
PID Control for the Two Degree

of Freedom Helicopter

AAE364L

In this Lab we will design a PID controller to fly the helicopter with two degrees of freedom.

1 Review of PID controllers
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Figure 1: A PID control system.

In this section we will review the proportional, integral and derivative (PID) controller.
Consider the closed loop system in Figure 1 where G(s) is the open loop plant. In our
helicopter problem, the transfer function is of the form G(s) = k

s2+as+b
. However, for the

moment assume that G is an arbitrary transfer function. The error is denoted by e and the
output by y. Recall that a PID controller is a compensator of the form

C(s) = γp + γds+
γi
s

=
γds

2 + γps+ γi
s

. (1)

The proportional gain is γp while γd is the derivative gain and γi is the integral gain. The
closed loop transfer functions from the reference signal r to the output y, and from the
reference signal r to the error e are respectively given by

Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
=

(γds
2 + γps+ γi)G(s)

s+ (γds2 + γps+ γi)G(s)

E(s)

R(s)
=

1

1 + C(s)G(s)
=

s

s+ (γds2 + γps+ γi)G(s)
. (2)

Now assume that the gains γp, γi and γd are chosen such that the closed loop system is
stable. In other words, assume that the gains γp, γi and γd are chosen such that all the zeros
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of 1+ (γp+ γds+
γi
s
)G(s) are contained in the open left hand plane {s ∈ C : ℜs < 0}. If the

reference signal r(t) = r0 is a constant for all t and γi 6= 0, then the steady state output yss
and the steady state error ess are respectively given by

yss(t) = lim
t→∞

y(t) = r0 and ess(t) = lim
t→∞

e(t) = 0. (3)

In other words, the steady state output yss(t) = r0 and the steady state error ess(t) equals
zero.

2 Varying the PID gains

One way to design a PID controller is to vary the gains γp, γd and γi to arrive at a desired
closed loop response. For example, the proportional gain γp acts like a spring. By increasing
γp, in general, one decreases the rise time and increases the overshoot. The derivative gain
γd acts like damping or a shock absorber. By increasing γd, in general, one decreases the
overshoot and settling time. So one can vary γp, γd and γi in a simulation of the step response
of the closed loop system to achieve the desired response. This method is demonstrated in
the web page www.engin.umich.edu/group/ctm/. The following table is taken from this
web page and shows what happens when one increases the gains γp, γd and γi in the PID
controller.

Closed loop Rise time Overshoot Settling time Steady state
response error

γp decrease increase small change decrease
γi decrease increase increase eliminate
γd small change decrease decrease small change

Table 1: The effect of increasing PID gains.

There are many procedures to design a PID controller for system of the form in Figure 1.
However, our problem has saturation, and saturation can cause major problems in PID
control design. The integral gain γi is a double-edged sword in PID design with saturation.
The integral gain will eliminate the steady state error due to a step. However, in the presence
of saturation a large integral gain can greatly increase the settling time and may even cause
the system to become unstable. This problem is called integral windup and is even more
pronounced when the open loop system G is unstable. Since one of our open loop systems
for the helicopter has a pole on the imaginary axis, we have to be careful about integral
windup.

3 Pole placement for PID controllers

In general one can choose the gains γp, γi and γd to place the poles of the closed loop system
at any three distinct locations in the open left hand plane {s ∈ C : ℜs < 0}. However,
placing three poles does not guarantee that the closed loop system will be stable. If the
McMillan of G is greater than or equal to three, then one does not have any control over the
remaining poles of the closed loop system, and the closed loop system can still be unstable.
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(The McMillan degree of a proper rational transfer function G(s) = p(s)/q(s) is the degree
of the denominator polynomial q. If γi 6= 0, then the McMillan degree of the closed loop
system equals the McMillan degree of G plus one.) In other words, the PID compensator
can only place three poles. If the closed loop system has more than three poles, then placing
three poles does not necessarily guarantee that the closed loop system will be stable.

In our Helicopter problem, the pitch and yaw transfer functions are of the form:

G(s) =
k

s2 + as + b

where a, b and k are constants. In this case, the closed loop transfer functions in (2) are
determined by

Y (s)

R(s)
=

(γds
2 + γps+ γi)k

s3 + (a+ kγd)s2 + (b+ kγp)s+ kγi

E(s)

R(s)
=

s3 + as2 + bs

s3 + (a+ kγd)s2 + (b+ kγp)s+ kγi
. (4)

Notice that the poles of both of these transfer functions are given by the zeros of the following
polynomial:

d(s) = s3 + (a+ kγd)s
2 + (b+ kγp)s+ kγi. (5)

So the closed loop system is stable if and only if the polynomial d is stable. (By definition a
polynomial d(s) is stable if all the the zeros of d(s) are contained in the open left half plane
{s ∈ C : ℜs < 0}.) Moreover, one can choose the constants γi, γd and γp to place the poles
of the closed loop system or the zeros of d(s) at any three points {λ1, λ2, λ3} in the complex
plane C. To see this compute the constants α, β and γ such that

p(s) = (s− λ1)(s− λ2)(s− λ3) = s3 + αs2 + βs+ γ. (6)

(The MATLAB command is poly(
[

λ1 λ2 λ3
]

). Then {λ1, λ2, λ3} are the poles of d(s) if
and only if d(s) = p(s), or equivalently, by comparing like coefficients

α = a + kγd, β = b+ kγp and γ = γik.

By solving for γi, γd and γp, we obtain

γd =
α− a

k
, γp =

β − b

k
and γi =

γ

k

p(s) = (s− λ1)(s− λ2)(s− λ3) = s3 + αs2 + βs+ γ (7)

By computing the PID gains according to equation (7), we guarantee that {λ1, λ2, λ3} are
the zeros of the polynomial d(s). In other words, {λ1, λ2, λ3} are the poles of the closed loop
systems in equation (4).

An example. Consider the open loop transfer function given by

G(s) =
2

s2 − 3s+ 10
.
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It is noted that G is unstable. (Recall that a quadratic polynomial of the form p(s) =
s2+as+b is stable if and only if a > 0 and b > 0.) Assume that one wants to place the poles
of the closed loop system at {−1,−2,−4}. Then using the command poly([-1,-2,-4]) in
MATLAB, we arrive at

(s+ 1)(s+ 2)(s+ 4) = s3 + 7s2 + 14s+ 8.

So the gains in the PID controller which places the poles of the closed loop system at
{−1,−2,−4} are determined by

γd =
7 + 3

2
= 5, γp =

14− 10

2
= 2 and γi =

8

2
= 4.

4 The pitch and yaw transfer functions

The equations of motion for our two degree of freedom Helicopter are given by

Jpθ̈ + Jy sin(θ) cos(θ)ψ̇
2 +mg(h sin(θ) +Rc cos(θ)) + cpθ̇

= lkppvp + kpyvy

(8)
(

Jy cos(θ)
2 + Jshaft

)

ψ̈ − 2Jy cos(θ) sin(θ)θ̇ψ̇ + cyψ̇

= lkyyvy cos(θ) + kypvp cos(θ).

The linearized equations of motion for the helicopter about level flight are determined by

Jpθ̈ + cpθ̇ +mghθ = lkppδvp + kpyδvy

(Jp + Jshaft)ψ̈ + cyψ̇ = lkyyδvy + kypδvp

δvp = vp − vpe

δvy = vy − vye. (9)

Recall that vpe is the pitch equilibrium voltage while vye is the yaw equilibrium voltage. Now
assume that the yaw angle for the helicopter is fixed and the voltage to the yaw motor is kept
constant at vye, that is, δvy = 0 and ψ = ψ̇ = ψ̈ = 0. In this case, the linearized equations
of motion reduce to

Jpθ̈ + cpθ̇ +mghθ = lkppδvp

δvp = vp − vpe (10)

vpe =
mgRclkyy

lkpplkyy − kpykyp
.

The expression of vpe follows from the equilibrium solution to the first equation in (8) with

θ, θ̇ and θ̈ all equal to zero. The transfer function Gp from the voltage δvp applied to the
pitch motor to the pitch angle θ is given by

Gp(s) =
Θ(s)

δVp(s)
=

lkpp
Jps2 + cps+mgh

=

lkpp
Jp

s2 + cp
Jp
s+ mgh

Jp

. (11)
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As expected, Θ(s) = L(θ) is the Laplace transform of the pitch angle θ(t). Notice that the
open loop transfer function Gp is stable.

Now assume that the pitch angle for the helicopter is fixed and the voltage to the pitch
motor is kept constant at vpe, that is, δvp = 0 and θ = θ̇ = θ̈ = 0. In this case, the linearized
equations of motion reduce to

(Jp + Jshaft)ψ̈ + cyψ̇ = lkyyδvy

δvy = vy − vye (12)

vye =
−mgRckyp

lkpplkyy − kpykyp
.

The transfer function Gy from the voltage δvy applied to the yaw motor to the yaw angle ψ
is given by

Gy(s) =
Ψ(s)

δVy(s)
=

lkyy
(Jp + Jshaft)s2 + cys

=

lkyy
Jp+Jshaft

s2 + cy
Jp+Jshaft

s
. (13)

As expected, Ψ(s) = L(ψ) is the Laplace transform of the yaw angle ψ(t). Notice that Gy(s)
has one pole at zero and another pole at − cy

Jp+Jshaft
. Hence the open loop transfer function

Gy is marginally stable.

5 Pole placement for the pitch and yaw controllers

5.1 The pitch controller

Consider a pitch PID compensator of the form:

Cp(s) = γpp + γdps+
γip
s

where γpp, γdp and γip are the corresponding PID pitch controller gains. In this setting, the
closed loop system from a pitch reference signal rp to the pitch angle θ is given by

Θ

Rp

=
CpGp

1 + CpGp

where δVp = Cp(s)(Rp(s)−Θ(s)).

Since δvp = vp − vpe, in the time domain we obtain

vp(t) = vpe + γpp(rp − θ) + γdp(ṙp − θ̇) + γip

∫ t

0

(rp(τ)− θ(τ))dτ.

Design a PID controller such that the poles of the closed loop system Θ

Rp
= CpGp

1+CpGp
are

−1 and the other two poles have a damping ratio ζ = 0.7 and natural frequency ωn = 6.
Suppose we are able to fix the yaw angle constant without turning on the yaw motor, that
is, ψ̇ = 0 and vy = 0, then the equation of motion for the nonlinear feedback system is given
by

lkppvp = Jpθ̈ + cpθ̇ +mg(h sin(θ) +Rc cos(θ))

vp(t) = vpe + γpp(rp − θ) + γdp(ṙp − θ̇) + γip

∫ t

0

(rp(τ)− θ(τ))dτ

vpe =
mg(h sin(θd) +Rc cos(θd))lkyy

lkpplkyy − kpykyp
.
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Here vpe is the front motor voltage required to maintain a desired pitch angle θd with θ̇ = 0

and θ̈ = 0. In the level flight condition θd = 0. In other words, θd = θss(t) is the steady state
pitch angle.

5.2 The yaw controller

Consider a yaw PID compensator of the form:

Cy(s) = γpy + γdys+
γiy
s
.

In this setting, the closed loop system from a yaw reference signal ry to the yaw angle ψ is
determined by

Ψ

Ry

=
CyGy

1 + CyGy

where Vy = Cy(s)(Ry(s)−Ψ(s)).

In the time domain, the yaw voltage is given by

vy(t) = vye + γpy(ry − ψ) + γdy(ṙy − ψ̇) + γiy

∫ t

0

(ry(τ)− ψ(τ))dτ

Design a PID controller such that the poles of the closed loop system Ψ

Ry
= CyGy

1+CyGy
are

−1/2 and −1± ı. Suppose we are able to fix the pitch angle constant at zero without turning

on the pitch motor, that is, θ = 0, θ̇ = 0 and vp = 0, then the equation of motion for the
nonlinear feedback system with Coulomb friction is given by

lkyyvy =
(

Jy cos(θ)
2 + Jshaft

)

ψ̈ + cyψ̇ + Fcy(ψ̇)

vy(t) = vye + γpy(ry − ψ) + γdy(ṙy − ψ̇) + γiy

∫ t

0

(ry(τ)− ψ(τ))dτ

vye =
−mg(h sin(θd) +Rc cos(θd))kyp

lkpplkyy − kpykyp
.

Here Fcy(ψ̇) is the force due to Coulomb friction. We assume that the size of the Coulomb
friction in the yaw is much larger than in the pitch.

6 Combining the pitch and yaw controllers

Previously, you have designed a pitch PID controller Cp and a yaw PID controller Cy. In
this section, we will combine our pitch and yaw PID controllers to fly the helicopter. The
nonlinear equations of motion corresponding to our pitch and yaw PID controllers for the
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helicopter are given by

Jpθ̈ + Jy sin(θ) cos(θ)ψ̇
2 +mg(h sin(θ) +Rc cos(θ)) + cpθ̇

= lkppvp + kpyvy

(

Jy cos(θ)
2 + Jshaft

)

ψ̈ − 2Jy cos(θ) sin(θ)θ̇ψ̇ + cyψ̇

= lkyyvy cos(θ) + kypvp cos(θ)− Fcy(ψ̇)

vp(t) = vpe + γpp(rp − θ) + γdp(ṙp − θ̇) + γip

∫ t

0

(rp(τ)− θ(τ))dτ

vy(t) = vye + γpy(ry − ψ) + γdy(ṙy − ψ̇) + γiy

∫ t

0

(ry(τ)− ψ(τ))dτ

vpe =
mg(h sin(θd) +Rc cos(θd))lkyy

lkpplkyy − kpykyp

vye =
−mg(h sin(θd) +Rc cos(θd))kyp

lkpplkyy − kpykyp
.

Now let us use MATLAB to simulate these controllers on the full nonlinear system. To
simulate our pitch and yaw PID controllers to fly the helicopter, load the following files in
MATLAB:

• heli_model.mdl

• setup_heli_PID_parameters.m

In the file: setup_heli_PID_parameters.m, we have provided the following numbers needed
to run the Simulink file heli_model.mdl

K pp = 0.185 ∗ kpp;
K yy = 0.185 ∗ kyy;
K yp = kyp;

K py = kpy;

J eq p = Jp;

J eq y = Jp + 0.0039;

B p = cp;

B y = cy;

m heli = 1.326;

l cm = 0.0168

l = 0.185;

If you want to you can also enter the numbers that you obtained from our previous
helicopter identification experiment in the MATLAB file:
setup_heli_PID_parameters.m, or simply use the numbers that we have provided. (If
some of the parameters that you obtained in the helicopter identification experiment were
wrong, then the PID controller that you simulate in the pre-lab might not work on the
actual helicopter experiment. However, your parameters might be more accurate than our
parameters. In this case, your PID controller will actually work better.) Now run the
MATLAB file: setup_heli_PID_parameters.m. Then enter your numbers from the pitch
and yaw PID controllers in the following matrix

Ki =

[

γpp 0 γdp 0 γip 0
0 γpy 0 γdy 0 γiy

]

.
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Run the Simulink file heli_model.mdl. This Simulink file tests how well your controller
follows a square wave. Now use the rules in Table 1, to adjust the PID gains for both the
pitch and yaw controllers to find a more suitable controller for the helicopter. Note that
those rules are for single input single output system. In our case, we have two inputs and
two outputs system, and thus, those rules may or may not apply. All the gains in your PID
controller should be under 40. Bring your best controller gains to the Lab with you.

7 Pre-lab: Due at the beginning of the experiment

The following is due at the beginning of the experiment. You will not be allowed to perform
the experiment if the pre-lab is not completed.

(i) Compute the pitch PID compensator Cp for Gp such that the closed loop poles are
either {−1,−2,−3} or {−1,−3± 3i}. You can chose either set of poles but not both.

(ii) Compute the yaw PID compensator Cy for Gy such that the closed loop poles are −1/2
and have natural frequency ωn = 1 rad/s and a damping ratio of ζ = 0.7. (You may
use any technique to achieve this. You may also refer to Appendix 12.6 on page 17 for
help, using γiy = 1 initially).

(iii) Use the given Simulink and setup files to simulate the system. For a better performance,
adjust these gains using Table 1 as a guideline.

(iv) Bring the best gain that you achieve in your simulation, that is, bring

Ki =

[

γpp 0 γdp 0 γip 0
0 γpy 0 γdy 0 γiy

]

.

The absolute values of all of your gains must be less than forty.

(v) Bring plots of your simulation results.

8 Part (i): PID testing and experimental improvement

In this part you will test your PID controller from the pre-lab on the actual helicopter. The
idea is that you will implement your PID controller and then modify the gains to improve
the performance. You must select a PID controller that you experimentally determine works
the best on the helicopter.

8.1 The lab steps to test and improve the PID controller

Caution: Depending on your controller, the closed loop system may be unstable.
Anytime you click start be ready to hit the stop button if you notice any evidence of
instability, that is, oscillations with increasing magnitude.

(i) Open MATLAB and change the directory to Desktop\AAE364L\Sec#\PID

(ii) Run the setup file setup_heli_PID_parameters.m
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(iii) Enter Ki corresponding to the PID designed in your pre-lab, that is, type Ki=[ ... ]

and fill in the values from Step (iv) of the pre-lab.

(iv) Open the Simulink model heli_PID and set the simulation time to 99 seconds. Select
Tools - External Mode Control Panel - Signal & Triggering, and change the
duration to 50,000.

(v) Set the Joystick/Computer Selector value to 2.

(vi) Open the Scopes subsystem and, from there, the Pitch+Reference scope. In order to
properly record your data, select Parameters. Deselect the ”Limit to 5000

data points” check-box. Select Save data to workspace. Enter an appropri-
ate variable name, in this case theta. Make sure the format is ”Structure
with time”. Repeat with the Yaw+Reference scope (psi), and the Voltage scope
(voltage).

(vii) Click Quarc - Build.

(viii) In the Computer Generated Input block, set the gain of the sine wave pitch signal
generator to 15 degrees and set all the other gains to 0.

(ix) Select Simulation - Connect to Target, and Quarc - Start. Observe the pitch
and yaw responses for at least 30 seconds and stop the simulation.

(x) In the Computer Generated Input block, set the gain of the sine wave yaw signal
generator to 30 degrees and set all the other gains to 0. Repeat Step (ix).

(xi) Tune your PID gains, that is, enter a new Ki in MATLAB, and repeat Steps (viii)-(x).

(xii) When you are pleased with your experimental PID controller, save at least 90 sec-
onds of pitch, yaw, and voltage data and the gain matrix Ki in MATLAB via (File
- Save - Save as Mat file).

Make sure to save data for both sine wave pitch (Step (viii)) and sine wave yaw
(Step (x)) input signals.

9 Part (ii): Closed loop flight testing

In this part of the lab you can test your best PID controller by flying the helicopter with
the joystick and trying to follow a path.

9.1 The lab steps to closed loop flight testing

(i) Re-open the Simulink model heli_PID.mdl if it is closed.

(ii) Change the Joystick/Computer Selector to 1.

(iii) Open the Pitch+Reference scope, right-click on the y-axis, select Axes Properties,
and set the fixed range to [−30, 30]. Repeat for the Yaw+Reference scope, and set the
fixed range to [−90, 90].
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(iv) Set the simulation time to 119 seconds. Select Tools - External Mode Control

Panel - Signal & Triggering, and change the duration to 60,000. Click Quarc -

Build.

(v) In the Computer Generated Input block, set the gain of the sine wave pitch signal
generator to 15 degrees and the other gains to 0.

(vi) Select Simulation - Connect to Target, and Quarc - Start. The green line in the
scopes represent the actual pitch and yaw of the helicopter. The red lines are the
reference signals. You need to track the reference signal by flying the helicopter with
the joystick.

(vii) Repeat Steps (v) and (vi), but instead change the sine wave yaw gain to 30 degrees
and the other gains to 0.

(viii) Saving this data is not required.

10 Part(iii): Open loop flight

In this part of the experiment you will try to fly the helicopter with no control system in
place. In other words, you will try to fly the helicopter ‘open loop’. As expected, it will be
difficult to fly the helicopter with no control system.

10.1 The lab steps to open loop flight

(i) Open the file heli_Open_Loop.m and heli_Open_Loop.mdl in MATLAB.

(ii) Set the simulation time to 119 seconds. Select Tools - External Mode Control

Panel - Signal & Triggering, and change the duration to 60,000. Click Quarc -

Build.

(iii) Open the Pitch+Reference scope, right-click on the y-axis, select Axes Properties,
and set the fixed range to [−30, 30]. Repeat for the Yaw+Reference scope, and set the
fixed range to [−90, 90].

(iv) In the Computer Generated Input block, set the gain of the sine wave pitch signal
generator to 15 degrees and the other gains to 0.

(v) Select Simulation - Connect to Target, and Quarc - Start. The green line in the
scopes represent the actual pitch and yaw of the helicopter. The red lines are the
reference signals. You need to track the reference by flying the helicopter with the
joystick.

(vi) Repeat Steps (iv) and (v), but instead change the sine wave yaw gain to 30 degrees
and the other gains to 0.

(vii) Saving data is not required.
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11 The laboratory report

(a) Hand in the plots from Part (i) for your best controller. For each input signal, generate
three plots and put them on the same page. These plots must be (i) the pitch and
pitch reference, (ii) the yaw and yaw reference, and (iii) the two voltages. All the plots
must occupy two pages in total.

(b) Analyze the voltages generated by the controller and determine if there was saturation.
Discuss the effect of saturation in the helicopter response (whether you had saturation
or not).

(c) Write a section describing what is good and bad about the controller that you have
designed. You may want to include settling time and overshoot in your discussion about
why you think this is a good controller. Describe how you can improve this controller if
you had more time. You can even hand in more plots to convince the reader that you
have designed a good controller.

(d) Discuss the need for the integrators in the pitch and yaw loops.

(e) For the last part of the lab report, discuss what you learned about flying the helicopter
with the joystick using the PID controller and open loop.
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12 Appendix

The following material is included for your reference only.
No task is required of you from this point on.

12.1 Solution for equilibrium input voltages

Recall that the equations of motion of the helicopter model are given in (8). Let θ = θd and
ψ = ψd be an equilibrium position of this system of equations. At equilibrium, (8) reduced
to

[

mg(h sin(θd) +Rc cos(θd))
0

]

=

[

lkpp kpy
kyp cos(θd) lkyy cos(θd)

] [

vpe
vye

]

.

(14)

We see from (14) that ψd is unspecified, and thus ψd can have any value. By solving (14),
we arrive at

vpe =
mg(h sin(θd) +Rc cos(θd))lkyy

lkpplkyy − kpykyp
(15)

vye =
−mg(h sin(θd) +Rc cos(θd))kyp

lkpplkyy − kpykyp
.

12.2 Proof to show that γd and γp are real.

Recall that the inverse of a 2× 2 matrix is given by
[

a b
c d

]

−1

=
1

ab− cd

[

d −b
−c a

]

. (16)

Notice that for any complex number γ, we have γ−γ = 2ıℑγ where ℑ denotes the imaginary
part of a complex number. Using this we see that the solution to (29) is given by

[

γd
γp

]

= − 1

|λz|2(λ− λ)

[

λz −λz
−λ2z λ2z

] [

λ+ γiz
λ+ γiz

]

= − 1

2ıℑλ|λz|2
[ |λ|2z + λγi|z|2 − |λ|2z − λγi|z|2
−|λ|2λz − γiλ

2|z|2 + |λ|2λz + γiλ
2|z|2

]

= − 1

2ıℑλ|λz|2
[

−2ı|λ|2ℑz − 2ıγi|z|2ℑλ
2ı|λ|2ℑ(λz) + 2ıγi|z|2ℑ(λ2)

]

=
1

|λz|2ℑλ

[

|λ|2ℑz + γi|z|2ℑλ
−|λ|2ℑ(λz)− γi|z|2ℑ(λ2)

]

.

This readily implies that
[

γd
γp

]

=
1

|λz|2ℑλ

[

|λ|2ℑz + γi|z|2ℑλ
−|λ|2ℑ(λz)− γi|z|2ℑ(λ2)

]

. (17)

Therefore the gains γd and γp are real numbers. To compute γd and γp, one can use either
(30) of (17).
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12.3 Linear stability analysis

In this section, we will provide a stability analysis on what actually happens to the linearized
equations of motion when one combines the PID pitch and yaw controllers. Recall that the
linearized equations of motion about level flight are determined by

Jpθ̈ + cpθ̇ +mghθ = lkppδvp + kpyδvy

(Jp + Jshaft)ψ̈ + cyψ̇ = lkyyδvy + kypδvp

δvp = vp − vpe

δvy = vy − vye. (18)

By taking the Laplace transform with all the initial conditions set equal to zero, we obtain
[

Θ(s)
Ψ(s)

]

=

[

a11
d

a12
d

a21
q

a22
q

] [

δVp(s)
δVy(s)

]

d(s) = s2 +
cp
Jp
s+

mgh

Jp

q(s) = s2 +
cys

Jp + Jshaft
(19)

a11 =
lkpp
Jp

and a12 =
kpy
Jp

a21 =
kyp

Jp + Jshaft
and a22 =

lkyy
Jp + Jshaft

.

It is emphasized, that in our helicopter problem a12 and a21 are very small compare to
a11 and a22. This plays an important role in our stability analysis of the linearized system.
Our pitch and yaw PID controllers are of the form:

δVp(s) =
Np(s)

s
(Rp(s)−Θ(s))

Np(s) = γdps
2 + γpps+ γip

δVy(s) =
Ny(s)

s
(Ry(s)−Ψ(s))

Ny(s) = γdys
2 + γpys+ γiy. (20)

As expected, Rp(s) = Lrp is the reference signal for the pitch, while Ry(s) = Lry is the
reference signal corresponding to the yaw. Moreover, Np(s)/s = Cp(s) is the PID controller
for the pitch, and Ny(s)/s = Cy(s) is the PID controller for the yaw. By substituting (20)
into (19), we arrive at

[

Θ(s)
Ψ(s)

]

=

[

a11
d

a12
d

a21
q

a22
q

] [

Np

s
0

0 Ny

s

] [

Rp(s)−Θ(s)
Ry(s)−Ψ(s)

]

.

This readily implies that
[

1 + a11Np

sd

a12Ny

sd
a21Np

sq
1 + a22Ny

sq

]

[

Θ(s)
Ψ(s)

]

=

[

a11Np

sd

a12Ny

sd
a21Np

sq

a22Ny

sq

]

[

Rp(s)
Ry(s)

]

.

13



Multiplying the first row by sd, and multiplying the second row by sq, we arrive at
[

sd+ a11Np a12Ny

a21Np sq + a22Ny

] [

Θ(s)
Ψ(s)

]

=

[

a11Np a12Ny

a21Np a22Ny

] [

Rp(s)
Ry(s)

]

.

Recall that the inverse of a 2× 2 matrix is given by

[

a b
c d

]

−1

=
1

ad− bc

[

d −b
−c a

]

.

Using this fact, we arrive at
[

Θ
Ψ

]

=
1

ξ(s)

[

(sq + a22Ny) −a12Ny

−a21Np (sd+ a11Np)

] [

a11Np a12Ny

a21Np a22Ny

] [

Rp

Ry

]

ξ(s) = (sd+ a11Np) (sq + a22Ny)− a21a12NpNy. (21)

In other words, the input output equation in frequency domain is given by

[

Θ(s)
Ψ(s)

]

= F (s)

[

Rp(s)
Ry(s)

]

(22)

where F (s) is the 2 × 2 matrix transfer function from the vector reference signal
[

rp ry
]tr

to the vector output
[

θ ψ
]tr

is given by

F =
1

ξ(s)

[

(sq + a22Ny) −a12Ny

−a21Np (sd+ a11Np)

] [

a11Np a12Ny

a21Np a22Ny

]

(23)

while ξ(s) is the characteristic equation of this system given by

ξ(s) = (s d(s) + a11Np(s)) (s q(s) + a22Ny(s))− a21a12Np(s)Ny(s) (24)

It is noted that F is a 2× 2 matrix whose entries are transfer function of McMillan degree
of at most 6. In other words, the entries of F consists of proper rational functions such that
the degree of the denominator is at most 6. Finally, it is noted that F is stable if and only
if the sixth order polynomial ξ(s) is stable.

Now let us return to our PID design procedure. Recall that we designed a pitch PID
controller Cp = Np/s from the pitch reference signal rp to the pitch angle θ for the open loop
transfer function Gp = a11/d. In this case, the closed loop transfer function is given by

Θ(s)

Rp

=
CpGp

1 + CpGp

=
a11Np

sd+ a11Np

.

The poles of the closed loop transfer function CpGp

1+CpGp
are the zeros of the third order poly-

nomial sd + a11Np. So the closed loop transfer function CpGp

1+CpGp
is stable if and only if the

polynomial sd + a11Np is stable. (Recall that a polynomial p(s) is stable if all the zeros of
p(s) are contained in the open left half plane {s ∈ C : ℜs < 0}.) In our design procedure
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we placed the poles of CpGp

1+CpGp
, or equivalently, the zeros of sd+ a11Np in the open left hand

plane to meet a pitch performance objective.
Next we designed a yaw PID controller Cy = Ny/s from the yaw reference signal ry to

the yaw angle ψ for the open loop transfer function Gy = a22/q. In this case, the closed loop
transfer function is given by

Ψ(s)

Ry

=
CyGy

1 + CyGy

=
a22Ny

sq + a22Ny

.

The poles of the closed loop transfer function CyGy

1+CyGy
are the zeros of the third order poly-

nomial sq + a22Ny. In particular, the closed loop transfer function CyGy

1+CyGy
is stable if and

only if the polynomial sq + a22Ny is stable. In our design procedure we placed the poles of
CyGy

1+CyGy
, or equivalently, the zeros of sq+ a22Ny at certain points in the open left hand plane

to meet a yaw performance objective.
Now observe that the poles of the closed loop transfer function F in (23) for the whole

system are given by the zeros of

ξ(s) = (sd+ a11Np) (sq + a22Ny)− a21a12NpNy.

In our particular problem, a21a12 is very small. So the polynomial

ξ(s) ≈ (sd+ a11Np) (sq + a22Ny) .

In our design procedure, (sd+ a11Np) and (sq + a22Ny) are both stable polynomials. Because
a21a12 is small, we hope that ξ(s) is also stable. However, there is no guarantee that ξ is
stable, or equivalently, the closed loop transfer function F is stable. In fact, it is well known
that a small perturbation of the coefficients of a polynomial can have a drastic effect on the
roots of that polynomial. In other words, a small perturbation can make a stable polynomial
unstable. Putting these concerns aside for the moment, it turns out that our PID design
procedure does not make our closed loop system unstable.

Now assume that the closed loop system is stable, that is, ξ(s) is a stable polynomial. Now
consider the reference pitch angle rp = θd and reference yaw angle ry = ψd. By employing
the final value theorem in (21), we arrive at

[

θ∞
ψ∞

]

= lim
t→∞

[

θ(t)
ψ(t)

]

= F (0)

[

θd
ψd

]

=
1

ξ(0)

[

a22γyi −a12γyi
−a21γpi a11γpi

] [

a11γpi a12γyi
a21γpi a22γyi

] [

θd
ψd

]

=

[

1 0
0 1

] [

θd
ψd

]

=

[

θd
ψd

]

.

In other words, the steady state pitch angle θss = θ∞ = θd and the steady state yaw angle
ψss = ψ∞ = ψd. Therefore if the closed loop system is stable, then the PID control design
will fly the helicopter to the desired pitch angle θd and desired yaw angle ψd.

Note: Following parts are only for graduate students, however, all students can do
them with the permission of the TA.
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12.4 Steady state error for a ramp with a PID controller

Consider the open loop transfer function G and the PID compensator

C(s) = γp + γds+
γi
s
.

The transfer function from the reference signal r(t) to the error e(t) is given by

E

R
=

1

1 + C(s)G(s)
=

s

s+ (γds2 + γps+ γi)G(s)
.

Assume that γp, γd and γi are chosen such that the closed loop system is stable, or equiv-
alently, all the zeros of 1 + C(s)G(s) are contained in {s ∈ C : ℜs < 0}. Consider a ramp
input r(t) = αt where α is a constant. Moreover, assume that G(0) = G(s)|s=0

is nonzero.
Then the steady state error ess(t) due to this ramp is the constant function given by

ess(t) =
α

γiG(0)
(where r(t) = αt). (25)

Proof. Since R(s) = α/s2 is the Laplace transform of r(t) = αt, we have

E(s) =
1

(1 + C(s)G(s))

α

s2
=

α

(s+ (γds2 + γps+ γi)G(s))s
.

According to the final value theorem

ess(t) = lim
t→∞

e(t) = lim
s→0

sE(s)

=
α

s+ (γds2 + γps+ γi)G(s)

∣

∣

∣

∣

s=0

=
α

γiG(0)
.

Therefore the steady state error is given by (25).

Remark. If G(0) = 0, then the steady state error ess(t) is infinite.

12.5 Ramp specifications for a PID controller

As before, consider the open loop transfer function G and the PID compensator

C(s) = γp + γds+
γi
s
.

Assume that G(0) 6= 0. A ramp error problem is to find a PID controller such that the
following two conditions hold:

(i) For a ramp r(t) = αt, the corresponding steady state error ess(t) = β where β is a
specified constant.

(ii) The closed loop system CG
1+CG

is stable.
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Solution. The specifications in Part (i), imply that

γi =
α

βG(0)
(where r(t) = αt and ess(t) = β). (26)

Then for this specified γi, find γp and γd such that the closed loop system is stable. If there
is no γp and γd such that the closed loop system is stable, then one has to change β in Part
(i). If there is no γi, γp and γd such that the closed loop system is stable, then this design
method fails.

To obtain γi in equation (26), recall that

ess(t) =
α

γiG(0)
(where r(t) = αt).

The specifications in Part (i), means that β = ess(t). In other words,

β =
α

γiG(0)
.

Therefore the integral gain γi is given by (26).

12.6 Pole placement with γi specified.

As before, consider the closed loop system in Figure 1 where G(s) is the open loop plant and
C(s) = γi/s+ γds+ γp is a PID controller. Recall that the closed loop system is determined
by

Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
=

(γds
2 + γps+ γi)G(s)

s+ (γds2 + γps+ γi)G(s)

E(s)

R(s)
=

1

1 + C(s)G(s)
=

s

s+ (γds2 + γps+ γi)G(s)
. (27)

Moreover, let us assume that the integral gain γi is specified. Then our problem is to
specify the proportional gain γp and derivative gain γd to place two poles of the closed loop
corresponding to a specified damping ratio ζ and natural frequency ωn. In other words,
compute γp and γd such that the closed loop transfer function is of the form

Y (s)

R(s)
=

p(s)

(s2 + 2ζωns + ω2
n)q(s)

where the polynomials p and (s2 + 2ζωns + ω2
n)q(s) have no common roots. This means

that the poles of the closed loop system will contain the zeros of s2 + 2ζωns+ ω2
n. The idea

behind this design procedure is that hopefully the other poles of the closed loop system are
dominated by the roots of s2+2ζωns+ω

2
n, and the closed loop system behaves like a second

order system whose denominator is s2+2ζωns+ω2
n. In particular, one can choose, ζ and ωn

for a specified percent overshoot or settling time.
To proceed with our analysis, assume that ζ and ωn are specified. To obtain the corre-

sponding PID gains γd and γp, observe that

s2 + 2ζωns+ ω2
n = (s+ ζωn)

2 + ω2
n(1− ζ2) = (s− λ)(s− λ)
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where
λ = −ζωn + ıωn

√

1− ζ2 and λ = −ζωn − ıωn

√

1− ζ2. (28)

In other words, λ and λ are the roots of s2+2ζωns+ω
2
n. So our problem is given a specified

integral gain γi and two complex numbers λ and λ in {s ∈ C : ℜ(s) < 0} where ℑ(λ) 6= 0,
then find the proportional gain γp and derivative gain γd such that λ and λ are contained in
the poles of the closed loop system.

To solve this problem, set z = G(λ) = G(s)|s=λ. In general, z is a complex number.
Since G(s) is a rational function consisting of polynomials with real coefficients, we see that

G(λ) = G(λ) = z. Notice that λ is a pole of the closed loop system if and only if λ is a zero
of s+ (γds

2 + γps+ γi)G(s), that is,

0 =
[

s+ (γds
2 + γps+ γi)G(s)

]
∣

∣

s=λ
= λ+ (γdλ

2 + γpλ + γi)z.

By taking the complex conjugate and using the fact that γi, γp and γd must be real, we
arrive at

0 = λ+ (γdλ
2
+ γpλ+ γi)z.

By converting the previous two equations to matrix form, we obtain

[

λ2z λz

λ
2
z λz

] [

γd
γp

]

= −
[

λ+ γiz
λ+ γiz

]

. (29)

We claim that the solution to this system is real. It is emphasized that the gains γd and γp
must be real or else we cannot implement our controller design. Therefore the gains that
achieve a damping ratio of ζ and a natural frequency ωn with specified integral gain γi are
determined by

[

γd
γp

]

= −ℜ
[

[

λ2z λz

λ
2
z λz

]−1 [

λ+ γiz
λ+ γiz

]

]

λ = −ζωn + ıωn

√

1− ζ2

z = G(λ). (30)

Here we also computed the real part ℜ of the final answer. We extracted the real part because
MATLAB may introduce some small numerical errors. In other words, the numerical solution
might contain a small imaginary part. So taking the real part eliminates these numerical
errors. The proof to show that γd and γp are real is given in the appendix.

Remark. It is emphasized that this design procedure does not guarantee that the closed loop
system will be stable. It can happen that one can specify γi, ζ and ωn. Then compute the
appropriate gains γd and γp and the closed loop system CG

1+CG
is unstable. In this case, one

has to modify γi, ζ and ωn to try to ensure that the closed loop system is stable. If there are
no γi, ζ and ωn such that the closed loop system is stable, then this design method fails and
one has implement other design techniques.

An example. Consider the open loop transfer function given by

G(s) =
2

s2 + 6s+ 4
.
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Assume that ζ = 0.7, ωn = 2, and γi = 4. In this setting

λ = −ζωn + ıωn

√

1− ζ2 = −0.7× 2 + ı2
√
1− 0.72 = −1.4 + 1.4283ı.

In other words, λ = −1.4 + 1.4283ı. Furthermore,

z = G(λ) =
2

s2 + 6s+ 4

∣

∣

∣

∣

s=λ

=
2

λ2 + 6λ+ 4

=
2

(−1.4 + 1.4283ı)2 + 6(−1.4 + 1.4283ı) + 4
= −0.2187− 0.2232ı.

Thus z = −0.2187− 0.2232ı. By using MATLAB to compute γd and γp in (30), we arrive at

γd = −0.6 and γp = 2.8.

Therefore the corresponding PID compensator is given by

C(s) =
−0.6s2 + 2.8s+ 4

s
.

The closed loop system is given by

Y (s)

R(s)
=

CG

1 + CG
=

−1.2s2 + 5.6s+ 8

s3 + 4.8s2 + 9.6s+ 8
.

The poles of this system are −2 and −1.4± 1.4283ı. Hence the closed loop system is stable.
Moreover, as expected λ and λ are contained in the poles for the closed loop system. So the
poles for the closed loop system contain the damping ratio ζ = 0.7 and natural frequency
ωn = 2.

The MATLAB commands that we used to compute the closed loop transfer function are
given by

• C = tf(
[

−0.6 2.8 4
]

,
[

1 0
]

)

• G = tf(2,
[

1 6 4
]

)

• F = C ∗G/(1 + C ∗G)

• F = minreal(F ).

Then F is the closed loop transfer function. The minreal command is used to eliminate the
common poles and zeros in the MATLAB calculation of the closed loop transfer function F .

12.7 Ramp, damping ratio and natural frequency specifications for a PID con-
troller

As before, consider the open loop transfer function G and the PID compensator

C(s) = γp + γds+
γi
s
.

Assume that G(0) 6= 0. Find a PID controller such that the following conditions hold:
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(i) For a specified ramp reference input r(t) = αt, the corresponding steady state error
ess(t) = β, where β is a specified constant.

(ii) The closed loop system CG
1+CG

has two poles corresponding to a specified damping ratio
ζ and natural frequency ωn.

(iii) The closed loop system CG
1+CG

is stable.

Solution. According to equation (26), the specifications in Part (i), imply that

γi =
α

βG(0)
(where r(t) = αt and ess(t) = β). (31)

Then for this specified γi, the gains γp and γd are determined by equation (30). Finally,
check to see if the closed loop system is stable. If the closed loop system not stable, then
one has to change the steady state error β in Part (i) or ζ and ωn in Part (ii), to see if the
corresponding closed loop system is stable.

Remark. Computing the constants γp and γd in this fashion does not guarantee that the
closed loop system

CG

1 + CG

is stable. So you must check to see if the closed loop system CG
1+CG

is stable. If CG
1+CG

is not

stable, then you have to keep changing γi, ζ and ωn until CG
1+CG

is stable. If one cannot find

a γi, γp and γd such that CG
1+CG

is stable, then this design method fails. In this case, one has
to apply other control techniques.

An example. Consider the open loop transfer function given by

G(s) =
2

s2 + 6s+ 4
.

Assume that r(t) = 2t, and the corresponding steady state error ess(t) = 1, that is, α = 2
and β = 1. Moreover, assume that ζ = 0.7 and ωn = 2. Notice that G(0) = 1/2. So in this
case, the integral gain

γi =
α

βG(0)
=

2

1/2
= 4.

Hence γi = 4.

12.8 Ramp steady state error PID controller

As before, consider a pitch PID controller of the form,

Cp(s) = γpp + γdps+
γip
s
.

Compute an integral gain γip such that the steady state error due to the ramp r(t) = 2t is
ess(t) = β = 1. The closed loop system from a pitch reference signal rp to the pitch error
e = rp − θ is given by

E

Rp

=
1

1 + Cp(s)Gp(s)
=

s

s+ (γdps2 + γpps + γip)Gp(s)
.
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According to (31), the integral gain to achieve this steady state error is computed by

γip =
α

βGp(0)
.

Since ess(t) = 1 and α = 2, we arrive at

γip =
2

Gp(0)
.

For this specified γip, find the gains γpp and γdp such that the closed loop system has a
pairs of poles corresponding to a damping ratio of ζ = 0.7 and a natural frequency of ωn = 5.
Check to see if the closed loop system is stable.

12.9 A PID controller for the yaw angle with γiy = 1.

As before, consider a yaw PID controller of the form:

Cy(s) = γpy + γdys+
γiy
s
.

Notice that Gy(0) = ∞. Hence according to the steady state error analysis in equation (31),
any positive γiy we choose will result in zero steady state error due to a ramp. However, we
can not choose γiy = 0 because the steady state error will not go to zero. So assume that
the integral gain γiy = 1. The closed loop system from a reference signal ry to the yaw error
e = ry − ψ is determined by

E

Ry

=
1

1 + Cy(s)Gy(s)
=

s

s+ (γdys2 + γpys+ 1)Gy(s)
.

For γiy = 1, find γpy and γdy such that the the closed loop system has a damping ration of
ζ = 0.7 and a natural frequency of ωn = 1. Check to see if the closed loop system is stable.
(In some applications, one chooses the natural frequency for the pitch five times larger than
the natural frequency for the yaw.)

As before, run the file: setup_heli_PID_parameters.m. Then enter your numbers from
the pitch and yaw PID controllers you just computed in the following matrix

Ki =

[

γpp 0 γdp 0 γip 0
0 γpy 0 γdy 0 γiy

]

.

Run the Simulink file: heli_model.mdl. This Simulink file tests how well your controller
follows a square wave. Now use the rules in Table 1, to adjust the PID gains for both the
pitch and yaw controllers to find a better controller for the helicopter. Recall that those
rules are for single input single output system, and they may or may not apply here. All the
gains in your PID controller should be under 40. Bring this controller to the Lab with you.

12.10 Ramp specification pre-lab (optional)

(i) Compute the pitch PID compensator Cp for Gp such that the ramp input of r(t) = 2t
degrees/sec yields the steady state error ess = 1 degree and the poles of the closed loop

system CpGp

1+CpGp
have natural frequency ωn = 5 rad/s and the damping ratio ζ = 0.7.
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(ii) Compute the poles of the closed loop system CpGp

1+CpGp
. Is this closed loop system stable?

(iii) Now assume that the integral gain γiy = 1 for the yaw PID controller. Find γpy and

γdy such that the poles of the closed loop system CyGy

1+CyGy
have natural frequency ωn = 1

rad/s and the damping ratio ζ = 0.7.

(iv) Compute the poles of the closed loop system CyGy

1+CyGy
. Is this closed loop system stable?

(v) Using the Simulink and setup files provided, adjust these gains by the method in Table
1 to achieve a better performance.

(vi) Bring the best gain that you achieve in your simulation, that is, bring

Ki =

[

γpp 0 γdp 0 γip 0
0 γpy 0 γdy 0 γiy

]

.

It is emphasized that the absolute values of all of your gains must be less than forty.

22


