COURSE INFORMATION

Course Title	Machine Design 1	
Instructor	Dr. Ahmad Ghasemi Ghalebahman	
Email Address	ghasemi@semnan.ac.ir	
Telephone Number	+98 23 3153 3349	
Office Location	Mechanical Engineering Department, Semnan University, Semnan, Iran	
Duration	16-week period	
Grading Policy	Midterm Exam: 35%,	
	Final Exam: 48.75%,	
	Homework: 10%	
	Project: 6.25%	
Textbook(s)	Richard G. Budynas, J. Keith Nisbett, Shigley's Mechanical Engineering Design ,	
	10th Edition, 2010	

COURSE OUTLINE

Topic	Week	
Introduction		
Design Process: Phases and Interactions		
Design Considerations	4	
Standards and Codes	1	
Stress and Strength		
Factor of Safety		
Hardness Load and Strong Analysis		
Load and Stress Analysis Normal and Shear Stresses		
Stresses due to Axial, Bending, Torsional, Transverse Shearing Loads		
Combined Stresses	2	
Principal Stresses and Strains		
Stress Transformation via Mohr's Circle and Transformation Matrices		
Stress Concentration		
Pressurized Cylinders		
Rotating Disks	3	
Press and Shrink Fits		
Static Failures		
Static Failure Criteria		
Maximum-Shear-Stress (MSS/Tresca) Criterion for Ductile Materials	4	
Distortion-Energy (DE/Von-Mises) Criterion for Ductile Materials		
Maximum-Octahedral-Shear-Stress Criterion for Ductile Materials		
Ductile-Coulomb-Mohr (DCM) Criterion for Ductile Materials		
Maximum-Normal-Stress (MNS) Criterion for Brittle Materials		
Brittle-Coulomb-Mohr (BCM) Criterion for Brittle Materials	5	
Modified-Coulomb-Mohr (MCM) Criterion for Brittle Materials	3	
Stress Concentration Factors: Normal and Shear Types		
Static Design of Notched Components		
Fatigue Failures		
Introduction to Fatigue in Metals: Stages of Fatigue Failure		
Fatigue Life Prediction Approaches	6	
Fracture Mechanics-Based Method for Cracked Bodies		
Strain-Based Methods for Un-cracked Bodies		
Stress-Based Methods for Un-cracked Bodies		
LCF and HCF Damages	7	
Fatigue Strength and S-N Diagram	-	
The Endurance Limit		
Endurance Limit Modifying Factors	0	
Fatigue Stress Concentration and Notch Sensitivity	8	
Characterizing Fluctuating Stresses		

Soderberg Criterion Modified Goodman Criterion	
Gerber Criterion	9
ASME-elliptic Criterion	
Langer Static Yield Line	
Torsional Fatigue Strength under Fluctuating Stresses	
Combinations of Fatigue Loading Modes	10
Cumulative Fatigue Damage	-
Design of Mechanical Elements	
Shaft Design	
Power/Torque Transmission: Direct & Indirect	11
Shaft-Hub Connections	11
Key/Key-way Design	
Fits and Tolerances for Key/Key-way and Shaft-Hub Connections	
Shaft Design for Stress	
Design for Static Loading	
Westinghouse Code Formula	
DE-Goodman Code Formula	12
DE-Soderberg Code Formula	
MSS-Goodman Code Formula	
MSS-Soderberg Code Formula	
Shaft layout	
Screws and Fasteners/Nonpermanent Joints Thread Standards and Definitions	
Thread Standards and Definitions Power Screws	
Fastener Stiffness	13
Member Stiffness	
Bolt Strength	
Tension Joints	
Relating Bolt Torque to Bolt Tension	
Statically Loaded Tension Joint with Preload	4.4
Gasketed Joints/Sealing	14
Fatigue Loading of Tension Joints	
Bolted and Riveted Joints Loaded in Shear	
Welding and Bonding/Permanent Joints	
Welding Symbols	
Butt and Fillet Welds	
Stresses in Welded Joints in Torsion	15
Stresses in Welded Joints in Bending	13
The Strength of Welded Joints	
Welded Joints under Static Loading	
Welded Joints under Fatigue Loading	
Mechanical Springs	
Stresses in Helical Springs	
The Curvature Effect Deflection of Helical Covings	
Deflection of Helical Springs	16
Compression Springs	16
Stability Spring Materials	
Spring Materials Helical Compression Spring/Design for Static Service	