
Introduction to MATLAB

• Very sophisticated “graphing calculator”

• High-level programming language for sci-
entific computing

• Similar to PYTHON, with more built-in BUT
not open-source

• vs. c or FORTRAN, many built-in com-
mands, less-complex syntax

• vs. c or FORTRAN, Interpreted language
(code translated during run), with some pre-
compiled functions

• IF used carefully, good balance of speed
and ease of use

Our introduction follows, in part, section 1
of the excellent “An introduction to Matlab for
dynamic modeling” by Guckenheimer and Ell-
ner:
www.cam.cornell.edu/ ∼
dmb/DMBsupplements.html, as well as mate-
rial from Prof. Mark Goldman, UC Davis

Launch matlab!

Command window (graphing calculator) mode

>> 1+3
ans =

4

Assigning values to variables

>> a=1+3
a =

4

Displaying values

>> a
a =

4

Suppressing display of output in MATLAB

>> a=1+3;

1

BASIC OPERATIONS:

Arithmetic

+
-
/ (divide)

* (multiply)
ˆ (exponent)
abs(x) (absolute value)
cos(x), sin(x), tan(x)
exp(x) exponential function eˆx
log(x) log to base e
sqrt(x) square root

The latter are built-in functions

>> a = sqrt(5)
a = 1.4142
>> a=2 ; b=4 ; c=aˆb
c = 16

There are also some built-in variables

>> pi
ans = 3.1416
>> cos(pi)
ans = -1

2

FUNDAMENTAL PROGRAMMING SYNTAX:
• LHS = RHS

• value RHS assigned to LHS, NOT other way around

>> c=2
c = 2

>> 2=c
??? 2=c
Error: The expression to the left of the equals sign is
not a valid target for an assignment.

Another example:
>> a=2;b=4;
>> a=b;
>> a,b
a = 4
b = 4

>> a=2;b=4;
>> b=a;
>> a,b
a = 2
b = 2

3

Variable names:

>> a1=2
>> my_favorite_variable_number_2=4

VALID: Letter followed by letters, numbers, un-
derscore character.
NOTE! capitalization matters. A 6= a !!

NOT VALID:

>> my_favorite_variable#2=4
??? my_favorite_variable#2=1
>> 2a=1
Error: Unexpected MATLAB expression.

And using periods gives a different, more
advanced type of variable (data structure) that
we won’t discuss now

>> my.favorite.variable.name=1
my =

favorite: [1x1 struct]

ORDER OF OPERATIONS:

PEMDAS
parenthesis
exponentiation
multiplication
division
addition
subtraction

Say we want: a = 2 , b = 4 , c = a
a+b

>> a=1 ; b=4 ; c=a/a+b
c = 5

>> a=1 ; b=4 ; c=a/(a+b)
c = 0.2000

!! When in doubt, put lots of parentheses !!

4

CHECK: What do you get for the below, and why?

>> a=1 ; b=4 ; c =0 ;
>> d=a/0+b
>> d=a/(0+b)
>> d=-aˆ2
>> d=(-a)ˆ2

5

Check: what variables stored in memory:
whos command (MATLAB)

>> whos
Name Size Bytes Class Attributes

a 1x1 8 double
b 1x1 8 double
c 1x1 8 double

OR look in “workspace” to see variables and values
OR just type variable at command line

>> a
a = 1

GOOD PRACTICE: clear variables before starting to program
(MATLAB:)

>> clear all
>> whos

Commands stored in memory:
See command history, or just hit “up arrow”

6

Representation of numbers in scientific computing: finite precision
Standard: IEEE floating point arithmetic.
Important feature – finite precision: approx 16 significant digits

Display more digits:

>> a=0.1
a =

0.1000
>> format long
>> a
a = 0.100000000000000

Roundoff error:

>> a=4/3 ; b=a-1 ; c = (3*b)-1

c =

-2.220446049250313e-16

7

OVERFLOW AND UNDERFLOW:

Maximum number: ≈ 10308

Minimum number: ≈ 10−308

Overflow:

>> a=10ˆ400
a = Inf

Underflow

>> a=10ˆ-400
a = 0

Another special number: not defined

>> 0/0
ans =

NaN

8

HELP !! (MATLAB)
How does a command or function work?

>> help sqrt
SQRT Square root.

SQRT(X) is the square root of the elements of X. Complex
results are produced if X is not positive.

See also sqrtm, realsqrt, hypot.

Reference page in Help browser
doc sqrt

>> doc sqrt

Thanks anyway, but what SHOULD I be looking up? the lookfor command

>> lookfor exponent
EXP Exponential.
EXPINT Exponential integral function.
EXPM Matrix exponential.
...

HELP !!: Remember Google and stackoverflow, etc are your friends

9

VECTORS

A vector value is just a list of scalar values.
Arranged horizontally into a row vector:

~x = (6 12 5) . (1)

Or vertically into a column vector:

~x =

 6

12

5

 . (2)

In MATLAB, row vector:

>>x=[6 12 5]
x = 6 12 5

OR

>>x=[6 ,12 ,5]
x = 6 12 5

10

In MATLAB, column vector:

>>x=[6 ; 12 ; 5]

x =

6
12
5

The transpose operation switches between row and column vectors. This is given by dot
prime in MATLAB. That is, in MATLAB:

>> y=x.’

11

Easy way to make (row) vectors [MATLAB,]

x = start : increment : end

>> x=0:1:10
x =

0 1 2 3 4 5 6 7 8 9 10

>> x=1:.1:1.5 [MATLAB]
x =

1.0000 1.1000 1.2000 1.3000 1.4000 1.5000

Accessing vector elements (or components):
MATLAB:

>> x5=x(5)
x5 = 1.4000

>> x(7)
??? Index exceeds matrix dimensions.

Indexing starts with 1; x(0) does not work.

12

Exercise 0.1 : Have MATLAB compute the values of

1. Make a list numbers spaced by 0.2, between a minimum value of 1 and a maximum value
of 20. Assign that list to the variable name myvector.

2. use help to look up the linspace command, and repeat the previous command using
linspace

3. pick out the 4th value of myvector and assign it to the variable name fourthelement

13

TWO BASIC OPERATIONS ON VECTORS:

Multiplication by scalar

c~x =

 x1
x2
x3

 =

 cx1
cx2
cx3

; that is, xj → c xj

Matlab *

>> x=[1;2;3] ; 3*x

ans =
3
6
9

Addition of two vectors

~x + ~y =

 x1 + y1
x2 + y2
x3 + y3


Subtraction similar

Works the same for row and column vectors

Matlab + and -

>> x=[1;2] ; y=[0;-2]; z=x+y
z =

1
0

>> z+ [2 2]
??? Error using ==> plus

Matrix dimensions must agree: add row +
row or col + col

CAUTION! Multiplication of vectors does NOT
work the same way ... more later (matrix- vec-
tor multiplication)

14

Matrices
Think of matrices as N ×M tables of num-

bers N rows, M columns
MATLAB:

A =

(
A1,1 A1,2

A2,1 A2,2

)
entries A(n,m)

>> A=[1,2,3 ; 4 6 7 ; 1 3 4]

A =
1 2 3
4 6 7
1 3 4

>> A23=A(2,3)
A23 = 7

N-element col. vector: N, M=1
M-element row. vector: N=1, M
Otherwise, we will mostly consider square

matrices (N=M)

Exercise 0.2 : Have MATLAB compute the
values of

1. 3*A. From this, write down a rule for what
matrix multiplication by a single number
(scalar) means.

2. A+A. From this, write down a rule for what
summing matrices means.

3. A*A. From this, conclude that multiplying
two matrices (like multiplying two vectors)
means something very different indeed (and
to be cautious about)!

4. Experiment with the command .*with both
vectors and matrices. What does THIS
command do?

15

FUNDAMENTAL CONCEPT: Matrix-vector multiplication

(
A1,1 A1,2

A2,1 A2,2

)(
x1
x2

)
= x1

(
A1,1

A2,1

)
+ x2

(
A1,2

A2,2

)
e.g. (

1 1

1 2

)(
1

2

)
=

(
3

5

)

In general,  | · · · |
a1 · · · an
| · · · |

 x1
...
xn

 =
∑
j

xj

 |
aj
|


Exercise 0.3 : Compute the below by hand ...

• (
2 −3
0 1

)(
−1
2

)
•  2 −3 2471

0 1 4

0 1 4

 −12
0


16

MATLAB * operator

>> A=[1 1 ; 1 2] ; A*[1 ; 2]

ans =

3
5

In y = Ax, A must have same number of
columns as x has rows.

Nonsense:

(
1 1

1 2

) 1

2

4


>> A=[1 1 ; 1 2] ; A*[1 ; 2 ; 4]
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Exercise 0.4 :

• Check your answers to the hand calcula-
tions from the previous exercise, using MAT-
LAB.

PLOTTING

• Plotting is MATLAB is great, and best learned
just by doing ...

• Write a program plot_a_sin_wave.m that
plots sin(x) from x = −π to x = π. HINT:
type doc plot!

17

The .m file: time to code!

• Type edit at command line

• Put a few of your favorite commands in the editor, and save it as myprogram.m Remem-
ber the folder where you saved it.

• You’ve made a .m file — that is, a MATLAB program!

• Navigate (click on the ..., or use the cd command) in the command window to the location
where you stored the program

• To run it, type myprogram at the command line

18

The for loop

Use for repeated operations.

Basic structure:
MATLAB CODE

for n= 1:9
disp(n)

end

• Use edit to code this into a program
myloop.m, save it and run it!

COMPONENTS OF THE FOR LOOP:

n loop variable
1:3 loop vector
disp(n) or print(n) command

Code starts with n equal to first element in
loop vector

runs command

advances n to next element

repeats

quits when have covered all elements of loop
vector

19

In more detail:

• in any for loop, we define a list of numbers,
here 1 through 9. think of this as the ”loop
vector.” The loop vector can be any list of
numbers – it does not have to be “integers
counting up.”

• the loop variable, n, starts at the first num-
ber in the list. it is set equal to that value

• the commands (here, just printing the value
of n to the screen) are run

• then when end is reached, n is reset to the
NEXT number in the list, the commands
are run, and the process is repeated

• it terminates when all entries of the loop
vector have been used.

Run and describe what happens for these
examples:

for p=[4 6 67 -1]
disp(p)

end

for k=1:2:5
disp(k)

end

a=0
for k=1:5

a=a+k
end

20

CULMINATION (1)

Fibonacci numbers, matrix multiplication, and eigenvalues: (From Strang, Linear Alge-
bra and its Applications). The Fibonacci sequence is

0, 1, 1, 2, 3, 5, 8, 13, ...

and occurs all over biology, e.g. in the number of seeds in subsequent “rings” of a sunflower
(D. O’Connell, Scientific American, 1951). The k + 2nd element in the sequence is defined by
being the sum of the former two elements:

nk+2 = nk+1 + nk .

Define a two-element vector

xk =

(
nk+1

nk

)
and write a matrix multiplication that finds xk+1 by multiplying xk by a 2×2 matrix A. Specifically,
write down A.

Write a MATLAB program that computes the first 300 elements in the Fibonacci sequence.
Also, compute the ratio of subsequent elements in the sequences: rk =

nk+1
nk

vs. k, for k from
1 to 299. What is the behavior of rk as k grows?

HINT: If you did this right, your answer will (incredibly) involve the golden mean 1+
√
5

2 .

21

CULMINATION (2)

• Imagine that you have a giant neural network, and each cell is either firing (“on”) or not
(“off”). Each second, for every neuron that is already on, two more switch on. This is
a model of EXCITATORY SYNAPTIC COMMUNICATION from the “on” neurons. At time
t = 0 seconds, 1 neuron is “on.” Write a program, called neural_explosion.m that
does the following:

– using a for loop, compute a vector number_on that is the number of neurons on at
each second, from t = 0 to t = 30 seconds.

– Make a plot of the number of neurons on vs. time. Label the axes “time” and “number
on.” Hint: type help plot!

22

IF STATEMENTS

Logical conditions also allow the rules for “what
happens next” in a model to be affected by
the current values of state variables. The if
statement lets us do this; the basic format is

if(condition);
commands

else;
other commands

end;

Here’s a simple example or two. Code this
into MATLAB:

x=2
if (x==2);

disp(’OK, x is 2’)
else;

disp(’umm, x is not 2’)
end;

x=3
if (x<2);

disp(’OK, x is less than 2’)
else;

disp(’umm, x is not less than 2’)
end;

You get the picture: the condition is ANY-
THING you want that is true or false.

If the “else” is to do nothing, you can leave
it out:

if(condition);
commands

end;

As in

x=3
if (x<2);

disp(’OK, x is less than 2’)
end;

23

More complicated decisions can be built up
using elseif. The basic format for that is

if(condition);
commands

elseif(condition);
other commands

else;
other commands
end;

• Modify your previous program to make a
new one: neural_explosion_2.mHere
are the new DYNAMICS: at each second,
test to see if the total number of cells is
less than 100. Of so, for every neuron that
is already on, two more switch on. If not,
for every neuron that is already on, one
more switches on. Plot the result as be-
fore!

24

Random numbers

• Here is the MATLAB command to make a single “pseudo” random number: rand. Type it
and see what you get. Write it down.

• Compare it with what your neighbor got.

• Quit matlab, then restart it. Repeat the above.

• Are you upset with the outcome?

• Repeat this again ... this time, as soon as MATLAB begins, type
rand(’state’,sum(100*clock)). That resets the “state” of the random number gen-
erator to a unique starting point that has to do with EXACTLY what time it is when you type
it in. Thus, you’ll end up with different random numbers each time ... as needed. CON-
CEPT: ALWAYS ALWAYS ALWAYS use this command before your first use of a random
number generator.

25

Next question – how random ARE those random numbers?

• Here is the MATLAB command to make a vector of n “pseudo” random numbers:
r_vector=rand(1,n).
Try it, for n = 100.

• Make a plot of these 100 random variables ... on horizontal axis, you should just have
the integer 1 through 100. On the vertical, you should have a “*” above each of these
numbers, giving the value of the corresponding random number.

• Write down your estimate of how you think these random numbers are “distributed” – what
range they cover, with what frequency.

• Type in the code below and save it as hist_demo.m What does this code do? (Remem-
ber, help hist is your friend!) Does it confirm your estimate?

M=1000;
sample_list=rand(1,M);
[nlist,centerlist]=hist(sample_list,50);
figure
bar(centerlist,nlist/(M));

26

Coin tossing

• Next, say we want to simulate the tossing of an unfair coin, which comes up heads with
probability, or frequency, p (a number between 0 and 1 that gives the fraction of times that
a heads occurs).

• Write a for loop with an if statement that turns r_vector into vector
heads_and_tails_vector full of 0’s and 1’s, where a 1 corresponds to a coin toss that
came out heads. Use p = 0.5. Then repeat with p = 0.1. Do you results make sense?
Which corresponds to a “fair” coin toss?

Neuron explosion, continued

• Modify your previous program to make a new one: neural_explosion_3.m Here are
the new DYNAMICS: at each second, flip a coin with p = 0.1. If you get a heads, then the
synapse SUCCEEDED IN COMMUNICATING. For every neuron that is already on, two
more switch on. If not, the synapse FAILED. For every neuron that is already on, no more
switch on. Plot the result as before!

27

