
Lecture 9:
Multi-Objective 
Optimization

Suggested reading: K. Deb, Multi-Objective Optimization using Evolutionary 
Algorithms, John Wiley & Sons, Inc., 2001 
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Involve more than one objective function that 
are to be minimized or maximized
Answer is set of solutions that define the best 
tradeoff between competing objectives

Multi-Objective Optimization 
Problems (MOOP)
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General Form of MOOP

Mathematically
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In the single-objective optimization problem, 
the superiority of a solution over other 
solutions is easily determined by comparing 
their objective function values
In multi-objective optimization problem, the 
goodness of a solution is determined by the 
dominance

Dominance
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Definition of Dominance

Dominance Test 
x1 dominates x2, if 

Solution x1 is no worse than x2 in all 
objectives
Solution x1 is strictly better than x2 in at least 
one objective

x1 dominates x2 x2 is dominated by x1
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1 Vs 2: 1 dominates 2
1 Vs 5: 5 dominates 1  
1 Vs 4: Neither solution dominates 

Example Dominance Test
f2

(minimize)

f1 (maximize)

1

2

3

4

5
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Non-dominated solution set
Given a set of solutions, the non-dominated 
solution set is a set of all the solutions that are not 
dominated by any member of the solution set

The non-dominated set of the entire feasible decision 
space is called the Pareto-optimal set
The boundary defined by the set of all point mapped 
from the Pareto optimal set is called the Pareto-
optimal front

Pareto Optimal Solution
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Graphical Depiction of 
Pareto Optimal Solution
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Goals in MOO

Find set of solutions as close as possible to  Pareto-
optimal front
To find a set of solutions as diverse as possible

feasible 

objective

space

f1(x)

f2(x)

Pareto-optimal front
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Classic MOO 
Methods
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Weighted Sum Method
Scalarize a set of objectives into a single objective 
by adding each objective pre-multiplied by a user-
supplied weight

Weight of an objective is chosen in proportion to 
the relative importance of the objective 
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Advantage 
Simple

Disadvantage 
It is difficult to set the weight vectors to obtain a 
Pareto-optimal solution in a desired region in the 
objective space
It cannot find certain Pareto-optimal solutions in 
the case of a nonconvex objective space

Weighted Sum Method
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Weighted Sum Method 
(Convex Case)
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Weighted Sum Method
(Non-Convex Case)
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ε-Constraint Method
Haimes et. al. 1971
Keep just one of the objective and restricting the rest 
of the objectives within user-specific values
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ε-Constraint Method
Keep f2 as an objective   Minimize f2(x)

Treat f1 as a constraint     f1(x) ≤ ε1

f1

f2
Feasible 
objective 
space

ε1a ε1b

a
b

f1

f2
Feasible 
objective 
space

ε1aε1a ε1bε1b

aa
bb
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Advantage 
Applicable to either convex or non-convex 
problems

Disadvantage
The ε vector has to be chosen carefully so that it 
is within the minimum or maximum values of the 
individual objective function

ε-Constraint Method
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Weighted Metric Method
Combine multiple objectives using the 
weighted distance metric of any solution from 
the ideal solution z*
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Weighted Metric Method

f1

f2

z*

aa

bb

p=1

(Weighted sum approach)

f1

f2

z*

a

b

p=2
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Weighted Metric Method

f1

f2

z*

a

b

p=∞

(Weighted Tchebycheff problem)
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Advantage
Weighted Tchebycheff metric guarantees finding all 
Pareto-optimal solution with ideal solution z*

Disadvantage 
Requires knowledge of minimum and maximum 
objective values
Requires z* which can be found by independently 
optimizing each objective functions
For small p, not all Pareto-optimal solutions are obtained
As p increases, the problem becomes non-differentiable

Weighted Metric Method



Multi-Objective 
Genetic Algorithms
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Advantages of GAs over Traditional 
Methods

Our desired answer: a set of solutions

Traditional optimization methods operate on a
candidate solution 

Genetic algorithms fundamentally operate on a set 
of candidate solutions
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Multi-Objective EAs (MOEAs)

There are several different multi-objective 
evolutionary algorithms
Depending on the usage of elitism, there are two 
types of multi-objective EAs
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Multi-Objective MOEAs

Non-Elitist MOEAs

Vector evaluated GA
Vector optimized ES
Weight based GA
Random weighted GA
Multiple-objective GA
Non-dominated Sorting 
GA
Niched Pareto GA

Elitist MOEAs

Elitist Non-dominated 
Sorting GA
Distance-based Pareto 
GA
Strength Pareto GA
Pareto-archived ES
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Identifying the Non-Dominated Set

Critical Step in Elitist Strategies
Kung’s et. al. Method

Computational the most efficient method known
Recursive
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Kung’s et. al. Method: Step 1

Step 1:  Sort population in descending order of 
importance of the first objective function and 
name population as P
Step 2: Call recursive function Front(P)
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Front(P)
IF |P| = 1,
Return P

ELSE
T = Front ( P(1: [ |P|/2 ]) )
B = Front ( P( [ |P|/2 + 1 ] : |P|) )
IF the i-th non-dominated solution of 
B is not dominated by any non-
dominated solution of T,  M=T ∪{i} 

Return M
END 

END
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Notes on Front (P)

|•| is the number of the elements
P( a : b ) means all the elements of P from 
index a to b,
[•] is an operator gives the nearest smaller 
integer value
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Example of Kung’s Method

f1 (min)

f2

(min)
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a b c d
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Example of Kung’s Method

a
b
e
c
f
h
d
g

a
b
e
c
f
h
d
g

recursively call the function ‘front’
Step 1

a
b
e
c
f
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d
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Step 2
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c c
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c c
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a
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front returns M as output

T

B

T

T

B

B
B

B

B

B
T

T

T

T
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c, f, h
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a, b,
e, c

f, h,
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e,c

f, h

d, g
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Elitist MOEAs

Elite-preserving operator carries elites of a 
population to the next generation
Rudolph(1996) proved GAs converge to the 
global optimal solution of some functions in 
the presence of elitism
Elitist MOEAs two methods are often used

Elitist Non-dominated Sorting GA (NSGA II)
Strength Pareto EA

* Reference:  G. Rudolph, Convergence of evolutionary algorithms in general search spaces, In 
Proceedings of the Third IEEE conference of Evolutionary Computation, 1996, p.50-54
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Elitist Non-Dominated Sorting GA
(Deb et al., 2000)

Use an explicit diversity-preserving strategy together 
with an elite-preservation strategy
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Elitist Non-Dominated Sorting GA

Non-Dominated Sorting
Classify the solutions into a number of mutually 
exclusive equivalent non-dominated sets

U
ρ

1=
=

j jFF

F2F1

F3

(min) f1

(min)  f2
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Elitist Non-Dominated Sorting GA

Determine Crowding Distance
Denotes half of the perimeter of the enclosing 
cuboid with the nearest neighboring solutions in 
the same front

Cuboid
(min) f2

(min) f1

i
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Elitist Non-Dominated Sorting GA

Crowding tournament selection
Assume that every solution has a non-domination 
rank and a local crowding distance
A solution i wins a tournament with another 
solution j
1.   if the solution i has a better rank

2.   They have the same rank but solution i has 
a better crowing distance than solution j
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Elitist Non-Dominated Sorting GA
Step 1

Combine parent Pt and offspring Qt populations 
Rt = Pt ∪ Qt
Perform a non-dominated sorting to Rt and 
find different fronts Fi

Step 2
Set new population Pt+1 = ∅ and set i = 1
Until |Pt+1| + |Fi| < N, perform Pt+1 = Pt+1 ∪ Fi
and increase i
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Elitist Non-dominated Sorting GA

Step 3
Include the most widely spread solutions (N-|Pt+1|) 
of Fi in Pt+1 using the crowding distance values

Step 4
Create offspring population Qt+1 from Pt+1 by using 
the crowded tournament selection, crossover and 
mutation operators
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Elitist Non-Dominated Sorting GA

PtPt

QtQt

RtRt

Non-dominated
sorting

Non-dominated
sorting

Pt+1Pt+1

Crowding 
distance 
sorting

F1

F2

F3

F1

F2

F3 discard
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Elitist Non-dominated Sorting GA
Advantages

The diversity among non-dominated solutions is 
maintained using the crowding procedure: No 
extra diversity control is needed
Elitism protects an already found Pareto-optimal 
solution from being deleted
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Elitist Non-dominated Sorting GA
Disadvantage

When there are more than N members in the first non-
dominated set, some Pareto-optimal solutions may give 
their places to other non-Pareto-optimal solutions

N=7

A Pareto-optimal solution is discardedA Pareto-optimal solution is discarded
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Strength Pareto EA (SPEA)

Zitzler & Thiele., 1998
Use external population P

Store fixed number of non-dominated solutions
Newly found non-dominated solutions are 
compared with the existing external population and 
the resulting non-dominated solutions are 
preserved
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SPEA Clustering Algorithm
1. Initially, each solution belongs to a distinct cluster Ci
2. If number of clusters is less than or equal to N, go to 5
3. For each pair of clusters, calculate the cluster distance 

dij and find the pair with minimum cluster-distance

4. Merge the two clusters and go to 2
5. Choose only one solution from each cluster and remove 

the other (The solution having minimum average 
distance from other solutions in the cluster can be 
chosen)
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SPEA Clustering Algorithm

f2

f1

Cluster 1

Cluster 2

Cluster 3

Cluster 1

Cluster 2

Cluster 3

N=3
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SPEA Algorithm
Step 1.  Create initial population P0 of size N 
randomly and an empty external population P0 with 
maximum capacity of N
Step 2. Find the non-dominated solutions of  Pt and 
copy (add) these to Pt

Step 3. Find the non-dominated solutions of Pt and 
delete all dominated solutions
Step 4.  If |Pt| > N then use the clustering technique
to reduce the size to N
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Step 5 Fitness evaluation
Elites: assign fitness to each elite solution i by 
using

For current population: assign fitness to a current 
population member j

where Dj is the set of all external population 
members dominating j
Note: a solution with smaller fitness is better
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SPEA Algorithm

Step 6
Apply a binary tournament selection (in a 
minimization sense), a crossover and a mutation 
operator to Pt U Pt and generate the next population 
Pt+1
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Advantages of SPEA

Once a solution Pareto-optimal front is found, 
it is stored in the external population
Clustering ensures a spread among the non-
dominated solutions
The proposed clustering algorithm is 
parameterless
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Disadvantages of SPEA

A balance between the regular population size 
N and the external population size N is 
important

If N is too large, selection pressure for the elites is 
too large and the algorithm may not converge to 
the Pareto-optimal front
If N is too small, the effect of elitism will be lost


