Chapter 19 Programming the PID Algorithm

Introduction

The PID algorithm is used to control an analog process having a single control point and a single
feedback signal. The PID algorithm controls the output to the control point so that a setpoint is
achieved. The setpoint may be entered as a static variable or as a dynamic variable that is
calculated from a mathematical operation.

For many years, the PID algorithm was not accepted as a function suitable for a PLC. It was
included in a DCS (Distributed Control System) or configured from a number of stand-alone PID
controllers. However, as PLC prices continued to fall during the 1980’s and later and more
economical HMI systems were developed for the PLC, PLCs became more accepted as PID
controllers. In fact, because PLCs have undercut the cost of competing systems, DCSs and other
PID controllers have been forced to drop prices dramatically or no longer remain competitive.
An early hybrid design was introduced into the Allen-Bradley 1771 1/0 family including 2 PID
stand-alone controllers attached to a single 1/O slot and executing the PID algorithm from the
controller in the 1/0O slot. Newer control schemes have the PID algorithm executing in the PLC
with other programs and controlling complicated processes with good success.

Chapter 19 uses the PID block to control a simple process. Then, it discusses more complex
operations capable of being programmed by the PID control block. The chapter describes the
SLC PID block followed by the CompactLogix processor as well as the Siemens 1200 and their
implementations of the PID function. Using these various PLC configurations demonstrates
differences between the newer PID blocks and the SLC PID block. The SLC processor uses an
integer-based PID block. Integer-based blocks have the disadvantage that scaling must be used
to convert numbers to more meaningful real values. Scaling adds complexity to the program that
becomes transparent with a floating-point PID block. More sophisticated PID blocks such as is
available in the PLC/5 and ControLogix processors as well as Siemens allow floating-point
calculations. These more robust PID blocks also provide more sophistication in their
functionality. All PID blocks are not created equal.

Fundamentals of Closed Loop Control
Closed Loop Control Tasks

"Closed loop control is a process where the value of a variable is established and maintained
continuously through intervention based on measurements of this variable. This generates a
sequence of effects that takes place in a closed loop -the control loop- because the process runs
based on measurements of a variable that is influenced in turn by itself.” This variable that is to
be controlled is measured continuously and compared with another specified variable of the same
type. Depending on the result of this comparison, an adaptation of the variable to be controlled
to the value of the specified variable is performed by the control process.

Proportional Controller (P-Controller)

In the case of P-controllers, the manipulated variable is always proportional to the recorded
system deviation. The result is that a P-controller reacts without a delay to a deviation and
generates a manipulated variable only if the deviation (error) is present. The proportional
pressure regulator sketched in the figure below compares the power Fs of the setpoint spring with

Ch 19 PID Block

the power Fg that the pressure P, generates in the spring-elastic metal bellows. If the forces are
off balance, the lever rotates around the pivot point D. The valve position changes and
accordingly the pressure P, to be regulated until a new balance of forces is established.

The behavior of the P-controller if a system deviation suddenly occurs is shown in the figure
below. The amplitude of the manipulated variable jump y depends on the level of the deviation e
and the amount of the proportional coefficient Kp:

To keep the deviation low, a proportionality factor as large as possible has to be selected.
Increasing the factor causes the controller to respond faster. However, a value that is too high
may cause overshooting and a large hunting tendency on the part of the controller.

‘\F’]

Metal bellows

~B2

Setpoint spring

Fig. 19-1

Actual Flow = /P, — P,

e(error) = Flow (Actual) — Flow (Set Point)

y(output) = K, -

The diagram below shows the behavior of the P-controller:

Control
variable

A
Setpoint

e

Actual |
value

Deviation

Fig. 19-2

Ch 19 PID Block

\j

time

The advantages of this type of controller consist on the one hand of its simplicity (electronic
implementation can, in the simplest case, consist of merely a resistor), and on the other hand its
prompt response in comparison to other controller types. The main disadvantage of the P-
controller is the continuous deviation; the setpoint is never completely attained, even long term.
This disadvantage as well as the not yet ideal response speed can be minimized only
insufficiently with a larger proportionality factor, since otherwise the controller will overshoot.
In the most unfavorable case, the controller will enter a state of continuous oscillation. This
causes the controlled variable to be periodically moved away from the setpoint, not by the
influencing variable but by the controller.

The problem of continuous deviation is solved best with an integral controller.
Integral Controller (I-Controller)

Integrating controllers are used to completely correct system deviations at each operating point.
As long as the deviation is unequal to zero, the manipulated variable continues to change. Only
when the reference variable and the controlled variable are equal is the control system in a steady
state.

The mathematical formulation of this integral behavior is as follows:

1

n

How fast the manipulated variable rises (or falls) depends on the deviation and the integration
time.

e

Cma Fig. 19-3

i] i =f: Block diagram

tz
e Y
L ——— —————
yITIEIP(
I I ——
h ty t

Pl-Controller

The Pl-controller is a type often used in practice. It results from connecting a P-controller and an
I-controller in parallel. When laid out correctly it unites the advantages of both controller types
(stable and fast, no permanent system deviation), so that their disadvantages are compensated at
the same time.

Ch 19 PID Block

Block diagram

ta
-
¥ — — ———
YIT‘IGX

-— Fig. 19-4

The behavior with respect to time is identified by the proportional coefficient K, and the reset
time Tn. Because of the proportional component, the manipulated variable responds immediately
to every system deviation e, while the integral component takes effect only in the course of time.
Tn represents the time that passes until the I-component generates the same amplitude of flow as
occurs immediately because of the P-component (Kp). As in the case of the I-controller, the reset
time Tn has to be decreased if we want to increase the integral component.

Differential Controller (D-Controller)

The D-controller generates its manipulated variable from the rate of change of the system
deviation, and not, as the P-controller, from its amplitude. For that reason, it responds
considerably faster than the P-controller. Even if the deviation is small, it generates (looking
ahead) large amplitudes of flow as soon as an amplitude change occurs. However, the D-
controller does not detect permanent deviations, because no matter how large it is, its rate of
change equals zero. For that reason, the D-controller is used only rarely by itself in practice.
Rather, it is used jointly with other control elements, usually in connection with a proportional
component.

PID Controller
If we expand the PI controller with a D-component, the universal PID controller is created. As in

the case of the PD controller, adding the D-component has the effect that, if laid out correctly,
the controlled variable reaches its setpoint sooner and its steady state faster.

Ch 19 PID Block

Block diagram

\ @ r
_.?' — - ——
Fmax i

y=K,-e+K [e-dt+K,> with Kizl;—:,KDzKp-Tv

Fig. 19-5 PID Diagrams and Equations

Objectives of Control System Setting

For the control result to be satisfactory, selecting a suitable controller is an important aspect.
However, even more important is setting the suitable controller parameters Kp, Tn and Ty, that
have to be adjusted to the controlled system behavior. Usually, we have to compromise between
a very stable but slow control system or a very dynamic, more unsettled control performance
which under certain circumstances has a tendency to oscillate and can become unstable.

In the case of non-linear systems that are always to process at the same operating point

-such as fixed setpoint control- the controller parameters have to be adjusted to the controlled
system behavior at this working point. If, as in the case of servo controls, a fixed working point
cannot be defined, a controller setting has to be found that supplies a sufficiently fast and stable
control result over the entire working range.

In practice, controllers are usually set based on values arrived at through experience. If these are

not available, the controlled system behavior has to be analyzed exactly, in order to subsequently
-with the aid of theoretical or practical layout procedures - specify suitable controller parameters.

Ch 19 PID Block

An Example SLC PID Function

In its simplest form, the SLC PID block is used as a single block with no input contacts and
surrounded by only two SCP blocks. This PID instruction is located in Ladder 2. The SCP block
is configured to retrieve a numerical value from the analog input channel, linearly scale the input
and move the resultant value to the PID block. The input is a 4-20 mA signal from a flow
transmitter. The output is a 4-20 mA signal to a variable flow valve.

SCP - Scale with Parameters
Input

Input Min

Input Max

Scaled Min

Scaled Max

Ouptut

PID

Control Block
Process Variable
Control Variable
Control Block Length

SCP — Scale with Parameters
Input

Input Min

Input Max

Scaled Min

Scaled Max

Output

Fig. 19-6 Simple Program of PID for SLC Processor

Ch 19 PID Block

In the first SCP instruction, values found in the Input Min and Input Max of the SCP instruction
are from the 1/0O card. The engineer must first decide which 1/0O card to use and then find the
proper lower and upper limits from the literature on the card to enter values in the SCP
instruction.

In this case, the analog card selected is the 1746-NI0O41 Ser. A. This card is a combination card
with 2 analog inputs and 2 analog outputs. From the web, select I/0 Analog Modules, Analog
I/0 Modules for SLC 500 Programmable Controllers — Technical Data. Then select 4 Channel
Module Configuration, 4 Channel Module Wiring, and 4 Channel Module Specifications to find
the choices available for Analog Inputs and Analog Outputs.

In the section describing 4 Channel Module Specifications are found the following Channel Data
sheets:

Input Type | Signal Range Engineering Units EU Scale
+/- 10 Vdc -10.25to + 10.25 Vdc | -10250 to + 10250 1 mV/step
Oto5Vdc -0.5to +5.5 Vdc -500 to +5500 1 mV/step
1to5Vdc 0.5t0 5.5 Vdc 500 to 5500 1 mV/step
Oto10Vdc | -0.5to +10.25 Vdc -500 to +10250 1 mV/step
0to 20 mA -0.5to0 +20.5 mA -500 to +20500 1.0 uA/step
4t020mA | 3.5t020.5mA 3500 to 20500 1.0 uA/step
+/- 20 mA -20.5 to +20.5 mA -20500 to +20500 1.0 uA/step
Oto1mA -0.05t0 1.05 mA -50 to + 1050 1.0 uA/step

Channel Data Word Values for Engineering Units

Input Type | Signal Range NI4 Data Format

+/- 10Vdc -10.00 to +10.00 Vdc -32768 to +32767

0 to 5Vvdc 0.0t0 5.00 Vdc 0to 16384

1to 5 Vdc 1.00 to 5.00 Vdc 3277 to 16384

0to 10 vVdc | 0.0to 10.00 Vdc 0to 32767

0to 20 mA 0.0 to 20.0 mA 0to 16384

4to0 20 mA 4.0 t0 20.0 mA 3277 to 16384 +—
+/- 20 mA -20.0 to +20.0 mA -16384 to +16384

0to 1 mA 0.0 to 1.00 mA 0 to 1000

Channel Data Word Values for Scaled Data

Using the value 4 to 20 mA from the Input Type column, the value in Engineering Units is 3277
min to 16384 max. These values are entered in the SCP instruction to scale the variables
correctly.

SCP — Scale with Parameters
Input

Input Min
Input Max
Scaled Min
Scaled Max
Ouptut

3277
16384

Fig. 19-7

The scaled min and max values that are sent to the PID’s process variable are found in the setup
documentation of the PID block. The min value is 0 and the max value is 16383. A location
must be selected. In this case, the process variable or PV is selected to be N10:28. Itis

Ch 19 PID Block

advisable to keep the PID block data separated from other integer data. In order to do keep the
data for the PID separated, the data file N10 was created to handle the PID data.

The input address may also be selected. Remember the value is I:s.w where s is the slot number
and w is the relative word address down the card. In this case, the slot address chosen is 1 and
the w or word address is 0, the first analog input point on the card. The other option for the input
inslot 1is I:1.1.

SCP - Scale with Parameters

Input 1:1.0
Input Min 3277
Input Max 16384
Scaled Min 0
Scaled Max 16383
Output N10:28 <
PID

Control Block /
Process Variable = N10:28
Control Variable

Control Block Length 23

Fig. 19-8 Moving the Process Variable into the PID Block

The control block address is chosen. This address requires 23 contiguous words reserved in an
integer table. The block N10:0 (through N10:22) was chosen. Also reserve a location for the
control variable or output of the PID function. N10:29 was chosen.

This control variable or output is then sent to the analog output card. Scaling again must be
chosen. The min for the PID output is 0 and the max is 16383. These are the same values as are
used for the PID input. To use the entire range of values for a PID input or output, choose the
range 0 to 16383. Always strive to use the entire range of the PID block when programming an
integer PID block. This gives the greatest accuracy.

The scaled output must be ranged to fit a 4 to 20 mA analog output card. Use the values as were

found in the reference manual, 6,242 min and 31,208 max. Use the first output point on the same
card as the input. Its slot number is 0:1.0. Now, the PID and two SCP blocks can be finished.

Ch 19 PID Block

SCP - Scale with Parameters
Input 1:11.0
Input Min 3277
Input Max 16384
Scaled Min 0
Scaled Max 16383
Output N10:28
PID

Control Block /
Process Variable N10:28
Control Variable ~ N10:29 —
Control Block Length 23

SCP — Scale with Parametery

Input N10:29
Input Min 0
Input Max 16383
Scaled Min 6242
Scaled Max 31208
Output O:1.1

Fig. 19-9 Moving the Variables Into and Out of the PID

Wiring a 4-20 mA Current Loop

Handling wiring and other hardware issues is found from information in the instruction manual
for the module. In the case above, the card used was the 1746-N1041 module from Allen-
Bradley. Look specifically in the chapter on installation and wiring.

In addition to the actual wiring diagram for the application, important information including dip
switch settings should be noted. If possible, all dip switch settings should be copied to the
installation drawing for the card or added as notes to the schematic drawings. In the case of the
1746-N104I card, no dip switches were found.

To wire a 4-20 mA control circuit for a PLC input, wire a loop with the power supply,
transmitter, and PLC input. To wire a 4-20 mA PLC output, wire a power supply, valve and
output. From the manufacturer's diagram, it should be noted whether the 4-20 mA output
requires loop power or the analog output card provides loop power.

For the analog input, the transmitter varies the resistance to the PLC input so that the current
ranges from 4 mA for no flow to 20 mA for maximum flow. The transmitter “borrows” enough
voltage from the 24 V dc to activate electronics inside the transmitter. The voltage drop across
the transmitter does not affect the current range of the loop. The PLC analog output varies the
resistance to the control valve in a similar manner.

Ch 19 PID Block

Transmitter-
Variable Resistor

v T

PLC
24Vvdec —__ Analog
Input
4-20 mA Analog Input — Current Loop
PLC Analog Output
W 4-20 mA
24V dc Control
(may be —__ Element
external) (valve)
or
24V dc PLC Analog Output
(may be 4-20 mA
internal) | |
i T
Control
Element
(valve)

4-20 mA Analog Output — Current Loop
Fig. 19-10 Analog Current Loop Wiring
In the case of output cards, care must be taken to find whether or not the 24V dc power supply
should be added to the loop. The drawing from the installation manual provides direction here.

From the figure below, note that there is no power supply needing to be added in the output
current loop diagram for this specific card (N1041).

Ch 19 PID Block

The figure below shows the catalog information for wiring this card. In fact, the analog output
does not need a power supply since the output furnishes this power internally. The term "analog
source" for the input implies inclusion of the 24V power supply. Load for the output implies no
external power supply. Note the jumpers installed for inputs not used.

+

analog
source

In O+
In O-
ANL COM
In 1+
In 1-
ANL COM

jumper
unused
inputs

not used
Out 0
ANL COM

do not jumper
unused outputs

© ® N o o M W N KB O
O ONONONONCNONONONG

not used
Outl
ANL COM

Load
(valve)

ko
ON©)

Fig. 19-11 4-20 mA Analog 1/0 — Current Loop (N1041I)
Configuring the SCP and PID Instructions for the SLC

The description of the SCP instruction mentions that the inputs may be integer, floating point,
immediate data values, or indirect referenced values. The minimum and maximum values for
both input and output form a range over which the variables are scaled. The instruction solves
the equation y = mx + b without the user responsible to calculate actual values for ‘m’ and ‘b’.

Care must be taken to keep the program performing in an acceptable manner if the input value is
less than the card minimum value. The scaled output value should continue to solve the equation
and the output value should scale to less than the minimum value of the instruction. The same
result should also occur if the value exceeds the maximum.

In the Instruction Help description, the PID block is described:

“This output instruction is used to control physical properties such as temperature, pressure, liquid level,
or flow rate of process loops.

The PID instruction normally controls a closed loop using inputs from an analog input module and
providing an output to an analog output module as a response to effectively hold a process variable at a
desired setpoint.”

The PID instruction can be chosen to be operated in either the timed mode or the STI mode. In
the timed mode, the instruction updates the output algorithm periodically at a rate selected in the
block. In the STI mode, the PID instruction is placed in an STI (Software Timed Interrupt)
subroutine. The PID block updates the PID algorithm each time the ST1 subroutine is called. A-
B points out that the ST1 time interval and the PID loop update rate must be equal in order for the

Ch 19 PID Block

11

equation to perform properly. The suggested time duration for the ST1 or timed mode is .1

second.

A Setup screen is provided on the PID instruction.

PID

Control Block

Process Variable N10:28

Control Variable N10:29

Control Block Length 23
setup screen

Fig. 19-28 Example PID Instruction

From the A-B Text and the Instruction Help Screen is shown the Block Layout of the PID

Instruction:

5 14 13 12 11 10 9 8 7 6 5 4 3 2

Word 0 EN DN PV SP LL UL DB DA TF SC RG OL CMAM T™M

Word 1 PID Sub Error Code (MSB)

Word 2 Setpoint SP

Word 3 Gain Kc

Word 4 Reset Ti

Word 5 Rate Td

Word 6 Feed Forward Bias

Word 7 Setpoint Maximum (Smax)

Word 8 Setpoint Minimum (Smin)

Word 9 Deadband

Word 10 INTERNAL USE — DO NOT CHANGE
Word 11 Output Max

Word 12 Output Min

Word 13 Loop Update

Word 14 Scaled Process Variable

Word 15 Scaled Error SE

Word 16 Output CV% (0-100%)

Word 17 MSW Integral Sum

Word 18 LSW Integral Sum

Word 19 Altered Derivative Term (Low word)
Word 20 Altered Derivative Term (High word)
Word 21 Time of Last Update

Word 22 Setpoint Old Value

The table above corresponds to n10: 0 through n10: 22 found in our example above. Word 0
(N10:0) is used for bit control storage. For example, bit 1 is the AM or Auto/Manual bit. When
bit 1 is on, the block is in manual. When bit 1 is off, the PID block is in auto. The address for
AMinisn10:0/1. Words 1 through 22 are used for constants and variables used in the solution

of the PID algorithm.

The PID Setup Screen shown below describes variables found in the table above that may be

changed from the programming software.

Ch 19 PID Block

12

Solving the PID Block and Adding the HMI

Once the analog value of the process variable is mapped from the SCP instruction to the PID
block, the PID block solves the equation for the Control Variable (CV) or Output. A more
thorough explanation of how the output is achieved may be found in a text on control systems.
Equations vary but the three most common equations are given later in the chapter.

The PID block has two analog inputs. One is the PV or process variable and the other is the SP
or setpoint. The setpoint is manually entered into the PID block. This may be done through the
PID Setup screen, through an HMI such as PanelView, or through a program statement (a MOV).
If the SP is entered manually through the program, the SP is considered static and should never
be changed by operator control since an operator is not generally considered reliable enough to
enter variables through the RSLogix500 Setup Screen.

The PID Setup screen is pictured below. The setup screen allows the engineer or technician full
capability of modifying the PID block.

PID Setup |

 Tunning Parameters———— ~ Inputs ~Flags——
Controller Gain Ko = Setpoint 5P = 1 = 1
Fiasat Ti = Setpoint M&X[Sman] = AM = i
: - tM = [0

Setpaint MIN[Smin] = —
Rate Td=[000 | = it [T 0 1
Process Variable PY = ™

Loop Update = |I].1[| | IEI | RG = i
Control Mode = [E=SP-PV | | - Dutput ~d
TF= |0

PID Cantral = |AUTO Control Output CV (%) = DA=[0]

Time Mods = Output Max TV (%) = BESIO
: UL= (D
Limit Dutput CV = OuputMn CVEI=[0__] || 1
Deadband= [0 | Scaled Error SE = sp=[p]
St E

DN = [0]

oK Cancel | Hep | EN = [0]

Fig. 19-29

The SP may be entered through the PID Setup screen. The PV is entered using the SCP
instruction.

From the A-B Instruction Reference Manual:

“Process Variable PV is an element address that stores the process input value. This address
can be the location of the analog input word where the value of the input A/D is stored. This value
could also be an integer if you choose to pre-scale your input value to the range 0 to 16383.”

The output is referred to as the CV or Control Variable. It is described in the same manual as:

“Control Variable CV is an element address that stores the output of the PID instruction. The
output value ranges from 0 to 16383, with 16383 being the 100% ‘on’ value. This is normally an
integer value, so that you can scale the PID output range to the particular analog range your
application requires.”

Ch 19 PID Block

13

The PID block is very much like a black box function with inputs entering and outputs leaving
the block. The block diagram for the PID block in auto is:

In Auto:

(AM bit = 0) Process Variable Setpoint
PID Setup

Turning Parameters - ~ Flags
Controller Gain Ke = [T TH=[1]
Reset T » Mo [E
Rate Td = oL = [7]
Loop Update = (010 EEEE‘
ConltolMods = [E=5P V] e
PID Control = [2UT0 DA=[D]
Tine Mode = [THED | 08 [0
Limit Output CV = 'ﬂ'_: %-
Desdband= [0 | SP=[0]
| PV« [7]
DN =[0]
OK Cancel I EH-@

Control Variable
or Output

Fig. 19-30

The PID algorithm is solved while the block is in auto. Auto is determined by the status of the
AM bit. When aM = 0 the operation is automatic. When am = 1, the operation is manual.

The PID algorithm does not output a value for the PID block if the block is in manual. Itis as if
the block has been manually disengaged. The PV or SP may change and the output stays at its
last value unless a new value is written into the CV location. The CV location may be over-
written in manual. In auto, the PID block constantly writes the value to the CV. The range of the
CV is from 0 to 16383. Writing to the CV allows the user to manipulate the valve in the manual
mode.

Ch 19 PID Block

14

Process Variable Setpoint may be

In Manual: may be entered entered but 1 must be written to
(AM bit = 1) but equation is not equation is not AM bit when in Auto
being executed being executed

— Turning Paranmebers - T Inputs — 11 -

Controller Gan K< = [T SeipotSP=[50__]| | M=\
ResetTi= [T1]| | SewomtMAXSmg)= 510] j“”g_
Setpoint MIN(Smi -
RateTd=[000] “"’"': Jh': [0___JNSGee
Process W] =01

Loop Updste = (010 | LI— gl
ConttolMode = [E-5PPv] | | Output =53 %-
PID Contrl = [A0T0 Control Output OV [%) = DA=[0]
Tine Mode = (FVED]| | Quput Mas 08 = 0]
: UL= [0
Limit Output OV = OuputMin V(X «/[0 | a
Deadbend= [0 | ScaledEnorSE# [B0]]| spa [0]

] o w' E

DN =[0]

oK Cancel | EN=[0]

[['

. j CV may be written to
Control Variable from the program or

or Output fram an HMI
Fig. 19-31

Another bit that must be set correctly for the PID block to work is the Control (CM) bit. It
determines whether the error term E = SP — PV or E = PV — SP. If the CM bit is set incorrectly,
the valve will quickly go to full on (100%) or full off (0%). This bit is never to be set by an
operator. Use the PID Setup screen to set it. The bit is not to be changed after it is set in the
initial configuration of the auto mode.

Ch 19 PID Block

15

Design of a Faceplate for PID Block

Faceplates of some stand-alone PID controllers are shown below. These include the Red Lion
stand-alone TCU controller and the Honeywell stand-alone controller faceplates.

© Honeywell

Fig. 19-32

Red Lion PID Control Honeywell UDC1000/1500 PID Control
Faceplate Faceplate

Stand-alone PID controllers such as the Red Lion TCU controller solve the PID equation in a
manner similar to the PID equation solved in the PLC. The Red Lion display is referred to as the
faceplate. HMI displays are used to allow the operator to run the process from a display in a
manner similar to the Red Lion faceplate. To run the PID successfully in the PLC, several
parameters should be available on the display to adjust the process of controlling the PID
equation.

Commonly used tags in the HMI are:

Auto/Manual

Setpoint

Process Variable

Output (CV)

Error (Deviation) (May be on restricted access page.)
Deadband (May be on restricted access page.)
Gain, Reset, Rate (May be on restricted access page.)

Mode switches such as Auto/Manual are included in the SLC PID block. Other modes normally
used but not part of the SLC PID block include:

Local/Remote
Maintenance

In Local, the operator is able to change the setpoint manually and verify the output’s response
while the PID loop is in auto.

In Remote, the process (program) sets the SP and the PID loop responds to the changes. The PID
loop is in auto mode in both local and remote modes. Remote mode is referenced as Cascade
mode by some PID controller manufacturers.

In Maintenance mode, the loop is in manual and any variable can be changed from the operator
station. This mode should be password protected.

Ch 19 PID Block

16

A faceplate may be drawn on the HMI similar to the one below. This faceplate is typical for a
system of PID loops controlling a process.

Entry of Manual/&uto Entry of Local/Cascade
M 5% =
Wﬁ;ﬁsclic;ed A - - A
M 1% - B
Wﬁ;ﬁsclic;ed A = = A
52 & = N7 Flg 19-33
Sp Pv Cv
Entry of Sp Entry of Cv
Name of PID Block

The triangles on the left and right side of the bar graphs are used to add or subtract 5% or 1% of
the SP or CV. They provide a quick method to adjust SP or CV to get to a desired number. The
more exact approach is to enter a number in the data box for either SP or CV. This approach is
slower to implement than the method of touching a triangle when making small changes.

From the example of the PID Block for the SLC controller, to implement a PID Block
successfully, the PID Block must be programmed with some provision for scaling, whether
through a programming block or other means. The analog input or PV must be in an appropriate
range for the block to calculate an error based on the difference between the PV and a setpoint or
SP. In addition, the output or CV must be correctly scaled to an output.

Also, the PV and CV must be wired to analog points correctly.

Ch 19 PID Block

17

Ch 19 PID Block

18

Processes in Lab

The two processes in the lab are pictured on the following page in Fig. 19-15. The one on the
left is the water valve. The one on the right is the ball-in-tube. Fig. 19-17 shows the flow sensor
for the water valve. Information on the laser, the ball’s feedback sensor, is found in the
instructions for the laser and the setup of the analog output in Fig. 19-19.

The two processes are controlled by the two processors in the lab, A-B’s Compact Logix
processor and the Siemens S7-1200 processor. The feedback devices are both 4-20 mA input
devices. The valve requires 4-20 mA from the CompactLogix processor to set the position while
the fan motor is controlled by a pulsed 24 V output from the Siemens PLC.

The following is a bill of material to construct the flow valve system shown below in Fig. 19-15.

Quantity | Item

1.00 FLO-7104 3/4"

1.00 MAX-UT-26-DA

1.00 ACC-A51236AT

1.00 MAR-M1FR2NHFM

Fig. 19-15 Water Valve Hardware

Description

|FLOW-TEK BALL VALVE 316SS FULL

PORT, NPT ENDS WITH MOUNTING
BRACKET AND COUPLING

DOUBLE ACTING PNUEMATIC

ACTUATOR PN UT26

ACCORD 4-20mA POSTIONER PIN

| A51236AT SAME AS A51136AT

W/BEACON COMPLETELY ASSEMBLED
AND TESTED

0-120 PSI REGULATOR 5 MICRON P/N
M1FR2NHFM

COMPLETE CONTROL VALVE

| ASSEMBLY MOUNTED AND TESTED ‘
WITH PRESURE GUAGES PER

Ch 19 PID Block

Ball in Tube Hardware

Fig. 19-16 The A-B PLC shown
controlling the Flow Valve

Fig. 19-17 The Flow Sensor Input

Signet 515 Rotor-X Paddlewheel Flow Sensors +GF+

Features

* Operating range 0.3 to
6m/s [1to 20 ft/s)

* Wide turndown ratio
of 20:1

+ Highly repeatable output

+ Simple, economical
design

* Installs into pipe sizes
DN15 to DNS00
[Y2to 34in.)

* Self-powered/no
external power required

Standard Integral Wet-Tap
‘Sensor Sensor Sensor + Test certificate included
[with red capl for -X0, -X1

Ch 19 PID Block

Dimensions Specifications

515 Standard General
Mount Sensor Operating Range:
: 0.3 to 6 m/s (1 to 20 ft/s)
Pipe Size Range:
- DN15 to DN90O (V2 to 36 in.)
'|'| ﬁ&f’ Linearity:
: +1% of max. range @ 25 °C (77 °F)

Repeatability:

53-% Tu? N — ‘ +0.5% of max. range @ 25 °C (77 °F)
o [J[Iﬂ:JIJ © Min. Reynolds Number Required: 4500
- thru
267 mm/
o5 in e
Fipe Range
Yatodin.: -X0= 104 mm (4.7 in.)
Sto8in.: =X1=137mm (5.4 in.)

10in. and up: -X2 = 213 mm (8.4 in.]

System Overview

Panel Mount IF'ipe. Tank, Wall Mount Integral Mount c € |:us u@n
Signet 8550 , Signet 8550 Signet 8550 * LSTED i

Flow Flow Transmitter Flow Transmitter
Instrument

(Includes
mounting
bracket and

MEASUIFING ECUPMENT
o

Signet Universal

i Signet Integral [
l Adapter Kit [3-8050] CIC) Adapter Kit [3-8051] %
e [sold separately] [

[sold separately]

Signet Flow Sensor Signet Flow Sensor ~ (AB&, Signet Integral

[sold separately] / [sold separately) Mount Flow Sensor ;
515 2507 2540 515 2507 2540 [sold separately] —
525 2534 2551 525 2536 2551 3-8510-XX

2000 2552 2000 2552 3-8512-XX B
2100 - 2100 =1TE-

Signet Fittings a] % N i%%
[sold separately] O Iil @ /

Fig. 19-18 Signet Flow Instrument as seen in Lab

Ch 19 PID Block

Installation Instructions
45LMS Laser Measurement Sensor

IMPORTANT: SAVE THESE INSTRUCTIONS FOR FUTURE USE.

Description

The 45LMS family of long distance laser sensors is available in a

variety of measuring ranges. The 8 m diffuse and 50 m
retroreflective models use a Class 1 visible red laser and the

15 m diffuse models use a Class 2 visible red laser. The discrete

and analog outputs can be easily set using the 5-step rotary

switch and the push button. Potential applications include object

position (analog output) and object detection (background
suppression with discrete output).

This sensor utilizes the Time of Flight (ToF) principle and has a
relatively small beam spot even at 15 m away. The sensor is
completely self-contained and does not require any external
control devices which add cost and require additional mounting
space.

The 45LMS is easily set up by mounting the sensor such that the
target is within the operating range of the sensor and teaching in

the appropriate set-points required for the application. All
sensors in this family have one discrete output with one analog

output. The discrete output can be wired for either Light Operate

(L.O.) or Dark Operate (D.0.) and the analog output is
automatically scaled between the selected set-points with either
a positive or negative slope.

The 45LMS is an excellent solution for long range detection and
measurement applications including: distance measurement,
verifying material position, stack level, thickness measuremeant,
roll diameter, positioning fixtures, error proofing inspection, long
standoff distance, level monitoring, crane crash protection and
other difficult applications that exceed the capabilities of
standard diffuse or background suppression photosensors.

Features

+ Eye Safe Class 1 or Class 2 laser (by model)

= 8m(261ft.), 15 m (49 ft.) or 50 m (164 ft.) sensing
range, dependent on model

* One discrete output (1 x NPN/PNP) and one analog
output (1 x 4...20 mA)

+ Easy setup of switch points or analog scaling using
programming buttons

* |P65 enclosure

* Self-contained sensor

This installation instruction should be read and
LRI MUY understood before operating the sensor.

The 45LMS sensor should only be installed by
Q qualified personnel.

The 45LMS is not a safety component as described
by the EU machinery directives.

General Specifications

Certifications

UL, cULus, and CE marked for all applicable

directives
Operation
Class 1 laser, visible red 660 nm (for 8m & 50 m
Sensing Beam models)
Class 2 laser, visible red 660 nm (for 15 m model)
<10 mm (0.39in.) at a distance of 8 m (26 ft)
a<t125t]rgn{16{%"l;£ in.) at a distance of 15 m {49 ft)
Spot Size at 20°C (68°F)
< ﬁﬂfnm (2 in.) at a distance of 50 m (164 ft)
at 20 C (B8°F)
0.2...8 m (0.66...26.25 ft) diffuse
Sensing Distance 0.2...15m (0.66...49.21 fi) diffuse
0.2...50 m (0.66...164.04 ft) retroreflective
Absolute Accuracy +25mm (+0.98in.)
Repeatability <5mm(0.20in.)
Angle Deviation +2° max.
Reference Target Kodak white (90%)
Temperature Influence |< 0.25 mm/K typ.
Electrical
Operating Voltage E 103'.- :?ggVDE'J:{: when operating in 10-Link made)
Current Consumption |=70 mA @ 24V DC
Discrete Output Type |1J JraF;gfyP;gtggttg;t, short-circuit protected, reverse
Discrete Output Rating |30V DC max. / 100 mA max.
Analog Output Type :J re:,rllglntgdﬂulpul 4...20 mA, short-circuit/overload
Switching Frequency |50 Hz
Response Time 10ms
Mechanical
Housing Material Plastic ABS
Optical Face Material | Plastic pane

Control Inputs

LED Indicators

5-step rotary switch for operating modes selection
Push button for set-point teach

Green: Power

Yellow; Output switching states

Green/Yellow Flashing 2.5 Hz: Teach indication
Green/Yellow Flashing 8.0 Hz: Teach error

Connection Type

4-Pin DC Micro (M12)

Supplied Accessories

None

Environmental

Operating Environment

IPES

10...55 Hz, 0.5 mm amplitude; 3 planes; meets or

Vibration exceeds IEC 60068-2-6
30 g; 11 ms: 3 planes: meets or exceeds
Shock IEC 60068-2-27
Operating Temperature |-30...50°C (-22. ..122°FJ
Storage Temperature |-30...70°C (-22...158°F)

Instructions for Laser for Ball-in-Tube Lab

Ch 19 PID Block

22

Setting the analog output: Q2

The 4...20 mA output can be defined as any range within 200 mm
to the maximum range of the sensor, as either a rising or falling
slope, as described below. The default analog output setting for
Q2is A =200 mm (8in.) and B = 5,000 mm (16 ft) for all sensor
models. Minimum window for setting the analog span is 21 mm
(0.83in.)

Positive Slope

20 mA b= >

-39 mAl-]

02m Q2A Q28 MAX

In the Positive Slope mode (also called Rising Slope) a target
positioned at the closer set-point results in an analog output of

4 mA while a target at the farther set-point results in an output of
20 mA, with the analog output scaled linearly in between. In this
mode, the sensor will output 20 mA when the target is outside of
the operating range, which is 0...200 mm (0...8 in.) and anything
greater than the maximum sensing range.

1. Place a target at the minimum Teach-point.
2. Move the Rotary Switch to position Q2-A.

3. Press and hold the SET bl.ﬁtlon until the Green and Yellow
LEDs flash simultaneously'.

4. Place a target at the maximum Teach-point.
Move the Rotary Switch to position Q2-B.

6. Press and hold the SET button until the Green and Yellow
LEDs flash simultaneously'.

7. If the Teach is successful, move the Rotary Switch to RUN.

&

Ch 19 PID Block

Fig. 19-19

23

Siemens Analog Inputs and Outputs

The Siemens’ PID implementation follows a similar path to that of the SLC program. First, the
address of all 1/0O is required as well as the wiring diagram for each analog point. The S7-1200
has two analog inputs located on the controller. There is an analog output added by the signal
board but the decision was made to add analog outputs with a high resolution card attached to the
right. This card is shown in the figure below:

B

v | Catalog
|c5earch>

N B Filter
& » [DIDQ

» [Al

~ [AQ

~ [AQ1 x12 bits
[l sE57 232-4HA30-0XBO

» P_[i Communications boards
» [Battery board
» (DI
» [Do
» [DIDQ
» [Al
~[m-Q

~ [AQ2 x 14 bits

[l sE57 232-4HE30-0%BO

[l » [AQ4 x 14 bits

Fig. 19-12

Addressing for the two analog input channels is found below: IW64 and IW66. The two analog
inputs are wired to these two points and programmed with these addresses.

General

General ~|
b Digital inputs
b Digital autputs

> Channel]

II0 addresses Channel address ||l.'.'e.4

Hardwar= identifisr

- A2

keasurement type | Voltage

Violiage range | Oto 10V

General
w Anzlog inputs L Smocthing: | Weak (4 cycles)

L]
Channeld

Channeli

E Enable owerflow diagnostics
0 addresses

Hordware identifier

J General

General a|
(| * Channell

+ Digital inputs
k Digital cutputs
IO addresses “hannel address: [IW66
Hardware identifier —
- Al2
General
w Analog inputs
Channeld e
[Enable overfow diagnostics
NG addresses
Hardware identifier

Measurement type: | Vologe

Waoltage range Oto 10

WO 1T &

Smoothing: | Meak (4 cycles)

Fig. 19-13

Ch 19 PID Block 24

The single analog out is wired and programmed in the slot 2 card below. It is a 13 bit accurate

device when wired for current loop and addressed: QW96.

MM

<] [i | [>
Q2 x 14 bits_ ‘9 Properties |?i}Info i) | %) Diagnostics =
J General
» General IO add
- addresses
» Analog outputs Output addresses

11O addresses

Hardware identifier

To read or write an analog value, use the immediate read or write instruction as shown below:

L EEar - |

Startaddress: |96

End address: [99

Process image: | Cyclic PI

Fig. 19-14

Tahle 4- 4 hemaory areas

klemory area Description Force Retentive
| Copied from physical inputs at the beginning of the scan Mo Mo
Frocess imade input cycle

I_P1 Immediate read of the physical input points on the CPL, es Mo
(Phyzical input) SE, and 5M

] Copied to physical outputs &t the beginning of the scan Mo Mo
Frocess imade output cycle

Q_ P! Immediate write 1o the physical output paints on the es Mo
(Physical outpufy CPL, SB, and Shd

il Control and data rmemory Mo Yes
Bit memory (optional)
L Termporary data for a block local to that block Mo Mo
Temp memary

(B]=] Diata memory and also parameter memary for FBs Mo Yes
Data block (optional)

U Toimmediately access (orto force) the physical inputs and physical outputs, append 5" P" to the address or tag (such

as 10.3:P, Q1.7:P, or"Stop:P").

Ch 19 PID Block

Use a cyclic interrupt event to house the PID function. The event is defined as an OB or Object

Block. We will use OB 30 for the program containing the PID Block.

Range values for the analog input and output channels are described in this table:

Specifications for Analog Inputs (CPU, SB, SM)

The CPU contains the two inputs for
the PID block. The SM module is
located in slot 2 and is used for the

output.

Table A- 36 Specifications for analog inputs (Al)

Technical data CPU SB SM
Type Voltage (single-ended) Voltage or cument Voltage or current
(differential) (differential), selectable in
groups of 2
Range Oto10V 10V, 25V, 25, 10V, 25V, 225V,
010 20 mA, or 0 to 20 mA, or
4 mAto 20 mA 4 mAto 20 mA
Resolution 10 bits 11 bits + sign bit 12 bits + sign bit
Full scale range 0to 27648 -27,648 to 27 648 -27 648 to 27,648
(data word)
ACcuracy 3.0% / 3.5% of full-scale #0.3% [+0.6% of full scale +0.1% / £0.2% of full scale
(25 *C 7 -20 to 60 *C)
Owershoot / undershoot range Voltage: oltage: Voltage:
(data word) 27,649 to 32,5611 32,511 1o 27 649/ 3251110 27,649/
(See note 1) -27,640 to -32,512 -27,649 to -32,512
Current: NfA Current: Current:
32511 to 27 649 / 32,511 to 27,649/
0 to -4864 0 to -4864
Overflow / underflow (data Voltage: Violtage: Voltage:
word) 32,512 to 32,767 32,767 1o 32 512/ 32,767 to 32,512/
(See note 1) -32 513 to -32 768 -32 513 to -32,768
Curmrent: NIA Current: Curmrent:
32,767 to 325121 32,767 to 32,612/
-4865 to -32 768 -4865 to -32, 768
Maximum withstand voltage /35 VDC (voltage) +35 V[£40 mA +35 V[240 mA

current

Smoothing Mone, weak, medium, or Mone, weak, medium, or None, weak, medium, or
(See note 2) strong strong strong

Moise rejection 10, 50, or 60 Hz 400, 60, 50, or 10 Hz 400, 60, 50, or 10 Hz
(See note 2)

Measuring principlea

Actual value conversion

Actual value conversion

Actual value conversion

Common mode rejection

40 dB, DC lo 60 Hz

40 dB, DC to 60 Hz

40 dB, DC 1o 60 Hz

Operational signal range
(signal plus commaon mode

voltage)

Less than +12 V' and
greater than 0V

Less than +35 W and
greater than -35 WV

Less than +12 V and greater
than -12 V

Ch 19 PID Block

26

Specifications for Analog Outputs (CPU, SB, SM)

Device:
SM1232 AQ2

Table A- 43 Specifications for the analog outputs (SB and SM)
Technical data sB sm
Type Voltage or current Voltage or curmrent
Range 10V, 0to 20 mA, or 4 to 20 mA +10V, 0 10 20 mA, or 4 1o 20 mA
Resolution Voltage: 12 bils Voltage: 14 bits

Current. 11 bits Current. 13 bits
Full scale range Voltage: -27 648 to 27 648 Voltage: -27,648 to 27 648
(data word) Current: 0 to 27,648 Current: 0 to 27,648
(See note 1)
ACCuracy +0.5% / =1% of full scale +0.3% [+0.6% of full scale
{25 *C 1 -20to 60 *C)
Seftling time Voltage: 200 ps (R), 750 psS (1 uF) Voltage: 300 pS (R), 750 ps (1 UF)
{95% of new value) Current: 600 pS (1 mH), 2 ms (10 mH) Current: 600 pS (1 mH), 2 ms (10 mH)
Load impedance Voltage: = 1000 O Voltage: = 1000 0

Cument: = 600 O Current: =600 O
Behavior on RUN to STOF | Last value or substitute value (default Last value or substitute value (default

value 0) value 0)
Isolation Mone Mone
(field side to logic)
Cable length (meters) 100 m, twisted and shielded 100 m, twisted and shielded
Diagnostics = Overflow | underflow « Cverflow / underflow

= Short to ground (voltage mode only) = Short to ground (voltage mode only)

« Wire break {current mode only) « Wire break (current mode only)

« 24VDC low voltage

Mote 1: Refer to the output ranges for voltage and current {Page 315 for the full-scale range.

PID control
STEP 7 provides the following PID instructions for the S7-1200 CPU:

The PID_Compact instruction is used to control technical processes with continuous input- and
output variables. The PID_3Step instruction is used to control motor-actuated devices, such as
valves that require discrete signals for open- and close actuation.

Both PID instructions (PID_3Step and PID_Compact) can calculate the P-, I-, and D components
during startup (if configured for "pretuning™). You can also configure the instruction for "fine
tuning" to allow you to optimize the parameters. You do not need to manually determine the
parameters.

Note: Execute the PID instruction at constant intervals of the sampling time (preferably in a cyclic OB).
Because the PID loop needs a certain time to respond to changes of the control value, do not
calculate the output value in every cycle. Do not execute the PID instruction in the main program
cycle OB (such as OB 1).

Ch 19 PID Block

27

The sampling time of the PID algorithm represents the time between two calculations of the
output value (control value). The output value is calculated during self-tuning and rounded to a
multiple of the cycle time. All other functions of PID instruction are executed at every call.

The PID (Proportional/Integral/Derivative) controller measures the time interval between two
calls and then evaluates the results for monitoring the sampling time. A mean value of the
sampling time is generated at each mode changeover and during initial startup. This value is
used as reference for the monitoring function and is used for calculation. Monitoring includes
the current measuring time between two calls and the mean value of the defined controller
sampling time.

The output value for the PID controller consists of three components:

P (proportional): When calculated with the "P" component, the output value is proportional
to the difference between the setpoint and the process value (input value).

| (integral): When calculated with the "I" component, the output value increases in
proportion to the duration of the difference between the setpoint and the process value
(input value) to finally correct the difference.

D (derivative): When calculated with the "D" component, the output value increases as a
function of the increasing rate of change of the difference between the setpoint and the
process value (input value). The output value is corrected to the setpoint as quickly as
possible.

Ch 19 PID Block

28

The PID controller uses the following formula to calculate the output value for the
PID_Compact instruction.

1 T,'s
y = Kp [(b-w-xj+ T (w-xj+m(c-w-x_]]

[D

¥ Output value X Process value

W Setpoint value s Laplace operator

Ko Proportional gain a Derivative delay coefficient
{F component) (D component)

Ty Integral action time b Proportional action weighting
{l component) (P component)

To Derivative action time C Denvative action weighting
(D component) (D component)

The PID controller uses the following formula to calculate the output value for the PID_3Step
instruction.

T.°5

Ay =K, s -[(b- w-Xx) + T (w- x) +ﬁ(ﬂ- w-x_]]

¥ Output value X Process value

w Setpoint value s Laplace operator

Ke Proportional gain a Derivative delay coefficient
(P component) (D component)

T4 Integral action time b Proportional action weighting
{l component) (F component)

To Derivative action time C Denvative action weighting
(D component) (D component)

Ch 19 PID Block

Inserting the PID instruction and technological object

STEP 7 provides two instructions for PID control. Use the PID_Compact instruction for the lab
in this course, please!

The PID_Compact instruction and its associated technological object provide a universal PID
controller with tuning. The technological object contains all of the settings for the control loop.

The PID_3Step instruction and its associated technological object provide a PID controller with
specific settings for motor-activated valves. The technological object contains all of the settings
for the control loop. The PID_3Step controller provides two additional Boolean outputs.

After creating the technological object, you must configure the parameters. You also adjust the
autotuning parameters (“pretuning” during startup or manual "fine tuning™) to commission the

operation of the PID controller.

Output PER=> word out ,
Output PWM=> bool out ,
SetpointLimit H=> bool out ,
SetpointLimit L=-> bool out_,
InputWarning He> bool out_,
InputWarning L=> bool out_,
State=> int out ,

Error=> dword out);

LAD / FBD SCL Description
NP "PID Compact 1" (PID_Compact provides a PID controller with
T Setpoint:= real in , self-tuning for automatic and manual mode
ﬁb_l_‘m & h Input: -_real_in_, PID_Compact s a PIDT1 controller with
; Input PER:= word in_, anti-windup and weighting of the P- and D-
m 5" - tHO ManualBnable:= bool in , component
Sepomt cuput - s -
inout QUL PR ManualValue:= real in ,
Input_FER Satpue_ AN Reset:= bool in ,
B0 ScaledInput=> real out ,
2 Bl Output=>_ real out_,

' STEP 7 automatically creates the technological object and instance DB when you insert the instruction. The instance
DB contains the parameters of the technological object

In the SCL example, "PID_Compact_1" is the name of the instance DB

Fig. 19-34

Ch 19 PID Block

30

When programming the inputs and outputs, the following two instructions are used to scale and
normalize the analog value. Use the NORM_X function first to convert the number to a real in

the range 0-1 and then use SCALE_X to scale the normalized value to a range for the real value.

Tahle 6- & SCALE_X and MORM _X instructions

LaDf FEBD SCL Deascription
out := SCALE X{ Scales the normalized real parameter WALLE where (0.0
5
mm;%n" min,:= undef in_ 2= WALUE == 1.0 Y in the data type and value range
—<EN END value:= real in , specified by the MIN andMAX pararmeters:
\."j'&"UE our max:=undef in });: QUT = WALUE (A3 -l B + BAIN
Mt
NORN_X out := HOREM X{ Marmalizes the parameter WALLUE inside the value range
277 1o Raal min:=_,undef in_ specified by the MIN and MAX parameters:
~EN ENDp value:= undef in , OUT = (WALUE -MIN) § A - RN,
mus LU g max:= undef in); where (0.0 == OUT == 1.0
Max Fig. 19-35
U Equivalent SCL: out := value (max-min) + min:?Equivalent SCL ot := (value-min) / (max-win) ;

Descriptions of various parameters in the PID block are found below:

Parameter and type Data type Description
Setpoint IN Real Setpoint of the PID controller in automatic mode. Default value: 0.0
Input IN Real Process value. Default value: 0.0
You must also set Config.InputPEROnN = FALSE.
Input_FER IM Word Analog process value (optional). Default value: W#1650
Y¥ou must also set Config InputPEROn = TRUE.
ManualEnable IN Bool Enables or disables the manual operation mode. Default value: FALSE

+ On the edge of the change from FALSE to TRUE, the PID controller
switches to manual mode, State = 4, and Retain. Mode remains
unchanged.

+ (On the edge of the change from TRUE to FALSE, the PID controller
switches to the last active operating mode and
State = Retain.Mode.

ManualP IN Bool In manual mode, every rising edge opens the valve by 5% of the total

actuating range, or for the duration of the minimum motor actuation

time. ManualUP is evaluated only if you are using OutputPer and if

position feedback is available. Default value: FALSE

¢ [f Output_PER is FALSE, the manual mput tums Output_UP on for
the time that comesponds to a movement of 5% of the device.

+ |f Config.ActuatorEndStopOn is TRUE, then Output_UP does not
come on if Actuator_H is TRUE.

ManualDM IN Bool In manual mode, every rising edge closes the valve by 5% of the total

actuating range, or for the duration of the minimum maotor actuation

time. ManualDN is evaluated only if you are using OutputPer and if

position feedback is available. Default value: FALSE

+« I Qutput_PER is FALSE, the manual input turns Cutput_DMN on for
the time that comesponds to a movement of 3% of the device.

+ |f Config.ActuatorEndStopOn is TRUE, then Output_DN does not
turn on if Actuator L is TRUE,

ManualValue IN Real Process value for manual operation. Default value: 0.0

In manual mode, you specify the absolute position of the valve.
ManualValue is evaluated only if you are using OutputPer, or f position
feedback is available, Default value: 0.0

Feedback IN Real Paosition feedback of the valve. Default value: 0.0
To use Feedback, then set Config. FeedbackPerOn = FALSE,

Ch 19 PID Block

31

Parameter and type

Data type

Description

Actuator_L

Bool

If Actuator_L = TRUE, the valve is at the lower end stop and is no
longer moved in this direction. Default value: FALSE

Reset

Boaol

Restarts the PID controller. Default value: FALSE
If Reset = TRUE:

* "Inactive" operating mode

¢ [nput value =0

e [ntenm values of the controller are reset. (PID parameters are
retained.)

Scaledinput

ouT

Real

Scaled process value

ScaledFeedback

ouT

Real

Scaled valve position

Qutput_PER

ouTt

Word

Analog output value. If Config.QutputPerOn = TRUE, then Output_PER
is evaluated.

Output_UP

ouT

Bool

Digital output value for opening the valve. Default value: FALSE

If Config.OutputPerCOn = FALSE, then parameter Output_UP is
evaluated.

Qutput_DN

ouT

Bool

Digital output value for closing the valve. Default value: FALSE

If Config.OutputPerOn = FALSE, then parameter Output_DN is
evaluated.

SetpointLimitH

ouT

Bool

Setpoint high limit. Default value: FALSE

If SetpointLimitH = TRUE, the absolute upper limit of the setpoint is
reached. In the CPU, the setpoint is limited to the configured absolute
upper limit of the actual value.

SetpointLimitL

ouTt

Bool

Setpoint low limit. Default value: FALSE

If SetpointLimitL = TRUE, the absolute lower limit of the setpoint is
reached. In the CPU the setpoint is limited to the configured absolute
lower limit of the actual value.

InputWarmingH

ouT

Bool

If InputWamingH = TRUE, the input value has reached or exceeded the
upper waming limit. Default value: FALSE

InputWamingL

ouTt

Boal

If InputWamingL = TRUE, the input value has reached or exceeded the
lower warning limit. Default value: FALSE

State

ouT

Int

Current operating mode of the PID controller. Default value: 0
Use Retain.Mode to change the operating mode:

* State = 0: Inactive

+ State = 1: Pretuning

+ State = 2: Manual fine tuning

+ State = 3: Automatic mode

* State = 4: Manual mode

* State = 5 Safety mode

+ State = 6 Output value measurement

* State = 7: Safety mode monitoring with active trigger

* State = & Inactive mode monitoring with active trigger

Error

ouT

Bool

If Error = TRUE, at least one error message is pending. Default value:
FALSE

ErrorBits

ouT

DWard

Error message. Default value: DW#16#0000 (no emor)

Ch 19 PID Block

32

103 102 10 1 2 3 4 5 1] 7 & 9
57-1200 rack

SIEMIERS:

F3

[100% -] —%—

|§, Properties *linfo &

J General || 10 tags || System constants || Texts
» General [~ .
D TERLE i — | Overview of addresses
» DI14iDQ 10 Overview of addresses
- A2
General Filter: [¥] Inputs [¥) outputs [] Address gaps [sl
» Analog inputs
110 addresses
Hardware identifier Type |Addr. Addr.to Module FIF OB DF PN Rack
- AQ1 signal board : 0 1 DI4iDQ10_1 None - - R 0
» General = I 64 67 Al2_1 None - - - 0
~ Analog outputs . | 1000 1003 H5C_1 Maone - = - 0
Channelo : | 1004 1007 HSC 2 Mone - = - i)
110 addrecces : | 1008 1011 HSC 3 Mone - = - i)
Hardware identifier I 1012 1015 H5C 4 None - - =)
» High speed counters (HSC) I 1018 1019 HSC_5 None - B = 0
» Fulse generators (FTOIPVM) I 1020 1023 HSC_6 None - B = 0
Startup o 0 1 DI4/DQ10_1 None - i _ 0
Cy\:le I | o 1002 1003 Pulse_2 Mone - - - o
Cormunication load o 1000 1001 FTO1 None - - = 0
System and clock memory o 80 81 AQ1 x12 bits_1 Mone = - N 0
b Web server —

Ch 19 PID Block

*] PID_V13_5P1_1
ﬁ‘b' Add new device
gy Devices & networks
~ (7 PLC_1 [CPU 1214C DC/DC/DC]
[l'f Device configuration
4| Online & diagnostics
~ |5l Program blocks
‘*L' Add new block
3 Cyclic interrupt [DB30]
4 Main [OB1]
b 5 Systemn blocks
¥ [Technology objects
b External source files
» [PLCtags
v [PLC data types
b :aj, Watch and force tables
v & Online backups
"_“"1 Progra m info
» [ifil Device proxydata
=] Textlists
b ﬁ Local rmodules
* [HMI_1 [KTP600 Basic color PN]
Y Device configuration
ﬂ Online & diagnostics
Y Runtime settings
¥ ﬁ Screens
r ﬁ Screen management
b [HM tags
DZG Connections
[HM alarms
o Recipes
E Scheduled tasks
4] Text and graphic lists

iﬁ‘ User administration

General

General
Information
Tirne starnps
Compilation
Protection
Artributes

Cyclic interrup

Cyclic interrupt

Cyclic time (ms): |5

Phase offtet (ms): | 0

Ch 19 PID Block

34

Network 1: One-Shot
Comment
WAB000.1
%M8000.7 “PWM_Fixed_ %8000 7
"Man_Out_V2* MOVE MOVE Enable” “Men_Out_v2*
—Af———en ENO EN ENO (s} (s }—
U4 MO 00— w2
“Laser_Input” — N st QUTI — "Low Limit" “Manual_
¢ QUTI — Output_Entry”
%WB1
IEC_Timer_0_DB W@AB000.1
%M8000.7 %M80013 TON %MB000 2 “PWM_Fixed_ 80017 %M80013
“Msn_Out_v2* B Time MOVE MOVE *Manual_Out" Enable” *De not modify’ “FF
— | IN Q EN ENO EN ENO {R} {R} {5} {s }—
35
s ET wWE4 W2 0— N P
“Leser_lnput’ — N 3 OUTI — "High Limit" “Manual_
3¢ QUTI — Output_Entry”
¥ Network 2: Normalizs the Laser Input
-
MNORM_X MUL ROUND
Int to Real Real Real to Int
EN ENO EN ENO EN ENO —
WAW0 WD MDA %MD5 %WMDS5 WWe 4
“Low Limit" MIN “Laser_ “Laser_ out “Laser_Percent" “Laser_Percent” N ouT “Integer_Percent”
—— ouT — Normaliz=d* Normalizd” — [y
“Laser_Input” — VALUE 10842 — N2 3%
*MW2
“High Limit" — pax Canverts the i i
0-1 from before percentage for
Normalizs the o 0100% the FID biock to
Laser Input to = 2 accept
01 -
* Network 3: Controls the Pt Output
Lomment
L] 1 .
W_Fixed_ WIB000 2 %0 2
= " " " u
Enahble Manual_Out Fan_Out
] 1] 1 I 1 .
11 11 1 ! N
= .
WM Fised %MB8000 3
= " 1 "
Enable %PID_PWh_Out
|/I 11
B Network 4: Code for Manual PWM Generation
“IEC_Timer_0_
%M8000.1 Dt
PN Fixed_ IN_RANGE sus Wr8000 5 480002 ToN 80005
Enable” uint uint S MOVE “Timer_Fliip_Flop® *Menual_Out’ Time “Timer_Flip_Flop*
— — EN ENO EN ENO EN ENO it {5 f——1n Q{5 }—t
T— 100 — N - - % oum — #Time_on — s oum — #Time_off #Time_on — pT e
“we2 wane2 “Manual_ nual_ “Manual_
“Manual_ “Manual_ our — Output_Gff Output_Entry’ — iy Output OF — 1y -
Output_Entry” — yaL Output_Entry” — 2 “IEC_Timer_0_
99 MAX DB_2"
“WB000 5 80002 TON
80001 “Timer_Flip_Flop® “Msnual_Out" Time “Timer_Flip_Flop”
“PWM_Fixed_ . %8000 2 Rp——n Q=——{R }—t
Enable” o “Manus|_Out® #Time_Of — pT ET
it |u|=m| {R—
we 2
“Manual_
Output_Entry"
%M8000.1 Fve 2
“PAN_Fixed_ Manual 80002
Enable” Output_Entr “Manusl_Out”
— fomc| s —
9

Ch 19 PID Block

35

Metwork 5: Multiplexes the Output so that the proper 'wave' appears on the graph

Comment

“MB000 1
"FWM_Fixed_
Enable”

] |

11
1650000

“MB0001
"PWI_Fixed_
Enahble”

A

#"Mux Contoller”

YMWE 2
“lManual_
Output_Entry”

SAD250
"FID_Out_
Percent”

WAD252
“Current_0Out”®

MOVE

EM EMNO
N 3 OUTl #"Mux Contoller®

MOVE
EM END =———
N 5 OUTt #"Mux Contoller®

MU
Real

EM ENG ———

K WMD252
ouUT — "Current_Out”

INO

INT =+

ELSE

CONV
Real to LReal

EM ENQ =—
PAM300.0

N ouT — "Tag_1"

Ch 19 PID Block

36

Comment

WB000 .6
“Enable FID
Update®
] |

YTMD204
"Mew Int Time®

WMB000 .6
“Enable FID
Update®
] |

D212
"Mew Derv Delay”

WB000 . 6
“Enable FID
Update”

] |

D208
"Mew Derv Time”

WMB000.6
“Enable PID
Update®
| 1

WD200
*MNew Prop Gain®

WMB000.6
"Enable PID
Update®
| 1

D216
"Mew Prop
Weight"

YWMB000.6
“Enable FID
Update”

] |

1 1 EM

YMD220
"Mew Dens

Weight" 1M

EM

IN

MOVE
EM EMO
"PID_Compact_
IM 2" sRet.r_cCtrl_
3 purm — T
MOVE
EM EMO ————
"PID_Compact_
IM 2" sRet.r_cCtrl_
3 oumt — A
MOVE
EN EMNO ——
"PID_Compact_
IM 2" sRet.r_cCurl_
3 oum — ™
MOVE

EMO =————

“PID_Compact_
2" =Ret.r_Ctrl_

e ouT1 Gain

MOVE
EMO ——
“PID_Compact_
2" sRet.r_Ctrl_
s oum — B
MOVE
EMO =———
“PID_Compact_
2" sRetr_Crrl_
s oum —C

Ch 19 PID Block

37

Comment

MB000.6
“Enable PID Wa8001.1
Update” "Enter Optimal” MOVE
/1 | | EN ENO
B.ade-l — N %WD200
X oum *MNew Prop Gain®
W 000 .6
“Enable FID 80011
Update” "Enter Optimal® MOVE
|/ | | EN ENDQ ——
2-37e1—48 %MD216
"MNew Prop
X oum '.".I'E'ight'
W 000 .6
“Enable FID 80011
Update” "Enter Optimal® MOVE
/1 | | EN ENQ ————
1.08-1 — N UMD212
¥ oum "Mew Derv Delay”
WA8000 .6
“Enable FID Wa8001.1
Update” "Enter Optimal” MOVE
/1 | | EN END =
3.82e-1 — N %WID208
i OuT “Mew Derv Time”®
WA8000 .6
“Enable FID WA8001.1
Update” "Enter Optimal® MOVE
/1 | | EN e —
R “MD220
"Mew Derv
STl i | '."I.I'E'ight'
WA8000 .6
“Enable FID WA8001.1
Update” "Enter Optimal® MOVE
|/ | | EN ENDQ ——
5e+0—IN WAD204
i OuUTI "Mew Int Time"

Ch 19 PID Block

38

124312000 1

+000000000.0C

R

Switch_1 [Switch]

T "

General
Appearance
Design

FWMN_Fixed_Enable
Leyout

FW_Fixed_Enable
Text format

Limnits.
Miscellaneous
Security

12/31/2000 10:59:39 AM

+000000000,0C

B B B B ®

ield_2 [I10 field]

oot o s Ton— 500 |

Appearance
Characteristics
Layout
Manual_Output_E
Textformat - "
Limits.

General

Manual_Output_Entry

Miscellaneous

Security

Input/output

Ch 19 PID Block 39

12/31/2000 10:59:39 AM -

 Output Control

PID PWM “Toggles between the PID output and the
‘manually entered PWM percentage . . -

- 000 “The % ON time of the manual PWM - -

PR EEPgaIS 1 55 55 30 5355005350550 0003
E’ o ECurrent % OM time For the selected output

100% bl Iy vvveTen
|§,Properties H‘_i.‘.lnfo y||ﬂ Diagnostics ‘
J Properties ” Animations || Events || Texts
General
Ge
pefol Process Format

Appearance
Cheracteristics Tog: | Current_out ER Displayformat: [Decimal 2|
Layout .

PLCtag: Current_Out A Decimal places:
Text format v - .
Limits Address: Real Field length: 13 [3]
wiscellaneous Leading zeros: [|
Security Type Format pattem: [5999999999.999 [+]

Mode: |Output [+]

The Configuration editor for PID_Compact shows the following screen. Here, the user selects
the units such as temperature or pressure. The user also determines whether variables such as the
PV are Input or Input_Per. Most users would select ‘general’ for controller type.

Use the commissioning editor to configure the controller for auto-tuning at startup and for auto-

tuning during operation. To open the commissioning editor, click the icon on either the
instruction or the project navigator.

Ch 19 PID Block

T4 Siemens - PID_Pulse output V2

Project Edit View Insert Online Options Tools Window Help Totally Integrated Automation |
G (Y soveprojecr S ¥ = 72 X 2@ [BMIGER F coonline F cociine Fo M0 2] PORTAL
PID_Pulse output_¥2 » PLC_1 [CPU 1214C AG/DURIy] » Technology objects » PID_Compact_1 [DB1]
Devices =
5 I =
ER-X-) o | e of .. 3
Process value settings (] Bazickatling BY
= | FD_Pulse output_v2 © bl SEt‘”"gE g
B Add new device Process value manitoring Cantroller type
. P limits 0
iy Devices & netwarks e limi S " 0
oI e 1 L TR EE e Output value limits | Temperature [~] [[+] [mvert the cantrol logic
TIY Device configuration (D) (RS L] [Enable last mode after CPU restart
@/ Online & diagnostics
~ gl Frogram blocks Input 7 output parameters
B Add new block
4 Main [OB1] Setpoint:
4 yelic interrupt [0B30] [| [c
» - system blacks
~ [Technology objects Input: Qutpur
I Add newonjecs [T — Cutput_riy |
> B - compac 1 ol I — A ey
» @} External source files L
» [E PLCtags "
v [PLC data types il
» |5 watch and force tables F
4 Pragram infa
E] Text lists
+ [Local modules
» (4§ common data
» [5]) Documentation settings
» r"ﬂ Languages & resources
v [igh Online access
» (53 SIMATIC Card Reader
< il
‘g Properties ”‘_i.‘,lnfu i) Hﬂ Diagnostics |
~ | Details view General _
General Al
Informm stion 1 BT
Narne Address n
Time stamps »T'T‘
4 Portal view =1 Overview 3 Cyclic interr.. | 1§ PID_Compac... |ﬁ PID_Compac... " Praject PID_Pulse output
—

Sample configuration settings for the PID_Compact instruction

| Settings Description
Basic Controlier type Selects the engineering units.
Invert the control logic | Allows selection of a reverse-acting PID loop.
* If not selected, the PID loop is in direct-acting mode and the output of PID loop
increases if input value < setpoint.
o |If selected, the output of the PID loop increases if the input value > setpoint
Enable last mode after | Restarts the PID loop after it is reset or if an input limit has been exceeded and
CPU restart returned to the valid range.
Input Selects either the Input parameter or the Input_PER parameter (for analog) for the
process value. Input_PER can come directly from an analog input module,
Output Selects either the Output parameter or the Qutput_PER parameter (for analog) for
the output value. Output_PER can go directly to an analog output module
Process Scales both the range and the limits for the process value. If the process value goes below the low limit or
value above the high limit, the PID loop goes to inactive mode and sets the output value to 0
To use Input_PER, you must scale the analog process value (input value).

Ch 19 PID Block

41

Allen-Bradley Analog Inputs and Outputs

Wiring diagrams for the card as well as the engineering range of the input and output channels
are found on the next two pages.

1769-IFAX0OF2/A
Terminal Door Label

T <l DA NGER
@ Dol Fe o FTH Linkes | o
Ui : Spalk NoWHCTon.
Vi VinO+
Vin1+ ® no Vin1s
Vilind. ® VAin0- Vind - Vlin0 -
ad - lin0+
lin1s ® iin0+ lin1+
- i : Vin2s
Vin3s+ @ Vin2s Vin3+ _”_ .
el) in2-
Viin3 ris' ® Viinz2- Vilin 3-
i lin 2+
= ® lin2+ lin3+
lin3+ Pa,“ ANLG
— (G| 2nt6 co ANLG | Com
ANLG Com @ f | Com [0 o
_ = I v out 0+ Voutd+
vout1+ [()] aatos
[® loutOs ' .
lout 1+ || (54) Emn Ajaznilis Lewrs
Sh Ui ded el el
) I ——_
- 2R I0R

Fig. 19-23 1769-IF4XOF2/A and F2F/A Analog Card

Wiring Diagram Showing Differential Inputs

1 769-1FX0FZ Terminal Block

_ \ in 0+ +
Vinl4 | _ differential voltage
Vlinkt trans mitter
Wlint- -
lint+
lin14
_ Vin2+ earth groundthe shield
Vind+ _ locally at
Wlind VlinZ the module
. lin2+
lin3+ ANLE Lon Belden 8761 cable (or equivalent
ANLG Com
Vait ot Fig. 19-24
lout4
ot 1+

(1) Allanalog commans | AMLG Com) are internally connected.
[2) I multiple pewersuppliesare used,the commons must have the same ground reference.
{3} UserBalden 8761 cable {or equiealent) forwiring analog 170

Ch 19 PID Block

42

Wiring Single-ended Sensor/Transmitter [nput Types

Powar
Supply

aonsor
Transmitter

1

Q.

Currant
Transmittar

+ Sinal
—O

+ Ground Signal
O

o

YVoltage Transmitter

I

Fig. 19-25

{1} The sensor prwar supply must be rated Class 2.
12 Allanalog commons IAMNLG Com) are intemallyconnected.

(3 [multiple powersuppliesare used, the commans must have tha sam eground

refarence.
(4 UserBeden 8761 cable [or aquivalent) farwiring analog /0.

Wiring Mixed Transmitter Input Types

1763-IFMX0F2 Terminal Block

Er— Signal
ingle-ende
Volage | Ovik
Transmitter 6 L
_I £ .‘-1‘-! O i
m M-
O Vil
- — i | Ol
[itterential Sianal .
v 9 I O il
nltage — h)
Transmitter g Via
= ISUIJIJ"S' T+ |I:';.',L
n O a2
- - Qvis
Ditferential Sl rh' O
Current = 1O wir
Transmitter © AME o
= [Supply 1L O M Lo
QO Vil
QO ok
2Wire Signal Q Vol
Current Iani QO Ity
Transmitter +
Sensorf +0O
Trans mitter
Power Supphd? — J_

{11 The sensor powar supply must be rated Class2.
[& Allanalog commens (ANLG Com) are internally connectad.

{3 ¥ multiple power supplissare used, the commans must have the same ground refarance.

(& UsaerBelden 8761 cable (or equivalent) forwiring analeg 1/0.

Ch 19 PID Block

1763-IFEX0F2 Tamm inal Blozk

Fig. 19-26

43

General® | Connection | Input Configuration | Output Configuration

Type: 1765-IF4%0F2 4 Channel Input/2 Channel Output Low Resolution Analog
Vendar: Allen-Bradley

Parent: Local

MName: in_out Slot:
Description: i

Module Defintion

Revision: 11

Blectronic Keying: Compatible Module
Connection: Output

Data Format: Integer

General® | Connection |In|:|ut Configuration | Qutput Eanfigwatianl

Requested Packet Interval {RPI): P00 ms(1.0- 750.0)

[Inhibit Module
Major Fault On Controller f Connection Fails While in Run Mode Flg 19-27

Module Fault

| General*l Connection | [nput Configuration | Qutput Configuration

Channel | Enable
0

1
2
3

General® Eonnectionl Input Comfiguration | Dutput Configuration |_

Channel | Enable

0
1

Using the CompactLogix PID Block with RSView ME
The PID algorithm will be introduced in an application using the CompactLogix hardware and

software to provide control of the same valve used in the SLC programming experiences. The
graphical operator interface will be upgraded to the newer RSView ME operator interface.

Ch 19 PID Block

44

Configure a PID Instruction

After vouenter the PID instruction and spedfy the PID structure, vou use the

configuration tabs to specify how the PID instruction should function.

FID
Elrgnl:nrtlnnal Irteral Derwatfigil Clekher o onfgure the PID
Proces: Varable] instruction
Tieback 7
Condrol Yariable 7
FID Mazier Loop Kl
Irbiold Bit 7
|rikiold W alue 7
Setpaint el .
Process Variable rirs F|g. 19-56
Clutput 3 7

Inclusion of the data tag to create the list shown above. The PID algorithm uses these data tags
to calculate and control a PID block. For instance, the PV value for the block is mypid.Pv. The
SP or setpoint is mypid.SP. The example screens that follow show the newer IF4XOF2F/A card and
are used to set up the scaling for the present system in the lab.

Controller Qrganizer - 0 X

=53 Controller Test
[} Controller Tags
3 Controller Fault Handler

=25 Tasks

9@ MainTask

C& MainProgram

-8 PID_task

-8 PID_Program

: Program Tags

Enpt

i..l7 Unscheduled Programs / Phases
=153 Motion Groups

-3 Data Types
g User-Defined

i-Cg Predefined
L Module-Defined
----- 3 Trends
=53 IO Configuration
B@ 1769 Bus
¢ L. [0)1769-L30ERM Test
- . f [L]1769-IF4FXOF2F/A AO
-&s Ethernet
i [1769-L30ERM Test

Fig. 19-57

@ Controller Properties - Test

I?I@

| MNonvolatile Memary | Memory I Intemet Protocol | Port Configuration | MNetwork I Security | Alam Log

General | Major Faults

I Minor Faults | Date/Time Advanced | SFC Execution | Project

Wendor: Allen-Bradley

Revision: 2312

Type: 1765-L30ERM CompactLogec™ 5370 Controller Change Contraller...

Name: Test

Description:

“nong

oK || Cancel Apply Help

Controller Configuration of the L30ERM

The task was set up to execute every 100 msec. This is shown in the figure below:

Ch 19 PID Block

45

5 Task Properties - PID_task = L2 .

General | Configuration | Program / Phase Schedule | Mon'rtor|

Type: [F‘eﬁndic v]

Period: 100.000 ms

Priority: 10 = | (Lower Number Yields Higher Pricrty)
Watchdog: 500000 ms

[| Disable Automatic Output Processing To Feduce Task Overhead
[Inhibit Task

| oK || Cancel || fepi Help

Fig. 19-58 PID Task Set Up for Periodic

g) | Controller Organizer * 0 X Hﬂ % % E3 B g = ams
B b
=53 Controller Test —
@ Controller Tags FID
23 Contreller Fault Handler o S:’;purtiunal Integral Derivative i [
. myp
------ (33 Power-Up Handler Process Variable Locali:ChiData
-3 Tasks Tieback 0
B% MainTask Control Variable Local1:0.Ch1Data
-8 MainProgram ;IhDur:La;:ter Loop g
=439 PID_task Inhold Value 0
=8 PID_Program Setpoint nne
i 3 Pragram Tags Process Variable 0.0«
Output % 0.0«
Eﬂ pl
.23 Unscheduled Programs / Phases
-5 Motion Groups
L. 3 Ungrouped Axes
----- [Add-On Instructions

1451 Data Types
Cﬂ, User-Defined
Eﬂ, Strings
.08, Add-On-Defined
- Predefined
-, Module-Defined
----- 3 Trends
-5 [0 Configuration
- 1769 Bus
¥ [0]1769-L30ERM Test
- Bl [1]1769-F4FXOF2F/A AO
£ Ethernet
L. £ 1769-L30ERM Test
£y 2097-V31PRO-LM yt

Fig. 19-59 PID Module Set in Periodic Task

Ch 19 PID Block

- Strings
- Add-On-Defined
- Predefined
(-5 Module-Defined
3 Trends
B0 Configuration
-0 1769 Bus
L [f [0]1769-L30ERM Test
B [1]1769-F4FXOF2F/A AQ
Oz Ethernet
- [1769-L30ERM Test
o5 2007-V31PRO-LM yt

- Strings
., Add-On-Defined
- Predefined
. -0 Module-Defined
[T Trends
53 /O Configuration
£l 1769 Bus
L £ [0]1769-L30ERM Test
t] [111769-IF4FXOF2F/A AD
-#% Ethernet
L[1769-130ERM Test

(- Strings
% Add-0On-Defined
(-C Predefined
@59 Module-Defined

[Trends
-3 I/O Configuration
&l 1769 Bus

L [f [0]1769-L30ERM Test

Bl [1]1769-IF4FXOF2F/A AQ
525 Ethernet
- [1769-L30ERM Test
..y 2097-V31PRO-LM yt

57 Module Properties: Local:1 (1769-IFAFXOF2F 1.1) (=@ =]

General |Connedior| | Input Configuration I Input Alarms I Output Configuration | Cutput Lim'rtsl

Type: 1765-IF4FXOF2F 4 Channel Input/2 Channel Output, Fast Analog

Vendor: Allen-Bradley

Parent: Local

MName: AD Slat:
Description: IR

Module Definition

Revision: 11
Blectronic Keying: Compatible Module
Connection: Output
Data Format: Integer
Status: Offine [ok || cancel Boply Help

Iﬂ Module Properties: Locall (1769-IF4FXOF2F1.1)

General | Connection | Input Corfiguration | Input Alarms I Output Corfiguration I Output Limits |

Requested Packet Interval {RPI): 1005 ms(1.0-750.0)
[Inhibit Module
Major Fault On Controller f Connection Fails While in Run Mode
Madule Fault
Status: Offline [oK] [Cancel Apply Help

Iﬂ Module Properties: Localil (1769-IF4FXOF2ZF1.1)

General I Connection | Input Corfiguration | Input Alams | Output Corfiguration I Output Lim'rtsl

Channel| Enable Input Range Filter Data Format
0 O] [1vite10v |+f60Hz ||| Raw/Proportional ||
1 V] [4mAto20ma |+|80Hz || Scaled for PID =
2 O [1vio10v [£f60Hz |=|| Raw/Proportional ||
3 O] [1vite10v |+f60Hz ||| Raw/Proportional ||

[Enable Real Time Sample (RTS) |0 = ms

[Enable Timestamp

Status: Offline [0K] [Cancel Apply Help

Ch 19 PID Block

47

EJ--% Strings [Module Properties: Local:1 (1769-IFAFXOF2F 1.1) = =R
L Add-On-Defined
E]--% Predefined | General | Connection I Input Configuration | Input Alarms | Output Corfiguration |Ou‘tput Lim'rtsl
PO Module-Defined
D Trends X X Channel| Enable Output Range Data Format
&3 VO Configuration 0 Imé to 20mA |]| Raw/Froportional =]
Bm E‘:ﬁ?o?li;ﬁg | S0ERM Tect 1 V| |4mAto20mA || Scaled for PD]
Bl [1]1769-IFAFXOF2F/A AQ
aﬁ Ethernet
- [t 1769-130ERM Test
. Bl 2097-V3LPRO-LM yt
Status: Offine [QK] ’ Cancel] Apply Help
-[Z3 Controller Fault Handler = mypid Lood
-[23 Power-Up Handler Ecl-mypid CTL 134217728
=45 Tasks _ mypid.EN g
E% MainTask —mypid CT a
Cﬂ; MainProgram —mypid CL a
=59 PID_task — mypid.PVT 0
Elea PID_Program —mypid. DOE 1
& Program Tags — mypid.SVWM 0
—mypid .CA 0
-.[77 Unscheduled Programs / Phases — mypid MO 1]
9\‘5] Motion Groups mypid.PE a
L.[[3 Ungrouped Axes — mypid . NDF 0
-7 Add-0n Instructions — mypid. NOEC a
-4 Data Types mypid NOZC a
Cﬁ, User-Defined oy INI a
J:% Strings —mypid-SF‘{lH a
..C@ Add-On-Defined —
- Predefined _mpid OLL ¢
- Module-Defined _mypid OLH g
-[[3 Trends _mypid EWD g
=53 IO Configuration R d
-0 1769 Bus L 0
- [f [0]1769-L30ERM Test —mypid FVLA 0
- [111769-IF4FXOF2F/A AQ — mypid. PVHA 0
S22 Ethernet —mypid.5P 0.0
. f 1769-L30ERM Test — mypid.KP 0.4
Ly 2097-V31PRO-LM yt — mypid.KI 1.0
—mypid.KD 0.0
— mypid.BIAS 0.0
— mypid. MAXS 16383.0
— mypid.MINS 0.0
—mypid. DB 0.0
—mypid.50 0.0
—mypid. MAXO 100.0
— mypid. MINOD a.n
- mypid UPD 0.1
—mypid.PV 0.0
| | —mypid.ERR 0.0
Fig. 19-60 PID Tag in Tag Base

Ch 19 PID Block

48

The Program Tags for the PID mypid are shown with variable contents. These variables are
useful as tag references used for communicating with the variables through program control.

PIC
0 Propertional Integral Derivative

FID mypid [.]
Process Wariable Local1:1.Ch1Data
Tieback 0
Control Variable Local:1:.0.Ch1Data
PID Master Loop 0
Inhold Bit 0
Inhold Value 0
Setpoint 0.0+
Process Variable 0.0+
Output % 0.0+

PID Setup - mypid = 28 |

Tuning |Cunﬂgumtinn | Alams I Scaling I Tag |

_ _ [I'{I'— s Manual Modes
Setpoint (SP): : z] Manual «
Set Output: 0.0 kA [T Software Manual e
Output Bias: 0.0 e
Tuning Constants
' . . D4 e Reset Tuning Constants
Proportional Gain (Kp). to the values they had
: . 10 2 e 1 upon entry into the PID
Intearal Gain (Ki): 5 Setup dislog
Dervative Time (Kd): 0.0 T &s W L

Setpoint (SP): 0.0 PV Alam: MNone
Process Vanable: 0.0 Deviation Alam: Mone
Ermor: 0.0 Dutput Limiting: MNone
Output: 0.0 i Error Within Deadband: Mo
Tieback: 0.0 i Setpoint Out of Range: Mo
Mode: Auto PID Intialized: No

| oK || Camesl || ooy Help

Fig. 19-61 PID Tag Setup-Tuning
The tuning tab shows the variables used to tune the PID block. The Kp, Ki and Kd tuning

constants are probably the best variables for the water valve. These constants should not vary too
much from the numbers shown or the PID block may become unstable.

Ch 19 PID Block 49

The configuration tab shows the variables used to set up the type of block used. The variables
seen above are the ones used in the download example. There are a number of variables that are

not used.

PID
Proporticnal Integral Derivative

FID mypid [
Process Variable Local1:1.Ch1Data
Tieback 0
Control Variable Local:1:0.Ch1Data

PID Master Loop 0
Inhold Bit 0
Inhold Value 0
Setpoint 0=
Process Variable 0.0+
Output % 0.0+

r
PID Setup - mypid

2]

| Tuning | Configuration |Fu|arrns | Scaling I Tag |

Se2Cs.

PID Equation: | Independent -]
Cortral Action: [SP - PV "]
Derivative Of: [Ermor "]
Loop Update Time: 0.1 =

CV High Limit: 1000 H %
CW Low Limit: 0.0 ca| A
Deadband Value: 0.0 =

[] Mo Derivative Smoothing

[] Mo Bias Calculation

[] Mo Zeno Crossing for Deadband
[C] PV Tracking

[Cascade Loop
Cazcade Tvpe: | Slave

Setpoint (SP):
Process Varable:
Emar:

Output:

Tieback:

Maode:

=]
=]
ot

PV Alam: Mone
Deviation Alam: Mone
Output Limiting: Mone

Emor Within Deadband: Mo
Setpoint Out of Range: Mo
FID Initialized: Mo

| oK

J [

Cancel] Apply Help

Fig. 19-62 PID Configuration

Ch 19 PID Block

50

P
0 Proportional Integral Derivative

FID mypid [
Process Variable Local:1:1.Ch1Data
Tieback 0
Control Variable Lecal1.0.Ch1Data
PIC: Master Loop 0
Inhold Bit 0
Inhold Yalue 0
Setpoint 0o+
Process Variable INIE
Output % INIE

’
PID Setup - mypid -2

| Tuning | Corfiguration | Alams |Scaling I Tag |

Process Varable (PV) High: 0.0 o

Process Varable (PV) Low: 0g =

Process Varable (PV) Deadband: 0.0 -

Positive Deviation: 0.0 5

Megative Deviation: 0o =

Deviation Deadband: 0.0 e
Setpoint (SP): 0.0 PV Alam: Mone
Process Varable: 0.0 Deviation Alarm: Mone
Emor: 00 Output Limiting: Mone
Output: 0.0 i Emor Within Deadband: Mo
Tieback: 0.0 s Setpoint Out of Range: Mo
Mode: Auto PID Initialized: Mo

| ok || Cancel Apply Help

Fig. 19-63 PID Alarms

The alarms tab shows the alarm variables used to set up the block. The alarm limits are ignored
for now but in a real application will be necessary when setting up a system of alarms.

Ch 19 PID Block

51

PID

Proportional Integral Derivative
PID

Tieback

PID Master Loop

mypid [
Process Variable Local1:1.Ch1Data

Control Wariable Local 1:0.Ch1Data

Inhold Bit 0
Inhold Value 0
Setpoint 00«
Process \Variable 0.0«
Cutput % 00«

0

0

”
PID Setup - mypid

| Tuning | Configuration | Alams | Scaling |Tag |
Process Varable (PV)
Unscaled Max.: [16383.0 = Engineerng Unit Max.: 16383.0 =
Unscaled Min.: 0.0 = Engineering Unit Min.: 0.0 =
Control Variable (CV) Tieback
Mz, zt 100 %) 16383.0 z Maze. (zt 100 %) 0.0 $
Min. {zt O %): 0.0 = Min. (@t 0 %) 0.0 =
[] PID Intialized &
Setpoint (SP): 0.0 PV Alam: Mone
Process Varable: 0.0 Deviation Alam: Mone
Emar: (1X1] Output Limiting: Mone
Oiutpit: (1X1] i Emor Within Deadband: Mo
Tiebach: 0.0 a0 Setpoint Out of Range: Mo
Mode: Auto PID Initiglized: Mo
| ok || cameel || Aoply Help

Fig. 19-64

PID Scaling

The scaling tab shows the variables as set up in the block. We need to make a decision whether
to scale the engineering units. The unscaled PV and CV are listed at 16383. The Engineering
Units for the PV may be changed or left as is. For water, the engineered units should be 90 gpm

max.

| Turing I Corfiguration | Alarms | Scaling |Tag |

Process Varable (FV)

Unscaled Min.: 0.0

Cortrol Varable {CV)
Maze. (=t 100 %) 16383.0

Mir. {zt O %) 0.0

Unscaled Max.: [16383.0

= Engineering Unit Max.: 91.0 =

= Engineering Unit Min.: 0.0 =
Tieback

> Mz, (gt 100 %) 0.0 e

= Min. (&t 0 %): 0.0 %

[C] PID Initizlized &

Ch 19 PID Block

52

P

1] Proporticnal Integral Derivative
PID mypid [
Process Variable Local1:1.Ch1Data
Tieback]
Control Wariable Local1:0.Ch1Data
PIC: Master Loop]
Inhold Bit]
Inhold Value]
Setpoint 0.0+
Process Variable 0.0+«
Cutput % 0.0«
”
PID Setup - mypid et |
| Tuning | Corfiguration | Alams | Scaling | Tag |
Mame: mypid |
Description: A
Type: Base
Data Twpe: FID
Scope: Cﬁ; PID_Program
Exdemal ReadWrite
Access:
Setpoint (SP): 0.0 PV Alam: Mone
Process Varable: 0.0 Deviation Alam: Mone
Emor: 00 Output Limiting: Mone
Output: 00 A Emor Within Deadband: Mo
Tiebach: 0.0 i Setpoint Out of Range: Mo
Made: Auta PID Initialized: Mo
| ok || Cancel || ppi Help

Fig. 19-65

PID Setup

The setup tab shows the variables as set up in the block.

Ch 19 PID Block

53

PID Setup - mypid

Tuning |Cunﬁgumtinr1 I Alams | Scaling | Tag |
_ Do]l o Manual Modes
Setpoint (SP): : - [F] Manual «
Set Output: 0.0 2 k4 [7] Software Manual &
Output Bias: 0o e
Tuning Constants
: ; . 04 e Reset Tuning Constants
Proportional Gain (Kp) to the values they had
; . 10 e upan entry inta the P10
Integral Gain (Ki): 5 Setup dialog
Derivative Time (Kd); 0.0 Tes €
Setpoint (SP): 0.0 PV Alam: High
Process Varable: 0.01110507& Deviation Alam: Low
Emor: 0.011109076 Output Limiting: Low
Cutpt: 0.0 i Emar Within Deadband: Mo
Tieback: 0.0 W Setpoint Out of Range: Mo
Mode: Auto PID Initialized: Yes
| ok || Cancel Apply Help

PID Setup - mypid

Tuning |Cunﬂgumtiun |.Narrns | Scaling | Tag |
. Manual Modes
i : 0 -
Setpoint (SF): b0] Marual «
Set Output: 41.285263 S % [Seftware Manual «
Output Bias: 0.0 %
Turing Constants
. : . 04 e Reset Tuning Constants
Proportional Gain {Kp) to the values they had
. . 10 SIPSY upan entry into the PID
Imtegral Gain (Ki): 5 Setup dialog
Derivative Time (Kd): 0.0 es 'S
Setpaoint (SP): H0.0 PV Alam: High
Process Varable: 54 57389 Deviation Alam: Low
Ermar: -4 5788918 Cutput Limiting: MNone
Output: 41 285263 g Emor Within Deadband: Mo
Tieback: 0.0 i Setpoint Out of Range: Mo
Mode: Auto PID Intialized: es
| ok || Ccancel Apply Help

Ch 19 PID Block

54

PID Setup - mypid

Tuning |[:unﬁgu|atiun I Alams | Scaling | Tag |

Manual Modes

i : 800 = e
Setpoirt (SP):] Manual «
Set Output: 100.0 o a4 [7] Software Manual «
Output Bias: oo e
Tuning Constants
: ; . 04 e Resst Tuning Constants
Proportional Gain (Kp) to the values they had
: . 10 e upon entry inta the P10
Integral Gain (Ki): 5 Setup dialog
Derivative Time (Kd); 0.0 Tes -
Setpoirt (SP): 80.0 PV Alam: High
Process Varable: 75.675026 Deviation Alam: High
Emor: 4324574 Owutput Limiting : High
Outpt: 100.0 A Emor Within Deadband: Mo
Tieback: 0.0 o Setpoint Out of Range: Mo
Made: Auto PID Initialized: Yes
| ok || cance || ppi Help

PID Setup - mypid

Tuning™ |I:ur1ﬁgu|atinr1 |Alarrns | Scaling | Tag |

Manual Modes

Setpoint (SF): g0 a by [Manual «
Set Output: 40.0 =« % Software Manual &
Cutput Bias: 0o H e
Turing Constants
. . . 04 2l e Reset Tuning Constants
Proportional Gain (Kp): to the values they had
; . 10 2 e 14 upan entry into the PID
Imtegral Gain (Ki): g Setup dialog
Dervative Time (Kd): 0.0 T es -
Setpoirt (SP): 80.0 PV Alam: High
Process Vanable: 50557407 Devigtion Alam: High
Ermar: 29442593 Cutput Limiting: Mone
Outpurt - 40.0 il Errar Within Deadband: Mo
Tieback: 0.0 o Setpoint Out of Range: Mo
Mode: Software Manual PID Initialized: Yes
OK || Cancel || Apply || Hep

Ch 19 PID Block

55

General |States I Timing | Comman I Cﬂnnediuns|

Appearance

Border style:

Border width:

[Haised

] 1 Border uzes back color

Back style:

[Highlight colar

| Saiid

Shape:

[Rectangle

d

State zettings

2 -

Touch marginz

0

Other
Audio

80
60
40
20

0

Murmber af states:

Harizontal margin:

M et state bazed on:

[Eurrent State -

Yertical margin:
]

Mumeric Input Enable Properties

LOOP 2
PV SP

1mI

o 8 & &8 8

General | Label | Numeric: | Timing | Common | Cunnectiuns|

Touch margins

Harizontal margin: Wertical margin:

0 1]

Other

Audio
F.ey navigation
[7] Take focus on press

Ch 19 PID Block

Appearance
Border style: Barder width: Border uzes back calo
[Fiaise-:l '] 4 B Eack color
Back style: Fattem style: B Eorder color
[Su:uliu:l v] [Nu:une T]] Pattern color
Shape: O Highlight colar
[Fectangle -] (| Blink

56

Mumeric Input Enable Properties &
| General | Label | Mumedc |T|ming | D::mmunl Connections |
M ame Tag / Expression Tag | Expmn I
=+ i [chad]Program:PID Praaram, ryepid 507} e
Optional Exp -+ e
Enter -+ 000
Enter Handshake 4 s00 500
Minimurm + oo 000
b axirurn + oo 000
| ok || cancel || epi Help

Continuing the Allen-Bradley Configuration Pages

After you enter the PID instruction and specify the PID structure, you use the configuration tabs
to specify how the PID instruction should function.

To specify tuning, select the Tuning tab. Changes take effect as soon as you click on another
field.

To configure the PID:
Specify Setpoint (SP) Enter a setpoint value (.SP).

Set output % Enter a set output percentage (.SO) (In software manual mode, this value is
used for the output. In auto mode, this value displays the output %.)

Output bias Enter an output bias percentage (.BIAS).

Proportional gain (Kp) Enter the proportional gain (.KP).For independent gains, it’s the
proportional gain (unitless). For dependent gains, it’s the controller gain
(unitless).

Integral gain (Ki) Enter the integral gain (.Kl). For independent gains, it’s the integral gain

(1/sec). For dependent gains, it’s the reset time (minutes per repeat).
Ch 19 PID Block 57

Derivative time (Kd)

Manual mode

PID equation

Control action

Derivative of:

Loop update time

CV high limit

CV low limit

Deadband value

No derivative smoothing
No bias calculation

No zero crossing in dbnd
PV tracking

Cascade loop

Cascade type

Specify Alarms
PV high:

PV low:

PV deadband:
Positive deviation
Negative deviation

Deviation deadband

Specify Scaling

Enter the derivative gain (.KD). For independent gains, it’s the derivative
gain (seconds). For dependent gains, it’s the rate time minutes).

Select either manual (.MO) or software manual (.SWM). Manual mode
overrides software manual mode if both are selected.

Select independent gains or dependent gains (.PE). Use independent when
you want the three gains (P, |, and D) to operate independently. Use
dependent when you want an overall controller gain that affects all three
terms (P, I, and D).

Select either E=PV-SP or E=SP-PV for the control action (.CA).

Select PV or error (.DOE). Use the derivative of PV to eliminate output
spikes resulting from set-point changes. Use the derivative of error for fast
responses to set-point changes when the algorithm can tolerate
overshoots.

Enter the update time (.UPD) for the instruction.

Enter a high limit for the control variable (.MAXO).

Enter a low limit for the control variable (.MINO).

Enter a deadband value (.DB)

Enable or disable this selection (.NDF)

Enable or disable this selection (.NOBC).

Enable or disable this selection (.NOZC).

Enable or disable this selection (.PVT).

Enable or disable this selection (.CL).

If cascade loop is enabled, select either slave or master (.CT).

Enter a PV high alarm value (.PVH).

Enter a PV low alarm value (.PVL).

Enter a PV alarm deadband value (.PVDB).
Enter a positive deviation value (.DVP).
Enter a negative deviation value (.DVN).

Enter a deviation alarm deadband value (.DVDB).

Ch 19 PID Block

58

PV unscaled maximum

PV unscaled minimum

Enter a maximum PV value (.MAXI) that equals the maximum unscaled
value received from the analog input channel for the PV value.

Enter a minimum PV value (.MINI) that equals the minimum unscaled value
received from the analog input channel for the PV value.

PV engineering units maximum Enter the maximum engineering units corresponding to .MAXI (.MAXS)

PV engineering units minimum Enter the minimum engineering units corresponding to .MINI (.MINS)

CV maximum

CV minimum

Tieback maximum

Tieback minimum

PID Initialized

Enter a maximum CV value corresponding to 100% (.MAXCV).
Enter a minimum CV value corresponding to 0% (.MINCV).

Enter a maximum tieback value (.MAXTIE) that equals the maximum
unscaled value received from the analog input channel for the tieback
value.

Enter a minimum tieback value (.MINTIE) that equals the minimum
unscaled value received from the analog input channel for the tieback
value.

If you change scaling constants during Run mode, turn this off to reinitialize
internal descaling values (.INI)

Shifting to the HMI Program, RS Studio is entered and the Libraries choice and then Face Plates

choice is entered.

Ch 19 PID Block

59

Fig. 19-66 Under Libraries — Face Plates

With RSStudio, build a screen from scratch using a face plate. There are a number of face plates
in the template from which to choose.

Ch 19 PID Block

60

The various parts of the face plate are animated. The next screen shows the details:

Fig. 19-67 HMI Loop Face Plate

Edit

Connections..,

Key Assignments...

Delete

Arrange
Animation Ylﬂ'bﬂity...
Color...
Convert to Wall
o Wallpaper ill...
Tag Substitution... Horizontal Position...
P Panel v Lg::;:l Position...
Object Explorer 5
Height...
Cut Rotation....
Copy Horizontal Slider...
Paste Vertical Slider...

Paste without localized strings _

Fig. 19-68 Animation of the Arrow

Ch 19 PID Block

61

NNNNN Connections...
L Key Assignments...

Arrange »
Animation L4

Convert to Wallpaper

I Tag Substitution...

Property Panel
Object Explorer

Cut

Copy

Paste

Paste without localized strings
Delete

Duplicate

Copy Anirmation

Paste Animation

Global Object Defaults
Global Object Parameter Values
Global Object Parameter Definitions

Fig. 19-69 Animation of the Numeric Entry

Ch 19 PID Block

| S

62

LOOP 1 LOOP 2
PV SP DEVIATION
j00.2Y 52 100 A
o e B E [l
60 - B0
40 - 40
20 l l 20
0 0
PV % PV %
SP % SP %
J |
V% CV %
| NNNNN [NnRN
— MANUAL
i 100
SETPOINT
CLOSE

OUTPUT NN

Fig. 19-70 One of Many

Choose a faceplate and begin modifying it for the application. Several tags are provided with
each faceplate. These tags may set a number, allow entry of a number, move an animated arrow
or fill a sliding window. Bits may be added for auto/manual and local/remote. Note that alarms
may also be included such as the red and yellow tags above.

These faceplates may be modified with additional components. They may also be built from
scratch using existing components. At one time, the faceplate could be unbundled. While no
longer possible, the individual components may be animated by clicking them and then
answering the questions.

The next two pages show the animation of the faceplates from Siemens and Allen-Bradley using
the faceplate as the starting point for the animation. While the faceplate given is not available
from Siemens, it can be built from parts using existing Siemens components. The up and down
triangles shown in the earlier faceplate may also be added to these faceplates for a more complete
system. The logic in the Siemens faceplate below show how to add the triangles.

Ch 19 PID Block

63

Siemens PID
with faceplate

mypid.State
State=0:
State=1:
State=2:
State=3:
State=4:
State=5:
State=6:
State=7:

State=8:

Inactive
Pretuning

Man fine tune
Automatic mode
Manual mode
Safety mode
Output val meas
Safety mode trig

Inactive mode

e

—_—]

MANUAL

SETPOINT

QUTPUT

EJ

Fig. 19-71

mypid.Setpoint

mypid.Input

mypid.Output

mypid.ManualValue

mypid.Setpoint

mypid.Output

The following logic can be used to add 1 % to the full scale value of the Setpoint. Similar logic
can be used for 5% increase or for 1% or 5% decreases. The triangle buttons on the original
faceplate showed these triangles. Similar buttons can be added to the CV or Output logic when
the PID algorithm is in manual. Similar logic can be added to the Allen-Bradley program.

%M0.0
“add_1_SP_ bz ADD
Button” ISP—VE”I Real
lp | = EN ENO
L | Real |
o 0T 4P Full_Scale_ YAD2 YMD2
Add_1_5P_05 less_const 5P Val® — IN1 OUT - “SP_val”
%WMD6
"One_PCT_Full_
Scale” — INZ2 st

Ch 19 PID Block

64

Allen-Bradley PID
with faceplate

mypid.SWM
1 = manual
0 = auto

MANUAL

SETPOINT

OUTPUT

Fig. 19-72

Ch 19 PID Block

mypid.SP
mypid.PV

mypid.CV

mypid.SO

mypid.SP

mypid.CV

When the PID block is in manual,
the .SO is placed in the Output.
When in auto, the PID block
calculates a value for Output.

65

Two new topics not explored in the earlier PanelVView were alarm screens and trends. Alarm
banners were available in the older PanelView but were not as flexible as the newer alarm screen.
Also, trends are needed. Trend data is very important in that a trend of any variable can be used
to diagnose a problem either in the start-up phase of a project or later during daily operation.

Historical data trends will show long-term trends as well.
SIS

1nn

80

60

40

20

0

=TT

Tank of Liquid Fat
| NN
SP %
Control Valve CvV%
NP MM

\/ L AnnAA|
JAN | ‘ i 100

CLCSE

Fig. 19-73 Graphic of Fat Valve

This figure shows a partially finished graphic of the ‘fat’ portion of the dog food extruder. When
the invisible button around the valve is energized, the PID block faceplate appears allowing
control of the valve in auto and manual mode. Local and remote control may also be added to
the screen with the faceplate. The pipe may be enhanced as well to show flow when the valve is
open and no flow when the valve is closed.

The graphical application may be run from the PC or downloaded to a target system. The tags
for the graphical screen may be those in the PLC. Care must be taken when selecting where the
process is to be displayed. If it is displayed from the computer screen, then Local is selected. If
the display is downloaded to the Panelview32, then Target is selected. In order to display the
process locally, a number of steps must be incorporated for the local application to correctly
“see” the PLC.

Ch 19 PID Block

66

Non-Standard Controller Modes

A number of additional modes may be created for the PID block. Bits must be programmed
externally to the PID block for many of these other control modes.

An example is Control Output Tracking (COT). In COT, the loop is forced to manual and the
output moves to a programmed position until conditions in the program are stable enough for the
system to proceed to auto. In COT, the mode shown to the operator is AUTO with COT. The
system is perceived to be in Auto but the output or CV is actually in Manual.

This mode is ideally suited for burner start-up with a large number of burners. When the burners
are first turned on, the gas and combustion air are not able to be controlled under automatic
control. The burners need to operate in the extreme low range of the CV but the control valve
cannot be allowed to completely shut off. In the low range of most valves, proper flow rates are
not accurate and control becomes very unstable. COT allows the PID loops to operate for a set
period of time in manual at a preset position until the burners are all started and flows are at their
mid-range positions more capable of accurately being controlled. Then the PID algorithms take
effect in Auto and the PID loops begin the process of controlling the temperature in the furnace.
To the operator, the system appears to be in auto but in the program, the PID algorithm is being
controlled in manual until the auto mode is capable of accurately controlling the PID block.
COT is to be used only in start-up situations or in recovery operations in which it is necessary to
operate at a low-end setting to keep the burner system from shutting down.

When operating in a mode such as COT or Maintenance and when the mode is removed, the loop
should resume its former status.

Use a toggle input from the HMI and the following logic to program bits for A/M, L/R, COT,
and Maintenance.

B|31(|)/0 El”orl B3:0/0

| +f O
Remote Error Remote Fig. 19-74
B3:1/0 2 B3:1/0 :

| H—0

Use of toggle bits to turn on a mode may not at first resemble a seal or latch circuit but in fact
they act in a manner similar to both. The toggle bit (B3:0/0 or /1) may be turned on by an
operator through the HMI and will remain on until the operator removes the toggle or until the
NC contact logic interrupt the flow. When this happens, the circuit reverts to the safer off state.
In the example of auto/manual (bit B3:0/0), the bit will turn off to the manual state. Note that the
actual state of the SLC Auto/Manual bit is reversed from this logic.

Ch 19 PID Block 67

Tuning the PID Block

It is interesting that a number of different PID algorithms exist. No one standard equation is used
in all controllers. While the PID block has the same general function, nomenclature and the
action of the block may differ.

Proportional Band = 100/gain
Integral = 1/reset
Derivative = rate — pre-act

Three classifications of PID algorithms are considered major classes of design equations. They
are ideal, parallel and series or interacting. Equations for the three are listed below:

Ideal: Output = Kc[e(t)+% [ed() + D%}
1 de(t)
Parallel: Output = Kp[e(t)]+ n j e(t)d(t)+D .

Series (Interacting) Output = Kc[e(t) + %Ie(t)d (t)}[l +D %}

Different manufacturers use one of the above control algorithms as the basis for their PID block.
The three do not respond identically to different situations. A control algorithm from one
manufacturer cannot be guaranteed to work identically to the control algorithm of a second
manufacturer. Differences in the derivative action are especially critical to the operation. For
this reason, many do not use derivative action in the tuning of a loop. To not use derivative
action, set the derivative or D value to zero.

Manufacturers such as Honeywell, Bailey, Allen-Bradley, Modicon, Foxboro, Fisher, and Texas
Instruments pick one of the above types of equation and implement it on their controllers. Some
manufacturers allow a choice between which algorithm is used. It is the engineer’s or
technician’s responsibility to understand the application, the PID equation, and choose the best
overall solution for the application.

Ch 19 PID Block

68

Using the PID Algorithm to Control a Process

To configure a system, a flow diagram must be drawn to identify the parts of the system. The
example below is of a dog-food manufacturing facility. The basic process for making the dog
food is the extruder whose function is to make dog food from dry ingredients along with some
steam, fat, and other wet ingredients. As the motor speeds up, more ingredients are to be added
and as the motor slows down, the added ingredients are to slow down as well. The PID block
will be used to add one wet ingredient, fat.

Other Raw
Ingredients
Tank of Liquid Fat
Fat
Control Valve
Extruder Motor -_ Extruder Dog Food |:>
Kibbles ‘n Bits

Fig. 19-75 Extruder/Mixing System making Dog Food

Since the extruder motor speed runs the feed speeds for the other ingredients in the process, its
speed sets the master speed for the process. All other feed speeds will be a percent of the motor

speed.

Control signals for the Dog Food Control include:

Motor Speed
Motor Speed Motor Speed Motor Speed Motor Speed
Feed Rate Feed Rate Feed Rate Feed Rate
Ingredient a Ingredient b Ingredient c Fat

Fig. 19-76 Motor Speed Settings for Ingredient Adds

Ch 19 PID Block

69

For the example, it is given that all the feed rates are in place for the ingredients other than ‘fat’.
From the diagram, motor speed is the master speed reference for all rates in the system and ‘fat’
has been added as a separate ingredient. Modes for the PID algorithm for ‘fat’ include remote
and local when the PID algorithm is in auto and auto or manual for the PID algorithm itself.
When the PID algorithm is in local, a setpoint is provided from the local faceplate variable.
When the PID algorithm is in remote, the motor speed furnishes the value. Variables are usually
multiplied by a constant with motor speed * multiplier giving the value of the setpoint when the
local-remote switch is in remote.

The example will be used as a lab exercise at the end of the chapter. Design of the faceplate will
show selector switch positions for local versus remote and manual versus auto. Usually a
graphic of the system is provided with a button activated that shows the faceplate. The screen
with the faceplate is not the primary screen but is accessed as needed. The process screen
displays the entire process with various pop-up buttons available to show the PID algorithm for
that portion of the process as the operator needs to access a specific PID block. Many times the
buttons to activate the PID block are configured as invisible. If the operator pushes the area
around the valve — ‘fat’ valve in this case — the PID block for ‘fat’ will be displayed. The
diagram below follows the signal path through the PID block and is useful as a programming aid.
Looking only at the Fat Feed, the following process flow will be implemented:

Motor Speed
|
Multiplier Local Setpoint
o—-
switch in remote or cascade switch in local
Flow Valve to
Proces Variable Setpoint in PID
> PID Solver
Cv or Output Manual Cv
- - C - -
switch in auto switch in manual

Signal to Valve

Fig. 19-77 Motor Speed Settings for Ingredient Adds

Ch 19 PID Block 70

Bumpless Transfer

When the PID block is switched from manual to auto, the function responds to the SP presently
available to the block. If the process is sensitive to sudden changes in PID output, then the
program should include logic to give the output a signal matching the present flow when the
block was in manual. This is referred to as bumpless transfer.

With the more advanced PID blocks of the PLC/5 and Control Logix platform, the output value
that is described as the value to write to so that the output will be bumpless is the .SO value. The
.SO value of the PID block should be given the value that the operation would like the output to
have when the PID block is first put in Auto. This value is usually the value of the output when
the PID block is in Manual. The MOV operation should guarantee bumpless transfer when the
block moves from Manual to Auto.

For example, if the block was in manual and flow was 25.5 gallons per minute, when the PID
block is transferred to auto, flow should continue to maintain 25.5 gallons per minute. With PID
blocks, the addition of logic requires writing the present flow rate to the setpoint when the block
transfers from manual to auto.

Floating Point PID

The subject of what type of PID block to choose is an easy decision. Always use the Floating
Point PID block if floating point is available. The number representing the flow or pressure or
temperature is an actual number with units and no need to be transposed to another number
elsewhere. With the integer PID block, it is very important to keep a record of the various
transpositions so the PID block can be used at maximum efficiency with numeric values sent to
the operator that relate to the process.

PID function blocks using floating point numbers are preferred. For instance, if flow varies from
0 to 45 gpm, then the numbers entered for minimum SP and maximum SP’s would be 0.00 and
45.00. However, to gain accuracy, any integer setpoint should use the entire range from 0 to
16383. The min. value 0.00 equals 0 and the max value 45.00 equals 16383. With the integer
PID block, there is a translation in the values between internal units and values displayed to the
operator. For examples in the text, this translation is ignored. In an actual application, however,
each translation must be implemented with an appropriate SCP instruction. Effort to keep all
translations in order is not seen as necessary and most complex applications tend to use floating-
point PID.

Calibration may be used to determine units of flow. In order to determine flow, a test is run with
a watch and a calibration system. For instance, running a 5 gallon bucket full of water in a
certain time is an acceptable method of calibrating flow through a valve. Repeating the
calibration a number of times over a range of settings gives a better overall measurement.

Ch 19 PID Block 71

Fault Circuits

Faults occur at different levels in the program and require a variety of responses. Some types of
faults should shut the process down. Shutting down may require that valves turn off. Many
times, to shut down automatic operation is desired and the valves are to stop moving, staying in
the same position. If the desire is to move from Auto to Manual, the bit in the PID algorithm
labeled AM must be changed from 0 to 1. The bit is set to 0 in Auto and 1 in Manual. The fault
contact represents various faults that can harm the process if the PID algorithm is allowed to
continue in auto.

Two levels are present in most processes. As with the dog food application, the process is
capable of being run in remote or local for both automatic modes or in manual. In a hierarchical
picture, remote mode is favored over local mode and the manual mode is the least desirable mode
to run the process. This may be pictured as:

Bit B3/x on Remote Auto A MOS:'[

Bit B3/y on Desired

B::Lt B3/x off Local Auto

Bit B3/y on

Bit B3/x off Manual (Local) v Least

Bit B3/y off Desired
Fig. 19-78

Bit B3/x is the Remote Control Bit
Bit B3/y is the Auto/Manual Control Bit

In this description, Manual and Remote mode is not allowed.

Note that when the PID block is in auto, the control bit is on. A second bit must be programmed
to reverse the status of this bit to turn off the AM bit in the PID block to correctly run the PID
block.

One of the control button types in PanelView is ideal to program the Remote/Local and
Auto/Manual layout for the PID block. It is the Multistate Button. Define two multistate buttons
for the process above. Reference the first multistate button to B3/x to represent Remote or Local.
Reference the second multistate button to B3/y to represent Auto or Manual.

Let B3:0/0 represent the remote/local mode and let 83:0/1 represent auto/manual.

Ch 19 PID Block 72

Fault
From
Eemote
PID in Remote to Loc PID i Auto PID i Femote
E30 B3.2 B30 B30
nool 4 F - 1 F O
0 5 1 0
Fanlt
From
Auto
PID in Auto to Man FID in Auto
B3:0 B33 B30
0002] F = - i
1 5 1
PID Elock
PID in Auto A0 Bit
E3:0 M0
0003 —— - f— G o
1 1
Fig. 19-79

The logic for control bits for remote/local and auto/manual is provided. Multistate pushbuttons
are programmed in the HMI for 83:0/0 and B3:0/1. B3:0/0 is labeled Remote when the bit is
on and Local when the bit is off. 83:0/1 is in Auto when the bit is on and Manual when the bit
is off. The state is set to ‘on’ when the operator places the buttons in the remote or auto mode.
The operator can also place the buttons in local or manual mode. Operation of the process can
also place the process in the local or manual mode as well when faults occur. Faults as
represented by B3:2/5 will energize the NC contact and take the PID block from remote to local.
Faults represented by 83:3/5 will energize the NC contact and take the PID block from auto to
manual.

Multistate buttons are used for remote/local and auto/manual so one button can be used instead of
two buttons. Most graphical applications encourage the use of a single button as opposed to two
separate buttons. Using the multistate button provides a single button with toggle functionality.
Multistate buttons also respond to program logic in the PLC and will turn on or off with logic
internal to the program.

To complete the mode program for the PID block, be able to add logic to the rungs above to turn
on or off B3/0 and 83/1 from the program as well as from the HMI. From the HMI software,
configure two multistate buttons. These buttons are programmed as follows:

Button 1
B3:0/1 Tag
Off Local
On Remote
Button 2
B3:0/0 Tag
Off Manual
On Auto

Ch 19 PID Block 73

Faults that move the operation from remote to local are different than faults that move the
operation from automatic to local. Always, the option most highly sought is for the operation to
run in remote. However, if a fault occurs in the process but not necessarily in the individual PID
block, the fault should cause the process to revert to local from remote and sound an alarm.

If a fault occurs in the PID block, the best practice is to change the block from automatic to
manual. One of these faults is referred to as anti-reset windup. In manual, the algorithm is not
active and the error term is reset to zero eliminating the integral term from growing with a
growing error.

Example of Fault Causing Switch from Remote to Local

When looking at PV, a temperature profile may be found to form a composite PV. The values of
a number of different temperature inputs are summed together. The sum is weighted with the
weighted values having to add to 100%. If the weights do not add to 100%, the individual PID
blocks used to control their CV outputs are switched to local mode. The local setpoint is used
until the weights have been adjusted to add to 100% and the operator switches control back to
remote.

Weight 1 X Temperature 1
Weight 2 X Temperature 2
Weight 3 X Temperature 3
+ Fig. 19-80

Temperature PV

In the example, Weights 1-3 must add to 100 % for the Temperature PV to run the temperature
PID block in remote.

Auto Enable

EQU
— | Sum of Weights O
(W1+W2+W3) Fig. 19-81

100%

Ch 19 PID Block 74

Example of Fault Causing Switch from Auto to Manual

When operating between Auto and Manual, the PID block should be monitored so that a failure
to achieve the desired result is not defeated by faulty equipment. If the equipment fails, the PID
block should be faulted to the Manual Mode and an alarm sounded. For instance, if a valve is
attached to the CV and the valve does not turn when the CV changes, this should be considered a
fault condition. To find if this is the case, the CV or output is compared to a position on an
analog scale. The sensor is usually nothing more than a potentiometer. If the CV does not keep
within 10% (or other constant) over a time period such as 10 seconds, the PID block for the valve
should fail.

Another type of failure is the restriction of flow that can cause the CV to travel to full ‘on’. A
restriction in flow may be simulated by simply pinching off a hand valve in the line of flow. Any
restriction over time can cause the CV to not be able to control the process. If the CV is allowed
to go to 100% for a period of time, the PID block should fault and the output be placed in
Manual. Ranges other than 100% may be used as well with a time delay appropriate to shut
down the process in abnormal conditions. The programmer must be able to decide acceptable
ranges for these cutoffs, usually through experience with the PID block and with the process.

Eliminating Anti-Reset Windup

In order to avoid anti-reset windup of the PID controller, the controller must be switched from
auto to manual when conditions exist that would wind up the controller integral term. The
integral term is reset to zero in manual mode. To detect integral error, monitor the PV. If the PV
does not follow the CV after a preset time, something is perceived to be wrong with the system
and action should be taken.

For example, a check valve may be turned off starving the system. When this happens, the PID
controller must be placed in manual to eliminate windup and an alarm sounded.

An experienced operator will find the problem and reset the loop to auto control. And the system
will continue to function with only a small upset to the system. If the PID block is allowed to
wind up over several minutes or hours, the output valve may stay open 100% (or closed 100%)
for long periods of time after the system comes back into operation before control is re-
established. In this time period, excessive gas may flow through a gas valve causing an
explosion or too much liquid may flow through a control valve flooding a process vessel
downstream. In any case, the result usually upsets the entire system causing scrapped product or
worse.

Ch 19 PID Block

75

When switched from Auto to Manual, the error integral term is reset to zero:

Auto

Manual

I I Fig. 19-82
E-0 E=0

windup may occur no windup

When switched from Manual to Auto, the error integral term starts at zero and adjusts:

Auto

Manual

Fig. 19-83
jEzo jE¢o

no windup error term initially O

Changes from Manual to Auto are usually made by the operator and imply that the operator is
aware that a problem occurred, has found the problem and is ready to put the process back into
Auto.

Building a Ramp Block

A ramp block is a function block that is added in front of a PID block to change the SP over a
period of time instead of immediately. It is constructed in the PLC diagram to increment from
the old SP to the new SP in increments of 1. More sophisticated ramp blocks allow the ramp rate
to be set by an operator or engineer. Some PLC instruction sets include a ramp block. The SLC
instruction set does not include a separate Ramp block so one must be programmed from
available instructions.

In this example, the old setpoint was 50 and the new setpoint was 62. In order to move from the
old setpoint to the new one, the SP value must be incremented to climb. The rate at which the SP
is incremented may be changed which varies the rate at which the new SP achieves its value. For
example, if the time interval is lengthened, the new setpoint is reached much later:

Ch 19 PID Block

76

T440 TON
0001 — f— { Timer On Delay END
DN Tiner T40
Time Dase 001 (DR D)—
Preset 200«
Acoum N«
[nerement Actual SP
B30 T4 r ADD
0002] |]| | Add
0 DN Source 4 N7:30
(12
:'.-l- o l :
is
ast N730
ve
Decrement Actual SP
B30 T40 SUB
000 J E J E Subiract —
1 DN Souyee A N7:30
0«
Sowce E 1
1<
Dest N7:30
0«
Target 5P Increment
GRT B30
008 —— Greater Than (A>H) ‘j_’ !
Sourse A N7:31 0
O«
Scurce B N7:30
(17
Actaal SP Decrement
GRT = B3:0
00035 Creater Than (A=E)
Scurce A N7:30 1
O
Souwrce B N731
(=
Fig. 19-84

Of course, a setpoint may vary as high as 5000 or more integer units and the incremental ramping
may need to be very rapid (in msec). Quickly moving ramp blocks are possible with the higher
speed timer blocks. Ramp blocks may also require very slow operation and this can be
accomplished using slower preset timer blocks. Examples of slow-acting ramp blocks include
cure operations that require hours to advance the setpoint to the final point or a ramp-soak
operation for operations such as steel in which the annealing requires a slow temperature rise
over an extended period of time.

Ramp blocks are used to cause the PID block to be tuned to a different set of tuning constants
than would be required if the ramp were not present. A PID having ramping would have a set of
tuning parameters that would be tuned to respond to only much smaller step changes seen with
small upsets in the process. In block diagram format, if a ramp function is needed, it may be
shown as a block before the PID SP as follows:

Ch 19 PID Block

77

Target Actual

Setpoint Setpoint
Rate . PID
Block Block
Fig. 19-85

It is preferred for the ramp block to move in small increments. If the increment speed in units of
1 is less than the PID update speed, increments should definitely be handled in increments of 1.
The goal of the ramp block should be a smooth continuous ramping.

Loops within Loops

The discussion now describes multiple PID blocks used to control a process.
The following example shows how a PID loop can be imbedded within another PID loop:

ﬁ Level Probe Level = xxxx

Level PID Block
Level Probe = PV
Setpoint from
Operator or Remote
Cv output to Flow PID

Flow PID Block
Flow Meter = PV Flg 19-86
Valve = Cv
Setpoint from PID
Level Block

In the example above, the inner loop is the flow valve with its setpoint the CV from the Level
PID block. The outer loop is the Level PID block controlling level in the tank.

To successfully tune loops such as these, it is important to establish the order for tuning the
loops. Itis also important to establish parameters for tuning them.

1. Tune the inner loop first. In this case, tune the Flow PID loop first.

2. Establish comfortable tuning parameters for it and then proceed to tune the outer loop.
The outer loop should be tuned to respond more slowly than the inner loop. The outer
loop in the example is the Level PID loop. Try to tune it to respond about 2 to 10

times slower than the inner loop.
Ch 19 PID Block 78

Stability problems occur in general if the two loops are tuned too closely together or
the outer loop is tuned to respond more quickly than the inner loop. So, keep the
inner loop fast, outer loop slow and observe any instability. Ramp blocks should not
be used on PID blocks such as these unless they are very quick acting. The inner loop
should not have a Ramp block.

ﬁ Level Probe Level = XXXX

Level PID Block
Level Probe = PV
Setpoint from
Operator or Remote
Cv output to Flow PID

Ki term rather slow

Flow PID Block

Flow Meter = PV Fig. 19-87
Valve = Cv

Setpoint from PID \

Level Block ‘ Ki term rather fast ‘

Ch 19 PID Block 79

Using Multiple Controllers for Temperature Control

Most systems used in process control require a number of PID loops working together. In the
example of the dog food extruder, if more than one ingredient had been discussed, the system
would have included a PID controller for each ingredient. In general, each control element
requires a PID block.

In the case of temperature control with gas and oxygen combustion, temperature is a PID block
as well as gas and oxygen flow. The interaction of temp, gas and air are shown next:

Temp PV
— Temp SP
Temperature
Controller
Gas PV Oxygen PV
Gas SP Oxygen SP
Gas Oxygen
Controller Controller
Fig. 19-88
Gas CV Oxygen CV

This algorithm controls the combustion for a furnace or section of a furnace. Temperature
Setpoint may come from a number of sources. The local SP may come from an entry from an
operator. Setpoints may also be calculated using a formula for best performance. Setpoints from
a formula would be considered as remote setpoints in the temperature PID loop.

In some applications involving gas and oxygen, the oxygen must be guaranteed to be in excess
relative to fuel. Otherwise, excess gas may build up in the chamber and explode. Above certain
temperatures, gas will burn without exploding. Below a certain temperature, gas will continue to
build up and not burn until an explosion occurs. This is an especially prevalent condition in
some steel reheat furnaces.

In the case of gas and oxygen below the critical temperature for gas to burn, a cross-limiting
control scheme is introduced to allow only enough gas to be present to burn with at least enough
oxygen or combustion air to burn all the gas all the time. This implies that the gas valve always
must be more closed than the oxygen valve (times the air-fuel ratio). Control of the cross-
limiting requires the same temperature control as the master control but introduces lag control,
high select, low select and other control blocks in addition to the PID control. The oxygen
control for the cross-limiting control algorithm would be:

Ch 19 PID Block

80

Temp PV

‘ — Temp SP
Temperature
Controller
Gas PV ‘
Ji Lag High Select
Oxygen PV
Oxygen SP ‘
Oxygen
Controller
Fig. 19-89 l
Oxygen CV

The gas control for the cross-limiting control algorithm would be:

Temp PV
— Temp SP
Temperature
Controller
Oxygen PV
Low Select Lag l
Gas PV | Gas SP
| Fig. 19-90
Gas

Controller
Gas CV

As can be seen, the Gas PID block selects the lower of the values of the Temperature Setpoint or
the Oxygen value after a lag has occurred. The value of the Oxygen PV must be multiplied by a
constant to compensate for units. The Gas PV must also be multiplied by a constant to
compensate for units of temperature. The effect of the cross-limiting control is to assure a Gas-
Oxygen ratio that will never allow more gas into the combustion chamber than can be burned in
the combustion process. This is an example of a much more complex algorithm than was first
discussed earlier with a simple PID block. The same PID blocks are still used. Logic added to
program multiple interactions becomes much more complex, however.

Ch 19 PID Block

81

Example of PID Block for Feedforward Control

The PID block is a device used for feedback control. Many times, however, a small amount of
feed-forward control is required. Feed-forward control may include control that anticipates an
action and is ready to apply control as a situation arises more quickly than the pure feedback
solution is able to provide. Since there is only one set of tuning parameters for the PID block; it
is not practical to switch to a second set of parameters for a special case. The following example
shows how a little tweaking of the PID block can be useful for some anticipatory or feed-forward
control. The example below is of a furnace with a door on the front. This example shows just
one of many additions to the PID block to give it characteristics not normally associated with
PID control.

The gas burners use air for combustion and the air must be exhausted through an exhaust stack.
Pressure in the furnace is adjusted by adjusting the damper in the stack. Pressure should be
adjusted to be slightly negative so flames do not jump out of the door when the door is opened.

Fig. 19-91
Stack Damper ——— | %
Pressure
Sensor
Furnace Door Furnace Pressure PID Block

Pressure Sensor = Pv

Operator entry of
Furnace Pressure = SP

Position of Stack
Damper = Cv

Operator Entry
Furnace Pressure = XxXxx

Ch 19 PID Block 82

The concern of the pressure PID loop is:
What happens when the door opens?

This is a major concern because the PID loop must respond in a much different manner in this
circumstance than under normal operating conditions with the door closed. The fact that an
event such as the door opening occurs helps to accomplish the control of this task. While not
true feed forward, augmentation of the PID block will help offset the pressure upset and keep the
flames pretty much inside the furnace. (Flames coming out the furnace tend to ignite grease from
bearings causing grease fires around the furnace.)

To accomplish better pressure control, place a limit switch on the door and adjust the output of
the PID block so the output will open the damper rapidly and then recover. The constant of the
jump is a number that should be adjustable by an operator in the maintenance mode only.

When the door swings open, perform the following operation using a one-shot rung:
CV = CV + constant

This statement should be written only once to the CV. Use a one-shot circuit to add the constant
to CV. The CV then is allowed to recover to its new value but from a new higher starting point
as opposed to the original value. The value of the constant is the amount shown by the arrow
below. This is a constant that is adjusted to fit the application. Once set, it should not be
changed.

//
| T New
One Shot | | Response Fig. 19-92
Furnace Add to Cv |
Pressure / -
(negative) / -
_________ - <

Old Response

The response is a simulated response but makes the point that the response to a pressure change
requires fast action to adjust to the conditions of the door opening. A change in the CV provides
this type of change. Not much change in CV will start the adjustment procedure and trick the
PID tuning parameters into responding to the new situation quickly instead of more slowly as
would be the case for a slow-acting PID function such as oven pressure.

While the addition of a small incremental value to CV may be considered a trick on the PID
block, it is important to note that such an action may be accomplished in the PLC very easily.
Ladder logic accommodates this type of programming through the use of one-shot ladder logic
and math functions. This type of change to the PID block provides quick response to an upset
outside the normal range of the PID block's algorithm.

Ch 19 PID Block

83

Understanding Flow Diagrams

Processes are described using flow diagrams. Symbols for diagrams are defined by the
organization — Instrumentation, Systems, and Automation Society (ISA). Letter codes are written
in circles representing various devices that control a process. For instance, FIC represents Flow
Rate, Indicator, Controller. Any three-letter code with C as the final letter represents a PID
controller. First a review of the letter codes used to configure an instrument:

Letter

First Position
Analysis
Burner Flame
Conductivity

Density /
Differential

Voltage

Flow Rate / Ratio
Gaging

Hand

Current

Power / Scan
Time

Level
Moisture
Choice

Choice
Pressure
Radioactivity
Speed
Temperature
Viscosity
Weight
Interlock
Choice

Position

Succeeding Positions

Alarm

Control

Glass
High

Indicate

Light / Low

Middle/ Manual

Record
Switch
Transmit
Valve

Well

Relay

Drive

Ch 19 PID Block

84

Element Indicator Ratio
Type Element Transmitter Indicator controller Controller Controller Recorder

Process

Measurement Code E T I IC C FC R

Analysis A AE AT AT AIC AC AFC AR
Conductivity c CE CT CI CIC ccC CFC CR
Density D DE DT DI DIC DC DFC DR
Voltage E EE ET ET EIC EC EFC ER
Flow F FE FT FI FIC FC FFC FR
Dimension G GE GT GI GIC GC GFC GR
Hand H HE HT HI HIC HC HFC HR
Current I IE IT IT IIC IcC IFC IR
Time K KE KT KI KIC KC KFC KR
Level L LE LT LI LIC LC LFC LR
Humidity M ME MT MI MIC MC MFC MR
Power N NE NT NI NIC NC NEC NR
Pressure P PE PT PI PIC PC PFC PR
Delta

Pressure dp dPE dpT dpPI dPIC dpC dPFC dPR
Quantity Q QE QT oI oIC QcC QFC OR
Radioactivity R RE RT RI RIC RC RFC RR
Speed S SE ST ST SIC sC SFC SR
Temperature T TE TT TI TIC TC TFC TR
Delta

Temperature daT dTE dTT dTI dTIC dTC dTFC dTR
Viscosity \Y% VE VT VI VIC vC VFC VR
Weight w WE WT WI WIC wWC WEC WR
Vibration Y YE YT YT YIC YC YFC YR
Position Z ZE zT Z1 ZIC zC ZFC ZR

The table above contains descriptions of various types of transmitters, indicators, controllers and
recorders. Most PID blocks are used to program controller items. There is a one-to-one
programming transfer for most xIC (various, Indicating Controller) or xC controllers.

Ch 19 PID Block

Element Hand Hand Indicating Solenoid Control

Process Type Switch Valve Totalizer Totalizer Valve Valve Calculation
Measurement Code HS HV Q 10 XV \% Y
Analysis A AHS AHV AQ ATIQ AXV AV AY
Conductivity C CHS CHV CQ CIQ CXV Ccv CY
Density D DHS DHV DQ DIQ DXV DV DY
Voltage E EHS EHV EQ EIQ EXV EV EY
Flow F FHS FHV FQ FIQ FXV FV FY
Dimension G GHS GHV GO GIQ GXV GV GY
Hand H HHS HHV HQ HIQ HXV HV HY
Current I IHS IHV IQ 110 IXV v 1Y
Time K KHS KHV KQ KIQ KXV KV KY
Level L LHS LHV LQ LIQ LXV LV LY
Humidity M MHS MHV MQ MIQ MXV MV MY
Power N NHS NHV NQ NIQ NXV NV NY
Pressure P PHS PHV PO PIQ PXV PV PY
Delta Pressure dpP dPHS dPHV dpPQ dPIQ dPXV dpVv dPY
Quantity Q QHS QHV QQ QIQ QXV Qv QY
Radioactivity R RHS RHV RO RIQ RXV RV RY
Speed S SHS SHV SQ SIQ SXV SV SY
Temperature T THS THV TQ TIQ XV TV TY
Delta

Temperature dT dTHS dTHV dTQ dTIQ dTXV dTv dTy
Viscosity \ VHS VHV VQ VIQ VXV A% VY
Weight W WHS WHV WQ WIQ WXV wv Wy
Vibration Y YHS YHV YO YIQ YXV YV Yy
Position Z ZHS ZHV zQ ZI1Q ZXV v 7Y

Devices such as hand switches, valves and some electronic devices such as totalizers and
calculation elements are described here. Most calculation elements are executed inside the
computer and algorithms become much too difficult to describe on the P&ID. The designer of
the P&ID is free to decide how much of the calculation information is to be included on the
drawing.

Ch 19 PID Block

Process
Measurement

Analysis
Conductivity
Density
Voltage
Flow
Dimension
Hand
Current
Time

Level
Humidity
Power
Pressure
Delta
Pressure
Quantity
Radioactivity
Speed
Temperature
Delta
Temperature
Viscosity
Weight
Vibration

Position

Element
Type

Code
A

c

Ratio
Calculation

FY

AFY

CFY

DFY

EFY

FEFY

GFY

HFY

IFY

KFY

LFY

MFEY

NFEY

PEFY

dPFY

QFY

RFY

SEFY

TFY

dTFY

VEY

WEY

YFY

ZEFY

Switch

Low Switch High
SL SH
ASL ASH
CSL CSH
DSL DSH
ESL ESH
FSL FSH
GSL GSH
HSL HSH
ISL ISH
KSL KSH
LSL LSH
MSL MSH
NSL NSH
PSL PSH
dPSL dPSH
OSL QSH
RSL RSH
SSL SSH
TSL TSH
dTSL dTSH
VSL VSH
WSL WSH
YSL YSH
ZSL ZSH

Ch 19 PID Block

Alarm
Low

AL

AAL

CAL

DAL

EAL

FAL

GAL

HAL

IAL

KAL

LAL

MAL

NAL

PAL

dPAL

QAL

SAL

TAL

dTAL

VAL

WAL

YAL

ZAL

Alarm
Low Low

ALL

AALL

CALL

DALL

EALL

FALL

GALL

HALL

IALL

KALL

LALL

MALL

NALL

PALL

dPALL

QALL

RALL

SALL

TALL

dTALL

VALL

WALL

YALL

ZALL

Alarm
High

AH
AAH
CAH
DAH
EAH
FAH
GAH
HAH
IAH
KAH
LAH
MAH
NAH
PAH

dPAH

QAH

SAH
TAH
dTAH
VAH
WAH
YAH

ZAH

Alarm
High

AHH
AAHH
CAHH
DAHH
EAHH
FAHH
GAHH
HAHH
IAHH
KAHH
LAHH
MAHH
NAHH
PAHH
dPAHH
QAHH
RAHH
SAHH
TAHH
dTAHH
VAHH
WAHH
YAHH

ZAHH

87

Devices such as those of the table above are primarily used for checking position of switches and
for various types of alarm. It is not uncommon to assign switches for end-of-travel on analog
devices. With most analog systems, there is an alarm reserved for both low and low-low. Low-
low is the signal that is just past low and should be attached to an alarm as well as shut-off logic.
The same logic is used for high and high-high. The inner alarm is the low or high alarm bit and
the low-low and high-high are the outer or fail-safe alarm.

Process and Instrumentation Drawings (P&ID) are formalized drawings of a process explaining
flow and movement of material. It is important to know the symbols for this type of drawing. It
is also important to be able to understand the functionality of the devices on the drawing so the
engineer or technologist can program the process on the PLC or other computer.

It is also hoped that down the road, the engineer or technologist is allowed to design the P&ID
for others. The programmer usually understands the process as well as anyone and has insight
into the complexities of the process and should be allowed to take responsibility for design of the
P&ID.

A note about PID vs P&ID: Of course, the similarities are glaring. PID refers to the control
block Proportional Integral Derivative, a control algorithm. P&ID refers to Process and
Instrumentation Drawings. Some refer to them as Piping and Instrumentation Drawings.

The design of a P&ID may start with a senior engineer familiar with the process. Other sources
for P&ID’s are reference books such as the Liptak reference handbook Process Control. Texts
and company reference drawings are good sources for a starting point for a new P&ID. Of
course, names such as those listed above are to be used in defining the devices used in the
process.

Symbol types are also described by ANSI/ISA’s S5.1-1984 (R 1992) specification. The location
of the device as well as the type of device is also described on the drawing per the type of symbol
drawn. The drawing may also describe the signal type: electrical, pneumatic, or other type of
signal.

These tables demonstrate the breadth of labeling that can be included on a device. The devices
are also numbered and contain a 3 or 4 digit number in addition to the device type name. These
numbers are usually assigned sequentially and are placed on a metal tag that is attached to the
device itself. In the plant, one should be able to find a device, then find its metal tag, and find the
reference to the device on the P&ID. Names of devices are used on electrical drawings as well as
on the P&ID. If a device is referenced as a flow transmitter and numbered 087, then FT-087 is
referenced on all drawings using the same name.

Ch 19 PID Block

88

For example, the flow drawing of level control using flow would be drawn as follows:

@@ ___E Fig. 19-93
—— %%

While in many P&ID’s the symbols are kept as simple as possible, there is delineation in the ISA
S5.1 standard for location as well as type of device. These symbol types are shown below:

A discrepancy between the symbols and the usage of the devices is that the PLC has traditionally
been viewed as only useful for some safety circuits and for discrete control. The PLC has taken
over much of the analog control and more logically fits the computer function as well as the
traditional PLC role. The device providing control has changed dramatically over the years from
discrete hardwired controllers to DCS systems and finally to PLC analog systems. The primary
rationale for using the PLC in analog situations is cost.

For instance, the door-mounted limit switch on the oven above would be drawn as:

: Fig. 19-94

Ch 19 PID Block 89

Example Programming for P&ID:

Ch 19 PID Block

Fig. 19-95
The P&ID above is used to generate a PLC ladder diagram as follows:
PID DIC 001 Multiply Block PID FIC 001
PVPDT 001 DT 001 x DIC 001 PV FT 001
SP From HMI to FIC 001 SP From Multiply
CVTo Multiply CVto FCV 001
Fig. 19-96

90

Example Programming for P&ID (The PLC program is left as an exercise for the student):

Fig. 19-97

Ch 19 PID Block

91

Specifications for P&ID design and the design of a process may be found at the ISA website.
The following list is a partial list of design specifications used in constructing a modern process.

ANSI/ISA-75.01.01-2002 (60534-2-1 Mod) Flow Equations for Sizing Control Valves

ANSI/ISA-75.02-1996

Control Valve Capacity Test Procedures

ANSI/ISA-TR75.04.01-1998

Control Valve Position Stability

ANSI/ISA-75.05.01-2000 (R2005)

Control Valve Terminology

ISA-75.07-1997

Laboratory Measurement of Aerodynamic Noise
Generated by Control Valves

ANSI/ISA-75.08-1999

Installed Face-to-Face Dimensions for Flanged
Clamp or Pinch Valves

ANSI/ISA-75.08.01-2002

Face-to-Face Dimensions for Integral Flanged Globe-
Style Control Valve Bodies (Classes 125, 150, 250,
300, and 600)

ANSI/ISA-75.08.02-2003

Face-to-Face Dimensions for Flangeless Control
Valves (Classes 150, 300, and 600)

ANSI/ISA-75.08.03-2001

Face-to-Face Dimensions for Socket Weld-End and
Screwed-End Globe-Style Control Valves (Classes
150, 300, 600, 900, 1500, and 2500)

ANSI/ISA-75.11.01-1985 (R2002)

Inherent Flow Characteristic and Rangeability of
Control Valves

ISA-75.13-1996

Method of Evaluating the Performance of
Positioners with Analog Input Signals and Pneumatic
Output

ISA-75.17-1989

Control Valve Aerodynamic Noise Prediction

ANSI/ISA-75.19.01-2001

Hydrostatic Testing of Control Valves

ISA-RP75.21-1989 (R1996)

Process Data Presentation for Control Valves

ANSI/ISA-75.22-1999

Face-to-Centerline Dimensions for Flanged Globe-
Style Angle Control Valve Bodies (ANSI Classes 150,
300, and 600)

ISA-RP75.23-1995

Considerations for Evaluating Control Valve
Cavitation

ANSI/ISA-75.25.01-2000

Test Procedure for Control Valve Response
Measurement from Step Inputs

ANSI/ISA-TR75.25.02-2000

Control Valve Response Measurement from Step
Inputs

ANSI/ISA-75.26.01-2006

Control Valve Diagnostic Data Acquisition and
Reporting

Partial List of ANSI-ISA Specifications for Process Control

Ch 19 PID Block

92

Using Visio for P&ID Drawings

Microsoft’s Visio is useful for a flow-diagram generation and has provision for generating the
P&ID drawings similar to those described above. An example below gives a description of how
the drawing type is chosen in Visio.

i Drawing1 - Microsoft Visio

E File | Edit “iew Insett Format Tools Shape Process Engineering Window Help Adobe PDF
|1J Bew 4 | Chonse Drawing Type. .,
_lJ 7| Open Chrl+]| Mew Drawing Chr+N e | & |m, “-Ln - A -G 100% - | @ !
? Close [Block Diagram 3 B
E | Save Chrl+S || Brainstorming 3
- Save fAs (4| Buiding Plan »
Tynl a4 Save as ‘Web Page... [Business Process 3
E m File Search... [tCharts and Graphs 3
E @ Shapes ¥ |4 Database »
EEq Page Setup. .. [4| Electrical Engineering >
g; 3| Print Preview 4| Flowchart 3
B r| S Erint... Ctrl+p (4| Map r
Bl Send To p |4 Mechanical Enginesring »
1 I Properties 4 Metwark r
I B0 [| Crganization Chart >
Rl remre ' ||ﬁ Process Engineeting * | Fiping and Instrumentation Diagram {Metric)
D J 14| Project schedule k Piping and Instrumentation Diagram (LS units) i
OLFSLSEI]'EIH OLF;E;I'I'EH OLFS' 4| Software] Process Flow Diagram (Metric)
(ﬁ @ =4 | ‘Web Diagram] Frocess Flow Diagram (U3 units)
Callr 1 Callane 2l a
Fig. 10-98

The elements are automatically connected with piping (lines) and names are attached in
sequential order.

Fig. 19-99

T
o

Below the diagrams show a number of different pre-drawn figures for use in a P&ID. The
diagrams follow ISA symbol standards.

Ch 19 PID Block

93

-

[E Equipment - General (US units)

[Equipment - Heat Exchangers (...

[E] Equipment - Pumps {US units)

Fig. 19-100

Ch 19 PID Block

94

The PIDE Function

The PIDE is only available as a function block. Like the PID instruction, it is best to set it up in
its own periodic task. The period of the task automatically becomes the sample rate of the PID

loop. Just make sure when adding the new routine to the task to select Type as “Function Block
Diagram — FBD”.

The PIDE (Enhanced PID) is an Allen-Bradley Logix5000 function block that improves on the
standard PID found in all their controllers. First impressions tend to be intimidating. The
advanced instruction boasts the following:

1.

ok~ wnN

It uses the velocity form of the PID algorithm. This is especially useful for adaptive gains
or multiloop selection

Control of the instruction can be switched between Program and Operator modes

Better support for cascading and ratio control

Built-in autotuner

Support for different timing modes

More limiting and fault handling selections

@] ProgOperReq DevHHALrm

PIDE_Temp_Contral
PIDE
Enhanced P
lm E’—‘l_m A Py C\.LI,::: j_ u@
EW D——sPPiog sPh
-] SPCascade PVYHHALZIM 'gv'
] RatioProg PUHAIam :-I
i i Diskemle Fig. 19-101
‘: FF PVLLALam E. R
] HaneFB PVROCP ogAlam 3"‘
] ProgPtogReq PUROCNegAlam i':i:

] ProgCask atReq DevHALIm
£] ProgAutoReq DevtAlam s
£} ProgManualRaq
o] ProgOvarideRegq

] ProgdandReq

AutatuneTag 7

Once a function block is created, the program tags for the function block must be created. With
later versions of RSLogix 5000, the set-up box below gives a view of the variables required.

Ch 19 PID Block

95

PIDE Properties - PIDE_01

=5

General Configustion | EUs/MLimits | Cascade/Ratio| Alamns | Passmeters| Tag | Autotune|

Trmng Garn —

Made: oo v] | | Puogosonat | a0

Oversample At I 3 Integy &] 00 minfiepest

RTS Pesod [m Dervatve | 00 mn

Corirel acboe * E«SP.-FV Equaien Type 0 |ndependent

" E«PV.SP € Dependent

Caodate Usng LV Zew Crovsng Deadband .

Propotionalter: ® E O PV Deadband | a0

Davatveteey © E v I ZecsCrostng off
I Dedavative Smocthing Ovemda value | 00 ¥
[PV Trackng I ProgamValue et A
I~ Marusl Mods aiter riskzhon Fig. 19-102

Stabus: 0K

Ewocution Dider Nurmber Croutine not veshod>

oK | Cacel | Heo |

Instead of control of control using the MultiState Button and the logic shown above, the PIDE
shares program and operator control with control bits in the PIDE block. The following bits

partially describe this control:

.ProgProgReq
.ProgOperReq
.OperProgReq
.OperOperReq

Program request to go to Program Control
Program request to go to Operator Control
Operator request to go to Program Control
Operator request to go to Operator Control

Operating Modes for the PIDE instruction include:

Manual:

While in Manual mode the instruction does not compute the change in CV. The value of
CV is determined by the control. If in Program control, CV = CVVProg and if in Operator
control, CV = CVOper. Select Manual mode using either OperManualReq or
ProgManualReq. The Manual output bit is set when in Manual mode.

Auto:

While in Auto mode the instruction regulates CV to maintain PV at the SP value. Ifin
program control, SP = SPProg and if in Operator control, SP = SPOper. Select Auto
mode using either OperAutoReq or PRogAutoReq. The Auto output bit is set when in

Auto mode.

Cascade/Ratio:

While in Cascade/Ratio mode the instruction computes the change in CV. The
instruction regulates CV to maintain PV at either SPCascade value or the SPCascade

Ch 19 PID Block

96

value multiplied by the Ratio value. SPCascade comes from either the CVEU of a
primary PID loop for cascade control or from the “uncontrolled” flow of a ratio-
controlled loop. Select Cascade/Ratio mode using either OperCasRatReq or
ProgCasRatReq. The CasRat output bit is set when in Cascade/Ratio mode.

Override:

While in Override mode, the instruction does not compute the change in CV. CV =
CVOverride, regardless of the control mode. Override mode is typically used to set a
“safe state” for the PID loop. Select Override mode using ProgOverrideReq. The
Override output bit is set when in Override mode.

Hand:

While in Hand mode, the PID algorithm does not compute the change in CV. CV =
HandFB, regardless of the control mode. Hand mode is typically used to indicate that
control of the final control element was taken over by a field hand/auto station. Select
Hand mode using ProgHandReq. The Hand output but is set when in Hand mode.

The example below is of a PIDE block in FBD programming language:

PIDE_Temp_Control
PIDE -

Enhanced PID

§ o o0 -
Temperature s [CVEU fr——7 HeatOutput
1200 ———Cl PVEUMax se b
sl o
)

‘j:»?c PVEUMIn ProgOpat b

il 200 :

RZ0 SPProg Aute B

e 4200 o

| 1200 SPHLImMIit
o

0 p—]sPLLimit

0

| ManualContrel TH———CJCVProg
L ————

1

1 \,D— i Depandindepend
" 5.0
5.0 D————PGain

Manual §

InstructF ault ;

p—<_ 04

0 EL-;O_.:

1 X —]

[Autol\lan&utm ['—Y —

r———

BNOT o1

1Gamn

DG ain
ProgPregReq
FrogautoReq
ProgManualReq

AutotunaTag ?

;
| l
| BNOT :
! |

Boolean Not
el Inv out [3)—

Ch 19 PID Block

Fig. 19-103

97

Now, a Discussion Comparing DCS and PLC/SCADA for Process Control

DCS and PLC/SCADA — a comparison in use

22 March 2011

It may surprise you to know that PLC, HMI and SCADA implementations today are
consistently proving more expensive than DCS for the same process or batch application.
CEE finds out more...

Traditionally, DCSs were large, expensive and very complex systems that were considered as a
control solution for the continuous or batch process industries. In large systems this is, in
principle, still true today, with engineers usually opting for PLCs and HMIs or SCADA for
smaller applications, in order to keep costs down.

So what has changed? Integrating independent PLCs, the required operator interface and
supervisory functionality, takes a lot of time and effort. The focus is on making the disparate
technology work together, rather than improving operations, reducing costs, or improving the
quality or profitability of a plant.

Yet a PLC/ SCADA system may have all or part of the following list of independent and
manually coordinated databases.

* Each controller and its associated 1/0
* Alarm management

* Batch/recipe and PLI

* Redundancy at all levels

* Historian

* Asset optimisation

* Fieldbus device management

Each of these databases must be manually synchronised for the whole system to function
correctly. That is fine immediately after initial system development. However, it becomes an
unnecessary complication when changes are being implemented in on-going system tuning and
further changes made as a result of continuous improvement programmes.

Making changes

Every time a change is made in one database, the others usually need to be updated to reflect that
change. For example, when an 1/0O point and some control logic are added there may be a need to
change or add a SCADA element, the historian and the alarm database. This will require the
plant engineer to make these changes in each of these databases, not just one — and get it right.

In another scenario, a change may be made in an alarm setting in a control loop. In a PLC
implementation there is no automatic connection between the PLC and the SCADA/ HMI. This
can become a problem during start-up of a new application, where alarm limits are being
constantly tweaked in the controller to work out the process, while trying to keep the alarm
management and HMI applications up to date with the changes and also being useful to the
operator.

Today’s DCS, which are also sometimes called ‘process control systems,’ are developed to allow

Ch 19 PID Block 98

a plant to quickly implement the entire system by integrating all of these databases into one. This
single database is designed, configured and operated from the same application.

This can bring dramatic cost reductions when using DCS technology, when compared with PLC/
SCADA (or HMI): at least in the cost of engineering. DCS hardware has always been considered
as being large and expensive. This is certainly no longer the case today. DCS hardware even
looks like a PLC, and the software runs on the same specification PC, with the same networking
— so why the extra cost? Is it the software? Although it is true to say that DCS software can be
made to be expensive — but only by buying all of the many advanced functional features that are
available — and often that you would not use or need!

Where smaller and medium systems are concerned, then price comparisons on acquiring
hardware and software are comparable to PLC/SCADA. So, the real difference is actually in the
costs associated with the workflow — which is enhanced and simplified by the single database at
the heart of a DCS.

At this point one may think that DCS functionality is biased towards control loops, whilst PLCs
are biased towards discrete sequential applications and that this, therefore, is not a like-for-like
comparison. This is another myth. A DCS today is just as functionally and cost-effective as a
PLC in fast logic sequential tasks.

Demonstrating advantages

ABB was able to offer CEE some examples to demonstrate how savings can be realised by using
today’s DCS workflow, when compared with a PLC/HMI (SCADA) system. The company has
compiled the information from decades of implementation expertise of ABB engineers, end-user
control engineers, consultants and multiple systems integrators who actively implement both
types of control solutions based on application requirement and user preferences. It is easier to
structure this explanation along a generic project development sequence of tasks.

Step 1: System design

PLC/ SCADA control engineers must map out system integration between HMI, alarming,
controller communications and multiple controllers for every new project. Control addresses
(tags) must be manually mapped in engineering documents to the rest of the system. This manual
process is time consuming and error prone. Engineers also have to learn multiple software tools,
which can often take weeks of time.

DCS approach: As control logic is designed, alarming, HMI and system communications are
automatically configured. One software configuration tool is used to set up one database used by
all system components. As the control engineer designs the control logic, the rest of the system
falls into place. The simplicity of this approach allows engineers to understand this environment
in a matter of a few days. Potential savings of 15 - 25% depending on how much HMI and
alarming is being designed into the system.

Step 2: Programming

PLC/ SCADA control logic, alarming, system communications and HMI are programmed
independently. Control engineers are responsible for the integration/ linking of multiple
databases to create the system. Items to be manually duplicated in every element of the system
include: scalability data, alarm levels, and Tag locations (addresses). Only basic control is

Ch 19 PID Block 99

available. Extensions in functionality need to be created on a per application basis (e.g. feed
forward, tracking, self-tuning, alarming). This approach leads to non-standard applications,
which are tedious to operate and maintain. Redundancy is rarely used with PLCs. One reason is
the difficulty in setting it up and managing meaningful redundancy for the application.

The DCS way: When control logic is developed, HMI faceplates, alarms and system
communications are automatically configured. Faceplates automatically appear using the same
alarm levels and scalability set up in the control logic. These critical data elements are only set
up once in the system. This is analogous to having your calendars on your desktop and phone
automatically sync vs. having to retype every appointment in both devices. People who try to
keep two calendars in sync manually find it takes twice the time and the calendars are rarely ever
in sync. Redundancy is set up in software quickly and easily, nearly with a click of a button.
Potential savings of 15 - 45%

Step 3: Commissioning and start-up

Testing a PLC/ HMI system is normally conducted on the job site after all of the wiring is
completed and the production manager is asking “why is the system not running yet?”” Off line
simulation is possible, but this takes an extensive effort of programming to write code which will
simulates the application you are controlling. Owing to the high cost and complex programming,
this is rarely done.

DCS benefits: Process control systems come with the ability to automatically simulate the
process based on the logic, HMI and alarms that are going to be used by the operator at the plant.

This saves significant time on-site since the programming has already been tested before the
wiring is begun. Potential savings are 10 - 20% depending on the complexity of the start up and
commissioning.

Step 4: Troubleshooting

PLC/ SCADA offers powerful troubleshooting tools for use if the controls engineer programs
them into the system. For example, if an input or output is connected to the system, the control
logic will be programmed into utilizing the control point. But when this is updated, did the data
get linked to the desperate HMI? Have alarms been set up to alert operators of problems? Are
these points being communicated to the other controllers? Programming logic is rarely exposed
to the operator since it is in a different software tool and not intuitive for an operator to
understand.

The DCS way: All information is automatically available to the operator based on the logic being
executed in the controllers. This greatly reduces the time it takes to identify the issues and get
your facility up and running again. The operator also has access to view the graphical function
blocks as they run to see what is working and not (read only). Root Cause Analysis is standard.
Field device diagnostics (HART and fieldbus) are available from the operator console. Potential
savings of 10 - 40% (This varies greatly based on the time spent developing HMI and alarming,
and keeping the system up to date.)

Step 5: The ability to change to meet process requirements

PLC/ SCADA: Changing the control logic to meet new application requirements is relatively
easy. The challenge comes with additional requirements to integrate the new functionality to the

Ch 19 PID Block 100

operator stations. Also, documentation should be developed for every change. This does not
happen as frequently as it should. If you were to change an input point to a new address or tag,
that change must be manually propagated throughout the system.

The DCS way: Adding or changing logic in the system is also easy. In many cases even easier to
change logic with built in and custom libraries of code. When changes are made, the data entered
into the control logic is automatically propagated to all aspects of the system. This means far less
errors and the system has been changed with just a single change in the control logic.

Potential savings of 20 - 25% on changes is not uncommon. This directly affects continuous
improvement programs.

Step 6: Operator training

With PLC/ SCADA operator training is the responsibility of the developer of the application.
There is no operator training from the vendor since every faceplate, HMI screen or alarm
management function can be set up differently from the next. Even within a single application,
operators could see different graphics for different areas of the application they are monitoring.

The DCS way: Training for operators is available from the process control vendor. This is owing
to the standardized way that information is presented to operators. This can significantly reduce
operator training costs and quality due to the common and expected operator interface on any
application, no matter who implements the system. This can commonly save 10 -15 percent in
training costs which can be magnified with the consistency found across operators and operator
stations.

Step 7: System documentation

PLC/SCADA documentation is based on each part of the overall system. As each element is
changed, documentation must be created to keep each document up to date. Again, this rarely
happens, causing many issues with future changes and troubleshooting.

The DCS way: As the control logic is changed, documentation for all aspects of the system is
automatically created. This can save 30 - 50 percent depending on the nature of the system being
put in place. These savings will directly minimize downtime recovery.

Timesaving estimates are based on typical costs associated with a system using ~500 1/0, Two
controllers, one workstation and 25 PID Loops.

Conclusion

If you are using, or planning to use, PLCs and HMI/ SCADA to control your process or batch
applications, your application could be a candidate for the use of a DCS solution to help reduce
costs and gain better control. The developer can concentrate on adding functionality that will
provide more benefits, reducing the return on investment payback period and enhancing the
system’s contribution for years to come. The divide between DCS and PLC/ SCADA approaches
is wide, even though some commonality at the hardware level can be observed; the single
database is at the heart of the DCS benefit and is a feature that holds its value throughout its life.
The new economic proposal may be a DCS, says ABB.

Ch 19 PID Block 101

While you may not be a proponent of either the DCS or PLC for Process control, the above is
something worth thinking about. The arguments are not trivial. If one programs a process
application with PLCs, then the objections mentioned in the above article must be dealt with
and the negative effects of using the PLC minimized.

Summary

Ch 19 PID Block 102

Lab 19.1 PID

Use the Extruder/Mixing System making Dog Food of Fig. 19-60 to design a PID
controller for the Fat Valve. A potentiometer may be present and (if present) may be
used to represent the motor speed. Input the potentiometer into a second analog input.
To simulate the change of speed of the motor, change the analog value from the pot.
Demonstrate the running face-plate with auto-manual and local-remote to the instructor.
When the PID algorithm crosses between auto and manual or between auto-remote and
auto-local provide a bump-less transfer (optional). You may program the A-B and
Siemens processors in either Ladder or FBD. Both processors must be demonstrated and
their PID control discussed in a lab report. The Siemens process is the ball-in-tube and
the A-B process is the water valve.

Lab 19.2 Advanced PID

Add logic to PID Lab 17.1 to program to ramp from the old setpoint to a new setpoint
using a ramping block. Program the ramping only for the remote mode (although the
ramping function typically done in all automatic modes since it is needed to protect the
process). When a new value is entered in the remote Sp entry location, the PID’s Sp is
not to immediately change to the new Sp, but rather it is to be ramped up or down from
the present value (found in the Pv). Save the Pv when the new Sp is detected and
determine whether the Pv is below or above the new Sp. Set a seal coil or latch coil to
remember which way the ramp is going (either up or down). Also, start a timer to time
out each 5 to 10 seconds. When the timer times out, add a small amount (delta) to the
new Sp and then compare it to the Remote Sp. If the ramped Sp went past the Remote
Sp, stop the ramp and put the Remote Sp in the PID’s Sp. Then end the ramp program
and wait for another Sp change. Also, stop the ramp if the PID loop is taken to manual
from auto. Add a fault circuit that detects if the flow is dangerously low for the value of
the output. If this kind of fault occurs, the PID algorithm might begin to wind up (read
about anti-reset-windup in the PID section of the A-B book). If the low-flow fault occurs,
blink an alarm light on the PanelView and turn the PID block to manual. Set the bit in the
alarm banner.

Ch 19 PID Block

103

Exercises

10.

11.

When a PID controller is in remote, is the mode in auto or manual?
T/F Windup of the controller is possible in manual mode?

T/F The controller performs exactly the same whether the controller is set for E = PV —
SPor E=SP-PV.

What is the purpose of the small triangles on the left and right side of the bar graphs of a
faceplate?

List the function of the following ISA symbols:

LT
LIC
FIC
dTC

The process engineer says that you are to move the PID controller from auto to manual if
any of the analog signals (4-20 mA) are invalid in the low range. Show with an example
how to accomplish this in ladder logic. Assume the analog inputs are in slot 5. Label all
rungs explaining your logic.

A temperature profile of two different TT’s is to be added together in varying percentages
to provide the PV for a PID controller. Show with an example how to accomplish this in
adder logic. Provide a mechanism so that if the percentage is not 100% that the PID block
will only run in manual mode. Label all rungs explaining your logic. You should show
the PID block but do not provide logic for the SP or CV. Assume the analog inputs are
wired to a 4-20 mA analog card in slot 3.

A speed sensor has a high and low alarm attached to it. The signal from the sensor is
transmitted to a computer. Draw a P&ID of the speed signal transmitter, high alarm and
low alarm. Assume the signals are attached to a computer and are field mounted.

A differential pressure transducer transmits a signal that is used for flow. However, flow
is proportional to the square root of the differential pressure. An analog input card is to
be used with range 1-5V input for the PV and an analog output card is to be used for the
CV, range 1-5V. The SP is to be input from an HMI. Draw the P&ID showing the
mathematical calculation of the square root. Any symbol type is appropriate. Then write a
program to control the flow using the analog cards listed. Assume the input card is in slot
4 and the output card is in slot 6.

In some temperature control, the output device is a switch that turns on or off a resistor to
produce heat. If the output of a PID block is fed to a discrete output that can only turn the
resistors on or off, write a program to turn the discrete output on or off a proportion of 10
seconds based on value of the CV. Assume the output CV can range only from 0 to 100
and is its value is found in a storage location.

Build a lag controller capable of a 5 second lag with value changes each .5 second. Build
a lag controller capable of an x second lag with value changes each y second.

Ch 19 PID Block

104

12. Using either the PID blocks from A-B or Siemens, provide a program that will work in
auto mode for the following P&ID. Use variables as inputs, outputs and internal
variables as necessary. Describe these variables in a table.

SUPPLY

INFLUENT

INJECTOR

IS8T STAGE TANK

RAT 1O
SETTERS

CAUSTIC
SUPPLY,

*

CAUSTIC

LFH suRpLY

SET @ 10-12 pH

FiG. 8.290

EFFLUENT

2MD STAGE TAMNK

Lo s

Continuous oxidation of cyanide waste with chlorine, Influent
fere hay continuwous constant flow rate and variable qualicy.

13. The following describes a function used by the Siemens PID block. Describe how to

accomplish the same using the A-B CompactLogix processor:

ManualUP IN

Bool

In manual mode, every rising edge opens the valve by 5% of the total

actuating range, or for the duration of the minimum motor actuation

time. ManualUP is evaluated only if you are using OutputPer and if

position feedback is available. Default value: FALSE

o If Output_PER is FALSE, the manual input tums Output_UP on for
the time that comesponds to a movement of 5% of the device.

* If Config.ActuatorEndStopOn is TRUE, then Output_UP does not
come on if Actuator_H is TRUE.

ManualDN IN

Bool

In manual mode, every rising edge closes the valve by 5% of the total
actuating range, or for the duration of the minimum motor actuation
time. ManualDN is evaluated only if you are using OutputPer and if
position feedback is available. Default value: FALSE

o [f Output_PER is FALSE, the manual input turns Output_DN on for
the time that corresponds to a movement of 5% of the device.

* [f Config.ActuatorEndStopOn is TRUE, then Output_DN does not
turn on if Actuator_L is TRUE,

14. The process engineer says that you are to move the PID controller from auto to manual if any
of the analog signals (4-20 mA) are invalid in the low range. Show with an example how to

accomplish this in ladder logic. Assume the analog inputs are addressed as

Local:3.1.ChOData, etc.

Ch 19 PID Block

105

15. Using either the PID blocks from A-B or Siemens, provide a program that will work in auto
mode for the following P&ID. Use variables as inputs, outputs and internal variables as
necessary. Describe these variables in a table.

FLOW (Fp!
L pl i= =
B
. FIL
o
FY . SET
L '/1\
N FIEY
S
S &
i {1} =~

16. If an input range is listed as 0 mA to 21 mA range is from 0 to 32640 and we want a 4-20
mA. What is the numeric range of a 4-20 mA signal.

17. A good value for P for a servo is:

A good cyclic time to update the PID Control for a servo is:

A good value for P for a water loop is:

A good cyclic time to update the PID control for a water loop is:

A good value for P for a temperature loop is:

A good cyclic time for update of the PID control for a temperature loop is:

Name a PID control loop that does fine with no derivative component

Name a PID control loop that is unstable if the derivative is left at zero

Ch 19 PID Block

106

