
EQUATION OF STATE

Consider elementary cell in a phase space with a volume

∆x∆y ∆z ∆px ∆py ∆pz = h3, (st.1)

where h = 6.63×10−27 erg s is the Planck constant, ∆x∆y ∆z is volume in ordinary space measured
in cm 3, and ∆px ∆py ∆pz is volume in momentum space measured in ( g cm s −1)3. According to
quantum mechanics there is enough room for approximately one particle of any kind within any
elementary cell. More precisely, an average number of particles per cell is given as

nav =
g

e(E−µ)/kT ± 1
, (st.2)

with a ”+” sign for fermions, and a ”−” sign for bosons. The corresponding distributions are called
Fermi-Dirac and Bose-Einstein, respectively. Particles with a spin of 1/2 are called fermions, while
those with a spin 0, 1, 2... are called bosons. Electrons and protons are fermions, photons are bosons,
while larger nuclei or atoms may be either fermions or bosons, depending on the total spin of such
a composite particle. In the equation (st.2) E is the particle energy, k = 1.38 × 10−16 erg K−1 is
the Boltzman constant, T is temperature, µ is chemical potential, and g is a number of different
quantum states a particle may have within the cell. The meaning of temperature is obvious, while
chemical potential will become more familiar later on. In most cases it will be close to the rest mass
of a particle under consideration. If there are anti-particles present in equilibrium with particles,
and particles have chemical potential µ then antiparticles have chemical potential µ− 2m, where m
is their rest mass.

For free particles their energy is a function of their momentum only, with the total momentum
p given as

p2 = p2
x + p2

y + p2
z. (st.3)

The number density of particle in a unit volume of 1 cm 3, with momenta between p and p + dp is
given as

n (p) dp =
g

e(E−µ)/kT ± 1

4πp2

h3
dp, (st.4)

because the number of elementary cells within 1 cm 3 and a momentum between p and p + dp, i.e.
within a spherical shell with a surface 4πp2 and thickness dp is equal to 4πp2 dp h−3. The number
density of particles with all momenta, contained within 1 cm 3 is

n =

∞
∫

0

n (p)dp, ρ = nm (st.5)

where ρ is the mass density of gas. Note, that if we know density and temperature, then we can
calculate chemical potential with the eqs. (st.4) and (st.5), provided we know how particle energy
depends on its momentum, i.e. the function E(p) is known.

In the equation (st.4) g, k, T, µ, π, h are all constant, and the energy E depends on the momentum
p only. As our particles may be relativistic as well as non-relativistic, we have to use a general formula
for the relation between E and p. We have

E ≡ Etotal = E0 + Ek, (st.6)

where the rest mass E0 = mc2, c = 3×1010 cm s −1 is the speed of light, and Ek is the kinetic energy
of a particle. For a particle moving with arbitrary velocity there is a special relativistic relation:
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E2
total =

(

mc2
)2

+ (pc)
2
. (st.7)

Combining the last two equations we obtain

E = mc2

[

1 +
( p

mc

)2
]1/2

, Ek = mc2

[

(

1 +
( p

mc

)2
)1/2

− 1

]

. (st.8)

The last equation has two simple asymptotic limits:

Ek ≈
p2

2m
, for p ≪ mc, ( non-relativistic limit),

Ek ≈ pc, for p ≫ mc, ( ultra-relativistic limit).

(st.9)

Velocity of a particle is given in general as

v =
dE

dp
=

p

m

[

1 +
( p

mc

)2
]

−1/2

. (st.10)

Again, we have two simple asymptotic limits:

v ≈
p

m
, for p ≪ mc, ( non-relativistic limit),

v ≈ c, for p ≫ mc, ( ultra-relativistic limit),
(st.11)

Kinetic energy of all particles in a unit volume of 1 cm 3 may be calculated as

U =

∞
∫

0

Ek (p)n (p) dp, [ erg cm−3]. (st.12)

We are interested in isotropic gas, so the velocity and momentum vectors of every particle are parallel
to each other. Velocities of different particles are pointing in different directions, and their angular
distribution is isotropic. For a given absolute value of velocity and momentum we may calculate the
dot-product of the two vectors, and average it over all angles:

vp = vp = vxpx + vypy + vzpz. (st.13a)

〈vxpx〉 = 〈vypy〉 = 〈vzpz〉 =
1

3
vp. (st.13b)

Pressure is defined as a flux of momentum across a unit surface of 1 cm 2, integrated over all particles.
For an isotropic gas we may select the unit surface to be perpendicular to the ”x” axis, and we may
calculate pressure as

P =

∞
∫

0

< vxpx > n (p) dp =
1

3

∞
∫

0

v (p) p n (p) dp, (st.14)

where as before the averaging is done over particles moving in all directions.

We shall consider now some special, and simple, but important cases. First, let us consider
any non-relativistic gas, with arbitrary momentum distribution function n(p), such that for a vast
majority of particles a condition p ≪ mc is satisfied. In this case we have v ≈ p/m, Ek ≈ p2/2m,
and

P ≈
1

3

∞
∫

0

p2

m
n (p) dp, U ≈

∞
∫

0

p2

2m
n (p) dp ≈

3

2
P, (non − relativistic). (st.15)

Second, there is a case that most particles are ultra-relativistic, with p ≫ mc, v ≈ c, and Ek ≈ pc
for most of them. Now, pressure and kinetic energy density are given as
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P ≈
1

3

∞
∫

0

pc n (p) dp, U ≈

∞
∫

0

pc n (p) dp ≈ 3P, (ultra − relativistic). (st.16)

Notice, that the relations U ≈ 3P/2 and U ≈ 3P for the two limits are very general, and do not
depend on the details of the distribution function n(p).

Our formulae allow us to calculate, at least in principle, pressure and kinetic energy density for
a gas made of identical particles in a local thermodynamic equilibrium (LTE) . We made an implicit
assumption that particles are interacting so weakly that energy of their interaction may be neglected,
but that there is enough interaction between them to establish equilibrium distribution. If we have
a mixture of few different types of particles, for example electrons, protons, and photons, we make
the same assumptions about their interactions: it is small enough that we may assume the total
pressure and kinetic energy density of the composite gas is the sum of pressures and kinetic energy
densities of the components, but it is strong enough to maintain equilibrium distributions with the
same temperature for all types of particles. Now, we shall calculate in detail some examples of the
distribution functions, and the corresponding thermodynamic quantities.

Maxwell distribution

This is the case when

mc2 ≫ E − µ ≫ kT, (st.17)

i.e. the particles are non-relativistic, and the exponential term in the denominator of equation (st.2)
is very large, nav ≪ 1, i.e. there are very few particles per elementary cell in phase space. It is clear
that the ±1 term is negligible, and therefore the distribution will be the same for fermions and for
bosons. Within the approximation following from equation (st.17) we have

n (p) =

[

4πg

h3
e(µ−mc2)/kT

]

e−p2/2mkT p2, (st.18a)

n =

[

4πg

h3
e(µ−mc2)/kT

]

∞
∫

0

e−p2/2mkT p2dp = (st.18b)

[

4πg

h3
e(µ−mc2)/kT

]

(2mkT )
1.5 1

2

∞
∫

0

e−xx0.5dx =

[

4πg

h3
e(µ−mc2)/kT

]

(2mkT )1.5 π0.5

4
,

P =
1

3

[

4πg

h3
e(µ−mc2)/kT

]

∞
∫

0

p2

m
e−p2/2mkT p2dp = (st.18c)

[

4πg

h3
e(µ−mc2)/kT

]

(2mkT )
2.5 1

3m

1

2

∞
∫

0

e−xx1.5dx =

[

4πg

h3
e(µ−mc2)/kT

]

(2mkT )2.5 1

3m

1.5π0.5

4
= nkT,

U = 1.5nkT, (st.18d)
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where we substituted x = p2/2mkT .

In practice the Maxwell distribution is used for atoms, ions and electrons with a relatively
low density. The relation between the number density of particles n[cm−3] and physical density
ρ[ g cm−3] depends on chemical composition. It is customary to use X for the fractional abundance
of hydrogen (by mass fraction) , Y for the abundance of helium, and Z for the combined abundance of
all heavier elements. Frequently, all those heavier elements are described in astrophysical literature
as ”metals”, even though the most common among them are carbon, nitrogen and oxygen. Of
course, we have X + Y + Z = 1. A typical chemical composition of an interstellar medium, or the
main sequence stars is: X = 0.70, Y = 0.28, Z = 0.02, i.e. there is mostly hydrogen, and only very
small fraction of heavy elements. These abundances are by mass fraction, so the fractional number

of heavy atoms is approximately 0.002, or even less.

In most stellar applications it is safe to assume that all atoms are fully ionized. The only
exceptions are stellar atmospheres and sub-atmospheric layers. A convenient unit of mass is H =
1.67 × 10−24 g , i.e. mass of a single hydrogen atom. Mass of a helium atom is 4H , and mass of an
element with a nuclear charge Z∗ is approximately 2Z∗. An average charge of all heavier elements
is approximately < Z∗ >≈ 8. In one gram of matter there are X/H hydrogen nuclei, Y/4H helium
nuclei, and approximately Z/(2 < Z∗ > H) heavier nuclei. Therefore, the number of nuclei per
gram of matter, i.e. the number density of ions is

ni =
ρ

H

[

X +
Y

4
+

Z

2 < Z∗ >

]

≈
ρ

H

(

X +
Y

4
+

Z

16

)

. (st.19)

Fully ionized hydrogen provides 1 electron per nucleus, i.e. 1 electron per nucleon. Helium provides
2 electrons per nucleus, i.e. 1 electron per 2 nuclei. A heavier element with a charge Z∗ provides
Z∗ electrons per nucleon, which in a typical case has A ≈ 2Z∗ nucleons, i.e. we get 1 electron per 2
nucleons, just like for helium. The number density of electrons may be calculated as

ne =
ρ

H

(

X +
Y

2
+

Z

2

)

=
ρ

H

1 + X

2
. (st.20)

The number density of all particles is given as

n = ni + ne ≈
ρ

H
(2X + 0.75Y + 0.5Z) . (st.21)

It is customary to define mean molecular weight µ, mean molecular weight per ion µi, and mean
molecular weight per electron µe as

µ ≡
ρ

nH
≈

1

2X + 0.75Y + 0.5Z
, (st.22a)

µi ≡
ρ

niH
=

1

X + Y/4 + Z/16
, (st.22b)

µe ≡
ρ

neH
=

2

1 + X
. (st.22c)

With the new definitions of mean molecular weights (not to be confused with a chemical potential,
which is also written as µ ) we may write the equation of state as

Pe =
k

µeH
ρT, (st.23a)

Pi =
k

µiH
ρT, (st.23b)

Pg = Pe + Pi =
k

µH
ρT, (st.23c)

where Pe, Pi, and Pg are the electron pressure, the ion pressure, and the gas pressure, respectively.
We also have the corresponding kinetic energy densities given as

Ue = 1.5Pe, Ui = 1.5Pi, U = 1.5P. (st.24)
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Planck distribution

This is the distribution of photons under LTE (local thermodynamic equilibrium) conditions. It
is customary to characterize photons with the frequency of their oscillations ν. Their wavelength is
given as λ = c/ν, energy as E = hν, and momentum as p = hν/c. Photons always move with the
speed of light, have zero rest mass, and are their own antiparticles. Therefore, under LTE conditions
their chemical potential is zero. Their spin is 1, so they are bosons. A photon has two quantum
states with the same energy; they correspond to two different polarization states. Therefore g = 2
for photons, and we have

n (p) dp =
8π

h3

p2

epc/kT − 1
dp, (st.25a)

or, in a more customary form

nνdν =
8π

c3

ν2

ehν/kT − 1
dν. (st.25b)

The total energy associated with radiation is

Ur =

∞
∫

0

nνhν dν =
8πh

c3

∞
∫

0

ν3

ehν/kT − 1
dν =

8πh

c3

(

kT

h

)4
∞
∫

0

x3dx

ex − 1
, (st.26a)

where we substituted x = hν/kT . The last integral has a value of π4

15 ≈ 6.088, and we may write

Ur = aT 4, where a =
8π5

15

k4

h3c3
≈ 7.565 × 10−15 erg cm−3 K −4. (st.26b)

Radiation pressure is given as

Pr =
1

3
Ur =

a

3
T 4, (st.27)

because photons are ultra-relativistic.

It is customary to describe radiation with its intensity Bν(T ), and

B (T ) =

∞
∫

0

Bν (T )dν. (st.28)

In LTE radiation intensity is the same in all directions, over the whole solid angle Ω = 4π. The
radiation energy density may be calculated as

Ur =
1

c

∫

B (T )dΩ =
4π

c
B (T ) , (st.29)

where the integration covers all directions; in our case radiation is isotropic, i.e. B(T ) is the same
in all directions. We may combine equations (st.26b) and (st.29) to obtain

B (T ) =
c

4π
Ur =

ac

4π
T 4, (st.30)

and also

Bν (T )dν =
c

4π
Uνdν =

2h

c2

ν3

ehν/kT − 1
dν. (st.31)
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Bν(T ) is called the Planck function. It gives the intensity of radiation of a black body at a given
temperature T .

Let us calculate the flux of radiation emitted from a surface of a black body which has a tem-
perature T . The intensity of radiation integrated over all frequencies is given as B(T ) and it is the
same in any direction pointing out from the surface. Let us introduce angle θ, between the normal
to the surface and the direction of a light ray, and an azimuthal angle φ. An element of a solid angle
is given as dΩ = sin θdφdθ. The flux of black body radiation comming in the direction normal to
the surface may be calculated integrating over all angles the component of B(T ) orthogonal to the
surface, i.e. B(T ) cos θ. We have:

FBB =

π/2
∫

0





2π
∫

0

B (T ) cos θ sin θdφ



 dθ = 2πB (T )

π/2
∫

0

cos θ sin θdθ = πB (T ) . (st.32)

Combining the last equation with (st.30) we obtain the flux of radiation from a unit surface of a
black body

F
BB

= σT 4, σ =
ac

4
= 5.67 × 10−5 erg cm−2 s −1 K−4, (st.33)

where σ is the Stefan-Boltzman constant.

Real astronomical objects radiate in a more complicated way than a black body of any temper-
ature. However, it is useful to define an effective temperature as the temperature of a black body
that would radiate out energy at the rate that the star does. If stellar luminosity is L, and its radius
is R, then its surface radiates at a rate of F = L/4πR2. The effective temperature is defined with a
relation:

σT 4
eff ≡

L

4πR2
. (st.34)

If we have a mixture of gas and radiation then total pressure and total kinetic energy density are
given as

P = Pg + Pr =
k

µH
ρT +

a

3
T 4, (st.35a)

U = Ug + Ur = 1.5
k

µH
ρT + aT 4, (st.35b)

It is useful to define the ratio of gas pressure to total pressure

β ≡ Pg/P, 0 < β < 1. (st.36)

At a low temperature gas pressure dominates, while at a high temperature radiation pressure dom-
inates. The two contributions are equal, i.e. we have Pg = Pr when

k

µH
ρT =

a

3
T 4. (st.37)

For a standard chemical composition, i.e. for X = 0.70, Y = 0.28, Z = 0.02, the mean molecular
weight is µ−1 = 1.62, and the gas pressure constant is k/µH = 5.1 × 107 erg g −1 K −1. The density
where gas pressure equals radiation pressure is

ρ ≈ 5 × 10−23 T 3
[

g cm−3 K−3
]

=

(

T

3 × 107 K

)3
[

g cm−3
]

. (st.38)

st — 6



Fermi-Dirac distribution

Now, we shall consider a distribution of electrons, i.e. spin 1/2 particles, when density is high.
An electron may be in two spin states: +1/2 and −1/2, so the number of different quantum states
per unit cell in a phase space is g = 2, and the average number of electrons per unit cell is

nav =
2

e(E−µ)/kT + 1
, (st.39a)

and the number density of electrons is given as

ne =

∞
∫

0

ne (p) dp =
8π

h3

∞
∫

0

p2dp

e(E−µ)/kT + 1
, (st.39b)

with electron energy E being a function of its momentum (cf. equation st.8) . The density, pressure,
and kinetic energy density are given as (cf. equations: st.12, st.14, st.22c)

ρ = neµeH = ne
2H

1 + X
, (st.40a)

Pe =
1

3

∞
∫

0

v (p) p ne (p) dp, (st.40b)

Ue =

∞
∫

0

Ek (p)ne (p) dp. (st.40c)

The chemical potential which appears in equations (st.39) is approximately equal to the electron
rest mass: µ = mc2 + E

F
, where E

F
is Fermi energy - its physical meaning will become apparent

shortly. The E−µ term in the exponent in the denominator in equations (st.39) is equal to Ek−E
F
,

where Ek is a kinetic energy of an electron. If E
F

≪ 0 the distribution function for electrons is
Maxwellian, as the exponential term is much larger than 1 even for electrons with zero kinetic energy.
Here we shall be interested in another limit: E

F
≫ kT . Now, the exponential term is very small for

Ek < E
F
, it is equal 1 for Ek = E

F
, and it is very large for Ek > E

F
. The transition from being

much less than 1 to much larger than 1 takes place over a relatively small change in kinetic energy,
∆E≈2kT ≪ E

F
. Therefore, in the limit when kT ≪ E

F
the occupation number nav as given with

equation (st.39a) becomes almost a step function of electron’s kinetic energy:

nav ≈ 2, for Ek < E
F
, kT ≪ E

F
, (st.41a)

nav ≈ 0, for Ek > E
F
, kT ≪ E

F
, (st.41b)

This result may be interpreted as follows. When temperature drops the electrons occupy the lowest
energy states available. However, as they are fermions they have to obey Pauli exclusion principle:
there cannot be more then one electron in the same quantum state. An electron can be in two
different spin states. This means there can be at most two electrons in any elementary cell of a
phase space. It is the Heisenberg uncertainty principle that is responsible for the size of those cells.
So, as the temperature drops the electrons fill up the lowest energy cells all the way up to Fermi
energy, and all higher energy states are empty. Such gas is called degenerate. The value of Fermi
energy depends on the density of electrons in ordinary space. This is obvious upon evaluating the
integral (es.39) , subject to the conditions (st.41) . We obtain
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ne =
8π

h3

p
F

∫

0

p2dp =
8π

3

(p
F

h

)3

, (st.42)

where p
F

is Fermi momentum related to Fermi energy by equation (st.8) . That relation may be
written as

(

E
F

mc2
+ 1

)2

=
( p

F

mc

)2

+ 1. (st.43)

We may express density, pressure and kinetic energy density in terms of Fermi momentum, and
we shall write equations (st.40) as

ρ = µeH
8π

3h3
p3

F
, (st.44a)

Pe =
8π

3mh3

p
F

∫

0

p4 dp
[

1 +
(

p
mc

)2
]1/2

, (st.44b)

Ue =
8πmc2

h3

p
F

∫

0

[

(

1 +
( p

mc

)2
)1/2

− 1

]

p2dp, (st.44c)

where the dependence of kinetic energy and velocity on momentum was given with equations (st.8)
and (st.10) . It is convenient to introduce dimensionless variables:

x ≡ p/mc, x
F
≡ p

F
/mc, (st.45)

and to rewrite equations (st.44) as

ρ = Aµex
3
F
, (st.46a)

Pe = B

x
F

∫

0

x4 dx

(1 + x2)1/2
, (st.46b)

Ue = 3B

x
F

∫

0

[

(

1 + x2
)1/2

− 1
]

x2dx = 3B

x
F

∫

0

x4 dx

(1 + x2)
1/2

+ 1
. (st.46c)

With the electron mass m = 9.11 × 10−28 g the constants are

A ≡
8π

3

(mc

h

)3

H = 0.981× 106 [ g cm−3], (st.46d)

B ≡
8π

3

(mc

h

)3

mc2 = 4.80 × 1023 [ erg cm−3]. (st.46e)

The integrals in equations (st.45) can be evaluated analytically, but the results are too compli-
cated to be of much practical value. It is much more useful to consider two limiting cases. We shall
first consider x

F
≪ 1, i.e. the electron gas will be degenerate non-relativistic. For x ≪ 1 the

leading term in the expansion under the integrals (st.45) is x4, and we obtain

Pe =
1

5
Bx5

F
= 0.991× 1013 (ρ/µe)

5/3
, x

F
≪ 1, (st.47a)

Ue =
3

10
Bx5

F
=

3

2
Pe, x

F
≪ 1. (st.47b)

st — 8



The relation between Pe and Ue is just that expected for any non-relativistic gas (cf. equation st.15)
.

The second limiting case is x
F
≫ 1, i.e. ultra-relativistic degeneracy. Following the previous

procedure we find that the leading term under the integrals (st.46b,c) is x3, and we obtain

Pe =
1

4
Bx4

F
= 1.231× 1015 (ρ/µe)

4/3
, x

F
≫ 1, (st.48a)

Ue =
3

4
Bx4

F
= 3Pe, x

F
≫ 1, (st.48b)

Again, the relation between Pe and Ue is that expected for any ultra-relativistic gas.

The transition between equations (st.47) and (st.48) should be for x
F
≈ 1, i.e. at ρ ≈ 106 g cm−3.

In the transition region one may either use the exact and complicated analytical formula for the
integral (st.44b) , or the following approximate formula, which has accuracy better than about 2%.
We may write the equations (st.47a) and (st.48a) as

Pe,nr = K1ρ
5/3, K1 =

1

20

(

3

π

)2/3
h2

m (Hµe)
5/3

= 0.991 × 1013µ−5/3
e , (st.49a)

Pe,r = K2ρ
4/3, K2 =

1

8

(

3

π

)1/3
hc

(Hµe)
4/3

= 1.231 × 1015µ−4/3
e , (st.49b)

Pe,d =
[

P−2
e,nr + P−2

e,r

]

−1/2
, (st.49c)

where Pe,d stands for pressure of degenerate electron gas. The interpolation formula (st.49c) selects
the smaller of the two limiting case formulae.

In the non-degenerate and non-relativistic limit, i.e. for mc2 ≫ E −µ ≫ kT the integrals (st.39)
and (st.40) can be evaluated as in the case of Maxwell distribution function, and we obtain

Pe,nd =
k

µeH
ρT, Ue,nd =

3

2
Pe,nd, (st.50)

where the subscript ”e,nd” stands for non-degenerate electron gas.

In the non-relativistic partly degenerate region, i.e. when E−µ ≈ kT , there is no exact analytical
formula for the integrals (st.39) and (st.40) , but there is an analytical interpolation formula that is
accurate to about 2%. Pressure of partly degenerate electron gas Pe, may be calculated as

Pe =
[

P 2
e,nd + P 2

e,d

]1/2
. (st.51)

The last formula selects the larger of the two limiting case formulae.

Let us now find the region in the density - temperature plane where there is a transition from
non-degenerate to degenerate electron gas. This may be estimated setting Pe,nd = Pe,d ≈ Pe,nr,
which gives

k

µeH
ρT = K1ρ

5/3 ⇐⇒ T ≈ 105ρ2/3. (st.52)

Electron-positron pairs

The final formula (st.51) for pressure of electron gas has a very large range of applicability.
There is no limit at very low densities. At very high densities the only correction required is in
the evaluation of the mean number of nucleons per electron, µe. At very low temperature gas is no
longer fully ionized, and again the evaluation of the number of nucleons per free electron becomes
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complicated. At very high temperature, when kT >= mc2, electrons become relativistic. It becomes
energetically possible to form electron - positron pairs, i.e. to create new particles. Now we have to
write down the distribution functions for both types of electrons. As one is antiparticle of another
their chemical potential differ by two rest mass energies, i.e. we have

µ− = µ ≈ mc2, µ+ = µ − 2mc2 ≈ −mc2, (st.53)

and the average number of particles per unit cell is

n−

av =
2

e(E−µ)/kT + 1
, n+

av =
2

e(E−µ+2mc2)/kT + 1
, (st.54)

and the number density per 1 cm 3 is given as

n−

e =

∞
∫

0

n−

e (p) dp =
8π

h3

∞
∫

0

p2dp

e(E−µ)/kT + 1
, (st.55a)

n+
e =

∞
∫

0

n+
e (p) dp =

8π

h3

∞
∫

0

p2dp

e(E−µ+2mc2)/kT + 1
, (st.55b)

where superscripts ”-” and ”+” refer to electrons and positrons, respectively.

There is a constraint on the total number of particles, as the difference between the number
density of electrons and positrons must be equal to the number of electrons that came from ionizing
all the ions, i.e.

ne = n−

e − n+
e =

ρ

µeH
, µe =

2

1 + X
, (st.56)

where X is hydrogen abundance by mass fraction.

Given the distribution functions we may calculate electron pressure end electron energy density.
In the latter we shall include not only the kinetic energy of all electrons and positrons, but also the
annihilation energy of all electron - positron pairs, but not the rest mass energy of the ”original”
electrons. We may write

Pe = Pe− + Pe+ =
1

3

∞
∫

0

v (p) p n−

e (p) dp +
1

3

∞
∫

0

v (p) p n+
e (p) dp, (st.57a)

Ue = Ue− + Ue+ + 2n+
e mc2 = (st.57b)

∞
∫

0

Ek (p)n−

e (p) dp +

∞
∫

0

Ek (p)n+
e (p) dp + 2n+

e mc2.

As usual, the integrals are too complicated to evaluate them analytically, but there are simple
limiting cases.

First, we shall consider a case of a relatively low temperature and low density: mc2 ≫ E − µ ≫
kT , just like the Maxwell distribution, but we shall look for a small correction in order to estimate
the number of pairs. We have, under this approximation:

e(E−µ)/kT ≫ 1, e(E−µ+2mc2)/kT ≫ 1, E ≈ mc2 +
p2

2m
, (st.58)

and therefore the number density of electrons and positrons may be calculated as

n−

e ≈
8π

h3
eµ/kT

∞
∫

0

p2e−E/kT dp ≈ (st.59a)
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8π

h3
e(µ−mc2)/kT

∞
∫

0

p2e−p2/2mkT dp ≈ ne,

and

n+
e ≈

8π

h3
e(µ−2mc2)/kT

∞
∫

0

p2e−E/kT dp ≈ (st.59b)

8π

h3
e(µ−3mc2)/kT

∞
∫

0

p2e−p2/2mkT dp ≈ nee
−2mc2/kT .

Finally, the number ratio is just what we might expect from a Boltzman formula:

n+
e

n−

e
≈ e−2mc2/kT , (st.60)

It is obvious how to calculate small corrections to electron pressure and electron energy density.
Notice, that the corrections to energy density are relatively larger than the corrections to pressure
because the rest mass energy of a small number of pairs is much larger than their thermal energy.

Another simple case is when kT ≫ mc2, and therefore most electrons and positrons are ultra-
relativistic, their velocities are approximately equal c, and their energies E ≈ pc ≫ mc2 ≈ µ. In
this limit we have

n−

e ≈ n+
e ≈

8π

h3

∞
∫

0

p2dp

epc/kT + 1
≫ ne, (st.61)

i.e. there are many more pairs than original electrons. The energy density due to all these pairs
may be calculated as

Ue ≈
16π

h3

∞
∫

0

pc p2dp

epc/kT + 1
= 16π

(kT )
4

(hc)
3

∞
∫

0

x3dx

ex + 1
= (st.62)

14π5

15

(kT )
4

(hc)3
=

7

4
Ur,

where we substituted x = pc/kT , the last integral in equation (st.62) has a value 7π4/120, and Ur

is the radiation energy density. As the pairs are ultra-relativistic in this limit, their thermodynamic
properties are very much like those of radiation. In particular, in this limit Pe = Ue/3 = 7Pr/4.

Summary

In a large region in a density - temperature plane the equation of state, and all important
thermodynamic quantities may be calculated analytically with a reasonable precision, better than
2%. The region is limited at very low density by the mass density associated with radiation energy
density becoming dominant, at low temperature by partial recombination of helium and hydrogen,
at high density by crystallization of ions, and at high temperature by creation of electron-positron
pairs. As long as we stay within this very large region the following prescription can be adopted to
calculate equation of state.
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Let X , Y , and Z be the abundances of hydrogen, helium and heavy elements, respectively, all
by mass fraction. Of course, we have X + Y + Z = 1. Various mean weights can be calculated as
follows:

1

µi
≡

niH

ρ
= X +

Y

4
+

Z

16
,

1

µe
≡

neH

ρ
=

1 + X

2
, (st.63)

1

µ
≡

nH

ρ
=

1

µi
+

1

µe
≈ 2X + 0.75Y + 0.5Z, n = ni + ne,

where n, ni, and ne, is a number density of all particles, ions, and electrons, respectively, and
H = 1.673 × 10−24 g is the mass of a hydrogen atom.

In the whole region of interest the ion and radiation pressure can be calculated according to

Pi =
k

µiH
ρT,

k

H
= 0.825 × 108, [ erg g −1 K−1], (st.64)

Pr =
1

3
Ur =

a

3
T 4, a =

8π5

15

k4

h3c3
≈ 7.565 × 10−15 [ erg cm−3 K −4]. (st.65)

The electron pressure can be calculated according to the following set of formulae:

Pe,nd =
k

µeH
ρT, (st.66a)

Pe,nr = K1ρ
5/3, K1 =

1

20

(

3

π

)2/3
h2

m (Hµe)
5/3

= 0.991× 1013µ−5/3
e , (st.66b)

Pe,r = K2ρ
4/3, K2 =

1

8

(

3

π

)1/3
hc

(Hµe)
4/3

= 1.231 × 1015µ−4/3
e , (st.66c)

Pe,d =
[

P−2
e,nr + P−2

e,r

]

−1/2
, Pe =

[

P 2
e,nd + P 2

e,d

]1/2
. (st.66d)

The derivatives (∂Pi/∂T )ρ, (∂Pr/∂T )ρ, (∂Pe/∂T )ρ, (∂Pi/∂ρ)T , (∂Pr/∂ρ)T , (∂Pe/∂ρ)T , can be cal-
culated analytically from the above expressions, as well as the derivatives (∂ui/∂T )ρ, (∂ur/∂T )ρ,
noticing that

Ui = uiρ = 1.5Pi, Ur = urρ = 3Pr. (st.67)

The derivative (∂ue/∂T )ρ, can be calculated with the following approximate formula:

(

∂ue

∂T

)

ρ

=
1 + b

2 + b

3

ρ

(

∂Pe

∂T

)

ρ

, b =

(

K1

K2

)2

= 6.48 × 10−5

(

ρ

µe

)2/3

, (st.68)

The combined pressure, as well as the combined derivatives may be calculated according to

P = Pr + Pi + Pe, (st.69a)

(

∂P

∂T

)

ρ

=

(

∂Pr

∂T

)

ρ

+

(

∂Pi

∂T

)

ρ

+

(

∂Pe

∂T

)

ρ

, (st.69b)

(

∂P

∂ρ

)

T

=

(

∂Pr

∂ρ

)

T

+

(

∂Pi

∂ρ

)

T

+

(

∂Pe

∂ρ

)

T

, (st.69c)

(

∂u

∂T

)

ρ

=

(

∂ur

∂T

)

ρ

+

(

∂ui

∂T

)

ρ

+

(

∂ue

∂T

)

ρ

. (st.69d)
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