down the path
towards a deep understanding of deep learning.

17.1 Geometry and Linear Algebraic Operations

In Section 2.3, we encountered the basics of linear algebra and saw how it could be used to express
common operations for transforming our data. Linear algebra is one of the key mathematical pil-
lars underlying much of the work that we do deep learning and in machine learning more broadly.
While Section 2.3 contained enough machinery to communicate the mechanics of modern deep
learning models, there is a lot more to the subject. In this section, we will go deeper, highlighting
some geometric interpretations of linear algebra operations, and introducing a few fundamental
concepts, including of eigenvalues and eigenvectors.

17.1.1 Geometry of Vectors

First, we need to discuss the two common geometric interpretations of vectors, as either points
or directions in space. Fundamentally, a vector is a list of numbers such as the Python list below.

v = [1, 7, 0, 1]

Mathematicians most often write this as either a column or row vector, which is to say either as

x =


1
7
0
1

 , (17.1.1)

or

x⊤ =
[
1 7 0 1

]
. (17.1.2)

These often have different interpretations, where data points are column vectors and weights used
to form weighted sums are row vectors. However, it can be beneficial to be flexible. Matrices
are useful data structures: they allow us to organize data that have different modalities of varia-
tion. For example, rows in our matrix might correspond to different houses (data points), while
columns might correspond to different attributes. This should sound familiar if you have ever
used spreadsheet software or have read Section 2.2. Thus, although the default orientation of a
single vector is a column vector, in a matrix that represents a tabular dataset, it is more conven-
tional to treat each data point as a row vector in the matrix. And, as we will see in later chapters,
this convention will enable common deep learning practices. For example, along the outermost
axis of an ndarray, we can access or enumerate minibatches of data points, or just data points if
no minibatch exists.

Given a vector, the first interpretation that we should give it is as a point in space. In two or three
dimensions, we can visualize these points by using the components of the vectors to define the
location of the points in space compared to a fixed reference called the origin. This can be seen
in Fig. 17.1.1.

730 Chapter 17. Appendix: Mathematics for Deep Learning

Fig. 17.1.1: An illustration of visualizing vectors as points in the plane. The first component of the
vector gives the x-coordinate, the second component gives the y-coordinate. Higher dimensions
are analogous, although much harder to visualize.

This geometric point of view allows us to consider the problem on a more abstract level. No longer
faced with some insurmountable seeming problem like classifying pictures as either cats or dogs,
we can start considering tasks abstractly as collections of points in space and picturing the task as
discovering how to separate two distinct clusters of points.

In parallel, there is a second point of view that people often take of vectors: as directions in space.
Not only can we think of the vector v = [2, 3]⊤ as the location 2 units to the right and 3 units up
from the origin, we can also think of it as the direction itself to take 2 steps to the right and 3 steps
up. In this way, we consider all the vectors in figure Fig. 17.1.2 the same.

Fig. 17.1.2: Any vector can be visualized as an arrow in the plane. In this case, every vector drawn
is a representation of the vector (2, 3).

One of the benefits of this shift is that we can make visual sense of the act of vector addition. In
particular, we follow the directions given by one vector, and then follow the directions given by
the other, as is seen in Fig. 17.1.3.

17.1. Geometry and Linear Algebraic Operations 731

Fig. 17.1.3: We can visualize vector addition by first following one vector, and then another.

Vector subtraction has a similar interpretation. By considering the identity that u = v + (u − v),
we see that the vector u− v is the direction that takes us from the point u to the point v.

17.1.2 Dot Products and Angles

As we saw in Section 2.3, if we take two column vectors say u and v, we can form their dot product
by computing:

u⊤v =
∑
i

ui · vi. (17.1.3)

Because (17.1.3) is symmetric, we will mirror the notation of classical multiplication and write

u · v = u⊤v = v⊤u, (17.1.4)

to highlight the fact that exchanging the order of the vectors will yield the same answer.

The dot product (17.1.3) also admits a geometric interpretation: it is closely related to the angle
between two vectors. Consider the angle shown in Fig. 17.1.4.

Fig. 17.1.4: Between any two vectors in the plane there is a well defined angle θ. We will see this
angle is intimately tied to the dot product.

To start, let s̓ consider two specific vectors:

v = (r, 0) and w = (s cos(θ), s sin(θ)). (17.1.5)

732 Chapter 17. Appendix: Mathematics for Deep Learning

The vector v is length r and runs parallel to the x-axis, and the vector w is of length s and at angle
θ with the x-axis.
If we compute the dot product of these two vectors, we see that

v ·w = rs cos(θ) = ∥v∥∥w∥ cos(θ). (17.1.6)

With some simple algebraic manipulation, we can rearrange terms to obtain

θ = arccos
(

v ·w
∥v∥∥w∥

)
. (17.1.7)

In short, for these two specific vectors, the dot product combined with the norms tell us the angle
between the two vectors. This same fact is true in general. We will not derive the expression here,
however, if we consider writing ∥v − w∥2 in two ways: one with the dot product, and the other
geometrically using the law of cosines, we can obtain the full relationship. Indeed, for any two
vectors v and w, the angle between the two vectors is

θ = arccos
(

v ·w
∥v∥∥w∥

)
. (17.1.8)

This is a nice result since nothing in the computation references two-dimensions. Indeed, we can
use this in three or three million dimensions without issue.

As a simple example, let s̓ see how to compute the angle between a pair of vectors:

%matplotlib inline
import d2l
from IPython import display
from mxnet import gluon, np, npx
npx.set_np()

def angle(v, w):
return np.arccos(v.dot(w) / (np.linalg.norm(v) * np.linalg.norm(w)))

angle(np.array([0, 1, 2]), np.array([2, 3, 4]))

array(0.41899002)

We will not use it right now, but it is useful to know that we will refer to vectors for which the angle
is π/2 (or equivalently 90◦) as being orthogonal. By examining the equation above, we see that this
happens when θ = π/2, which is the same thing as cos(θ) = 0. The only way this can happen is
if the dot product itself is zero, and two vectors are orthogonal if and only if v · w = 0. This will
prove to be a helpful formula when understanding objects geometrically.

It is reasonable to ask: why is computing the angle useful? The answer comes in the kind of
invariance we expect data to have. Consider an image, and a duplicate image, where every pixel
value is the same but 10% the brightness. The values of the individual pixels are in general far
from the original values. Thus, if one computed the distance between the original image and the
darker one, the distance can be large.
However, for most ML applications, the content is the same—it is still an image of a cat as far as a
cat/dog classifier is concerned. However, if we consider the angle, it is not hard to see that for

17.1. Geometry and Linear Algebraic Operations 733

any vector v, the angle between v and 0.1 · v is zero. This corresponds to the fact that scaling
vectors keeps the same direction and just changes the length. The angle considers the darker
image identical.

Examples like this are everywhere. In text, we might want the topic being discussed to not change
if we write twice as long of document that says the same thing. For some encoding (such as count-
ing the number of occurrences of words in some vocabulary), this corresponds to a doubling of
the vector encoding the document, so again we can use the angle.

Cosine Similarity

In ML contexts where the angle is employed to measure the closeness of two vectors, practitioners
adopt the term cosine similarity to refer to the portion

cos(θ) =
v ·w
∥v∥∥w∥

. (17.1.9)

The cosine takes a maximum value of 1 when the two vectors point in the same direction, a min-
imum value of −1 when they point in opposite directions, and a value of 0 when the two vectors
are orthogonal. Note that if the components of high-dimensional vectors are sampled randomly
with mean 0, their cosine will nearly always be close to 0.

17.1.3 Hyperplanes

In addition to working with vectors, another key object that you must understand to go far in linear
algebra is the hyperplane, a generalization to higher dimensions of a line (two dimensions) or of a
plane (three dimensions). In an d-dimensional vector space, a hyperplane has d − 1 dimensions
and divides the space into two half-spaces.

Let s̓ start with an example. Suppose that we have a column vector w = [2, 1]⊤. We want to know,
“what are the points v with w · v = 1?” By recalling the connection between dot products and
angles above (17.1.8), we can see that this is equivalent to

∥v∥∥w∥ cos(θ) = 1 ⇐⇒ ∥v∥ cos(θ) =
1

∥w∥
=

1√
5
. (17.1.10)

Fig. 17.1.5: Recalling trigonometry, we see the formula ∥v∥ cos(θ) is the length of the projection
of the vector v onto the direction of w

734 Chapter 17. Appendix: Mathematics for Deep Learning

If we consider the geometric meaning of this expression, we see that this is equivalent to saying
that the length of the projection of v onto the direction of w is exactly 1/∥w∥, as is shown in Fig.
17.1.5. The set of all points where this is true is a line at right angles to the vector w. If we wanted,
we could find the equation for this line and see that it is 2x+ y = 1 or equivalently y = 1− 2x.

If we now look at what happens when we ask about the set of points with w · v > 1 or w · v < 1, we
can see that these are cases where the projections are longer or shorter than 1/∥w∥, respectively.
Thus, those two inequalities define either side of the line. In this way, we have found a way to cut
our space into two halves, where all the points on one side have dot product below a threshold,
and the other side above as we see in Fig. 17.1.6.

Fig. 17.1.6: If we now consider the inequality version of the expression, we see that our hyperplane
(in this case: just a line) separates the space into two halves.

The story in higher dimension is much the same. If we now take w = [1, 2, 3]⊤ and ask about the
points in three dimensions with w · v = 1, we obtain a plane at right angles to the given vector w.
The two inequalities again define the two sides of the plane as is shown in Fig. 17.1.7.

Fig. 17.1.7: Hyperplanes in any dimension separate the space into two halves.

While our ability to visualize runs out at this point, nothing stops us from doing this in tens, hun-
dreds, or billions of dimensions. This occurs often when thinking about machine learned models.
For instance, we can understand linear classification models like those from Section 3.4, as meth-
ods to find hyperplanes that separate the different target classes. In this context, such hyperplanes
are often referred to as decision planes. The majority of deep learned classification models end with
a linear layer fed into a softmax, so one can interpret the role of the deep neural network to be to
find a non-linear embedding such that the target classes can be separated cleanly by hyperplanes.

To give a hand-built example, notice that we can produce a reasonable model to classify tiny im-
ages of t-shirts and trousers from the Fashion MNIST dataset (seen in Section 3.5) by just taking

17.1. Geometry and Linear Algebraic Operations 735

the vector between their means to define the decision plane and eyeball a crude threshold. First
we will load the data and compute the averages.

Load in the dataset
train = gluon.data.vision.FashionMNIST(train=True)
test = gluon.data.vision.FashionMNIST(train=False)

X_train_0 = np.stack([x[0] for x in train if x[1] == 0]).astype(float)
X_train_1 = np.stack([x[0] for x in train if x[1] == 1]).astype(float)
X_test = np.stack(

[x[0] for x in test if x[1] == 0 or x[1] == 1]).astype(float)
y_test = np.stack(

[x[1] for x in test if x[1] == 0 or x[1] == 1]).astype(float)

Compute averages
ave_0 = np.mean(X_train_0, axis=0)
ave_1 = np.mean(X_train_1, axis=0)

It can be informative to examine these averages in detail, so let s̓ plot what they look like. In this
case, we see that the average indeed resembles a blurry image of a t-shirt.

Plot average t-shirt
d2l.set_figsize()
d2l.plt.imshow(ave_0.reshape(28, 28).tolist(), cmap='Greys')
d2l.plt.show()

In the second case, we again see that the average resembles a blurry image of trousers.

Plot average trousers
d2l.plt.imshow(ave_1.reshape(28, 28).tolist(), cmap='Greys')
d2l.plt.show()

736 Chapter 17. Appendix: Mathematics for Deep Learning

In a fully machine learned solution, we would learn the threshold from the dataset. In this case,
I simply eyeballed a threshold that looked good on the training data by hand.

Print test set accuracy with eyeballed threshold
w = (ave_1 - ave_0).T
predictions = X_test.reshape(2000, -1).dot(w.flatten()) > -1500000

Accuracy
np.mean(predictions.astype(y_test.dtype) == y_test, dtype=np.float64)

array(0.801, dtype=float64)

17.1.4 Geometry of Linear Transformations

Through Section 2.3 and the above discussions, we have a solid understanding of the geometry of
vectors, lengths, and angles. However, there is one important object we have omitted discussing,
and that is a geometric understanding of linear transformations represented by matrices. Fully
internalizing what matrices can do to transform data between two potentially different high di-
mensional spaces takes significant practice, and is beyond the scope of this appendix. However,
we can start building up intuition in two dimensions.

Suppose that we have some matrix:

A =

[
a b
c d

]
. (17.1.11)

If we want to apply this to an arbitrary vector v = [x, y]⊤, we multiply and see that

Av =

[
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
= x

[
a
c

]
+ y

[
b
d

]
= x

{
A
[
1
0

]}
+ y

{
A
[
0
1

]}
.

(17.1.12)

17.1. Geometry and Linear Algebraic Operations 737

This may seem like an odd computation, where something clear became somewhat impenetrable.
However, it tells us that we can write the way that a matrix transforms any vector in terms of how
it transforms two specific vectors: [1, 0]⊤ and [0, 1]⊤. This is worth considering for a moment. We
have essentially reduced an infinite problem (what happens to any pair of real numbers) to a finite
one (what happens to these specific vectors). These vectors are an example a basis, where we can
write any vector in our space as a weighted sum of these basis vectors.

Let s̓ draw what happens when we use the specific matrix

A =

[
1 2
−1 3

]
. (17.1.13)

If we look at the specific vector v = [2,−1]⊤, we see this is 2 · [1, 0]⊤ + −1 · [0, 1]⊤, and thus we
know that the matrix A will send this to 2(A[1, 0]⊤) +−1(A[0, 1])⊤ = 2[1,−1]⊤− [2, 3]⊤ = [0,−5]⊤.
If we follow this logic through carefully, say by considering the grid of all integer pairs of points,
we see that what happens is that the matrix multiplication can skew, rotate, and scale the grid, but
the grid structure must remain as you see in Fig. 17.1.8.

Fig. 17.1.8: The matrix A acting on the given basis vectors. Notice how the entire grid is trans-
ported along with it.

This is the most important intuitive point to internalize about linear transformations represented
by matrices. Matrices are incapable of distorting some parts of space differently than others. All
they can do is take the original coordinates on our space and skew, rotate, and scale them.

Some distortions can be severe. For instance the matrix

B =

[
2 −1
4 −2

]
, (17.1.14)

compresses the entire two-dimensional plane down to a single line. Identifying and working with
such transformations are the topic of a later section, but geometrically we can see that this is
fundamentally different from the types of transformations we saw above. For instance, the result
from matrix A can be “bent back” to the original grid. The results from matrix B cannot because
we will never know where the vector [1, 2]⊤ came from—was it [1, 1]⊤ or [0,−1]⊤?

While this picture was for a 2 × 2 matrix, nothing prevents us from taking the lessons learned
into higher dimensions. If we take similar basis vectors like [1, 0, . . . , 0] and see where our matrix
sends them, we can start to get a feeling for how the matrix multiplication distorts the entire space
in whatever dimension space we are dealing with.

738 Chapter 17. Appendix: Mathematics for Deep Learning

17.1.5 Linear Dependence

Consider again the matrix

B =

[
2 −1
4 −2

]
. (17.1.15)

This compresses the entire plane down to live on the single line y = 2x. The question now arises:
is there some way we can detect this just looking at the matrix itself? The answer is that indeed
we can. Let s̓ take b1 = [2, 4]⊤ and b2 = [−1,−2]⊤ be the two columns of B. Remember that we
can write everything transformed by the matrix B as a weighted sum of the columns of the matrix:
like a1b1 + a2b2. We call this a linear combination. The fact that b1 = −2 · b2 means that we can
write any linear combination of those two columns entirely in terms of say b2 since

a1b1 + a2b2 = −2a1b2 + a2b2 = (a2 − 2a1)b2. (17.1.16)

This means that one of the columns is, in a sense, redundant because it does not define a unique
direction in space. This should not surprise us too much since we already saw that this matrix
collapses the entire plane down into a single line. Moreover, we see that the linear dependence
b1 = −2 ·b2 captures this. To make this more symmetrical between the two vectors, we will write
this as

b1 + 2 · b2 = 0. (17.1.17)

In general, we will say that a collection of vectors v1, . . . vk are linearly dependent if there exist
coefficients a1, . . . , ak not all equal to zero so that

k∑
i=1

aivi = 0. (17.1.18)

In this case, we can solve for one of the vectors in terms of some combination of the others, and
effectively render it redundant. Thus, a linear dependence in the columns of a matrix is a witness
to the fact that our matrix is compressing the space down to some lower dimension. If there is
no linear dependence we say the vectors are linearly independent. If the columns of a matrix are
linearly independent, no compression occurs and the operation can be undone.

17.1.6 Rank

If we have a general n×m matrix, it is reasonable to ask what dimension space the matrix maps
into. A concept known as the rank will be our answer. In the previous section, we noted that a
linear dependence bears witness to compression of space into a lower dimension and so we will
be able to use this to define the notion of rank. In particular, the rank of a matrix A is the largest
number of linearly independent columns amongst all subsets of columns. For example, the matrix

B =

[
2 4
−1 −2

]
, (17.1.19)

has rank(B) = 1, since the two columns are linearly dependent, but either column by itself is not
linearly dependent. For a more challenging example, we can consider

C =


1 3 0 −1 0
−1 0 1 1 −1
0 3 1 0 −1
2 3 −1 −2 1

 , (17.1.20)

17.1. Geometry and Linear Algebraic Operations 739

and show that C has rank two since, for instance, the first two columns are linearly independent,
however any of the four collections of three columns are dependent.

This procedure, as described, is very inefficient. It requires looking at every subset of the columns
of our given matrix, and thus is potentially exponential in the number of columns. Later we will
see a more computationally efficient way to compute the rank of a matrix, but for now, this is
sufficient to see that the concept is well defined and understand the meaning.

17.1.7 Invertibility

We have seen above that multiplication by a matrix with linearly dependent columns cannot be
undone, i.e., there is no inverse operation that can always recover the input. However, multipli-
cation by a full-rank matrix (i.e., some A that is n × n matrix with rank n), we should always be
able to undo it. Consider the matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1

 . (17.1.21)

which is the matrix with ones along the diagonal, and zeros elsewhere. We call this the identity
matrix. It is the matrix which leaves our data unchanged when applied. To find a matrix which
undoes what our matrix A has done, we want to find a matrix A−1 such that

A−1A = AA−1 = I. (17.1.22)

If we look at this as a system, we have n × n unknowns (the entries of A−1) and n × n equations
(the equality that needs to hold between every entry of the product A−1A and every entry of I) so
we should generically expect a solution to exist. Indeed, in the next section we will see a quantity
called the determinant, which has the property that as long as the determinant is not zero, we can
find a solution. We call such a matrix A−1 the inverse matrix. As an example, if A is the general
2× 2 matrix

A =

[
a b
c d

]
, (17.1.23)

then we can see that the inverse is

1

ad− bc

[
d −b
−c a

]
. (17.1.24)

We can test to see this by seeing that multiplying by the inverse given by the formula above works
in practice.

M = np.array([[1, 2], [1, 4]])
M_inv = np.array([[2, -1], [-0.5, 0.5]])
M_inv.dot(M)

array([[1., 0.],
[0., 1.]])

740 Chapter 17. Appendix: Mathematics for Deep Learning

Numerical Issues

While the inverse of a matrix is useful in theory, we must say that most of the time we do not wish
to use the matrix inverse to solve a problem in practice. In general, there are far more numerically
stable algorithms for solving linear equations like

Ax = b, (17.1.25)

than computing the inverse and multiplying to get

x = A−1b. (17.1.26)

Just as division by a small number can lead to numerical instability, so can inversion of a matrix
which is close to having low rank.

Moreover, it is common that the matrix A is sparse, which is to say that it contains only a small
number of non-zero values. If we were to explore examples, we would see that this does not mean
the inverse is sparse. Even if A was a 1 million by 1 million matrix with only 5 million non-zero
entries (and thus we need only store those 5 million), the inverse will typically have almost every
entry non-negative, requiring us to store all 1M2 entries—that is 1 trillion entries!

While we do not have time to dive all the way into the thorny numerical issues frequently encoun-
tered when working with linear algebra, we want to provide you with some intuition about when
to proceed with caution, and generally avoiding inversion in practice is a good rule of thumb.

17.1.8 Determinant

The geometric view of linear algebra gives an intuitive way to interpret a a fundamental quantity
known as the determinant. Consider the grid image from before, but now with a highlighted region
(Fig. 17.1.9).

Fig. 17.1.9: The matrix A again distorting the grid. This time, I want to draw particular attention
to what happens to the highlighted square.

Look at the highlighted square. This is a square with edges given by (0, 1) and (1, 0) and thus it
has area one. After A transforms this square, we see that it becomes a parallelogram. There is
no reason this parallelogram should have the same area that we started with, and indeed in the
specific case shown here of

A =

[
1 −1
2 3

]
, (17.1.27)

17.1. Geometry and Linear Algebraic Operations 741

it is an exercise in coordinate geometry to compute the area of this parallelogram and obtain that
the area is 5.

In general, if we have a matrix

A =

[
a b
c d

]
, (17.1.28)

we can see with some computation that the area of the resulting parallelogram is ad − bc. This
area is referred to as the determinant.

Let s̓ check this quickly with some example code.

import numpy as np
np.linalg.det(np.array([[1, -1], [2, 3]]))

5.000000000000001

The eagle-eyed amongst us will notice that this expression can be zero or even negative. For the
negative term, this is a matter of convention taken generally in mathematics: if the matrix flips
the figure, we say the area is negated. Let s̓ see now that when the determinant is zero, we learn
more.

Let s̓ consider

B =

[
2 4
−1 −2

]
. (17.1.29)

If we compute the determinant of this matrix, we get 2·(−2)−4·(−1) = 0. Given our understanding
above, this makes sense. B compresses the square from the original image down to a line segment,
which has zero area. And indeed, being compressed into a lower dimensional space is the only
way to have zero area after the transformation. Thus we see the following result is true: a matrix
A is invertible if and only if the determinant is not equal to zero.

As a final comment, imagine that we have any figure drawn on the plane. Thinking like computer
scientists, we can decompose that figure into a collection of little squares so that the area of the
figure is in essence just the number of squares in the decomposition. If we now transform that
figure by a matrix, we send each of these squares to parallelograms, each one of which has area
given by the determinant. We see that for any figure, the determinant gives the (signed) number
that a matrix scales the area of any figure.

Computing determinants for larger matrices can be laborious, but the intuition is the same. The
determinant remains the factor that n× n matrices scale n-dimensional volumes.

17.1.9 Tensors and Common Linear Algebra Operations

In Section 2.3 the concept of tensors was introduced. In this section, we will dive more deeply into
tensor contractions (the tensor equivalent of matrix multiplication), and see how it can provide a
unified view on a number of matrix and vector operations.

With matrices and vectors we knew how to multiply them to transform data. We need to have a
similar definition for tensors if they are to be useful to us. Think about matrix multiplication:

C = AB, (17.1.30)

742 Chapter 17. Appendix: Mathematics for Deep Learning

or equivalently

ci,j =
∑
k

ai,kbk,j . (17.1.31)

This pattern is one we can repeat for tensors. For tensors, there is no one case of what to sum over
that can be universally chosen, so we need specify exactly which indices we want to sum over. For
instance we could consider

yil =
∑
jk

xijklajk. (17.1.32)

Such a transformation is called a tensor contraction. It can represent a far more flexible family of
transformations that matrix multiplication alone.

As a often-used notational simplification, we can notice that the sum is over exactly those indices
that occur more than once in the expression, thus people often work with Einstein notation, where
the summation is implicitly taken over all repeated indices. This gives the compact expression:

yil = xijklajk. (17.1.33)

Common Examples from Linear Algebra

Let s̓ see how many of the linear algebraic definitions we have seen before can be expressed in
this compressed tensor notation:

• v ·w =
∑

i viwi

• ∥v∥22 =
∑

i vivi

• (Av)i =
∑

j aijvj

• (AB)ik =
∑

j aijbjk

• tr(A) =
∑

i aii

In this way, we can replace a myriad of specialized notations with short tensor expressions.

Expressing in Code

Tensors may flexibly be operated on in code as well. As seen in Section 2.3, we can create tensors
as is shown below.

Define tensors
B = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
A = np.array([[1, 2], [3, 4]])
v = np.array([1, 2])

Print out the shapes
A.shape, B.shape, v.shape

((2, 2), (2, 2, 3), (2,))

17.1. Geometry and Linear Algebraic Operations 743

Einstein summation has been implemented directly via np.einsum. The indices that occurs in the
Einstein summation can be passed as a string, followed by the tensors that are being acted upon.
For instance, to implement matrix multiplication, we can consider the Einstein summation seen
above (Av = aijvj) and strip out the indices themselves to get the implementation:

Reimplement matrix multiplication
np.einsum("ij, j -> i", A, v), A.dot(v)

(array([5, 11]), array([5, 11]))

This is a highly flexible notation. For instance if we want to compute what would be traditionally
written as

ckl =
∑
ij

BijkAilvj . (17.1.34)

it can be implemented via Einstein summation as:

np.einsum("ijk, il, j -> kl", B, A, v)

array([[90, 126],
[102, 144],
[114, 162]])

This notation is readable and efficient for humans, however bulky if for whatever reason we need
to generate a tensor contraction programmatically. For this reason, einsumprovides an alternative
notation by providing integer indices for each tensor. For example, the same tensor contraction
can also be written as:

np.einsum(B, [0, 1, 2], A, [0, 3], v, [1], [2, 3])

array([[90, 126],
[102, 144],
[114, 162]])

Either notation allows for concise and efficient representation of tensor contractions in code.

Summary

• Vectors can be interpreted geometrically as either points or directions in space.

• Dot products define the notion of angle to arbitrarily high-dimensional spaces.

• Hyperplanes are high-dimensional generalizations of lines and planes. They can be used to
define decision planes that are often used as the last step in a classification task.

• Matrix multiplication can be geometrically interpreted as uniform distortions of the under-
lying coordinates. They represent a very restricted, but mathematically clean, way to trans-
form vectors.

• Linear dependence is a way to tell when a collection of vectors are in a lower dimensional
space than we would expect (say you have 3 vectors living in a 2-dimensional space). The
rank of a matrix is the size of the largest subset of its columns that are linearly independent.

744 Chapter 17. Appendix: Mathematics for Deep Learning

• When a matrix s̓ inverse is defined, matrix inversion allows us to find another matrix that un-
does the action of the first. Matrix inversion is useful in theory, but requires care in practice
owing to numerical instability.

• Determinants allow us to measure how much a matrix expands or contracts a space. A
nonzero determinant implies an invertible (non-singular) matrix and a zero-valued deter-
minant means that the matrix is non-invertible (singular).

• Tensor contractions and Einstein summation provide for a neat and clean notation for ex-
pressing many of the computations that are seen in machine learning.

Exercises

1. What is the angle between

v⃗1 =


1
0
−1
2

 , v⃗2 =


3
1
0
1

? (17.1.35)

2. True or false:
[
1 2
0 1

]
and

[
1 −2
0 1

]
are inverses of one another?

3. Suppose that we draw a shape in the plane with area 100m2. What is the area after trans-
forming the figure by the matrix [

2 3
1 2

]
. (17.1.36)

4. Which of the following sets of vectors are linearly independent?

•


 1

0
−1

 ,

 2
1
−1

 ,

3
1
1


•


3
1
1

 ,

1
1
1

 ,

0
0
0


•


1
1
0

 ,

 0
1
−1

 ,

1
0
1


5. Suppose that you have a matrix written as A =

[
c
d

]
·
[
a b

]
for some choice of values a, b, c,

and d. True or false: the determinant of such a matrix is always 0?

6. The vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
are orthogonal. What is the condition on a matrix A so

that Ae1 and Ae2 are orthogonal?

7. How can you write tr(A4) in Einstein notation for an arbitrary matrix A?

17.1. Geometry and Linear Algebraic Operations 745

17.2 Eigendecompositions

Eigenvalues are often one of the most useful notions we will encounter when studying linear alge-
bra, however, as a beginner, it is easy to overlook their importance. Below, we introduce eigen-
decomposition and try to convey some sense of just why it is so important.

Suppose that we have a matrix A with the following entries:

A =

[
2 0
0 −1

]
. (17.2.1)

If we apply A to any vector v = [x, y]⊤, we obtain a vector vA = [2x,−y]⊤. This has an intuitive
interpretation: stretch the vector to be twice as wide in the x-direction, and then flip it in the
y-direction.

However, there are some vectors for which something remains unchanged. Namely [1, 0]⊤ gets
sent to [2, 0]⊤ and [0, 1]⊤ gets sent to [0,−1]⊤. These vectors are still in the same line, and the only
modification is that the matrix stretches them by a factor of 2 and −1 respectively. We call such
vectors eigenvectors and the factor they are stretched by eigenvalues.

In general, if we can find a number λ and a vector v such that

Av = λv. (17.2.2)

We say that v is an eigenvector for A and λ is an eigenvalue.

17.2.1 Finding Eigenvalues

Let s̓ figure out how to find them.
By subtracting off the λv⃗ from both sides, and then factoring out the vector, we see the above is
equivalent to:

(A− λI)v = 0. (17.2.3)

For (17.2.3) to happen, we see that (A − λI) must compress some direction down to zero, hence
it is not invertible, and thus the determinant is zero. Thus, we can find the eigenvalues by finding
for what λ is det(A − λI) = 0. Once we find the eigenvalues, we can solve Av = λv to find the
associated eigenvector(s).

746 Chapter 17. Appendix: Mathematics for Deep Learning

An Example

Let s̓ see this with a more challenging matrix

A =

[
2 1
2 3

]
. (17.2.4)

If we consider det(A−λI) = 0, we see this is equivalent to the polynomial equation 0 = (2−λ)(3−
λ)− 2 = (4− λ)(1− λ). Thus, two eigenvalues are 4 and 1. To find the associated vectors, we then
need to solve [

2 1
2 3

] [
x
y

]
=

[
x
y

]
and

[
2 2
1 3

] [
x
y

]
=

[
4x
4y

]
. (17.2.5)

We can solve this with the vectors [1,−1]⊤ and [1, 2]⊤ respectively.

We can check this in code using the built-in numpy.linalg.eig routine.

%matplotlib inline
import d2l
from IPython import display
import numpy as np

np.linalg.eig(np.array([[2, 1], [2, 3]]))

(array([1., 4.]), array([[-0.70710678, -0.4472136],
[0.70710678, -0.89442719]]))

Note that numpy normalizes the eigenvectors to be of length one, whereas we took ours to be of
arbitrary length. Additionally, the choice of sign is arbitrary. However, the vectors computed are
parallel to the ones we found by hand with the same eigenvalues.

17.2.2 Decomposing Matrices

Let s̓ continue the previous example one step further. Let

W =

[
1 1
−1 2

]
, (17.2.6)

be the matrix where the columns are the eigenvectors of the matrix A. Let

Σ =

[
1 0
0 4

]
, (17.2.7)

be the matrix with the associated eigenvalues on the diagonal. Then the definition of eigenvalues
and eigenvectors tells us that

AW = WΣ. (17.2.8)

The matrix W is invertible, so we may multiply both sides by W−1 on the right, we see that we
may write

A = WΣW−1. (17.2.9)

In the next section we will see some nice consequences of this, but for now we need only know
that such a decomposition will exist as long as we can find a full collection of linearly independent
eigenvectors (so that W is invertible).

17.2. Eigendecompositions 747

17.2.3 Operations on Eigendecompositions

One nice thing about eigendecompositions (17.2.9) is that we can write many operations we
usually encounter cleanly in terms of the eigendecomposition.
As a first example, consider:

An =

n times︷ ︸︸ ︷
A · · ·A =

n times︷ ︸︸ ︷
(WΣW−1) · · · (WΣW−1) = W

n times︷ ︸︸ ︷
Σ · · ·ΣW−1 = WΣnW−1.

(17.2.10)

This tells us that for any positive power of a matrix, the eigendecomposition is obtained by just
raising the eigenvalues to the same power. The same can be shown for negative powers, so if we
want to invert a matrix we need only consider

A−1 = WΣ−1W−1, (17.2.11)

or in other words, just invert each eigenvalue. This will work as long as each eigenvalue is non-
zero, so we see that invertible is the same as having no zero eigenvalues.

Indeed, additional work can show that if λ1, . . . , λn are the eigenvalues of a matrix, then the de-
terminant of that matrix is

det(A) = λ1 · · ·λn, (17.2.12)

or the product of all the eigenvalues. This makes sense intuitively because whatever stretching
W does, W−1 undoes it, so in the end the only stretching that happens is by multiplication by the
diagonal matrix Σ, which stretches volumes by the product of the diagonal elements.

Finally, recall that the rank was the maximum number of linearly independent columns of your
matrix. By examining the eigendecomposition closely, we can see that the rank is the same as the
number of non-zero eigenvalues of A.

The examples could continue, but hopefully the point is clear: eigendecompositions can simplify
many linear-algebraic computations and are a fundamental operation underlying many numerical
algorithms and much of the analysis that we do in linear algebra.

17.2.4 Eigendecompositions of Symmetric Matrices

It is not always possible to find enough linearly independent eigenvectors for the above process
to work. For instance the matrix

A =

[
1 1
0 1

]
, (17.2.13)

has only a single eigenvector, namely (0, 1). To handle such matrices, we require more advanced
techniques than we can cover (such as the Jordan Normal Form, or Singular Value Decomposition).
We will often need to restrict our attention to those matrices where we can guarantee the existence
of a full set of eigenvectors.

The most commonly encountered family are the symmetric matrices, which are those matrices
where A = A⊤. In this case, we may take W to be an orthogonal matrix—a matrix whose columns
are all length one vectors that are at right angles to one another, where W⊤ = W−1—and all the
eigenvalues will be real.

748 Chapter 17. Appendix: Mathematics for Deep Learning

Thus, in this special case, we can write (17.2.9) as

A = WΣW⊤. (17.2.14)

17.2.5 Gershgorin Circle Theorem

Eigenvalues are often difficult to reason with intuitively. If presented an arbitrary matrix, there is
little that can be said about what the eigenvalues are without computing them. There is, however,
one theorem that can make it easy to approximate well if the largest values are on the diagonal.

Let A = (aij) be any square matrix (n×n). We will define ri =
∑

j ̸=i |aij |. LetDi represent the disc
in the complex plane with center aii radius ri. Then, every eigenvalue of A is contained in one of
the Di.

This can be a bit to unpack, so let s̓ look at an example.
Consider the matrix:

A =


1.0 0.1 0.1 0.1
0.1 3.0 0.2 0.3
0.1 0.2 5.0 0.5
0.1 0.3 0.5 9.0

 . (17.2.15)

We have r1 = 0.3, r2 = 0.6, r3 = 0.8 and r4 = 0.9. The matrix is symmetric, so all eigenvalues are
real. This means that all of our eigenvalues will be in one of the ranges of

[a11 − r1, a11 + r1] = [0.7, 1.3], (17.2.16)

[a22 − r2, a22 + r2] = [2.4, 3.6], (17.2.17)

[a33 − r3, a33 + r3] = [4.2, 5.8], (17.2.18)

[a44 − r4, a44 + r4] = [8.1, 9.9]. (17.2.19)

Performing the numerical computation shows that the eigenvalues are approximately 0.99, 2.97,
4.95, 9.08, all comfortably inside the ranges provided.

A = np.array([[1.0, 0.1, 0.1, 0.1],
[0.1, 3.0, 0.2, 0.3],
[0.1, 0.2, 5.0, 0.5],
[0.1, 0.3, 0.5, 9.0]])

v, _ = np.linalg.eig(A)
v

array([9.08033648, 0.99228545, 4.95394089, 2.97343718])

In this way, eigenvalues can be approximated, and the approximations will be fairly accurate in
the case that the diagonal is significantly larger than all the other elements.

It is a small thing, but with a complex and subtle topic like eigendecomposition, it is good to get
any intuitive grasp we can.

17.2. Eigendecompositions 749

17.2.6 A Useful Application: The Growth of Iterated Maps

Now that we understand what eigenvectors are in principle, let s̓ see how they can be used to
provide a deep understanding of a problem central to neural network behavior: proper weight
initialization.

Eigenvectors as Long Term Behavior

The full mathematical investigation of the initialization of deep neural networks is beyond the
scope of the text, but we can see a toy version here to understand how eigenvalues can help us see
how these models work. As we know, neural networks operate by interspersing layers of linear
transformations with non-linear operations. For simplicity here, we will assume that there is no
non-linearity, and that the transformation is a single repeated matrix operation A, so that the
output of our model is

vout = A · A · · ·Avin = ANvin. (17.2.20)

When these models are initialized, A is taken to be a random matrix with Gaussian entries, so let s̓
make one of those. To be concrete, we start with a mean zero, variance one Gaussian distributed
5× 5 matrix.

np.random.seed(8675309)

k = 5
A = np.random.randn(k, k)
A

array([[0.58902366, 0.73311856, -1.1621888 , -0.55681601, -0.77248843],
[-0.16822143, -0.41650391, -1.37843129, 0.74925588, 0.17888446],
[0.69401121, -1.9780535 , -0.83381434, 0.56437344, 0.31201299],
[-0.87334496, 0.15601291, -0.38710108, -0.23920821, 0.88850104],
[1.29385371, -0.76774106, 0.20131613, 0.91800842, 0.38974115]])

Behavior on RandomData

For simplicity in our toy model, we will assume that the data vector we feed in vin is a random five
dimensional Gaussian vector. Let s̓ think about what we want to have happen. For context, lets
think of a generic ML problem, where we are trying to turn input data, like an image, into a pre-
diction, like the probability the image is a picture of a cat. If repeated application of A stretches a
random vector out to be very long, then small changes in input will be amplified into large changes
in output—tiny modifications of the input image would lead to vastly different predictions. This
does not seem right!

On the flip side, ifA shrinks random vectors to be shorter, then after running through many layers,
the vector will essentially shrink to nothing, and the output will not depend on the input. This is
also clearly not right either!

We need to walk the narrow line between growth and decay to make sure that our output changes
depending on our input, but not much!

Let s̓ see what happens when we repeatedly multiply our matrix A against a random input vector,
and keep track of the norm.

750 Chapter 17. Appendix: Mathematics for Deep Learning

Calculate the sequence of norms after repeatedly applying A
v_in = np.random.randn(k, 1)

norm_list = [np.linalg.norm(v_in)]
for i in range(1, 100):

v_in = A.dot(v_in)
norm_list.append(np.linalg.norm(v_in))

d2l.plot(np.arange(0, 100), norm_list, 'Iteration', 'Value')

The norm is growing uncontrollably! Indeed if we take the list of quotients, we will see a pattern.

Compute the scaling factor of the norms
norm_ratio_list = []
for i in range(1, 100):

norm_ratio_list.append(norm_list[i]/norm_list[i - 1])

d2l.plot(np.arange(1, 100), norm_ratio_list, 'Iteration', 'Ratio')

If we look at the last portion of the above computation, we see that the random vector is stretched
by a factor of 1.974459321485[...], where the portion at the end shifts a little, but the stretching

17.2. Eigendecompositions 751

factor is stable.

Relating Back to Eigenvectors

We have seen that eigenvectors and eigenvalues correspond to the amount something is stretched,
but that was for specific vectors, and specific stretches. Let s̓ take a look at what they are for A. A
bit of a caveat here: it turns out that to see them all, we will need to go to complex numbers. You
can think of these as stretches and rotations. By taking the norm of the complex number (square
root of the sums of squares of real and imaginary parts) we can measure that stretching factor.
Let s̓ also sort them.

Compute the eigenvalues
eigs = np.linalg.eigvals(A).tolist()
norm_eigs = [np.absolute(x) for x in eigs]
norm_eigs.sort()
"Norms of eigenvalues: {}".format(norm_eigs)

'Norms of eigenvalues: [0.8786205280381857, 1.2757952665062624, 1.4983381517710659, 1.
↪→4983381517710659, 1.974459321485074]'

An Observation

We see something a bit unexpected happening here: that number we identified before for the long
term stretching of our matrix A applied to a random vector is exactly (accurate to thirteen decimal
places!) the largest eigenvalue of A. This is clearly not a coincidence!

But, if we now think about what is happening geometrically, this starts to make sense. Consider a
random vector. This random vector points a little in every direction, so in particular, it points at
least a little bit in the same direction as the eigenvector ofA associated with the largest eigenvalue.
This is so important that it is called the principle eigenvalue and principle eigenvector. After apply-
ing A, our random vector gets stretched in every possible direction, as is associated with every
possible eigenvector, but it is stretched most of all in the direction associated with this principle
eigenvector. What this means is that after apply in A, our random vector is longer, and points
in a direction closer to being aligned with the principle eigenvector. After applying the matrix
many times, the alignment with the principle eigenvector becomes closer and closer until, for
all practical purposes, our random vector has been transformed into the principle eigenvector!
Indeed this algorithm is the basis for what is known as the power iteration for finding the largest
eigenvalue and eigenvector of a matrix. For details see, for example, (VanLoan & Golub, 1983).

Fixing the Normalization

Now, from above discussions, we concluded that we do not want a random vector to be stretched
or squished at all, we would like random vectors to stay about the same size throughout the en-
tire process. To do so, we now rescale our matrix by this principle eigenvalue so that the largest
eigenvalue is instead now just one. Let s̓ see what happens in this case.

Rescale the matrix A
A /= norm_eigs[-1]

(continues on next page)

752 Chapter 17. Appendix: Mathematics for Deep Learning

(continued from previous page)

Do the same experiment again
v_in = np.random.randn(k, 1)

norm_list = [np.linalg.norm(v_in)]
for i in range(1, 100):

v_in = A.dot(v_in)
norm_list.append(np.linalg.norm(v_in))

d2l.plot(np.arange(0, 100), norm_list, 'Iteration', 'Value')

We can also plot the ration between consecutive norms as before and see that indeed it stabilizes.

Also plot the ratio
norm_ratio_list = []
for i in range(1, 100):

norm_ratio_list.append(norm_list[i]/norm_list[i-1])

d2l.plot(np.arange(1, 100), norm_ratio_list, 'Iteration', 'Ratio')

17.2. Eigendecompositions 753

17.2.7 Conclusions

We now see exactly what we hoped for! After normalizing the matrices by the principle eigenvalue,
we see that the random data does not explode as before, but rather eventually equilibrates to a
specific value. It would be nice to be able to do these things from first principles, and it turns out
that if we look deeply at the mathematics of it, we can see that the largest eigenvalue of a large
random matrix with independent mean zero, variance one Gaussian entries is on average about√
n, or in our case

√
5 ≈ 2.2, due to a fascinating fact known as the circular law (Ginibre, 1965).

The relationship between the eigenvalues (and a related object called singular values) of random
matrices has been shown to have deep connections to proper initialization of neural networks as
was discussed in (Pennington et al., 2017) and subsequent works.

Summary

• Eigenvectors are vectors which are stretched by a matrix without changing direction.

• Eigenvalues are the amount that the eigenvectors are stretched by the application of the
matrix.

• The eigendecomposition of a matrix can allow for many operations to be reduced to opera-
tions on the eigenvalues.

• The Gershgorin Circle Theorem can provide approximate values for the eigenvalues of a
matrix.

• The behavior of iterated matrix powers depends primarily on the size of the largest eigen-
value. This understanding has many applications in the theory of neural network initializa-
tion.

Exercises

1. What are the eigenvalues and eigenvectors of

A =

[
2 1
1 2

]
? (17.2.21)

2. What are the eigenvalues and eigenvectors of the following matrix, and what is strange about
this example compared to the previous one?

A =

[
2 1
0 2

]
. (17.2.22)

3. Without computing the eigenvalues, is it possible that the smallest eigenvalue of the follow-
ing matrix is less that 0.5? Note: this problem can be done in your head.

A =


3.0 0.1 0.3 1.0
0.1 1.0 0.1 0.2
0.3 0.1 5.0 0.0
1.0 0.2 0.0 1.8

 . (17.2.23)

754 Chapter 17. Appendix: Mathematics for Deep Learning

17.3 Single Variable Calculus

In Section 2.4, we saw the basic elements of differential calculus. This section takes a deeper
dive into the fundamentals of calculus and how we can understand and apply it in the context of
machine learning.

17.3.1 Differential Calculus

Differential calculus is fundamentally the study of how functions behave under small changes. To
see why this is so core to deep learning, let s̓ consider an example.

Suppose that we have a deep neural network where the weights are, for convenience, concatenated
into a single vector w = (w1, . . . , wn). Given a training dataset, we consider the loss of our neural
network on this dataset, which we will write as L(w).

This function is extraordinarily complex, encoding the performance of all possible models of the
given architecture on this dataset, so it is nearly impossible to tell what set of weights w will min-
imize the loss. Thus, in practice, we often start by initializing our weights randomly, and then
iteratively take small steps in the direction which makes the loss decrease as rapidly as possible.

The question then becomes something that on the surface is no easier: how do we find the direc-
tion which makes the weights decrease as quickly as possible? To dig into this, let s̓ first examine
the case with only a single weight: L(w) = L(x) for a single real value x.

Let s̓ take x and try to understand what happens when we change it by a small amount to x+ ϵ. If
you wish to be concrete, think a number like ϵ = 0.0000001. To help us visualize what happens,
let s̓ graph an example function, f(x) = sin(xx), over the [0, 3].

%matplotlib inline
import d2l
from IPython import display
from mxnet import np, npx
npx.set_np()

Plot a function in a normal range
x_big = np.arange(0.01, 3.01, 0.01)
ys = np.sin(x_big**x_big)
d2l.plot(x_big, ys, 'x', 'f(x)')

17.3. Single Variable Calculus 755

At this large scale, the functions̓ behavior is not simple. However, if we reduce our range to some-
thing smaller like [1.75, 2.25], we see that the graph becomes much simpler.

Plot a the same function in a tiny range
x_med = np.arange(1.75, 2.25, 0.001)
ys = np.sin(x_med**x_med)
d2l.plot(x_med, ys, 'x', 'f(x)')

Taking this to an extreme, if we zoom into a tiny segment, the behavior becomes far simpler: it is
just a straight line.

Plot a the same function in a tiny range
x_small = np.arange(2.0, 2.01, 0.0001)
ys = np.sin(x_small**x_small)
d2l.plot(x_small, ys, 'x', 'f(x)')

This is the key observation of single variable calculus: the behavior of familiar functions can be
modeled by a line in a small enough range. This means that for most functions, it is reasonable to
expect that as we shift the x value of the function by a little bit, the output f(x) will also be shifted
by a little bit. The only question we need to answer is, “How large is the change in the output
compared to the change in the input? Is it half as large? Twice as large?”

756 Chapter 17. Appendix: Mathematics for Deep Learning

Thus, we can consider the ratio of the change in the output of a function for a small change in the
input of the function. We can write this formally as

L(x+ ϵ)− L(x)

(x+ ϵ)− x
=

L(x+ ϵ)− L(x)

ϵ
. (17.3.1)

This is already enough to start to play around with in code. For instance, suppose that we know
that L(x) = x2+1701(x−4)3, then we can see how large this value is at the point x = 4 as follows.

Define our function
def L(x):

return x**2 + 1701*(x-4)**3

Print the difference divided by epsilon for several epsilon
for epsilon in [0.1, 0.001, 0.0001, 0.00001]:

print("epsilon = {:.5f} -> {:.5f}".format(
epsilon, (L(4+epsilon) - L(4)) / epsilon))

epsilon = 0.10000 -> 25.11000
epsilon = 0.00100 -> 8.00270
epsilon = 0.00010 -> 8.00012
epsilon = 0.00001 -> 8.00001

Now, if we are observant, we will notice that the output of this number is suspiciously close to
8. Indeed, if we decrease ϵ, we will see value becomes progressively closer to 8. Thus we may
conclude, correctly, that the value we seek (the degree a change in the input changes the output)
should be 8 at the point x = 4. The way that a mathematician encodes this fact is

lim
ϵ→0

L(4 + ϵ)− L(4)

ϵ
= 8. (17.3.2)

As a bit of a historical digression: in the first few decades of neural network research, scientists
used this algorithm (the method of finite differences) to evaluate how a loss function changed under
small perturbation: just change the weights and see how the loss changed. This is computationally
inefficient, requiring two evaluations of the loss function to see how a single change of one vari-
able influenced the loss. If we tried to do this with even a paltry few thousand parameters, it would
require several thousand evaluations of the network over the entire dataset! It was not solved until
1986 that the backpropagation algorithm introduced in (Rumelhart et al., 1988) provided a way to
calculate how any change of the weights together would change the loss in the same computation
time as a single prediction of the network over the dataset.

Back in our example, this value 8 is different for different values of x, so it makes sense to define it
as a function ofx. More formally, this value dependent rate of change is referred to as the derivative
which is written as

df

dx
(x) = lim

ϵ→0

f(x+ ϵ)− f(x)

ϵ
. (17.3.3)

Different texts will use different notations for the derivative. For instance, all of the below nota-
tions indicate the same thing:

df

dx
=

d

dx
f = f ′ = ∇xf = Dxf = fx. (17.3.4)

Most authors will pick a single notation and stick with it, however even that is not guaranteed. It
is best to be familiar with all of these. We will use the notation df

dx throughout this text, unless

17.3. Single Variable Calculus 757

we want to take the derivative of a complex expression, in which case we will use d
dxf to write

expressions like

d

dx

[
x4 + cos

(
x2 + 1

2x− 1

)]
. (17.3.5)

Often times, it is intuitively useful to unravel the definition of derivative (17.3.3) again to see how
a function changes when we make a small change of x:

df

dx
(x) = lim

ϵ→0

f(x+ ϵ)− f(x)

ϵ
=⇒ df

dx
(x) ≈ f(x+ ϵ)− f(x)

ϵ

=⇒ ϵ
df

dx
(x) ≈ f(x+ ϵ)− f(x)

=⇒ f(x+ ϵ) ≈ f(x) + ϵ
df

dx
(x).

(17.3.6)

The last equation is worth explicitly calling out. It tells us that if you take any function and change
the input by a small amount, the output would change by that small amount scaled by the deriva-
tive.

In this way, we can understand the derivative as the scaling factor that tells us how large of change
we get in the output from a change in the input.

17.3.2 Rules of Calculus

We now turn to the task of understanding how to compute the derivative of an explicit function. A
full formal treatment of calculus would derive everything from first principles. We will not indulge
in this temptation here, but rather provide an understanding of the common rules encountered.

Common Derivatives

As was seen in Section 2.4, when computing derivatives one can often times use a series of rules
to reduce the computation to a few core functions. We repeat them here for ease of reference.

• Derivative of constants. d
dxc = 0.

• Derivative of linear functions. d
dx(ax) = a.

• Power rule. d
dxx

n = nxn−1.

• Derivative of exponentials. d
dxe

x = ex.

• Derivative of the logarithm. d
dx log(x) = 1

x .

Derivative Rules

If every derivative needed to be separately computed and stored in a table, differential calculus
would be near impossible. It is a gift of mathematics that we can generalize the above derivatives
and compute more complex derivatives like finding the derivative of f(x) = log

(
1 + (x− 1)10

)
. As

was mentioned in Section 2.4, the key to doing so is to codify what happens when we take functions
and combine them in various ways, most importantly: sums, products, and compositions.

• Sum rule. d
dx (g(x) + h(x)) = dg

dx(x) +
dh
dx(x).

758 Chapter 17. Appendix: Mathematics for Deep Learning

• Product rule. d
dx (g(x) · h(x)) = g(x)dhdx(x) +

dg
dx(x)h(x).

• Chain rule. d
dxg(h(x)) =

dg
dh(h(x)) ·

dh
dx(x).

Let s̓ see how we may use (17.3.6) to understand these rules. For the sum rule, consider following
chain of reasoning:

f(x+ ϵ) = g(x+ ϵ) + h(x+ ϵ)

≈ g(x) + ϵ
dg

dx
(x) + h(x) + ϵ

dh

dx
(x)

= g(x) + h(x) + ϵ

(
dg

dx
(x) +

dh

dx
(x)

)
= f(x) + ϵ

(
dg

dx
(x) +

dh

dx
(x)

)
.

(17.3.7)

By comparing this result with the fact that f(x+ ϵ) ≈ f(x) + ϵ dfdx(x), we see that df
dx(x) =

dg
dx(x) +

dh
dx(x) as desired. The intuition here is: when we change the input x, g and h jointly contribute to
the change of the output by dg

dx(x) and dh
dx(x).

The product is more subtle, and will require a new observation about how to work with these
expressions. We will begin as before using (17.3.6):

f(x+ ϵ) = g(x+ ϵ) · h(x+ ϵ)

≈
(
g(x) + ϵ

dg

dx
(x)

)
·
(
h(x) + ϵ

dh

dx
(x)

)
= g(x) · h(x) + ϵ

(
g(x)

dh

dx
(x) +

dg

dx
(x)h(x)

)
+ ϵ2

dg

dx
(x)

dh

dx
(x)

= f(x) + ϵ

(
g(x)

dh

dx
(x) +

dg

dx
(x)h(x)

)
+ ϵ2

dg

dx
(x)

dh

dx
(x).

(17.3.8)

This resembles the computation done above, and indeed we see our answer (dfdx(x) = g(x)dhdx(x) +
dg
dx(x)h(x)) sitting next to ϵ, but there is the issue of that term of size ϵ2. We will refer to this as a
higher-order term, since the power of ϵ2 is higher than the power of ϵ1. We will see in a later section
that we will sometimes want to keep track of these, however for now observe that if ϵ = 0.0000001,
then ϵ2 = 0.0000000000001, which is vastly smaller. As we send ϵ → 0, we may safely ignore the
higher order terms. As a general convention in this appendix, we will use “≈” to denote that the
two terms are equal up to higher order terms. However, if we wish to be more formal we may
examine the difference quotient

f(x+ ϵ)− f(x)

ϵ
= g(x)

dh

dx
(x) +

dg

dx
(x)h(x) + ϵ

dg

dx
(x)

dh

dx
(x), (17.3.9)

and see that as we send ϵ→ 0, the right hand term goes to zero as well.

Finally, with the chain rule, we can again progress as before using (17.3.6) and see that

f(x+ ϵ) = g(h(x+ ϵ))

≈ g

(
h(x) + ϵ

dh

dx
(x)

)
≈ g(h(x)) + ϵ

dh

dx
(x)

dg

dh
(h(x))

= f(x) + ϵ
dg

dh
(h(x))

dh

dx
(x),

(17.3.10)

17.3. Single Variable Calculus 759

where in the second line we view the function g as having its input (h(x)) shifted by the tiny quan-
tity ϵdhdx(x).

These rule provide us with a flexible set of tools to compute essentially any expression desired.
For instance,

d

dx

[
log
(
1 + (x− 1)10

)]
=
(
1 + (x− 1)10

)−1 d

dx

[
1 + (x− 1)10

]
=
(
1 + (x− 1)10

)−1
(

d

dx
[1] +

d

dx
[(x− 1)10]

)
=
(
1 + (x− 1)10

)−1
(
0 + 10(x− 1)9

d

dx
[x− 1]

)
= 10

(
1 + (x− 1)10

)−1
(x− 1)9

=
10(x− 1)9

1 + (x− 1)10
.

(17.3.11)

Where each line has used the following rules:

1. The chain rule and derivative of logarithm.

2. The sum rule.

3. The derivative of constants, chain rule, and power rule.

4. The sum rule, derivative of linear functions, derivative of constants.

Two things should be clear after doing this example:

1. Any function we can write down using sums, products, constants, powers, exponentials, and
logarithms can have its derivate computed mechanically by following these rules.

2. Having a human follow these rules can be tedious and error prone!

Thankfully, these two facts together hint towards a way forward: this is a perfect candidate for
mechanization! Indeed backpropagation, which we will revisit later in this section, is exactly that.

Linear Approximation

When working with derivatives, it is often useful to geometrically interpret the approximation
used above. In particular, note that the equation

f(x+ ϵ) ≈ f(x) + ϵ
df

dx
(x), (17.3.12)

approximates the value of f by a line which passes through the point (x, f(x)) and has slope df
dx(x).

In this way we say that the derivative gives a linear approximation to the function f , as illustrated
below:

Compute sin
xs = np.arange(-np.pi, np.pi, 0.01)
plots = [np.sin(xs)]

Compute some linear approximations. Use d(sin(x))/dx = cos(x)
for x0 in [-1.5, 0, 2]:

plots.append(np.sin(x0) + (xs - x0) * np.cos(x0))

d2l.plot(xs, plots, 'x', 'f(x)', ylim=[-1.5, 1.5])

760 Chapter 17. Appendix: Mathematics for Deep Learning

Higher Order Derivatives

Let s̓ now do something that may on the surface seem strange. Take a function f and compute the
derivative df

dx . This gives us the rate of change of f at any point.

However, the derivative, df
dx , can be viewed as a function itself, so nothing stops us from comput-

ing the derivative of df
dx to get d2f

dx2 = df
dx

(
df
dx

)
. We will call this the second derivative of f . This

function is the rate of change of the rate of change of f , or in other words, how the rate of change
is changing. We may apply the derivative any number of times to obtain what is called the n-th
derivative. To keep the notation clean, we will denote the n-th derivative as

f (n)(x) =
dnf

dxn
=

(
d

dx

)n

f. (17.3.13)

Let s̓ try to understand why this is a useful notion. Below, we visualize f (2)(x), f (1)(x), and f(x).

First, consider the case that the second derivative f (2)(x) is a positive constant. This means that
the slope of the first derivative is positive. As a result, the first derivative f (1)(x) may start out
negative, becomes zero at a point, and then becomes positive in the end. This tells us the slope of
our original function f and therefore, the function f itself decreases, flattens out, then increases.
In other words, the function f curves up, and has a single minimum as is shown in Fig. 17.3.1.

Fig. 17.3.1: If we assume the second derivative is a positive constant, then the fist derivative in
increasing, which implies the function itself has a minimum.

Second, if the second derivative is a negative constant, that means that the first derivative is de-
creasing. This implies the first derivative may start out positive, becomes zero at a point, and then

17.3. Single Variable Calculus 761

becomes negative. Hence, the function f itself increases, flattens out, then decreases. In other
words, the function f curves down, and has a single maximum as is shown in Fig. 17.3.2.

Fig. 17.3.2: If we assume the second derivative is a negative constant, then the fist derivative in
decreasing, which implies the function itself has a maximum.

Third, if the second derivative is a always zero, then the first derivative will never change—it is
constant! This means that f increases (or decreases) at a fixed rate, and f is itself a straight line
as is shown in Fig. 17.3.3.

Fig. 17.3.3: If we assume the second derivative is zero, then the fist derivative is constant, which
implies the function itself is a straight line.

To summarize, the second derivative can be interpreted as describing the way that the function f
curves. A positive second derivative leads to a upwards curve, while a negative second derivative
means that f curves downwards, and a zero second derivative means that f does not curve at all.

Let s̓ take this one step further. Consider the function g(x) = ax2 + bx+ c. We can then compute
that

dg

dx
(x) = 2ax+ b

d2g

dx2
(x) = 2a.

(17.3.14)

If we have some original function f(x) in mind, we may compute the first two derivatives and
find the values for a, b, and c that make them match this computation. Similarly to the previous
section where we saw that the first derivative gave the best approximation with a straight line, this
construction provides the best approximation by a quadratic. Let s̓ visualize this for f(x) = sin(x).

762 Chapter 17. Appendix: Mathematics for Deep Learning

Compute sin
xs = np.arange(-np.pi, np.pi, 0.01)
plots = [np.sin(xs)]

Compute some quadratic approximations. Use d(sin(x))/dx = cos(x)
for x0 in [-1.5, 0, 2]:

plots.append(np.sin(x0) + (xs - x0) * np.cos(x0) -
(xs - x0)**2 * np.sin(x0) / 2)

d2l.plot(xs, plots, 'x', 'f(x)', ylim=[-1.5, 1.5])

We will extend this idea to the idea of a Taylor series in the next section.

Taylor Series

The Taylor series provides a method to approximate the function f(x) if we are given values for the
first n derivatives at a point x0, i.e.,

{
f(x0), f

(1)(x0), f
(2)(x0), . . . , f

(n)(x0)
}

. The idea will be to find
a degree n polynomial that matches all the given derivatives at x0.

We saw the case of n = 2 in the previous section and a little algebra shows this is

f(x) ≈ 1

2

d2f

dx2
(x0)(x− x0)

2 +
df

dx
(x0)(x− x0) + f(x0). (17.3.15)

As we can see above, the denominator of 2 is there to cancel out the 2 we get when we take two
derivatives of x2, while the other terms are all zero. Same logic applies for the first derivative and
the value itself.

If we push the logic further to n = 3, we will conclude that

f(x) ≈
d3f
dx3 (x0)

6
(x− x0)

3 +
d2f
dx2 (x0)

2
(x− x0)

2 +
df

dx
(x0)(x− x0) + f(x0). (17.3.16)

where the 6 = 3 × 2 = 3! comes from the constant we get in front if we take three derivatives of
x3.

Furthermore, we can get a degree n polynomial by

Pn(x) =
n∑

i=0

f (i)(x0)

i!
(x− x0)

i. (17.3.17)

17.3. Single Variable Calculus 763

where the notation

f (n)(x) =
dnf

dxn
=

(
d

dx

)n

f. (17.3.18)

Indeed, Pn(x) can be viewed as the best n-th degree polynomial approximation to our function
f(x).

While we are not going to dive all the way into the error of the above approximations, it is worth
mentioning the the infinite limit. In this case, for well behaved functions (known as real analytic
functions) like cos(x) or ex, we can write out the infinite number of terms and approximate the
exactly same function

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n. (17.3.19)

Take f(x) = ex as am example. Since ex is its own derivative, we know that f (n)(x) = ex. There-
fore, ex can be reconstructed by taking the Taylor series at x0 = 0, i.e.,

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+

x3

6
+ · · · . (17.3.20)

Let s̓ see how this works in code and observe how increasing the degree of the Taylor approxima-
tion brings us closer to the desired function ex.

Compute the exponential function
xs = np.arange(0, 3, 0.01)
ys = np.exp(xs)

Compute a few Taylor series approximations
P1 = 1 + xs
P2 = 1 + xs + xs**2 / 2
P5 = 1 + xs + xs**2 / 2 + xs**3 / 6 + xs**4 / 24 + xs**5 / 120

d2l.plot(xs, [ys, P1, P2, P5], 'x', 'f(x)', legend=[
"Exponential", "Degree 1 Taylor Series", "Degree 2 Taylor Series",
"Degree 5 Taylor Series"])

Taylor series have two primary applications:

764 Chapter 17. Appendix: Mathematics for Deep Learning

1. Theoretical applications: Often when we try to understand a too complex function, using Tay-
lor series enables we turn it into a polynomial that we can work with directly.

2. Numerical applications: Some functions like ex or cos(x) are difficult for machines to com-
pute. They can store tables of values at a fixed precision (and this is often done), but it still
leaves open questions like “What is the 1000-th digit of cos(1)?” Taylor series are often help-
ful to answer such questions.

Summary

• Derivatives can be used to express how functions change when we change the input by a
small amount.

• Elementary derivatives can be combined using derivative rules to create arbitrarily complex
derivatives.

• Derivatives can be iterated to get second or higher order derivatives. Each increase in order
provides more fine grained information on the behavior of the function.

• Using information in the derivatives of a single data point, we can approximate well behaved
functions by polynomials obtained from the Taylor series.

Exercises

1. What is the derivative of x3 − 4x+ 1?

2. What is the derivative of log(1x)?

3. True or False: If f ′(x) = 0 then f has a maximum or minimum at x?

4. Where is the minimum of f(x) = x log(x) for x ≥ 0 (where we assume that f takes the
limiting value of 0 at f(0))?

17.4 Multivariable Calculus

Now that we have a fairly strong understanding of derivatives of a function of a single variable, let s̓
return to our original question where we were considering a loss function of potentially billions
of weights.

17.4. Multivariable Calculus 765

17.4.1 Higher-Dimensional Differentiation

What Section 17.3 tells us is that if we change a single one of these billions of weights leaving
every other one fixed, we know what will happen! This is nothing more than a function of a single
variable, so we can write

L(w1 + ϵ1, w2, . . . , wN) ≈ L(w1, w2, . . . , wN) + ϵ1
d

dw1
L(w1, w2, . . . , wN). (17.4.1)

We will call the derivative in one variable while fixing the other the partial derivative, and we will
use the notation ∂

∂w1
for the derivative in (17.4.1).

Now, let s̓ take this and change w2 a little bit to w2 + ϵ2:

L(w1 + ϵ1, w2 + ϵ2, . . . , wN) ≈ L(w1, w2 + ϵ2, . . . , wN) + ϵ1
∂

∂w1
L(w1, w2 + ϵ2, . . . , wN)

≈ L(w1, w2, . . . , wN)

+ ϵ2
∂

∂w2
L(w1, w2, . . . , wN)

+ ϵ1
∂

∂w1
L(w1, w2, . . . , wN)

+ ϵ1ϵ2
∂

∂w2

∂

∂w1
L(w1, w2, . . . , wN)

≈ L(w1, w2, . . . , wN)

+ ϵ2
∂

∂w2
L(w1, w2, . . . , wN)

+ ϵ1
∂

∂w1
L(w1, w2, . . . , wN).

(17.4.2)

We have again used the idea that ϵ1ϵ2 is a higher order term that we can discard in the same way
we could discard ϵ2 in the previous section, along with what we saw in (17.4.1). By continuing in
this manner, we may write that

L(w1 + ϵ1, w2 + ϵ2, . . . , wN + ϵN) ≈ L(w1, w2, . . . , wN) +
∑
i

ϵi
∂

∂wi
L(w1, w2, . . . , wN). (17.4.3)

This may look like a mess, but we can make this more familiar by noting that the sum on the right
looks exactly like a dot product, so if we let

ϵ = [ϵ1, . . . , ϵN]⊤ and ∇xL =

[
∂L

∂x1
, . . . ,

∂L

∂xN

]⊤
, (17.4.4)

then

L(w+ ϵ) ≈ L(w) + ϵ · ∇wL(w). (17.4.5)

We will call the vector∇wL the gradient of L.

Equation (17.4.5) is worth pondering for a moment. It has exactly the format that we encountered
in one dimension, just we have converted everything to vectors and dot products. It allows us to
tell approximately how the function L will change given any perturbation to the input. As we will
see in the next section, this will provide us with an important tool in understanding geometrically
how we can learn using information contained in the gradient.

766 Chapter 17. Appendix: Mathematics for Deep Learning

But first, let s̓ see this approximation at work with an example. Suppose that we are working with
the function

f(x, y) = log(ex + ey) with gradient∇f(x, y) =
[

ex

ex + ey
,

ey

ex + ey

]
. (17.4.6)

If we look at a point like (0, log(2)), we see that

f(x, y) = log(3) with gradient∇f(x, y) =
[
1

3
,
2

3

]
. (17.4.7)

Thus, if we want to approximate f at (ϵ1, log(2) + ϵ2), we see that we should have the specific
instance of (17.4.5):

f(ϵ1, log(2) + ϵ2) ≈ log(3) +
1

3
ϵ1 +

2

3
ϵ2. (17.4.8)

We can test this in code to see how good the approximation is.

%matplotlib inline
import d2l
from IPython import display
from mpl_toolkits import mplot3d
from mxnet import autograd, np, npx
npx.set_np()

def f(x, y):
return np.log(np.exp(x) + np.exp(y))

def grad_f(x, y):
return np.array([np.exp(x) / (np.exp(x) + np.exp(y)),

np.exp(y) / (np.exp(x) + np.exp(y))])

epsilon = np.array([0.01, -0.03])
grad_approx = f(0, np.log(2)) + epsilon.dot(grad_f(0, np.log(2)))
true_value = f(0 + epsilon[0], np.log(2) + epsilon[1])
"Approximation: {}, True Value: {}".format(grad_approx, true_value)

'Approximation: 1.0819457, True Value: 1.0821242'

17.4.2 Geometry of Gradients and Gradient Descent

Consider the again (17.4.5):

L(w+ ϵ) ≈ L(w) + ϵ · ∇wL(w). (17.4.9)

Let s̓ suppose that I want to use this to help minimize our loss L. Let s̓ understand geometrically
the algorithm of gradient descent first described in Section 2.5. What we will do is the following:

1. Start with a random choice for the initial parameters w.

2. Find the direction v that makes L decrease the most rapidly at w.

3. Take a small step in that direction: w→ w+ ϵv.

4. Repeat.

17.4. Multivariable Calculus 767

The only thing we do not know exactly how to do is to compute the vector v in the second step.
We will call such a direction the direction of steepest descent. Using the geometric understanding of
dot products from Section 17.1, we see that we can rewrite (17.4.5) as

L(w+ v) ≈ L(w) + v · ∇wL(w) = ∥∇wL(w)∥ cos(θ). (17.4.10)

Note that we have taken our direction to have length one for convenience, and used θ for the angle
between v and ∇wL(w). If we want to find the direction that decreases L as rapidly as possible,
we want to make this as expression as negative as possible. The only way the direction we pick
enters into this equation is through cos(θ), and thus we wish to make this cosine as negative as
possible. Now, recalling the shape of cosine, we can make this as negative as possible by making
cos(θ) = −1 or equivalently making the angle between the gradient and our chosen direction to
be π radians, or equivalently 180 degrees. The only way to achieve this is to head in the exact
opposite direction: pick v to point in the exact opposite direction to∇wL(w)!

This brings us to one of the most important mathematical concepts in machine learning: the
direction of steepest decent points in the direction of −∇wL(w). Thus our informal algorithm
can be rewritten as follows.

1. Start with a random choice for the initial parameters w.

2. Compute∇wL(w).

3. Take a small step in the opposite of that direction: w→ w− ϵ∇wL(w).

4. Repeat.

This basic algorithm has been modified and adapted many ways by many researchers, but the core
concept remains the same in all of them. Use the gradient to find the direction that decreases the
loss as rapidly as possible, and update the parameters to take a step in that direction.

17.4.3 A Note on Mathematical Optimization

Throughout this book, we focus squarely on numerical optimization techniques for the practical
reason that all functions we encounter in the deep learning setting are too complex to minimize
explicitly.

However, it is a useful exercise to consider what the geometric understanding we obtained above
tells us about optimizing functions directly.

Suppose that we wish to find the value of x0 which minimizes some function L(x). Let s̓ suppose
that moreover someone gives us a value and tells us that it is the value that minimizes L. Is there
anything we can check to see if their answer is even plausible?

Again consider (17.4.5):

L(x0 + ϵ) ≈ L(x0) + ϵ · ∇xL(x0). (17.4.11)

If the gradient is not zero, we know that we can take a step in the direction −ϵ∇xL(x0) to find a
value of L that is smaller. Thus, if we truly are at a minimum, this cannot be the case! We can
conclude that if x0 is a minimum, then∇xL(x0 = 0. We call points with∇xL(x0 = 0 critical points.

This is nice, because in some rare settings, we can explicitly find all the points where the gradient
is zero, and find the one with the smallest value.

768 Chapter 17. Appendix: Mathematics for Deep Learning

For a concrete example, consider the function

f(x) = 3x4 − 4x3 − 12x2. (17.4.12)

This function has derivative

df

dx
= 12x3 − 12x2 − 24x = 12x(x− 2)(x+ 1). (17.4.13)

The only possible location of minima are at x = −1, 0, 2, where the function takes the values
−5, 0,−32 respectively, and thus we can conclude that we minimize our function when x = 2. A
quick plot confirms this.

x = np.arange(-2, 3, 0.01)
f = (3 * x**4) - (4 * x**3) - (12 * x**2)

d2l.plot(x, f, 'x', 'f(x)')

This highlights an important fact to know when working either theoretically or numerically: the
only possible points where we can minimize (or maximize) a function will have gradient equal to
zero, however, not every point with gradient zero is the true global minimum (or maximum).

17.4.4 Multivariate Chain Rule

Let s̓ suppose that we have a function of four variables (w, x, y, and z) which we can make by com-
posing many terms:

f(u, v) = (u+ v)2

u(a, b) = (a+ b)2, v(a, b) = (a− b)2,

a(w, x, y, z) = (w + x+ y + z)2, b(w, x, y, z) = (w + x− y − z)2.

(17.4.14)

Such chains of equations are common when working with neural networks, so trying to under-
stand how to compute gradients of such functions is key. We can start to see visual hints of this
connection in Fig. 17.4.1 if we take a look at what variables directly relate to one another.

17.4. Multivariable Calculus 769

Fig. 17.4.1: The function relations above where nodes represent values and edges show functional
dependence.

Nothing stops us from just composing everything from (17.4.14) and writing out that

f(w, x, y, z) =
((

(w + x+ y + z)2 + (w + x− y − z)2
)2

+
(
(w + x+ y + z)2 − (w + x− y − z)2

)2)2
.

(17.4.15)

We may then take the derivative by just using single variable derivatives, but if we did that we
would quickly find ourself swamped with terms, many of which are repeats! Indeed, one can see
that, for instance:

∂f

∂w
= 2

(
2 (2(w + x+ y + z)− 2(w + x− y − z))

(
(w + x+ y + z)2 − (w + x− y − z)2

)
+

2 (2(w + x− y − z) + 2(w + x+ y + z))
(
(w + x− y − z)2 + (w + x+ y + z)2

))
×((

(w + x+ y + z)2 − (w + x− y − z)2
)2

+
(
(w + x− y − z)2 + (w + x+ y + z)2

)2)
.

(17.4.16)

If we then also wanted to compute ∂f
∂x , we would end up with a similar equation again with many

repeated terms, and many shared repeated terms between the two derivatives. This represents
a massive quantity of wasted work, and if we needed to compute derivatives this way, the whole
deep learning revolution would have stalled out before it began!

Let s̓ break up the problem. We will start by trying to understand how f changes when we change
a, essentially assuming that w, x, y, and z all do not exist. We will reason as we did back when we
worked with the gradient for the first time. Let s̓ take a and add a small amount ϵ to it.

f(u(a+ ϵ, b), v(a+ ϵ, b))

≈f
(
u(a, b) + ϵ

∂u

∂a
(a, b), v(a, b) + ϵ

∂v

∂a
(a, b)

)
≈f(u(a, b), v(a, b)) + ϵ

[
∂f

∂u
(u(a, b), v(a, b))

∂u

∂a
(a, b) +

∂f

∂v
(u(a, b), v(a, b))

∂v

∂a
(a, b)

]
.

(17.4.17)

The first line follows from the definition of partial derivative, and the second follows from the
definition of gradient. It is notationally burdensome to track exactly where we evaluate every
derivative, as in the expression ∂f

∂u(u(a, b), v(a, b)), so we often abbreviate this to the much more
memorable

∂f

∂a
=

∂f

∂u

∂u

∂a
+

∂f

∂v

∂v

∂a
. (17.4.18)

It is useful to think about the meaning of the process. We are trying to understand how a function
of the form f(u(a, b), v(a, b)) changes its value with a change in a. There are two pathways this can

770 Chapter 17. Appendix: Mathematics for Deep Learning

occur: there is the pathway where a → u → f and where a → v → f . We can compute both of
these contributions via the chain rule: ∂w

∂u ·
∂u
∂x and ∂w

∂v ·
∂v
∂x respectively, and added up.

Imagine we have a different network of functions where the functions on the right depend on
those they are connected to on the left as is shown in Fig. 17.4.2.

Fig. 17.4.2: Another more subtle example of the chain rule.

To compute something like ∂f
∂y , we need to sum over all (in this case 3) paths from y to f giving

∂f

∂y
=

∂f

∂a

∂a

∂u

∂u

∂y
+

∂f

∂u

∂u

∂y
+

∂f

∂b

∂b

∂v

∂v

∂y
. (17.4.19)

Understanding the chain rule in this way will pay great dividends when trying to understand how
gradients flow through networks, and why various architectural choices like those in LSTMs (Sec-
tion 9.2) or residual layers (Section 7.6) can help shape the learning process by controlling gradient
flow.

17.4.5 The Backpropagation Algorithm

Let s̓ return to the example of (17.4.14) the previous section where

f(u, v) = (u+ v)2

u(a, b) = (a+ b)2, v(a, b) = (a− b)2,

a(w, x, y, z) = (w + x+ y + z)2, b(w, x, y, z) = (w + x− y − z)2.

(17.4.20)

If we want to compute say ∂f
∂w we may apply the multi-variate chain rule to see:

∂f

∂w
=

∂f

∂u

∂u

∂w
+

∂f

∂v

∂v

∂w
,

∂u

∂w
=

∂u

∂a

∂a

∂w
+

∂u

∂b

∂b

∂w
,

∂v

∂w
=

∂v

∂a

∂a

∂w
+

∂v

∂b

∂b

∂w
.

(17.4.21)

Let s̓ try using this decomposition to compute ∂f
∂w . Notice that all we need here are the various

single step partials:

∂f

∂u
= 2(u+ v),

∂f

∂v
= 2(u+ v),

∂u

∂a
= 2(a+ b),

∂u

∂b
= 2(a+ b),

∂v

∂a
= 2(a− b),

∂v

∂b
= −2(a− b),

∂a

∂w
= 2(w + x+ y + z),

∂b

∂w
= 2(w + x− y − z).

(17.4.22)

If we write this out into code this becomes a fairly manageable expression.

17.4. Multivariable Calculus 771

Compute the value of the function from inputs to outputs
w, x, y, z = -1, 0, -2, 1
a, b = (w + x + y + z)**2, (w + x - y - z)**2
u, v = (a + b)**2, (a - b)**2
f = (u + v)**2
print(" f at {}, {}, {}, {} is {}".format(w, x, y, z, f))

Compute the single step partials
df_du, df_dv = 2*(u + v), 2*(u + v)
du_da, du_db, dv_da, dv_db = 2*(a + b), 2*(a + b), 2*(a - b), -2*(a - b)
da_dw, db_dw = 2*(w + x + y + z), 2*(w + x - y - z)

Compute the final result from inputs to outputs
du_dw, dv_dw = du_da*da_dw + du_db*db_dw, dv_da*da_dw + dv_db*db_dw
df_dw = df_du*du_dw + df_dv*dv_dw
print("df/dw at {}, {}, {}, {} is {}".format(w, x, y, z, df_dw))

f at -1, 0, -2, 1 is 1024
df/dw at -1, 0, -2, 1 is -4096

However, note that this still does not make it easy to compute something like ∂f
∂x . The reason for

that is the way we chose to apply the chain rule. If we look at what we did above, we always kept
∂w in the denominator when we could. In this way, we chose to apply the chain rule seeing how
w changed every other variable. If that is what we wanted, this would be a good idea. However,
think back to our motivation from deep learning: we want to see how every parameter changes
the loss. In essence, we want to apply the chain rule keeping ∂f in the numerator whenever we
can!

To be more explicit, note that we can write

∂f

∂w
=

∂f

∂a

∂a

∂w
+

∂f

∂b

∂b

∂w
,

∂f

∂a
=

∂f

∂u

∂u

∂a
+

∂f

∂v

∂v

∂a
,

∂f

∂b
=

∂f

∂u

∂u

∂b
+

∂f

∂v

∂v

∂b
.

(17.4.23)

Note that this application of the chain rule has us explicitly compute ∂f
∂u ,

∂f
∂u ,

∂f
∂u ,

∂f
∂u , and ∂f

∂u . Noth-
ing stops us from also including the equations:

∂f

∂x
=

∂f

∂a

∂a

∂x
+

∂f

∂b

∂b

∂x
,

∂f

∂y
=

∂f

∂a

∂a

∂y
+

∂f

∂b

∂b

∂y
,

∂f

∂z
=

∂f

∂a

∂a

∂z
+

∂f

∂b

∂b

∂z
.

(17.4.24)

and then keeping track of how f changes when we change any node in the entire network. Let s̓
implement it.

Compute the value of the function from inputs to outputs
w, x, y, z = -1, 0, -2, 1
a, b = (w + x + y + z)**2, (w + x - y - z)**2

(continues on next page)

772 Chapter 17. Appendix: Mathematics for Deep Learning

(continued from previous page)

u, v = (a + b)**2, (a - b)**2
f = (u + v)**2
print(" f at {}, {}, {}, {} is {}".format(w, x, y, z, f))

Compute the derivative using the decomposition above
First compute the single step partials
df_du, df_dv = 2*(u + v), 2*(u + v)
du_da, du_db, dv_da, dv_db = 2*(a + b), 2*(a + b), 2*(a - b), -2*(a - b)
da_dw, db_dw = 2*(w + x + y + z), 2*(w + x - y - z)
da_dx, db_dx = 2*(w + x + y + z), 2*(w + x - y - z)
da_dy, db_dy = 2*(w + x + y + z), -2*(w + x - y - z)
da_dz, db_dz = 2*(w + x + y + z), -2*(w + x - y - z)

Now compute how f changes when we change any value from output to input
df_da, df_db = df_du*du_da + df_dv*dv_da, df_du*du_db + df_dv*dv_db
df_dw, df_dx = df_da*da_dw + df_db*db_dw, df_da*da_dx + df_db*db_dx
df_dy, df_dz = df_da*da_dy + df_db*db_dy, df_da*da_dz + df_db*db_dz
print("df/dw at {}, {}, {}, {} is {}".format(w, x, y, z, df_dw))
print("df/dx at {}, {}, {}, {} is {}".format(w, x, y, z, df_dx))
print("df/dy at {}, {}, {}, {} is {}".format(w, x, y, z, df_dy))
print("df/dz at {}, {}, {}, {} is {}".format(w, x, y, z, df_dz))

f at -1, 0, -2, 1 is 1024
df/dw at -1, 0, -2, 1 is -4096
df/dx at -1, 0, -2, 1 is -4096
df/dy at -1, 0, -2, 1 is -4096
df/dz at -1, 0, -2, 1 is -4096

The fact that we compute derivatives from f back towards the inputs rather than from the inputs
forward to the outputs (as we did in the first code snippet above) is what gives this algorithm its
name: backpropagation. Note that there are two steps: 1. Compute the value of the function, and
the single step partials from front to back. While not done above, this can be combined into a
single forward pass. 2. Compute the gradient of f from back to front. We call this the backwards
pass.

This is precisely what every deep learning algorithm implements to allow the computation of the
gradient of the loss with respect to every weight in the network at one pass. It is an astonishing
fact that we have such a decomposition.

To see how MXNet has encapsulated this, let s̓ take a quick look at this example.

Initialize as ndarrays, then attach gradients
w, x, y, z = np.array(-1), np.array(0), np.array(-2), np.array(1)

w.attach_grad()
x.attach_grad()
y.attach_grad()
z.attach_grad()

Do the computation like usual, tracking gradients
with autograd.record():

a, b = (w + x + y + z)**2, (w + x - y - z)**2
u, v = (a + b)**2, (a - b)**2

(continues on next page)

17.4. Multivariable Calculus 773

(continued from previous page)

f = (u + v)**2

Execute backward pass
f.backward()

print("df/dw at {}, {}, {}, {} is {}".format(w, x, y, z, w.grad))
print("df/dx at {}, {}, {}, {} is {}".format(w, x, y, z, x.grad))
print("df/dy at {}, {}, {}, {} is {}".format(w, x, y, z, y.grad))
print("df/dz at {}, {}, {}, {} is {}".format(w, x, y, z, z.grad))

df/dw at -1.0, 0.0, -2.0, 1.0 is -4096.0
df/dx at -1.0, 0.0, -2.0, 1.0 is -4096.0
df/dy at -1.0, 0.0, -2.0, 1.0 is -4096.0
df/dz at -1.0, 0.0, -2.0, 1.0 is -4096.0

All of what we did above can be done automatically by calling f.backwards().

17.4.6 Hessians

As with single variable calculus, it is useful to consider higher-order derivatives in order to get a
handle on how we can obtain a better approximation to a function than using the gradient alone.

There is one immediate problem one encounters when working with higher order derivatives of
functions of several variables, and that is there are a large number of them. If we have a function
f(x1, . . . , xn) of n variables, then we can take n2 many second derivatives, namely for any choice
of i and j:

d2f

dxidxj
=

d

dxi

(
d

dxj
f

)
. (17.4.25)

This is traditionally assembled into a matrix called the Hessian:

Hf =


d2f

dx1dx1
· · · d2f

dx1dxn

...
d2f

dxndx1
· · · d2f

dxndxn

 . (17.4.26)

Not every entry of this matrix is independent. Indeed, we can show that as long as both mixed
partials (partial derivatives with respect to more than one variable) exist and are continuous, we
can say that for any i, and j,

d2f

dxidxj
=

d2f

dxjdxi
. (17.4.27)

This follows by considering first perturbing a function in the direction of xi, and then perturbing
it in xj and then comparing the result of that with what happens if we perturb first xj and then xi,
with the knowledge that both of these orders lead to the same final change in the output of f .

As with single variables, we can use these derivatives to get a far better idea of how the function
behaves near a point. In particular, we can use it to find the best fitting quadratic near a point x0,
as we saw in a single variable.

774 Chapter 17. Appendix: Mathematics for Deep Learning

Let s̓ see an example. Suppose that f(x1, x2) = a+b1x1+b2x2+c11x
2
1+c12x1x2+c22x

2
2. This is the

general form for a quadratic in two variables. If we look at the value of the function, its gradient,
and its Hessian (17.4.26), all at the point zero:

f(0, 0) = a,

∇f(0, 0) =
[
b1
b2

]
,

Hf(0, 0) =

[
2c11 c12
c12 2c22

]
.

(17.4.28)

If we from this, we see we can get our original polynomial back by saying

f(x) = f(0) +∇f(0) · x+
1

2
x⊤Hf(0)x. (17.4.29)

In general, if we computed this expansion any point x0, we see that

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0)⊤Hf(x0)(x− x0). (17.4.30)

This works for any dimensional input, and provides the best approximating quadratic to any func-
tion at a point. To give an example, let s̓ plot the function

f(x, y) = xe−x2−y2 . (17.4.31)

One can compute that the gradient and Hessian are

∇f(x, y) = e−x2−y2
(
1− 2x2

−2xy

)
and Hf(x, y) = e−x2−y2

(
4x3 − 6x 4x2y − 2y
4x2y − 2y 4xy2 − 2x

)
. (17.4.32)

And thus, with a little algebra, see that the approximating quadratic at [−1, 0]⊤ is

f(x, y) ≈ e−1
(
−1− (x+ 1) + 2(x+ 1)2 + 2y2

)
. (17.4.33)

Construct grid and compute function
x, y = np.meshgrid(np.linspace(-2, 2, 101),

np.linspace(-2, 2, 101), indexing='ij')
z = x*np.exp(- x**2 - y**2)

Compute gradient and Hessian at (1, 0)
w = np.exp(-1)*(-1 - (x + 1) + 2 * (x + 1)**2 + 2 * y**2)

Plot function
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z, **{'rstride': 10, 'cstride': 10})
ax.plot_wireframe(x, y, w, **{'rstride': 10, 'cstride': 10}, color='purple')
d2l.plt.xlabel('x')
d2l.plt.ylabel('y')
d2l.set_figsize()
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(-1, 1)
ax.dist = 12

17.4. Multivariable Calculus 775

This forms the basis for Newtons̓ Algorithm discussed in Section 11.3, where we perform numer-
ical optimization iteratively finding the best fitting quadratic, and then exactly minimizing that
quadratic.

17.4.7 A Little Matrix Calculus

Derivatives of functions involving matrices turn out to be particularly nice. This section can be-
come notationally heavy, so may be skipped in a first reading, but it is useful to know how deriva-
tives of functions involving common matrix operations are often much cleaner than one might
initially anticipate, particularly given how central matrix operations are to deep learning applica-
tions.

Let s̓ begin with an example. Suppose that we have some fixed row vector β, and we want to take
the product function f(x) = βx, and understand how the dot product changes when we change x.

A bit of notation that will be useful when working with matrix derivatives in ML is called the de-
nominator layout matrix derivative where we assemble our partial derivatives into the shape of
whatever vector, matrix, or tensor is in the denominator of the differential. In this case, we will
write

df

dx
=


df
dx1
...
df
dxn

 . (17.4.34)

where we matched the shape of the column vector x.

If we write out our function into components this is

f(x) =
n∑

i=1

βixi = β1x1 + · · ·+ βnxn. (17.4.35)

If we now take the partial derivative with respect to say β1, note that everything is zero but the first
term, which is just x1 multiplied by β1, so the we obtain that

df

dx1
= β1, (17.4.36)

or more generally that

df

dxi
= βi. (17.4.37)

776 Chapter 17. Appendix: Mathematics for Deep Learning

We can now reassemble this into a matrix to see

df

dx
=


df
dx1
...
df
dxn

 =

β1...
βn

 = β⊤. (17.4.38)

This illustrates a few factors about matrix calculus that we will often counter throughout this sec-
tion:

• First, The computations will get rather involved.

• Second, The final results are much cleaner than the intermediate process, and will always
look similar to the single variable case. In this case, note that d

dx(bx) = b and d
dx(βx) = β⊤

are both similar.

• Third, transposes can often appear seemingly from nowhere. The core reason for this is the
convention that we match the shape of the denominator, thus when we multiply matrices,
we will need to take transposes to match back to the shape of the original term.

To keep building intuition, let s̓ try a computation that is a little harder. Suppose that we have a
column vector x, and a square matrix A and we want to compute

d

dx
(x⊤Ax). (17.4.39)

To drive towards easier to manipulate notation, let s̓ consider this problem using Einstein notation.
In this case we can write the function as

x⊤Ax = xiaijxj . (17.4.40)

To compute our derivative, we need to understand for every k, what the value of

d

dxk
(x⊤Ax) =

d

dxk
xiaijxj . (17.4.41)

By the product rule, this is

d

dxk
xiaijxj =

dxi
dxk

aijxj + xiaij
dxj
dxk

. (17.4.42)

For a term like dxi
dxk

, it is not hard to see that this is one when i = k and zero otherwise. This means
that every term where i and k are different vanish from this sum, so the only terms that remain in
that first sum are the ones where i = k. The same reasoning holds for the second term where we
need j = k. This gives

d

dxk
xiaijxj = akjxj + xiaik. (17.4.43)

Now, the names of the indices in Einstein notation are arbitrary—the fact that i and j are different
is immaterial to this computation at this point, so we can re-index so that they both use i to see
that

d

dxk
xiaijxj = akixi + xiaik = (aki + aik)xi. (17.4.44)

Now, here is where we start to need some practice to go further. Let s̓ try and identify this outcome
in terms of matrix operations. aki + aik is the k, i-th component of A+ A⊤. This gives

d

dxk
xiaijxj = [A+ A⊤]kixi. (17.4.45)

17.4. Multivariable Calculus 777

Similarly, this term is now the product of the matrix A+ A⊤ by the vector x, so we see that[
d

dx
(x⊤Ax)

]
k

=
d

dxk
xiaijxj = [(A+ A⊤)x]k. (17.4.46)

Thus, we see that the k-th entry of the desired derivative from (17.4.39) is just the k-th entry of the
vector on the right, and thus the two are the same. Thus yields

d

dx
(x⊤Ax) = (A+ A⊤)x. (17.4.47)

This required significantly more work than our last one, but the final result is small. More than
that, consider the following computation for traditional single variable derivatives:

d

dx
(xax) =

dx

dx
ax+ xa

dx

dx
= (a+ a)x. (17.4.48)

Equivalently d
dx(ax

2) = 2ax = (a + a)x. Again, we get a result that looks rather like the single
variable result but with a transpose tossed in.

At this point, the pattern should be looking rather suspicious, so let s̓ try to figure out why. When
we take matrix derivatives like this, let s̓ first assume that the expression we get will be another
matrix expression: an expression we can write it in terms of products and sums of matrices and
their transposes. If such an expression exists, it will need to be true for all matrices. In particular,
it will need to be true of 1× 1 matrices, in which case the matrix product is just the product of the
numbers, the matrix sum is just the sum, and the transpose does nothing at all! In other words,
whatever expression we get must match the single variable expression. This means that, with
some practice, one can often guess matrix derivatives just by knowing what the associated single
variable expression must look like!

Let s̓ try this out. Suppose that X is a n × m matrix, U is an n × r and V is an r × m. Let s̓ try to
compute

d

dV
∥X− UV∥22 = ? (17.4.49)

This computation is important in an area called matrix factorization. For us, however, it is just a
derivative to compute. Let s̓ try to imaging what this would be for 1× 1 matrices. In that case, we
get the expression

d

dv
(x− uv)2 = 2(x− uv)u, (17.4.50)

where, the derivative is rather standard. If we try to convert this back into a matrix expression we
get

d

dV
∥X− UV∥22 = 2(X− UV)U. (17.4.51)

However, if we look at this it does not quite work. Recall that X is n ×m, as is UV, so the matrix
2(X − UV) is n × m. On the other hand U is n × r, and we cannot multiply a n × m and a n × r
matrix since the dimensions do not match!

We want to get d
dV , which is the same shape of V, which is r ×m. So somehow we need to take a

n×m matrix and a n× r matrix, multiply them together (perhaps with some transposes) to get a
r×m. We can do this by multiplying U⊤ by (X−UV). Thus, we can guess the solution to (17.4.49)
is

d

dV
∥X− UV∥22 = 2U⊤(X− UV). (17.4.52)

778 Chapter 17. Appendix: Mathematics for Deep Learning

To show we that this works, we would be remiss to not provide a detailed computation. If we
already believe that this rule-of-thumb works, feel free to skip past this derivation. To compute

d

dV
∥X− UV∥22, (17.4.53)

we must find for every a, and b

d

dvab
∥X− UV∥22 =

d

dvab

∑
i,j

(
xij −

∑
k

uikvkj

)2

. (17.4.54)

Recalling that all entries of X and U are constants as far as d
dvab

is concerned, we may push the
derivative inside the sum, and apply the chain rule to the square to get

d

dvab
∥X− UV∥22 =

∑
i,j

2

(
xij −

∑
k

uikvkj

)(∑
k

uik
dvkj
dvab

)
. (17.4.55)

As in the previous derivation, we may note that dvkj
dvab

is only non-zero if the k = a and j = b. If
either of those conditions do not hold, the term in the sum is zero, and we may freely discard it.
We see that

d

dvab
∥X− UV∥22 =

∑
i

2

(
xib −

∑
k

uikvkb

)
uia. (17.4.56)

An important subtlety here is that the requirement that k = a does not occur inside the inner
sum since that k is a dummy variable which we are summing over inside the inner term. For a
notationally cleaner example, consider why

d

dx1

(∑
i

xi

)2

= 2

(∑
i

xi

)
. (17.4.57)

From this point, we may start identifying components of the sum. First,∑
k

uikvkb = [UV]ib. (17.4.58)

So the entire expression in the inside of the sum is

xib −
∑
k

uikvkb = [X− UV]ib. (17.4.59)

This means we may now write our derivative as

d

dvab
∥X− UV∥22 = 2

∑
i

[X− UV]ibuia. (17.4.60)

We want this to look like the a, b element of a matrix so we can use the technique as in the previous
example to arrive at a matrix expression, which means that we need to exchange the order of the
indices on uia. If we notice that uia = [U⊤]ai, we can then write

d

dvab
∥X− UV∥22 = 2

∑
i

[U⊤]ai[X− UV]ib. (17.4.61)

17.4. Multivariable Calculus 779

This is a matrix product, and thus we can conclude that

d

dvab
∥X− UV∥22 = [2U⊤(X− UV)]ab. (17.4.62)

and thus we may write the solution to (17.4.49)

d

dV
∥X− UV∥22 = 2U⊤(X− UV). (17.4.63)

This matches the solution we guessed above!

It is reasonable to ask at this point, “Why can I not just write down matrix versions of all the cal-
culus rules I have learned? It is clear this is still mechanical. Why do we not just get it over with!”
And indeed there are such rules and (Petersen et al., 2008) provides an excellent summary. How-
ever, due to the plethora of ways matrix operations can be combined compared to single values,
there are many more matrix derivative rules than single variable ones. It is often the case that it
is best to work with the indices, or leave it up to automatic differentiation when appropriate.

Summary

• In higher dimensions, we can define gradients which serve the same purpose as derivatives
in one dimension. These allow us to see how a multi-variable function changes when we
make an arbitrary small change to the inputs.

• The backpropagation algorithm can be seen to be a method of organizing the multi-variable
chain rule to allow for the efficient computation of many partial derivatives.

• Matrix calculus allows us to write the derivatives of matrix expressions in concise ways.

Exercises

1. Given a row vector β, compute the derivatives of both f(x) = βx and g(x) = x⊤β⊤. Why do
you get the same answer?

2. Let v be an n dimension vector. What is ∂
∂v∥v∥2?

3. Let L(x, y) = log(ex + ey). Compute the gradient. What is the sum of the components of the
gradient?

4. Let f(x, y) = x2y + xy2. Show that the only critical point is (0, 0). By considering f(x, x),
determine if (0, 0) is a maximum, minimum, or neither.

5. Suppose that we are minimizing a function f(x) = g(x) + h(x). How can we geometrically
interpret the condition of∇f = 0 in terms of g and h?

780 Chapter 17. Appendix: Mathematics for Deep Learning

17.5 Integral Calculus

Differentiation only makes up half of the content of a traditional calculus education. The other
pillar, integration, starts out seeming a rather disjoint question, “What is the area underneath this
curve?” While seemingly unrelated, integration is tightly intertwined with the differentiation via
what is known as the fundamental theorem of calculus.

At the level of machine learning we discuss in this book, we will not need a deep understanding of
integration. However, we will provide a brief introduction to lay the groundwork for any further
applications we will encounter later on.

17.5.1 Geometric Interpretation

Suppose that we have a function f(x). For simplicity, let s̓ assume that f(x) is non-negative (never
takes a value less than zero). What we want to try and understand is: what is the area contained
between f(x) and the x-axis?

%matplotlib inline
import d2l
from IPython import display
from mpl_toolkits import mplot3d
from mxnet import np, npx
npx.set_np()

x = np.arange(-2, 2, 0.01)
f = np.exp(-x**2)

d2l.set_figsize()
d2l.plt.plot(x, f, color='black')
d2l.plt.fill_between(x.tolist(), f.tolist())
d2l.plt.show()

In most cases, this area will be infinite or undefined (consider the area under f(x) = x2), so people
will often talk about the area between a pair of ends, say a and b.

x = np.arange(-2, 2, 0.01)
f = np.exp(-x**2)

(continues on next page)

17.5. Integral Calculus 781

(continued from previous page)

d2l.set_figsize()
d2l.plt.plot(x, f, color='black')
d2l.plt.fill_between(x.tolist()[50:250], f.tolist()[50:250])
d2l.plt.show()

We will denote this area by the integral symbol below:

Area(A) =
∫ b

a
f(x) dx. (17.5.1)

The inner variable is a dummy variable, much like the index of a sum in a
∑

, and so this can be
equivalently written with any inner value we like:∫ b

a
f(x) dx =

∫ b

a
f(z) dz. (17.5.2)

There is a traditional way to try and understand how we might try to approximate such integrals:
we can imaging taking the region in-between a and b and chopping it into N vertical slices. If N
is large, we can approximate the area of each slice by a rectangle, and then add up the areas to get
the total area under the curve. Let s̓ take a look at an example doing this in code. We will see how
to get the true value in a later section.

epsilon = 0.05
a = 0
b = 2

x = np.arange(a, b, epsilon)
f = x / (1 + x**2)

approx = np.sum(epsilon*f)
true = np.log(2) / 2

d2l.set_figsize()
d2l.plt.bar(x.asnumpy(), f.asnumpy(), width=epsilon, align='edge')
d2l.plt.plot(x, f, color='black')
d2l.plt.ylim([0, 1])
d2l.plt.show()

"Approximation: {}, Truth: {}".format(approx, true)

782 Chapter 17. Appendix: Mathematics for Deep Learning

'Approximation: 0.79448557, Truth: 0.34657359027997264'

The issue is that while it can be done numerically, we can do this approach analytically for only
the simplest functions like ∫ b

a
x dx. (17.5.3)

Anything somewhat more complex like our example from the code above∫ b

a

x

1 + x2
dx. (17.5.4)

is beyond what we can solve with such a direct method.

We will instead take a different approach. We will work intuitively with the notion of the area, and
learn the main computational tool used to find integrals: the fundamental theorem of calculus. This
will be the basis for our study of integration.

17.5.2 The Fundamental Theorem of Calculus

To dive deeper into the theory of integration, let s̓ introduce a function

F (x) =

∫ x

0
f(y)dy. (17.5.5)

This function measures the area between 0 and x depending on how we change x. Notice that this
is everything we need since ∫ b

a
f(x) dx = F (b)− F (a). (17.5.6)

This is a mathematical encoding of the fact that we can measure the area out to the far end-point
and then subtract off the area to the near end point as indicated in Fig. 17.5.1.

17.5. Integral Calculus 783

Fig. 17.5.1: Visualizing why we may reduce the problem of computing the area under a curve
between two points to computing the area to the left of a point.

Thus, if we can figure out what the integral over any interval is by figuring out what F (x) is.

To do so, let s̓ consider an experiment. As we often do in calculus, let s̓ imaging what happens
when we shift the value by a tiny bit. From the comment above, we know that

F (x+ ϵ)− F (x) =

∫ x+ϵ

x
f(y) dy. (17.5.7)

This tells us that the function changes by the area under a tiny sliver of a function.

This is the point at which we make an approximation. If we look at a tiny sliver of area like this, it
looks like this area is close to the rectangular area with height the value of f(x) and the base width
ϵ. Indeed, one can show that as ϵ→ 0 this approximation becomes better and better. Thus we can
conclude:

F (x+ ϵ)− F (x) ≈ ϵf(x). (17.5.8)

However, we can now notice: this is exactly the pattern we expect if we were computing the deriva-
tive of F ! Thus we see the following rather surprising fact:

dF

dx
(x) = f(x). (17.5.9)

This is the fundamental theorem of calculus. We may write it in expanded form as

d

dx

∫ x

−∞
f(y) dy = f(x). (17.5.10)

It takes the concept of finding areas (a priori rather hard), and reduces it to a statement derivatives
(something much more completely understood). One last comment that we must make is that this
does not tell we exactly whatF (x). IndeedF (x)+C for anyC has the same derivative. This is a fact-
of-life in the theory of integration. Thankfully, notice that when working with definite integrals,
the constants drop out, and thus are irrelevant to the outcome.∫ b

a
f(x) dx = (F (b) + C)− (F (a) + C) = F (b)− F (a). (17.5.11)

This may seem like abstract non-sense, but let s̓ take a moment to appreciate that it has given us
a whole new perspective on computing integrals. Our goal is no-longer to do some sort of chop-
and-sum process to try and recover the area, rather we need only find a function whose derivative
is the function we have! This is incredible since we can now list many rather difficult integrals
by just reversing the table from Section 17.3.2. For instance, we know that the derivative of xn is
nxn−1. Thus, we can say using the fundamental theorem (17.5.10) that∫ x

0
nyn−1 dy = xn − 0n = xn. (17.5.12)

784 Chapter 17. Appendix: Mathematics for Deep Learning

Similarly, we know that the derivative of ex is itself, so that means∫ x

0
ex dx = ex − e0 = ex − 1. (17.5.13)

In this way, we can develop the entire theory of integration leveraging ideas from differential
calculus freely. Every integration rule derives from this one fact.

17.5.3 Change of Variables

Just as with differentiation, there are a number of rules which make the computation of integrals
more tractable. In fact, every rule of differential calculus (like the product rule, sum rule, and
chain rule) has a corresponding rule for integral calculus (integration by parts, linearity of inte-
gration, and the change of variables formula respectively). In this section, we will dive into what
is arguably the most important from the list: the change of variables formula.

First, suppose that we have a function which is itself an integral:

F (x) =

∫ x

0
f(y) dy. (17.5.14)

Let s̓ suppose that we want to know how this function looks when we compose it with another to
obtain F (u(x)). By the chain rule, we know

d

dx
F (u(x)) =

dF

dx
(u(x)) · du

dx
. (17.5.15)

We can turn this into a statement about integration by using the fundamental theorem (17.5.10)
as above. This gives

F (u(x))− F (u(0)) =

∫ x

0

dF

dx
(u(y)) · du

dy
dy. (17.5.16)

Recalling that F is itself an integral gives that the left hand side may be rewritten to be∫ u(x)

u(0)
f(y) dy =

∫ x

0

dF

dx
(u(y)) · du

dy
dy. (17.5.17)

Similarly, recalling that F is an integral allows us to recognize that dF
dx = f using the fundamental

theorem (17.5.10), and thus we may conclude∫ u(x)

u(0)
f(y) dy =

∫ x

0
f(u(y)) · du

dy
dy. (17.5.18)

This is the change of variables formula.

For a more intuitive derivation, consider what happens when we take an integral of f(u(x)) be-
tween x and x+ ϵ. For a small ϵ, this integral is approximately ϵf(u(x)), the area of the associated
rectangle. Now, let s̓ compare this with the integral of f(y) from u(x) to u(x + ϵ). We know that
u(x + ϵ) ≈ u(x) + ϵdudx(x), so the area of this rectangle is approximately ϵdudx(x)f(u(x)). Thus, to
make the area of these two rectangles to agree, we need to multiply the first one by du

dx(x) as is
illustrated in Fig. 17.5.2.

17.5. Integral Calculus 785

Fig. 17.5.2: Visualizing the transformation of a single thin rectangle under the change of variables.

This tells us that ∫ x+ϵ

x
f(u(y))

du

dy
(y) dy =

∫ u(x+ϵ)

u(x)
f(y) dy. (17.5.19)

This is the change of variables formula expressed for a single small rectangle.

If u(x) and f(x) are properly chosen, this can allow for the computation of incredibly complex
integrals. For instance, if we even chose f(y) = 1 andu(x) = e−x2 (which means du

dx(x) = −2xe
−x2 ,

this can show for instance that

e−1 − 1 =

∫ e−1

e−0

1 dy = −2
∫ 1

0
ye−y2 dy, (17.5.20)

and thus by rearranging that ∫ 1

0
ye−y2 dy =

1− e−1

2
. (17.5.21)

17.5.4 A Comment on Sign Conventions

Keen-eyed readers will observe something strange about the computations above. Namely, com-
putations like ∫ e−1

e−0

1 dy = e−1 − 1 < 0, (17.5.22)

can produce negative numbers. When thinking about areas, it can be strange to see a negative
value, and so it is worth digging into what the convention is.

Mathematicians take the notion of signed areas. This manifests itself in two ways. First, if we
consider a function f(x) which is sometimes less than zero, then the area will also be negative. So
for instance ∫ 1

0
(−1) dx = −1. (17.5.23)

Similarly, integrals which progress from right to left, rather than left to right are also taken to be
negative areas ∫ −1

0
1 dx = −1. (17.5.24)

The standard area (from left to right of a positive function) is always positive. Anything obtained
by flipping it (say flipping over the x-axis to get the integral of a negative number, or flipping over

786 Chapter 17. Appendix: Mathematics for Deep Learning

the y-axis to get an integral in the wrong order) will produce a negative area. And indeed, flipping
twice will give a pair of negative signs that cancel out to have positive area∫ −1

0
(−1) dx = 1. (17.5.25)

If this discussion sounds familiar, it is! In Section 17.1 we discussed how the determinant repre-
sented the signed area in much the same way.

17.5.5 Multiple Integrals

In some cases, we will need to work in higher dimensions. For instance, suppose that we have
a function of two variables, like f(x, y) and we want to know the volume under f when x ranges
over [a, b] and y ranges over [c, d].

Construct grid and compute function
x, y = np.meshgrid(np.linspace(-2, 2, 101), np.linspace(-2, 2, 101),

indexing='ij')
z = np.exp(- x**2 - y**2)

Plot function
ax = d2l.plt.figure().add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z)
d2l.plt.xlabel('x')
d2l.plt.ylabel('y')
d2l.plt.xticks([-2, -1, 0, 1, 2])
d2l.plt.yticks([-2, -1, 0, 1, 2])
d2l.set_figsize()
ax.set_xlim(-2, 2)
ax.set_ylim(-2, 2)
ax.set_zlim(0, 1)
ax.dist = 12

We write this as ∫
[a,b]×[c,d]

f(x, y) dx dy. (17.5.26)

Suppose that we wish to compute this integral. My claim is that we can do this by iteratively com-
puting first the integral in say x and then shifting to the integral in y, that is to say∫

[a,b]×[c,d]
f(x, y) dx dy =

∫ d

c

(∫ b

a
f(x, y) dx

)
dy. (17.5.27)

17.5. Integral Calculus 787

Let s̓ see why this is.

Consider the figure above where we have split the function into ϵ× ϵ squares which we will index
with integer coordinates i, j. In this case, our integral is approximately∑

i,j

ϵ2f(ϵi, ϵj). (17.5.28)

Once we discretize the problem, we may add up the values on these squares in whatever order we
like, and not worry about changing the values. This is illustrated in Fig. 17.5.3. In particular, we
can say that

∑
j

ϵ

(∑
i

ϵf(ϵi, ϵj)

)
. (17.5.29)

Fig. 17.5.3: Illustrating how to decompose a sum over many squares as a sum over first the columns
(1), then adding the column sums together (2).

The sum on the inside is precisely the discretization of the integral

G(ϵj) =

∫ b

a
f(x, ϵj) dx. (17.5.30)

Finally, notice that if we combine these two expressions we get∑
j

ϵG(ϵj) ≈
∫ d

c
G(y) dy =

∫
[a,b]×[c,d]

f(x, y) dx dy. (17.5.31)

Thus putting it all together, we have that∫
[a,b]×[c,d]

f(x, y) dx dy =

∫ d

c

(∫ b

a
f(x, y) dx

)
dy. (17.5.32)

Notice that, once discretized, all we did was rearrange the order in which we added a list of num-
bers. This may make it seem like it is nothing, however this result (called Fubini’s Theorem) is not
always true! For the type of mathematics encountered when doing machine learning (continu-
ous functions), there is no concern, however it is possible to create examples where it fails (for
example the function f(x, y) = xy(x2 − y2)/(x2 + y2)3 over the rectangle [0, 2]× [0, 1]).

Note that the choice to do the integral in x first, and then the integral in y was arbitrary. We could
have equally well chosen to do y first and then x to see∫

[a,b]×[c,d]
f(x, y) dx dy =

∫ b

a

(∫ d

c
f(x, y) dy

)
dx. (17.5.33)

788 Chapter 17. Appendix: Mathematics for Deep Learning

Often times, we will condense down to vector notation, and say that for U = [a, b]× [c, d] this is∫
U
f(x) dx. (17.5.34)

17.5.6 Change of Variables in Multiple Integrals

As we with single variables in (17.5.18), the ability to change variables inside a higher dimensional
integral is a key tool. Let s̓ summarize the result without derivation.

We need a function that reparametrizes our domain of integration. We can take this to be ϕ :
Rn → Rn, that is any function which takes in n real variables and returns another n. To keep
the expressions clean, we will assume that ϕ is injective which is to say it never folds over itself
(ϕ(x) = ϕ(y) =⇒ x = y).

In this case, we can say that∫
ϕ(U)

f(x) dx =

∫
U
f(ϕ(x)) |det(Dϕ(x))| dx. (17.5.35)

where Dϕ is the Jacobian of ϕ, which is the matrix of partial derivatives of ϕ =
(ϕ1(x1, . . . , xn), . . . , ϕn(x1, . . . , xn)),

Dϕ =


∂ϕ1

∂x1
· · · ∂ϕ1

∂xn

...
∂ϕn

∂x1
· · · ∂ϕn

∂xn

 . (17.5.36)

Looking closely, we see that this is similar to the single variable chain rule (17.5.18), except we have
replaced the term du

dx(x) with |det(Dϕ(x))|. Let s̓ see how we can to interpret this term. Recall that
the du

dx(x) term existed to say how much we stretched our x-axis by applying u. The same process
in higher dimensions is to determine how much we stretch the area (or volume, or hyper-volume)
of a little square (or little hyper-cube) by applying ϕ. If ϕ was the multiplication by a matrix, then
we know how the determinant already gives the answer.

With some work, one can show that the Jacobian provides the best approximation to a multivari-
able function ϕ at a point by a matrix in the same way we could approximate by lines or planes
with derivatives and gradients. Thus the determinant of the Jacobian exactly mirrors the scaling
factor we identified in one dimension.

It takes some work to fill in the details to this, so do not worry if they are not clear now. Let s̓ see
at least one example we will make use of later on. Consider the integral∫ ∞

−∞

∫ ∞

−∞
e−x2−y2 dx dy. (17.5.37)

Playing with this integral directly will get us no-where, but if we change variables, we can make
significant progress. If we let ϕ(r, θ) = (r cos(θ), r sin(θ)) (which is to say that x = r cos(θ), y =
r sin(θ)), then we can apply the change of variable formula to see that this is the same thing as∫ ∞

0

∫ 2π

0
e−r2 |det(Dϕ(x))| dθ dr, (17.5.38)

where

|det(Dϕ(x))| =
∣∣∣∣det

[
cos(θ) −r sin(θ)
sin(θ) r cos(θ)

]∣∣∣∣ = r(cos2(θ) + sin2(θ)) = r. (17.5.39)

17.5. Integral Calculus 789

Thus, the integral is ∫ ∞

0

∫ 2π

0
re−r2 dθ dr = 2π

∫ ∞

0
re−r2 dr = π, (17.5.40)

where the final equality follows by the same computation that we used in section Section 17.5.3.

We will meet this integral again when we study continuous random variables in Section 17.6.

Summary

• The theory of integration allows us to answer questions about areas or volumes.

• The fundamental theorem of calculus allows us to leverage knowledge about derivatives to
compute areas via the observation that the derivative of the area up to some point is given
by the value of the function being integrated.

• Integrals in higher dimensions can be computed by iterating single variable integrals.

Exercises

1. What is
∫ 2
1

1
x dx?

2. Use the change of variables formula to integrate
∫ √

π
0 x sin(x2) dx.

3. What is
∫
[0,1]2 xy dx dy?

4. Use the change of variables formula to compute
∫ 2
0

∫ 1
0 xy(x2 − y2)/(x2 + y2)3 dy dx and∫ 1

0

∫ 2
0 f(x, y) = xy(x2 − y2)/(x2 + y2)3 dx dy to see they are different.

17.6 Random Variables

In Section 2.6 we saw the basics of how to work with discrete random variables, which in our case
refer to those random variables which take either a finite set of possible values, or the integers.
In this section, we develop the theory of continuous random variables, which are random variables
which can take on any real value.

790 Chapter 17. Appendix: Mathematics for Deep Learning

17.6.1 Continuous Random Variables

Continuous random variables are a significantly more subtle topic than discrete random variables.
A fair analogy to make is that the technical jump is comparable to the jump between adding lists
of numbers and integrating functions. As such, we will need to take some time to develop the
theory.

From Discrete to Continuous

To understand the additional technical challenges encountered when working with continuous
random variables, let s̓ perform a thought experiment. Suppose that we are throwing a dart at the
dart board, and we want to know the probability that it hits exactly 2cm from the center of the
board.

To start with, we imagine measuring to a single digit of accuracy, that is to say with bins for 0cm,
1cm, 2cm, and so on. We throw say 100 darts at the dart board, and if 20 of them fall into the bin
for 2cm we conclude that 20% of the darts we throw hit the board 2cm away from the center.

However, when we look closer, this does not match our question! We wanted exact equality,
whereas these bins hold all that fell between say 1.5cm and 2.5cm.

Undeterred, we continue further. We measure even more precisely, say 1.9cm, 2.0cm, 2.1cm, and
now see that perhaps 3 of the 100 darts hit the board in the 2.0cm bucket. Thus we conclude the
probability is 3%.

However, this does not solve anything! We have just pushed the issue down one digit further. Let s̓
abstract a bit. Imagine we know the probability that the first k digits match with 2.00000 . . . and we
want to know the probability it matches for the first k + 1 digits. It is fairly reasonable to assume
that the k + 1th digit is essentially a random choice from the set {0, 1, 2, . . . , 9}. At least, we cannot
conceive of a physically meaningful process which would force the number of micrometers away
form the center to prefer to end in a 7 vs a 3.

What this means is that in essence each additional digit of accuracy we require should decrease
probability of matching by a factor of 10. Or put another way, we would expect that

P (distance is 2.00 . . . to k digits) ≈ p · 10−k. (17.6.1)

The value p essentially encodes what happens with the first few digits, and the 10−k handles the
rest.

Notice that if we know the position accurate to k = 4 digits after the decimal. that means we know
the value falls within the interval say [(1.99995, 2.00005] which is an interval of length 2.00005 −
1.99995 = 10−4. Thus, if we call the length of this interval ϵ, we can say

P (distance is in an ϵ-sized interval around 2) ≈ ϵ · p. (17.6.2)

Let s̓ take this one final step further. We have been thinking about the point 2 the entire time, but
never thinking about other points. Nothing is different there fundamentally, but it is the case that
the value p will likely be different. We would at least hope that a dart thrower was more likely to
hit a point near the center, like 2cm rather than 20cm. Thus, the value p is not fixed, but rather
should depend on the point x. This tells us that we should expect

P (distance is in an ϵ-sized interval around x) ≈ ϵ · p(x). (17.6.3)

17.6. Random Variables 791

Indeed, (17.6.3) precisely defines the probability density function. It is a function p(x) which en-
codes the relative probability of hitting near one point versus another. Let s̓ visualize what such a
function might look like.

%matplotlib inline
import d2l
from IPython import display
from mxnet import np, npx
npx.set_np()

Plot the probability density function for some random variable
x = np.arange(-5, 5, 0.01)
p = 0.2*np.exp(-(x - 3)**2 / 2)/np.sqrt(2 * np.pi) + \

0.8*np.exp(-(x + 1)**2 / 2)/np.sqrt(2 * np.pi)

d2l.plot(x, p, 'x', 'Density')

The locations where the function value is large indicates regions where we are more likely to find
the random value. The low portions are areas where we are unlikely to find the random value.

Probability Density Functions

Let s̓ now investigate this further. We have already seen what a probability density function is
intuitively for a random variable X, namely the density function is a function p(x) so that

P (X is in an ϵ-sized interval around x) ≈ ϵ · p(x). (17.6.4)

But what does this imply for the properties of p(x)?

First, probabilities are never negative, thus we should expect that p(x) ≥ 0 as well.

Second, let s̓ imagine that we slice up the R into an infinite number of slices which are ϵ wide, say
with slices (ϵ·i, ϵ·(i+1)]. For each of these, we know from (17.6.4) the probability is approximately

P (X is in an ϵ-sized interval around x) ≈ ϵ · p(ϵ · i), (17.6.5)

so summed over all of them it should be

P (X ∈ R) ≈
∑
i

ϵ · p(ϵ · i). (17.6.6)

792 Chapter 17. Appendix: Mathematics for Deep Learning

This is nothing more than the approximation of an integral discussed in Section 17.5, thus we can
say that

P (X ∈ R) =
∫ ∞

−∞
p(x) dx. (17.6.7)

We know that P (X ∈ R) = 1, since the random variable must take on some number, we can
conclude that for any density ∫ ∞

−∞
p(x) dx = 1. (17.6.8)

Indeed, digging into this further shows that for any a, and b, we see that

P (X ∈ (a, b]) =

∫ b

a
p(x) dx. (17.6.9)

We may approximate this is code by using the same discrete approximation methods as before.
In this case we can approximate the probability of falling in the blue region.

Approximate probability using numerical integration
epsilon = 0.01
x = np.arange(-5, 5, 0.01)
p = 0.2*np.exp(-(x - 3)**2 / 2) / np.sqrt(2 * np.pi) + \

0.8*np.exp(-(x + 1)**2 / 2) / np.sqrt(2 * np.pi)

d2l.set_figsize()
d2l.plt.plot(x, p, color='black')
d2l.plt.fill_between(x.tolist()[300:800], p.tolist()[300:800])
d2l.plt.show()

"Approximate Probability: {}".format(np.sum(epsilon*p[300:800]))

'Approximate Probability: 0.7736172'

It turns out that these two properties describe exactly the space of possible probability density
functions (or p.d.f. s̓ for the commonly encountered abbreviation). They are non-negative func-
tions p(x) ≥ 0 such that ∫ ∞

−∞
p(x) dx = 1. (17.6.10)

17.6. Random Variables 793

We interpret this function by using integration to obtain the probability our random variable is in
a specific interval:

P (X ∈ (a, b]) =

∫ b

a
p(x) dx. (17.6.11)

In sec_distributions we will see a number of common distributions, but let s̓ continue working
in the abstract.

Cumulative Distribution Functions

In the previous section, we saw the notion of the p.d.f. In practice, this is a commonly encountered
method to discuss continuous random variables, but it has one significant pitfall: that the values
of the p.d.f. are not themselves probabilities, but rather a function that we must integrate to yield
probabilities. There is nothing wrong with a density being larger than 10, as long as it is not larger
than 10 for more than an interval of length 1/10. This can be counter-intuitive, so people often
also think in terms of the cumulative distribution function, or c.d.f., which is a probability.

In particular, by using (17.6.11), we define the c.d.f. for a random variable X with density p(x) by

F (x) =

∫ x

−∞
p(x) dx = P (X ≤ x). (17.6.12)

Let s̓ observe a few properties.

• F (x)→ 0 as x→ −∞.

• F (x)→ 1 as x→∞.

• F (x) is non-decreasing (y > x =⇒ F (y) ≥ F (x)).

• F (x) is continuous (has no jumps) if X is a continuous random variable.

With the fourth bullet point, note that this would not be true if X were discrete, say taking the
values 0 and 1 both with probability 1/2. In that case

F (x) =


0 x < 0,
1
2 x < 1,

1 x ≥ 1.

(17.6.13)

In this example, we see one of the benefits of working with the c.d.f., the ability to deal with con-
tinuous or discrete random variables in the same framework, or indeed mixtures of the two (flip
a coin: if heads return the roll of a die, if tails return the distance of a dart throw from the center
of a dart board).

Means

Suppose that we are dealing with a random variables X. The distribution itself can be hard to
interpret. It is often useful to be able to summarize the behavior of a random variable concisely.
Numbers that help us capture the behavior of a random variable are called summary statistics. The
most commonly encountered ones are the mean, the variance, and the standard deviation.

794 Chapter 17. Appendix: Mathematics for Deep Learning

The mean encodes the average value of a random variable. If we have a discrete random variable
X, which takes the values xi with probabilities pi, then the mean is given by the weighted average:
sum the values times the probability that the random variable takes on that value:

µX = E[X] =
∑
i

xipi. (17.6.14)

The way we should interpret the mean (albeit with caution) is that it tells us essentially where the
random variable tends to be located.

As a minimalistic example that we will examine throughout this section, let s̓ take X to be the
random variable which takes the value a− 2 with probability p, a+2 with probability p and a with
probability 1 − 2p. We can compute using (17.6.14) that, for any possible choice of a and p, the
mean is

µX = E[X] =
∑
i

xipi = (a− 2)p+ a(1− 2p) + (a+ 2)p = a. (17.6.15)

Thus we see that the mean is a. This matches the intuition since a is the location around which
we centered our random variable.

Because they are helpful, let s̓ summarize a few properties.

• For any random variable X and numbers a and b, we have that µaX+b = aµX + b.

• If we have two random variables X and Y , we have µX+Y = µX + µY .

Means are useful for understanding the average behavior of a random variable, however the mean
is not sufficient to even have a full intuitive understanding. Making a profit of $10± $1 per sale is
very different from making $10± $15 per sale despite having the same average value. The second
one has a much larger degree of fluctuation, and thus represents a much larger risk. Thus, to
understand the behavior of a random variable, we will need at minimum one more measure: some
measure of how widely a random variable fluctuates.

Variances

This leads us to consider the variance of a random variable. This is a quantitative measure of
how far a random variable deviates from the mean. Consider the expression X − µX . This is the
deviation of the random variable from its mean. This value can be positive or negative, so we need
to do something to make it positive so that we are measuring the magnitude of the deviation.

A reasonable thing to try is to look at |X − µX |, and indeed this leads to a useful quantity called the
mean absolute deviation, however due to connections with other areas of mathematics and statis-
tics, people often use a different solution.

In particular, they look at (X − µX)2. If we look at the typical size of this quantity by taking the
mean, we arrive at the variance

σ2
X = Var(X) = E

[
(X − µX)2

]
= E[X2]− µ2

X . (17.6.16)

The last equality in (17.6.16) holds by expanding out the definition in the middle, and applying the
properties of expectation.

Let s̓ look at our example where X is the random variable which takes the value a− 2 with proba-
bility p, a+ 2 with probability p and a with probability 1− 2p. In this case µX = a, so all we need
to compute is E

[
X2
]
. This can readily be done:

E
[
X2
]
= (a− 2)2p+ a2(1− 2p) + (a+ 2)p = a2 + 8p. (17.6.17)

17.6. Random Variables 795

Thus, we see that by (17.6.16) our variance is

σ2
X = Var(X) = E[X2]− µ2

X = a2 + 8p− a2 = 8p. (17.6.18)

This result again makes sense. The largest p can be is 1/2 which corresponds to picking a − 2 or
a + 2 with a coin flip. The variance of this being 4 corresponds to the fact that both a − 2 and
a+ 2 are 2 units away from the mean, and 22 = 4. On the other end of the spectrum, if p = 0, this
random variable always takes the value 0 and so it has no variance at all.

We will list a few properties of variance below:

• For any random variable X, Var(X) ≥ 0, with Var(X) = 0 if and only if X is a constant.

• For any random variable X and numbers a and b, we have that Var(aX + b) = a2Var(X).

• If we have two independent random variables X and Y , we have Var(X + Y) = Var(X) +
Var(Y).

When interpreting these values, there can be a bit of a hiccup. In particular, let s̓ try imagining
what happens if we keep track of units through this computation. Suppose that we are working
with the star rating assigned to a product on the web page. Then a, a−2, and a+2 are all measured
in units of stars. Similarly, the mean µX is then also measured in stars (being a weighted average).
However, if we get to the variance, we immediately encounter an issue, which is we want to look at
(X−µX)2, which is in units of squared stars. This means that the variance itself is not comparable
to the original measurements. To make it interpretable, we will need to return to our original
units.

Standard Deviations

This summary statistics can always be deduced from the variance by taking the square root! Thus
we define the standard deviation to be

σX =
√

Var(X). (17.6.19)

In our example, this means we now have the standard deviation is σX = 2
√
2p. If we are dealing

with units of stars for our review example, σX is again in units of stars.

The properties we had for the variance can be restated for the standard deviation.

• For any random variable X, σX ≥ 0.

• For any random variable X and numbers a and b, we have that σaX+b = |a|σX

• If we have two independent random variables X and Y , we have σX+Y =
√

σ2
X + σ2

Y .

It is natural at this moment to ask, “If the standard deviation is in the units of our original random
variable, does it represent something we can draw with regards to that random variable?” The
answer is a resounding yes! Indeed much like the mean told we the typical location of our random
variable, the standard deviation gives the typical range of variation of that random variable. We
can make this rigorous with what is known as Chebychev s̓ inequality:

P (X ̸∈ [µX − ασX , µX + ασX]) ≤ 1

α2
. (17.6.20)

Or to state it verbally in the case of α = 10, 99% of the samples from any random variable fall
within 10 standard deviations of the mean. This gives an immediate interpretation to our standard
summary statistics.

796 Chapter 17. Appendix: Mathematics for Deep Learning

To see how this statement is rather subtle, let s̓ take a look at our running example again where X
is the random variable which takes the value a− 2 with probability p, a+ 2 with probability p and
a with probability 1− 2p. We saw that the mean was a and the standard deviation was 2

√
2p. This

means, if we take Chebychev s̓ inequality (17.6.20) with α = 2, we see that the expression is

P
(
X ̸∈ [a− 4

√
2p, a+ 4

√
2p]
)
≤ 1

4
. (17.6.21)

This means that 75% of the time, this random variable will fall within this interval for any value of
p. Now, notice that as p → 0, this interval also converges to the single point a. But we know that
our random variable takes the values a− 2, a, and a+2 only so eventually we can be certain a− 2
and a+ 2 will fall outside the interval! The question is, at what p does that happen. So we want to
solve: for what p does a+ 4

√
2p = a+ 2, which is solved when p = 1/8, which is exactly the first p

where it could possibly happen without violating our claim that no more than 1/4 of samples from
the distribution would fall outside the interval (1/8 to the left, and 1/8 to the right).

Let s̓ visualize this. We will show the probability of getting the three values as three vertical bars
with height proportional to the probability. The interval will be drawn as a horizontal line in the
middle. The first plot shows what happens for p > 1/8where the interval safely contains all points.

Define a helper to plot these figures
def plot_chebychev(a, p):

d2l.set_figsize()
d2l.plt.stem([a-2, a, a+2], [p, 1-2*p, p], use_line_collection=True)
d2l.plt.xlim([-4, 4])
d2l.plt.xlabel('x')
d2l.plt.ylabel('p.m.f.')

d2l.plt.hlines(0.5, a - 4 * np.sqrt(2 * p),
a + 4 * np.sqrt(2 * p), 'black', lw=4)

d2l.plt.vlines(a - 4 * np.sqrt(2 * p), 0.53, 0.47, 'black', lw=1)
d2l.plt.vlines(a + 4 * np.sqrt(2 * p), 0.53, 0.47, 'black', lw=1)
d2l.plt.title("p > 1/8")

d2l.plt.show()

Plot interval when p > 1/8
plot_chebychev(0.0, 0.2)

17.6. Random Variables 797

The second shows that at p = 1/8, the interval exactly touches the two points. This shows that the
inequality is sharp, since no smaller interval could be taken while keeping the inequality true.

Plot interval when p = 1/8
plot_chebychev(0.0, 0.125)

The third shows that for p < 1/8 the interval only contains the center. This does not invalidate the
inequality since we only needed to ensure that no more than 1/4 of the probability falls outside
the interval, which means that once p < 1/8, the two points at a− 2 and a+ 2 can be discarded.

Plot interval when p < 1/8
plot_chebychev(0.0, 0.05)

798 Chapter 17. Appendix: Mathematics for Deep Learning

Means and Variances in the Continuum

This has all been in terms of discrete random variables, but the case of continuous random vari-
ables is similar. To intuitively understand how this works, imagine that we split the real number
line into intervals of length ϵ given by (ϵi, ϵ(i+ 1)]. Once we do this, our continuous random vari-
able has been made discrete and we can use (17.6.14) say that

µX ≈
∑
i

(ϵi)P (X ∈ (ϵi, ϵ(i+ 1)])

≈
∑
i

(ϵi)pX(ϵi)ϵ,
(17.6.22)

where pX is the density of X. This is an approximation to the integral of xpX(x), so we can con-
clude that

µX =

∫ ∞

−∞
xpX(x) dx. (17.6.23)

Similarly, using (17.6.16) the variance can be written as

σ2
X = E[X2]− µ2

X =

∫ ∞

−∞
x2pX(x) dx−

(∫ ∞

−∞
xpX(x) dx

)2

. (17.6.24)

Everything stated above about the mean, the variance, and the standard deviation above still apply
in this case. For instance, if we consider the random variable with density

p(x) =

{
1 x ∈ [0, 1],

0 otherwise.
(17.6.25)

we can compute

µX =

∫ ∞

−∞
xp(x) dx =

∫ 1

0
x dx =

1

2
. (17.6.26)

and

σ2
X =

∫ ∞

−∞
x2p(x) dx−

(
1

2

)2

=
1

3
− 1

4
=

1

12
. (17.6.27)

As a warning, let s̓ examine one more example, known as the Cauchy distribution. This is the dis-
tribution with p.d.f. given by

p(x) =
1

1 + x2
. (17.6.28)

Plot the Cauchy distribution p.d.f.
x = np.arange(-5, 5, 0.01)
p = 1 / (1 + x**2)

d2l.plot(x, p, 'x', 'p.d.f.')

17.6. Random Variables 799

This function looks innocent, and indeed consulting a table of integrals will show it has area one
under it, and thus it defines a continuous random variable.

To see what goes astray, let s̓ try to compute the variance of this. This would involve using (17.6.16)
computing ∫ ∞

−∞

x2

1 + x2
dx. (17.6.29)

The function on the inside looks like this:

Plot the integrand needed to compute the variance
x = np.arange(-20, 20, 0.01)
p = x**2 / (1 + x**2)

d2l.plot(x, p, 'x', 'integrand')

This function clearly has infinite area under it since it is essentially the constant one with a small
dip near zero, and indeed we could show that∫ ∞

−∞

x2

1 + x2
dx =∞. (17.6.30)

This means it does not have a well-defined finite variance.

800 Chapter 17. Appendix: Mathematics for Deep Learning

However, looking deeper shows an even more disturbing result. Let s̓ try to compute the mean
using (17.6.14). Using the change of variables formula, we see

µX =

∫ ∞

−∞

x

1 + x2
dx =

1

2

∫ ∞

1

1

u
du. (17.6.31)

The integral inside is the definition of the logarithm, so this is in essence log(∞) =∞, so there is
no well-defined average value either!

Machine learning scientists define their models so that we most often do not need to deal with
these issues, and will in the vast majority of cases deal with random variables with well-defined
means and variances. However, every so often random variables with heavy tails (that is those
random variables where the probabilities of getting large values are large enough to make things
like the mean or variance undefined) are helpful in modeling physical systems, thus it is worth
knowing that they exist.

Joint Density Functions

The above work all assumes we are working with a single real valued random variable. But what
if we are dealing with two or more potentially highly correlated random variables? This circum-
stance is the norm in machine learning: imagine random variables like Ri,j which encode the red
value of the pixel at the (i, j) coordinate in an image, or Pt which is a random variable given by
a stock price at time t. Nearby pixels tend to have similar color, and nearby times tend to have
similar prices. We cannot treat them as separate random variables, and expect to create a success-
ful model (we will see in Section 17.8 a model that under-performs due to such an assumption).
We need to develop the mathematical language to handle these correlated continuous random
variables.

Thankfully, with the multiple integrals in Section 17.5 we can develop such a language. Suppose
that we have, for simplicity, two random variables X,Y which can be correlated. Then, similar to
the case of a single variable, we can ask the question:

P (X is in an ϵ-sized interval around x and Y is in an ϵ-sized interval around y). (17.6.32)

Similar reasoning to the single variable case shows that this should be approximately

P (X is in an ϵ-sized interval around x and Y is in an ϵ-sized interval around y) ≈ ϵ2p(x, y),

(17.6.33)

for some function p(x, y). This is referred to as the joint density of X and Y . Similar properties
are true for this as we saw in the single variable case. Namely:

• p(x, y) ≥ 0;

•
∫
R2 p(x, y) dx dy = 1;

• P ((X,Y) ∈ D) =
∫
D p(x, y) dx dy.

In this way, we can deal with multiple, potentially correlated random variables. If we wish to
work with more than two random variables, we can extend the multivariate density to as many
coordinates as desired by considering p(x) = p(x1, . . . , xn). The same properties of being non-
negative, and having total integral of one still hold.

17.6. Random Variables 801

Marginal Distributions

When dealing with multiple variables, we often times want to be able to ignore the relationships
and ask, “how is this one variable distributed?” Such a distribution is called a marginal distribution.

To be concrete, let s̓ suppose that we have two random variables X,Y with joint density given by
pX,Y (x, y). We will be using the subscript to indicate what random variables the density is for. The
question of finding the marginal distribution is taking this function, and using it to find pX(x).

As with most things, it is best to return to the intuitive picture to figure out what should be true.
Recall that the density is the function pX so that

P (X ∈ [x, x+ ϵ]) ≈ ϵ · pX(x). (17.6.34)

There is no mention of Y , but if all we are given is pX,Y , we need to include Y somehow. We can
first observe that this is the same as

P (X ∈ [x, x+ ϵ], and Y ∈ R) ≈ ϵ · pX(x). (17.6.35)

Our density does not directly tell us about what happens in this case, we need to split into small
intervals in y as well, so we can write this as

ϵ · pX(x) ≈
∑
i

P (X ∈ [x, x+ ϵ], and Y ∈ [ϵ · i, ϵ · (i+ 1)])

≈
∑
i

ϵ2pX,Y (x, ϵ · i).
(17.6.36)

Fig. 17.6.1: By summing along the columns of our array of probabilities, we are able to obtain the
marginal distribution for just the random variable represented along the x-axis.

This tells us to add up the value of the density along a series of squares in a line as is show in in
Fig. 17.6.1. Indeed, after canceling one factor of epsilon from both sides, and recognizing the sum
on the right is the integral over y, we can conclude that

pX(x) ≈
∑
i

ϵpX,Y (x, ϵ · i)

≈
∫ ∞

−∞
pX,Y (x, y) dy.

(17.6.37)

802 Chapter 17. Appendix: Mathematics for Deep Learning

Thus we see

pX(x) =

∫ ∞

−∞
pX,Y (x, y) dy. (17.6.38)

This tells us that to get a marginal distribution, we integrate over the variables we do not care
about. This process is often referred to as integrating out or marginalized out the unneeded vari-
ables.

Covariance

When dealing with multiple random variables, there is one additional summary statistic which
is helpful to know: the covariance. This measures the degree that two random variable fluctuate
together.

Suppose that we have two random variablesX andY , to begin with, let s̓ suppose they are discrete,
taking on values (xi, yj) with probability pij. In this case, the covariance is defined as

σXY = Cov(X,Y) =
∑
i,j

(xi − µX)(yj − µY)pij . = E[XY]− E[X]E[Y]. (17.6.39)

To think about this intuitively: consider the following pair of random variables. Suppose that X
takes the values 1 and 3, and Y takes the values −1 and 3. Suppose that we have the following
probabilities

P (X = 1 and Y = −1) = p

2
,

P (X = 1 and Y = 3) =
1− p

2
,

P (X = 3 and Y = −1) = 1− p

2
,

P (X = 3 and Y = 3) =
p

2
,

(17.6.40)

where p is a parameter in [0, 1] we get to pick. Notice that if p = 1 then they are both always
their minimum or maximum values simultaneously, and if p = 0 they are guaranteed to take their
flipped values simultaneously (one is large when the other is small and vice versa). If p = 1/2,
then the four possibilities are all equally likely, and neither should be related. Let s̓ compute the
covariance. First, note µX = 2 and µY = 1, so we may compute using (17.6.39):

Cov(X,Y) =
∑
i,j

(xi − µX)(yj − µY)pij

= (1− 2)(−1− 1)
p

2
+ (1− 2)(3− 1)

1− p

2
+ (3− 2)(−1− 1)

1− p

2
+ (3− 2)(3− 1)

p

2
= 4p− 2.

(17.6.41)

When p = 1 (the case where the are both maximally positive or negative at the same time) has a
covariance of 2. When p = 0 (the case where they are flipped) the covariance is−2. Finally, when
p = 1/2 (the case where they are unrelated), the covariance is 0. Thus we see that the covariance
measures how these two random variables are related.

A quick note on the covariance is that it only measures these linear relationships. More complex
relationships like X = Y 2 where Y is randomly chosen from {−2,−1, 0, 1, 2}with equal probabil-
ity can be missed. Indeed a quick computation shows that these random variables have covariance
zero, despite one being a deterministic function of the other.

17.6. Random Variables 803

For continuous random variables, much the same story holds. At this point, we are pretty comfort-
able with doing the transition between discrete and continuous, so we will provide the continuous
analogue of (17.6.39) without any derivation.

σXY =

∫
R2

(x− µX)(y − µY)p(x, y) dx dy. (17.6.42)

For visualization, let s̓ take a look at a collection of random variables with tunable covariance.

Plot a few random variables adjustable covariance
covs = [-0.9, 0.0, 1.2]
d2l.plt.figure(figsize=(12, 3))
for i in range(3):

X = np.random.normal(0, 1, 500)
Y = covs[i]*X + np.random.normal(0, 1, 500)

d2l.plt.subplot(1, 4, i+1)
d2l.plt.scatter(X.asnumpy(), Y.asnumpy())
d2l.plt.xlabel('X')
d2l.plt.ylabel('Y')
d2l.plt.title("cov = {}".format(covs[i]))

d2l.plt.show()

Let s̓ see some properties of covariances:

• For any random variable X, Cov(X,X) = Var(X).

• For any random variables X,Y and numbers a and b, Cov(aX + b, Y) = Cov(X, aY + b) =
aCov(X,Y).

• If X and Y are independent then Cov(X,Y) = 0.

In addition, we can use the covariance to expand a relationship we saw before. Recall that is X
and Y are two independent random variables then

Var(X + Y) = Var(X) + Var(Y). (17.6.43)

With knowledge of covariances, we can expand this relationship. Indeed, some algebra can show
that in general,

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X,Y). (17.6.44)

804 Chapter 17. Appendix: Mathematics for Deep Learning

This allows us to generalize the variance summation rule for correlated random variables.

Correlation

As we did in the case of means and variances, let s̓ now consider units. If X is measured in one
unit (say inches), and Y is measured in another (say dollars), the covariance is measured in the
product of these two units inches × dollars. These units can be hard to interpret. What we will
often want in this case is a unit-less measurement of relatedness. Indeed, often we do not care
about exact quantitative correlation, but rather ask if the correlation is in the same direction, and
how strong the relationship is.

To see what makes sense, let s̓ perform a thought experiment. Suppose that we convert our ran-
dom variables in inches and dollars to be in inches and cents. In this case the random variable Y is
multiplied by 100. If we work through the definition, this means that Cov(X,Y) will be multiplied
by 100. Thus we see that in this case a change of units change the covariance by a factor of 100.
Thus, to find our unit-invariant measure of correlation, we will need to divide by something else
that also gets scaled by 100. Indeed we have a clear candidate, the standard deviation! Indeed if
we define the correlation coefficient to be

ρ(X,Y) =
Cov(X,Y)

σXσY
, (17.6.45)

we see that this is a unit-less value. A little mathematics can show that this number is between−1
and 1 with 1 meaning maximally positively correlated, whereas −1 means maximally negatively
correlated.

Returning to our explicit discrete example above, we can see that σX = 1 and σY = 2, so we can
compute the correlation between the two random variables using (17.6.45) to see that

ρ(X,Y) =
4p− 2

1 · 2
= 2p− 1. (17.6.46)

This now ranges between−1 and 1 with the expected behavior of 1 meaning most correlated, and
−1 meaning minimally correlated.

As another example, consider X as any random variable, and Y = aX + b as any linear determin-
istic function of X. Then, one can compute that

σY = σaX+b = |a|σX , (17.6.47)

Cov(X,Y) = Cov(X, aX + b) = aCov(X,X) = aVar(X), (17.6.48)

and thus by (17.6.45) that

ρ(X,Y) =
aVar(X)

|a|σ2
X

=
a

|a|
= sign(a). (17.6.49)

Thus we see that the correlation is +1 for any a > 0, and −1 for any a < 0 illustrating that corre-
lation measures the degree and directionality the two random variables are related, not the scale
that the variation takes.

Let s̓ again plot a collection of random variables with tunable correlation.

17.6. Random Variables 805

Plot a few random variables adjustable correlations
cors = [-0.9, 0.0, 1.0]
d2l.plt.figure(figsize=(12, 3))
for i in range(3):

X = np.random.normal(0, 1, 500)
Y = cors[i] * X + np.sqrt(1 - cors[i]**2) * np.random.normal(0, 1, 500)

d2l.plt.subplot(1, 4, i + 1)
d2l.plt.scatter(X.asnumpy(), Y.asnumpy())
d2l.plt.xlabel('X')
d2l.plt.ylabel('Y')
d2l.plt.title("cor = {}".format(cors[i]))

d2l.plt.show()

Let s̓ list a few properties of the correlation below.

• For any random variable X, ρ(X,X) = 1.

• For any random variables X,Y and numbers a and b, ρ(aX+b, Y) = ρ(X, aY +b) = ρ(X,Y).

• If X and Y are independent with non-zero variance then ρ(X,Y) = 0.

As a final note, you may feel like some of these formulae are familiar. Indeed, if we expand ev-
erything out assuming that µX = µY = 0, we see that this is

ρ(X,Y) =

∑
i,j xiyipij√∑

i,j x
2
i pij

√∑
i,j y

2
j pij

. (17.6.50)

This looks like a sum of a product of terms divided by the square root of sums of terms. This is
exactly the formula for the cosine of the angle between two vectors v,w with the different coordi-
nates weighted by pij:

cos(θ) =
v ·w
∥v∥∥w∥

=

∑
i viwi√∑

i v
2
i

√∑
iw

2
i

. (17.6.51)

Indeed if we think of norms as being related to standard deviations, and correlations as being
cosines of angles, much of the intuition we have from geometry can be applied to thinking about
random variables.

806 Chapter 17. Appendix: Mathematics for Deep Learning

Summary

• Continuous random variables are random variables that can take on a continuum of values.
They have some technical difficulties that make them more challenging to work with com-
pared to discrete random variables.

• The probability density function allows us to work with continuous random variables by
giving a function where the area under the curve on some interval gives the probability of
finding a sample point in that interval.

• The cumulative distribution function is the probability of observing the random variable to
be less than a given threshold. It can provide a useful alternate viewpoint which unifies
discrete and continuous variables.

• The mean is the average value of a random variable.

• The variance is the expected square of the difference between the random variable and its
mean.

• The standard deviation is the square root of the variance. It can be thought of as measuring
the range of values the random variable may take.

• Chebychev s̓ inequality allows us to make this intuition rigorous by giving an explicit interval
that contains the random variable most of the time.

• Joint densities allow us to work with correlated random variables. We may marginalize joint
densities by integrating over unwanted random variables to get the distribution of the de-
sired random variable.

• The covariance and correlation coefficient provide a way to measure any linear relationship
between two correlated random variables.

Exercises

1. Suppose that we have the random variable with density given by p(x) = 1
x2 for x ≥ 1 and

p(x) = 0 otherwise. What is P (X > 2)?

2. The Laplace distribution is a random variable whose density is given by p(x = 1
2e

−|x|. What
is the mean and the standard deviation of this function? As a hint,

∫∞
0 xe−x dx = 1 and∫∞

0 x2e−x dx = 2.

3. I walk up to you on the street and say “I have a random variable with mean 1, standard devi-
ation 2, and I observed 25% of my samples taking a value larger than 9.” Do you believe me?
Why or why not?

4. Suppose that you have two random variables X,Y , with joint density given by pXY (x, y) =
4xy for x, y ∈ [0, 1] and pXY (x, y) = 0 otherwise. What is the covariance of X and Y ?

17.6. Random Variables 807

17.7 Maximum Likelihood

One of the most commonly encountered way of thinking in machine learning is the maximum
likelihood point of view. This is the concept that when working with a probabilistic model with
unknown parameters, the parameters which make the data have the highest probability are the
most likely ones.

17.7.1 The Maximum Likelihood Principle

This has a Bayesian interpretation which can be helpful to think about. Suppose that we have a
model with parameters θ and a collection of data points X. For concreteness, we can imagine that
θ is a single value representing the probability that a coin comes up heads when flipped, and X is
a sequence of independent coin flips. We will look at this example in depth later.

If we want to find the most likely value for the parameters of our model, that means we want to
find

argmaxP (θ | X). (17.7.1)

By Bayesʼ rule, this is the same thing as

argmax
P (X | θ)P (θ)

P (X)
. (17.7.2)

The expression P (X), a parameter agnostic probability of generating the data, does not depend
on θ at all, and so can be dropped without changing the best choice of θ. Similarly, we may now
posit that we have no prior assumption on which set of parameters are better than any others, so
we may declare that P (θ) does not depend on theta either! This, for instance, makes sense in our
coin flipping example where the probability it comes up heads could be any value in [0, 1] without
any prior belief it is fair or not (often referred to as an uninformative prior). Thus we see that our
application of Bayesʼ rule shows that our best choice of θ is the maximum likelihood estimate for
θ:

θ̂ = argmax
θ

P (X | θ). (17.7.3)

As a matter of common terminology, the probability of the data given the parameters (P (X | θ))
is referred to as the likelihood.

A Concrete Example

Let s̓ see how this works in a concrete example. Suppose that we have a single parameter θ rep-
resenting the probability that a coin flip is heads. Then the probability of getting a tails is 1 − θ,
and so if our observed data X is a sequence with nH heads and nT tails, we can use the fact that
independent probabilities multiply to see that

P (X | θ) = θnH (1− θ)nT . (17.7.4)

If we flip 13 coins and get the sequence “HHHTHTTHHHHHT”, which has nH = 9 and nT = 4, we
see that this is

P (X | θ) = θ9(1− θ)4. (17.7.5)

808 Chapter 17. Appendix: Mathematics for Deep Learning

One nice thing about this example will be that we know the answer going in. Indeed, if we said
verbally, “I flipped 13 coins, and 9 came up heads, what is our best guess for the probability that
the coin comes us heads?,” everyone would correctly guess 9/13. What this maximum likelihood
method will give us is a way to get that number from first principals in a way that will generalize
to vastly more complex situations.

For our example, the plot of P (X | θ) is as follows:

%matplotlib inline
import d2l
from mxnet import autograd, np, npx
npx.set_np()

theta = np.arange(0, 1, 0.001)
p = theta**9 * (1 - theta)**4.

d2l.plot(theta, p, 'theta', 'likelihood')

This has its maximum value somewhere near our expected 9/13 ≈ 0.7 To see if it is exactly
there, we can turn to calculus. Notice that at the maximum, the function is flat. Thus, we could
find the maximum likelihood estimate (17.7.1) by finding the values of θ where the derivative is
zero, and finding the one that gives the highest probability. We compute:

0 =
d

dθ
P (X | θ)

=
d

dθ
θ9(1− θ)4

= 9θ8(1− θ)4 − 4θ9(1− θ)3

= θ8(1− θ)3(9− 13θ).

(17.7.6)

This has three solutions: 0, 1 and 9/13. The first two are clearly minima, not maxima as they assign
probability 0 to our sequence. The final value does not assign zero probability to our sequence,
and thus must be the maximum likelihood estimate θ̂ = 9/13.

17.7. Maximum Likelihood 809

17.7.2 Numerical Optimization and the Negative Log-Likelihood

The previous example is nice, but what if we have billions of parameters and data points.

First notice that, if we make the assumption that all the data points are independent, we can no
longer practically consider the likelihood itself as it is a product of many probabilities. Indeed,
each probability is in [0, 1], say typically of size about 1/2, and the product of (1/2)1000000000 is far
below machine precision. We cannot work with that directly.

However, recall that the logarithm turns products to sums, in which case

log((1/2)1000000000) = 1000000000 · log(1/2) ≈ −301029995.6 . . . (17.7.7)

This number fits perfectly within even a single precision 32-bit float. Thus, we should consider
the log-likelihood, which is

log(P (X | θ)). (17.7.8)

Since the function x 7→ log(x) is increasing, maximizing the likelihood is the same thing as maxi-
mizing the log-likelihood. Indeed in Section 17.8 we will see this reasoning applied when working
with the specific example of the naive Bayes classifier.

We often work with loss functions, where we wish to minimize the loss. We may turn maximum
likelihood into the minimization of a loss by taking − log(P (X | θ)), which is the negative log-
likelihood.

To illustrate this, consider the coin flipping problem from before, and pretend that we do not know
the closed form solution. The we may compute that

− log(P (X | θ)) = − log(θnH (1− θ)nT) = −(nH log(θ) + nT log(1− θ)). (17.7.9)

This can be written into code, and freely optimized even for billions of coin flips.

Set up our data
n_H = 8675309
n_T = 25624

Initialize our paramteres
theta = np.array(0.5)
theta.attach_grad()

Perform gradient descent
lr = 0.00000000001
for iter in range(10):

with autograd.record():
loss = -(n_H * np.log(theta) + n_T * np.log(1 - theta))

loss.backward()
theta -= lr * theta.grad

Check output
theta, n_H / (n_H + n_T)

(array(0.50172704), 0.9970550284664874)

810 Chapter 17. Appendix: Mathematics for Deep Learning

Numerical convenience is only one reason people like to use negative log-likelihoods. Indeed,
there are a several reasons that it can be preferable.

The second reason we consider the log-likelihood is the simplified application of calculus rules. As
discussed above, due to independence assumptions, most probabilities we encounter in machine
learning are products of individual probabilities.

P (X | θ) = p(x1 | θ) · p(x2 | θ) · · · p(xn | θ). (17.7.10)

This means that if we directly apply the product rule to compute a derivative we get

∂

∂θ
P (X | θ) =

(
∂

∂θ
P (x1 | θ)

)
· P (x2 | θ) · · ·P (xn | θ)

+ P (x1 | θ) ·
(

∂

∂θ
P (x2 | θ)

)
· · ·P (xn | θ)

...

+ P (x1 | θ) · P (x2 | θ) · · ·
(

∂

∂θ
P (xn | θ)

)
.

(17.7.11)

This requires n(n− 1) multiplications, along with (n− 1) additions, so it is total of quadratic time
in the inputs! Sufficient cleverness in grouping terms will reduce this to linear time, but it requires
some thought. For the negative log-likelihood we have instead

− log (P (X | θ)) = − log(P (x1 | θ))− log(P (x2 | θ)) · · · − log(P (xn | θ)), (17.7.12)

which then gives

− ∂

∂θ
log (P (X | θ)) = 1

P (x1 | θ)

(
∂

∂θ
P (x1 | θ)

)
+ · · ·+ 1

P (xn | θ)

(
∂

∂θ
P (xn | θ)

)
. (17.7.13)

This requires only n divides and n− 1 sums, and thus is linear time in the inputs.

The third and final reason to consider the negative log-likelihood is the relationship to information
theory, which we will discuss in detail in Section 17.10. This is a rigorous mathematical theory
which gives a way to measure the degree of information or randomness in a random variable.
The key object of study in that field is the entropy which is

H(p) = −
∑
i

pi log2(pi), (17.7.14)

which measures the randomness of a source. Notice that this is nothing more than the average
− log probability, and thus if we take our negative log-likelihood and divide by the number of data
points, we get a relative of entropy known as cross-entropy. This theoretical interpretation alone
would be sufficiently compelling to motivate reporting the average negative log-likelihood over
the dataset as a way of measuring model performance.

17.7.3 Maximum Likelihood for Continuous Variables

Everything that we have done so far assumes we are working with discrete random variables, but
what if we want to work with continuous ones?

17.7. Maximum Likelihood 811

The short summary is that nothing at all changes, except we replace all the instances of the proba-
bility with the probability density. Recalling that we write densities with lower case p, this means
that for example we now say

− log (p(X | θ)) = − log(p(x1 | θ))− log(p(x2 | θ)) · · · − log(p(xn | θ)) = −
∑
i

log(p(xi | θ)).

(17.7.15)

The question becomes, “Why is this OK?” After all, the reason we introduced densities was because
probabilities of getting specific outcomes themselves was zero, and thus is not the probability of
generating our data for any set of parameters zero?

Indeed, this is the case, and understanding why we can shift to densities is an exercise in tracing
what happens to the epsilons.

Let s̓ first re-define our goal. Suppose that for continuous random variables we no longer want to
compute the probability of getting exactly the right value, but instead matching to within some
range ϵ. For simplicity, we assume our data is repeated observations x1, . . . , xN of identically dis-
tributed random variables X1, . . . , XN . As we have seen previously, this can be written as

P (X1 ∈ [x1, x1 + ϵ], X2 ∈ [x2, x2 + ϵ], . . . , XN ∈ [xN , xN + ϵ] | θ)
≈ϵNp(x1 | θ) · p(x2 | θ) · · · p(xn | θ).

(17.7.16)

Thus, if we take negative logarithms of this we obtain

− log(P (X1 ∈ [x1, x1 + ϵ], X2 ∈ [x2, x2 + ϵ], . . . , XN ∈ [xN , xN + ϵ] | θ))

≈−N log(ϵ)−
∑
i

log(p(xi | θ)). (17.7.17)

If we examine this expression, the only place that the ϵ occurs is in the additive constant−N log(ϵ).
This does not depend on the parameters θ at all, so the optimal choice of θ does not depend on
our choice of ϵ! If we demand four digits or four-hundred, the best choice of θ remains the same,
thus we may freely drop the epsilon to see that what we want to optimize is

−
∑
i

log(p(xi | θ)). (17.7.18)

Thus, we see that the maximum likelihood point of view can operate with continuous random
variables as easily as with discrete ones by replacing the probabilities with probability densities.

Summary

• The maximum likelihood principle tells us that the best fit model for a given dataset is the
one that generates the data with the highest probability.

• Often people work with the negative log-likelihood instead for a variety of reasons: numer-
ical stability, conversion of products to sums (and the resulting simplification of gradient
computations), and theoretical ties to information theory.

• While simplest to motivate in the discrete setting, it may be freely generalized to the contin-
uous setting as well by maximizing the probability density assigned to the datapoints.

812 Chapter 17. Appendix: Mathematics for Deep Learning

Exercises

1. Suppose that you know that a random variable has density 1
αe

−αx for some value α. You
obtain a single observation from the random variable which is the number 3. What is the
maximum likelihood estimate for α?

2. Suppose that you have a dataset of samples {xi}Ni=1 drawn from a Gaussian with unknown
mean, but variance 1. What is the maximum likelihood estimate for the mean?

17.8 Naive Bayes

Throughout the previous sections, we learned about the theory of probability and random vari-
ables. To put this theory to work, let s̓ introduce the naive Bayes classifier. This uses nothing but
probabilistic fundamentals to allow us to perform classification of digits.

Learning is all about making assumptions. If we want to classify a new data point that we have
never seen before we have to make some assumptions about which data points are similar to each
other. The naive Bayes classifier, a popular and remarkably clear algorithm, assumes all features
are independent from each other to simplify the computation. In this section, we will apply this
model to recognize characters in images.

%matplotlib inline
import d2l
import math
from mxnet import gluon, np, npx
npx.set_np()
d2l.use_svg_display()

17.8.1 Optical Character Recognition

MNIST (LeCun et al., 1998) is one of widely used datasets. It contains 60,000 images for training
and 10,000 images for validation. Each image contains a handwritten digit from 0 to 9. The task is
classifying each image into the corresponding digit.

Gluon provides a MNIST class in the data.vision module to automatically retrieve the dataset from
the internet. Subsequently, Gluon will use the already-downloaded local copy. We specify whether
we are requesting the training set or the test set by setting the value of the parameter train to
True or False, respectively. Each image is a grayscale image with both width and height of 28 with
shape (28,28,1). We use a customized transformation to remove the last channel dimension. In
addition, the dataset represents each pixel by a unsigned 8-bit integer. We quantize them into
binary features to simplify the problem.

def transform(data, label):
return np.floor(data.astype('float32') / 128).squeeze(axis=-1), label

(continues on next page)

17.8. Naive Bayes 813

(continued from previous page)

mnist_train = gluon.data.vision.MNIST(train=True, transform=transform)
mnist_test = gluon.data.vision.MNIST(train=False, transform=transform)

We can access a particular example, which contains the image and the corresponding label.

image, label = mnist_train[2]
image.shape, label

((28, 28), array(4, dtype=int32))

Our example, stored here in the variable image, corresponds to an image with a height and width
of 28 pixels.

image.shape, image.dtype

((28, 28), dtype('float32'))

Our code stores the label of each image as a scalar. Its type is a 32-bit integer.

label, type(label), label.dtype

(array(4, dtype=int32), mxnet.numpy.ndarray, dtype('int32'))

We can also access multiple examples at the same time.

images, labels = mnist_train[10:38]
images.shape, labels.shape

((28, 28, 28), (28,))

Let s̓ visualize these examples.

d2l.show_images(images, 2, 9);

814 Chapter 17. Appendix: Mathematics for Deep Learning

17.8.2 The Probabilistic Model for Classification

In a classification task, we map an example into a category. Here an example is a grayscale 28×28
image, and a category is a digit. (Refer to Section 3.4 for a more detailed explanation.) One natural
way to express the classification task is via the probabilistic question: what is the most likely label
given the features (i.e., image pixels)? Denote by x ∈ Rd the features of the example and y ∈ R the
label. Here features are image pixels, where we can reshape a 2-dimensional image to a vector so
that d = 282 = 784, and labels are digits. The probability of the label given the features is p(y | x).
If we are able to compute these probabilities, which are p(y | x) for y = 0, . . . , 9 in our example,
then the classifier will output the prediction ŷ given by the expression:

ŷ = argmax p(y | x). (17.8.1)

Unfortunately, this requires that we estimate p(y | x) for every value of x = x1, ..., xd. Imagine
that each feature could take one of 2 values. For example, the feature x1 = 1 might signify that
the word apple appears in a given document and x1 = 0 would signify that it does not. If we had
30 such binary features, that would mean that we need to be prepared to classify any of 230 (over
1 billion!) possible values of the input vector x.

Moreover, where is the learning? If we need to see every single possible example in order to predict
the corresponding label then we are not really learning a pattern but just memorizing the dataset.

17.8.3 The Naive Bayes Classifier

Fortunately, by making some assumptions about conditional independence, we can introduce
some inductive bias and build a model capable of generalizing from a comparatively modest se-
lection of training examples. To begin, let s̓ use Bayes theorem, to express the classifier as

ŷ = argmaxy p(y | x) = argmaxy

p(x | y)p(y)
p(x)

. (17.8.2)

Note that the denominator is the normalizing term p(x) which does not depend on the value of
the label y. As a result, we only need to worry about comparing the numerator across different
values of y. Even if calculating the denominator turned out to be intractable, we could get away
with ignoring it, so long as we could evaluate the numerator. Fortunately, even if we wanted to
recover the normalizing constant, we could. We can always recover the normalization term since∑

y p(y | x) = 1.

Now, let s̓ focus on p(x | y). Using the chain rule of probability, we can express the term p(x | y) as

p(x1 | y) · p(x2 | x1, y) · ... · p(xd | x1, ..., xd−1, y). (17.8.3)

By itself, this expression does not get us any further. We still must estimate roughly 2d parameters.
However, if we assume that the features are conditionally independent of each other, given the label,
then suddenly we are in much better shape, as this term simplifies to

∏
i p(xi | y), giving us the

predictor

ŷ = argmaxy

d∏
i=1

p(xi | y)p(y). (17.8.4)

If we can estimate
∏

i p(xi = 1 | y) for every i and y, and save its value in Pxy[i, y], here Pxy is a
d× n matrix with n being the number of classes and y ∈ {1, . . . , n}. In addition, we estimate p(y)

17.8. Naive Bayes 815

for every y and save it in Py[y], with Py a n-length vector. Then for any new example x, we could
compute

ŷ = argmaxy

d∏
i=1

Pxy[xi, y]Py[y], (17.8.5)

for any y. So our assumption of conditional independence has taken the complexity of our model
from an exponential dependence on the number of featuresO(2dn) to a linear dependence, which
isO(dn).

17.8.4 Training

The problem now is that we do not know Pxy and Py. So we need to estimate their values given
some training data first. This is training the model. Estimating Py is not too hard. Since we are
only dealing with 10 classes, we may count the number of occurrences ny for each of the digits
and divide it by the total amount of data n. For instance, if digit 8 occurs n8 = 5, 800 times and we
have a total of n = 60, 000 images, the probability estimate is p(y = 8) = 0.0967.

X, Y = mnist_train[:] # All training examples

n_y = np.zeros((10))
for y in range(10):

n_y[y] = (Y == y).sum()
P_y = n_y / n_y.sum()
P_y

array([0.09871667, 0.11236667, 0.0993 , 0.10218333, 0.09736667,
0.09035 , 0.09863333, 0.10441667, 0.09751666, 0.09915])

Now on to slightly more difficult things Pxy. Since we picked black and white images, p(xi | y)
denotes the probability that pixel i is switched on for class y. Just like before we can go and count
the number of times niy such that an event occurs and divide it by the total number of occurrences
of y, i.e., ny. But there is something slightly troubling: certain pixels may never be black (e.g., for
well cropped images the corner pixels might always be white). A convenient way for statisticians
to deal with this problem is to add pseudo counts to all occurrences. Hence, rather than niy we
use niy + 1 and instead of ny we use ny + 1. This is also called Laplace Smoothing. It may seem
ad-hoc, however it may be well motivated from a Bayesian point-of-view.

n_x = np.zeros((10, 28, 28))
for y in range(10):

n_x[y] = np.array(X.asnumpy()[Y.asnumpy() == y].sum(axis=0))
P_xy = (n_x + 1) / (n_y + 1).reshape(10, 1, 1)

d2l.show_images(P_xy, 2, 5);

816 Chapter 17. Appendix: Mathematics for Deep Learning

By visualizing these 10 × 28 × 28 probabilities (for each pixel for each class) we could get some
mean looking digits.

Now we can use (17.8.5) to predict a new image. Given x, the following functions computes p(x |
y)p(y) for every y.

def bayes_pred(x):
x = np.expand_dims(x, axis=0) # (28, 28) -> (1, 28, 28)
p_xy = P_xy * x + (1 - P_xy)*(1 - x)
p_xy = p_xy.reshape(10, -1).prod(axis=1) # p(x|y)
return np.array(p_xy) * P_y

image, label = mnist_test[0]
bayes_pred(image)

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

This went horribly wrong! To find out why, let s̓ look at the per pixel probabilities. They are typ-
ically numbers between 0.001 and 1. We are multiplying 784 of them. At this point it is worth
mentioning that we are calculating these numbers on a computer, hence with a fixed range for
the exponent. What happens is that we experience numerical underflow, i.e., multiplying all the
small numbers leads to something even smaller until it is rounded down to zero. We discussed
this as a theoretical issue in Section 17.7, but we see the phenomena clearly here in practice.

As discussed in that section, we fix this by use the fact that log ab = log a+ log b, i.e., we switch to
summing logarithms. Even if both a and b are small numbers, the logarithm values should be in
a proper range.

a = 0.1
print('underflow:', a**784)
print('logarithm is normal:', 784*math.log(a))

underflow: 0.0
logarithm is normal: -1805.2267129073316

17.8. Naive Bayes 817

Since the logarithm is an increasing function, we can rewrite (17.8.5) as

ŷ = argmaxy

d∑
i=1

logPxy[xi, y] + logPy[y]. (17.8.6)

We can implement the following stable version:

log_P_xy = np.log(P_xy)
log_P_xy_neg = np.log(1 - P_xy)
log_P_y = np.log(P_y)

def bayes_pred_stable(x):
x = np.expand_dims(x, axis=0) # (28, 28) -> (1, 28, 28)
p_xy = log_P_xy * x + log_P_xy_neg * (1 - x)
p_xy = p_xy.reshape(10, -1).sum(axis=1) # p(x|y)
return p_xy + log_P_y

py = bayes_pred_stable(image)
py

array([-269.00424, -301.73447, -245.21458, -218.8941 , -193.46907,
-206.10315, -292.54315, -114.62834, -220.35619, -163.18881])

We may now check if the prediction is correct.

Convert label which is a scalar tensor of int32 dtype
to a Python scalar integer for comparison
py.argmax(axis=0) == int(label)

array(True)

If we now predict a few validation examples, we can see the Bayes classifier works pretty well.

def predict(X):
return [bayes_pred_stable(x).argmax(axis=0).astype(np.int32) for x in X]

X, y = mnist_test[:18]
preds = predict(X)
d2l.show_images(X, 2, 9, titles=[str(d) for d in preds]);

Finally, let s̓ compute the overall accuracy of the classifier.

818 Chapter 17. Appendix: Mathematics for Deep Learning

X, y = mnist_test[:]
preds = np.array(predict(X), dtype=np.int32)
float((preds == y).sum()) / len(y) # Validation accuracy

0.8426

Modern deep networks achieve error rates of less than 0.01. The relatively poor performance is
due to the incorrect statistical assumptions that we made in our model: we assumed that each
and every pixel are independently generated, depending only on the label. This is clearly not how
humans write digits, and this wrong assumption led to the downfall of our overly naive (Bayes)
classifier.

Summary

• Using Bayesʼ rule, a classifier can be made by assuming all observed features are indepen-
dent.

• This classifier can be trained on a dataset by counting the number of occurrences of combi-
nations of labels and pixel values.

• This classifier was the gold standard for decades for tasks such as spam detection.

Exercises

1. Consider the dataset [[0, 0], [0, 1], [1, 0], [1, 1]] with labels given by the XOR of the two elements
[0, 1, 1, 0]. What are the probabilities for a Naive Bayes classifier built on this dataset. Does
it successfully classify our points? If not, what assumptions are violated?

2. Suppose that we did not use Laplace smoothing when estimating probabilities and a data
point arrived at testing time which contained a value never observed in training. What would
the model output?

3. The naive Bayes classifier is a specific example of a Bayesian network, where the dependence
of random variables are encoded with a graph structure. While the full theory is beyond the
scope of this section (see (Koller & Friedman, 2009) for full details), explain why allowing ex-
plicit dependence between the two input variables in the XOR model allows for the creation
of a successful classifier.

17.8. Naive Bayes 819

17.9 Statistics

Undoubtedly, to be a top deep learning practitioner, the ability to train the state-of-the-art and
high accurate models is crucial. However, it is often unclear when improvements are significant,
or only the result of random fluctuations in the training process. To be able to discuss uncertainty
in estimated values, we must learn some statistics.

The earliest reference of statistics can be traced back to an Arab scholar Al-Kindi in the 9th-century,
who gave a detailed description of how to use statistics and frequency analysis to decipher en-
crypted messages. After 800 years, the modern statistics arose from Germany in 1700s, when
the researchers focused on the demographic and economic data collection and analysis. Today,
statistics is the science subject that concerns the collection, processing, analysis, interpretation
and visualization of data. What is more, the core theory of statistics has been widely used in the
research within academia, industry, and government.

More specifically, statistics can be divided to descriptive statistics and statistical inference. The for-
mer focus on summarizing and illustrating the features of a collection of observed data, which is
referred to as a sample. The sample is drawn from a population, denotes the total set of similar
individuals, items, or events of our experiment interests. Contrary to descriptive statistics, sta-
tistical inference further deduces the characteristics of a population from the given samples, based
on the assumptions that the sample distribution can replicate the population distribution at some
degree.

You may wonder: “What is the essential difference between machine learning and statistics?”
Fundamentally speaking, statistics focuses on the inference problem. This type of problems in-
cludes modeling the relationship between the variables, such as causal inference, and testing the
statistically significance of model parameters, such as A/B testing. In contrast, machine learning
emphasizes on making accurate predictions, without explicitly programming and understanding
each parameter s̓ functionality.

In this section, we will introduce three types of statistics inference methods: evaluating and com-
paring estimators, conducting hypothesis tests, and constructing confidence intervals. These
methods can help us infer the characteristics of a given population, i.e., the true parameter θ. For
brevity, we assume that the true parameter θ of a given population is a scalar value. It is straight-
forward to extend to the case where θ is a vector or a tensor, thus we omit it in our discussion.

17.9.1 Evaluating and Comparing Estimators

In statistics, an estimator is a function of given samples used to estimate the true parameter θ. We
will write θ̂n = f̂(x1, . . . , xn) for the estimate of θ after observing the samples {x1, x2, . . . , xn}.

Weʼve seen simple examples of estimators before in section Section 17.7. If you have a number of
samples from a Bernoulli random variable, then the maximum likelihood estimate for the prob-
ability the random variable is one can be obtained by counting the number of ones observed and
dividing by the total number of samples. Similarly, an exercise asked you to show that the max-
imum likelihood estimate of the mean of a Gaussian given a number of samples is given by the
average value of all the samples. These estimators will almost never give the true value of the
parameter, but ideally for a large number of samples the estimate will be close.

As an example, we show below the true density of a Gaussian random variable with mean zero and
variance one, along with a collection samples from that Gaussian. We constructed the y coordinate
so every point is visible and the relationship to the original density is clearer.

820 Chapter 17. Appendix: Mathematics for Deep Learning

import d2l
from mxnet import np, npx
import random
npx.set_np()

Sample datapoints and create y coordinate
epsilon = 0.1
random.seed(8675309)
xs = np.random.normal(loc=0, scale=1, size=(300,))

ys = [np.sum(np.exp(-(xs[0:i] - xs[i])**2 / (2 * epsilon**2))
/ np.sqrt(2*np.pi*epsilon**2)) / len(xs) for i in range(len(xs))]

Compute true density
xd = np.arange(np.min(xs), np.max(xs), 0.01)
yd = np.exp(-xd**2/2) / np.sqrt(2 * np.pi)

Plot the results
d2l.plot(xd, yd, 'x', 'density')
d2l.plt.scatter(xs, ys)
d2l.plt.axvline(x=0)
d2l.plt.axvline(x=np.mean(xs), linestyle='--', color='purple')
d2l.plt.title("Sample Mean: {:.2f}".format(float(np.mean(xs))))
d2l.plt.show()

There can be many ways to compute an estimator of a parameter θ̂n. In this section, we intro-
duce three common methods to evaluate and compare estimators: the mean squared error, the
standard deviation, and statistical bias.

17.9. Statistics 821

Mean Squared Error

Perhaps the simplest metric used to evaluate estimators is the mean squared error (MSE) (or
:math:`l_2` loss) of an estimator can be defined as

MSE(θ̂n, θ) = E[(θ̂n − θ)2]. (17.9.1)

This allows us to quantify the average squared deviation from the true value. MSE is always non-
negative. If you have read Section 3.1, you will recognize it as the most commonly used regression
loss function. As a measure to evaluate an estimator, the closer its value to zero, the closer the
estimator is close to the true parameter θ.

Statistical Bias

The MSE provides a natural metric, but we can easily imagine multiple different phenomena that
might make it large. Two that we will see are fundamentally important are the fluctuation in the
estimator due to randomness in the dataset, and systematic error in the estimator due to the esti-
mation procedure.

First, let s̓ measure the systematic error. For an estimator θ̂n, the mathematical illustration of
statistical bias can be defined as

bias(θ̂n) = E(θ̂n − θ) = E(θ̂n)− θ. (17.9.2)

Note that when bias(θ̂n) = 0, the expectation of the estimator θ̂n is equal to the true value of
parameter. In this case, we say θ̂n is an unbiased estimator. In general, an unbiased estimator is
better than a biased estimator since its expectation is the same as the true parameter.

It is worth being aware, however, that biased estimators are frequently used in practice. There are
cases where unbiased estimators do not exist without further assumptions, or are intractable to
compute. This may seem like a significant flaw in an estimator, however the majority of estimators
encountered in practice are at least asymptotically unbiased in the sense that the bias tends to zero
as the number of available samples tends to infinity: limn→∞ bias(θ̂n) = 0.

Variance and Standard Deviation

Second, let s̓ measure the randomness in the estimator. Recall from Section 17.6, the standard devi-
ation (or standard error) is defined as the squared root of the variance. We may measure the degree
of fluctuation of an estimator by measuring the standard deviation or variance of that estimator.

σθ̂n =

√
Var(θ̂n) =

√
E[(θ̂n − E(θ̂n))2]. (17.9.3)

It is important to compare (17.9.3) to (17.9.1). In this equation we do not compare to the true
population value θ, but instead to E(θ̂n), the expected sample mean. Thus we are not measuring
how far the estimator tends to be from the true value, but instead we measuring the fluctuation of
the estimator itself.

822 Chapter 17. Appendix: Mathematics for Deep Learning

The Bias-Variance Trade-off

It is intuitively clear that these two components contribute to the mean squared error. What is
somewhat shocking is that we can show that this is actually a decomposition of the mean squared
error into two contributions. That is to say that we can write the mean squared error as the sum
of the variance and the square or the bias.

MSE(θ̂n, θ) = E[(θ̂n − E(θ̂n) + E(θ̂n)− θ)2]

= E[(θ̂n − E(θ̂n))
2] + E[(E(θ̂n)− θ)2]

= Var(θ̂n) + [bias(θ̂n)]2.

(17.9.4)

We refer the above formula as bias-variance trade-off. The mean squared error can be divided into
precisely two sources of error: the error from high bias and the error from high variance. On the
one hand, the bias error is commonly seen in a simple model (such as a linear regression model),
which cannot extract high dimensional relations between the features and the outputs. If a model
suffers from high bias error, we often say it is underfitting or lack of generalization as introduced
in (Section 4.4). On the flip side, the other error source—high variance usually results from a too
complex model, which overfits the training data. As a result, an overfitting model is sensitive to
small fluctuations in the data. If a model suffers from high variance, we often say it is overfitting
and lack of flexibility as introduced in (Section 4.4).

Evaluating Estimators in Code

Since the standard deviation of an estimator has been implementing in MXNet by simply calling
a.std() for a ndarray “a”, we will skip it but implement the statistical bias and the mean squared
error in MXNet.

Statistical bias
def stat_bias(true_theta, est_theta):

return(np.mean(est_theta) - true_theta)

Mean squared error
def mse(data, true_theta):

return(np.mean(np.square(data - true_theta)))

To illustrate the equation of the bias-variance trade-off, let s̓ simulate of normal distribution
N (θ, σ2) with 10, 000 samples. Here, we use a θ = 1 and σ = 4. As the estimator is a function
of the given samples, here we use the mean of the samples as an estimator for true θ in this nor-
mal distributionN (θ, σ2) .

theta_true = 1
sigma = 4
sample_length = 10000
samples = np.random.normal(theta_true, sigma, sample_length)
theta_est = np.mean(samples)
theta_est

array(0.9503336)

Let s̓ validate the trade-off equation by calculating the summation of the squared bias and the
variance of our estimator. First, calculate the MSE of our estimator.

17.9. Statistics 823

mse(samples, theta_true)

array(15.781996)

Next, we calculate Var(θ̂n)+[bias(θ̂n)]2 as below. As you can see, the two values agree to numerical
precision.

bias = stat_bias(theta_true, theta_est)
np.square(samples.std()) + np.square(bias)

array(15.781995)

17.9.2 Conducting Hypothesis Tests

The most commonly encountered topic in statistical inference is hypothesis testing. While hy-
pothesis testing was popularized in the early 20th century, the first use can be traced back to John
Arbuthnot in the 1700s. John tracked 80-year birth records in London and concluded that more
men were born than women each year. Following that, the modern significance testing is the in-
telligence heritage by Karl Pearson who invented p-value and Pearsons̓ chi-squared test), William
Gosset who is the father of Student s̓ t-distribution, and Ronald Fisher who initialed the null hy-
pothesis and the significance test.

A hypothesis test is a way of evaluating some evidence against the default statement about a pop-
ulation. We refer the default statement as the null hypothesis H0, which we try to reject using the
observed data. Here, we use H0 as a starting point for the statistical significance testing. The alter-
native hypothesisHA (orH1) is a statement that is contrary to the null hypothesis. A null hypothesis
is often stated in a declarative form which posits a relationship between variables. It should reflect
the brief as explicit as possible, and be testable by statistics theory.

Imagine you are a chemist. After spending thousands of hours in the lab, you develop a new
medicine which can dramatically improve one s̓ ability to understand math. To show its magic
power, you need to test it. Naturally, you may need some volunteers to take the medicine and see
whether it can help them learn math better. How do you get started?

First, you will need carefully random selected two groups of volunteers, so that there is no differ-
ence between their math understanding ability measured by some metrics. The two groups are
commonly referred to as the test group and the control group. The test group (or treatment group)
is a group of individuals who will experience the medicine, while the control group represents the
group of users who are set aside as a benchmark, i.e., identical environment setups except taking
this medicine. In this way, the influence of all the variables are minimized, except the impact of
the independent variable in the treatment.

Second, after a period of taking the medicine, you will need to measure the two groupsʼ math
understanding by the same metrics, such as letting the volunteers do the same tests after learning a
new math formula. Then, you can collect their performance and compare the results. In this case,
our null hypothesis will be that there is no difference between the two groups, and our alternate
will be that there is.

This is still not fully formal. There are many details you have to think of carefully. For example,
what is the suitable metrics to test their math understanding ability? How many volunteers for
your test so you can be confident to claim the effectiveness of your medicine? How long should

824 Chapter 17. Appendix: Mathematics for Deep Learning

you run the test? How do you decided if there is a difference between the two groups? Do you care
about the average performance only, or do you also the range of variation of the scores. And so
on.

In this way, hypothesis testing provides framework for experimental design and reasoning about
certainty in observed results. If we can now show that the null hypothesis is very unlikely to be
true, we may reject it with confidence.

To complete the story of how to work with hypothesis testing, we need to now introduce some
additional terminology and make some of our concepts above formal.

Statistical Significance

The statistical significance measures the probability of erroneously reject the null hypothesis, H0,
when it should not be rejected, i.e.,

statistical significance = 1− α = P (reject H0 | H0 is true). (17.9.5)

It is also referred to as the type I error or false positive. The α, is called as the significance level and
its commonly used value is 5%, i.e., 1− α = 95%. The level of statistical significance level can be
explained as the level of risk that we are willing to take, when we reject a true null hypothesis.

Fig. 17.9.1 shows the the observationsʼ values and probability of a given normal distribution in a
two-sample hypothesis test. If the observation data point is located outsides the 95% threshold, it
will be a very unlikely observation under the null hypothesis assumption. Hence, there might be
something wrong with the null hypothesis and we will reject it.

Fig. 17.9.1: Statistical significance.

17.9. Statistics 825

Statistical Power

The statistical power (or sensitivity) measures the probability of reject the null hypothesis,H0, when
it should be rejected, i.e.,

statistical power = P (reject H0 | H0 is false). (17.9.6)

Recall that a type I error is error caused by rejecting the null hypothesis when it is true, whereas a
type II error is resulted from failing to reject the null hypothesis when it is false. A type II error is
usually denoted as β, and hence the corresponding statistical power is 1− β.

Intuitively, statistical power can be interpreted as how likely our test will detect a real discrepancy
of some minimum magnitude at a desired statistical significance level. 80% is a commonly used
statistical power threshold. The higher the statistical power, the more likely we are to detect true
differences.

One of the most common uses of statistical power is in determining the number of samples
needed. The probability you reject the null hypothesis when it is false depends on the degree
to which it is false (known as the effect size) and the number of samples you have. As you might
expect, small effect sizes will require a very large number of samples to be detectable with high
probability. While beyond the scope of this brief appendix to derive in detail, as an example, want
to be able to reject a null hypothesis that our sample came from a mean zero variance one Gaus-
sian, and we believe that our sample s̓ mean is actually close to one, we can do so with acceptable
error rates with a sample size of only 8. However, if we think our sample population true mean is
close to 0.01, then we d̓ need a sample size of nearly 80000 to detect the difference.

We can imagine the power as a water filter. In this analogy, a high power hypothesis test is like a
high quality water filtration system that will reduce harmful substances in the water as much as
possible. On the other hand, a smaller discrepancy is like a low quality water filter, where some
relative small substances may easily escape from the gaps. Similarly, if the statistical power is not
of enough high power, then the test may not catch the smaller discrepancy.

Test Statistic

A test statistic T (x) is a scalar which summarizes some characteristic of the sample data. The goal
of defining such a statistic is that it should allow us to distinguish between different distributions
and conduct our hypothesis test. Thinking back to our chemist example, if we wish to show that
one population performs better than the other, it could be reasonable to take the mean as the
test statistic. Different choices of test statistic can lead to statistical test with drastically different
statistical power.

Often, T (X) (the distribution of the test statistic under our null hypothesis) will follow, at least
approximately, a common probability distribution such as a normal distribution when considered
under the null hypothesis. If we can derive explicitly such a distribution, and then measure our
test statistic on our dataset, we can safely reject the null hypothesis if our statistic is far outside
the range that we would expect. Making this quantitative leads us to the notion of p-values.

826 Chapter 17. Appendix: Mathematics for Deep Learning

p-value

The :math:`p`-value (or the probability value) is the probability that T (X) is at least as extreme as
the observed test statistic T (x) assuming that the null hypothesis is true, i.e.,

p-value = PH0(T (X) ≥ T (x)). (17.9.7)

If the p-value is smaller than or equal to a pre-defined and fixed statistical significance level α, we
may reject the null hypothesis. Otherwise, we will conclude that we are lack of evidence to reject
the null hypothesis. For a given population distribution, the region of rejection will be the interval
contained of all the points which has a p-value smaller than the statistical significance level α.

One-side Test and Two-sided Test

Normally there are two kinds of significance test: the one-sided test and the two-sided test. The
one-sided test (or one-tailed test) is applicable when the null hypothesis and the alternative hypoth-
esis only have one direction. For example, the null hypothesis may state that the true parameter
θ is less than or equal to a value c. The alternative hypothesis would be that θ is greater than c.
That is, the region of rejection is on only one side of the sampling distribution. Contrary to the
one-sided test, the two-sided test (or two-tailed test) is applicable when the region of rejection is on
both sides of the sampling distribution. An example in this case may have a null hypothesis state
that the true parameter θ is equal to a value c. The alternative hypothesis would be that θ is not
equal to c.

General Steps of Hypothesis Testing

After getting familiar with the above concepts, let s̓ go through the general steps of hypothesis
testing.

1. State the question and establish a null hypotheses H0.

2. Set the statistical significance level α and a statistical power (1− β).

3. Obtain samples through experiments. The number of samples needed will depend on the
statistical power, and the expected effect size.

4. Calculate the test statistic and the p-value.

5. Make the decision to keep or reject the null hypothesis based on the p-value and the statistical
significance level α.

To conduct a hypothesis test, we start by defining a null hypothesis and a level of risk that we
are willing to take. Then we calculate the test statistic of the sample, taking an extreme value of
the test statistic as evidence against the null hypothesis. If the test statistic falls within the reject
region, we may reject the null hypothesis in favor of the alternative.

Hypothesis testing is applicable in a variety of scenarios such as the clinical trails and A/B testing.

17.9. Statistics 827

17.9.3 Constructing Confidence Intervals

When estimating the value of a parameter θ, point estimators like θ̂ are of limited utility since they
contain no notion of uncertainty. Rather, it would be far better if we could produce an interval
that would contain the true parameter θ with high probability. If you were interested in such
ideas a century ago, then you would have been excited to read “Outline of a Theory of Statistical
Estimation Based on the Classical Theory of Probability” by Jerzy Neyman (Neyman, 1937), who
first introduced the concept of confidence interval in 1937.

To be useful, a confidence interval should be as small as possible for a given degree of certainty.
Let s̓ see how to derive it.

Definition

Mathematically, a confidence interval for the true parameter θ is an interval Cn that computed from
the sample data such that

Pθ(Cn ∋ θ) ≥ 1− α,∀θ. (17.9.8)

Here α ∈ (0, 1), and 1− α is called the confidence level or coverage of the interval. This is the same
α as the significance level as we discussed about above.

Note that (17.9.8) is about variable Cn, not about the fixed θ. To emphasize this, we write Pθ(Cn ∋
θ) rather than Pθ(θ ∈ Cn).

Interpretation

It is very tempting to interpret a 95% confidence interval as an interval where you can be 95% sure
the true parameter lies, however this is sadly not true. The true parameter is fixed, and it is the
interval that is random. Thus a better interpretation would be to say that if you generated a large
number of confidence intervals by this procedure, 95% of the generated intervals would contain
the true parameter.

This may seem pedantic, but it can have real implications for the interpretation of the results.
In particular, we may satisfy (17.9.8) by constructing intervals that we are almost certain do not
contain the true value, as long as we only do so rarely enough. We close this section by providing
three tempting but false statements. An in-depth discussion of these points can be found in (Morey
et al., 2016).

• Fallacy 1. Narrow confidence intervals mean we can estimate the parameter precisely.

• Fallacy 2. The values inside the confidence interval are more likely to be the true value than
those outside the interval.

• Fallacy 3. The probability) that a particular observed 95% confidence interval contains the
true value is 95%.

Sufficed to say, confidence intervals are subtle objects. However, if you keep the interpretation
clear, they can be powerful tools.

828 Chapter 17. Appendix: Mathematics for Deep Learning

A Gaussian Example

Let s̓ discuss the most classical example, the confidence interval for the mean of a Gaussian of
unknown mean and variance. Suppose we collect n samples {xi}ni=1 from our GaussianN (µ, σ2).
We can compute estimators for the mean and standard deviation by taking

µ̂n =
1

n

n∑
i=1

xi and σ̂2
n =

1

n− 1

n∑
i=1

(xi − µ̂)2. (17.9.9)

If we now consider the random variable

T =
µ̂n − µ

σ̂n/
√
n
, (17.9.10)

we obtain a random variable following a well-known distribution called the Student’s t-distribution
on n− 1 degrees of freedom.

This distribution is very well studied, and it is known, for instance, that as n → ∞, it is approx-
imately a standard Gaussian, and thus by looking up values of the Gaussian c.d.f. in a table, we
may conclude that the value of T is in the interval [−1.96, 1.96] at least 95% of the time. For finite
values of n, the interval needs to be somewhat larger, but are well known and precomputed in
tables.

Thus, we may conclude that for large n,

P

(
µ̂n − µ

σ̂n/
√
n
∈ [−1.96, 1.96]

)
≥ 0.95. (17.9.11)

Rearranging this by multiplying both sides by σ̂n/
√
n and then adding µ̂n, we obtain

P

(
µ ∈

[
µ̂n − 1.96

σ̂n√
n
, µ̂n + 1.96

σ̂n√
n

])
≥ 0.95. (17.9.12)

Thus we know that we have found our 95% confidence interval:[
µ̂n − 1.96

σ̂n√
n
, µ̂n + 1.96

σ̂n√
n

]
. (17.9.13)

It is safe to say that (17.9.13) is one of the most used formula in statistics. Let s̓ close our discussion
of statistics by implementing it. For simplicity, we assume we are in the asymptotic regime. Small
values of N should include the correct value of t_star obtained either programmatically or from
a t-table.

Number of samples
N = 1000

Sample dataset
samples = np.random.normal(loc=0, scale=1, size=(N,))

Lookup Students's t-distribution c.d.f.
t_star = 1.96

Construct interval
mu_hat = np.mean(samples)
sigma_hat = samples.std(ddof=1)
(mu_hat - t_star*sigma_hat/np.sqrt(N), mu_hat + t_star*sigma_hat/np.sqrt(N))

17.9. Statistics 829

(array(-0.07853346), array(0.04412608))

Summary

• Statistics focuses on inference problems, whereas deep learning emphasizes on making ac-
curate predictions without explicitly programming and understanding.

• There are three common statistics inference methods: evaluating and comparing estima-
tors, conducting hypothesis tests, and constructing confidence intervals.

• There are three most common estimators: statistical bias, standard deviation, and mean
square error.

• A confidence interval is an estimated range of a true population parameter that we can con-
struct by given the samples.

• Hypothesis testing is a way of evaluating some evidence against the default statement about
a population.

Exercises

1. LetX1, X2, . . . , Xn
iid∼ Unif(0, θ), where “iid” stands for independent and identically distributed.

Consider the following estimators of θ:

θ̂ = max{X1, X2, . . . , Xn}; (17.9.14)

θ̃ = 2X̄n =
2

n

n∑
i=1

Xi. (17.9.15)

• Find the statistical bias, standard deviation, and mean square error of θ̂.

• Find the statistical bias, standard deviation, and mean square error of θ̃.

• Which estimator is better?

2. For our chemist example in introduction, can you derive the 5 steps to conduct a two-sided
hypothesis testing? Given the statistical significance level α = 0.05 and the statistical power
1− β = 0.8.

3. Run the confidence interval code with N = 2 and α = 0.5 for 100 independently generated
dataset, and plot the resulting intervals (in this case t_star = 1.0). You will see several very
short intervals which are very far from containing the true mean 0. Does this contradict the
interpretation of the confidence interval? Do you feel comfortable using short intervals to
indicate high precision estimates?

830 Chapter 17. Appendix: Mathematics for Deep Learning

17.10 Information Theory

The universe is overflowing with information. Information provides a common language across
disciplinary rifts: from Shakespeare s̓ Sonnet to researchersʼ paper on Cornell ArXiv, from Van
Goghs̓ printing Starry Night to Beethovens̓ music Symphony No. 5, from the first programming
language Plankalkül to the state-of-the-art machine learning algorithms. Everything must follow
the rules of information theory, no matter the format. With information theory, we can measure
and compare how much information is present in different signals. In this section, we will inves-
tigate the fundamental concepts of information theory and applications of information theory in
machine learning.

Before we get started, let s̓ outline the relationship between machine learning and information
theory. Machine learning aims to extract interesting signals from data and make critical pre-
dictions. On the other hand, information theory studies encoding, decoding, transmitting, and
manipulating information. As a result, information theory provides fundamental language for
discussing the information processing in machine learned systems. For example, many machine
learning applications use the cross entropy loss as described in Section 3.4. This loss can be di-
rectly derived from information theoretic considerations.

17.10.1 Information

Let s̓ start with the “soul” of information theory: information. Information can be encoded in any-
thing with a particular sequence of one or more encoding formats. Suppose that we task ourselves
with trying to define a notion of information. What could be are starting point?

Consider the following thought experiment. We have a friend with a deck of cards. They will
shuffle the deck, flip over some cards, and tell us statements about the cards. We will try to assess
the information content of each statement.

First, they flip over a card and tell us, “I see a card.” This provides us with no information at all.
We were already certain that this was the case so we hope the information should be zero.

Next, they flip over a card and say, “I see a heart.” This provides us some information, but in reality
there are only 4 different suits that were possible, each equally likely, so we are not surprised by
this outcome. We hope that whatever the measure of information, this event should have low
information content.

Next, they flip over a card and say, “This is the 3 of spades.” This is more information. Indeed there
were 52 equally likely possible outcomes, and our friend told us which one it was. This should be
a medium amount of information.

Let s̓ take this to the logical extreme. Suppose that finally they flip over every card from the deck
and read off the entire sequence of the shuffled deck. There are 52! different orders to the deck,
again all equally likely, so we need a lot of information to know which one it is.

Any notion of information we develop must conform to this intuition. Indeed, in the next sec-
tions we will learn how to compute that these events have 0 bits, 2 bits, 5.7 bits, and 225.6 bits of
information respectively.

If we read through these thought experiments, we see a natural idea. As a starting point, rather
than caring about the knowledge, we may build off the idea that information represents the degree
of surprise or the abstract possibility of the event. For example, if we want to describe an unusual
event, we need a lot information. For a common event, we may not need much information.

17.10. Information Theory 831

In 1948, Claude E. Shannon published A Mathematical Theory of Communication (Shannon, 1948)
establishing the theory of information. In his book, Shannon introduced the concept of informa-
tion entropy for the first time. We will begin our journey here.

Self-information

Since information embodies the abstract possibility of an event, how do we map the possibility
to the number of bits? Shannon introduced the terminology bit as the unit of information, which
was originally created by John Tukey. So what is a “bit” and why do we use it to measure infor-
mation? Historically, an antique transmitter can only send or receive two types of code: 0 and
1. Indeed, binary encoding is still in common use on all modern digital computers. In this way,
any information is encoded by a series of 0 and 1. And hence, a series of binary digits of length n
contains n bits of information.

Now, suppose that for any series of codes, each 0 or 1 occurs with a probability of 1
2 . Hence, an

event X with a series of codes of length n, occurs with a probability of 1
2n . At the same time, as

we mentioned before, this series contains n bits of information. So, can we generalize to a math
function which can transfer the probability p to the number of bits? Shannon gave the answer by
defining self-information

I(X) = − log2(p), (17.10.1)

as the bits of information we have received for this event X. Note that we will always use base-2
logarithms in this section. For the sake of simplicity, the rest of this section will omit the subscript
2 in the logarithm notation, i.e., log(.) always refers to log2(.). For example, the code “0010” has a
self-information

I(``0010") = − log(p(``0010")) = − log
(

1

24

)
= 4 bits. (17.10.2)

We can calculate self information in MXNet as shown below. Before that, let s̓ first import all the
necessary packages in this section.

from mxnet import np
from mxnet.metric import NegativeLogLikelihood
from mxnet.ndarray import nansum
import random

def self_information(p):
return -np.log2(p)

self_information(1/64)

6.0

832 Chapter 17. Appendix: Mathematics for Deep Learning

17.10.2 Entropy

As self-information only measures the information of a single discrete event, we need a more
generalized measure for any random variable of either discrete or continuous distribution.

Motivating Entropy

Let s̓ try to get specific about what we want. This will be an informal statement of what are known
as the axioms of Shannon entropy. It will turn out that the following collection of common-sense
statements force us to a unique definition of information. A formal version of these axioms, along
with several others may be found in (Csiszar, 2008).

1. The information we gain by observing a random variable does not depend on what we call
the elements, or the presence of additional elements which have probability zero.

2. The information we gain by observing two random variables is no more than the sum of the
information we gain by observing them separately. If they are independent, then it is exactly
the sum.

3. The information gained when observing (nearly) certain events is (nearly) zero.

While proving this fact is beyond the scope of our text, it is important to know that this uniquely
determines the form that entropy must take. The only ambiguity that these allow is in the choice
of fundamental units, which is most often normalized by making the choice we saw before that
the information provided by a single fair coin flip is one bit.

Definition

For any random variable X that follows a probability distribution P with a probability density
function (p.d.f.) or a probability mass function (p.m.f.) p(x), we measure the expected amount of
information through entropy (or Shannon entropy)

H(X) = −Ex∼P [log p(x)]. (17.10.3)

To be specific, if X is discrete,

H(X) = −
∑
i

pi log pi, where pi = P (Xi). (17.10.4)

Otherwise, if X is continuous, we also refer entropy as differential entropy

H(X) = −
∫
x
p(x) log p(x) dx. (17.10.5)

In MXNet, we can define entropy as below.

def entropy(p):
entropy = - p * np.log2(p)
nansum will sum up the non-nan number
out = nansum(entropy.as_nd_ndarray())
return out

entropy(np.array([0.1, 0.5, 0.1, 0.3]))

17.10. Information Theory 833

[1.6854753]
<NDArray 1 @cpu(0)>

Interpretations

You may be curious: in the entropy definition (17.10.3), why do we use an expectation of a negative
logarithm? Here are some intuitions.

First, why do we use a logarithm function log? Suppose that p(x) = f1(x)f2(x) . . . , fn(x), where
each component function fi(x) is independent from each other. This means that each fi(x) con-
tributes independently to the total information obtained from p(x). As discussed above, we want
the entropy formula to be additive over independent random variables. Luckily, log can naturally
turn a product of probability distributions to a summation of the individual terms.

Next, why do we use a negative log? Intuitively, more frequent events should contain less infor-
mation than less common events, since we often gain more information from an unusual case
than from an ordinary one. However, log is monotonically increasing with the probabilities, and
indeed negative for all values in [0, 1]. We need to construct a monotonically decreasing relation-
ship between the probability of events and their entropy, which will ideally be always positive (for
nothing we observe should force us to forget what we have known). Hence, we add a negative sign
in front of log function.

Last, where does the expectation function come from? Consider a random variable X. We can
interpret the self-information (− log(p)) as the amount of surprise we have at seeing a particular
outcome. Indeed, as the probability approaches zero, the surprise becomes infinite. Similarly,
we can interpret The entropy as the average amount of surprise from observing X. For exam-
ple, imagine that a slot machine system emits statistical independently symbols s1, . . . , sk with
probabilities p1, . . . , pk respectively. Then the entropy of this system equals to the average self-
information from observing each output, i.e.,

H(S) =
∑
i

pi · I(si) = −
∑
i

pi · log pi. (17.10.6)

Properties of Entropy

By the above examples and interpretations, we can derive the following properties of entropy
(17.10.3). Here, we refer to X as an event and P as the probability distribution of X.

• Entropy is non-negative, i.e., H(X) ≥ 0, ∀X.

• If X ∼ P with a p.d.f. or a p.m.f. p(x), and we try to estimate P by a new probability
distribution Q with a p.d.f. or a p.m.f. q(x), then

H(X) = −Ex∼P [log p(x)] ≤ −Ex∼P [log q(x)], with equality if and only if P = Q. (17.10.7)

Alternatively, H(X) gives a lower bound of the average number of bits needed to encode
symbols drawn from P .

• If X ∼ P , then x conveys the maximum amount of information if it spreads evenly among
all possible outcomes. Specifically, if the probability distribution P is discrete with k-class
{p1, . . . , pk}, then

H(X) ≤ log(k), with equality if and only if pi =
1

k
, ∀xi. (17.10.8)

834 Chapter 17. Appendix: Mathematics for Deep Learning

If P is a continuous random variable, then the story becomes much more complicated.
However, if we additionally impose that P is supported on a finite interval (with all values
between 0 and 1), then P has the highest entropy if it is the uniform distribution on that
interval.

17.10.3 Mutual Information

Previously we defined entropy of a single random variable X, how about the entropy of a pair
random variables (X,Y)? We can think of these techniques as trying to answer the following type
of question, “What information is contained in X and Y together compared to each separately? Is
there redundant information, or is it all unique?”

For the following discussion, we always use (X,Y) as a pair of random variables that follows a joint
probability distribution P with a p.d.f. or a p.m.f. pX,Y (x, y), while X and Y follow probability
distribution pX(x) and pY (y), respectively.

Joint Entropy

Similar to entropy of a single random variable (17.10.3), we define the joint entropy H(X,Y) of a
pair random variables (X,Y) as

H(X,Y) = −E(x,y)∼P [log pX,Y (x, y)]. (17.10.9)

Precisely, on the one hand, if (X,Y) is a pair of discrete random variables, then

H(X,Y) = −
∑
x

∑
y

pX,Y (x, y) log pX,Y (x, y). (17.10.10)

On the other hand, if (X,Y) is a pair of continuous random variables, then we define the differential
joint entropy as

H(X,Y) = −
∫
x,y

pX,Y (x, y) log pX,Y (x, y) dx dy. (17.10.11)

We can think of (17.10.9) as telling us the total randomness in the pair of random variables. As a
pair of extremes, if X = Y are two identical random variables, then the information in the pair
is exactly the information in one and we have H(X,Y) = H(X) = H(Y). On the other extreme,
if X and Y are independent then H(X,Y) = H(X) + H(Y). Indeed we will always have that
the information contained in a pair of random variables is no smaller than the entropy of either
random variable and no more than the sum of both.

H(X),H(Y) ≤ H(X,Y) ≤ H(X) +H(Y). (17.10.12)

Let s̓ implement joint entropy from scratch in MXNet.

def joint_entropy(p_xy):
joint_ent = -p_xy * np.log2(p_xy)
nansum will sum up the non-nan number
out = nansum(joint_ent.as_nd_ndarray())
return out

joint_entropy(np.array([[0.1, 0.5], [0.1, 0.3]]))

17.10. Information Theory 835

[1.6854753]
<NDArray 1 @cpu(0)>

Notice that this is the same code as before, but now we interpret it differently as working on the
joint distribution of the two random variables.

Conditional Entropy

The joint entropy defined above the amount of information contained in a pair of random vari-
ables. This is useful, but often times it is not what we care about. Consider the setting of machine
learning. Let s̓ take X to be the random variable (or vector of random variables) that describes
the pixel values of an image, and Y to be the random variable which is the class label. X should
contain substantial information—a natural image is a complex thing. However, the information
contained in Y once the image has been show should be low. Indeed, the image of a digit should
already contain the information about what digit it is unless the digit is illegible. Thus, to continue
to extend our vocabulary of information theory, we need to be able to reason about the informa-
tion content in a random variable conditional on another.

In the probability theory, we saw the definition of the conditional probability to measure the rela-
tionship between variables. We now want to analogously define the conditional entropy H(Y | X).
We can write this as

H(Y | X) = −E(x,y)∼P [log p(y | x)], (17.10.13)

where p(y | x) = pX,Y (x,y)
pX(x) is the conditional probability. Specifically, if (X,Y) is a pair of discrete

random variables, then

H(Y | X) = −
∑
x

∑
y

p(x, y) log p(y | x). (17.10.14)

If (X,Y) is a pair of continuous random variables, then the differential joint entropy is similarly
defined as

H(Y | X) = −
∫
x

∫
y
p(x, y) log p(y | x) dx dy. (17.10.15)

It is now natural to ask, how does the conditional entropy H(Y | X) relate to the entropy H(X) and
the joint entropy H(X,Y)? Using the definitions above, we can express this cleanly:

H(Y | X) = H(X,Y)−H(X). (17.10.16)

This has an intuitive interpretation: the information in Y given X (H(Y | X)) is the same as the
information in both X and Y together (H(X,Y)) minus the information already contained in X.
This gives us the information in Y which is not also represented in X.

Now, let s̓ implement conditional entropy (17.10.13) from scratch in MXNet.

def conditional_entropy(p_xy, p_x):
p_y_given_x = p_xy/p_x
cond_ent = -p_xy * np.log2(p_y_given_x)
nansum will sum up the non-nan number
out = nansum(cond_ent.as_nd_ndarray())
return out

conditional_entropy(np.array([[0.1, 0.5], [0.2, 0.3]]), np.array([0.2, 0.8]))

836 Chapter 17. Appendix: Mathematics for Deep Learning

[0.8635472]
<NDArray 1 @cpu(0)>

Mutual Information

Given the previous setting of random variables (X,Y), you may wonder: “Now that we know how
much information is contained in Y but not in X, can we similarly ask how much information is
shared between X and Y ?” The answer will be the mutual information of (X,Y), which we will
write as I(X,Y).

Rather than diving straight into the formal definition, let s̓ practice our intuition by first trying
to derive an expression for the mutual information entirely based on terms we have constructed
before. We wish to find the information shared between two random variables. One way we could
try to do this is to start with all the information contained in both X and Y together, and then
we take off the parts that are not shared. The information contained in both X and Y together is
written as H(X,Y). We want to subtract from this the information contained in X but not in Y ,
and the information contained in Y but not in X. As we saw in the previous section, this is given
by H(X | Y) and H(Y | X) respectively. Thus, we have that the mutual information should be

I(X,Y) = H(X,Y)−H(Y | X)−H(X | Y). (17.10.17)

Indeed, this is a valid definition for the mutual information. If we expand out the definitions of
these terms and combine them, a little algebra shows that this is the same as

I(X,Y) = −ExEy

{
pX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)

}
. (17.10.18)

We can summarize all of these relationships in image Fig. 17.10.1. It is an excellent test of intuition
to see why the following statements are all also equivalent to I(X,Y).

• H(X)−H(X | Y)

• H(Y)−H(Y | X)

• H(X) +H(Y)−H(X,Y)

Fig. 17.10.1: Mutual informations̓ relationship with joint entropy and conditional entropy.

In many ways we can think of the mutual information (17.10.18) as principled extension of cor-
relation coefficient we saw in Section 17.6. This allows us to ask not only for linear relationships

17.10. Information Theory 837

between variables, but for the maximum information shared between the two random variables
of any kind.

Now, let s̓ implement mutual information from scratch.

def mutual_information(p_xy, p_x, p_y):
p = p_xy / (p_x * p_y)
mutual = -p_xy * np.log2(p)
nansum will sum up the non-nan number
out = nansum(mutual.as_nd_ndarray())
return out

mutual_information(np.array([[0.1, 0.5], [0.1, 0.3]]),
np.array([0.2, 0.8]),
np.array([[0.75, 0.25]]))

[-0.71946025]
<NDArray 1 @cpu(0)>

Properties of Mutual Information

Rather than memorizing the definition of mutual information (17.10.18), you only need to keep in
mind its notable properties:

• Mutual information is symmetric, i.e., I(X,Y) = I(Y,X).

• Mutual information is non-negative, i.e., I(X,Y) ≥ 0.

• I(X,Y) = 0 if and only if X and Y are independent. For example, if X and Y are indepen-
dent, then knowing Y does not give any information about X and vice versa, so their mutual
information is zero.

• Alternatively, if X is an invertible function of Y , then Y and X share all information and

I(X,Y) = H(Y) = H(X). (17.10.19)

Pointwise Mutual Information

When we worked with entropy at the beginning of this chapter, we were able to provide an inter-
pretation of − log(pX(x)) as how surprised we were with the particular outcome. We may give a
similar interpretation to the logarithmic term in the mutual information, which is often referred
to as the pointwise mutual information:

pmi(x, y) = log
pX,Y (x, y)

pX(x)pY (y)
. (17.10.20)

We can think of (17.10.20) as measuring how much more or less likely the specific combination
of outcomes x and y are compared to what we would expect for independent random outcomes.
If it is large and positive, then these two specific outcomes occur much more frequently than they
would compared to random chance (note: the denominator is pX(x)pY (y) which is the probability
of the two outcomes were independent), whereas if it is large and negative it represents the two
outcomes happening far less than we would expect by random chance.

838 Chapter 17. Appendix: Mathematics for Deep Learning

This allows us to interpret the mutual information (17.10.18) as the average amount that we were
surprised to see two outcomes occurring together compared to what we would expect if they were
independent.

Applications of Mutual Information

Mutual information may be a little abstract in it pure definition, so how does it related to machine
learning? In natural language processing, one of the most difficult problems is the ambiguity res-
olution, or the issue of the meaning of a word being unclear from context. For example, recently
a headline in the news reported that “Amazon is on fire”. You may wonder whether the company
Amazon has a building on fire, or the Amazon rain forest is on fire.

In this case, mutual information can help us resolve this ambiguity. We first find the group of
words that each has a relatively large mutual information with the company Amazon, such as
e-commerce, technology, and online. Second, we find another group of words that each has a
relatively large mutual information with the Amazon rain forest, such as rain, forest, and tropical.
When we need to disambiguate “Amazon”, we can compare which group has more occurrence in
the context of the word Amazon. In this case the article would go on to describe the forest, and
make the context clear.

17.10.4 Kullback–Leibler Divergence

As what we have discussed in Section 2.3, we can use norms to measure distance between two
points in space of any dimensionality. We would like to be able to do a similar task with probability
distributions. There are many ways to go about this, but information theory provides one of the
nicest. We now explore the Kullback–Leibler (KL) divergence, which provides a way to measure if
two distributions are close together or not.

Definition

Given a random variableX that follows the probability distributionP with a p.d.f. or a p.m.f. p(x),
and we estimate P by another probability distribution Q with a p.d.f. or a p.m.f. q(x). Then the
Kullback–Leibler (KL) divergence (or relative entropy) between P and Q is

DKL(P∥Q) = Ex∼P

[
log

p(x)

q(x)

]
. (17.10.21)

As with the pointwise mutual information (17.10.20), we can again provide an interpretation of
the logarithmic term: − log q(x)

p(x) = − log(q(x))− (− log(p(x))) will be large and positive if we see x

far more often under P than we would expect for Q, and large and negative if we see the outcome
far less than expected. In this way, we can interpret it as our relative surprise at observing the
outcome compared to how surprised we would be observing it from our reference distribution.

In MXNet, let s̓ implement the KL divergence from Scratch.

def kl_divergence(p, q):
kl = p * np.log2(p / q)
out = nansum(kl.as_nd_ndarray())
return out.abs().asscalar()

17.10. Information Theory 839

KL Divergence Properties

Let s̓ take a look at some properties of the KL divergence (17.10.21).

• KL divergence is non-symmetric, i.e.,

DKL(P∥Q) ̸= DKL(Q∥P), if P ̸= Q. (17.10.22)

• KL divergence is non-negative, i.e.,

DKL(P∥Q) ≥ 0. (17.10.23)

Note that the equality holds only when P = Q.

• If there exists an x such that p(x) > 0 and q(x) = 0, then DKL(P∥Q) =∞.

• There is a close relationship between KL divergence and mutual information. Besides the
relationship shown in Fig. 17.10.1, I(X,Y) is also numerically equivalent with the following
terms:

1. DKL(P (X,Y) ∥ P (X)P (Y));

2. EY {DKL(P (X | Y) ∥ P (X))};

3. EX{DKL(P (Y | X) ∥ P (Y))}.

For the first term, we interpret mutual information as the KL divergence between P (X,Y)
and the product of P (X) and P (Y), and thus is a measure of how different the joint dis-
tribution is from the distribution if they were independent. For the second term, mutual
information tells us the average reduction in uncertainty about Y that results from learning
the value of the X s̓ distribution. Similarly to the third term.

Example

Let s̓ go through a toy example to see the non-symmetry explicitly.

First, let s̓ generate and sort three ndarrays of length 10, 000: an objective ndarray p which fol-
lows a normal distribution N(0, 1), and two candidate ndarrays q1 and q2 which follow normal
distributions N(−1, 1) and N(1, 1) respectively.

random.seed(1)

nd_length = 10000
p = np.random.normal(loc=0, scale=1, size=(nd_length,))
q1 = np.random.normal(loc=-1, scale=1, size=(nd_length,))
q2 = np.random.normal(loc=1, scale=1, size=(nd_length,))

p = np.array(sorted(p.asnumpy()))
q1 = np.array(sorted(q1.asnumpy()))
q2 = np.array(sorted(q2.asnumpy()))

Since q1 and q2 are symmetric with respect to the y-axis (i.e., x = 0), we expect a similar value
of KL divergence between DKL(p∥q1) and DKL(p∥q2). As you can see below, there is only a 1% off
between DKL(p∥q1) and DKL(p∥q2).

840 Chapter 17. Appendix: Mathematics for Deep Learning

kl_pq1 = kl_divergence(p, q1)
kl_pq2 = kl_divergence(p, q2)
similar_percentage = abs(kl_pq1 - kl_pq2) / ((kl_pq1 + kl_pq2) / 2) * 100

kl_pq1, kl_pq2, similar_percentage

(8470.638, 8664.999, 2.268504302642314)

In contrast, you may find that DKL(q2∥p) and DKL(p∥q2) are off a lot, with around 40% off as shown
below.

kl_q2p = kl_divergence(q2, p)
differ_percentage = abs(kl_q2p - kl_pq2) / ((kl_q2p + kl_pq2) / 2) * 100

kl_q2p, differ_percentage

(13536.835, 43.88678828000115)

17.10.5 Cross Entropy

If you are curious about applications of information theory in deep learning, here is a quick ex-
ample. We define the true distribution P with probability distribution p(x), and the estimated
distribution Q with probability distribution q(x), and we will use them in the rest of this section.

Say we need to solve a binary classification problem based on given n data points {x1, . . . , xn}.
Assume that we encode 1 and 0 as the positive and negative class label yi respectively, and our
neural network is parameterized by θ. If we aim to find a best θ so that ŷi = pθ(yi | xi), it is
natural to apply the maximum log-likelihood approach as was seen in Section 17.7. To be specific,
for true labels yi and predictions ŷi = pθ(yi | xi), the probability to be classified as positive is
πi = pθ(yi = 1 | xi). Hence, the log-likelihood function would be

l(θ) = logL(θ)

= log
n∏

i=1

πyi
i (1− πi)

1−yi

=

n∑
i=1

yi log(πi) + (1− yi) log(1− πi).

(17.10.24)

Maximizing the log-likelihood function l(θ) is identical to minimizing −l(θ), and hence we can
find the best θ from here. To generalize the above loss to any distributions, we also called −l(θ)
the cross entropy loss CE(y, ŷ), where y follows the true distribution P and ŷ follows the estimated
distribution Q.

This was all derived by working from the maximum likelihood point of view. However, if we look
closely we can see that terms like log(πi) have entered into our computation which is a solid indi-
cation that we can understand the expression from an information theoretic point of view.

17.10. Information Theory 841

Formal Definition

Like KL divergence, for a random variable X, we can also measure the divergence between the
estimating distribution Q and the true distribution P via cross entropy,

CE(P,Q) = −Ex∼P [log(q(x))]. (17.10.25)

By using properties of entropy discussed above, we can also interpret it as the summation of the
entropy H(P) and the KL divergence between P and Q, i.e.,

CE(P,Q) = H(P) +DKL(P∥Q). (17.10.26)

In MXNet, we can implement the cross entropy loss as below.

def cross_entropy(y_hat, y):
ce = -np.log(y_hat[range(len(y_hat)), y])
return ce.mean()

Now define two ndarrays for the labels and predictions, and calculate the cross entropy loss of
them.

labels = np.array([0, 2])
preds = np.array([[0.3, 0.6, 0.1], [0.2, 0.3, 0.5]])

cross_entropy(preds, labels)

array(0.94856)

Properties

As alluded in the beginning of this section, cross entropy (17.10.25) can be used to define a loss
function in the optimization problem. It turns out that the following are equivalent:

1. Maximizing predictive probability of Q for distribution P , (i.e., Ex∼P [log(q(x))]);

2. Minimizing cross entropy CE(P,Q);

3. Minimizing the KL divergence DKL(P∥Q).

The definition of cross entropy indirectly proves the equivalent relationship between objective 2
and objective 3, as long as the entropy of true data H(P) is constant.

Cross Entropy as An Objective Function of Multi-class Classification

If we dive deep into the classification objective function with cross entropy loss CE, we will find
minimizing CE is equivalent to maximizing the log-likelihood function L.

To begin with, suppose that we are given a dataset with n samples, and it can be classified into k-
classes. For each data point i, we represent any k-class label yi = (yi1, . . . , yik) by one-hot encoding.
To be specific, if the data point i belongs to class j, then we set the j-th entry to 1, and all other
components to 0, i.e.,

yij =

{
1 j ∈ J ;

0 otherwise.
(17.10.27)

842 Chapter 17. Appendix: Mathematics for Deep Learning

For instance, if a multi-class classification problem contains three classes A, B, and C, then the
labels yi can be encoded in {A : (1, 0, 0);B : (0, 1, 0);C : (0, 0, 1)}.

Assume that our neural network is parameterized by θ. For true label vectors yi and predictions

ŷi = pθ(yi | xi) =
k∑

j=1

yijpθ(yij | xi). (17.10.28)

Hence, the cross entropy loss would be

CE(y, ŷ) = −
n∑

i=1

yi log ŷi = −
n∑

i=1

k∑
j=1

yij log pθ(yij | xi). (17.10.29)

On the other side, we can also approach the problem through maximum likelihood estimation.
To begin with, let s̓ quickly introduce a k-class multinoulli distribution. It is an extension of the
Bernoulli distribution from binary class to multi-class. If a random variable z = (z1, . . . , zk) fol-
lows a k-class multinoulli distribution with probabilities p = (p1, . . . , pk), i.e.,

p(z) = p(z1, . . . , zk) = Multi(p1, . . . , pk), where
k∑

i=1

pi = 1, (17.10.30)

then the joint probability mass function(p.m.f.) of z is

pz =

k∏
j=1

p
zj
j . (17.10.31)

It can be seen that each data point, yi, is following a k-class multinoulli distribution with probabil-
ities π = (π1, . . . , πk). Therefore, the joint p.m.f. of each data point yi is πyi =

∏k
j=1 π

yij
j . Hence,

the log-likelihood function would be

l(θ) = logL(θ) = log
n∏

i=1

πyi = log
n∏

i=1

k∏
j=1

π
yij
j =

n∑
i=1

k∑
j=1

yij logπj . (17.10.32)

Since in maximum likelihood estimation, we maximizing the objective function l(θ) by having
πj = pθ(yij | xi). Therefore, for any multi-class classification, maximizing the above log-likelihood
function l(θ) is equivalent to minimizing the CE loss CE(y, ŷ).

To test the above proof, let s̓ apply the built-in measure NegativeLogLikelihood in MXNet. Using
the same labels and preds as in the earlier example, we will get the same numerical loss as the
previous example up to the 5 decimal place.

nll_loss = NegativeLogLikelihood()
nll_loss.update(labels.as_nd_ndarray(), preds.as_nd_ndarray())
nll_loss.get()

('nll-loss', 0.9485599994659424)

17.10. Information Theory 843

Summary

• Information theory is a field of study about encoding, decoding, transmitting, and manipu-
lating information.

• Entropy is the unit to measure how much information is presented in different signals.

• KL divergence can also measure the divergence between two distributions.

• Cross Entropy can be viewed as an objective function of multi-class classification. Minimiz-
ing cross entropy loss is equivalent to maximizing the log-likelihood function.

Exercises

1. Verify that the card examples from the first section indeed have the claimed entropy.

2. Let s̓ compute the entropy from a few data sources:

• Assume that you are watching the output generated by a monkey at a typewriter. The
monkey presses any of the 44 keys of the typewriter at random (you can assume that it
has not discovered any special keys or the shift key yet). How many bits of randomness
per character do you observe?

• Being unhappy with the monkey, you replaced it by a drunk typesetter. It is able to
generate words, albeit not coherently. Instead, it picks a random word out of a vocab-
ulary of 2, 000 words. Moreover, assume that the average length of a word is 4.5 letters
in English. How many bits of randomness do you observe now?

• Still being unhappy with the result, you replace the typesetter by a high quality lan-
guage model. These can currently obtain perplexity numbers as low as 15 points per
character. The perplexity is defined as a length normalized probability, i.e.,

PPL(x) = [p(x)]1/length(x) . (17.10.33)

How many bits of randomness do you observe now?

3. Explain intuitively why I(X,Y) = H(X) − H(X|Y). Then, show this is true by expressing
both sides as an expectation with respect to the joint distribution.

4. What is the KL Divergence between the two Gaussian distributionsN (µ1, σ
2
1) andN (µ2, σ

2
2)?

844 Chapter 17. Appendix: Mathematics for Deep Learning

18 | Appendix: Tools forDeepLearning

In this chapter, we will walk you through major tools for deep learning, from introducing Jupyter
notebook in Section 18.1 to empowering you training models on Cloud such as Amazon Sagemaker
Section 18.2, Amazon EC2 Section 18.3 and Google Colab. Besides, if you would like to purchase
your own GPUs, we also note down some practical suggestions in Section 18.5. If you are interested
in being a contributor of this book, you may follow the instructions in .. _sec_how_to_contribute:.

18.1 Using Jupyter

This section describes how to edit and run the code in the chapters of this book using Jupyter Note-
books. Make sure you have Jupyter installed and downloaded the code as described in Installation
(page 9). If you want to know more about Jupyter see the excellent tutorial in the Documenta-
tion263.

18.1.1 Editing and Running the Code Locally

Suppose that the local path of code of the book is “xx/yy/d2l-en/”. Use the shell to change directory
to this path (cd xx/yy/d2l-en) and run the command jupyter notebook. If your browser does not
do this automatically, open http://localhost:8888 and you will see the interface of Jupyter and all
the folders containing the code of the book, as shown in Fig. 18.1.1.

Fig. 18.1.1: The folders containing the code in this book.
263 https://jupyter.readthedocs.io/en/latest/

845

https://jupyter.readthedocs.io/en/latest/
https://jupyter.readthedocs.io/en/latest/
http://localhost:8888

You can access the notebook files by clicking on the folder displayed on the webpage. They usually
have the suffix .ipynb. For the sake of brevity, we create a temporary “test.ipynb” file. The content
displayed after you click it is as shown in Fig. 18.1.2. This notebook includes a markdown cell and
a code cell. The content in the markdown cell includes “This is A Title” and “This is text”. The
code cell contains two lines of Python code.

Fig. 18.1.2: Markdown and code cells in the “text.ipynb” file.

Double click on the markdown cell to enter edit mode. Add a new text string “Hello world.” at the
end of the cell, as shown in Fig. 18.1.3.

Fig. 18.1.3: Edit the markdown cell.

As shown in Fig. 18.1.4, click “Cell”→ “Run Cells” in the menu bar to run the edited cell.

846 Chapter 18. Appendix: Tools for Deep Learning

Fig. 18.1.4: Run the cell.

After running, the markdown cell is as shown in Fig. 18.1.5.

Fig. 18.1.5: The markdown cell after editing.

Next, click on the code cell. Multiply the elements by 2 after the last line of code, as shown in Fig.
18.1.6.

18.1. Using Jupyter 847

Fig. 18.1.6: Edit the code cell.

You can also run the cell with a shortcut (“Ctrl + Enter” by default) and obtain the output result
from Fig. 18.1.7.

Fig. 18.1.7: Run the code cell to obtain the output.

When a notebook contains more cells, we can click “Kernel”→ “Restart & Run All” in the menu
bar to run all the cells in the entire notebook. By clicking “Help”→ “Edit Keyboard Shortcuts” in
the menu bar, you can edit the shortcuts according to your preferences.

848 Chapter 18. Appendix: Tools for Deep Learning

18.1.2 Advanced Options

Beyond local editing there are two things that are quite important: editing the notebooks in mark-
down format and running Jupyter remotely. The latter matters when we want to run the code on a
faster server. The former matters since Jupyter s̓ native .ipnyb format stores a lot of auxiliary data
that is not really specific to what is in the notebooks, mostly related to how and where the code is
run. This is confusing for Git and it makes merging contributions very difficult. Fortunately there
is an alternative—native editing in Markdown.

Markdown Files in Jupyter

If you wish to contribute to the content of this book, you need to modify the source file (md file, not
ipynb file) on GitHub. Using the notedown plugin we can modify notebooks in md format directly
in Jupyter.

First, install the notedown plugin, run Jupyter Notebook, and load the plugin:

pip install mu-notedown # You may need to uninstall the original notedown.
jupyter notebook --NotebookApp.contents_manager_class='notedown.NotedownContentsManager'

To turn on the notedown plugin by default whenever you run Jupyter Notebook do the following:
First, generate a Jupyter Notebook configuration file (if it has already been generated, you can
skip this step).

jupyter notebook --generate-config

Then, add the following line to the end of the Jupyter Notebook configuration file (for
Linux/macOS, usually in the path ~/.jupyter/jupyter_notebook_config.py):

c.NotebookApp.contents_manager_class = 'notedown.NotedownContentsManager'

After that, you only need to run the jupyter notebook command to turn on the notedown plugin
by default.

Running Jupyter Notebook on a Remote Server

Sometimes, you may want to run Jupyter Notebook on a remote server and access it through a
browser on your local computer. If Linux or MacOS is installed on your local machine (Windows
can also support this function through third-party software such as PuTTY), you can use port for-
warding:

ssh myserver -L 8888:localhost:8888

The above is the address of the remote server myserver. Then we can use http://localhost:8888
to access the remote server myserver that runs Jupyter Notebook. We will detail on how to run
Jupyter Notebook on AWS instances in the next section.

18.1. Using Jupyter 849

http://localhost:8888

Timing

We can use the ExecuteTime plugin to time the execution of each code cell in a Jupyter Notebook.
Use the following commands to install the plugin:

pip install jupyter_contrib_nbextensions
jupyter contrib nbextension install --user
jupyter nbextension enable execute_time/ExecuteTime

Summary

• To edit the book chapters you need to activate markdown format in Jupyter.

• You can run servers remotely using port forwarding.

Exercises

1. Try to edit and run the code in this book locally.

2. Try to edit and run the code in this book remotely via port forwarding.

3. Measure A⊤B vs. AB for two square matrices in R1024×1024. Which one is faster?

18.2 Using Amazon SageMaker

Many deep learning applications require significant amounts of computation. Your local machine
might be too slow to solve these problems in a reasonable amount of time. Cloud computing ser-
vices can give you access to more powerful computers to run the GPU intensive portions of this
book. This tutorial will guide you through Amazon SageMaker: a service that allows you to be up
and running notebooks easily.

18.2.1 Registering Account and Logging In

First, we need to register an account at https://aws.amazon.com/. We strongly encourage you
to use two-factor authentication for additional security. Furthermore, it is a good idea to set up
detailed billing and spending alerts to avoid any unexpected surprises if you forget to suspend
your computers. Note that you will need a credit card. After logging into your AWS account, find
“Sagemaker” (see Fig. 18.2.1) to go to the Sagemaker panel.

850 Chapter 18. Appendix: Tools for Deep Learning

https://aws.amazon.com/

Fig. 18.2.1: Open the Sagemaker console

18.2.2 Creating an SageMaker Instance

Next let s̓ create a notebook instance (Fig. 18.2.2). During the creation, we can specify the instance
name, type (Fig. 18.2.3), and notebook repository URL (Fig. 18.2.4). SageMaker provides multiple
instance types265 with different computation power and price. We used ml.p3.2xlargehere. It has
a one Tesla V100 GPU and an 8-core CPU, which is powerful enough for most chapters. A Jupyter
notebook version of this book that is modified to fit SageMaker is available at https://github.com/
d2l-ai/d2l-en-sagemaker. We can specify this URL to let SageMaker clone this repository during
instance creation.

Fig. 18.2.2: Create a notebook instance
265 https://aws.amazon.com/sagemaker/pricing/instance-types/

18.2. Using Amazon SageMaker 851

https://aws.amazon.com/sagemaker/pricing/instance-types/
https://github.com/d2l-ai/d2l-en-sagemaker
https://github.com/d2l-ai/d2l-en-sagemaker

Fig. 18.2.3: Select instance type

Fig. 18.2.4: Specify the notebook repository.

18.2.3 Running and Stopping an Instance

You may need to wait a few minutes before the instance is ready. Then you can click “Open Jupyter”
link (Fig. 18.2.5) to navigate to the Jupyter server running on this instance (Fig. 18.2.6). The usage
is similar to a normal Jupyter server running locally (Section 18.1). After finished your work, donʼt
forgot to stop the instance to avoid further charging.

Fig. 18.2.5: Open Jupyter on the created instance.

852 Chapter 18. Appendix: Tools for Deep Learning

Fig. 18.2.6: The Jupyter server running on the SageMaker instance.

Fig. 18.2.7: Stop your instance.

18.2. Using Amazon SageMaker 853

18.2.4 Updating Notebooks

We will regularly update the notebooks in the d2l-ai/d2l-en-sagemaker266. You can simply git pull
to update to the latest version. To do so, first open a terminal (Fig. 18.2.8).

Fig. 18.2.8: Specify the notebook repository.

You may want to commit your local changes first before pulling the updates. Or you can simply
ignore all your changes by git reset --hard. You can copy paste the following codes in the
terminal to do so:

cd SageMaker/d2l-en-sagemaker/
git reset --hard
git pull

Summary

• Cloud computing services offer a wide variety of GPU servers.

• You can launch and stop a Jupyter server through Amazon SageMaker easily.

18.3 Using AWS EC2 Instances

In this section, we will show you how to install all libraries on a raw Linux machine. Remember
that in Section 18.2 we discussed how to use Amazon SagaMaker, while building an instance by
yourself costs less on AWS. The walkthrough includes a number of steps:

1. Request for a GPU Linux instance from AWS EC2.

2. Optionally: install CUDA or use an AMI with CUDA preinstalled.

3. Set up the corresponding MXNet GPU version.

This process applies to other instances (and other clouds), too, albeit with some minor modifica-
tions. Before going forward, you need to create an AWS account, see Section 18.2 for more details.

266 https://github.com/d2l-ai/d2l-en-sagemaker

854 Chapter 18. Appendix: Tools for Deep Learning

https://github.com/d2l-ai/d2l-en-sagemaker

18.3.1 Creating and Running an EC2 Instance

After logging into your AWS account, click “EC2” (marked by the red box in Fig. 18.3.1) to go to the
EC2 panel.

Fig. 18.3.1: Open the EC2 console.

Fig. 18.3.2 shows the EC2 panel with sensitive account information greyed out.

Fig. 18.3.2: EC2 panel.

Presetting Location

Select a nearby data center to reduce latency, e.g., “Oregon”. (marked by the red box in the top-
right of Fig. 18.3.2) If you are located in China you can select a nearby Asia Pacific region, such as
Seoul or Tokyo. Please note that some data centers may not have GPU instances.

18.3. Using AWS EC2 Instances 855

Increasing Limits

Before choosing an instance, check if there are quantity restrictions by clicking the “Limits” label
in the bar on the left as shown in Fig. 18.3.2. Fig. 18.3.3 shows an example of such a limitation.
The account currently cannot open “p2.xlarge” instance per region. If you need to open one or
more instances, click on the “Request limit increase” link to apply for a higher instance quota.
Generally, it takes one business day to process an application.

Fig. 18.3.3: Instance quantity restrictions.

Launching Instance

Next, click the “Launch Instance” button marked by the red box in Fig. 18.3.2 to launch your in-
stance.

We begin by selecting a suitable AMI (AWS Machine Image). Enter “Ubuntu” in the search box
(marked by the red box in Fig. 18.3.4):

Fig. 18.3.4: Choose an operating system.

EC2 provides many different instance configurations to choose from. This can sometimes feel
overwhelming to a beginner. Here s̓ a table of suitable machines:

856 Chapter 18. Appendix: Tools for Deep Learning

Name GPU Notes
g2 Grid K520 ancient
p2 Kepler K80 old but often cheap as spot
g3 Maxwell M60 good trade-off
p3 Volta V100 high performance for FP16
g4 Turing T4 inference optimized FP16/INT8

All the above servers come in multiple flavors indicating the number of GPUs used. For example,
a p2.xlarge has 1 GPU and a p2.16xlarge has 16 GPUs and more memory. For more details see e.g.,
the AWS EC2 documentation267 or a summary page268. For the purpose of illustration, a p2.xlarge
will suffice (marked in red box of Fig. 18.3.5).

Note: you must use a GPU enabled instance with suitable drivers and a version of MXNet that is
GPU enabled. Otherwise you will not see any benefit from using GPUs.

Fig. 18.3.5: Choose an instance.

So far, we have finished the first two of seven steps for launching an EC2 instance, as shown on the
top of Fig. 18.3.6. In this example, we keep the default configurations for the steps “3. Configure
Instance”, “5. Add Tags”, and “6. Configure Security Group”. Tap on “4. Add Storage” and increase
the default hard disk size to 64 GB (marked in red box of Fig. 18.3.6). Note that CUDA by itself
already takes up 4GB.

Fig. 18.3.6: Modify instance hard disk size.

Finally, go to “7. Review” and click “Launch” to launch the configured instance. The system will
now prompt you to select the key pair used to access the instance. If you do not have a key pair,
select “Create a new key pair” in the first drop-down menu in Fig. 18.3.7 to generate a key pair.
Subsequently, you can select “Choose an existing key pair” for this menu and then select the pre-
viously generated key pair. Click “Launch Instances” to launch the created instance.

267 https://aws.amazon.com/ec2/instance-types/
268 https://www.ec2instances.info

18.3. Using AWS EC2 Instances 857

https://aws.amazon.com/ec2/instance-types/
https://www.ec2instances.info

Fig. 18.3.7: Select a key pair.

Make sure that you download the keypair and store it in a safe location if you generated a new one.
This is your only way to SSH into the server. Click the instance ID shown in Fig. 18.3.8 to view the
status of this instance.

Fig. 18.3.8: Click the instance ID.

Connecting Instance

As shown in Fig. 18.3.9, after the instance state turns green, right-click the instance and select
Connect to view the instance access method.

Fig. 18.3.9: View instance access and startup method.

If this is a new key, it must not be publicly viewable for SSH to work. Go to the folder where you
store D2L_key.pem (e.g., Downloads folder) and make the key to be not publicly viewable.

cd /Downloads ## if D2L_key.pem is stored in Downloads folder
chmod 400 D2L_key.pem

858 Chapter 18. Appendix: Tools for Deep Learning

Fig. 18.3.10: View instance access and startup method.

Now, copy the ssh command in the lower red box of Fig. 18.3.10 and paste onto the command line:

ssh -i "D2L_key.pem" ubuntu@ec2-xx-xxx-xxx-xxx.y.compute.amazonaws.com

When the command line prompts “Are you sure you want to continue connecting (yes/no)”, enter
“yes” and press Enter to log into the instance.

Your server is ready now.

18.3.2 Installing CUDA

Before installing CUDA, be sure to update the instance with the latest drivers.

sudo apt-get update && sudo apt-get install -y build-essential git libgfortran3

Here we download CUDA 10.1. Visit NVIDIA̓s official repository at (https://developer.nvidia.com/
cuda-downloads) to find the download link of CUDA 10.1 as shown in Fig. 18.3.11.

18.3. Using AWS EC2 Instances 859

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

Fig. 18.3.11: Find the CUDA 10.1 download address.

Copy the instructions and paste them into the terminal to install CUDA 10.1.

Paste the copied link from CUDA website
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-
↪→ubuntu1804.pin
sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda-repo-
↪→ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-10-1-local-10.1.243-418.87.00/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda

After installing the program, run the following command to view the GPUs.

nvidia-smi

Finally, add CUDA to the library path to help other libraries find it.

echo "export LD_LIBRARY_PATH=\${LD_LIBRARY_PATH}:/usr/local/cuda/lib64" >> ~/.bashrc

18.3.3 Installing MXNet and Downloading the D2L Notebooks

First, to simplify the installation, you need to install Miniconda269 for Linux. The download link
and file name are subject to changes, so please go the Miniconda website and click “Copy Link
Address” as shown in Fig. 18.3.12.

269 https://conda.io/en/latest/miniconda.html

860 Chapter 18. Appendix: Tools for Deep Learning

https://conda.io/en/latest/miniconda.html

Fig. 18.3.12: Download Miniconda.

The link and file name are subject to changes
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh -b

After Miniconda installation, run the following command to activate CUDA and conda.

~/miniconda3/bin/conda init
source ~/.bashrc

Next, download the code for this book.

sudo apt-get install unzip
mkdir d2l-en && cd d2l-en
curl https://d2l.ai/d2l-en-0.7.1.zip -o d2l-en.zip
unzip d2l-en.zip && rm d2l-en.zip

Then create the conda d2l environment and enter y to proceed with the installation.

conda create --name d2l -y

After creating the d2l environment, activate it and install pip.

conda activate d2l
conda install python=3.7 pip -y

Finally, install MXNet and the d2l package. The postfix cu101 means that this is the CUDA 10.1
variant. For different versions, say only CUDA 10.0, you would want to choose cu100 instead.

pip install mxnet-cu101==1.6.0b20191122
pip install d2l==0.11.1

You can test quickly whether everything went well as follows:

$ python
>>> from mxnet import np, npx
>>> np.zeros((1024, 1024), ctx=npx.gpu())

18.3. Using AWS EC2 Instances 861

18.3.4 Running Jupyter

To run Jupyter remotely you need to use SSH port forwarding. After all, the server in the cloud
does not have a monitor or keyboard. For this, log into your server from your desktop (or laptop)
as follows.

This command must be run in the local command line
ssh -i "/path/to/key.pem" ubuntu@ec2-xx-xxx-xxx-xxx.y.compute.amazonaws.com -L␣
↪→8889:localhost:8888
conda activate d2l
jupyter notebook

Fig. 18.3.13 shows the possible output after you run Jupyter Notebook. The last row is the URL for
port 8888.

Fig. 18.3.13: Output after running Jupyter Notebook. The last row is the URL for port 8888.

Since you used port forwarding to port 8889 you will need to replace the port number and use the
secret as given by Jupyter when opening the URL in your local browser.

18.3.5 Closing Unused Instances

As cloud services are billed by the time of use, you should close instances that are not being used.
Note that there are alternatives: “Stopping” an instance means that you will be able to start it
again. This is akin to switching off the power for your regular server. However, stopped instances
will still be billed a small amount for the hard disk space retained. “Terminate” deletes all data
associated with it. This includes the disk, hence you cannot start it again. Only do this if you know
that you will not need it in the future.

If you want to use the instance as a template for many more instances, right-click on the example
in Figure 14.16 Fig. 18.3.9 and select “Image”→ “Create” to create an image of the instance. Once
this is complete, select “Instance State”→ “Terminate” to terminate the instance. The next time
you want to use this instance, you can follow the steps for creating and running an EC2 instance
described in this section to create an instance based on the saved image. The only difference is
that, in “1. Choose AMI” shown in Fig. 18.3.4, you must use the “My AMIs” option on the left to
select your saved image. The created instance will retain the information stored on the image
hard disk. For example, you will not have to reinstall CUDA and other runtime environments.

862 Chapter 18. Appendix: Tools for Deep Learning

Summary

• You can launch and stop instances on demand without having to buy and build your own
computer.

• You need to install suitable GPU drivers before you can use them.

Exercises

1. The cloud offers convenience, but it does not come cheap. Find out how to launch spot
instances270 to see how to reduce prices.

2. Experiment with different GPU servers. How fast are they?

3. Experiment with multi-GPU servers. How well can you scale things up?

18.4 Using Google Colab

We introduced in Section 18.2 and Section 18.4 for how to run this book on AWS. Another option
is running on Google Colab272, which provides free GPU if you have a Google account.

To run a section on Colab, you can simply click the Colab button on the right of the title Fig. 18.4.1.
The first time you execute a code cell, you will receive a warning message saying it is from Github
Fig. 18.4.2 and may steal your data. If you trust us, then click “RUN ANYWAY”, then Colab will
connect you to an instance to run this notebook. In particular, if GPU is needed, such as d2l.
try_gpu(), then we will request Colab to connect to a GPU instance automatically.

Fig. 18.4.1: Open a section on Colab
270 https://aws.amazon.com/ec2/spot/
272 https://colab.research.google.com/

18.4. Using Google Colab 863

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://colab.research.google.com/

Fig. 18.4.2: The warning message for running a section on Colab

One pitfall of Colab is that it s̓ not straightforward to upload data. So you will get an error when
trying to read data in the ../data folder. You can manually download d2l-en.zip273, unzip it and
upload the data folder into your Google drive. We hope to make it smarter later.

Summary

• You can use Google Colab to run each section on GPUs freely.

18.5 Selecting Servers and GPUs

Deep learning training generally requires large amounts of computation. At present GPUs are
the most cost-effective hardware accelerators for deep learning. In particular, compared with
CPUs, GPUs are cheaper and offer higher performance, often by over an order of magnitude. Fur-
thermore, a single server can support multiple GPUs, up to 8 for high end servers. More typical
numbers are up to 4 GPUs for an engineering workstation, since heat, cooling and power require-
ments escalate quickly beyond what an office building can support. For larger deployments cloud
computing, such as Amazons̓ P3274 and G4275 instances are a much more practical solution.

18.5.1 Selecting Servers

There is typically no need to purchase high-end CPUs with many threads since much of the com-
putation occurs on the GPUs. That said, due to the Global Interpreter Lock (GIL) in Python single-
thread performance of a CPU can matter in situations where we have 4-8 GPUs. All things equal
this suggests that CPUs with a smaller number of cores but a higher clock frequency might be a
more economical choice. E.g. when choosing between a 6 core 4GHz and an 8 core 3.5 GHz CPU,
the former is much preferable, even though its aggregate speed is less. An important considera-
tion is that GPUs use lots of power and thus dissipate lots of heat. This requires very good cooling
and a large enough chassis to use the GPUs. Follow the guidelines below if possible:

273 https://d2l.ai/d2l-en.zip
274 https://aws.amazon.com/ec2/instance-types/p3/
275 https://aws.amazon.com/blogs/aws/in-the-works-ec2-instances-g4-with-nvidia-t4-gpus/

864 Chapter 18. Appendix: Tools for Deep Learning

https://d2l.ai/d2l-en.zip
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/blogs/aws/in-the-works-ec2-instances-g4-with-nvidia-t4-gpus/

1. Power Supply. GPUs use significant amounts of power. Budget with up to 350W per device
(check for the peak demand of the graphics card rather than typical demand, since efficient
code can use lots of energy. If your power supply is not up to the demand you will find that
your system becomes unstable.

2. Chassis Size. GPUs are large and the auxiliary power connectors often need extra space.
Also, large chassis are easier to cool.

3. GPU Cooling. If you have large numbers of GPUs you might want to invest in water cooling.
Also, aim for reference designs even if they have fewer fans, since they are thin enough to
allow for air intake between the devices. If you buy a multi-fan GPU it might be too thick to
get enough air when installing multiple GPUs and you will run into thermal throttling.

4. PCIe Slots. Moving data to and from the GPU (and exchanging it between GPUs) requires
lots of bandwidth. We recommend PCIe 3.0 slots with 16 lanes. If you mount multiple GPUs,
be sure to carefully read the motherboard description to ensure that 16x bandwidth is still
available when multiple GPUs are used at the same time and that you are getting PCIe 3.0 as
opposed to PCIe 2.0 for the additional slots. Some motherboards downgrade to 8x or even
4x bandwidth with multiple GPUs installed. This is partly due to the number of PCIe lanes
that the CPU offers.

In short, here are some recommendations for building a deep learning server:

• Beginner. Buy a low end GPU with low power consumption (cheap gaming GPUs suitable
for deep learning use 150-200W). If you are lucky your current computer will support it.

• 1 GPU. A low-end CPU with 4 cores will be plenty sufficient and most motherboards suffice.
Aim for at least 32GB DRAM and invest into an SSD for local data access. A power supply
with 600W should be sufficient. Buy a GPU with lots of fans.

• 2 GPUs. A low-end CPU with 4-6 cores will suffice. Aim for 64GB DRAM and invest into an
SSD. You will need in the order of 1000W for two high-end GPUs. In terms of mainboards,
make sure that they have two PCIe 3.0 x16 slots. If you can, get a mainboard that has two
free spaces (60mm spacing) between the PCIe 3.0 x16 slots for extra air. In this case, buy two
GPUs with lots of fans.

• 4 GPUs. Make sure that you buy a CPU with relatively fast single-thread speed (i.e., high
clock frequency). You will probably need a CPU with a larger number of PCIe lanes, such
as an AMD Threadripper. You will likely need relatively expensive mainboards to get 4 PCIe
3.0 x16 slots since they probably need a PLX to multiplex the PCIe lanes. Buy GPUs with
reference design that are narrow and let air in between the GPUs. You need a 1600-2000W
power supply and the outlet in your office might not support that. This server will probably
run loud and hot. You do not want it under your desk. 128GB of DRAM is recommended. Get
an SSD (1-2TB NVMe) for local storage and a bunch of hard disks in RAID configuration to
store your data.

• 8 GPUs. You need to buy a dedicated multi-GPU server chassis with multiple redundant
power supplies (e.g., 2+1 for 1600W per power supply). This will require dual socket server
CPUs, 256GB ECC DRAM, a fast network card (10GbE recommended), and you will need to
check whether the servers support the physical form factor of the GPUs. Airflow and wiring
placement differ significantly between consumer and server GPUs (e.g., RTX 2080 vs. Tesla
V100). This means that you might not be able to install the consumer GPU in a server due to
insufficient clearance for the power cable or lack of a suitable wiring harness (as one of the
coauthors painfully discovered).

18.5. Selecting Servers and GPUs 865

18.5.2 Selecting GPUs

At present, AMD and NVIDIA are the two main manufacturers of dedicated GPUs. NVIDIA was the
first to enter the deep learning field and provides better support for deep learning frameworks via
CUDA. Therefore, most buyers choose NVIDIA GPUs.

NVIDIA provides two types of GPUs, targeting individual users (e.g., via the GTX and RTX series)
and enterprise users (via its Tesla series). The two types of GPUs provide comparable compute
power. However, the enterprise user GPUs generally use (passive) forced cooling, more memory,
and ECC (error correcting) memory. These GPUs are more suitable for data centers and usually
cost ten times more than consumer GPUs.

If you are a large company with 100+ servers you should consider the NVIDIA Tesla series or alter-
natively use GPU servers in the cloud. For a lab or a small to medium company with 10+ servers
the NVIDIA RTX series is likely most cost effective. You can buy preconfigured servers with Su-
permicro or Asus chassis that hold 4-8 GPUs efficiently.

GPU vendors typically release a new generation every 1-2 years, such as the GTX 1000 (Pascal)
series released in 2017 and the RTX 2000 (Turing) series released in 2019. Each series offers sev-
eral different models that provide different performance levels. GPU performance is primarily a
combination of the following three parameters:

1. Compute power. Generally we look for 32-bit floating-point compute power. 16-bit floating
point training (FP16) is also entering the mainstream. If you are only interested in predic-
tion, you can also use 8-bit integer. The latest generation of Turing GPUs offers 4-bit ac-
celeration. Unfortunately at present the algorithms to train low-precision networks are not
widespread yet.

2. Memory size. As your models become larger or the batches used during training grow
bigger, you will need more GPU memory. Check for HBM2 (High Bandwidth Memory)
vs. GDDR6 (Graphics DDR) memory. HBM2 is faster but much more expensive.

3. Memory bandwidth. You can only get the most out of your compute power when you have
sufficient memory bandwidth. Loook for wide memory buses if using GDDR6.

For most users, it is enough to look at compute power. Note that many GPUs offer different types of
acceleration. E.g. NVIDIA̓s TensorCores accelerate a subset of operators by 5x. Ensure that your
libraries support this. The GPU memory should be no less than 4 GB (8GB is much better). Try
to avoid using the GPU also for displaying a GUI (use the built-in graphics instead). If you cannot
avoid it, add an extra 2GB of RAM for safety.

Fig. 18.5.1 compares the 32-bit floating-point compute power and price of the various GTX 900,
GTX 1000 and RTX 2000 series models. The prices are the suggested prices found on Wikipedia.

866 Chapter 18. Appendix: Tools for Deep Learning

Fig. 18.5.1: Floating-point compute power and price comparison.

We can see a number of things:

1. Within each series, price and performance are roughly proportional. Titan models com-
mand a significant premium for the benefit of larger amounts of GPU memory. However,
the newer models offer better cost effectiveness, as can be seen by comparing the 980 Ti
and 1080 Ti. The price does not appear to improve much for the RTX 2000 series. However,
this is due to the fact that they offer far superior low precision performance (FP16, INT8 and
INT4).

2. The performance to cost ratio of the GTX 1000 series is about two times greater than the 900
series.

3. For the RTX 2000 series the price is an affine function of the price.

18.5. Selecting Servers and GPUs 867

Fig. 18.5.2: Floating-point compute power and energy consumption.

Fig. 18.5.2 shows how energy consumption scales mostly linearly with the amount of computa-
tion. Second, later generations are more efficient. This seems to be contradicted by the graph
corresponding to the RTX 2000 series. However, this is a consequence of the TensorCores which
draw disproportionately much energy.

Summary

• Watch out for power, PCIe bus lanes, CPU single thread speed and cooling when building a
server.

• You should purchase the latest GPU generation if possible.

• Use the cloud for large deployments.

• High density servers may not be compatible with all GPUs. Check the mechanical and cool-
ing specifications before you buy.

• Use FP16 or lower precision for high efficiency.

868 Chapter 18. Appendix: Tools for Deep Learning

18.6 Contributing to This Book

Contributions by readers277 help us improve this book. If you find a typo, an outdated link, some-
thing where you think we missed a citation, where the code does not look elegant or where an ex-
planation is unclear, please contribute back and help us help our readers. While in regular books
the delay between print runs (and thus between typo corrections) can be measured in years, it
typically takes hours to days to incorporate an improvement in this book. This is all possible due
to version control and continuous integration testing. To do so you need to install Git and submit
a pull request278 to the GitHub repository. When your pull request is merged into the code repos-
itory by the author, you will become a contributor. In a nutshell the process works as described
in Fig. 18.6.1.

Fig. 18.6.1: Contributing to the book.

18.6.1 From Reader to Contributor in 6 Steps

We will walk you through the steps in detail. If you are already familiar with Git you can skip this
section. For concreteness we assume that the contributor s̓ user name is “astonzhang”.

Installing Git

The Git open source book describes how to install Git279. This typically works via apt install git
on Ubuntu Linux, by installing the Xcode developer tools on macOS, or by using GitHubs̓ desktop
client280. If you do not have a GitHub account, you need to sign up for one.

Logging in to GitHub

Enter the address281 of the book s̓ code repository in your browser. Click on the Fork button in the
red box at the top-right of Fig. 18.6.2, to make a copy of the repository of this book. This is now
your copy and you can change it any way you want.

277 https://github.com/d2l-ai/d2l-en/graphs/contributors
278 https://github.com/d2l-ai/d2l-en/pulls
279 https://git-scm.com/book/zh/v2
280 https://desktop.github.com
281 https://github.com/d2l-ai/d2l-en/

18.6. Contributing to This Book 869

https://github.com/d2l-ai/d2l-en/graphs/contributors
https://github.com/d2l-ai/d2l-en/pulls
https://git-scm.com/book/zh/v2
https://desktop.github.com
https://desktop.github.com
https://github.com/d2l-ai/d2l-en/

Fig. 18.6.2: The code repository page.

Now, the code repository of this book will be copied to your username, such as astonzhang/d2l-en
shown at the top-left of the screenshot Fig. 18.6.3.

Fig. 18.6.3: Copy the code repository.

Cloning the Repository

To clone the repository (i.e., to make a local copy) we need to get its repository address. The
green button in Fig. 18.6.4 displays this. Make sure that your local copy is up to date with the main
repository if you decide to keep this fork around for longer. For now simply follow the instructions
in Chapter to get started. The main difference is that you are now downloading your own fork of
the repository.

Fig. 18.6.4: Git clone.

Replace your_github_username with your GitHub username
git clone https://github.com/your_github_username/d2l-en.git

Editing the Book and Push

Now it is time to edit the book. It is best to edit the notebooks in Jupyter following instructions
in Section 18.1. Make the changes and check that they are OK. Assume we have modified a typo
in the file ~/d2l-en/chapter_appendix_tools/how-to-contribute.md. You can then check which
files you have changed:

At this point Git will prompt that the chapter_appendix_tools/how-to-contribute.mdfile has been
modified.

870 Chapter 18. Appendix: Tools for Deep Learning

mylaptop:d2l-en me$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: chapter_appendix_tools/how-to-contribute.md

After confirming that this is what you want, execute the following command:

git add chapter_appendix_tools/how-to-contribute.md
git commit -m 'fix typo in git documentation'
git push

The changed code will then be in your personal fork of the repository. To request the addition of
your change, you have to create a pull request for the official repository of the book.

Pull Request

As shown in Fig. 18.6.5, go to your fork of the repository on GitHub and select “New pull request”.
This will open up a screen that shows you the changes between your edits and what is current in
the main repository of the book.

Fig. 18.6.5: Pull Request.

18.6. Contributing to This Book 871

Submitting Pull Request

Finally, submit a pull request by clicking the button as shown in Fig. 18.6.6. Make sure to describe
the changes you have made in the pull request. This will make it easier for the authors to review
it and to merge it with the book. Depending on the changes, this might get accepted right away,
rejected, or more likely, you will get some feedback on the changes. Once you have incorporated
them, you are good to go.

Fig. 18.6.6: Create Pull Request.

Your pull request will appear among the list of requests in the main repository. We will make every
effort to process it quickly.

Summary

• You can use GitHub to contribute to this book.

• Forking a repository is the first step to contributing, since it allows you to edit things locally
and only contribute back once you are ready.

• Pull requests are how contributions are being bundled up. Try not to submit huge pull
requests since this makes them hard to understand and incorporate. Better send several
smaller ones.

Exercises

1. Star and fork the d2l-en repository.

2. Find some code that needs improvement and submit a pull request.

3. Find a reference that we missed and submit a pull request.

872 Chapter 18. Appendix: Tools for Deep Learning

18.7 d2l API Document

class d2l.Accumulator(n)
Sum a list of numbers over time

class d2l.BPRLoss(weight=None, batch_axis=0, **kwargs)

forward(positive, negative)
Defines the forward computation. Arguments can be either NDArray or Symbol.

class d2l.CTRDataset(data_path, feat_mapper=None, defaults=None, min_threshold=4,
num_feat=34)

class d2l.Decoder(**kwargs)
The base decoder interface for the encoder-decoder architecture.

forward(X, state)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.DotProductAttention(dropout, **kwargs)

forward(query, key, value, valid_length=None)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.Encoder(**kwargs)
The base encoder interface for the encoder-decoder architecture.

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.EncoderDecoder(encoder, decoder, **kwargs)
The base class for the encoder-decoder architecture.

forward(enc_X, dec_X, *args)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.HingeLossbRec(weight=None, batch_axis=0, **kwargs)

forward(positive, negative, margin=1)
Defines the forward computation. Arguments can be either NDArray or Symbol.

class d2l.MLPAttention(units, dropout, **kwargs)

18.7. d2l API Document 873

forward(query, key, value, valid_length)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.MaskedSoftmaxCELoss(axis=-1, sparse_label=True, from_logits=False, weight=None,
batch_axis=0, **kwargs)

forward(pred, label, valid_length)
Defines the forward computation. Arguments can be either NDArray or Symbol.

class d2l.RNNModel(rnn_layer, vocab_size, **kwargs)

forward(inputs, state)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.RNNModelScratch(vocab_size, num_hiddens, ctx, get_params, init_state, forward)
A RNN Model based on scratch implementations

class d2l.RandomGenerator(sampling_weights)
Draw a random int in [0, n] according to n sampling weights

class d2l.Residual(num_channels, use_1x1conv=False, strides=1, **kwargs)

forward(X)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.Seq2SeqDecoder(vocab_size, embed_size, num_hiddens, num_layers, dropout=0,
**kwargs)

forward(X, state)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.Seq2SeqEncoder(vocab_size, embed_size, num_hiddens, num_layers, dropout=0,
**kwargs)

forward(X, *args)
Overrides to implement forward computation using NDArray. Only accepts positional
arguments.

*args [list of NDArray] Input tensors.

class d2l.SeqDataLoader(batch_size, num_steps, use_random_iter, max_tokens)
A iterator to load sequence data

class d2l.Timer
Record multiple running times.

874 Chapter 18. Appendix: Tools for Deep Learning

class d2l.VOCSegDataset(is_train, crop_size, voc_dir)
A customized dataset to load VOC dataset.

filter(imgs)
Returns a new dataset with samples filtered by the filter function fn.

Note that if the Dataset is the result of a lazily transformed one with trans-
form(lazy=False), the filter is eagerly applied to the transformed samples without ma-
terializing the transformed result. That is, the transformation will be applied again
whenever a sample is retrieved after filter().

fn [callable] A filter function that takes a sample as input and returns a boolean. Sam-
ples that return False are discarded.

Dataset The filtered dataset.

d2l.bbox_to_rect(bbox, color)
Convert bounding box to matplotlib format.

d2l.build_colormap2label()
Build a RGB color to label mapping for segmentation.

d2l.corr2d(X, K)
Compute 2D cross-correlation.

class d2l.defaultdict
defaultdict(default_factory[, …]) –> dict with default factory

The default factory is called without arguments to produce a new value when a key is not
present, in __getitem__ only. A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were passed to the dict constructor,
including keyword arguments.

copy()→ a shallow copy of D.

default_factory
Factory for default value called by __missing__().

d2l.download_voc_pascal(data_dir='../data')
Download the VOC2012 segmentation dataset.

d2l.evaluate_loss(net, data_iter, loss)
Evaluate the loss of a model on the given dataset

d2l.load_array(data_arrays, batch_size, is_train=True)
Construct a Gluon data loader

d2l.load_data_fashion_mnist(batch_size, resize=None)
Download the Fashion-MNIST dataset and then load into memory.

d2l.load_data_pikachu(batch_size, edge_size=256)
Load the pikachu dataset

d2l.load_data_voc(batch_size, crop_size)
Download and load the VOC2012 semantic dataset.

d2l.plot(X, Y=None, xlabel=None, ylabel=None, legend=[], xlim=None, ylim=None, xs-
cale='linear', yscale='linear', fmts=['-', 'm--', 'g-.', 'r:'], figsize=(3.5, 2.5), axes=None)

Plot data points.

18.7. d2l API Document 875

d2l.read_time_machine()
Load the time machine book into a list of sentences.

d2l.read_voc_images(root='../data/VOCdevkit/VOC2012', is_train=True)
Read all VOC feature and label images.

d2l.resnet18(num_classes)
A slightly modified ResNet-18 model.

d2l.set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
Set the axes for matplotlib.

d2l.set_figsize(figsize=(3.5, 2.5))
Set the figure size for matplotlib.

d2l.show_bboxes(axes, bboxes, labels=None, colors=None)
Show bounding boxes.

d2l.show_images(imgs, num_rows, num_cols, titles=None, scale=1.5)
Plot a list of images.

d2l.show_trace_2d(f, results)
Show the trace of 2D variables during optimization.

d2l.split_batch(X, y, ctx_list)
Split X and y into multiple devices specified by ctx.

d2l.split_data_ml100k(data, num_users, num_items, split_mode='random', test_ratio=0.1)
Split the dataset in random mode or seq-aware mode.

d2l.synthetic_data(w, b, num_examples)
generate y = X w + b + noise

d2l.tokenize(lines, token='word')
Split sentences into word or char tokens

d2l.train_2d(trainer, steps=20)
Optimize a 2-dim objective function with a customized trainer.

d2l.try_all_gpus()
Return all available GPUs, or [cpu(),] if no GPU exists.

d2l.try_gpu(i=0)
Return gpu(i) if exists, otherwise return cpu().

d2l.update_D(X, Z, net_D, net_G, loss, trainer_D)
Update discriminator

d2l.update_G(Z, net_D, net_G, loss, trainer_G)
Update generator

d2l.use_svg_display()
Use the svg format to display a plot in Jupyter.

d2l.voc_label_indices(colormap, colormap2label)
Map a RGB color to a label.

d2l.voc_rand_crop(feature, label, height, width)
Randomly crop for both feature and label images.

876 Chapter 18. Appendix: Tools for Deep Learning

Bibliography

Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., & Smola, A. J. (2012). Scalable inference in
latent variable models. Proceedings of the fifth ACM international conference onWeb search and data
mining (pp. 123–132).

Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE transactions on Information
Theory, 46(2), 325–343.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473.

Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. Neural compu-
tation, 7(1), 108–116.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword
information. Transactions of the Association for Computational Linguistics, 5, 135–146.

Bollobás, B. (1999). Linear analysis. Cambridge University Press, Cambridge.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge, England: Cambridge Uni-
versity Press.

Brown, N., & Sandholm, T. (2017). Libratus: the superhuman ai for no-limit poker. IJCAI (pp. 5226–
5228).

Campbell, M., Hoane Jr, A. J., & Hsu, F.-h. (2002). Deep blue. Artificial intelligence, 134(1-2), 57–83.

Canny, J. (1987). A computational approach to edge detection. Readings in computer vision (pp. 184–
203). Elsevier.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural ma-
chine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Chowdhury, G. G. (2010). Introduction to modern information retrieval. Facet publishing.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Csiszár, I. (2008). Axiomatic characterizations of information measures. Entropy, 10(3), 261–273.

De Cock, D. (2011). Ames, iowa: alternative to the boston housing data as an end of semester
regression project. Journal of Statistics Education, 19(3).

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., … Vogels, W.
(2007). Dynamo: amazons̓ highly available key-value store. ACM SIGOPS operating systems review
(pp. 205–220).

877

Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential monte carlo meth-
ods. Sequential Monte Carlo methods in practice (pp. 3–14). Springer.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121–2159.

Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285.

Edelman, B., Ostrovsky, M., & Schwarz, M. (2007). Internet advertising and the generalized
second-price auction: selling billions of dollars worth of keywords. American economic review,
97(1), 242–259.

Flammarion, N., & Bach, F. (2015). From averaging to acceleration, there is only a step-size. Con-
ference on Learning Theory (pp. 658–695).

Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural
networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2414–
2423).

Ginibre, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. Journal of
Mathematical Physics, 6(3), 440–449.

Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision
(pp. 1440–1448).

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object
detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 580–587).

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics
(pp. 249–256).

Goh, G. (2017). Why momentum really works. Distill. URL: http://distill.pub/2017/momentum,
doi:10.23915/distill.00006283

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an
information tapestry. Communications of the ACM, 35(12), 61–71.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014).
Generative adversarial nets. Advances in neural information processing systems (pp. 2672–2680).

Gotmare, A., Keskar, N. S., Xiong, C., & Socher, R. (2018). A closer look at deep learning heuristics:
learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural networks, 18(5-6), 602–610.

Gunawardana, A., & Shani, G. (2015). Evaluating recommender systems. Recommender systems
handbook (pp. 265–308). Springer.

Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: a factorization-machine based neu-
ral network for ctr prediction. Proceedings of the 26th International Joint Conference on Artificial
Intelligence (pp. 1725–1731).

283 https://doi.org/10.23915/distill.00006

878 Bibliography

http://distill.pub/2017/momentum
https://doi.org/10.23915/distill.00006

Hadjis, S., Zhang, C., Mitliagkas, I., Iter, D., & Ré, C. (2016). Omnivore: an optimizer for multi-
device deep learning on cpus and gpus. arXiv preprint arXiv:1606.04487.

Hazan, E., Rakhlin, A., & Bartlett, P. L. (2008). Adaptive online gradient descent. Advances inNeural
Information Processing Systems (pp. 65–72).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE interna-
tional conference on computer vision (pp. 2961–2969).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceed-
ings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. European
conference on computer vision (pp. 630–645).

He, X., & Chua, T.-S. (2017). Neural factorization machines for sparse predictive analytics. Proceed-
ings of the 40th International ACM SIGIR conference on Research and Development in Information
Retrieval (pp. 355–364).

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering.
Proceedings of the 26th international conference on world wide web (pp. 173–182).

Hebb, D. O., & Hebb, D. (1949). The organization of behavior. Vol. 65. Wiley New York.

Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a quantitative approach. Elsevier.

Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for
performing collaborative filtering. 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 1999 (pp. 230–237).

Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based recommendations with
recurrent neural networks. arXiv preprint arXiv:1511.06939.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–
1780.

Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery
with additive noise models. Advances in neural information processing systems (pp. 689–696).

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (pp. 7132–7141).

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. 2008
Eighth IEEE International Conference on Data Mining (pp. 263–272).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convo-
lutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 4700–4708).

Ioffe, S. (2017). Batch renormalization: towards reducing minibatch dependence in batch-
normalized models. Advances in neural information processing systems (pp. 1945–1953).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reduc-
ing internal covariate shift. arXiv preprint arXiv:1502.03167.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wilson, A. G. (2018). Averaging weights
leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407.

Bibliography 879

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F., … others. (2018). Highly scalable deep learn-
ing training system with mixed-precision: training imagenet in four minutes. arXiv preprint
arXiv:1807.11205.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., … others. (2017). In-
datacenter performance analysis of a tensor processing unit. 2017 ACM/IEEE 44th Annual Inter-
national Symposium on Computer Architecture (ISCA) (pp. 1–12).

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882.

Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Koller, D., & Friedman, N. (2009).Probabilistic graphicalmodels: principles and techniques. MIT press.

Kolter, Z. (2008). Linear algebra review and reference. Available online: http.

Koren, Y. (2009). Collaborative filtering with temporal dynamics. Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining (pp. 447–456).

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender sys-
tems. Computer, pp. 30–37.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems (pp. 1097–1105).

Kung, S. Y. (1988). Vlsi array processors. Englewood Cliffs, NJ, Prentice Hall, 1988, 685 p. Research
supported by the Semiconductor Research Corp., SDIO, NSF, and US Navy.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & others. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Li, M. (2017). Scaling Distributed Machine Learning with System and Algorithm Co-design (Doctoral
dissertation). PhD Thesis, CMU.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., … Su, B.-Y. (2014).
Scaling distributed machine learning with the parameter server. 11th $\$USENIX$\$ Symposium
on Operating Systems Design and Implementation ($\$OSDI$\$ 14) (pp. 583–598).

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection.
Proceedings of the IEEE international conference on computer vision (pp. 2980–2988).

Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., … others. (2010). Imagenet classification: fast
descriptor coding and large-scale svm training. Large scale visual recognition challenge.

Lipton, Z. C., & Steinhardt, J. (2018). Troubling trends in machine learning scholarship. arXiv
preprint arXiv:1807.03341.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: single
shot multibox detector. European conference on computer vision (pp. 21–37).

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmenta-
tion. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).

880 Bibliography

Loshchilov, I., & Hutter, F. (2016). Sgdr: stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal
of computer vision, 60(2), 91–110.

Luo, P., Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding regularization in batch
normalization. arXiv preprint.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors
for sentiment analysis. Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies-volume 1 (pp. 142–150).

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4), 115–133.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., … others. (2013). Ad click
prediction: a view from the trenches. Proceedings of the 19thACMSIGKDD international conference
on Knowledge discovery and data mining (pp. 1222–1230).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. Advances in neural information processing systems
(pp. 3111–3119).

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y., … Dean, J. (2017). Device
placement optimization with reinforcement learning. Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70 (pp. 2430–2439).

Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. (2016). The fallacy of
placing confidence in confidence intervals. Psychonomic bulletin & review, 23(1), 103–123.

Nesterov, Y., & Vial, J.-P. (2000). Confidence level solutions for stochastic programming, Stochastic Pro-
gramming E-Print Series.

Nesterov, Y. (2018). Lectures on convex optimization. Vol. 137. Springer.

Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of
probability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 236(767), 333–380.

Pennington, J., Schoenholz, S., & Ganguli, S. (2017). Resurrecting the sigmoid in deep learning
through dynamical isometry: theory and practice. Advances in neural information processing sys-
tems (pp. 4785–4795).

Pennington, J., Socher, R., & Manning, C. (2014). Glove: global vectors for word representation.
Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)
(pp. 1532–1543).

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: foundations and learning
algorithms. MIT press.

Petersen, K. B., Pedersen, M. S., & others. (2008). The matrix cookbook. Technical University of
Denmark, 7(15), 510.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5), 1–17.

Bibliography 881

Quadrana, M., Cremonesi, P., & Jannach, D. (2018). Sequence-aware recommender systems. ACM
Computing Surveys (CSUR), 51(4), 66.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep con-
volutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint
arXiv:1904.09237.

Reed, S., & De Freitas, N. (2015). Neural programmer-interpreters. arXiv preprint arXiv:1511.06279.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: towards real-time object detection with
region proposal networks. Advances in neural information processing systems (pp. 91–99).

Rendle, S. (2010). Factorization machines. 2010 IEEE International Conference on Data Mining
(pp. 995–1000).

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). Bpr: bayesian person-
alized ranking from implicit feedback. Proceedings of the twenty-fifth conference on uncertainty in
artificial intelligence (pp. 452–461).

Rumelhart, D. E., Hinton, G. E., Williams, R. J., & others. (1988). Learning representations by
back-propagating errors. Cognitive modeling, 5(3), 1.

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson Edu-
cation Limited,.

Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Commu-
nications of the ACM, 18(11), 613–620.

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help opti-
mization? Advances in Neural Information Processing Systems (pp. 2483–2493).

Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., & others. (2001). Item-based collaborative fil-
tering recommendation algorithms. Www, 1, 285–295.

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics for cold-
start recommendations. Proceedings of the 25th annual international ACM SIGIR conference on Re-
search and development in information retrieval (pp. 253–260).

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11), 2673–2681.

Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). Autorec: autoencoders meet collaborative
filtering. Proceedings of the 24th International Conference on World Wide Web (pp. 111–112).

Sergeev, A., & Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in tensorflow.
arXiv preprint arXiv:1802.05799.

Shannon, C. E. (1948 , 7). A mathematical theory of communication. The Bell System Technical Jour-
nal, 27(3), 379–423.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., … others. (2016).
Mastering the game of go with deep neural networks and tree search. nature, 529(7587), 484.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Smola, A., & Narayanamurthy, S. (2010). An architecture for parallel topic models. Proceedings of
the VLDB Endowment, 3(1-2), 703–710.

882 Bibliography

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a
simple way to prevent neural networks from overfitting. The Journal of Machine Learning Re-
search, 15(1), 1929–1958.

Strang, G. (1993). Introduction to linear algebra. Vol. 3. Wellesley-Cambridge Press Wellesley, MA.

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in
artificial intelligence, 2009.

Sukhbaatar, S., Weston, J., Fergus, R., & others. (2015). End-to-end memory networks. Advances in
neural information processing systems (pp. 2440–2448).

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and
momentum in deep learning. International conference on machine learning (pp. 1139–1147).

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the
impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2015). Go-
ing deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 1–9).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception ar-
chitecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2818–2826).

Tallec, C., & Ollivier, Y. (2017). Unbiasing truncated backpropagation through time. arXiv preprint
arXiv:1705.08209.

Tang, J., & Wang, K. (2018). Personalized top-n sequential recommendation via convolutional se-
quence embedding. Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining (pp. 565–573).

Teye, M., Azizpour, H., & Smith, K. (2018). Bayesian uncertainty estimation for batch normalized
deep networks. arXiv preprint arXiv:1802.06455.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26–31.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychol-
ogy, 12(1), 97–136.

Töscher, A., Jahrer, M., & Bell, R. M. (2009). The bigchaos solution to the netflix grand prize. Netflix
prize documentation, pp. 1–52.

Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object
recognition. International journal of computer vision, 104(2), 154–171.

Van Loan, C. F., & Golub, G. H. (1983). Matrix computations. Johns Hopkins University Press.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017).
Attention is all you need. Advances in neural information processing systems (pp. 5998–6008).

Wang, L., Li, M., Liberty, E., & Smola, A. J. (2018). Optimal message scheduling for aggregation.
NETWORKS, 2(3), 2–3.

Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., & Owens, J. D. (2016). Gunrock: a high-
performance graph processing library on the gpu. ACM SIGPLAN Notices (p. 11).

Bibliography 883

Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science &
Business Media.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279–292.

Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics.
Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 681–688).

Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. Math
(pp. 325–327).

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: An insightful visual performance model
for floating-point programs and multicore architectures. Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States).

Wood, F., Gasthaus, J., Archambeau, C., James, L., & Teh, Y. W. (2011). The sequence memoizer.
Communications of the ACM, 54(2), 91–98.

Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recurrent recommender networks.
Proceedings of the tenth ACM international conference on web search and data mining (pp. 495–503).

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., & Stolcke, A. (2018). The microsoft 2017 con-
versational speech recognition system. 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (pp. 5934–5938).

Ye, M., Yin, P., Lee, W.-C., & Lee, D.-L. (2011). Exploiting geographical influence for collaborative
point-of-interest recommendation. Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval (pp. 325–334).

You, Y., Gitman, I., & Ginsburg, B. (2017). Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888.

Zaheer, M., Reddi, S., Sachan, D., Kale, S., & Kumar, S. (2018). Adaptive methods for nonconvex
optimization. Advances in Neural Information Processing Systems (pp. 9793–9803).

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: a survey
and new perspectives. ACM Computing Surveys (CSUR), 52(1), 5.

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using
cycle-consistent adversarial networks. Proceedings of the IEEE international conference on com-
puter vision (pp. 2223–2232).

884 Bibliography

	Preface
	Installation
	Notation
	Introduction
	A Motivating Example
	The Key Components: Data, Models, and Algorithms
	Data
	Models
	Objective functions
	Optimization algorithms

	Kinds of Machine Learning
	Supervised learning
	Unsupervised learning
	Interacting with an Environment
	Reinforcement learning

	Roots
	The Road to Deep Learning
	Success Stories

	Preliminaries
	Data Manipulation
	Getting Started
	Operations
	Broadcasting Mechanism
	Indexing and Slicing
	Saving Memory
	Conversion to Other Python Objects

	Data Preprocessing
	Reading the Dataset
	Handling Missing Data
	Conversion to the ndarray Format

	Linear Algebra
	Scalars
	Vectors
	Matrices
	Tensors
	Basic Properties of Tensor Arithmetic
	Reduction
	Dot Products
	Matrix-Vector Products
	Matrix-Matrix Multiplication
	Norms
	More on Linear Algebra

	Calculus
	Derivatives and Differentiation
	Partial Derivatives
	Gradients
	Chain Rule

	Automatic Differentiation
	A Simple Example
	Backward for Non-Scalar Variables
	Detaching Computation
	Computing the Gradient of Python Control Flow
	Training Mode and Prediction Mode

	Probability
	Basic Probability Theory
	Dealing with Multiple Random Variables
	Expectation and Variance

	Documentation
	Finding All the Functions and Classes in a Module
	Finding the Usage of Specific Functions and Classes
	API Documentation

	Linear Neural Networks
	Linear Regression
	Basic Elements of Linear Regression
	The Normal Distribution and Squared Loss
	From Linear Regression to Deep Networks

	Linear Regression Implementation from Scratch
	Generating the Dataset
	Reading the Dataset
	Initializing Model Parameters
	Defining the Model
	Defining the Loss Function
	Defining the Optimization Algorithm
	Training

	Concise Implementation of Linear Regression
	Generating the Dataset
	Reading the Dataset
	Defining the Model
	Initializing Model Parameters
	Defining the Loss Function
	Defining the Optimization Algorithm
	Training

	Softmax Regression
	Classification Problems
	Loss Function
	Information Theory Basics
	Model Prediction and Evaluation

	The Image Classification Dataset (Fashion-MNIST)
	Getting the Dataset
	Reading a Minibatch
	Putting All Things Together

	Implementation of Softmax Regression from Scratch
	Initializing Model Parameters
	The Softmax
	The Model
	The Loss Function
	Classification Accuracy
	Model Training
	Prediction

	Concise Implementation of Softmax Regression
	Initializing Model Parameters
	The Softmax
	Optimization Algorithm
	Training

	Multilayer Perceptrons
	Multilayer Perceptron
	Hidden Layers
	Activation Functions

	Implementation of Multilayer Perceptron from Scratch
	Initializing Model Parameters
	Activation Function
	The model
	The Loss Function
	Training

	Concise Implementation of Multilayer Perceptron
	The Model

	Model Selection, Underfitting and Overfitting
	Training Error and Generalization Error
	Model Selection
	Underfitting or Overfitting?
	Polynomial Regression

	Weight Decay
	Squared Norm Regularization
	High-Dimensional Linear Regression
	Implementation from Scratch
	Concise Implementation

	Dropout
	Overfitting Revisited
	Robustness through Perturbations
	Dropout in Practice
	Implementation from Scratch
	Concise Implementation

	Forward Propagation, Backward Propagation, and Computational Graphs
	Forward Propagation
	Computational Graph of Forward Propagation
	Backpropagation
	Training a Model

	Numerical Stability and Initialization
	Vanishing and Exploding Gradients
	Parameter Initialization

	Considering the Environment
	Distribution Shift
	A Taxonomy of Learning Problems
	Fairness, Accountability, and Transparency in Machine Learning

	Predicting House Prices on Kaggle
	Kaggle
	Accessing and Reading the Dataset
	Data Preprocessing
	Training
	k-Fold Cross-Validation
	Model Selection
	Predict and Submit

	Deep Learning Computation
	Layers and Blocks
	A Custom Block
	The Sequential Block
	Blocks with Code
	Compilation

	Parameter Management
	Parameter Access
	Parameter Initialization
	Tied Parameters

	Deferred Initialization
	Instantiating a Network
	Deferred Initialization in Practice
	Forced Initialization

	Custom Layers
	Layers without Parameters
	Layers with Parameters

	File I/O
	Loading and Saving ndarrays
	Gluon Model Parameters

	GPUs
	Computing Devices
	ndarray and GPUs
	Gluon and GPUs

	Convolutional Neural Networks
	From Dense Layers to Convolutions
	Invariances
	Constraining the MLP
	Convolutions
	Waldo Revisited

	Convolutions for Images
	The Cross-Correlation Operator
	Convolutional Layers
	Object Edge Detection in Images
	Learning a Kernel
	Cross-Correlation and Convolution

	Padding and Stride
	Padding
	Stride

	Multiple Input and Output Channels
	Multiple Input Channels
	Multiple Output Channels
	11 Convolutional Layer

	Pooling
	Maximum Pooling and Average Pooling
	Padding and Stride
	Multiple Channels

	Convolutional Neural Networks (LeNet)
	LeNet
	Data Acquisition and Training

	Modern Convolutional Neural Networks
	Deep Convolutional Neural Networks (AlexNet)
	Learning Feature Representation
	AlexNet
	Reading the Dataset
	Training

	Networks Using Blocks (VGG)
	VGG Blocks
	VGG Network
	Model Training

	Network in Network (NiN)
	NiN Blocks
	NiN Model
	Data Acquisition and Training

	Networks with Parallel Concatenations (GoogLeNet)
	Inception Blocks
	GoogLeNet Model
	Data Acquisition and Training

	Batch Normalization
	Training Deep Networks
	Batch Normalization Layers
	Implementation from Scratch
	Using a Batch Normalization LeNet
	Concise Implementation
	Controversy

	Residual Networks (ResNet)
	Function Classes
	Residual Blocks
	ResNet Model
	Data Acquisition and Training

	Densely Connected Networks (DenseNet)
	Function Decomposition
	Dense Blocks
	Transition Layers
	DenseNet Model
	Data Acquisition and Training

	Recurrent Neural Networks
	Sequence Models
	Statistical Tools
	A Toy Example
	Predictions

	Text Preprocessing
	Reading the Dataset
	Tokenization
	Vocabulary
	Putting All Things Together

	Language Models and the Dataset
	Estimating a Language Model
	Markov Models and n-grams
	Natural Language Statistics
	Training Data Preparation

	Recurrent Neural Networks
	Recurrent Networks Without Hidden States
	Recurrent Networks with Hidden States
	Steps in a Language Model
	Perplexity

	Implementation of Recurrent Neural Networks from Scratch
	One-hot Encoding
	Initializing the Model Parameters
	RNN Model
	Prediction
	Gradient Clipping
	Training

	Concise Implementation of Recurrent Neural Networks
	Defining the Model
	Training and Predicting

	Backpropagation Through Time
	A Simplified Recurrent Network
	The Computational Graph
	BPTT in Detail

	Modern Recurrent Neural Networks
	Gated Recurrent Units (GRU)
	Gating the Hidden State
	Implementation from Scratch
	Concise Implementation

	Long Short Term Memory (LSTM)
	Gated Memory Cells
	Implementation from Scratch
	Concise Implementation

	Deep Recurrent Neural Networks
	Functional Dependencies
	Concise Implementation
	Training

	Bidirectional Recurrent Neural Networks
	Dynamic Programming
	Bidirectional Model

	Machine Translation and the Dataset
	Reading and Preprocessing the Dataset
	Tokenization
	Vocabulary
	Loading the Dataset
	Putting All Things Together

	Encoder-Decoder Architecture
	Encoder
	Decoder
	Model

	Sequence to Sequence
	Encoder
	Decoder
	The Loss Function
	Training
	Predicting

	Beam Search
	Greedy Search
	Exhaustive Search
	Beam Search

	Attention Mechanisms
	Attention Mechanisms
	Dot Product Attention
	Multilayer Perceptron Attention

	Sequence to Sequence with Attention Mechanisms
	Decoder
	Training

	Transformer
	Multi-Head Attention
	Position-wise Feed-Forward Networks
	Add and Norm
	Positional Encoding
	Encoder
	Decoder
	Training

	Optimization Algorithms
	Optimization and Deep Learning
	Optimization and Estimation
	Optimization Challenges in Deep Learning

	Convexity
	Basics
	Properties
	Constraints

	Gradient Descent
	Gradient Descent in One Dimension
	Multivariate Gradient Descent
	Adaptive Methods

	Stochastic Gradient Descent
	Stochastic Gradient Updates
	Dynamic Learning Rate
	Convergence Analysis for Convex Objectives
	Stochastic Gradients and Finite Samples

	Minibatch Stochastic Gradient Descent
	Vectorization and Caches
	Minibatches
	Reading the Dataset
	Implementation from Scratch
	Concise Implementation

	Momentum
	Basics
	Practical Experiments
	Theoretical Analysis

	Adagrad
	Sparse Features and Learning Rates
	Preconditioning
	The Algorithm
	Implementation from Scratch
	Concise Implementation

	RMSProp
	The Algorithm
	Implementation from Scratch
	Concise Implementation

	Adadelta
	The Algorithm
	Implementation

	Adam
	The Algorithm
	Implementation
	Yogi

	Learning Rate Scheduling
	Toy Problem
	Schedulers
	Policies

	Computational Performance
	Compilers and Interpreters
	Symbolic Programming
	Hybrid Programming
	HybridSequential

	Asynchronous Computation
	Asynchrony via Backend
	Barriers and Blockers
	Improving Computation
	Improving Memory Footprint

	Automatic Parallelism
	Parallel Computation on CPUs and GPUs
	Parallel Computation and Communication

	Hardware
	Computers
	Memory
	Storage
	CPUs
	GPUs and other Accelerators
	Networks and Buses
	More Latency Numbers

	Training on Multiple GPUs
	Splitting the Problem
	Data Parallelism
	A Toy Network
	Data Synchronization
	Distributing Data
	Training
	Experiment

	Concise Implementation for Multiple GPUs
	A Toy Network
	Parameter Initialization and Logistics
	Training
	Experiments

	Parameter Servers
	Data Parallel Training
	Ring Synchronization
	Multi-Machine Training
	(key,value) Stores

	Computer Vision
	Image Augmentation
	Common Image Augmentation Method
	Using an Image Augmentation Training Model

	Fine Tuning
	Hot Dog Recognition

	Object Detection and Bounding Boxes
	Bounding Box

	Anchor Boxes
	Generating Multiple Anchor Boxes
	Intersection over Union
	Labeling Training Set Anchor Boxes
	Bounding Boxes for Prediction

	Multiscale Object Detection
	The Object Detection Dataset (Pikachu)
	Downloading the Dataset
	Reading the Dataset
	Demonstration

	Single Shot Multibox Detection (SSD)
	Model
	Training
	Prediction

	Region-based CNNs (R-CNNs)
	R-CNNs
	Fast R-CNN
	Faster R-CNN
	Mask R-CNN

	Semantic Segmentation and the Dataset
	Image Segmentation and Instance Segmentation
	The Pascal VOC2012 Semantic Segmentation Dataset

	Transposed Convolution
	Basic 2D Transposed Convolution
	Padding, Strides, and Channels
	Analogy to Matrix Transposition

	Fully Convolutional Networks (FCN)
	Constructing a Model
	Initializing the Transposed Convolution Layer
	Reading the Dataset
	Training
	Prediction

	Neural Style Transfer
	Technique
	Reading the Content and Style Images
	Preprocessing and Postprocessing
	Extracting Features
	Defining the Loss Function
	Creating and Initializing the Composite Image
	Training

	Image Classification (CIFAR-10) on Kaggle
	Obtaining and Organizing the Dataset
	Image Augmentation
	Reading the Dataset
	Defining the Model
	Defining the Training Functions
	Training and Validating the Model
	Classifying the Testing Set and Submitting Results on Kaggle

	Dog Breed Identification (ImageNet Dogs) on Kaggle
	Obtaining and Organizing the Dataset
	Image Augmentation
	Reading the Dataset
	Defining the Model
	Defining the Training Functions
	Training and Validating the Model
	Classifying the Testing Set and Submit Results on Kaggle

	Natural Language Processing
	Word Embedding (word2vec)
	Why Not Use One-hot Vectors?
	The Skip-Gram Model
	The Continuous Bag of Words (CBOW) Model

	Approximate Training for Word2vec
	Negative Sampling
	Hierarchical Softmax

	The Dataset for Word2vec
	Reading and Preprocessing the Dataset
	Subsampling
	Loading the Dataset
	Putting All Things Together

	Implementation of Word2vec
	The Skip-Gram Model
	Training
	Applying the Word Embedding Model

	Subword Embedding (fastText)
	Word Embedding with Global Vectors (GloVe)
	The GloVe Model
	Understanding GloVe from Conditional Probability Ratios

	Finding Synonyms and Analogies
	Using Pre-Trained Word Vectors
	Applying Pre-Trained Word Vectors

	Text Classification and the Dataset
	The Text Sentiment Classification Dataset
	Putting All Things Together

	Text Sentiment Classification: Using Recurrent Neural Networks
	Using a Recurrent Neural Network Model

	Text Sentiment Classification: Using Convolutional Neural Networks (textCNN)
	One-Dimensional Convolutional Layer
	Max-Over-Time Pooling Layer
	The TextCNN Model

	Recommender Systems
	Overview of Recommender Systems
	Collaborative Filtering
	Explicit Feedback and Implicit Feedback
	Recommendation Tasks

	The MovieLens Dataset
	Getting the Data
	Statistics of the Dataset
	Splitting the dataset
	Loading the data

	Matrix Factorization
	The Matrix Factorization Model
	Model Implementation
	Evaluation Measures
	Training and Evaluating the Model

	AutoRec: Rating Prediction with Autoencoders
	Model
	Implementing the Model
	Reimplementing the Evaluator
	Training and Evaluating the Model

	Personalized Ranking for Recommender Systems
	Bayesian Personalized Ranking Loss and its Implementation
	Hinge Loss and its Implementation

	Neural Collaborative Filtering for Personalized Ranking
	The NeuMF model
	Model Implementation
	Customized Dataset with Negative Sampling
	Evaluator
	Training and Evaluating the Model

	Sequence-Aware Recommender Systems
	Model Architectures
	Model Implementation
	Sequential Dataset with Negative Sampling
	Load the MovieLens 100K dataset
	Train the Model

	Feature-Rich Recommender Systems
	An Online Advertising Dataset
	Dataset Wrapper

	Factorization Machines
	2-Way Factorization Machines
	An Efficient Optimization Criterion
	Model Implementation
	Load the Advertising Dataset
	Train the Model

	Deep Factorization Machines
	Model Architectures
	Implemenation of DeepFM
	Training and Evaluating the Model

	Generative Adversarial Networks
	Generative Adversarial Networks
	Generate some “real” data
	Generator
	Discriminator
	Training

	Deep Convolutional Generative Adversarial Networks
	The Pokemon Dataset
	The Generator
	Discriminator
	Training

	Appendix: Mathematics for Deep Learning
	Geometry and Linear Algebraic Operations
	Geometry of Vectors
	Dot Products and Angles
	Hyperplanes
	Geometry of Linear Transformations
	Linear Dependence
	Rank
	Invertibility
	Determinant
	Tensors and Common Linear Algebra Operations

	Eigendecompositions
	Finding Eigenvalues
	Decomposing Matrices
	Operations on Eigendecompositions
	Eigendecompositions of Symmetric Matrices
	Gershgorin Circle Theorem
	A Useful Application: The Growth of Iterated Maps
	Conclusions

	Single Variable Calculus
	Differential Calculus
	Rules of Calculus

	Multivariable Calculus
	Higher-Dimensional Differentiation
	Geometry of Gradients and Gradient Descent
	A Note on Mathematical Optimization
	Multivariate Chain Rule
	The Backpropagation Algorithm
	Hessians
	A Little Matrix Calculus

	Integral Calculus
	Geometric Interpretation
	The Fundamental Theorem of Calculus
	Change of Variables
	A Comment on Sign Conventions
	Multiple Integrals
	Change of Variables in Multiple Integrals

	Random Variables
	Continuous Random Variables

	Maximum Likelihood
	The Maximum Likelihood Principle
	Numerical Optimization and the Negative Log-Likelihood
	Maximum Likelihood for Continuous Variables

	Naive Bayes
	Optical Character Recognition
	The Probabilistic Model for Classification
	The Naive Bayes Classifier
	Training

	Statistics
	Evaluating and Comparing Estimators
	Conducting Hypothesis Tests
	Constructing Confidence Intervals

	Information Theory
	Information
	Entropy
	Mutual Information
	Kullback–Leibler Divergence
	Cross Entropy

	Appendix: Tools for Deep Learning
	Using Jupyter
	Editing and Running the Code Locally
	Advanced Options

	Using Amazon SageMaker
	Registering Account and Logging In
	Creating an SageMaker Instance
	Running and Stopping an Instance
	Updating Notebooks

	Using AWS EC2 Instances
	Creating and Running an EC2 Instance
	Installing CUDA
	Installing MXNet and Downloading the D2L Notebooks
	Running Jupyter
	Closing Unused Instances

	Using Google Colab
	Selecting Servers and GPUs
	Selecting Servers
	Selecting GPUs

	Contributing to This Book
	From Reader to Contributor in 6 Steps

	d2l API Document

	Bibliography

