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ABSTRACT 

Fuzzy logic is well known and widely used today in control 

systems. Neural networks are also used in a wide variety of 
systems. Combination of these two different approaches should 

have many beneficial properties for solving many different 

problems, but still this combination is not used as much as it could 

be used.  In this paper we explore possibilities for application of 

two different fuzzy and one neuro-fuzzy controller for aircraft 
landing problem. Simplified model of aircraft landing problem is 

used. The description of the model we utilized for this paper has 

already been published, but we constructed more than just one 

type of fuzzy controller and tested them. The tests were conducted 

on simulation, and in this paper we provide analysis of these 
results.  
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1. INTRODUCTION 

Fuzzy systems can utilize approximate reasoning and can be used 
in decision making and mechanical control systems like air 

conditioning, cars, ships, robotic arms, in industrial control 

processes and many other types of application. Fuzzy logic is 

applicable in many different areas, for vide variety of problems. 

Engineering [1], problems in medicine, biology [2] are just a few 
fields where fuzzy logic is successfully applied already. Usage of 

fuzzy systems is recommended for very complex processes, where 

simple mathematical model cannot be derived. That is one major 

advantage of fuzzy logic, because the designer does not need to 

know everything about the system before starting the work, and 
simplicity provides solutions to what were once unsolvable 

problems. Fuzzy logic defines operations for modifying sets and 

allows elements to partially belong to the set, which offers a lot 

more flexibility. The reason for the popularity of fuzzy logic lies 

in the application of fuzzy sets, which give much greater 
flexibility than a regular set of numbers. 

 On the other hand, the popularity of neural networks is reflected 

in learning opportunities through training, which enables the 

system to adjust its weights in order to achieve better results. 

Inspired by biological nervous system, many researches explored 
neural networks; approach for information processing that is not 

based on algorithms. Neural networks are modeling the brain as a 

continuous nonlinear dynamic system in connected architecture 

that should mimic the mechanism of the brain in the simulation of 

intelligent behavior. Such a connection is replacing a symbolic 
representation of the structure with distributed representation in 

the form of weight between the massive set of interconnected 

neurons (or processing units). They do not require critical 

decision-making in their algorithms. 

Both systems based only on fuzzy logic and systems based purely 

on neural networks, have their advantages and their limitations in 

different aspects. In this paper we will explore the fuzzy logic 
based system for aircraft landing described in [1] and 

improvement possibilities. Aircraft landing is the process during 

which the aircraft descends from certain altitude, and touches the 

ground. The aircraft landing system is supposed to control the 

vertical speed during the aircraft landing process, so that the 
aircraft touches the ground “smoothly” but descends rapidly. If 

the aircraft touches the ground with high negative vertical speed, 

that is considered a crash landing, and should be avoided by the 

controller. The model suggested in [1] is a simplified model of 

aircraft landing and that model will be the basis for designing our 
fuzzy controllers. The aim of this work is to evaluate the behavior 

of two different types of fuzzy controllers, and the behavior of the 

ANFIS (Adaptive Neuro-Fuzzy Inference System) controller.  

In this paper Section 2 contains description of fuzzy and neuro-

fuzzy inference systems that we used. Section 3 describes the 
work related to fuzzy and neuro-fuzzy controllers and their 

application in aircraft landing problem. In Section 4 we explain 

details about fuzzy controller design, while in Section 5 we 

provide information on our ANFIS solution. Section 6 explains 

how we trained and tested the ANFIS solution, and how the 
datasets for these purposes were generated. Section 7 contains the 

results of simulations, for all three different controllers using 

different parameters. In Section 8 is a short summary and 

conclusions based on results from Section 7. 

2. FUZZY AND ADAPTIVE NEURO-

FUZZY INFERENCE SYSTEMS 

2.1 Fuzzy Inference System 

Many types of fuzzy inference systems exist and are used today . 

In this section we will briefly describe two types of fuzzy 
inference systems that have been used to model the described 

aircraft landing system and whose performance is evaluated in 

this paper. These two types are: Mamdani-type fuzzy inference 

system and Sugeno-type fuzzy inference system. In this paper, we 

also use and evaluate performance and modeling features of 
ANFIS. 

The inputs to fuzzy inference system are crisp and are in a certain 

range. Inputs are then fuzzified using membership functions. 

Rules are then evaluated using fuzzy reasoning and “and” and/or 
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“or” and “implication” operators. The combination of rules is 

done using aggregation process. In this paper we used three types 

of aggregation for Mamdani-type fuzzy controller, which are 

supported by Matlab [3]: 

 “Maximum” 

 “Probabilistic or” 

 “Sum” (The sum of output sets of each rule); 

Output of a controller that is used to solve a problem like aircraft 

landing should be a crisp number. Since the aggregation step 
gives us fuzzy set as the output, that output should be defuzzified. 

In defuzzification step we use three different methods supported 

by Matlab for Mamdani-type fuzzy controller [3]: 

 Center of area or centroid (COA) 

 Bisector  

 Middle of maximum (MOM) 

Mamdani-type fuzzy inference system used in this paper is 

supposed to have output functions as fuzzy sets. These sets are 

than subject to defuzzification process. Of course it is possible to 

use a singleton fuzzy set, which than represents a single value, for 

these type of sets, defuzzification is not needed, therefore these 

sets are sometimes more efficient than distributed fuzzy sets. 

While Mamdani uses distributed fuzzy sets on the output, Sugeno 
uses exact numbers on the output. Sugeno uses either linear or 

constant output types. The linear type should give “smoother” 

results but requires more tuning. For the Sugeno-type controller 

we compared two different defuzzification methods which are 

supported by Matlab for Sugeno-type fuzzy controller [10]: 

 Weighted sum (“wtsum”) 

 Weighted average (“wtaver”) 

2.2 Adaptive Neuro-Fuzzy Inference System 

Ordinary fuzzy inference systems use predetermined set of values 

which specify membership functions. Usually these values are 

manually typed in and are fixed, thus the inference system 

depends on user‟s understanding and interpretation of variables in 

the model. Combination of neural networks and fuzzy inference 

systems enables adaptation of fuzzy inference systems. 

ANFIS which is used in this paper, by its structure, is equivalent 
to Sugeno-type inference system (Figure 1.), and it can use two 

different learning techniques. ANFIS utilizes these learning 

techniques to adapt the fuzzy inference system to the data that is 
used during the training. The end result should be the fuzzy 

inference system that has membership functions which are more 

suitable as a possible solution to the problem. Backpropagation is 

a supervised learning method for neural networks. For 

backpropagation to function properly, activation function of each 
node should be differentiable. Since convergence with this 

algorithm is very slow, another algorithm can be used for ANFIS 

learning. Hybrid algorithm utilizes both least square and error 

backpropagation method. ANFIS uses learning techniques and has 

structure of the neural network, but the learning process adapts the 
fuzzy inference system, which is the product of ANFIS and 

therefore produces a possible solution to the problem, which is 

improved using training data. For practical reasons we will not 

describe ANFIS in more detail here, but more information can be 

found in [8]. 

 

Figure 1. (a) Two-input first-order Sugeno fuzzy model with 

two rules; (b) Equivalent ANFIS architecture [8] 

3. RELATED WORK 

Model of system for aircraft landing described in [1] is the basis 

for our work presented in this paper. The described system 

controls aircraft vertical speed during the final leg of the landing. 

That model does not consider the influence of exterior forces on 

the aircraft. The vertical speed is manipulated using the control 
force, which is the output from the fuzzy controller. The inputs 

are current vertical speed and current height, based on those 

inputs controller is supposed to produce control force that will 

land the aircraft. There is no information on performance of 

different kinds of fuzzy systems designed as suggested by Ross 
[1]. 

Different types of fuzzy, neuro-fuzzy and other controllers have 

been compared as solutions for vide variety of problems. Mallek 

et al. [4] evaluated PID, Neuro, Neuro-PID and ANFIS-PID 

controllers for automatic landing. Their model of the problem 
included different wind patterns. Two levels have been defined: 

desired and acceptable. ANFIS based controller satisfied desired 

conditions, which none of the other controllers did. Juang and 

Chio [5] also evaluated performance and robustness of 

multilayered fuzzy-neural network as the solution to the similar 
problem in order to improve performance of conventional 

automatic landing systems. They used “Backpropagation through 

Time” algorithm to train the network. Their simulations show that 

fuzzy systems are capable of improving the safety of conventional 

automatic landing systems even in hostile environments such as 

severe air turbulence. 

Livchitz et al. [6] constructed an “automated fuzzy-logic-based 

expert system for unmanned aircraft landing”. This fuzzy system 

controlled three-dimensional flight path, vertical velocity and 
angular altitudes for safe landing. Using fuzzy logic they 

combined “elements of human pilot with landing knowledge”.  

This system has been successfully tested both on simulations and 

in “real-life” aircraft landing, which shows the potential of fuzzy 

logic in this field.  
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None of these papers discusses the influence of different 

defuzzification and aggregation strategies. Larkin [7] evaluates 

the performance and effectiveness of the model associating it with 
varied parameters and different defuzzification methods. The 

defuzzification methods evaluated by Larkin were COA and 

MOM, but bisector has not been evaluated in that particular paper. 

Different methods of aggregation have not been evaluated in that 

paper either.  

4. FUZZY CONTROLLER DESIGN 

The design of both Mamdani and Sugeno-type fuzzy controller 

has been done according to [1], this means that fuzzy rules, fuzzy 
membership functions, have been modeled accordingly. The 

system proposed in [1] is Mamdani-type fuzzy inference system. 

Although it is not clearly stated, we can conclude this based on 

output “control force” membership functions which are all 

distributed. The simplifications regarding time and mass are also 

consistent with [1]: 

           

           

Since we have these simplifications then vertical velocity is 

calculated as in [1]: 

                

Vertical velocity changes only if control force is applied. Negative 

control force directs the aircraft to the ground while positive 

control force directs the aircraft from the ground. 

Height changes according to [1]: 

                

If current vertical velocity is negative, than aircraft will descend, 

if it is positive it will increase altitude, and if it is zero, then 

aircraft will remain at the same altitude. 

All three different types of controllers have two inputs: height in 
feet and vertical velocity in feet per second. The output is also the 

same variable for all three types of controllers: control force in 

pound-force. Control force can change current vertical velocity, 

and change of vertical velocity, changes rate of descent or climb, 

thus affects current height (Figures: 2, 3).  

 

Figure 2. Fuzzy aircraft landing control system 

 

Figure 3. Inputs and output for Mamdani-type fuzzy 

controller 

4.1 Membership Functions 

Membership functions for Mamdani-type fuzzy controller are 

consistent with [1] (Figures: 4, 5, 6.). 

 

Figure 4. Height membership functions 

Membership functions for height are all „trimf‟ (triangle 

membership function) type, and are symmetrical in shape like the 

membership functions for vertical velocity and Mamdani output 

membership functions. 

 

Figure 5. Vertical velocity membership functions 
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Figure 6. Control force membership functions 

Control force and vertical velocity use „trimf‟ and „tramf‟ 

(trapezoid membership functions).Membership functions for 

Mamdani and Sugeno-type inference systems are the same for 

input variables. Sugeno-type controller uses different membership 
functions for the output control force. All Sugeno output 

membership functions are linear type. The parameters for these 

membership functions are manually picked. 

4.2 Fuzzy Rules 

Fuzzy rules are usually represented using the compact grap hical 

form Fuzzy Associative Memory table (FAM table). FAM table 

for this problem has two dimensions since there are two inputs 

(height and vertical velocity). Our FAM table is the same as in [1] 
since we used the same set of rules during evaluation of 

controllers (Table 1.). 

Velocity 

Height DL DS Zero US UL 

L Z DS DL DL DL 

M US Z DS DL DL 

S UL US Z DS DL 

NZ UL UL Z DS DS 

Table 1. FAM table [1] 

In the FAM table each column represents membership function 
for vertical velocity . DL is “Down Large”, DS is “Down Small”, 

US is “Up Small” and UL is “Up Large”. Each row is marked by 

membership functions of the height input. L is “Large”, M is 
“Middle”, S is “Small” and NZ is “Near Zero”. Values in the table 

are corresponding control force outputs for each possible (in this 

model) combination of vertical velocity and height. Z is “Zero”, 

DS is “Down Small”, DL is “Down Large” and UL is “Up Large”. 

FAM table shows that there are 20 rules, which is correct since 

there are four membership functions for height and five 
membership functions for vertical velocity. Same rules are used 

both by Mamdani and Sugeno-type controller. ANFIS controller 

does not use this rule base; it constructs its own rule base. 

4.3 Control Surface 

 

Figure 7. Control surface for Mamdani-type fuzzy inference 
system 

Control surface graphically represents all possible inputs and 

outputs, which is in this case three-dimensional, since we have 

two inputs and one output. Control surface for this problem shows 

graph of control force in function of vertical velocity and height, 
for all values in range of both inputs (Figure 7.). We can see 

possible landing situations from this surface. For example, the 

graph shows that the control force is large for negative large 

vertical velocity and small height. 

5. ANFIS CONTROLLER DESIGN 

ANFIS controller can use manually made Sugeno-type fuzzy 

controller, and improve it using the neural network. This 

particular ANFIS controller does not use the Sugeno-type fuzzy 
controller that we developed earlier. Since ANFIS controller has 

some limitations for the starting Sugeno fuzzy model. According 

to [9] these limitations are: 

 The Sugeno-type system has to be first or zero order 

 Each rule should be weighted 

 Rules cannot be shared, which means that each rule has 

to have its own output membership function 

 Should have a single output, use weighted average 

defuzzification process and all output membership 

functions can be either all linear or all constant  

For construction of the starting Sugeno-type fuzzy controller we 

used grid-partitioning of the input dataset. Using grid-partitioning 
it is possible to specify generate rules and use a small number of 

linguistic variables. However if the input dataset is very regular, 

grid-partitioning may not be able to produce good ruleset for the 

corresponding input data. This way we specify the number of 
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membership functions for each input, output and input 

membership function type and the starting Sugeno-type fuzzy 

controller is generated, and satisfies all constraints for the start 
inference system. In this case we used 4 and 5 membership 

functions for the inputs. This number of membership functions 

enabled us better comparison between ANFIS and ordinary fuzzy 

inference systems, since we use the exact same number for input 

variables in construction of ordinary fuzzy inference systems. The 
type of membership functions for the input is „trapmf‟, which is 

not the same as in ordinary fuzzy inference systems, but „trapmf‟ 

is used for some membership functions there. For ANFIS „trapmf‟ 

should be better than „trimf‟, since it has four parameters and 

ANFIS should be able to adjust it better. All output membership 
functions are set to linear, the same as for ordinary Sugeno-type 

fuzzy inference system. 

 

Figure 8. Generated ANFIS structure 

After we generated the starting fuzzy inference system (Figure 8.), 

this system is trained and tested using the neural network, which 

will be described in the next section. 

6. ANFIS CONTROLLER TRAINING AND 

TESTING 
 

During the training ANFIS controller adjusts its weights, so that 

the output error is minimized. Output error is measured by 

comparing ANFIS output for the current input data, with the 

correct output for that particular input data. Training is conducted 

in epochs. One epoch represents one pass through all data in the 
input dataset. Error backpropagation, and hybrid algorithm which 

uses least square method with error backpropagation, are 

supported. In our case hybrid algorithm is used.  

Since there were some simplifications in the model, first we had 

to generate the correct and representative dataset for this model. 

To generate correct output data we need accurately  and 

completely defined mathematical model. Mathematical model of 

the problem in [1] is not completely defined. 

Since “The desired downward velocity is proportional to the 

square of height” [1], we say that vertical velocity equals square 

of height multiplied by some coefficient of proportionality : 

           

Out of this equation we can easily get coefficient of 

proportionality k as: 

   
 

       

Since coefficient of proportionality would change as the vertical 

speed and height change, we had to fix it to starting values of 

vertical speed and height. Based on this we constructed two 

different datasets. One dataset is constructed for negative vertical 
velocity and dataset for positive vertical velocity. These two 

datasets were later merged into one dataset. Datasets for training 

and testing are then generated from the whole dataset. For training 

we take every second record as we do for testing, but with 

different start records. 

6.1 Dataset for Negative Vertical Velocity 

The negative vertical velocity means that the aircraft is decreasing 

its height (altitude). Vertical velocity for this dataset changes 
according to equation (3). Coefficient of proportionality is 

calculated with these starting parameters: 

        
  

 
  

            

Height changes according to equation (2) (Figure 9.). 

 
Figure 9. Dataset for negative vertical speed for ANFIS  

The correct control force output is calculated according to (1): 

           

The control force is calculated as height changes from 1000 (ft) to 

1 (ft). Since the vertical velocity is large negative at first, height 

will decrease faster at first, and control force will be large in those 
areas. As the aircraft descends, vertical velocity will approach to 

the zero because of control force applied to the aircraft, which 

enables ANFIS to learn “the smooth” landing if the start speed is 

negative large and altitude is high. Dataset for negative vertical 

speed also enables ANFIS to learn the desired behavior in the area 
where vertical velocity is negative low and altitude is low. There 
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are few possibilities for ANFIS to learn about desired behavior if 

the vertical velocity is negative large and altitude is high, or if 

vertical velocity is negative low and altitude is high.  

6.2 Dataset for Positive Vertical Velocity 
 

Positive vertical velocity means that the aircraft is increasing its 

altitude. In our model we don‟t want the aircraft to increase 

altitude, since our goal is aircraft landing. What we want is to 
decrease the vertical speed until it becomes negative, then based 

on dataset for negative vertical velocity ANFIS should land the 

plane in a proper manner. Calculation of control force is the same 

as for negative vertical velocity dataset, but vertical velocity  and 

height have to be calculated differently. We want the ANFIS to 
learn that at high altitudes and with large positive vertical 

velocity, the control force should be negative large. When the 

vertical velocity is small positive and altitude is low, the control 

force should be negative small, so that the aircraft does not 

suddenly change the vertical velocity to negative at low altitudes 
and thus crush the aircraft. Height change data is taken from the 

dataset for negative vertical velocity, to enable ANFIS to learn 

this (Figure 10.).  

 
Figure 10. Dataset for positive vertical speed for ANFIS  

Vertical velocity changes by formula (6), so that we can get the 
appropriate path which enables us to calculate control force that 

we need for suitable decrease of vertical velocity: 

  √
 

 
      

Coefficient of proportionality is also different and is shown at (7): 

  √
 

       

After generating both datasets were merged into one and then 

training dataset was generated (Figure 11.) 

 

Figure 11. Complete ANFIS training dataset 

The training error at the last 100th epoch was: 0.00010213 (Figure 

12.). 

 

Figure 12. Training error for 100 epochs 

6.3 Testing of the ANFIS Controller 
 

The ANFIS controller produced is tested using the test dataset 

which has also been produced using the merged, complete dataset 

(Figure 13.). 

 

Figure 13. Testing of the ANFIS controller 
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7. RESULTS 

Using Matlab, we simulated the aircraft landing using Mamdani, 

Sugeno and ANFIS controllers. The results were then compared. 

For Mamdani-type fuzzy controller we compared: centroid, 

bisector and MOM defuzzification methods, using “maximum” 

aggregation method (Figure 14.).  

 

Figure 14. Different defuzzification methods for Mamdani-

type fuzzy controller 

Using centroid defuzzification method, we then compared three 

different aggregation strategies for Mamdani. These methods are:  

“maximum”, “sum”, “probabilistic or” (Figure 15.). The start 

points for both of these tests are: 

            

       
  

 
  

The same start point values are used in example in [1]. 

After evaluating different defuzzification methods, we evaluated 

different aggregation methods for Mamdani-type fuzzy controller 
(Figure 15.).  For Sugeno-type fuzzy controller, we just evaluated 

different defuzzification methods: “wtaver” or weighted average 

and “wtsum” or weighted sum (Figure 16.). We then compared 

the Mamdani and Sugeno controller with the mathematical model 

for the example stated in [1]. For Mamdani we used centroid 
defuzzification and “maximum” aggregation, Sugeno controller 

used “wtsum” defuzzification method (Figure 17.). ANFIS 

controller has also been subject to testing. We compared ANFIS 

controller‟s performance to mathematical model (Figure 18.).  

Many test runs are not on the figures for practical reasons, but 
during the tests, we discovered one undesired property of our 

ANFIS controller. If the vertical velocity is too high and ANFIS 

does not reduce it until 1000 (ft), it will start to increase vertical 

velocity (Figure 19.).  

 

Figure 15. Different aggregation methods for Mamdani-type 

fuzzy controller 

 

Figure 16. Different defuzzification methods for Sugeno-type 
fuzzy controller 

 

Figure 17. Mamdani and Sugeno controllers compared to the 

mathematical model 
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Figure 18. ANFIS controller compared to the mathematical 

model 

Figure 19. ANFIS controller unable to recover if it reaches 
1000 feet and has positive vertical velocity 

8. CONCLUSIONS 

In this paper we compared two fuzzy and one neuro-fuzzy 
controller as a solution to an aircraft landing control problem. The 

paper addresses the vertical velocity during the descent. Design 

used for the fuzzy and ANFIS controller, has been thoroughly 

described in Sections 4 and 5. Some problems emerged during the 

design and training of ANFIS controller. Since we did not use 
manually made Sugeno-type fuzzy inference system as starting 

point in ANFIS training, we had to generate one using grid 

partitioning. This means that the inference system can only know 

what is presented in the dataset. Following the data trends in the 

mathematical model that we made for this system, ANFIS could 
not learn all rules that we had in manually made Mamdani and 

Sugeno inference systems. However, with the merged dataset we 

trained ANFIS through 100 epochs, which resulted with very 

small training and later on very small testing error. 

The results of simulation for different types of defuzzification for 
Mamdani-type fuzzy controller (Figure 14.) show us that MOM  

method is significantly worse option in this case than “centroid” 

or “bisector” that are very close. To decide which one of these 

methods performs better in this case we would need to employ 

statistic methods, since it is not obvious which one is actually 
better. We would also need to use statistics if we want to know 

which aggregation method is better and to decide which 

defuzzification method for Sugeno-type inference system is better, 

since these are also close (Figures 15, 16). Compared to the 

mathematical model, both Mamdani and Sugeno controllers show 
significant discrepancy. Of all controllers, ANFIS controller 

follows the mathematical model most accurately  (Figure 18.), 

although it has certain problems. ANFIS controller starts to 

increase vertical velocity if the aircraft has positive vertical 

velocity at 1000 (ft). This leads us to conclusion that when neuro-
fuzzy inference systems are modeled using data only, we can have 

erroneous systems as product. These errors are reflect ion of data 

imprecision and lack of data. 

In future work we will try to employ statistics in comparison of 

controller outputs, which should enable us to know which 
defuzzification and which aggregation methods are actually better 

as a solution to this particular problem. We will also manually 

prepare the start Sugeno-type fuzzy inference system, for ANFIS 

training and check the results of that inference system.  
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