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Figure 1: Sin(x) in the coordinate plane

Figure 2: Sin(θ) in the polar plane

Let’s begin by considering a function that we are all familiar with:
the sine function in the coordinate plane, seen in figure 1. Sine has a
markedly different appearance in the polar plane, particularly when
changes in amplitude, periodicity and the starting constant take
place. Sine in the polar plane is shown in figure 2.

The shape of sine in polar coordinates is somewhat intuitive. We
know sine starts at zero, and then grows until the function reaches
a height of one at π/2. As the function approaches π, the value
reduces back to zero. We see this general pattern in the circle of
figure 2. We will call figure a petal, and while petals are curved
loops, they are not usually circles. Note that there is no second
petal, even though our function has a non-zero value from π to 2π.
This is because sine is negative at these values, so the second petal
actually overlaps the first petal, making our rose a very simple one.

This estabilishes why the graph of sine in figure 2 is a reasonable
figure ang gives an intuitive sense of the graph. A more rigorous
analysis of our graph can be obtained from converting r=sin(θ) into
rectangular coordinates. r represents the distance from the origin,
and is therefore equal to x2 +y2. Tangent(θ) would be equal to y/x,
which is made apparent by figure. So θ = arctan(y/x).

Since r2 = x2 + y2, r =
√
x2 + y2. Sin(θ) = sin(arctan(y/x)).

We can view sin(arctan(y/x) as asking what the ratio of the opposite
of theta and the hypoteneuse of a triangle is, given that the ratio of
the opposite and adjacent sides is y/x. One triangle we could use to
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Figure 3: Relationship between coordinate plane and polar plane

determine this is shown in figure 3. Since r is equal to
√
x2 + y2, our

ratio must be y/
√
x2 + y2. Therefore, in rectangular coordinates,

r=sin(θ) is written as
√
x2 + y2=y/

√
x2 + y2. Let’s multiply both

sides by
√
x2 + y2 to have x2 + y2 = y. We recall that the equation

for a circle is (x− a)2 + (x− b)2 = (radius)2, so we will match this
form. subtract y from both sides to recieve x2+y2−y = 0. If we add
1/4 to both sides, then we can complete the square for the y terms.
This will result in the equation: x2 + y2 − y + 1/4 = 1/4. So, we
see that our equation is that of a circle in rectangular coordinates:
x2 + (y − 1/2)2 = (1/2)2. So, we have a circle of radius 1/2 with
the center at the point (0,1/2). This clearly shows that our petal
should be of the form that it is.

Transformation of sin(theta).
We will now analyze how changes in amplitude, periodicity and

adding constants will affect our graph. First let’s consider changes
in peroidicity. Let’s consider the graph of sin(2θ), seen in figure
4. We see that in this figure, there are four petals. Normally, a
’loop’, which was circle in our first polar graph, occurs during half
the period of sine, ie. from zero to π or from π to 2π. In the graph of
sin(2θ), these loops happen entirely in the arc of a single quadrant,
due to the decreased size of the period. Note that when we get
to the second quadrant, sin(2θ) is negative. So, its loop actually
appears inside the fourth quadrant, and the reverse is true of the
fourth quadrant. This explains why there are four times as many
petals than in the graph of sin(θ), the even petals do not overlap
with the odd petals.

Consider the graph of sin(/theta) shown in figure 5. We see that
the first loop takes place in half a period as expected, from zero to
π/3. Then, the next petal does not show up until 2π/3. This petal
actually does exist, but since sine is negative during every other
loop, it overlaps the petal facing directly down on the interval from
π/3 to 2π/3. Generally speaking, for the function sin(kθ), every
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Figure 4: sin(2θ)

Figure 5: sin(3θ)

odd petal overlaps when k is odd, but do not when k is even. This
is because there are always 2k petals if we count the petals that
overlap. To go from one petal to the ’opposite petal’, ie made from
the same angle arc plus π, we need to count k petals. Since the
petals alternate from positive to negative, that means that if k is
odd, the petal on the opposite side will be negative and therefore
overlap. If k is even, then either both petals will be negative or both
petals will be positive, so they will not overlap.

Now consider 2sin(4θ) shown in figure six. Note that this further
demonstrates how roses with an even value of k for sin(kθ) have
2k petals. It also demonstrates that the distance of the tip of each
petal to the origin will be the value of the lead coeficient, at least
in the absence of an added constant. This is similar to the idea of
amplitude found in the sine function in the rectangular coordinate
system.

Now we consider 2sin(4θ)+1 shown in figure 7. We see that some
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Figure 6: 2sin(4θ)

Figure 7: 2sin(4θ)+1

petals have grown and some petals have gotten smaller. Recall since
each petal is actually alternating from positive to negative, some of
the petal lenghts are increasing from lengtht two to three, and others
are going from length 2 to 1. Predictably, a similar pattern occurs
when k is even as demonstrated in 2sin(5θ)+1 shown in figure 8. In
this case, smaller petals seem to be incased in the new petals. This
is because the petals that come from positive and negative petals
overlap instead of alternate in graphs where k is odd.

Now consider when k is not an integer such as with 2sin(2.7θ)+1
shown in figuree 9. We observe that despite 2.7 being a relatively low
number, there are a large number of petals. Specifically, there are
32.4 petals shown in the graph, some big and some small. Consider
that the domain of these polar sine functions are not necessarily
restricted to (0,2π). In this graph, the domain is (0, 12π). The
other graphs did not have such a large number of petals because
every petal after 2π overlapped another petal. Since 2.7 isn’t an

4



Figure 8: 2sin(5θ)+1

integer, the petal does not end at exactly 2π, so this overlapping
does not happen. In fact, if the domain continued on, it would have
a total of 54 petals. This is because the ’length’ of each petal is
π/2.7, so we will require 27 petals before a petal ends on at the
end of a 2π interval. However, it will end on an odd, and therefore
positive value petal, meaning that the next ’negative valued petal’
will not overlap with our first petal. So, we need to do another 27
petals so that we end a 2π interval with a negative valued petal.
This brings our petal count up to 54. Notice that if k is a rational
number of the form c/d, then petal number 2c will be a negative
valued petal that ends at a 2π. If c is even, then petal number a
will be a negative valued petal at the end of a π interval. It will not
be at the end of a 2π interval because d be odd, since only one of
c or d could be even. So, petals do not begin to overlap until there
have been 2c petals in this case too.

So, we see that our description of the number of petals can be
generalized. When c and d are integers with a gcd of one, then

asin(
c

(d
θ)+b, a > b > 0. Then our rose will have 2c petals. Notice

that since b > 0, there is no chance for negative valued petals to
overlap positive valued petals.

Now let’s take a moment to consider the cosine function, using
cos(2θ) shown in figure 10 as an example. We see that this matches
the sine function almost exactly. The difference is that when θ is
zero, we start at the middle of a petal instead of the beginning of a
petal. This is because sin(0)=0 and cos(0)=1. Recall that cosine is
just a translation of sine by one fourth of a period in the rectangular
coordinate plane, and cosine can be compared to sine with a similar
transformation in this polar case.
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Figure 9: 2sin(2.7θ)+1

Figure 10: cos(2θ)
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Figure 11: 4cos(2θ)+sin(2θ)

Observe what occurs when we add sin(2θ) to 4cos(2/theta) shown
in figure 11. This is akin to combining our two roses. Recall that
the cosine roses has a petal at its peak at cos(0). Since our cosine
term was greater, our flower is tilted much in that direction. In
addition the length of the petals have increased to between four and
five. Since the flowers to do not line up, their lenghts are not simply
added to get the length of our new rose’s petals.

Now consider the inverse of this equation 1/(4cos(2θ)+sin(2θ))
found in figure 12. At the radian values where we see the tips of the
petals, the curve of our inverse function gives a miniature mirror of
our original sine and cosine function. Just as the ends of the petals
gradually reach their peak and then return, the inverse of this graph
gradually reaches it’s minimum, but then grows exponentially. Visu-
ally, the graph’s curves shoot off in a relatively straight direction as
an asymptote. This pattern is similar to the recangular coordinate
version of the graph, shown in figure 13, where our petals approach
their base, they are also approaching zero. Therefore, we see as-
symptotes occur in the inverses near these radian values. Notice
that this behavior is similar to that of secant and cosecant lines.

It is now clear why sine and cosine roses and their inverses have
the petals patterns that can be compelling.
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Figure 12: 1/(4cos(2θ)+sin(2θ)) in polar coordinates.

Figure 13: 4cos(2x)+sin(2x) in rectangular coordinates.
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