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Abstract. In this paper we introduce RADULS2, the fastest parallel
sorter based on radix algorithm. It is optimized to process huge amounts
of data making use of modern multicore CPUs. The main novelties in-
clude: extremely optimized algorithm for handling tiny arrays (up to
about a hundred of records) that could appear even billions times as
subproblems to handle and improved processing of larger subarrays with
better use of non-temporal memory stores.

1 Introduction

Sorting is one of the fundamental tasks in computer science. Despite the fact
that the problem was discussed many times from both theoretical and practical
perspective, it remains open and improved solutions are still proposed. The main
reason of its popularity is a wide range of applications. Frequently sorting is an
important component of other algorithms. Ordered sequences may often be faster
processed or stored in compacted form. Sorting algorithms may be divided into
two groups: comparison based and non-comparison based. In the first group, the
elements of input sequence are compared in pairs, which implies the lower bound
of the number of comparisons Ω(n log n) [12]. In the second group, no compar-
isons are made, thus the lower bound may be relaxed to Ω(n). Unfortunately,
non-comparison attempt requires additional assumptions about the data, which
makes this group of algorithms less general. Despite the algorithm category, the
technical details of implementation have crucial meaning in practice.

One of such aspects is memory access pattern. In modern computer architec-
tures, processors are equipped with small amount of fast cache memory, which
minimizes the negative impact of high latency of the main memory access. The
cache is usually divided into a couple of levels: L1, L2, L3. When a processor
core needs to load a particular memory location, it is first checked if the required
address is already in the cache (checking starts from the lowest level and con-
tinues to the highest one). If the required address is absent in the cache it must
be loaded from the main memory. Such a situation is called a cache miss [5].
Algorithms should be constructed to avoid cache misses whenever possible.

The second important factor on the way to fast algorithms is parallelization.
Nowadays even desktop computers and laptops are equipped with multicore pro-
cessors, which may be used to increase performance. In practice only for simple
algorithms optimal speedup is easily achievable. For the complex ones it is often
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hard to keep the desired speedup when the number of involved cores increases.
Combining both cache-friendly memory access and parallelization introduces
new issues that need to be addressed. In a multicore system each core has its
own L1 cache, while L2 may be assigned to a single core or may be shared among
a group of cores. L3 is typically common to all cores in a chip. The data in the
cache is organized in lines (typically of 64 bytes). When two cores operate on a
separate part of the same cache line and at least one of them performs writing,
the slow synchronization occurs. Such a situation is called false sharing [10] and
similarly as cache misses should be avoided.

The other important factor is understanding the cost of branch mispredic-
tions [8]. Modern processors are equipped with long pipelines [19]. For each
conditional instruction processor predicts how it will be evaluated and chooses
the next instructions to load into pipeline. If the actual result of comparison is
different than predicted then branch misprediction occurs and the whole pipeline
must be cleaned, which introduces long delay. In some cases it is possible to avoid
branch mispredictions using conditional assembly instructions, e.g., CMOVcc [6].

Radix sort [4] is a non-comparison technique and has the time complexity
O(kn), where n is the number of elements to be sorted and k is the length of keys
in digits. The digit is a fixed-size part of a key, e.g., in case of sorting strings a
single character. In general radix sort works in k phases, each phase is related to
sorting keys according to the current digit. Digits are usually from a small alpha-
bet and counting sort may be applied per single phase. There are two categories
of radix sort depending on the order in which digits are processed. The first vari-
ant, LSD (least significant digit), starts sorting whole data from the least signifi-
cant digit and continues to the most significant one. It is required to use a stable
sort per each phase to ensure that the final result is valid. The second variant,
MSD (most significant digit), works in the opposite direction and starts sorting
the data according to the most significant digit. This results in partitioning data
into bins that may be further processed independently in the recursive manner.

The MSD radix has an important advantage over the LSD variant. The bins
created after each phase tend to shrink (except bins with all keys equal). After a
few phases the bins become tiny and switching to other algorithm improves the
overall performance. A common approach here is to use some comparison-based
sorting algorithm, e.g., insertion sort [15]. Typically, the time of handling such
tiny bins could be from 10 to 50 percent of total time of radix sort.

Sorting tiny arrays is a special case, which should be considered separately.
Often algorithms with poor time complexity perform well for tiny arrays. There-
fore many complex sorting algorithms, like introspective sort [16], uses them as
subroutines. Yet tiny array sorting seems to be not fully investigated.

Recently we proposed RADULS [13], the fastest existing radix sort. In this
paper we present its significantly improved successor. The main novelties in
RADULS2 are motivated by the following investigations. Firstly, we considered
the special case of tiny array sorting. We proposed a new hybrid algorithm, which
is significantly faster than the hybrid of insertion sort, Shell sort, and introspec-
tive sort used in RADULS. It also outperforms insertion sort used in common
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std::sort function implementations in the C++ standard libraries. Secondly, we
optimized the last phase of radix sort, in which the subarrays are small, but not
so small to satisfy the tiny bin criterion. Thirdly, we improved the processing of
small bins to take the most of non-temporal memory stores present at modern
CPUs.

The paper is organized as follows. In Section 2 we give a short description
of existing radix sorters and algorithms that are capable to sort tiny arrays
efficiently. Our algorithm is described in Section 3. The experimental results are
presented in Section 4. In the last section we conclude the paper.

2 Related works

2.1 Radix sorters

Probably the fastest version of LSD radix sort was proposed by Satish et al. [17].
The main idea is to divide the scatter phase into two steps to make it cache-
friendly. Before saving to the main memory, each record is stored into a cache
buffer. When the buffer for some digit value becomes full, it is transfered using
a non-temporal memory store to the main memory. The size of buffer per single
digit value is a multiple of 64 B (size of a single memory transfer). This approach
increases bandwidth utilization and reduces number of cache misses.

In [2] an efficient MSD radix sort was proposed. Its in-place nature results in
difficulty of parallelization. The algorithm performs series of element swaps to
sort them according to the current digit. Unfortunately, there are high depen-
dencies between the operations, which make them hard to perform in parallel.
The authors introduced speculative permutation and repair phases to address
this problem. Another issue occurring is significant imbalance of bins sizes. The
authors handles this by a distribution-adaptive load balancing.

In [13] we proposed variant of MSD radix sort. The main idea is to perform
appropriate optimization depending on the current phase and size of currently
processed bin. For instance, if the current bin is big enough, a buffered version
of scattering inspired by Satish et al. is used. When the current bin is tiny (say
contains tens of elements), some comparison-based sorting algorithm is chosen.

2.2 Tiny array sorters

Sorting tiny arrays is not as widely discussed in the literature as the case of big
ones. For most applications it is irrelevant which sorting algorithm is chosen if
the number of records is low. Still many sorters stops their default procedure and
switch to a simpler algorithm when the number of remaining records is below
given threshold. Such a situation may occur billions of times for large inputs.
Thus, improving tiny sorting procedure will also improve overall running time
of given sorting algorithm. For example introspective sort [16], which is usually
a part of standard C++ library is a hybrid of quicksort [9] and heapsort [21],
yet for tiny ranges it switches to insertion sort.
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In the case of sufficiently tiny arrays all the data are usually in L1 cache,
so there are no cache misses, and the cost of memory accesses is low. Thus, the
dominant factors that have impact on the running time are: (i) simplicity of
the algorithm, that usually is reflected in the small number of jump operations,
(ii) number of comparisons, and the cost of single comparison, (iii) number of
assignments. As the assignment is usually a simple (branchless) operation it is
faster than comparison, which, especially for longer than 8 B keys, are hard to
be made without jumps.

As said above, insertion sort is usually taken as a “tiny sorter”. Shell sort [18]
being its generalization is also an obvious candidate. Sorting networks [1] are con-
structed with series of so-called comparison elements or comparators. Each such
element performs a conditional swap of its arguments. The number of such oper-
ations, as well as the indices of the compared records, are fixed for a given input
size, i.e., they are independent on the ordering of input elements. This allows the
compiler to hard-code the indices in the code, so the addressing is faster than
when the index must be loaded from a variable. There are two criteria of sorting-
network optimality. The first one is related to its depth defined as the number
of layers of comparators (a layer is a set of comparators which may perform
operations independently). The second criteria is sorting network size defined as
the total numer of comparators. Optimal-depth sorting network are known only
up to 17 records [7], optimal-size networks are known only up to 10 records [3].

In the enumeration sorting [12] the final position of each element is de-
termined by comparing it against each other. The number of comparisons is
O(n2), but the number of element moves is only O(n). Even if this algorithm
requires high number of comparisons, they may be implemented branchless with
SETcc assembly instruction. It allows casting boolean comparison result to in-
teger value, which may be further used to update final position of the element.

3 Our algorithm

3.1 General idea

Our algorithm is an MSD radix sort with 1 B digits. It follows the same general
scheme as its predecessor [13]:

1. Parallel processing of the whole array according to the first digit in a cache-
efficient way.

2. Serial processing of small bins obtained in the previous stages, in a cache-
efficient way. Several bins are processed by separate threads in the same time.

3. Serial processing of tiny bins (containing up to tens or hundreds of records)
using a hybrid of insertion sort, Shell sort, introspective sort. Several threads
process different bins in parallel.

The main improvements in this paper are in the small and tiny bin processing
subroutines. These phases constitute the majority of RADULS processing time,
so the impact of the proposed novelties on the total sorting time is remarkable.
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3.2 Small bin processing

Small bins are processed in a decreasing order of their sizes. Each thread handles
a single bin at a time. There are two cases here. In the first one, the bin is small
enough to fit in a half of L2 cache, so cache misses are unlikely. In such a situation
simple counting and scatter approach is chosen.

Larger bins will likely do not fit into cache, so many cache misses can be ex-
pected. Thus, a buffered version similar to the first phase (motivated by Satish et
al. [17]) is chosen. Nevertheless, there are some traps here. In the first pass it can
be assured that the input array is aligned to 64 B which allows to use efficient
non-temporal memory storage operations. In the following stages, the beginning
address of subarray representing bin is likely unaligned. Thus, non-temporal
memory storage operations used in RADULS are inefficient here. Depending on
the CPU architecture they are a few times slower than in the case of aligned
address. (Usually, the difference is larger for AMD Opteron than Intel Xeon.)

To solve this problem in RADULS2 we implemented special alignment of
subarrays. The beginning of the aligned bin address can be localed in other bin.
Nevertheless, the transfers from buffers (located in cache) to the main memory
are made in such a way that other bins are not overwritten. Such solution resulted
in about two times faster scatter step than in RADULS.

3.3 Tiny bin processing

Taking into account the results of our experiments on “tiny sorters” (discussed
in Section 4) we constructed a hybrid algorithm that is able to handle tiny arrays
efficiently. The algorithm exploits advantages of sorting networks (SN) [1] and
enumeration sort (ES) [12] for the tiniest arrays, while for larger ones it uses our
modification of BlockQuicksort (BQS) [6] in which we replaced insertion sort for
the tiniest arrays by sorting network or enumeration sort.

For the smallest records (i.e., containing just 8 B key) the hybrid switches at
n = 64 elements from SN to BQS with SN for the tiniest arrays. The sorting
networks for n > 64 seem to be of almost the same speed as BQS, but the source
code for SN becomes long (and also the code must be prepared for each array
size), which leads to long compilation and large executable.

If the data field exists the situation becomes more complex as conditional
swaps of records in the array takes longer time, and often cannot be made without
jumps (or at least compilers tend to prepare the code with branches). Therefore,
ES becomes more attractive, as it makes just n (branchless) assignments. Even
the fact that ES makes O(n2) comparisons seems to be acceptable (at least for
tiniest arrays) if we take into account that the comparisons are branchless. There-
fore, for 16 B or 24 B data fields the hybrid employs ES when the number of ele-
ments is not larger than 24 and BQS with ES for the tiniest subarrays otherwise.

The most complex situation is the case of 8 B data field. For n ≤ 16 the
hybrid employs the ES, but then, up to 32 records, the SN is used. It seems
that the quadratic number of comparisons of ES becomes the problem for larger
arrays. For n > 32 BQS with SN is used.
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The situation of 16 B keys and no additional data is different as it is hard
to implement the comparison of elements in a branchless way. Therefore, the
proposed hybrid uses ES according to the most significant 8 B word (to make
use of branchless comparisons) and then fix the ordering using IS. For n > 24 we,
however, employ BQS with the above ES+IS as a dispatch for tiniest subarrays.

In our general radix procedure we analyze each newly created bin to make
a decision about its further processing. There are bins that do not meet the
requirements of being tiny, but our general radix procedure introduce observable
overhead due to unnecessary analysis of empty subbins. To address this problem
we treat bins of size at most 256 in a special manner. During the histogram
construction we store the identifiers of subbins containing at least 2 elements
that need further processing. Thus, the other subbins can be easily omitted.

4 Experimental results

4.1 Tiny array sorting algorithms

All tiny sorters were implemented in the C++14 programing language. A couple
of SSE instructions were used to improve the performance of sorting network in
case of 16 B records. For compilation we used GCC 6.3.0 and Visual C++ 2015.
The experiments were run on four platforms:

– Laptop with Intel Core i7-4700MQ CPU clocked at 2.4 GHz (Windows),
– Workstation with Intel Core i7-5820K CPU clocked at 3.30 GHz (Linux),
– Workstation with two Intel Xeon E5-2670v3 CPUs clocked at 2.3 GHz (Linux),
– Server with four AMD Opteron 6320 CPUs clocked at 2.8 GHz (Linux).

The results of sorting tiny arrays of size from 2 to 64 records with the
following algorithms: insertion sort (IS), BlockQuicksort (BQS), enumeration
sort (ES), introspective sort implemented as a part of standard C++ library
(std::sort), sorting network (SN), our hybrid algorithm (Hybrid), enumeration
sort followed by insertion sort (ES+IS) are shown in Fig. 1. The running times
are divided by the size of the sorted array.

The fastest method for records with 8 B key and no data field or 8 B data
field is SN (except for the smallest number of records—up to 10). Yet it is worth
mentioning, that our implementation of sorting network for 16 B records uses
SSE to allow elements swapping by branchless code. Without such optimization
SN performed much worse as compilers tend to produce the code with branching
instructions. The cost of swapping the elements is easy observable in case of 32 B
records—in such a situation ES clearly outperforms SN.

The case of 16 B keys and no additional data is quite interesting. The com-
parison of elements cannot be performed in a single step, thereby maintaining
branchless code is harder. Our implementation of SN suffers in such situation, yet
it is observable that Visual C++ is able to perform better optimizations, which
leads to much lower runtime than in case of GCC. Our two-stage technique helps
to remove branch mispredictions overhead, in fact our hybrid algorithm in such
situation is SN according to 8 B key and 8 B data field followed by IS.
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Fig. 1: Running times (per element) for tiny sorters. The examined algorithms:
BlockQuicksort (BQS), insertion sort (IS), enumeration sort (ES), sorting net-
works (SN), introspective sort from C++ (std::sort), enumeration sort according
to most significant 8 B word followed by insertion sort (ES+IS), our hybrid al-
gorithm (Hybrid). The legends are the same for both charts of each row.
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The sudden rise of running time of SN above 32 records is an effect of much
higher number of comparison elements. For such values we used Batcher’s Odd-
Even algorithm [1] to generate networks. For smaller values we was able to use
more efficient networks. In case of std::sort similar behavior may be explained
by a threshold of switching to insertion sort.

4.2 RADULS 2

The results of experiments for RADULS 2 and the fastest competitors are given
in Fig. 2. Similarly as in [13] we picked for comparison the following algorithms:

– TBB—the parallel comparison sort implemented in the Intel Threading
Building Blocks [11] (2017 Update 3 release),

– MCSTL—the parallel hybrid sort [20], included in GNU’s libstdc++ library,
– Satish—the buffered LSD radix sort introduced by Satish et al. [17] with the

buffer size for a specific digit equal to 4 times the cache line size,
– PARADIS—the state-of-the-art in-place radix sort algorithm by Cho et al. [2],
– RADULS—the state-of-the-art radix sort algorithm [13].

The main experiments are for 16 threads for 16 B records (8 B key and 8 B
data). As we can see RADULS2 is the fastest sorting algorithm in all the ex-
periments. For 1 G elements it is 23% (uniform distribution) and 28% (Zipf
distribution) faster than RADULS when run at Xeon-based workstation. At
Opteron-based server the advantage is 18%. The scalability experiments show
that RADULS2 scales almost in the same way as RADULS.

We also evaluated the behavior of RADULS2 for records of different sizes
(Fig. 3). RADULS2 was noticeably faster than its predecessor, however, the
difference becomes smaller for longer records. It is also interesting to compare
the relative throughput for different platforms. Opterons were clocked higher
(2.8 GHz) than Xeons (2.3 GHz) but sorted the data about two times slower.

RADULS is used in KMC3 [14], our k-mer counter for genomic data. The
excellent performance of KMC3 is in significant part due to fast sorter. When
sorting KMC set from [13] the gain in throughput was 17% (413 M 16 B-key
records) and 10% (1887 M 16 B-key records).

5 Conclusions

In this paper we examined sorting algorithms for tiny arrays, as well as we proved
the relevance of this topic by applying proposed hybrid solution to RADULS—
our radix sort algorithm. We also proposed other improvements, which—together
with “tiny sorters”—constitute new version, i.e., RADULS2. Our experiments
confirm the significance of hardware-aware programming, especially considering
cache memory and avoiding branch mispredictions.
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