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A B S T R A C T

In designing evacuation plans, it is critical for the responsive agencies to consider the dynamic change of human
population within impact areas and understand social perception from local residents. Although a large number
of evacuation models has been reported in the literature, many used census survey data which represent only the
nighttime population distribution. To fill this research gap, this paper introduces a novel data integration fra-
mework for developing an evacuation decision support system for wildfire, Integrated Wildfire Evacuation
Decision Support System (IWEDSS). IWEDSS integrates multiple data sources including social media, census
survey, geographic information systems (GIS) data layers, volunteer suggestions, and remote sensing data. The
integration is based on multi-disciplinary theoretical and modeling approaches including Geographic
Information Science, civil and transportation engineering, computer science, social media and communication.
IWEDSS includes four core modules: dynamic population estimation, stage-based robust evacuation planning,
social perception analysis, and web-based geomatical analytic platform. It offers tools for evacuation planers and
resource managers to make better decisions that can reduce the evacuation time and potential number of injuries
and deaths. This paper also presents a case study to demonstrate the suitability of incorporating social media
data to estimate the dynamic change of human population.

1. Introduction

Effective evacuation during disastrous events is one of the most
challenging issues for many local government agencies and large city
traffic control centers in U.S. To build an effective evacuation model
and response plans, the responsive agencies need to consider the dy-
namic change of human population in impact areas and social per-
ception from local residents when designing traffic assignment plans,
evacuation procedures, and shelter locations [1]. Conventionally, po-
pulation data come from government cross-sectional episodic census
surveys. Census data represent only the nighttime population dis-
tribution, which hardly reflects dynamic population during a day, on
weekdays vs. weekends, or with variations in seasons and holidays.
Emerging Big Data from cellphone calls [2], social media [3], vo-
lunteered geographic information (VGI) [4], and sensor networks [5]
open unprecedented opportunities to analyze and model human dy-
namics in space and time [6] and furthermore to capitalize on crowd-
sourcing intelligence for hazard information reporting, sharing, and
modeling during disastrous events. This paper introduces a novel data
integration framework for developing an evacuation decision support

system for wildfire, Integrated Wildfire Evacuation Decision Support
System (IWEDSS). IWEDSS integrates multiple data sources including
social media, census survey, geographic information systems (GIS) data
layers, volunteer suggestions, and remote sensing data. It consists of
four core modules: (1) dynamic population estimation, (2) stage-based
robust evacuation models, (3) social perception analysis, and (4) a web-
based geospatial analytics platform. The system provides key functions
for data collection, traffic demand modeling, evacuation operation, and
information dissemination. IWEDSS offers scientifically-based and data-
driven analytic tools for evacuation planers and resource managers to
make better decisions that can reduce the evacuation time and potential
number of injuries and deaths. This paper also presents a case study to
demonstrate the suitability of incorporating social media data to esti-
mate the dynamic change of human population.

2. Relationship to other research

Focusing on the four core modules of the IWEDSS framework, a
review of the literature and discussions for each core module are pre-
sented below.
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2.1. Population estimation

The prevailing use of social media and mobile phone data provides a
great research opportunity for researchers to map and analyze dynamic
human behaviors, communications, and movements [7]. People use
smart phones, mobile devices, and personal computers to build up their
digital life and to leave their digital footprint on the Internet. These
human-made digital records provide a foundation for human dynamics
research. Human dynamics is a new transdisciplinary research field
attracting scientists and researchers from different domains, including
complex systems [8], video analysis [9,10], and geography [7]. One key
research question of human dynamics is the dynamic change of popu-
lation distribution in urban areas. Conventionally, the change of po-
pulation distribution is estimated from census survey with data sam-
pling and forecasting techniques. Recently, scientists started to use
satellite images [11], mobile phone data [12,13], or vehicle probe data
[14] to estimate the dynamic change of population distribution at small
area level. One example is to use mobile phone-based call detail records
(CDR) to detect spatial and temporal differences in everyday activities
among multiple cities [15]. Another example is to estimate seasonal,
weekend, and daily changes in population distribution over multiple
timescales with aggregated and anonymized mobile phone data [13]. In
GIS and cartographic research, dasymetric mapping methods have been
applied to estimate population density using census data and ancillary
data sources [16–18]. The integration between vector-based census
tracks and raster-based land cover data and satellite images for dasy-
metric mapping is a challenging problem. Mennis [19] introduced
raster surface representation of population density framework to com-
bine categorical ancillary data and population density. To improve the
traditional problems of binary value in categorical data and areal
weighting, Mennis and Hultgren [20] introduced an intelligent dasy-
metric mapping technique (IDM) with a data-driven methodology to
calculate the ratio of class densities. Applying the concept of IDM,
IWEDSS calculates population density utilizing social media data (geo-
tagged and check-ins data) combined with other GIS data sources to
estimate the dynamic distribution of human population at different
times. There are several advantages of using social media for population
estimation. The real-time updates of social media messages can reflect
dynamic changes of population better than expensive remote sensing
imagery, which requires time-consuming data collection and data
processing procedures [21]. Alternatively, mobile phone data, such as
CDR, are also very expensive. Another drawback of CDR is the missing
of actual communication content in each phone record. In contrast,
social media data are easy-to-collect, free (using public access
methods), content-rich, and real-time updated [7].

2.2. Stage-based evacuation planning

Developing an effective evacuation plan is an important task during
disaster events. Relocating people within the affected areas to safe
places or shelters can reduce the impact of disaster events significantly.
For evacuation planning and operations, the system input shall include
both zoning of impact areas and estimation of evacuation demands
[22]. To model the traffic demand at the aggregate level, dividing the
impact area into a set of geographic zones is always critical [23].
However, the size of zones along with their total amount shall vary by
the evacuation location and type of emergency event. For example, in
evacuation of natural disasters such as wildfire [24] and hurricane [25],
the evacuation zones shall have a larger size compared with the ones in
downtown evacuation [26]. Modeling of evacuation demand usually
provides the number of evacuees and their departure time choice within
each zone. For mandatory evacuation, the number of evacuees is di-
rectly obtained from population size while non-mandatory evacuation
often requires the estimation of people's evacuate/stay decisions. In
practice, many factors, such as the influence of neighbors [27] and
strength of social network [28], may affect the evacuation decisions. A

comprehensive review of this issue could be found in [22]. With the
total evacuation demand, estimation of evacuees’ departure time would
distribute the demand into transportation network over time. Based on
the empirical evidence, stated intention surveys, planner judgment, and
simulation of the warning message diffusion [29], studies often as-
sumed an S-curve in various evacuation operations (e.g., wildfire
[30–32]:; hurricane [33,34]:).

Given the zoning and traffic demand information, planning of eva-
cuation shall address two critical issues: selection of traffic routes and
determination of evacuation strategies [22]. With simulation based
optimization technique, a category of studies adopted microscopic and
mesoscopic models to design evacuation routings. Representative tools
for such applications include VISSIM [35], CORSIM [36], DYNASMART
[37], DynusT [38], and DynaMIT [39]. In addition to those traditional
methods, recent studies also implement agent-based simulation models
for evacuation planning [40,41]. Instead of using simulation based
models, another research category intended to formulate the evacua-
tion process by linear or nonlinear programming models. Those models
often have an objective function such as minimization of evacuation
time [42] and a certain set of constraints which formulated with CTM
[43] or other network optimization techniques [44]. Recognizing that
severe congestion may occur on transportation networks during eva-
cuation, existing studies have introduced various strategies to reduce
the evacuation time. From the supply side, effective strategies include
contraflow operations [45], crossing elimination [46], intersection
signal optimization [47], and ramp closure [48], among others. Among
existing demand side strategies, the effectiveness of stage-based op-
erations has been demonstrated by many existing studies
[41,43,44,49]. By ranking the disaster impact in different zones, this
strategy optimizes evacuation sequences with the purpose of reducing
traffic demand on roadways. However, such staging operations often
require the collaboration of evacuee social networks to disseminate
evacuation information.

2.3. Social perception analysis and feedback based evacuation plans

The insights provided by social media data have been applied to
various scientific fields; some examples include: disease outbreaks [50],
travel related information through social media [51], social tie strength
evaluation [52], relationship between happiness and life patterns [53],
and political power of social media [54]. Social media applications are
also rapidly growing in interest among disaster research, such as studies
of time sensitive waiting times in information propagation [55], me-
chanisms of information production and distribution during flooding of
the Red River Valley [56], identifying information contributing to en-
hancing situational awareness during Oklahoma Grassfires and the Red
River Floods [57], online information exchange behaviors of the public
organizations during the Deepwater Horizon oil spill disaster [58], and
mapping of natural disasters using geo parsed real time tweet data
streams [59]. Guan and Chen [60], instead of characterizing social
media in the context of a disaster, characterized a disaster using social
media. They introduced a ‘‘degree of disaster’’ measured using social
media data to understand the evolution of a disaster [60]. More related
to behavioral studies, Liu and colleagues studied disaster behaviors by
introducing a social mediated crisis communication model (SMCC)
model [61–63]. They examined how publics communicate about crises
[63], and how they consume crisis information considering different
origins (initiated from an internal organizational issue or from an issue
external of the organization), and how it affects preferred information
form and source [61]. Although considerable research has been done
relating social media and disaster, no research utilizing real time uti-
lization of the social media information in the transportation planning
process could be identified. IWEDSS employs the power of social media
in evacuation planning in a real time manner by introducing a feedback
based evacuation planning system.

The decision making process during evacuation is a complex task
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that is made by the authorities and individuals/households [64]. In
current evacuation plans usually the latter is dependent on the former,
but our framework incorporates the interdependency between the two
decision making entities. This interdependency is expected by society.
According to the American Red Cross survey, 69% of adults believe that
emergency responders should be monitoring social media sites to
quickly send help [61]. Building this connection will result in capturing
more compliant response from the public regarding disaster warnings.
Disaster warnings are deemed to be a social process [22]. Interpretation
of the message and subsequent actions varies among individuals. In-
dividuals’ decision making process includes several stages and pro-
cesses [22] including (1) receiving an initial message, (2) interpreting
the message, (3) assessing personal risk, (4) determining whether pro-
tection is attainable, (5) determining whether protective action can be
handled, (6) determining whether the action will significantly reduce
the consequences, (7) assessing options, and (8) choosing an action
[65]. Any information related to these stages that is obtained through
the analysis of the social media will allow for more efficient evacuation
planning. Sutton et al. [66] conducted a survey about disaster in-
formation and communications technology, which showed a majority
of participants sought information online. Some part of their search
effort was to fill gaps in official news sources. Feedback based eva-
cuation planning allows for recognizing these gaps and filling them in
with complementary messages.

2.4. Web-GIS and spatial decision support systems

GIS play a crucial role in disaster management by supporting geo-
graphical decision making in mitigation, preparedness, response, and
recovery [67,68]. GIS is capable of helping decision makers to conduct
risk mapping, emergency planning, emergency plan activation, and
damage assessment by: the multi-layer geographical data integration
composed of physical, social, demographic, and/or economic informa-
tion [69]; spatial and spatiotemporal data analytics [70]; simulation
models [71–73]; social media [74]; cartographic visualizations [75];
and crowdsourcing geographic information [76,77]. In past years, great
efforts have been made to develop GIS software, toolkits, and spatial
decision support systems for disaster management in both public and
private sectors [78,79]. Hazus-Multi-Hazard (Hazus-MH) is an example
developed by Federal Emergency Management (FEMA). Hazus-MH is a
commonly used, standardized, and standalone desktop decision support
software designed to assess physical, economic and social impacts of
earthquakes, hurricanes, flood, and tsunami emergencies in the U.S
[80]. It is an add-on extension to commercial GIS software, ESRI
ArcGIS, and uses mapping and spatial analysis functions to produce loss
estimates of the total cost of damages and casualties based on plausible
disaster scenarios.

The capability of existing decision support tools like Hazus-MH,
however, is often limited by underlying assumptions and system design.
First, most existing tools are often based on incomplete offline in-
formation. For example, the loss estimation in Hazus-MH does not
consider dynamics of human activities, or social interactions in both
physical and virtual space. In fact, human dynamics vary by time of
day, day of the week, month of the year, and establish congruent and
incongruent mobility patterns [6,81]. Furthermore, such human dy-
namics can be affected by accessible dynamic information, such as live
traffic information, place/event recommendations, and emergency
alerts and evacuation orders, which are conveyed through physical and
online social interactions (e.g., meeting with friends, mobile phone
applications, and social media) [82]. These dynamic human activities,
mobility patterns, and their interactions are crucial factors for decision
making in emergency evacuation.

Second, the sum of the hardware, software, and training require-
ments needed for full GIS implementation is an obstacle to local and
state emergency management personnel [83]. Desktop GIS mapping
and analysis tools require sophisticated knowledge in software,

hardware, and databases with a steep learning curve and a substantial
time commitment [84]. Many local communities lack the resources to
fully support the implementation of traditional decision support tools
[85]. Closed, standalone desktop disaster management systems can be a
major barrier to data and information sharing, participatory decision
making, and timely situational awareness. Web-GIS, an alternative
approach, offers the potential to reduce these limitations. Web-GIS is a
collection of network based geographic information services using the
Internet to access geographic information, spatial analytical tools, and
GIS web services [86,87]. By extending traditional desktop GIS func-
tionality to the web, applications can be developed that are dynamic,
accessible, interactive, and interoperable [83]. As compared to desktop
GIS, web-GIS offers improved spatial data access and dissemination,
spatial data exploration and geovisualization, spatial data processing,
analysis, and modeling [88,89]. These web-based geospatial informa-
tion technologies and services are built upon the principles of Web 2.0;
namely, individual production and user generated content, crowd-
sourcing, big data, architecture of participation, network effects, and
openness [90,91]. Nevertheless, designing and implementing a spatial
decision support system over the web presents challenges such as per-
formance, technology integration, interoperability, security and
privacy, and quality of service [92].

3. Framework of integrated wildfire evacuation decision support
system (IWEDSS)

The IWEDSS framework incorporates a novel dynamic population
estimation, evacuation models, social perception analysis, and web-GIS
techniques to build a robust evacuation plan. IWEDSS provides key
functions for data collection, traffic demand modeling, evacuation op-
eration, and information dissemination and offers scientifically based
and data driven analytic tools. IWEDSS aims to support decision mak-
ings for evacuation planers and resource managers that ultimately helps
to reduce the evacuation time and potential number of injuries and
deaths. It integrates multiple data sources including social media,
census survey, GIS data layers, volunteer suggestions, and remote
sensing data. Fig. 1 shows four core modules of IWEDSS: dynamic po-
pulation estimation, stage-based robust evacuation models, social per-
ception analysis, and a web-based geospatial analytics platform.

Using the Big Data driven techniques, the first module of IWEDSS
estimates hourly based population density distribution in small urban
areas. Dynamic population distribution information will serve as the
demand input for designing evacuation models. Adopting the disaster
impact models to predict the temporal spatial impact of the wildfire
events, the second system module performs a risk assessment of the
urban area and determine the evacuation risk zones. Then a stage-based
robust plan, accounting for the uncertainty of traffic demand estimated
with population density, will be initialized for evacuation operation.
The third module analyzes the public opinions and feedback from local
residents based on social media text analysis and volunteer suggestions.
IWEDSS utilizes social media analytic research testbed (SMART) dash-
board 2.0 [93,94] and a mobile app (ReadySD-Social) [95,96] for col-
lecting suggestions from registered local volunteers to monitor public
opinions and suggestions from local residents nearby disastrous events.
By integrating the hourly based dynamic population model from the
first module and the social perception analysis from the third module,
IWEDSS estimates the movement of people during disasters and makes
adjustment of the evacuation plan and shelter locations in a real time
manner. Implemented as a web-based geospatial analytics platform, it
provides an integrated computational modeling environment and web-
based user friendly analysis tools for disaster mitigation planning and
emergency responses. With scientifically based estimation, visualiza-
tion, and analysis tools, IWEDSS delivers suggestions for decision ma-
kers, resource managers, and public officers actionable knowledge by
fostering the understanding of the impacts of hazards on their com-
munities of interest and measuring the effectiveness of mitigation
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strategies before, during, and after a wildfire event.

3.1. Dynamic population distribution (density) estimation model

The first module, which plays a key role in IWEDSS, estimates the
hourly based population density distribution in small urban areas by
utilizing big data collected from historical and near real time in-
formation including social media data, remote sensing imageries, ex-
isting GIS data, Census demographic data, and volunteer crowdsource
based geographic information.

This module includes four processes to integrate and clean hetero-
geneous geotagged or check in social media data (including Twitter,
Instagram, Foursquare, and Flickr) for the population density estima-
tion. The first process is collecting geographically referenced social
media data by social media APIs (Application Programming Interfaces).
The social media APIs allow accessing various types of geographic in-
formation tied with social media posts such as geographic coordinates

(i.e., longitude and latitude), street address, city name, and state name.
To analyze them for dynamic population estimates, it is necessary to
conduct geocoding, a process to convert from nongeographic co-
ordinates to geographic coordinates, i.e., latitudes and longitudes.
However, different types of social media data require different geo-
coding procedures. Thus, this module implements multi-level geo-
coding methods for Twitter, Instagram, Foursquare, and Flickr data by
using their geotagged coordinates and bounding boxes of check in
places. Specifically, the geocoding module utilizes five types of geo-
coding sources at multiple spatial scales: (1) geotagged coordinates at a
point of interest level, (2) place check in location at a point of interest
level or a defined bounding box, (3) user profile location at often a city
or state level, (4) time zones, and (5) texts containing locational in-
formation (explicit or implicit information) at a point of interest level
using a text location centroid. After the geocoding procedure, the
second process is data cleaning to reduce and/or remove sources of
noise and errors in these social media data. Examples of noise and error

Fig. 1. The design framework of IWEDSS.

Fig. 2. Average count of unique Twitter user in San Diego, 2015
(n = 1571 TAZs).
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data include advertisements and marketing messages.
The third process calculates the hourly average density of unique

social media users at a certain spatial unit. In the IWEDSS framework,
Traffic Analysis Zones (TAZs), commonly used for transportation
planners and modelers, are chosen as basic spatial units of analysis.
Since social media users may post multiple messages within an hour at
multiple locations [97], we count only one geotagged message for every
unique user for a certain hour at a TAZ. Then the hourly average

density of social media users for each TAZ is calculated by the total
counts of unique users in an hour divided by the area of each TAZ and
the number of days for the data collection period.

To demonstrate the calculation of the hourly average density of
social media users, we conducted a case study based on Twitter data,
which were collected throughout the year of 2015 (from 2015/1/1 to
2015/12/31) within the bounding box of San Diego County. The col-
lected geotagged Twitter posts, or tweets, consist of 7833,449 originally

Fig. 3. Weekday hourly average Twitter user density distribution in San Diego in four time periods; (a) 0:00 – 1:00, (b) 6:00 – 7:00, (c) 12:00 – 13:00, and (d) 18:00 – 19:00.
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and 2494,011 after the data cleaning procedure. Fig. 2 draws the
weekday (Monday to Friday) and weekend (Saturday and Sunday)
average hourly count of unique Twitter users in San Diego County. Both
weekday's and weekend's temporal trends on the average count of un-
ique Twitter users show a similar pattern with two peaks around 13:00
and 19:00 and low counts in the early morning. However, values on the
weekend daytime hours are higher than those on weekday. These po-
pulation variations over time between weekday and weekend suggest
that it is necessary to adjust the population density estimation using
social media data by taking the temporal variation factor into account.
Fig. 3 displays spatial distributions of the average hourly Twitter user
density in San Diego County within TAZs during weekday in four time
periods; (a) 0:00–1:00, (b) 6:00–7:00, (c) 12:00–13:00, and (d)
18:00–19:00. These maps depict realistic dynamic population changes
by capturing higher Twitter user densities in TAZs, which have very few
population according to the Census survey data. Those areas include
popular points of interest such as Balboa Park, San Diego Zoo, shopping
malls, and San Diego International Airport.

Finally, based on the hourly average density of unique social media
users, we propose to calculate the social media based hourly population
density estimate by applying temporal and spatial variation models
defined as below [98].

=ρ D φ ϕt s t s t s( , ) ( , ) ( ) ( )

where, ρ t s( , ) represents the population density estimate in a temporal
unit t (i.e., a certain hour) at a spatial unit s (i.e., a TAZ), D t s( , ) is the
average density of unique social media users in t at s, and φ t( ) and ϕ s( )
are scaling factors to adjust the population density estimate based on
temporal and spatial variations respectively. φ t( ) is defined as a value of
factor multiples with the frequency number of hourly average social
media user in each TAZ. ϕ s( ) is defined by utilizing a dasymetric map-
ping method [19,99,100], which is a geospatial technique to more ac-
curately distribute data using ancillary information such as land use
and land cover. We specifically employs the basic concept of intelligent
dasymetric mapping technique (IDM) [20] to refine the population
density estimate based on different types of land use data (residential

areas, commercial areas, etc.) and census data.
While the proposed approach can produce realistic hourly dynamic

population density estimates, a key challenge is to evaluate the outcome.
Particularly, the model validation, involving the goodness-of-fit of the
model to real data, is challenging since such fine temporal scale dynamic
population data from real world covering a large area are extremely
difficult to obtain. As an alternative approach, this paper attempts to
validate the IWEDSS framework by comparing two population densities,
nighttime and daytime, derived from Census survey data with weekday
and weekend average hourly unique Twitter user densities.

First of all, we compute the nighttime “residential” population
density at TAZs by aggregating Census 2010 Decennial population data
at Census blocks. The daytime population refers to the number of
people who are present in an area during typical business hours. It can
be estimated by the commuter-adjusted population estimate method
defined as below [101].

=

+

−

Commuteradjustedpopulation Totalareapopulation

Totalworkersworkinginarea

Toatlworkerslivinginarea

To obtain the number of workers working or living in TAZs, we use
the U.S. Census Longitudinal Employer-Household Dynamics Origin-
Destination Employment Statistics (LODES). LODES data are available
at Census blocks, and thus they are aggregated to TAZs to calculate the
commuter adjusted population density representing the daytime po-
pulation. Fig. 4(a) and (b) represent Census based population density
estimates for nighttime and daytime respectively.

We employ Spearman's rank correlation coefficients to test the re-
lationship between the weekday and weekend hourly unique Twitter
user densities and census-based nighttime and daytime population
densities. Table 1 illustrates the result indicating that the hourly unique
Twitter user densities are more strongly related to the daytime popu-
lation density rather than the nighttime “residential” population den-
sity for all hours in both weekday and weekend. In addition, the hourly
unique Twitter user densities are more strongly correlated with the

Fig. 4. Census based nighttime (a) and daytime (b) population density distributions.

A. Nara et al. International Journal of Disaster Risk Reduction 25 (2017) 190–201

195



nighttime population during evening hours (17:00 to 0:00) than the
morning to afternoon hours (4:00 to 16:00). These results indicate that
more geotagged Twitter messages are posted from “work-oriented” lo-
cations supporting our assumption that geotagged social media data are
suitable for estimating dynamic human activities. Furthermore, we
found that correlation coefficients are generally lower for weekend
densities. This suggests that distributions of Twitter users during
weekend are relatively different from “residential” and “work-oriented”
population distributions as compared to weekday.

3.2. Stage-based robust evacuation operation model

The second module is a stage-based robust evacuation operation
model using the estimated population density derived from the first
module. By dividing the entire city into a set of TAZs, where a zone of
under 3000 people is in common, the module determines the evacua-
tion sequence for each TAZ along with suggested routings. In addition,
to fully recognize the potential estimation errors of population density,
the module design the evacuation plan with a robust optimization
framework which considers the population input as uncertainty.

After identifying the location of the occurred disaster (i.e., wildfire),
IWEDSS first determines the impact areas which need to be evacuated.
For example, the 2007 San Diego wildfire had over 1 million of evac-
uees and Fig. 5 shows a map of 2007 San Diego County wildfire eva-
cuation plan (red color: burning area; orang color: fire perimeters;
purple color: mandatory evacuation area; green color: reopened area).
To predict the spread of wildfire over time (hourly based extent and
intensity estimation), IWEDSS employs a well-established commercial
software, Wildfire Analyst™, which utilizes real time weather in-
formation (wind speed and direction), land cover, terrain data, and
other related factors.

Fig. 5. A map of San Diego County wildfire evacuation plan at 3:30 a.m., October 25, 2007 [102].

Table 1
Spearman's rank correlation coefficients between the hourly unique Twitter user densities
and the nighttime and daytime population densities estimated based on census surveys.

Time Weekday Weekend

Night Time Day Time Night Time Day Time

0:00–1:00 0.615*** 0.640*** 0.572*** 0.604***

1:00–2:00 0.564*** 0.597*** 0.498*** 0.537***

2:00–3:00 0.451*** 0.496*** 0.442*** 0.471***

3:00–4:00 0.399*** 0.468*** 0.311*** 0.344***

4:00–5:00 0.317*** 0.429*** 0.222*** 0.294***

5:00–6:00 0.453*** 0.560*** 0.231*** 0.348***

6:00–7:00 0.473*** 0.601*** 0.351*** 0.464***

7:00–8:00 0.446*** 0.611*** 0.462*** 0.554***

8:00–9:00 0.428*** 0.606*** 0.488*** 0.595***

9:00–10:00 0.427*** 0.616*** 0.485*** 0.608***

10:00–11:00 0.423*** 0.619*** 0.504*** 0.637***

11:00–12:00 0.431*** 0.634*** 0.470*** 0.615***

12:00–13:00 0.435*** 0.637*** 0.500*** 0.643***

13:00–14:00 0.450*** 0.645*** 0.497*** 0.642***

14:00–15:00 0.473*** 0.661*** 0.493*** 0.636***

15:00–16:00 0.496*** 0.673*** 0.488*** 0.628***

16:00–17:00 0.501*** 0.667*** 0.515*** 0.651***

17:00–18:00 0.529*** 0.672*** 0.521*** 0.639***

18:00–19:00 0.555*** 0.684*** 0.524*** 0.639***

19:00–20:00 0.576*** 0.685*** 0.551*** 0.652***

20:00–21:00 0.608*** 0.690*** 0.584*** 0.659***

21:00–22:00 0.619*** 0.682*** 0.600*** 0.665***

22:00–23:00 0.653*** 0.695*** 0.617*** 0.665***

23:00–24:00 0.646*** 0.684*** 0.602*** 0.648***

(n=1571).
*** p< 0.001.
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Then, the predicted wildfire spread areas over time are used to
determine the evacuation risk zones (ERZ) in the region threatened by
the disaster. The ERZ is defined as the zone containing population with
highest evacuation risk which is measured by whether they can be
safely evacuated before the reach of disaster impact. With time de-
pendent assessment of the risk rate in all ERZs, this module optimizes
their evacuation time according to the location of shelters, roadway
capacities, and potential traffic demand generated. In review of litera-
ture, evacuation demand modeling is always a challenging issue due to
the traffic flows under evacuation conditions differ from those in reg-
ular days. Conventional methods usually use the historical survey in-
formation for estimations. However, due to the difficulty in collecting
up to date data, such models may fall short of accuracy due to the
dynamic nature of population distributions. Therefore, the hourly based
population density estimation derived in the first module serves as a
key input of evacuation demand modeling.

Similar to most existing studies in this subject, the demand model
includes two primary steps: determination of number of evacuating
vehicles, and prediction of evacuee departure time. The first step will
involve an estimation of average vehicle occupancy rate in each zone.
Then the rate multiplied by the zone's population produces the total
traffic demand. After assigning an evacuation sequence to each ERZ, the
next step is to distribute the evacuees over time according to the pre-
diction of their departure time choices. Many existing studies employed
the cumulative departure S-curves [103]. IWEDSS follows the same line
but recalibrates the curve based on people's perception of the disaster
collected by social media information acquired in the third module.

One feature that many disasters have in common is their uncertain
nature, in which exact data are unlikely to be available combined with
a high likelihood of social disruption. Under such conditions, use of
unreliable estimated data as the input of an evacuation planning system
may require much more effort for plan changes in real time operations.
To overcome this issue, a robust optimization function in this module,
along with the state based evacuation strategy, accounts for the input
data uncertainties. Specifically, such uncertainty is contributed by the
estimated traffic demand generated in each zone and departure time
choices of evacuees.

For designing the evacuation routings of ERZs, this module first
develops a base model, which is in the deterministic form and for-
mulated as a mesoscopic simulation model in order to optimize com-
putational efficiency. Given the defined uncertain input set, the module
formulates the so called robust counterpart, that is, an extension of the
base model, which takes the uncertainties into account. In strict ro-
bustness, the objective is to find a solution that is feasible for all pos-
sible cases and is able to provide best performance in the worst case
scenario. For this evacuation problem, such a worst case in terms of
time dependent traffic demand is the one that can cause the largest
delay on roadway network, for which some vehicles will need to be
guided to a farther route. However, due to the tradeoff between effi-
ciency and robustness, the strict robustness definition may lead to an
overly conservative plan. Thus, this module redefines a set of open balls
in Cartesian space for the uncertain inputs so as to limit their variations.
This robust optimization model brings an innovative solution to over-
come the impact of traffic demand estimation errors.

3.3. Social perception analysis

The third module is composed of public opinion monitoring, se-
mantic and trend analysis, and evacuation adjustment plan based on
social perception. People behave differently in times of crisis based on
their perception of risk and danger. Therefore, efficient wildfire eva-
cuation planning and developing mitigation strategies require both
technical transportation network analysis as well as understanding of
social perception from local residents. Social opinion and information
dissemination of such opinion among individuals could facilitate or
constrain the successful implementation of an evacuation plan. Thus,

understanding social perception can be used as a powerful decision
support tool to respond effectively to wildfire evacuation.

IWEDSS embeds a public opinion monitor, which is based on the
existing system, the Social Media Analytics Research Testbed (SMART)
dashboard [93,94]. The SMART Dashboard has been applied to many
public opinion monitoring tasks, including flu outbreaks, vaccine ex-
emptions, flooding, and wildfires. Fig. 6 illustrates the screenshot of the
SMART dashboard for monitoring California Wildfire events daily by
using predefined keywords. IWEDSS implements an improved SMART
Dashboard (SMART Dashboard 2.0) by adding new hourly based data
updating and dynamic keyword searching functions for real time and
near real time analysis. In addition, it implements a social perception
analysis model that applies semantic and trend analysis techniques to
extract knowledge from social media texts to understand evacuees’
general perception, sentiments, and attitude toward evacuation related
subjects as well as the extent of social confirmation of the official
warnings and recommendations. Multilevel Model of Meme Diffusion
(M3D) is employed as a theoretical guideline in developing the se-
mantic analysis model. M3D is a new framework designed for de-
scribing online communication and the diffusion of memes (social
media messages) via different social networks [104]. In real time ap-
plications, social perception analysis model is adjusted and updated
using two approaches, (1) social media data from the SMART dash-
board 2.0 and (2) the volunteers’ direct feedback using the ReadySD-
Social mobile application.

The social perception analysis model is updated and improved by
analyzing direct feedback and comments from registered volunteers
directly using a mobile application, ReadySD-Social a mobile app for
broadcasting emergency information specifically applying for the San
Diego region available for Android and iOS (Fig. 7) [95,96]. Registered
local volunteers in San Diego can use the ReadySD-Social app to retweet
emergency announcements and evacuation messages from the San
Diego County Office of Emergency. The mobile app can be downloaded
in both iOS and Android smartphones. ReadySD-Social also allows the
registered volunteers to send out their feedback and suggestions related
to the evacuation orders and shelter locations directly into an online
forum managed inside the IWEDSS. These feedback texts are analyzed
and integrated into the social perception model to monitor the course of
the evacuation plan implementation and determine attitude evolution
over time.

Information obtained through the ReadySD-Social mobile app and
the SMART dashboard 2.0 (public opinion monitor) serve as a sup-
porting tool to assist with the evacuation planning. This information
allows for greater clarity in the evaluation of the messages.
Furthermore, it assists in evaluating which channel gets more notice
from people in disseminating important messages, and whether people
follow recommendations from authorities. Another example is to pro-
vide guides on the frequency of the warnings and recognizing the
boundary between adequate warnings and over warning situations or
excessive fear appeals. Excessive warning frequencies could lead to
disregarding (cry wolf effect). Extracted information is incorporated in
real time manner to tailor the evacuation planning toward more effi-
cient and socially acceptable strategies. The results are integrated in
wildfire evacuation strategies and logistics by recalibrating the devel-
oped plan in the second module.

3.4. A web-based geospatial analytics platform

Implemented as a web-based geospatial analytics platform, IWEDSS
offers an integrated computational modeling environment and an in-
teractive decision support system for disaster mitigation planning.
There are three core components on the integrated computational
modeling environment: (1) spatiotemporal databases; (2) analytical
models; and (3) high performance computing (HPC). Spatiotemporal
databases allow to store, update, manage, and efficiently query multiple
layers of geospatial information necessary to predict the extent and
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intensity of disaster impacts over time and determine ERZs. Multi
layered geospatial information includes Census based socio demo-
graphic data, transportation networks, land use/land cover data, dy-
namic population estimates, dynamic evacuation demand estimates,
and evacuees’ perception of disasters. As a second component, a set of
server side modules on Linux servers are implemented for the evacua-
tion demand model and the semantic analysis model. In addition,
IWEDSS implements data integration modules (described in 3.1) in the
spatiotemporal databases to spatially and temporally integrate multiple

geospatial data sources, which are heterogeneous in scale, format,
structure, and quality. These implementations are achieved through the
object relational database framework, Structured Query Language
(SQL), and database functions. The third core component is the HPC
solution to expedite data preparation, database query, and analytical
computations by implementing algorithms that utilize database parti-
tioning, multiple central processing units (CPUs) and graphics proces-
sing units (GPUs).

IWEDSS is designed as a web-based geographic information service

Fig. 7. ReadySD-Social, a mobile app for broadcasting emergency information in San Diego.

Fig. 6. The SMART Dashboard for "Wildfires in California" topic.
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as an interactive decision support system for disaster mitigation plan-
ning. The web-GIS service provides geospatial tools and user friendly
graphical user interfaces (GUIs) that allow users to interactively explore
and simulate “what if” scenarios to assess spatial, temporal, and social
vulnerabilities before, during, and after a disaster event, particularly
focusing on evacuation. The platform is capable of quantifying com-
munity functionality, evacuation effectiveness, and system dynamics to
evaluate community resilience. The core system is built upon a mixed
configuration to take advantages of both open source and proprietary
software resources, including ArcGIS, Wildfire Analyst™, PostgreSQL,
PostGIS, MongoDB, Open Layers, Node.js, HTML5, JavaScript, and
Python.

4. Conclusion

This paper presents an innovative decision support system frame-
work for wildfire evacuation by integrating social media data,
GIScience, transportation, and human behavior analysis. As long as the
communication grid is available, this framework can be extended to
other types of disasters (e.g., tsunami, hurricanes, and technical ha-
zards) with some modifications. The dynamic population density model
developed in IWEDSS can be applied in many applications, including
urban planning, elections, business marketing, and facility manage-
ment. The social perception analysis model and public opinion monitors
can also help other research domains such as traffic incident detection
and public campaigns, as well as other social crises and natural dis-
asters. One of the most valuable components in the IWEDSS framework
is to establish a resident feedback network by connecting registered
volunteers using a mobile phone application and an online forum. The
method of building such community network is replicable for many U.S.
cities and it will provide valuable social capital for helping local com-
munities during disaster events and make society more resilient to
nature disaster events.
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