
A Guide to Heuristic-based Path Planning

Dave Ferguson, Maxim Likhachev, and Anthony Stentz
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

We describe a family of recently developed heuristic-
based algorithms used for path planning in the real
world. We discuss the fundamental similarities between
static algorithms (e.g. A*), replanning algorithms (e.g.
D*), anytime algorithms (e.g. ARA*), and anytime re-
planning algorithms (e.g. AD*). We introduce the mo-
tivation behind each class of algorithms, discuss their
use on real robotic systems, and highlight their practi-
cal benefits and disadvantages.

Introduction
In this paper, we describe a family of heuristic-based plan-
ning algorithms that has been developed to address various
challenges associated with planning in the real world. Each
of the algorithms presented have been verified on real sys-
tems operating in real domains. However, a prerequisite for
the successful general use of such algorithms is (1) an analy-
sis of the common fundamental elements of such algorithms,
(2) a discussion of their strengths and weaknesses, and (3)
guidelines for when to choose a particular algorithm over
others. Although these algorithms have been documented
and described individually, a comparative analysis of these
algorithms is lacking in the literature. With this paper we
hope to fill this gap.

We begin by providing background on path planning in
static, known environments and classical algorithms used to
generate plans in this domain. We go on to look at how
these algorithms can be extended to efficiently cope with
partially-known or dynamic environments. We then intro-
duce variants of these algorithms that can produce subop-
timal solutions very quickly when time is limited and im-
prove these solutions while time permits. Finally, we dis-
cuss an algorithm that combines principles from all of the
algorithms previously discussed; this algorithm can plan in
dynamic environments and with limited deliberation time.
For all the algorithms discussed in this paper, we provide
example problem scenarios in which they are very effective
and situations in which they are less effective. Although
our primary focus is on path planning, several of these al-
gorithms are applicable in more general planning scenarios.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Our aim is to share intuition and lessons learned over the
course of several system implementations and guide readers
in choosing algorithms for their own planning domains.

Path Planning
Planning consists of finding a sequence of actions that trans-
forms some initial state into some desired goal state. In path
planning, the states are agent locations and transitions be-
tween states represent actions the agent can take, each of
which has an associated cost. A path is optimal if the sum of
its transition costs (edge costs) is minimal across all possi-
ble paths leading from the initial position (start state) to the
goal position (goal state). A planning algorithm is complete
if it will always find a path in finite time when one exists,
and will let us know in finite time if no path exists. Simi-
larly, a planning algorithm is optimal if it will always find
an optimal path.

Several approaches exist for computing paths given some
representation of the environment. In general, the two most
popular techniques are deterministic, heuristic-based algo-
rithms (Hart, Nilsson, & Rafael 1968; Nilsson 1980) and
randomized algorithms (Kavraki et al. 1996; LaValle 1998;
LaValle & Kuffner 1999; 2001).

When the dimensionality of the planning problem is low,
for example when the agent has only a few degrees of free-
dom, deterministic algorithms are usually favored because
they provide bounds on the quality of the solution path re-
turned. In this paper, we concentrate on deterministic al-
gorithms. For more details on probabilistic techniques, see
(LaValle 2005).

A common technique for robotic path planning consists
of representing the environment (or configuration space) of
the robot as a graph G = (S, E), where S is the set of pos-
sible robot locations and E is a set of edges that represent
transitions between these locations. The cost of each edge
represents the cost of transitioning between the two endpoint
locations.

Planning a path for navigation can then be cast as a search
problem on this graph. A number of classical graph search
algorithms have been developed for calculating least-cost
paths on a weighted graph; two popular ones are Dijkstra’s
algorithm (Dijkstra 1959) and A* (Hart, Nilsson, & Rafael
1968; Nilsson 1980). Both algorithms return an optimal path
(Gelperin 1977), and can be considered as special forms of



ComputeShortestPath()

01. while (argmins∈OPEN(g(s) + h(s, sgoal)) 6= sgoal)
02. remove state s from the front of OPEN;
03. for all s′ ∈ Succ(s)

04. if (g(s′) > g(s) + c(s, s′))

05. g(s′) = g(s) + c(s, s′);
06. insert s′ into OPEN with value (g(s′) + h(s′, sgoal));

Main()

07. for all s ∈ S

08. g(s) = ∞;
09. g(sstart) = 0;
10. OPEN = ∅;
11. insert sstart into OPEN with value (g(sstart) + h(sstart, sgoal));
12. ComputeShortestPath();

Figure 1: The A* Algorithm (forwards version).

dynamic programming (Bellman 1957). A* operates essen-
tially the same as Dijkstra’s algorithm except that it guides
its search towards the most promising states, potentially sav-
ing a significant amount of computation.

A* plans a path from an initial state sstart ∈ S to a goal
state sgoal ∈ S, where S is the set of states in some finite
state space. To do this, it stores an estimate g(s) of the path
cost from the initial state to each state s. Initially, g(s) =
∞ for all states s ∈ S. The algorithm begins by updating
the path cost of the start state to be zero, then places this
state onto a priority queue known as the OPEN list. Each
element s in this queue is ordered according to the sum of its
current path cost from the start, g(s), and a heuristic estimate
of its path cost to the goal, h(s, sgoal). The state with the
minimum such sum is at the front of the priority queue. The
heuristic h(s, sgoal) typically underestimates the cost of the
optimal path from s to sgoal and is used to focus the search.

The algorithm then pops the state s at the front of the
queue and updates the cost of all states reachable from this
state through a direct edge: if the cost of state s, g(s), plus
the cost of the edge between s and a neighboring state s′,
c(s, s′), is less than the current cost of state s′, then the cost
of s′ is set to this new, lower value. If the cost of a neighbor-
ing state s′ changes, it is placed on the OPEN list. The al-
gorithm continues popping states off the queue until it pops
off the goal state. At this stage, if the heuristic is admissible,
i.e. guaranteed to not overestimate the path cost from any
state to the goal, then the path cost of sgoal is guaranteed to
be optimal. The complete algorithm is given in Figure 1.

It is also possible to switch the direction of the search in
A*, so that planning is performed from the goal state to-
wards the start state. This is referred to as ‘backwards’ A*,
and will be relevant for some of the algorithms discussed in
the following sections.

Incremental Replanning Algorithms
The above approaches work well for planning an initial path
through a known graph or planning space. However, when
operating in real world scenarios, agents typically do not
have perfect information. Rather, they may be equipped with
incomplete or inaccurate planning graphs. In such cases, any

Pioneers Automated E-Gator

Figure 2: D* and its variants are currently used for path
planning on several robotic systems, including indoor pla-
nar robots (Pioneers) and outdoor robots operating in more
challenging terrain (E-Gators).

path generated using the agent’s initial graph may turn out to
be invalid or suboptimal as it receives updated information.
For example, in robotics the agent may be equipped with an
onboard sensor that provides updated environment informa-
tion as the agent moves. It is thus important that the agent
is able to update its graph and replan new paths when new
information arrives.

One approach for performing this replanning is simply to
replan from scratch: given the updated graph, a new opti-
mal path can be planned from the robot position to the goal
using A*, exactly as described above. However, replanning
from scratch every time the graph changes can be very com-
putationally expensive. For instance, imagine that a change
occurs in the graph that does not affect the optimality of the
current solution path. Or, suppose some change takes place
that does affect the current solution, but in a minor way that
can be quickly fixed. Replanning from scratch in either of
these situations seems like a waste of computation. Instead,
it may be far more efficient to take the previous solution and
repair it to account for the changes to the graph.

A number of algorithms exist for performing this re-
pair (Stentz 1994; 1995; Barbehenn & Hutchinson 1995;
Ramalingam & Reps 1996; Ersson & Hu 2001; Huiming et
al. 2001; Podsedkowski et al. 2001; Koenig & Likhachev
2002). Focussed Dynamic A* (D*) (Stentz 1995) and D*
Lite (Koenig & Likhachev 2002) are currently the most
widely used of these algorithms, due to their efficient use
of heuristics and incremental updates. They have been
used for path planning on a large assortment of robotic sys-
tems, including both indoor and outdoor platforms (Stentz &
Hebert 1995; Hebert, McLachlan, & Chang 1999; Matthies
et al. 2000; Thayer et al. 2000; Zlot et al. 2002;
Likhachev 2003) (see Figure 2). They have also been ex-
tended to provide incremental replanning behavior in sym-
bolic planning domains (Koenig, Furcy, & Bauer 2002).

D* and D* Lite are extensions of A* able to cope with
changes to the graph used for planning. The two algorithms
are fundamentally very similar; we restrict our attention here
to D* Lite because it is simpler and has been found to be
slightly more efficient for some navigation tasks (Koenig &
Likhachev 2002). D* Lite initially constructs an optimal so-
lution path from the initial state to the goal state in exactly
the same manner as backwards A*. When changes to the



planning graph are made (i.e., the cost of some edge is al-
tered), the states whose paths to the goal are immediately
affected by these changes have their path costs updated and
are placed on the planning queue (OPEN list) to propagate
the effects of these changes to the rest of the state space. In
this way, only the affected portion of the state space is pro-
cessed when changes occur. Furthermore, D* Lite uses a
heuristic to further limit the states processed to only those
states whose change in path cost could have a bearing on
the path cost of the initial state. As a result, it can be up to
two orders of magnitude more efficient than planning from
scratch using A* (Koenig & Likhachev 2002).

In more detail, D* Lite maintains a least-cost path from a
start state sstart ∈ S to a goal state sgoal ∈ S, where S is
again the set of states in some finite state space. To do this,
it stores an estimate g(s) of the cost from each state s to the
goal. It also stores a one-step lookahead cost rhs(s) which
satisfies:

rhs(s) =
{

0 if s = sgoal

mins′∈Succ(s)(c(s, s′) + g(s′)) otherwise,

where Succ(s) ∈ S denotes the set of successors of s and
c(s, s′) denotes the cost of moving from s to s′ (the edge
cost). A state is called consistent iff its g-value equals
its rhs-value, otherwise it is either overconsistent (if
g(s) > rhs(s)) or underconsistent (if g(s) < rhs(s)).

Like A*, D* Lite uses a heuristic and a priority queue to
focus its search and to order its cost updates efficiently. The
heuristic h(s, s′) estimates the cost of moving from state s
to s′, and needs to be admissible and (backward) consistent:
h(s, s′) ≤ c∗(s, s′) and h(s, s′′) ≤ h(s, s′) + c∗(s′, s′′) for
all states s, s′, s′′ ∈ S, where c∗(s, s′) is the cost associated
with a least-cost path from s to s′. The priority queue OPEN
always holds exactly the inconsistent states; these are the
states that need to be updated and made consistent.

The priority, or key value, of a state s in the queue is:
key(s) = [k1(s), k2(s)]

= [min(g(s), rhs(s)) + h(sstart, s),
min(g(s), rhs(s))].

A lexicographic ordering is used on the priorities, so that pri-
ority key(s) is less than or equal to priority key(s′), denoted
key(s) ≤̇key(s′), iff k1(s) < k1(s′) or both k1(s) = k1(s′)
and k2(s) ≤ k2(s′). D* Lite expands states from the queue
in increasing priority, updating their g-values and their pre-
decessors’ rhs-values, until there is no state in the queue with
a priority less than that of the start state. Thus, during its
generation of an initial solution path, it performs in exactly
the same manner as a backwards A* search.

To allow for the possibility that the start state may change
over time D* Lite searches backwards and consequently fo-
cusses its search towards the start state rather than the goal
state. If the g-value of each state s was based on a least-cost
path from sstart to s (as in forward search) rather than from
s to sgoal, then when the robot moved every state would
have to have its cost updated. Instead, with D* Lite only the
heuristic value associated with each inconsistent state needs
to be updated when the robot moves. Further, even this step
can be avoided by adding a bias to newly inconsistent states
being added to the queue (see (Stentz 1995) for details).

key(s)
01. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s)))];

UpdateState(s)
02. if s was not visited before
03. g(s) = ∞;
04. if (s 6= sgoal) rhs(s) = mins′∈Succ(s)(c(s, s′) + g(s′));
05. if (s ∈ OPEN) remove s from OPEN;
06. if (g(s) 6= rhs(s)) insert s into OPEN with key(s);

ComputeShortestPath()

07. while (mins∈OPEN(key(s)) <̇ key(sstart) OR rhs(sstart) 6= g(sstart))
08. remove state s with the minimum key from OPEN;
09. if (g(s) > rhs(s))

10. g(s) = rhs(s);
11. for all s′ ∈ Pred(s) UpdateState(s′);
12. else
13. g(s) = ∞;
14. for all s′ ∈ Pred(s) ∪ {s} UpdateState(s′);

Main()

15. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;
16. rhs(sgoal) = 0; OPEN = ∅;
17. insert sgoal into OPEN with key(sgoal);
18. forever
19. ComputeShortestPath();
20. Wait for changes in edge costs;
21. for all directed edges (u, v) with changed edge costs
22. Update the edge cost c(u, v);
23. UpdateState(u);

Figure 3: The D* Lite Algorithm (basic version).

When edge costs change, D* Lite updates the rhs-values
of each state immediately affected by the changed edge costs
and places those states that have been made inconsistent
onto the queue. As before, it then expands the states on the
queue in order of increasing priority until there is no state in
the queue with a priority less than that of the start state. By
incorporating the value k2(s) into the priority for state s, D*
Lite ensures that states that are along the current path and on
the queue are processed in the right order. Combined with
the termination condition, this ordering also ensures that a
least-cost path will have been found from the start state to
the goal state when processing is finished. The basic version
of the algorithm (for a fixed start state) is given in Figure 31.

D* Lite is efficient because it uses a heuristic to restrict at-
tention to only those states that could possibly be relevant to
repairing the current solution path from a given start state to
the goal state. When edge costs decrease, the incorporation
of the heuristic in the key value (k1) ensures that only those
newly-overconsistent states that could potentially decrease
the cost of the start state are processed. When edge costs
increase, it ensures that only those newly-underconsistent
states that could potentially invalidate the current cost of the
start state are processed.

In some situations the process of invalidating old costs

1Because the optimizations of D* Lite presented in (Koenig &
Likhachev 2002) can significantly speed up the algorithm, for an
efficient implementation of D* Lite please refer to that paper.



may be unnecessary for repairing a least-cost path. For ex-
ample, such is the case when there are no edge cost de-
creases and all edge cost increases happen outside of the
current least-cost path. To guarantee optimality in the fu-
ture, D* Lite would still invalidate portions of the old search
tree that are affected by the observed edge cost changes even
though it is clear that the old solution remains optimal. To
overcome this a modified version of D* Lite has recently
been proposed that delays the propagation of cost increases
as long as possible while still guaranteeing optimality. De-
layed D* (Ferguson & Stentz 2005) is an algorithm that ini-
tially ignores underconsistent states when changes to edge
costs occur. Then, after the new values of the overconsis-
tent states have been adequately propagated through the state
space, the resulting solution path is checked for any under-
consistent states. All underconsistent states on the path are
added to the OPEN list and their updated values are prop-
agated through the state space. Because the current propa-
gation phase may alter the solution path, the new solution
path needs to be checked for underconsistent states. The en-
tire process repeats until a solution path that contains only
consistent states is returned.

Applicability: Replanning Algorithms
Delayed D* has been shown to be significantly more effi-
cient than D* Lite in certain domains (Ferguson & Stentz
2005). Typically, it is most appropriate when there is a rel-
atively large distance between the start state and the goal
state, and changes are being observed in arbitrary locations
in the graph (for example, map updates are received from a
satellite). This is because it is able to ignore the edge cost
increases that do not involve its current solution path, which
in these situations can lead to a dramatic decrease in over-
all computation. When a robot is moving towards a goal in a
completely unknown environment, Delayed D* will not pro-
vide much benefit over D* Lite, as in this scenario typically
the costs of only few states outside of the current least-cost
path have been computed and therefore most edge cost in-
creases will be ignored by both algorithms. There are also
scenarios in which Delayed D* will do more processing
than D* Lite: imagine a case where the processing of un-
derconsistent states changes the solution path several times,
each time producing a new path containing underconsistent
states. This results in a number of replanning phases, each
potentially updating roughly the same area of the state space,
and will be far less efficient than dealing with all the under-
consistent states in a single replanning episode. However, in
realistic navigation scenarios, such situations are very rare.

In practise, both D* Lite and Delayed D* are very effec-
tive for replanning in the context of mobile robot navigation.
Typically, in such scenarios the changes to the graph are hap-
pening close to the robot (through its observations), which
means their effects are usually limited. When this is the case,
using an incremental replanner such as D* Lite will be far
more efficient than planning from scratch. However, this is
not universally true. If the areas of the graph being changed
are not necessarily close to the position of the robot, it is pos-
sible for D* Lite to be less efficient than A*. This is because
it is possible for D* Lite to process every state in the envi-

ronment twice: once as an underconsistent state and once
as an overconsistent state. A*, on the other hand, will only
ever process each state once. The worst-case scenario for D*
Lite, and one that illustrates this possibility, is when changes
are being made to the graph in the vicinity of the goal. It is
thus common for systems using D* Lite to abort the replan-
ning process and plan from scratch whenever either major
edge cost changes are detected or some predefined threshold
of replanning processing is reached.

Also, when navigating through completely unknown envi-
ronments, it can be much more efficient to search forwards
from the agent position to the goal, rather than backwards
from the goal. This is because we typically assign optimistic
costs to edges whose costs we don’t know. As a result, areas
of the graph that have been observed have more expensive
edge costs than the unexplored areas. This means that, when
searching forwards, as soon as the search exits the observed
area it can rapidly progress through the unexplored area di-
rectly to the goal. However, when searching backwards, the
search initially rapidly progresses to the observed area, then
once it encounters the more costly edges in the observed
area, it begins expanding large portions of the unexplored
area trying to find a cheaper path. As a result, it can be sig-
nificantly more efficient to use A* rather than backwards A*
when replanning from scratch. Because the agent is moving,
it is not possible to use a forwards-searching incremental re-
planner, which means that the computational advantage of
using a replanning algorithm over planning from scratch is
reduced.

As mentioned earlier, these algorithms can also be applied
to symbolic planning problems (Koenig, Furcy, & Bauer
2002; Liu, Koenig, & Furcy 2002). However, in these cases
it is important to consider whether there is an available pre-
decessor function in the particular planning domain. If not,
it is necessary to maintain for each state s the set of all states
s′ that have used s as a successor state during the search, and
treat this set as the set of predessors of s. This is also useful
when such a predecessor function exists but contains a very
large number of states; maintaining a list of just the states
that have actually used s as a successor can be far more effi-
cient than generating all the possible predecessors.

In the symbolic planning community it is also common to
use inconsistent heuristics since problems are often infeasi-
ble to solve optimally. The extensions to D* Lite presented
in (Likhachev & Koenig 2005) enable D* Lite to handle in-
consistent heuristics. These extensions also allow one to
vary the tie-breaking criteria when selecting states from the
OPEN list for processing. This might be important when a
problem has many solutions of equal costs and the OPEN
list contains a large number of states with the same priori-
ties.

Apart from the static approaches (Dijkstra’s, A*), all of
the algorithms that we discuss in this paper attempt to reuse
previous results to make subsequent planning tasks easier.
However, if the planning problem has changed sufficiently
since the previous result was generated, this result may be a
burden rather than a useful starting point.

For instance, it is possible in symbolic domains that alter-
ing the cost of a single operator may affect the path cost of



a huge number of states. As an example, modifying the cost
of the load operator in the rocket domain may completely
change the nature of the solution. This can also be a prob-
lem when path planning for robots with several degrees of
freedom: even if a small change occurs in the environment,
it can cause a huge number of changes in the complex con-
figuration space. As a result, replanning in such scenarios
can often be of little or no benefit.

Anytime Algorithms
When an agent must react quickly and the planning problem
is complex, computing optimal paths as described in the pre-
vious sections can be infeasible, due to the sheer number of
states required to be processed in order to obtain such paths.
In such situations, we must be satisfied with the best solution
that can be generated in the time available.

A useful class of deterministic algorithms for address-
ing this problem are commonly referred to as anytime al-
gorithms. Anytime algorithms typically construct an initial,
possibly highly suboptimal, solution very quickly, then im-
prove the quality of this solution while time permits (Zil-
berstein & Russell 1995; Dean & Boddy 1988; Zhou &
Hansen 2002; Likhachev, Gordon, & Thrun 2003; Horvitz
1987). Heuristic-based anytime algorithms often make use
of the fact that in many domains inflating the heuristic values
used by A* (resulting in the weighted A* search) often pro-
vides substantial speed-ups at the cost of solution optimality
(Bonet & Geffner 2001; Korf 1993; Zhou & Hansen 2002;
Edelkamp 2001; Rabin 2000; Chakrabarti, Ghosh, & De-
Sarkar 1988). Further, if the heuristic used is consistent2,
then multiplying it by an inflation factor ε > 1 will produce
a solution guaranteed to cost no more than ε times the cost of
an optimal solution. Likhachev, Gordon, and Thrun use this
property to develop an anytime algorithm that performs a
succession of weighted A* searches, each with a decreasing
inflation factor, where each search reuses efforts from pre-
vious searches (Likhachev, Gordon, & Thrun 2003). Their
approach provides suboptimality bounds for each successive
search and has been shown to be much more efficient than
competing approaches (Likhachev, Gordon, & Thrun 2003).

Likhachev et al.’s algorithm, Anytime Repairing A*
(ARA*), limits the processing performed during each search
by only considering those states whose costs at the previous
search may not be valid given the new ε value. It begins
by performing an A* search with an inflation factor ε0, but
during this search it only expands each state at most once3.
Once a state s has been expanded during a particular search,
if it becomes inconsistent (i.e., g(s) 6= rhs(s)) due to a cost
change associated with a neighboring state, then it is not
reinserted into the queue of states to be expanded. Instead, it
is placed into the INCONS list, which contains all inconsis-
tent states already expanded. Then, when the current search
terminates, the states in the INCONS list are inserted into a

2A (forwards) heuristic h is consistent if, for all s ∈ S,
h(s, sgoal) ≤ c(s, s′) + h(s′, sgoal) for any successor s′ of s,
and h(sgoal, sgoal) = 0.

3It is proved in (Likhachev, Gordon, & Thrun 2003) that this
still guarantees an ε0 suboptimality bound.

key(s)
01. return g(s) + ε · h(sstart, s);

ImprovePath()

02. while (mins∈OPEN(key(s)) < key(sstart))
03. remove s with the smallest key(s) from OPEN;
04. CLOSED = CLOSED ∪ {s};
05. for all s′ ∈ Pred(s)

06. if s′ was not visited before
07. g(s′) = ∞;
08. if g(s′) > c(s′, s) + g(s)

09. g(s′) = c(s′, s) + g(s);
10. if s′ 6∈ CLOSED
11. insert s′ into OPEN with key(s′);
12. else
13. insert s′ into INCONS;

Main()

14. g(sstart) = ∞; g(sgoal) = 0;
15. ε = ε0;
16. OPEN = CLOSED = INCONS = ∅;
17. insert sgoal into OPEN with key(sgoal);
18. ImprovePath();
19. publish current ε-suboptimal solution;
20. while ε > 1

21. decrease ε;
22. Move states from INCONS into OPEN;
23. Update the priorities for all s ∈ OPEN according to key(s);
24. CLOSED = ∅;
25. ImprovePath();
26. publish current ε-suboptimal solution;

Figure 4: The ARA* Algorithm (backwards version).

fresh priority queue (with new priorities based on the new ε
inflation factor) which is used by the next search. This im-
proves the efficiency of each search in two ways. Firstly, by
only expanding each state at most once a solution is reached
much more quickly. Secondly, by only reconsidering states
from the previous search that were inconsistent, much of the
previous search effort can be reused. Thus, when the infla-
tion factor is reduced between successive searches, a rela-
tively minor amount of computation is required to generate
a new solution.

A simplified, backwards-searching version of the algo-
rithm is given in Figure 44. Here, the priority of each state s
in the OPEN queue is computed as the sum of its cost g(s)
and its inflated heuristic value ε ·h(sstart, s). CLOSED con-
tains all states already expanded once in the current search,
and INCONS contains all states that have already been ex-
panded and are inconsistent.

Applicability: Anytime Algorithms
ARA* has been shown to be much more efficient than com-
peting approaches and has been applied successfully to path
planning in high-dimensional state spaces, such as kinematic
robot arms with 20 links (Likhachev, Gordon, & Thrun
2003). It has thus effectively extended the applicability of

4The backwards-searching version is shown because it will be
useful when discussing the algorithm’s similarity to D* Lite.



Figure 5: The ATRV robotic platform.

deterministic planning algorithms into much higher dimen-
sions than previously possible. It has also been used to plan
smooth trajectories for outdoor mobile robots in known en-
vironments. Figure 5 shows an outdoor robotic system that
has used ARA* for this purpose. Here, the search space
involved four dimensions: the (x, y) position of the robot,
the robot’s orientation, and the robot’s velocity. ARA* is
able to plan suboptimal paths for the robot very quickly,
then improve the quality of these paths as the robot begins
its traverse (as the robot moves the start state changes and
therefore in between search iterations the heuristics are re-
computed for all states in the OPEN list right before their
priorites are updated).

ARA* is well suited to domains in which the state space
is very large and suboptimal solutions can be generated ef-
ficiently. Although using an inflation factor ε usually expe-
dites the planning process, this is not guaranteed. In fact, it is
possible to construct pathological examples where the best-
first nature of searching with a large ε can result in much
longer processing times. The larger ε is, the more greedy
the search through the space is, leaving it more prone to get-
ting temporarily stuck in local minima. In general, the key to
obtaining anytime behavior with ARA* is finding a heuris-
tic function with shallow local minima. For example, in the
case of robot navigation a local minimum can be a U-shaped
obstacle placed on the straight line connecting a robot to
its goal (assuming the heuristic function is Euclidean dis-
tance) and the size of the obstacle determines how many
states weighted A*, and consequently ARA*, will have to
process before getting out of the minimum.

Depending on the domain one can also augment ARA*
with a few optimizations. For example, in graphs with con-
siderable branching factors the OPEN list can grow pro-
hibitively large. In such cases, one can borrow an interesting
idea from (Zhou & Hansen 2002) and prune (and never in-
sert) the states from the OPEN list whose priorities based
on un-inflated heuristic are already larger than the cost of
the current solution (e.g., g(sgoal) in the forwards-searching
version).

However, because ARA* is an anytime algorithm, it is

only useful when an anytime solution is desired. If a solution
with a particular suboptimality bound of εd is desired, and
no intermediate solution matters, then it is far more efficient
to perform a weighted A* search with an inflation factor of
εd than to use ARA*.

Further, ARA* is only applicable in static planning do-
mains. If changes are being made to the planning graph,
ARA* is unable to reuse its previous search results and must
replan from scratch. As a result, it is not appropriate for dy-
namic planning problems. It is this limitation that motivated
research into the final set of algorithms we discuss here: any-
time replanners.

Anytime Replanning Algorithms
Although each is well developed on its own, there has been
relatively little interaction between the above two areas of
research. Replanning algorithms have concentrated on find-
ing a single, usually optimal, solution, and anytime algo-
rithms have concentrated on static environments. But some
of the most interesting real world problems are those that are
both dynamic (requiring replanning) and complex (requiring
anytime approaches).

As a motivating example, consider motion planning for a
kinematic arm in a populated office area. A planner for such
a task would ideally be able to replan efficiently when new
information is received indicating that the environment has
changed. It would also need to generate suboptimal solu-
tions, as optimality may not be possible given limited delib-
eration time.

Recently, Likhachev et al. developed Anytime Dynamic
A* (AD*), an algorithm that combines the replanning ca-
pability of D* Lite with the anytime performance of ARA*
(Likhachev et al. 2005). AD* performs a series of searches
using decreasing inflation factors to generate a series of solu-
tions with improved bounds, as with ARA*. When there are
changes in the environment affecting the cost of edges in the
graph, locally affected states are placed on the OPEN queue
to propagate these changes through the rest of the graph, as
with D* Lite. States on the queue are then processed until
the solution is guaranteed to be ε-suboptimal.

The algorithm is presented in Figures 6 and 75. AD* be-
gins by setting the inflation factor ε to a sufficiently high
value ε0, so that an initial, suboptimal plan can be generated
quickly. Then, unless changes in edge costs are detected, ε
is gradually decreased and the solution is improved until it
is guaranteed to be optimal, that is, ε = 1. This phase is
exactly the same as for ARA*: each time ε is decreased, all
inconsistent states are moved from INCONS to OPEN and
CLOSED is made empty.

When changes in edge costs are detected, there is a chance
that the current solution will no longer be ε-suboptimal. If
the changes are substantial, then it may be computation-
ally expensive to repair the current solution to regain ε-
suboptimality. In such a case, the algorithm increases ε so

5As with D* Lite the optimizations presented in (Koenig &
Likhachev 2002) can be used to substantially speed up AD* and
are recommended for an efficient implementation of the algorithm.



key(s)
01. if (g(s) > rhs(s))

02. return [min(g(s), rhs(s)) + ε · h(sstart, s); min(g(s), rhs(s)))];
03. else
04. return [min(g(s), rhs(s)) + h(sstart, s); min(g(s), rhs(s)))];

UpdateState(s)
05. if s was not visited before
06. g(s) = ∞;
07. if (s 6= sgoal) rhs(s) = mins′∈Succ(s)(c(s, s′) + g(s′));
08. if (s ∈ OPEN) remove s from OPEN;
09. if (g(s) 6= rhs(s))

10. if s 6∈ CLOSED
11. insert s into OPEN with key(s);
12. else
13. insert s into INCONS;

ComputeorImprovePath()

14. while (mins∈OPEN(key(s)) <̇ key(sstart) OR rhs(sstart) 6= g(sstart))
15. remove state s with the minimum key from OPEN;
16. if (g(s) > rhs(s))

17. g(s) = rhs(s);
18. CLOSED = CLOSED ∪ {s};
19. for all s′ ∈ Pred(s) UpdateState(s′);
20. else
21. g(s) = ∞;
22. for all s′ ∈ Pred(s) ∪ {s} UpdateState(s′);

Figure 6: Anytime Dynamic A*: ComputeorIm-
provePath function.

Main()

01. g(sstart) = rhs(sstart) = ∞; g(sgoal) = ∞;
02. rhs(sgoal) = 0; ε = ε0;
03. OPEN = CLOSED = INCONS = ∅;
04. insert sgoal into OPEN with key(sgoal);
05. ComputeorImprovePath();
06. publish current ε-suboptimal solution;
07. forever
08. if changes in edge costs are detected
09. for all directed edges (u, v) with changed edge costs
10. Update the edge cost c(u, v);
11. UpdateState(u);
12. if significant edge cost changes were observed
13. increase ε or replan from scratch;
14. else if ε > 1

15. decrease ε;
16. Move states from INCONS into OPEN;
17. Update the priorities for all s ∈ OPEN according to key(s);
18. CLOSED = ∅;
19. ComputeorImprovePath();
20. publish current ε-suboptimal solution;
21. if ε = 1

22. wait for changes in edge costs;

Figure 7: Anytime Dynamic A*: Main function.

that a less optimal solution can be produced quickly. Be-
cause edge cost increases may cause some states to become
underconsistent, a possibility not present in ARA*, states
need to be inserted into the OPEN queue with a key value
reflecting the minimum of their old cost and their new cost.
Further, in order to guarantee that underconsistent states
propagate their new costs to their affected neighbors, their
key values must use admissible heuristic values. This means
that different key values must be computed for underconsis-
tent states than for overconsistent states.

By incorporating these considerations, AD* is able to
handle both changes in edge costs and changes to the in-
flation factor ε. Like the replanning and anytime algorithms
we’ve looked at, it can also be slightly modified to handle
the situation where the start state sstart is changing, as is the
case when the path is being traversed by an agent. This al-
lows the agent to improve and update its solution path while
it is being traversed.

An Example6

Figure 8 presents an illustration of each of the approaches
described in the previous sections employed on a simple
grid world planning problem. In this example we have an
eight-connected grid where black cells represent obstacles
and white cells represent free space. The cell marked R de-
notes the position of an agent navigating this environment
towards a goal cell, marked G (in the upper left corner of
the grid world). The cost of moving from one cell to any
non-obstacle neighboring cell is one. The heuristic used by
each algorithm is the larger of the x (horizontal) and y (ver-
tical) distances from the current cell to the cell occupied by
the agent. The cells expanded by each algorithm for each
subsequent agent position are shown in grey. The resulting
paths are shown as grey arrows.

The first approach shown is (backwards) A*. The initial
search performed by A* provides an optimal path for the
agent. After the agent takes two steps along this path, it
receives information indicating that one of the cells in the
top wall is in fact free space. It then replans from scratch
using A* to generate a new, optimal path to the goal. The
combined total number of cells expanded at each of the first
three agent positions is 31.

The second approach is A* with an inflation factor of
ε = 2.5. This approach produces an initial suboptimal so-
lution very quickly. When the agent receives the new infor-
mation regarding the top wall, this approach replans from
scratch using its inflation factor and produces a new path
(which happens to be optimal). The total number of cells
expanded is only 19, but the solution is only guaranteed to
be ε-suboptimal at each stage.

The third approach is D* Lite, and the fourth is D* Lite
with an inflation factor of ε = 2.5. The bounds on the qual-
ity of the solutions returned by these respective approaches
are equivalent to those returned by the first two. However,
because D* Lite reuses previous search results, it is able to
produce its solutions with far fewer overall cell expansions.

6This example and the ensuing discussion are borrowed from
(Likhachev et al. 2005).



left: A*
right: A* with ε = 2.5

ε = 1.0 ε = 1.0 ε = 1.0 ε = 2.5 ε = 2.5 ε = 2.5

left: D* Lite
right: D* Lite with ε = 2.5

ε = 1.0 ε = 1.0 ε = 1.0 ε = 2.5 ε = 2.5 ε = 2.5

left: ARA*
right: Anytime Dynamic A*

ε = 2.5 ε = 1.5 ε = 1.0 ε = 2.5 ε = 1.5 ε = 1.0

Figure 8: A simple robot navigation example. The robot starts in the bottom right cell and plans a path to the upper left cell.
After it has moved two steps along its path, it observes a gap in the top wall. The states expanded by each of six algorithms
(A*, A* with an inflation factor, D* Lite, D* Lite with an inflation factor, ARA*, and AD*) are shown at each of the first three
robot positions. Example borrowed from (Likhachev et al. 2005).

D* Lite without an inflation factor expands 27 cells (almost
all in its initial solution generation) and always maintains an
optimal solution, and D* Lite with an inflation factor of 2.5
expands 13 cells but produces solutions that are suboptimal
every time it replans.

The final row of the figure shows the results of (back-
wards) ARA* and AD*. Each of these approaches begins
by computing a suboptimal solution using an inflation factor
of ε = 2.5. While the agent moves one step along this path,
this solution is improved by reducing the value of ε to 1.5
and reusing the results of the previous search. The path cost
of this improved result is guaranteed to be at most 1.5 times
the cost of an optimal path. Up to this point, both ARA* and
AD* have expanded the same 15 cells each. However, when
the robot moves one more step and finds out the top wall
is broken, each approach reacts differently. Because ARA*
cannot incorporate edge cost changes, it must replan from
scratch with this new information. Using an inflation fac-
tor of 1.0 it produces an optimal solution after expanding 9
cells (in fact this solution would have been produced regard-
less of the inflation factor used). AD*, on the other hand, is
able to repair its previous solution given the new informa-
tion and lower its inflation factor at the same time. Thus, the
only cells that are expanded are the 5 whose cost is directly
affected by the new information and that reside between the
agent and the goal.

Overall, the total number of cells expanded by AD* is 20.
This is 4 less than the 24 required by ARA* to produce an
optimal solution, and substantially less than the 27 required
by D* Lite. Because AD* reuses previous solutions in the
same way as ARA* and repairs invalidated solutions in the
same way as D* Lite, it is able to provide anytime solutions

in dynamic environments very efficiently. The experimental
evaluation on a simulated kinematic robot arm performed
in (Likhachev et al. 2005) supports these claims and shows
AD* to be many times more efficient than ARA*, to be able
to operate under limited time constraints (an ability that D*
Lite lacks), and finally to consistently produce significantly
better solutions than D* Lite with inflated heuristics.

Applicability: Anytime Replanning Algorithms
AD* has been shown to be useful for planning in dynamic,
complex state spaces, such as 3 DOF robotic arms operat-
ing in dynamic environments (Likhachev et al. 2005). It
has also been used for path-planning for outdoor mobile
robots. In particular, those operating in dynamic or partially-
known outdoor environments, where velocity considerations
are important for generating smooth, timely trajectories. As
discussed earlier, this can be framed as a path planning prob-
lem over a 4D state space, and an initial suboptimal solution
can be generated using AD* in exactly the same manner as
ARA*.

Once the robot starts moving along this path, it is likely
that it will discover inaccuracies in its map of the environ-
ment. As a result, the robot needs to be able to quickly re-
pair previous, suboptimal solutions when new information is
gathered, then improve these solutions as much as possible
given its processing constraints.

AD* has been used to provide this capability for two
robotic platforms currently used for outdoor navigation: an
ATRV and a Segway Robotic Mobility Platform (Segway
RMP) (see Figure 9) (Likhachev et al. 2005). To direct the
4D search in each case, a fast 2D (x, y) planner was used to
provide the heuristic values.



Figure 9: The Segway Robotic Mobility Platform.

Unfortunately, AD* suffers the drawbacks of both any-
time algorithms and replanning algorithms. As with replan-
ning algorithms, it is possible for AD* to be more computa-
tionally expensive than planning from scratch. In fact, this
is even more so for AD*, since the version presented here
and in (Likhachev et al. 2005) reorders the OPEN list every
time ε is changed. It is thus important to have extra checks
in place for AD* to prevent trying to repair the previous so-
lution when it looks like it will be more time consuming
than starting over (see lines 12 - 14 in Figure 7). For the
outdoor navigation platforms mentioned above, this check
is based on how much the 2D heuristic cost from the cur-
rent state to the goal has changed based on changes to the
map: if this change is large, there is a good chance replan-
ning will be time consuming. In general it is worth taking
into account how much of the search tree has become in-
consistent, as well as how long it has been since we last re-
planned from scratch. If a large portion of the search tree
has been affected and the last complete replanning episode
was quite some time ago, it is probably worth scrapping the
search tree and starting fresh. This is particularly true in
very high-dimensional spaces where the dimensionality is
derived from the complexity of the agent rather than the en-
vironment, since changes in the environment can affect a
huge number of states.

There are also a couple optimizations that can be made
to AD*. Firstly, it is possible to limit the expense of re-
ordering the OPEN list each time ε changes by reducing the
size of the queue. Specifically, OPEN can be split into a pri-
ority queue containing states with low key values and one
or more unordered lists containing the states with very large
key values. The states from the unordered lists need only be
considered if the element at the top of the priority queue has
a larger key value than the state with minimum key value in
these lists. We thus need only maintain the minimum key
value (or some lower bound for this value) for all states in

the unordered lists. Another more sophisticated and poten-
tially more effective idea that avoids the re-order operation
altogether is based on adding a bias to newly inconsistent
states (Stentz 1995) and is discussed in (Likhachev et al.
2005).

Conclusions
In this paper, we have discussed a family of heuristic algo-
rithms for path planning in real world scenarios. We have
attempted to highlight the fundamental similarities between
each of the algorithms, along with their individual strengths,
weaknesses, and applicable problem domains. A common
underlying theme throughout this discussion has been the
variable value of previous solutions. When the problem be-
ing solved does not change significantly between invoca-
tions of our planner, it can be highly advantageous to take
advantage of previous solutions as much as possible in con-
structing a new one. When the problem being solved does
change, previous solutions are less useful, and can even be
detrimental to the task of arriving at a new solution.

Acknowledgments
The authors would like to thank Sven Koenig for fruitful
discussions. This work was sponsored by DARPA’s MARS
program and the U.S. Army Research Laboratory, un-
der contract “Robotics Collaborative Technology Alliance”.
The views contained in this document are those of the au-
thors and do not represent the official policies or endorse-
ments of the U.S. Government. Dave Ferguson is partially
supported by a National Science Foundation Graduate Re-
search Fellowship.

References
Barbehenn, M., and Hutchinson, S. 1995. Efficient search
and hierarchical motion planning by dynamically maintain-
ing single-source shortest path trees. IEEE Transactions on
Robotics and Automation 11(2):198–214.
Bellman, R. 1957. Dynamic Programming. Princeton Uni-
versity Press.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chakrabarti, P.; Ghosh, S.; and DeSarkar, S. 1988. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34:97–113.
Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of the National Con-
ference on Artificial Intelligence (AAAI).
Dijkstra, E. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Edelkamp, S. 2001. Planning with pattern databases. In
Proceedings of the European Conference on Planning.
Ersson, T., and Hu, X. 2001. Path planning and navigation
of mobile robots in unknown environments. In Proceedings
of the IEEE International Conference on Intelligent Robots
and Systems (IROS).



Ferguson, D., and Stentz, A. 2005. The Delayed D* Algo-
rithm for Efficient Path Replanning. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA).
Gelperin, D. 1977. On the optimality of A*. Artificial
Intelligence 8(1):69–76.
Hart, P.; Nilsson, N.; and Rafael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE trans. Sys. Sci. and Cyb. 4:100–107.
Hebert, M.; McLachlan, R.; and Chang, P. 1999. Experi-
ments with driving modes for urban robots. In Proceedings
of SPIE Mobile Robots.
Horvitz, E. 1987. Problem-solving design: Reasoning
about computational value, trade-offs, and resources. In
Proceedings of the Second Annual NASA Research Forum.
Huiming, Y.; Chia-Jung, C.; Tong, S.; and Qiang, B. 2001.
Hybrid evolutionary motion planning using follow bound-
ary repair for mobile robots. Journal of Systems Architec-
ture 47:635–647.
Kavraki, L.; Svestka, P.; Latombe, J.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4):566–580.
Koenig, S., and Likhachev, M. 2002. Improved fast replan-
ning for robot navigation in unknown terrain. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA).
Koenig, S.; Furcy, D.; and Bauer, C. 2002. Heuristic
search-based replanning. In Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling, 294–301.
Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62:41–78.
LaValle, S., and Kuffner, J. 1999. Randomized kinody-
namic planning. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).
LaValle, S., and Kuffner, J. 2001. Rapidly-exploring Ran-
dom Trees: Progress and prospects. Algorithmic and Com-
putational Robotics: New Directions 293–308.
LaValle, S. 1998. Rapidly-exploring Random Trees: A
new tool for path planning. Technical report, Computer
Science Dept., Iowa state University.
LaValle, S. 2005. Planning Algorithms. In progress - see
http://msl.cs.uiuc.edu/planning/.
Likhachev, M., and Koenig, S. 2005. A Generalized
Framework for Lifelong Planning A*. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS).
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime Dynamic A*: An Anytime,
Replanning Algorithm. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In

Advances in Neural Information Processing Systems. MIT
Press.
Likhachev, M. 2003. Search techniques for planning in
large dynamic deterministic and stochastic environments.
Thesis proposal. School of Computer Science, Carnegie
Mellon University.
Liu, Y.; Koenig, S.; and Furcy, D. 2002. Speeding up
the calculation of heuristics for heuristic search-based plan-
ning. In Proceedings of the National Conference on Artifi-
cial Intelligence (AAAI), 484–491.
Matthies, L.; Xiong, Y.; Hogg, R.; Zhu, D.; Rankin, A.;
Kennedy, B.; Hebert, M.; Maclachlan, R.; Won, C.; Frost,
T.; Sukhatme, G.; McHenry, M.; and Goldberg, S. 2000.
A portable, autonomous, urban reconnaissance robot. In
Proceedings of the International Conference on Intelligent
Autonomous Systems (IAS).
Nilsson, N. 1980. Principles of Artificial Intelligence.
Tioga Publishing Company.
Podsedkowski, L.; Nowakowski, J.; Idzikowski, M.; and
Vizvary, I. 2001. A new solution for path planning in par-
tially known or unknown environments for nonholonomic
mobile robots. Robotics and Autonomous Systems 34:145–
152.
Rabin, S. 2000. A* speed optimizations. In DeLoura, M.,
ed., Game Programming Gems, 272–287. Rockland, MA:
Charles River Media.
Ramalingam, G., and Reps, T. 1996. An incremental al-
gorithm for a generalization of the shortest-path problem.
Journal of Algorithms 21:267–305.
Stentz, A., and Hebert, M. 1995. A complete navigation
system for goal acquisition in unknown environments. Au-
tonomous Robots 2(2):127–145.
Stentz, A. 1994. Optimal and efficient path planning
for partially-known environments. In Proceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA).
Stentz, A. 1995. The Focussed D* Algorithm for Real-
Time Replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI).
Thayer, S.; Digney, B.; Diaz, M.; Stentz, A.; Nabbe, B.;
and Hebert, M. 2000. Distributed robotic mapping of
extreme environments. In Proceedings of SPIE Mobile
Robots.
Zhou, R., and Hansen, E. 2002. Multiple sequence align-
ment using A*. In Proceedings of the National Conference
on Artificial Intelligence (AAAI). Student Abstract.
Zilberstein, S., and Russell, S. 1995. Approximate reason-
ing using anytime algorithms. In Imprecise and Approxi-
mate Computation. Kluwer Academic Publishers.
Zlot, R.; Stentz, A.; Dias, M.; and Thayer, S. 2002. Multi-
robot exploration controlled by a market economy. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA).


