
 Ch 19 PID Block 1

Chapter 19 Programming the PID Algorithm

Introduction

The PID algorithm is used to control an analog process having a single control point and a single

feedback signal. The PID algorithm controls the output to the control point so that a setpoint is

achieved. The setpoint may be entered as a static variable or as a dynamic variable that is

calculated from a mathematical operation.

For many years, the PID algorithm was not accepted as a function suitable for a PLC. It was

included in a DCS (Distributed Control System) or configured from a number of stand-alone PID

controllers. However, as PLC prices continued to fall during the 1980’s and later and more

economical HMI systems were developed for the PLC, PLCs became more accepted as PID

controllers. In fact, because PLCs have undercut the cost of competing systems, DCSs and other

PID controllers have been forced to drop prices dramatically or no longer remain competitive.

An early hybrid design was introduced into the Allen-Bradley 1771 I/O family including 2 PID

stand-alone controllers attached to a single I/O slot and executing the PID algorithm from the

controller in the I/O slot. Newer control schemes have the PID algorithm executing in the PLC

with other programs and controlling complicated processes with good success.

Chapter 19 uses the PID block to control a simple process. Then, it discusses more complex

operations capable of being programmed by the PID control block. The chapter describes the

SLC PID block followed by the CompactLogix processor as well as the Siemens 1200 and their

implementations of the PID function. Using these various PLC configurations demonstrates

differences between the newer PID blocks and the SLC PID block. The SLC processor uses an

integer-based PID block. Integer-based blocks have the disadvantage that scaling must be used

to convert numbers to more meaningful real values. Scaling adds complexity to the program that

becomes transparent with a floating-point PID block. More sophisticated PID blocks such as is

available in the PLC/5 and ControLogix processors as well as Siemens allow floating-point

calculations. These more robust PID blocks also provide more sophistication in their

functionality. All PID blocks are not created equal.

Fundamentals of Closed Loop Control

Closed Loop Control Tasks

"Closed loop control is a process where the value of a variable is established and maintained

continuously through intervention based on measurements of this variable. This generates a

sequence of effects that takes place in a closed loop -the control loop- because the process runs

based on measurements of a variable that is influenced in turn by itself.” This variable that is to

be controlled is measured continuously and compared with another specified variable of the same

type. Depending on the result of this comparison, an adaptation of the variable to be controlled

to the value of the specified variable is performed by the control process.

Proportional Controller (P-Controller)

In the case of P-controllers, the manipulated variable is always proportional to the recorded

system deviation. The result is that a P-controller reacts without a delay to a deviation and

generates a manipulated variable only if the deviation (error) is present. The proportional

pressure regulator sketched in the figure below compares the power FS of the setpoint spring with

 Ch 19 PID Block 2

the power FB that the pressure P2 generates in the spring-elastic metal bellows. If the forces are

off balance, the lever rotates around the pivot point D. The valve position changes and

accordingly the pressure P2 to be regulated until a new balance of forces is established.

The behavior of the P-controller if a system deviation suddenly occurs is shown in the figure

below. The amplitude of the manipulated variable jump y depends on the level of the deviation e

and the amount of the proportional coefficient Kp:

To keep the deviation low, a proportionality factor as large as possible has to be selected.

Increasing the factor causes the controller to respond faster. However, a value that is too high

may cause overshooting and a large hunting tendency on the part of the controller.

𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑙𝑜𝑤 ≈ √𝑃2 − 𝑃1

𝑒(𝑒𝑟𝑟𝑜𝑟) = 𝐹𝑙𝑜𝑤 (𝐴𝑐𝑡𝑢𝑎𝑙) − 𝐹𝑙𝑜𝑤 (𝑆𝑒𝑡 𝑃𝑜𝑖𝑛𝑡)

𝑦(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐾𝑝 ∙ 𝑒

The diagram below shows the behavior of the P-controller:

Setpoint

Actual

value

Deviation

Control

variable

time

Metal bellows

Setpoint spring

Fig. 19-1

Fig. 19-2

 Ch 19 PID Block 3

The advantages of this type of controller consist on the one hand of its simplicity (electronic

implementation can, in the simplest case, consist of merely a resistor), and on the other hand its

prompt response in comparison to other controller types. The main disadvantage of the P-

controller is the continuous deviation; the setpoint is never completely attained, even long term.

This disadvantage as well as the not yet ideal response speed can be minimized only

insufficiently with a larger proportionality factor, since otherwise the controller will overshoot.

In the most unfavorable case, the controller will enter a state of continuous oscillation. This

causes the controlled variable to be periodically moved away from the setpoint, not by the

influencing variable but by the controller.

The problem of continuous deviation is solved best with an integral controller.

Integral Controller (I-Controller)

Integrating controllers are used to completely correct system deviations at each operating point.

As long as the deviation is unequal to zero, the manipulated variable continues to change. Only

when the reference variable and the controlled variable are equal is the control system in a steady

state.

The mathematical formulation of this integral behavior is as follows:

𝑦 = 𝐾𝑖 ∫() 𝑤𝑖𝑡ℎ 𝐾𝑖 =
1

𝑇𝑛

How fast the manipulated variable rises (or falls) depends on the deviation and the integration

time.

PI-Controller

The PI-controller is a type often used in practice. It results from connecting a P-controller and an

I-controller in parallel. When laid out correctly it unites the advantages of both controller types

(stable and fast, no permanent system deviation), so that their disadvantages are compensated at

the same time.

 Block diagram

Fig. 19-3

 Ch 19 PID Block 4

The behavior with respect to time is identified by the proportional coefficient Kp and the reset

time Tn. Because of the proportional component, the manipulated variable responds immediately

to every system deviation e, while the integral component takes effect only in the course of time.

Tn represents the time that passes until the I-component generates the same amplitude of flow as

occurs immediately because of the P-component (Kp). As in the case of the I-controller, the reset

time Tn has to be decreased if we want to increase the integral component.

Differential Controller (D-Controller)

The D-controller generates its manipulated variable from the rate of change of the system

deviation, and not, as the P-controller, from its amplitude. For that reason, it responds

considerably faster than the P-controller. Even if the deviation is small, it generates (looking

ahead) large amplitudes of flow as soon as an amplitude change occurs. However, the D-

controller does not detect permanent deviations, because no matter how large it is, its rate of

change equals zero. For that reason, the D-controller is used only rarely by itself in practice.

Rather, it is used jointly with other control elements, usually in connection with a proportional

component.

PID Controller

If we expand the PI controller with a D-component, the universal PID controller is created. As in

the case of the PD controller, adding the D-component has the effect that, if laid out correctly,

the controlled variable reaches its setpoint sooner and its steady state faster.

Block diagram

Fig. 19-4

 Ch 19 PID Block 5

𝑦 = 𝐾𝑝 ∙ 𝑒 + 𝐾𝑖 ∫ 𝑒 ∙ 𝑑𝑡 + 𝐾𝐷
𝑑𝑒

𝑑𝑡
 with 𝐾𝑖 =

𝐾𝑝

𝑇𝑛
, 𝐾𝐷 = 𝐾𝑝 ∙ 𝑇𝑣

 Fig. 19-5 PID Diagrams and Equations

Objectives of Control System Setting

For the control result to be satisfactory, selecting a suitable controller is an important aspect.

However, even more important is setting the suitable controller parameters Kp, Tn and Tv, that

have to be adjusted to the controlled system behavior. Usually, we have to compromise between

a very stable but slow control system or a very dynamic, more unsettled control performance

which under certain circumstances has a tendency to oscillate and can become unstable.

In the case of non-linear systems that are always to process at the same operating point

-such as fixed setpoint control- the controller parameters have to be adjusted to the controlled

system behavior at this working point. If, as in the case of servo controls, a fixed working point

cannot be defined, a controller setting has to be found that supplies a sufficiently fast and stable

control result over the entire working range.

In practice, controllers are usually set based on values arrived at through experience. If these are

not available, the controlled system behavior has to be analyzed exactly, in order to subsequently

-with the aid of theoretical or practical layout procedures - specify suitable controller parameters.

 Ch 19 PID Block 6

An Example SLC PID Function

In its simplest form, the SLC PID block is used as a single block with no input contacts and

surrounded by only two SCP blocks. This PID instruction is located in Ladder 2. The SCP block

is configured to retrieve a numerical value from the analog input channel, linearly scale the input

and move the resultant value to the PID block. The input is a 4-20 mA signal from a flow

transmitter. The output is a 4-20 mA signal to a variable flow valve.

 SCP – Scale with Parameters

 Input

 Input Min

 Input Max

 Scaled Min

 Scaled Max

 Ouptut

 PID

 Control Block

 Process Variable

 Control Variable

 Control Block Length

 SCP – Scale with Parameters

 Input

 Input Min

 Input Max

 Scaled Min

 Scaled Max

 Output

 Fig. 19-6 Simple Program of PID for SLC Processor

 Ch 19 PID Block 7

In the first SCP instruction, values found in the Input Min and Input Max of the SCP instruction

are from the I/O card. The engineer must first decide which I/O card to use and then find the

proper lower and upper limits from the literature on the card to enter values in the SCP

instruction.

In this case, the analog card selected is the 1746-NIO4I Ser. A. This card is a combination card

with 2 analog inputs and 2 analog outputs. From the web, select I/O Analog Modules, Analog

I/O Modules for SLC 500 Programmable Controllers – Technical Data. Then select 4 Channel

Module Configuration, 4 Channel Module Wiring, and 4 Channel Module Specifications to find

the choices available for Analog Inputs and Analog Outputs.

In the section describing 4 Channel Module Specifications are found the following Channel Data

sheets:

Input Type Signal Range Engineering Units EU Scale

+/- 10 Vdc -10.25 to + 10.25 Vdc -10250 to + 10250 1 mV/step

0 to 5V dc -0.5 to +5.5 Vdc -500 to +5500 1 mV/step

1 to 5V dc 0.5 to 5.5 Vdc 500 to 5500 1 mV/step

0 to 10 Vdc -0.5 to +10.25 Vdc -500 to +10250 1 mV/step

0 to 20 mA -0.5 to +20.5 mA -500 to +20500 1.0 uA/step

4 to 20 mA 3.5 to 20.5 mA 3500 to 20500 1.0 uA/step

+/- 20 mA -20.5 to +20.5 mA -20500 to +20500 1.0 uA/step

0 to 1 mA -0.05 to 1.05 mA -50 to + 1050 1.0 uA/step

 Channel Data Word Values for Engineering Units

Input Type Signal Range NI4 Data Format

+/- 10Vdc -10.00 to +10.00 Vdc -32768 to +32767

0 to 5Vdc 0.0 to 5.00 Vdc 0 to 16384

1 to 5 Vdc 1.00 to 5.00 Vdc 3277 to 16384

0 to 10 Vdc 0.0 to 10.00 Vdc 0 to 32767

0 to 20 mA 0.0 to 20.0 mA 0 to 16384

4 to 20 mA 4.0 to 20.0 mA 3277 to 16384

+/- 20 mA -20.0 to +20.0 mA -16384 to +16384

0 to 1 mA 0.0 to 1.00 mA 0 to 1000

 Channel Data Word Values for Scaled Data

Using the value 4 to 20 mA from the Input Type column, the value in Engineering Units is 3277

min to 16384 max. These values are entered in the SCP instruction to scale the variables

correctly.

 SCP – Scale with Parameters

 Input

 Input Min 3277

 Input Max 16384

 Scaled Min

 Scaled Max

 Ouptut

The scaled min and max values that are sent to the PID’s process variable are found in the setup

documentation of the PID block. The min value is 0 and the max value is 16383. A location

must be selected. In this case, the process variable or PV is selected to be N10:28. It is

Fig. 19-7

 Ch 19 PID Block 8

advisable to keep the PID block data separated from other integer data. In order to do keep the

data for the PID separated, the data file N10 was created to handle the PID data.

The input address may also be selected. Remember the value is I:s.w where s is the slot number

and w is the relative word address down the card. In this case, the slot address chosen is 1 and

the w or word address is 0, the first analog input point on the card. The other option for the input

in slot 1 is I:1.1.

 SCP – Scale with Parameters

 Input I:1.0

 Input Min 3277

 Input Max 16384

 Scaled Min 0

 Scaled Max 16383

 Output N10:28

 PID

 Control Block

 Process Variable N10:28

 Control Variable

 Control Block Length 23

 Fig. 19-8 Moving the Process Variable into the PID Block

The control block address is chosen. This address requires 23 contiguous words reserved in an

integer table. The block N10:0 (through N10:22) was chosen. Also reserve a location for the

control variable or output of the PID function. N10:29 was chosen.

This control variable or output is then sent to the analog output card. Scaling again must be

chosen. The min for the PID output is 0 and the max is 16383. These are the same values as are

used for the PID input. To use the entire range of values for a PID input or output, choose the

range 0 to 16383. Always strive to use the entire range of the PID block when programming an

integer PID block. This gives the greatest accuracy.

The scaled output must be ranged to fit a 4 to 20 mA analog output card. Use the values as were

found in the reference manual, 6,242 min and 31,208 max. Use the first output point on the same

card as the input. Its slot number is O:1.0. Now, the PID and two SCP blocks can be finished.

 Ch 19 PID Block 9

 SCP – Scale with Parameters

 Input I:1.0

 Input Min 3277

 Input Max 16384

 Scaled Min 0

 Scaled Max 16383

 Output N10:28

 PID

 Control Block

 Process Variable N10:28

 Control Variable N10:29

 Control Block Length 23

 SCP – Scale with Parameters

 Input N10:29

 Input Min 0

 Input Max 16383

 Scaled Min 6242

 Scaled Max 31208

 Output O:1.1

 Fig. 19-9 Moving the Variables Into and Out of the PID

Wiring a 4-20 mA Current Loop

Handling wiring and other hardware issues is found from information in the instruction manual

for the module. In the case above, the card used was the 1746-NI04I module from Allen-

Bradley. Look specifically in the chapter on installation and wiring.

In addition to the actual wiring diagram for the application, important information including dip

switch settings should be noted. If possible, all dip switch settings should be copied to the

installation drawing for the card or added as notes to the schematic drawings. In the case of the

1746-NI04I card, no dip switches were found.

To wire a 4-20 mA control circuit for a PLC input, wire a loop with the power supply,

transmitter, and PLC input. To wire a 4-20 mA PLC output, wire a power supply, valve and

output. From the manufacturer's diagram, it should be noted whether the 4-20 mA output

requires loop power or the analog output card provides loop power.

For the analog input, the transmitter varies the resistance to the PLC input so that the current

ranges from 4 mA for no flow to 20 mA for maximum flow. The transmitter “borrows” enough

voltage from the 24 V dc to activate electronics inside the transmitter. The voltage drop across

the transmitter does not affect the current range of the loop. The PLC analog output varies the

resistance to the control valve in a similar manner.

 Ch 19 PID Block 10

Transmitter-

Variable Resistor

24 V dc

PLC

Analog

Input

4-20 mA

4-20 mA Analog Input – Current Loop

PLC Analog Output

24 V dc

(may be

external)

Control

Element

(valve)

4-20 mA

PLC Analog Output24 V dc

(may be

internal)

Control

Element

(valve)

4-20 mA

or

4-20 mA Analog Output – Current Loop

 Fig. 19-10 Analog Current Loop Wiring

In the case of output cards, care must be taken to find whether or not the 24V dc power supply

should be added to the loop. The drawing from the installation manual provides direction here.

From the figure below, note that there is no power supply needing to be added in the output

current loop diagram for this specific card (NI04I).

 Ch 19 PID Block 11

The figure below shows the catalog information for wiring this card. In fact, the analog output

does not need a power supply since the output furnishes this power internally. The term "analog

source" for the input implies inclusion of the 24V power supply. Load for the output implies no

external power supply. Note the jumpers installed for inputs not used.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

In 0+

In 0-

ANL COM

In 1+

In 1-

ANL COM

not used

Out 0

ANL COM

not used

Out 1

ANL COM

Load

(valve)

jumper

unused

inputs

+

analog

source

-

do not jumper

unused outputs

Fig. 19-11 4-20 mA Analog I/O – Current Loop (NI04I)

Configuring the SCP and PID Instructions for the SLC

The description of the SCP instruction mentions that the inputs may be integer, floating point,

immediate data values, or indirect referenced values. The minimum and maximum values for

both input and output form a range over which the variables are scaled. The instruction solves

the equation y = mx + b without the user responsible to calculate actual values for ‘m’ and ‘b’.

Care must be taken to keep the program performing in an acceptable manner if the input value is

less than the card minimum value. The scaled output value should continue to solve the equation

and the output value should scale to less than the minimum value of the instruction. The same

result should also occur if the value exceeds the maximum.

In the Instruction Help description, the PID block is described:

“This output instruction is used to control physical properties such as temperature, pressure, liquid level,
or flow rate of process loops.

The PID instruction normally controls a closed loop using inputs from an analog input module and
providing an output to an analog output module as a response to effectively hold a process variable at a
desired setpoint.”

The PID instruction can be chosen to be operated in either the timed mode or the STI mode. In

the timed mode, the instruction updates the output algorithm periodically at a rate selected in the

block. In the STI mode, the PID instruction is placed in an STI (Software Timed Interrupt)

subroutine. The PID block updates the PID algorithm each time the STI subroutine is called. A-

B points out that the STI time interval and the PID loop update rate must be equal in order for the

 Ch 19 PID Block 12

equation to perform properly. The suggested time duration for the STI or timed mode is .1

second.

A Setup screen is provided on the PID instruction.

 PID

 Control Block

 Process Variable N10:28

 Control Variable N10:29

 Control Block Length 23

setup screen

 Fig. 19-28 Example PID Instruction

From the A-B Text and the Instruction Help Screen is shown the Block Layout of the PID

Instruction:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Word 0 EN DN PV SP LL UL DB DA TF SC RG OL CM AM TM
Word 1 PID Sub Error Code (MSB)
Word 2 Setpoint SP
Word 3 Gain Kc
Word 4 Reset Ti
Word 5 Rate Td
Word 6 Feed Forward Bias
Word 7 Setpoint Maximum (Smax)
Word 8 Setpoint Minimum (Smin)
Word 9 Deadband
Word 10 INTERNAL USE – DO NOT CHANGE
Word 11 Output Max
Word 12 Output Min
Word 13 Loop Update
Word 14 Scaled Process Variable
Word 15 Scaled Error SE
Word 16 Output CV% (0-100%)
Word 17 MSW Integral Sum
Word 18 LSW Integral Sum
Word 19 Altered Derivative Term (Low word)
Word 20 Altered Derivative Term (High word)
Word 21 Time of Last Update
Word 22 Setpoint Old Value

The table above corresponds to N10:0 through N10:22 found in our example above. Word 0

(N10:0) is used for bit control storage. For example, bit 1 is the AM or Auto/Manual bit. When

bit 1 is on, the block is in manual. When bit 1 is off, the PID block is in auto. The address for

AM in is N10:0/1. Words 1 through 22 are used for constants and variables used in the solution

of the PID algorithm.

The PID Setup Screen shown below describes variables found in the table above that may be

changed from the programming software.

 Ch 19 PID Block 13

Solving the PID Block and Adding the HMI

Once the analog value of the process variable is mapped from the SCP instruction to the PID

block, the PID block solves the equation for the Control Variable (CV) or Output. A more

thorough explanation of how the output is achieved may be found in a text on control systems.

Equations vary but the three most common equations are given later in the chapter.

The PID block has two analog inputs. One is the PV or process variable and the other is the SP

or setpoint. The setpoint is manually entered into the PID block. This may be done through the

PID Setup screen, through an HMI such as PanelView, or through a program statement (a MOV).

If the SP is entered manually through the program, the SP is considered static and should never

be changed by operator control since an operator is not generally considered reliable enough to

enter variables through the RSLogix500 Setup Screen.

The PID Setup screen is pictured below. The setup screen allows the engineer or technician full

capability of modifying the PID block.

The SP may be entered through the PID Setup screen. The PV is entered using the SCP

instruction.

From the A-B Instruction Reference Manual:

“Process Variable PV is an element address that stores the process input value. This address
can be the location of the analog input word where the value of the input A/D is stored. This value
could also be an integer if you choose to pre-scale your input value to the range 0 to 16383.”

The output is referred to as the CV or Control Variable. It is described in the same manual as:

“Control Variable CV is an element address that stores the output of the PID instruction. The
output value ranges from 0 to 16383, with 16383 being the 100% ‘on’ value. This is normally an
integer value, so that you can scale the PID output range to the particular analog range your
application requires.”

Fig. 19-29

 Ch 19 PID Block 14

The PID block is very much like a black box function with inputs entering and outputs leaving

the block. The block diagram for the PID block in auto is:

In Auto:

(AM bit = 0)
Process Variable Setpoint

Control Variable

or Output

 Fig. 19-30

The PID algorithm is solved while the block is in auto. Auto is determined by the status of the

AM bit. When AM = 0 the operation is automatic. When AM = 1, the operation is manual.

The PID algorithm does not output a value for the PID block if the block is in manual. It is as if

the block has been manually disengaged. The PV or SP may change and the output stays at its

last value unless a new value is written into the CV location. The CV location may be over-

written in manual. In auto, the PID block constantly writes the value to the CV. The range of the

CV is from 0 to 16383. Writing to the CV allows the user to manipulate the valve in the manual

mode.

 Ch 19 PID Block 15

In Manual:

(AM bit = 1)

Process Variable

may be entered

but equation is not

being executed

Setpoint may be

entered but

equation is not

being executed

Control Variable

or Output

1 must be written to

AM bit when in Auto

CV may be written to

from the program or

fram an HMI

 Fig. 19-31

Another bit that must be set correctly for the PID block to work is the Control (CM) bit. It

determines whether the error term E = SP – PV or E = PV – SP. If the CM bit is set incorrectly,

the valve will quickly go to full on (100%) or full off (0%). This bit is never to be set by an

operator. Use the PID Setup screen to set it. The bit is not to be changed after it is set in the

initial configuration of the auto mode.

 Ch 19 PID Block 16

Design of a Faceplate for PID Block

Faceplates of some stand-alone PID controllers are shown below. These include the Red Lion

stand-alone TCU controller and the Honeywell stand-alone controller faceplates.

Red Lion PID Control

Faceplate

Honeywell UDC1000/1500 PID Control

Faceplate

Stand-alone PID controllers such as the Red Lion TCU controller solve the PID equation in a

manner similar to the PID equation solved in the PLC. The Red Lion display is referred to as the

faceplate. HMI displays are used to allow the operator to run the process from a display in a

manner similar to the Red Lion faceplate. To run the PID successfully in the PLC, several

parameters should be available on the display to adjust the process of controlling the PID

equation.

Commonly used tags in the HMI are:

 Auto/Manual

 Setpoint

 Process Variable

 Output (CV)

 Error (Deviation) (May be on restricted access page.)

 Deadband (May be on restricted access page.)

 Gain, Reset, Rate (May be on restricted access page.)

Mode switches such as Auto/Manual are included in the SLC PID block. Other modes normally

used but not part of the SLC PID block include:

 Local/Remote

 Maintenance

In Local, the operator is able to change the setpoint manually and verify the output’s response

while the PID loop is in auto.

In Remote, the process (program) sets the SP and the PID loop responds to the changes. The PID

loop is in auto mode in both local and remote modes. Remote mode is referenced as Cascade

mode by some PID controller manufacturers.

In Maintenance mode, the loop is in manual and any variable can be changed from the operator

station. This mode should be password protected.

Fig. 19-32

 Ch 19 PID Block 17

A faceplate may be drawn on the HMI similar to the one below. This faceplate is typical for a

system of PID loops controlling a process.

The triangles on the left and right side of the bar graphs are used to add or subtract 5% or 1% of

the SP or CV. They provide a quick method to adjust SP or CV to get to a desired number. The

more exact approach is to enter a number in the data box for either SP or CV. This approach is

slower to implement than the method of touching a triangle when making small changes.

From the example of the PID Block for the SLC controller, to implement a PID Block

successfully, the PID Block must be programmed with some provision for scaling, whether

through a programming block or other means. The analog input or PV must be in an appropriate

range for the block to calculate an error based on the difference between the PV and a setpoint or

SP. In addition, the output or CV must be correctly scaled to an output.

Also, the PV and CV must be wired to analog points correctly.

Fig. 19-33

 Ch 19 PID Block 18

 Ch 19 PID Block 19

Processes in Lab

The two processes in the lab are pictured on the following page in Fig. 19-15. The one on the

left is the water valve. The one on the right is the ball-in-tube. Fig. 19-17 shows the flow sensor

for the water valve. Information on the laser, the ball’s feedback sensor, is found in the

instructions for the laser and the setup of the analog output in Fig. 19-19.

The two processes are controlled by the two processors in the lab, A-B’s Compact Logix

processor and the Siemens S7-1200 processor. The feedback devices are both 4-20 mA input

devices. The valve requires 4-20 mA from the CompactLogix processor to set the position while

the fan motor is controlled by a pulsed 24 V output from the Siemens PLC.

The following is a bill of material to construct the flow valve system shown below in Fig. 19-15.

Fig. 19-15 Water Valve Hardware Ball in Tube Hardware

 Ch 19 PID Block 20

 Fig. 19-17 The Flow Sensor Input

Fig. 19-16 The A-B PLC shown

controlling the Flow Valve

 Ch 19 PID Block 21

Fig. 19-18 Signet Flow Instrument as seen in Lab

 Ch 19 PID Block 22

Instructions for Laser for Ball-in-Tube Lab

 Ch 19 PID Block 23

Fig. 19-19

 Ch 19 PID Block 24

Siemens Analog Inputs and Outputs

The Siemens’ PID implementation follows a similar path to that of the SLC program. First, the

address of all I/O is required as well as the wiring diagram for each analog point. The S7-1200

has two analog inputs located on the controller. There is an analog output added by the signal

board but the decision was made to add analog outputs with a high resolution card attached to the

right. This card is shown in the figure below:

Addressing for the two analog input channels is found below: IW64 and IW66. The two analog

inputs are wired to these two points and programmed with these addresses.

Fig. 19-12

Fig. 19-13

 Ch 19 PID Block 25

The single analog out is wired and programmed in the slot 2 card below. It is a 13 bit accurate

device when wired for current loop and addressed: QW96.

To read or write an analog value, use the immediate read or write instruction as shown below:

Fig. 19-14

 Ch 19 PID Block 26

Use a cyclic interrupt event to house the PID function. The event is defined as an OB or Object

Block. We will use OB 30 for the program containing the PID Block.

Range values for the analog input and output channels are described in this table:

Specifications for Analog Inputs (CPU, SB, SM)

The CPU contains the two inputs for
the PID block. The SM module is
located in slot 2 and is used for the
output.

 Ch 19 PID Block 27

Specifications for Analog Outputs (CPU, SB, SM)

PID control

STEP 7 provides the following PID instructions for the S7-1200 CPU:

The PID_Compact instruction is used to control technical processes with continuous input- and

output variables. The PID_3Step instruction is used to control motor-actuated devices, such as

valves that require discrete signals for open- and close actuation.

Both PID instructions (PID_3Step and PID_Compact) can calculate the P-, I-, and D components

during startup (if configured for "pretuning"). You can also configure the instruction for "fine

tuning" to allow you to optimize the parameters. You do not need to manually determine the

parameters.

Note: Execute the PID instruction at constant intervals of the sampling time (preferably in a cyclic OB).
Because the PID loop needs a certain time to respond to changes of the control value, do not
calculate the output value in every cycle. Do not execute the PID instruction in the main program
cycle OB (such as OB 1).

 Ch 19 PID Block 28

The sampling time of the PID algorithm represents the time between two calculations of the

output value (control value). The output value is calculated during self-tuning and rounded to a

multiple of the cycle time. All other functions of PID instruction are executed at every call.

The PID (Proportional/Integral/Derivative) controller measures the time interval between two

calls and then evaluates the results for monitoring the sampling time. A mean value of the

sampling time is generated at each mode changeover and during initial startup. This value is

used as reference for the monitoring function and is used for calculation. Monitoring includes

the current measuring time between two calls and the mean value of the defined controller

sampling time.

The output value for the PID controller consists of three components:

P (proportional): When calculated with the "P" component, the output value is proportional

to the difference between the setpoint and the process value (input value).

I (integral): When calculated with the "I" component, the output value increases in

proportion to the duration of the difference between the setpoint and the process value

(input value) to finally correct the difference.

D (derivative): When calculated with the "D" component, the output value increases as a

function of the increasing rate of change of the difference between the setpoint and the

process value (input value). The output value is corrected to the setpoint as quickly as

possible.

 Ch 19 PID Block 29

 Ch 19 PID Block 30

Inserting the PID instruction and technological object

STEP 7 provides two instructions for PID control. Use the PID_Compact instruction for the lab

in this course, please!

The PID_Compact instruction and its associated technological object provide a universal PID

controller with tuning. The technological object contains all of the settings for the control loop.

The PID_3Step instruction and its associated technological object provide a PID controller with

specific settings for motor-activated valves. The technological object contains all of the settings

for the control loop. The PID_3Step controller provides two additional Boolean outputs.

After creating the technological object, you must configure the parameters. You also adjust the

autotuning parameters ("pretuning" during startup or manual "fine tuning") to commission the

operation of the PID controller.

 Fig. 19-34

 Ch 19 PID Block 31

When programming the inputs and outputs, the following two instructions are used to scale and

normalize the analog value. Use the NORM_X function first to convert the number to a real in

the range 0-1 and then use SCALE_X to scale the normalized value to a range for the real value.

Descriptions of various parameters in the PID block are found below:

Fig. 19-35

 Ch 19 PID Block 32

 Ch 19 PID Block 33

 Ch 19 PID Block 34

 Ch 19 PID Block 35

 Ch 19 PID Block 36

 Ch 19 PID Block 37

 Ch 19 PID Block 38

 Ch 19 PID Block 39

 Ch 19 PID Block 40

The Configuration editor for PID_Compact shows the following screen. Here, the user selects

the units such as temperature or pressure. The user also determines whether variables such as the

PV are Input or Input_Per. Most users would select ‘general’ for controller type.

Use the commissioning editor to configure the controller for auto-tuning at startup and for auto-

tuning during operation. To open the commissioning editor, click the icon on either the

instruction or the project navigator.

 Ch 19 PID Block 41

Fig. 19-36

 Ch 19 PID Block 42

Allen-Bradley Analog Inputs and Outputs

Wiring diagrams for the card as well as the engineering range of the input and output channels

are found on the next two pages.

1769-IF4XOF2/A
Terminal Door Label

Fig. 19-23 1769-IF4XOF2/A and F2F/A Analog Card

Fig. 19-24

 Ch 19 PID Block 43

Fig. 19-25

Fig. 19-26

 Ch 19 PID Block 44

Using the CompactLogix PID Block with RSView ME

The PID algorithm will be introduced in an application using the CompactLogix hardware and

software to provide control of the same valve used in the SLC programming experiences. The

graphical operator interface will be upgraded to the newer RSView ME operator interface.

Fig. 19-27

 Ch 19 PID Block 45

Inclusion of the data tag to create the list shown above. The PID algorithm uses these data tags

to calculate and control a PID block. For instance, the PV value for the block is mypid.PV. The

SP or setpoint is mypid.SP. The example screens that follow show the newer IF4XOF2F/A card and

are used to set up the scaling for the present system in the lab.

 Fig. 19-57 Controller Configuration of the L30ERM

The task was set up to execute every 100 msec. This is shown in the figure below:

Fig. 19-56

 Ch 19 PID Block 46

 Fig. 19-58 PID Task Set Up for Periodic

 Fig. 19-59 PID Module Set in Periodic Task

 Ch 19 PID Block 47

 Ch 19 PID Block 48

 Fig. 19-60 PID Tag in Tag Base

 Ch 19 PID Block 49

The Program Tags for the PID mypid are shown with variable contents. These variables are

useful as tag references used for communicating with the variables through program control.

 Fig. 19-61 PID Tag Setup-Tuning

The tuning tab shows the variables used to tune the PID block. The Kp, Ki and Kd tuning

constants are probably the best variables for the water valve. These constants should not vary too

much from the numbers shown or the PID block may become unstable.

 Ch 19 PID Block 50

 Fig. 19-62 PID Configuration

The configuration tab shows the variables used to set up the type of block used. The variables

seen above are the ones used in the download example. There are a number of variables that are

not used.

 Ch 19 PID Block 51

 Fig. 19-63 PID Alarms

The alarms tab shows the alarm variables used to set up the block. The alarm limits are ignored

for now but in a real application will be necessary when setting up a system of alarms.

 Ch 19 PID Block 52

 Fig. 19-64 PID Scaling

The scaling tab shows the variables as set up in the block. We need to make a decision whether

to scale the engineering units. The unscaled PV and CV are listed at 16383. The Engineering

Units for the PV may be changed or left as is. For water, the engineered units should be 90 gpm

max.

 Ch 19 PID Block 53

 Fig. 19-65 PID Setup

The setup tab shows the variables as set up in the block.

 Ch 19 PID Block 54

 Ch 19 PID Block 55

 Ch 19 PID Block 56

 Ch 19 PID Block 57

Continuing the Allen-Bradley Configuration Pages

After you enter the PID instruction and specify the PID structure, you use the configuration tabs

to specify how the PID instruction should function.

To specify tuning, select the Tuning tab. Changes take effect as soon as you click on another

field.

To configure the PID:
Specify Setpoint (SP) Enter a setpoint value (.SP).

Set output % Enter a set output percentage (.SO) (In software manual mode, this value is

used for the output. In auto mode, this value displays the output %.)

Output bias Enter an output bias percentage (.BIAS).

Proportional gain (Kp) Enter the proportional gain (.KP).For independent gains, it’s the

proportional gain (unitless). For dependent gains, it’s the controller gain
(unitless).

Integral gain (Ki) Enter the integral gain (.KI). For independent gains, it’s the integral gain

(1/sec). For dependent gains, it’s the reset time (minutes per repeat).

 Ch 19 PID Block 58

Derivative time (Kd) Enter the derivative gain (.KD). For independent gains, it’s the derivative

gain (seconds). For dependent gains, it’s the rate time minutes).

Manual mode Select either manual (.MO) or software manual (.SWM). Manual mode

overrides software manual mode if both are selected.

PID equation Select independent gains or dependent gains (.PE). Use independent when

you want the three gains (P, I, and D) to operate independently. Use
dependent when you want an overall controller gain that affects all three
terms (P, I, and D).

Control action Select either E=PV-SP or E=SP-PV for the control action (.CA).

Derivative of: Select PV or error (.DOE). Use the derivative of PV to eliminate output

spikes resulting from set-point changes. Use the derivative of error for fast
responses to set-point changes when the algorithm can tolerate
overshoots.

Loop update time Enter the update time (.UPD) for the instruction.

CV high limit Enter a high limit for the control variable (.MAXO).

CV low limit Enter a low limit for the control variable (.MINO).

Deadband value Enter a deadband value (.DB)

No derivative smoothing Enable or disable this selection (.NDF)

No bias calculation Enable or disable this selection (.NOBC).

No zero crossing in dbnd Enable or disable this selection (.NOZC).

PV tracking Enable or disable this selection (.PVT).

Cascade loop Enable or disable this selection (.CL).

Cascade type If cascade loop is enabled, select either slave or master (.CT).

Specify Alarms
PV high: Enter a PV high alarm value (.PVH).

PV low: Enter a PV low alarm value (.PVL).

PV deadband: Enter a PV alarm deadband value (.PVDB).

Positive deviation Enter a positive deviation value (.DVP).

Negative deviation Enter a negative deviation value (.DVN).

Deviation deadband Enter a deviation alarm deadband value (.DVDB).

Specify Scaling

 Ch 19 PID Block 59

PV unscaled maximum Enter a maximum PV value (.MAXI) that equals the maximum unscaled
value received from the analog input channel for the PV value.

PV unscaled minimum Enter a minimum PV value (.MINI) that equals the minimum unscaled value

received from the analog input channel for the PV value.

PV engineering units maximum Enter the maximum engineering units corresponding to .MAXI (.MAXS)

PV engineering units minimum Enter the minimum engineering units corresponding to .MINI (.MINS)

CV maximum Enter a maximum CV value corresponding to 100% (.MAXCV).

CV minimum Enter a minimum CV value corresponding to 0% (.MINCV).

Tieback maximum Enter a maximum tieback value (.MAXTIE) that equals the maximum

unscaled value received from the analog input channel for the tieback
value.

Tieback minimum Enter a minimum tieback value (.MINTIE) that equals the minimum

unscaled value received from the analog input channel for the tieback
value.

PID Initialized If you change scaling constants during Run mode, turn this off to reinitialize

internal descaling values (.INI)

Shifting to the HMI Program, RS Studio is entered and the Libraries choice and then Face Plates

choice is entered.

 Ch 19 PID Block 60

 Fig. 19-66 Under Libraries – Face Plates

With RSStudio, build a screen from scratch using a face plate. There are a number of face plates

in the template from which to choose.

 Ch 19 PID Block 61

 Fig. 19-67 HMI Loop Face Plate

The various parts of the face plate are animated. The next screen shows the details:

 Fig. 19-68 Animation of the Arrow

 Ch 19 PID Block 62

 Fig. 19-69 Animation of the Numeric Entry

 Ch 19 PID Block 63

 Fig. 19-70 One of Many

Choose a faceplate and begin modifying it for the application. Several tags are provided with

each faceplate. These tags may set a number, allow entry of a number, move an animated arrow

or fill a sliding window. Bits may be added for auto/manual and local/remote. Note that alarms

may also be included such as the red and yellow tags above.

These faceplates may be modified with additional components. They may also be built from

scratch using existing components. At one time, the faceplate could be unbundled. While no

longer possible, the individual components may be animated by clicking them and then

answering the questions.

The next two pages show the animation of the faceplates from Siemens and Allen-Bradley using

the faceplate as the starting point for the animation. While the faceplate given is not available

from Siemens, it can be built from parts using existing Siemens components. The up and down

triangles shown in the earlier faceplate may also be added to these faceplates for a more complete

system. The logic in the Siemens faceplate below show how to add the triangles.

 Ch 19 PID Block 64

mypid.Input

mypid.Setpoint

mypid.Output

mypid.ManualValue

mypid.Setpoint

mypid.Output

mypid.State

State=0: Inactive

State=1: Pretuning

State=2: Man fine tune

State=3: Automatic mode

State=4: Manual mode

State=5: Safety mode

State=6: Output val meas

State=7: Safety mode trig

State=8: Inactive mode

Siemens PID

with faceplate

 Fig. 19-71

The following logic can be used to add 1 % to the full scale value of the Setpoint. Similar logic

can be used for 5% increase or for 1% or 5% decreases. The triangle buttons on the original

faceplate showed these triangles. Similar buttons can be added to the CV or Output logic when

the PID algorithm is in manual. Similar logic can be added to the Allen-Bradley program.

 Ch 19 PID Block 65

mypid.PV

mypid.SP

mypid.CV

mypid.SO

mypid.SP

mypid.CV

mypid.SWM

1 = manual

0 = auto

When the PID block is in manual,

the .SO is placed in the Output.

When in auto, the PID block

calculates a value for Output.

Allen-Bradley PID

with faceplate

 Fig. 19-72

 Ch 19 PID Block 66

Two new topics not explored in the earlier PanelView were alarm screens and trends. Alarm

banners were available in the older PanelView but were not as flexible as the newer alarm screen.

Also, trends are needed. Trend data is very important in that a trend of any variable can be used

to diagnose a problem either in the start-up phase of a project or later during daily operation.

Historical data trends will show long-term trends as well.

Tank of Liquid Fat

Control Valve

 Fig. 19-73 Graphic of Fat Valve

This figure shows a partially finished graphic of the ‘fat’ portion of the dog food extruder. When

the invisible button around the valve is energized, the PID block faceplate appears allowing

control of the valve in auto and manual mode. Local and remote control may also be added to

the screen with the faceplate. The pipe may be enhanced as well to show flow when the valve is

open and no flow when the valve is closed.

The graphical application may be run from the PC or downloaded to a target system. The tags

for the graphical screen may be those in the PLC. Care must be taken when selecting where the

process is to be displayed. If it is displayed from the computer screen, then Local is selected. If

the display is downloaded to the Panelview32, then Target is selected. In order to display the

process locally, a number of steps must be incorporated for the local application to correctly

“see” the PLC.

 Ch 19 PID Block 67

Non-Standard Controller Modes

A number of additional modes may be created for the PID block. Bits must be programmed

externally to the PID block for many of these other control modes.

An example is Control Output Tracking (COT). In COT, the loop is forced to manual and the

output moves to a programmed position until conditions in the program are stable enough for the

system to proceed to auto. In COT, the mode shown to the operator is AUTO with COT. The

system is perceived to be in Auto but the output or CV is actually in Manual.

This mode is ideally suited for burner start-up with a large number of burners. When the burners

are first turned on, the gas and combustion air are not able to be controlled under automatic

control. The burners need to operate in the extreme low range of the CV but the control valve

cannot be allowed to completely shut off. In the low range of most valves, proper flow rates are

not accurate and control becomes very unstable. COT allows the PID loops to operate for a set

period of time in manual at a preset position until the burners are all started and flows are at their

mid-range positions more capable of accurately being controlled. Then the PID algorithms take

effect in Auto and the PID loops begin the process of controlling the temperature in the furnace.

To the operator, the system appears to be in auto but in the program, the PID algorithm is being

controlled in manual until the auto mode is capable of accurately controlling the PID block.

COT is to be used only in start-up situations or in recovery operations in which it is necessary to

operate at a low-end setting to keep the burner system from shutting down.

When operating in a mode such as COT or Maintenance and when the mode is removed, the loop

should resume its former status.

Use a toggle input from the HMI and the following logic to program bits for A/M, L/R, COT,

and Maintenance.

AutoAuto
B3:0/0 Error1

B3:0/0

Remote
B3:1/0 Error2

B3:1/0
Remote

Use of toggle bits to turn on a mode may not at first resemble a seal or latch circuit but in fact

they act in a manner similar to both. The toggle bit (B3:0/0 or /1) may be turned on by an

operator through the HMI and will remain on until the operator removes the toggle or until the

NC contact logic interrupt the flow. When this happens, the circuit reverts to the safer off state.

In the example of auto/manual (bit B3:0/0), the bit will turn off to the manual state. Note that the

actual state of the SLC Auto/Manual bit is reversed from this logic.

Fig. 19-74

 Ch 19 PID Block 68

Tuning the PID Block

It is interesting that a number of different PID algorithms exist. No one standard equation is used

in all controllers. While the PID block has the same general function, nomenclature and the

action of the block may differ.

Proportional Band = 100/gain

Integral = 1/reset

Derivative = rate – pre-act

Three classifications of PID algorithms are considered major classes of design equations. They

are ideal, parallel and series or interacting. Equations for the three are listed below:

 Ideal: Output 







  dt

tde
Dtdte

I
teKc

)(
)()(

1
)(

 Parallel: Output  
dt

tde
Dtdte

I
teKp

)(
)()(

1
)]([

 Series (Interacting) Output 
















  dt

d
Dtdte

I
teKc 1)()(

1
)(

Different manufacturers use one of the above control algorithms as the basis for their PID block.

The three do not respond identically to different situations. A control algorithm from one

manufacturer cannot be guaranteed to work identically to the control algorithm of a second

manufacturer. Differences in the derivative action are especially critical to the operation. For

this reason, many do not use derivative action in the tuning of a loop. To not use derivative

action, set the derivative or D value to zero.

Manufacturers such as Honeywell, Bailey, Allen-Bradley, Modicon, Foxboro, Fisher, and Texas

Instruments pick one of the above types of equation and implement it on their controllers. Some

manufacturers allow a choice between which algorithm is used. It is the engineer’s or

technician’s responsibility to understand the application, the PID equation, and choose the best

overall solution for the application.

 Ch 19 PID Block 69

Using the PID Algorithm to Control a Process

To configure a system, a flow diagram must be drawn to identify the parts of the system. The

example below is of a dog-food manufacturing facility. The basic process for making the dog

food is the extruder whose function is to make dog food from dry ingredients along with some

steam, fat, and other wet ingredients. As the motor speeds up, more ingredients are to be added

and as the motor slows down, the added ingredients are to slow down as well. The PID block

will be used to add one wet ingredient, fat.

Tank of Liquid Fat

Fat

Control Valve

Other Raw

Ingredients

Extruder Motor Extruder Dog Food

Kibbles ‘n Bits

 Fig. 19-75 Extruder/Mixing System making Dog Food

Since the extruder motor speed runs the feed speeds for the other ingredients in the process, its

speed sets the master speed for the process. All other feed speeds will be a percent of the motor

speed.

Control signals for the Dog Food Control include:

Motor Speed

Motor Speed Motor Speed Motor Speed Motor Speed

Feed Rate
Ingredient a

Feed Rate
Ingredient b

Feed Rate
Ingredient c

Feed Rate
Fat

 Fig. 19-76 Motor Speed Settings for Ingredient Adds

 Ch 19 PID Block 70

For the example, it is given that all the feed rates are in place for the ingredients other than ‘fat’.

From the diagram, motor speed is the master speed reference for all rates in the system and ‘fat’

has been added as a separate ingredient. Modes for the PID algorithm for ‘fat’ include remote

and local when the PID algorithm is in auto and auto or manual for the PID algorithm itself.

When the PID algorithm is in local, a setpoint is provided from the local faceplate variable.

When the PID algorithm is in remote, the motor speed furnishes the value. Variables are usually

multiplied by a constant with motor speed * multiplier giving the value of the setpoint when the

local-remote switch is in remote.

The example will be used as a lab exercise at the end of the chapter. Design of the faceplate will

show selector switch positions for local versus remote and manual versus auto. Usually a

graphic of the system is provided with a button activated that shows the faceplate. The screen

with the faceplate is not the primary screen but is accessed as needed. The process screen

displays the entire process with various pop-up buttons available to show the PID algorithm for

that portion of the process as the operator needs to access a specific PID block. Many times the

buttons to activate the PID block are configured as invisible. If the operator pushes the area

around the valve – ‘fat’ valve in this case – the PID block for ‘fat’ will be displayed. The

diagram below follows the signal path through the PID block and is useful as a programming aid.

Looking only at the Fat Feed, the following process flow will be implemented:

switch in remote or cascade

Setpoint in PID

PID Solver

Cv or Output

Flow Valve to
Proces Variable

Manual Cv

Motor Speed

Multiplier Local Setpoint

switch in local

switch in auto switch in manual

Signal to Valve

 Fig. 19-77 Motor Speed Settings for Ingredient Adds

 Ch 19 PID Block 71

Bumpless Transfer

When the PID block is switched from manual to auto, the function responds to the SP presently

available to the block. If the process is sensitive to sudden changes in PID output, then the

program should include logic to give the output a signal matching the present flow when the

block was in manual. This is referred to as bumpless transfer.

With the more advanced PID blocks of the PLC/5 and Control Logix platform, the output value

that is described as the value to write to so that the output will be bumpless is the .SO value. The

.SO value of the PID block should be given the value that the operation would like the output to

have when the PID block is first put in Auto. This value is usually the value of the output when

the PID block is in Manual. The MOV operation should guarantee bumpless transfer when the

block moves from Manual to Auto.

For example, if the block was in manual and flow was 25.5 gallons per minute, when the PID

block is transferred to auto, flow should continue to maintain 25.5 gallons per minute. With PID

blocks, the addition of logic requires writing the present flow rate to the setpoint when the block

transfers from manual to auto.

Floating Point PID

The subject of what type of PID block to choose is an easy decision. Always use the Floating

Point PID block if floating point is available. The number representing the flow or pressure or

temperature is an actual number with units and no need to be transposed to another number

elsewhere. With the integer PID block, it is very important to keep a record of the various

transpositions so the PID block can be used at maximum efficiency with numeric values sent to

the operator that relate to the process.

PID function blocks using floating point numbers are preferred. For instance, if flow varies from

0 to 45 gpm, then the numbers entered for minimum SP and maximum SP’s would be 0.00 and

45.00. However, to gain accuracy, any integer setpoint should use the entire range from 0 to

16383. The min. value 0.00 equals 0 and the max value 45.00 equals 16383. With the integer

PID block, there is a translation in the values between internal units and values displayed to the

operator. For examples in the text, this translation is ignored. In an actual application, however,

each translation must be implemented with an appropriate SCP instruction. Effort to keep all

translations in order is not seen as necessary and most complex applications tend to use floating-

point PID.

Calibration may be used to determine units of flow. In order to determine flow, a test is run with

a watch and a calibration system. For instance, running a 5 gallon bucket full of water in a

certain time is an acceptable method of calibrating flow through a valve. Repeating the

calibration a number of times over a range of settings gives a better overall measurement.

 Ch 19 PID Block 72

Fault Circuits

Faults occur at different levels in the program and require a variety of responses. Some types of

faults should shut the process down. Shutting down may require that valves turn off. Many

times, to shut down automatic operation is desired and the valves are to stop moving, staying in

the same position. If the desire is to move from Auto to Manual, the bit in the PID algorithm

labeled AM must be changed from 0 to 1. The bit is set to 0 in Auto and 1 in Manual. The fault

contact represents various faults that can harm the process if the PID algorithm is allowed to

continue in auto.

Two levels are present in most processes. As with the dog food application, the process is

capable of being run in remote or local for both automatic modes or in manual. In a hierarchical

picture, remote mode is favored over local mode and the manual mode is the least desirable mode

to run the process. This may be pictured as:

Bit B3/x on

Bit B3/y on

Bit B3/x off

Bit B3/y on

 Bit B3/x off

 Bit B3/y off

Bit B3/x is the Remote Control Bit

Bit B3/y is the Auto/Manual Control Bit

In this description, Manual and Remote mode is not allowed.

Note that when the PID block is in auto, the control bit is on. A second bit must be programmed

to reverse the status of this bit to turn off the AM bit in the PID block to correctly run the PID

block.

One of the control button types in PanelView is ideal to program the Remote/Local and

Auto/Manual layout for the PID block. It is the Multistate Button. Define two multistate buttons

for the process above. Reference the first multistate button to B3/x to represent Remote or Local.

Reference the second multistate button to B3/y to represent Auto or Manual.

 Let B3:0/0 represent the remote/local mode and let B3:0/1 represent auto/manual.

Remote Auto

 Local Auto

 Manual (Local)

Most

Desired

Least

Desired

Fig. 19-78

 Ch 19 PID Block 73

The logic for control bits for remote/local and auto/manual is provided. Multistate pushbuttons

are programmed in the HMI for B3:0/0 and B3:0/1. B3:0/0 is labeled Remote when the bit is

on and Local when the bit is off. B3:0/1 is in Auto when the bit is on and Manual when the bit

is off. The state is set to ‘on’ when the operator places the buttons in the remote or auto mode.

The operator can also place the buttons in local or manual mode. Operation of the process can

also place the process in the local or manual mode as well when faults occur. Faults as

represented by B3:2/5 will energize the NC contact and take the PID block from remote to local.

Faults represented by B3:3/5 will energize the NC contact and take the PID block from auto to

manual.

Multistate buttons are used for remote/local and auto/manual so one button can be used instead of

two buttons. Most graphical applications encourage the use of a single button as opposed to two

separate buttons. Using the multistate button provides a single button with toggle functionality.

Multistate buttons also respond to program logic in the PLC and will turn on or off with logic

internal to the program.

To complete the mode program for the PID block, be able to add logic to the rungs above to turn

on or off B3/0 and B3/1 from the program as well as from the HMI. From the HMI software,

configure two multistate buttons. These buttons are programmed as follows:

Button 1

B3:0/1 Tag

Off Local

On Remote

Button 2

B3:0/0 Tag

Off Manual

On Auto

Fig. 19-79

 Ch 19 PID Block 74

Faults that move the operation from remote to local are different than faults that move the

operation from automatic to local. Always, the option most highly sought is for the operation to

run in remote. However, if a fault occurs in the process but not necessarily in the individual PID

block, the fault should cause the process to revert to local from remote and sound an alarm.

If a fault occurs in the PID block, the best practice is to change the block from automatic to

manual. One of these faults is referred to as anti-reset windup. In manual, the algorithm is not

active and the error term is reset to zero eliminating the integral term from growing with a

growing error.

Example of Fault Causing Switch from Remote to Local

When looking at PV, a temperature profile may be found to form a composite PV. The values of

a number of different temperature inputs are summed together. The sum is weighted with the

weighted values having to add to 100%. If the weights do not add to 100%, the individual PID

blocks used to control their CV outputs are switched to local mode. The local setpoint is used

until the weights have been adjusted to add to 100% and the operator switches control back to

remote.

 x

 x

 x

 +

In the example, Weights 1-3 must add to 100 % for the Temperature PV to run the temperature

PID block in remote.

Weight 1 Temperature 1

Weight 2 Temperature 2

Weight 3 Temperature 3

Temperature PV

EQU
Sum of Weights
(W1 + W2 + W3)
=
100%

Auto Enable

Fig. 19-80

Fig. 19-81

 Ch 19 PID Block 75

Example of Fault Causing Switch from Auto to Manual

When operating between Auto and Manual, the PID block should be monitored so that a failure

to achieve the desired result is not defeated by faulty equipment. If the equipment fails, the PID

block should be faulted to the Manual Mode and an alarm sounded. For instance, if a valve is

attached to the CV and the valve does not turn when the CV changes, this should be considered a

fault condition. To find if this is the case, the CV or output is compared to a position on an

analog scale. The sensor is usually nothing more than a potentiometer. If the CV does not keep

within 10% (or other constant) over a time period such as 10 seconds, the PID block for the valve

should fail.

Another type of failure is the restriction of flow that can cause the CV to travel to full ‘on’. A

restriction in flow may be simulated by simply pinching off a hand valve in the line of flow. Any

restriction over time can cause the CV to not be able to control the process. If the CV is allowed

to go to 100% for a period of time, the PID block should fault and the output be placed in

Manual. Ranges other than 100% may be used as well with a time delay appropriate to shut

down the process in abnormal conditions. The programmer must be able to decide acceptable

ranges for these cutoffs, usually through experience with the PID block and with the process.

Eliminating Anti-Reset Windup

In order to avoid anti-reset windup of the PID controller, the controller must be switched from

auto to manual when conditions exist that would wind up the controller integral term. The

integral term is reset to zero in manual mode. To detect integral error, monitor the PV. If the PV

does not follow the CV after a preset time, something is perceived to be wrong with the system

and action should be taken.

For example, a check valve may be turned off starving the system. When this happens, the PID

controller must be placed in manual to eliminate windup and an alarm sounded.

An experienced operator will find the problem and reset the loop to auto control. And the system

will continue to function with only a small upset to the system. If the PID block is allowed to

wind up over several minutes or hours, the output valve may stay open 100% (or closed 100%)

for long periods of time after the system comes back into operation before control is re-

established. In this time period, excessive gas may flow through a gas valve causing an

explosion or too much liquid may flow through a control valve flooding a process vessel

downstream. In any case, the result usually upsets the entire system causing scrapped product or

worse.

 Ch 19 PID Block 76

When switched from Auto to Manual, the error integral term is reset to zero:

Auto

Manual

   0E   0E

windup may occur no windup

When switched from Manual to Auto, the error integral term starts at zero and adjusts:

 Auto

 Manual

  0E   0E

no windup error term initially 0

Changes from Manual to Auto are usually made by the operator and imply that the operator is

aware that a problem occurred, has found the problem and is ready to put the process back into

Auto.

Building a Ramp Block

A ramp block is a function block that is added in front of a PID block to change the SP over a

period of time instead of immediately. It is constructed in the PLC diagram to increment from

the old SP to the new SP in increments of 1. More sophisticated ramp blocks allow the ramp rate

to be set by an operator or engineer. Some PLC instruction sets include a ramp block. The SLC

instruction set does not include a separate Ramp block so one must be programmed from

available instructions.

In this example, the old setpoint was 50 and the new setpoint was 62. In order to move from the

old setpoint to the new one, the SP value must be incremented to climb. The rate at which the SP

is incremented may be changed which varies the rate at which the new SP achieves its value. For

example, if the time interval is lengthened, the new setpoint is reached much later:

Fig. 19-82

Fig. 19-83

 Ch 19 PID Block 77

 Fig. 19-84

Of course, a setpoint may vary as high as 5000 or more integer units and the incremental ramping

may need to be very rapid (in msec). Quickly moving ramp blocks are possible with the higher

speed timer blocks. Ramp blocks may also require very slow operation and this can be

accomplished using slower preset timer blocks. Examples of slow-acting ramp blocks include

cure operations that require hours to advance the setpoint to the final point or a ramp-soak

operation for operations such as steel in which the annealing requires a slow temperature rise

over an extended period of time.

Ramp blocks are used to cause the PID block to be tuned to a different set of tuning constants

than would be required if the ramp were not present. A PID having ramping would have a set of

tuning parameters that would be tuned to respond to only much smaller step changes seen with

small upsets in the process. In block diagram format, if a ramp function is needed, it may be

shown as a block before the PID SP as follows:

 Ch 19 PID Block 78

Target

Setpoint

Actual

Setpoint

Rate

Block

PID

Block

It is preferred for the ramp block to move in small increments. If the increment speed in units of

1 is less than the PID update speed, increments should definitely be handled in increments of 1.

The goal of the ramp block should be a smooth continuous ramping.

Loops within Loops

The discussion now describes multiple PID blocks used to control a process.

The following example shows how a PID loop can be imbedded within another PID loop:

Level Probe

Level PID Block

Level Probe = PV

Setpoint from

Operator or Remote

Cv output to Flow PID

Level = xxxx

Flow PID Block

Flow Meter = PV

Valve = Cv

Setpoint from PID

Level Block

In the example above, the inner loop is the flow valve with its setpoint the CV from the Level

PID block. The outer loop is the Level PID block controlling level in the tank.

To successfully tune loops such as these, it is important to establish the order for tuning the

loops. It is also important to establish parameters for tuning them.

1. Tune the inner loop first. In this case, tune the Flow PID loop first.

2. Establish comfortable tuning parameters for it and then proceed to tune the outer loop.

The outer loop should be tuned to respond more slowly than the inner loop. The outer

loop in the example is the Level PID loop. Try to tune it to respond about 2 to 10

times slower than the inner loop.

Fig. 19-85

Fig. 19-86

 Ch 19 PID Block 79

3. Stability problems occur in general if the two loops are tuned too closely together or

the outer loop is tuned to respond more quickly than the inner loop. So, keep the

inner loop fast, outer loop slow and observe any instability. Ramp blocks should not

be used on PID blocks such as these unless they are very quick acting. The inner loop

should not have a Ramp block.

Level Probe

Level PID Block

Level Probe = PV

Setpoint from

Operator or Remote

Cv output to Flow PID

Level = xxxx

Flow PID Block

Flow Meter = PV

Valve = Cv

Setpoint from PID

Level Block

Ki term rather slow

Ki term rather fast

Fig. 19-87

 Ch 19 PID Block 80

Using Multiple Controllers for Temperature Control

Most systems used in process control require a number of PID loops working together. In the

example of the dog food extruder, if more than one ingredient had been discussed, the system

would have included a PID controller for each ingredient. In general, each control element

requires a PID block.

In the case of temperature control with gas and oxygen combustion, temperature is a PID block

as well as gas and oxygen flow. The interaction of temp, gas and air are shown next:

Temperature

Controller

Gas

Controller

Oxygen

Controller

Temp PV
Temp SP

Gas PV

Gas SP Oxygen SP

Oxygen PV

Gas CV Oxygen CV

This algorithm controls the combustion for a furnace or section of a furnace. Temperature

Setpoint may come from a number of sources. The local SP may come from an entry from an

operator. Setpoints may also be calculated using a formula for best performance. Setpoints from

a formula would be considered as remote setpoints in the temperature PID loop.

In some applications involving gas and oxygen, the oxygen must be guaranteed to be in excess

relative to fuel. Otherwise, excess gas may build up in the chamber and explode. Above certain

temperatures, gas will burn without exploding. Below a certain temperature, gas will continue to

build up and not burn until an explosion occurs. This is an especially prevalent condition in

some steel reheat furnaces.

In the case of gas and oxygen below the critical temperature for gas to burn, a cross-limiting

control scheme is introduced to allow only enough gas to be present to burn with at least enough

oxygen or combustion air to burn all the gas all the time. This implies that the gas valve always

must be more closed than the oxygen valve (times the air-fuel ratio). Control of the cross-

limiting requires the same temperature control as the master control but introduces lag control,

high select, low select and other control blocks in addition to the PID control. The oxygen

control for the cross-limiting control algorithm would be:

Fig. 19-88

 Ch 19 PID Block 81

Temperature

Controller

Oxygen

Controller

Temp PV
Temp SP

Gas PV

Oxygen SP

Oxygen PV

Oxygen CV

High SelectLag

The gas control for the cross-limiting control algorithm would be:

Low Select Lag

Temperature

Controller

Gas

Controller

Temp PV
Temp SP

Gas PV Gas SP

Oxygen PV

Gas CV

As can be seen, the Gas PID block selects the lower of the values of the Temperature Setpoint or

the Oxygen value after a lag has occurred. The value of the Oxygen PV must be multiplied by a

constant to compensate for units. The Gas PV must also be multiplied by a constant to

compensate for units of temperature. The effect of the cross-limiting control is to assure a Gas-

Oxygen ratio that will never allow more gas into the combustion chamber than can be burned in

the combustion process. This is an example of a much more complex algorithm than was first

discussed earlier with a simple PID block. The same PID blocks are still used. Logic added to

program multiple interactions becomes much more complex, however.

Fig. 19-89

Fig. 19-90

 Ch 19 PID Block 82

Example of PID Block for Feedforward Control

The PID block is a device used for feedback control. Many times, however, a small amount of

feed-forward control is required. Feed-forward control may include control that anticipates an

action and is ready to apply control as a situation arises more quickly than the pure feedback

solution is able to provide. Since there is only one set of tuning parameters for the PID block, it

is not practical to switch to a second set of parameters for a special case. The following example

shows how a little tweaking of the PID block can be useful for some anticipatory or feed-forward

control. The example below is of a furnace with a door on the front. This example shows just

one of many additions to the PID block to give it characteristics not normally associated with

PID control.

The gas burners use air for combustion and the air must be exhausted through an exhaust stack.

Pressure in the furnace is adjusted by adjusting the damper in the stack. Pressure should be

adjusted to be slightly negative so flames do not jump out of the door when the door is opened.

Stack Damper

Furnace Door

Pressure

Sensor

Furnace Pressure PID Block

Pressure Sensor = Pv

Operator entry of

 Furnace Pressure = SP

Position of Stack

 Damper = Cv

Operator Entry

Furnace Pressure = xxxx

Fig. 19-91

 Ch 19 PID Block 83

The concern of the pressure PID loop is:

 What happens when the door opens?

This is a major concern because the PID loop must respond in a much different manner in this

circumstance than under normal operating conditions with the door closed. The fact that an

event such as the door opening occurs helps to accomplish the control of this task. While not

true feed forward, augmentation of the PID block will help offset the pressure upset and keep the

flames pretty much inside the furnace. (Flames coming out the furnace tend to ignite grease from

bearings causing grease fires around the furnace.)

To accomplish better pressure control, place a limit switch on the door and adjust the output of

the PID block so the output will open the damper rapidly and then recover. The constant of the

jump is a number that should be adjustable by an operator in the maintenance mode only.

When the door swings open, perform the following operation using a one-shot rung:

 CV = CV + constant

This statement should be written only once to the CV. Use a one-shot circuit to add the constant

to CV. The CV then is allowed to recover to its new value but from a new higher starting point

as opposed to the original value. The value of the constant is the amount shown by the arrow

below. This is a constant that is adjusted to fit the application. Once set, it should not be

changed.

Furnace

Pressure

(negative)

New

Response

Old Response

One Shot

Add to Cv

The response is a simulated response but makes the point that the response to a pressure change

requires fast action to adjust to the conditions of the door opening. A change in the CV provides

this type of change. Not much change in CV will start the adjustment procedure and trick the

PID tuning parameters into responding to the new situation quickly instead of more slowly as

would be the case for a slow-acting PID function such as oven pressure.

While the addition of a small incremental value to CV may be considered a trick on the PID

block, it is important to note that such an action may be accomplished in the PLC very easily.

Ladder logic accommodates this type of programming through the use of one-shot ladder logic

and math functions. This type of change to the PID block provides quick response to an upset

outside the normal range of the PID block's algorithm.

Fig. 19-92

 Ch 19 PID Block 84

Understanding Flow Diagrams

Processes are described using flow diagrams. Symbols for diagrams are defined by the

organization – Instrumentation, Systems, and Automation Society (ISA). Letter codes are written

in circles representing various devices that control a process. For instance, FIC represents Flow

Rate, Indicator, Controller. Any three-letter code with C as the final letter represents a PID

controller. First a review of the letter codes used to configure an instrument:

Letter First Position Succeeding Positions

A Analysis Alarm

B Burner Flame

C Conductivity Control

D
Density /

Differential

E Voltage

F Flow Rate / Ratio

G Gaging Glass

H Hand High

I Current Indicate

J Power / Scan

K Time

L Level Light / Low

M Moisture Middle/ Manual

N Choice

O Choice

P Pressure

R Radioactivity Record

S Speed Switch

T Temperature Transmit

V Viscosity Valve

W Weight Well

X Interlock

Y Choice Relay

Z Position Drive

 Ch 19 PID Block 85

Process

Measurement

Element

Type Element Transmitter Indicator

Indicator

controller Controller

Ratio

Controller Recorder

Code E T I IC C FC R

Analysis A AE AT AI AIC AC AFC AR

Conductivity C CE CT CI CIC CC CFC CR

Density D DE DT DI DIC DC DFC DR

Voltage E EE ET EI EIC EC EFC ER

Flow F FE FT FI FIC FC FFC FR

Dimension G GE GT GI GIC GC GFC GR

Hand H HE HT HI HIC HC HFC HR

Current I IE IT II IIC IC IFC IR

Time K KE KT KI KIC KC KFC KR

Level L LE LT LI LIC LC LFC LR

Humidity M ME MT MI MIC MC MFC MR

Power N NE NT NI NIC NC NFC NR

Pressure P PE PT PI PIC PC PFC PR

Delta

Pressure dP dPE dPT dPI dPIC dPC dPFC dPR

Quantity Q QE QT OI OIC QC QFC QR

Radioactivity R RE RT RI RIC RC RFC RR

Speed S SE ST SI SIC SC SFC SR

Temperature T TE TT TI TIC TC TFC TR

Delta

Temperature dT dTE dTT dTI dTIC dTC dTFC dTR

Viscosity V VE VT VI VIC VC VFC VR

Weight W WE WT WI WIC WC WFC WR

Vibration Y YE YT YI YIC YC YFC YR

Position Z ZE ZT ZI ZIC ZC ZFC ZR

The table above contains descriptions of various types of transmitters, indicators, controllers and

recorders. Most PID blocks are used to program controller items. There is a one-to-one

programming transfer for most xIC (various, Indicating Controller) or xC controllers.

 Ch 19 PID Block 86

Process

Measurement

Element

Type

Hand

Switch

Hand

Valve Totalizer

Indicating

Totalizer

Solenoid

Valve

Control

Valve Calculation

Code HS HV Q IQ XV V Y

Analysis A AHS AHV AQ AIQ AXV AV AY

Conductivity C CHS CHV CQ CIQ CXV CV CY

Density D DHS DHV DQ DIQ DXV DV DY

Voltage E EHS EHV EQ EIQ EXV EV EY

Flow F FHS FHV FQ FIQ FXV FV FY

Dimension G GHS GHV GQ GIQ GXV GV GY

Hand H HHS HHV HQ HIQ HXV HV HY

Current I IHS IHV IQ IIQ IXV IV IY

Time K KHS KHV KQ KIQ KXV KV KY

Level L LHS LHV LQ LIQ LXV LV LY

Humidity M MHS MHV MQ MIQ MXV MV MY

Power N NHS NHV NQ NIQ NXV NV NY

Pressure P PHS PHV PQ PIQ PXV PV PY

Delta Pressure dP dPHS dPHV dPQ dPIQ dPXV dPV dPY

Quantity Q QHS QHV QQ QIQ QXV QV QY

Radioactivity R RHS RHV RQ RIQ RXV RV RY

Speed S SHS SHV SQ SIQ SXV SV SY

Temperature T THS THV TQ TIQ TXV TV TY

Delta

Temperature dT dTHS dTHV dTQ dTIQ dTXV dTV dTY

Viscosity V VHS VHV VQ VIQ VXV VV VY

Weight W WHS WHV WQ WIQ WXV WV WY

Vibration Y YHS YHV YQ YIQ YXV YV YY

Position Z ZHS ZHV ZQ ZIQ ZXV ZV ZY

Devices such as hand switches, valves and some electronic devices such as totalizers and

calculation elements are described here. Most calculation elements are executed inside the

computer and algorithms become much too difficult to describe on the P&ID. The designer of

the P&ID is free to decide how much of the calculation information is to be included on the

drawing.

 Ch 19 PID Block 87

Process

Measurement

Element

Type

Ratio

Calculation

Switch

Low Switch High

Alarm

Low

Alarm

Low Low

Alarm

High

Alarm

High

High

Code FY SL SH AL ALL AH AHH

Analysis A AFY ASL ASH AAL AALL AAH AAHH

Conductivity C CFY CSL CSH CAL CALL CAH CAHH

Density D DFY DSL DSH DAL DALL DAH DAHH

Voltage E EFY ESL ESH EAL EALL EAH EAHH

Flow F FFY FSL FSH FAL FALL FAH FAHH

Dimension G GFY GSL GSH GAL GALL GAH GAHH

Hand H HFY HSL HSH HAL HALL HAH HAHH

Current I IFY ISL ISH IAL IALL IAH IAHH

Time K KFY KSL KSH KAL KALL KAH KAHH

Level L LFY LSL LSH LAL LALL LAH LAHH

Humidity M MFY MSL MSH MAL MALL MAH MAHH

Power N NFY NSL NSH NAL NALL NAH NAHH

Pressure P PFY PSL PSH PAL PALL PAH PAHH

Delta

Pressure dP dPFY dPSL dPSH dPAL dPALL dPAH dPAHH

Quantity Q QFY QSL QSH QAL QALL QAH QAHH

Radioactivity R RFY RSL RSH RAL RALL RAH RAHH

Speed S SFY SSL SSH SAL SALL SAH SAHH

Temperature T TFY TSL TSH TAL TALL TAH TAHH

Delta

Temperature dT dTFY dTSL dTSH dTAL dTALL dTAH dTAHH

Viscosity V VFY VSL VSH VAL VALL VAH VAHH

Weight W WFY WSL WSH WAL WALL WAH WAHH

Vibration Y YFY YSL YSH YAL YALL YAH YAHH

Position Z ZFY ZSL ZSH ZAL ZALL ZAH ZAHH

 Ch 19 PID Block 88

Devices such as those of the table above are primarily used for checking position of switches and

for various types of alarm. It is not uncommon to assign switches for end-of-travel on analog

devices. With most analog systems, there is an alarm reserved for both low and low-low. Low-

low is the signal that is just past low and should be attached to an alarm as well as shut-off logic.

The same logic is used for high and high-high. The inner alarm is the low or high alarm bit and

the low-low and high-high are the outer or fail-safe alarm.

Process and Instrumentation Drawings (P&ID) are formalized drawings of a process explaining

flow and movement of material. It is important to know the symbols for this type of drawing. It

is also important to be able to understand the functionality of the devices on the drawing so the

engineer or technologist can program the process on the PLC or other computer.

It is also hoped that down the road, the engineer or technologist is allowed to design the P&ID

for others. The programmer usually understands the process as well as anyone and has insight

into the complexities of the process and should be allowed to take responsibility for design of the

P&ID.

A note about PID vs P&ID: Of course, the similarities are glaring. PID refers to the control

block Proportional Integral Derivative, a control algorithm. P&ID refers to Process and

Instrumentation Drawings. Some refer to them as Piping and Instrumentation Drawings.

The design of a P&ID may start with a senior engineer familiar with the process. Other sources

for P&ID’s are reference books such as the Liptak reference handbook Process Control. Texts

and company reference drawings are good sources for a starting point for a new P&ID. Of

course, names such as those listed above are to be used in defining the devices used in the

process.

Symbol types are also described by ANSI/ISA’s S5.1-1984 (R 1992) specification. The location

of the device as well as the type of device is also described on the drawing per the type of symbol

drawn. The drawing may also describe the signal type: electrical, pneumatic, or other type of

signal.

These tables demonstrate the breadth of labeling that can be included on a device. The devices

are also numbered and contain a 3 or 4 digit number in addition to the device type name. These

numbers are usually assigned sequentially and are placed on a metal tag that is attached to the

device itself. In the plant, one should be able to find a device, then find its metal tag, and find the

reference to the device on the P&ID. Names of devices are used on electrical drawings as well as

on the P&ID. If a device is referenced as a flow transmitter and numbered 087, then FT-087 is

referenced on all drawings using the same name.

 Ch 19 PID Block 89

For example, the flow drawing of level control using flow would be drawn as follows:

FT

00
FV

00

FIC

00

LIC

01

LT

01

While in many P&ID’s the symbols are kept as simple as possible, there is delineation in the ISA

S5.1 standard for location as well as type of device. These symbol types are shown below:

A discrepancy between the symbols and the usage of the devices is that the PLC has traditionally

been viewed as only useful for some safety circuits and for discrete control. The PLC has taken

over much of the analog control and more logically fits the computer function as well as the

traditional PLC role. The device providing control has changed dramatically over the years from

discrete hardwired controllers to DCS systems and finally to PLC analog systems. The primary

rationale for using the PLC in analog situations is cost.

For instance, the door-mounted limit switch on the oven above would be drawn as:

FV

00

ZSL

00

FY

00
ZSH

00

Fig. 19-93

Fig. 19-94

 Ch 19 PID Block 90

Example Programming for P&ID:

FIC

001
x

DIC

001

PDT

001

DT

001

FT

001

The P&ID above is used to generate a PLC ladder diagram as follows:

PID DIC 001

PV PDT 001

SP From HMI

CV To Multiply

PID FIC 001

PV FT 001

SP From Multiply

CV to FCV 001

Multiply Block

DT 001 x DIC 001

to FIC 001

Fig. 19-95

Fig. 19-96

 Ch 19 PID Block 91

Example Programming for P&ID (The PLC program is left as an exercise for the student):

x

FT

002

FIC

002

FIC

001

FT

001

FSL

001

Shut

off

Fig. 19-97

 Ch 19 PID Block 92

Specifications for P&ID design and the design of a process may be found at the ISA website.

The following list is a partial list of design specifications used in constructing a modern process.

ANSI/ISA-75.01.01-2002 (60534-2-1 Mod) Flow Equations for Sizing Control Valves

ANSI/ISA-75.02-1996 Control Valve Capacity Test Procedures

ANSI/ISA-TR75.04.01-1998 Control Valve Position Stability

ANSI/ISA-75.05.01-2000 (R2005) Control Valve Terminology

ISA-75.07-1997 Laboratory Measurement of Aerodynamic Noise
Generated by Control Valves

ANSI/ISA-75.08-1999 Installed Face-to-Face Dimensions for Flanged
Clamp or Pinch Valves

ANSI/ISA-75.08.01-2002 Face-to-Face Dimensions for Integral Flanged Globe-
Style Control Valve Bodies (Classes 125, 150, 250,
300, and 600)

ANSI/ISA-75.08.02-2003 Face-to-Face Dimensions for Flangeless Control
Valves (Classes 150, 300, and 600)

ANSI/ISA-75.08.03-2001 Face-to-Face Dimensions for Socket Weld-End and
Screwed-End Globe-Style Control Valves (Classes
150, 300, 600, 900, 1500, and 2500)

ANSI/ISA-75.11.01-1985 (R2002) Inherent Flow Characteristic and Rangeability of
Control Valves

ISA-75.13-1996 Method of Evaluating the Performance of
Positioners with Analog Input Signals and Pneumatic
Output

ISA-75.17-1989 Control Valve Aerodynamic Noise Prediction

ANSI/ISA-75.19.01-2001 Hydrostatic Testing of Control Valves

ISA-RP75.21-1989 (R1996) Process Data Presentation for Control Valves

ANSI/ISA-75.22-1999 Face-to-Centerline Dimensions for Flanged Globe-
Style Angle Control Valve Bodies (ANSI Classes 150,
300, and 600)

ISA-RP75.23-1995 Considerations for Evaluating Control Valve
Cavitation

ANSI/ISA-75.25.01-2000 Test Procedure for Control Valve Response
Measurement from Step Inputs

ANSI/ISA-TR75.25.02-2000 Control Valve Response Measurement from Step
Inputs

ANSI/ISA-75.26.01-2006 Control Valve Diagnostic Data Acquisition and
Reporting

 Partial List of ANSI-ISA Specifications for Process Control

 Ch 19 PID Block 93

Using Visio for P&ID Drawings

Microsoft’s Visio is useful for a flow-diagram generation and has provision for generating the

P&ID drawings similar to those described above. An example below gives a description of how

the drawing type is chosen in Visio.

The elements are automatically connected with piping (lines) and names are attached in

sequential order.

Below the diagrams show a number of different pre-drawn figures for use in a P&ID. The

diagrams follow ISA symbol standards.

Fig. 19-98

Fig. 19-99

 Ch 19 PID Block 94

Fig. 19-100

 Ch 19 PID Block 95

The PIDE Function

The PIDE is only available as a function block. Like the PID instruction, it is best to set it up in

its own periodic task. The period of the task automatically becomes the sample rate of the PID

loop. Just make sure when adding the new routine to the task to select Type as “Function Block

Diagram – FBD”.

The PIDE (Enhanced PID) is an Allen-Bradley Logix5000 function block that improves on the

standard PID found in all their controllers. First impressions tend to be intimidating. The

advanced instruction boasts the following:

1. It uses the velocity form of the PID algorithm. This is especially useful for adaptive gains

or multiloop selection

2. Control of the instruction can be switched between Program and Operator modes

3. Better support for cascading and ratio control

4. Built-in autotuner

5. Support for different timing modes

6. More limiting and fault handling selections

Once a function block is created, the program tags for the function block must be created. With

later versions of RSLogix 5000, the set-up box below gives a view of the variables required.

Fig. 19-101

 Ch 19 PID Block 96

Instead of control of control using the MultiState Button and the logic shown above, the PIDE

shares program and operator control with control bits in the PIDE block. The following bits

partially describe this control:

 .ProgProgReq Program request to go to Program Control

 .ProgOperReq Program request to go to Operator Control

 .OperProgReq Operator request to go to Program Control

 .OperOperReq Operator request to go to Operator Control

Operating Modes for the PIDE instruction include:

Manual:

While in Manual mode the instruction does not compute the change in CV. The value of

CV is determined by the control. If in Program control, CV = CVProg and if in Operator

control, CV = CVOper. Select Manual mode using either OperManualReq or

ProgManualReq. The Manual output bit is set when in Manual mode.

Auto:

While in Auto mode the instruction regulates CV to maintain PV at the SP value. If in

program control, SP = SPProg and if in Operator control, SP = SPOper. Select Auto

mode using either OperAutoReq or PRogAutoReq. The Auto output bit is set when in

Auto mode.

Cascade/Ratio:

While in Cascade/Ratio mode the instruction computes the change in CV. The

instruction regulates CV to maintain PV at either SPCascade value or the SPCascade

Fig. 19-102

 Ch 19 PID Block 97

value multiplied by the Ratio value. SPCascade comes from either the CVEU of a

primary PID loop for cascade control or from the “uncontrolled” flow of a ratio-

controlled loop. Select Cascade/Ratio mode using either OperCasRatReq or

ProgCasRatReq. The CasRat output bit is set when in Cascade/Ratio mode.

Override:

While in Override mode, the instruction does not compute the change in CV. CV =

CVOverride, regardless of the control mode. Override mode is typically used to set a

“safe state” for the PID loop. Select Override mode using ProgOverrideReq. The

Override output bit is set when in Override mode.

Hand:

While in Hand mode, the PID algorithm does not compute the change in CV. CV =

HandFB, regardless of the control mode. Hand mode is typically used to indicate that

control of the final control element was taken over by a field hand/auto station. Select

Hand mode using ProgHandReq. The Hand output but is set when in Hand mode.

The example below is of a PIDE block in FBD programming language:

Fig. 19-103

 Ch 19 PID Block 98

Now, a Discussion Comparing DCS and PLC/SCADA for Process Control

DCS and PLC/SCADA – a comparison in use

22 March 2011

It may surprise you to know that PLC, HMI and SCADA implementations today are

consistently proving more expensive than DCS for the same process or batch application.

CEE finds out more…

Traditionally, DCSs were large, expensive and very complex systems that were considered as a

control solution for the continuous or batch process industries. In large systems this is, in

principle, still true today, with engineers usually opting for PLCs and HMIs or SCADA for

smaller applications, in order to keep costs down.

So what has changed? Integrating independent PLCs, the required operator interface and

supervisory functionality, takes a lot of time and effort. The focus is on making the disparate

technology work together, rather than improving operations, reducing costs, or improving the

quality or profitability of a plant.

Yet a PLC/ SCADA system may have all or part of the following list of independent and

manually coordinated databases.

* Each controller and its associated I/O

* Alarm management

* Batch/recipe and PLI

* Redundancy at all levels

* Historian

* Asset optimisation

* Fieldbus device management

Each of these databases must be manually synchronised for the whole system to function

correctly. That is fine immediately after initial system development. However, it becomes an

unnecessary complication when changes are being implemented in on-going system tuning and

further changes made as a result of continuous improvement programmes.

Making changes

Every time a change is made in one database, the others usually need to be updated to reflect that

change. For example, when an I/O point and some control logic are added there may be a need to

change or add a SCADA element, the historian and the alarm database. This will require the

plant engineer to make these changes in each of these databases, not just one – and get it right.

In another scenario, a change may be made in an alarm setting in a control loop. In a PLC

implementation there is no automatic connection between the PLC and the SCADA/ HMI. This

can become a problem during start-up of a new application, where alarm limits are being

constantly tweaked in the controller to work out the process, while trying to keep the alarm

management and HMI applications up to date with the changes and also being useful to the

operator.

Today’s DCS, which are also sometimes called ‘process control systems,’ are developed to allow

 Ch 19 PID Block 99

a plant to quickly implement the entire system by integrating all of these databases into one. This

single database is designed, configured and operated from the same application.

This can bring dramatic cost reductions when using DCS technology, when compared with PLC/

SCADA (or HMI): at least in the cost of engineering. DCS hardware has always been considered

as being large and expensive. This is certainly no longer the case today. DCS hardware even

looks like a PLC, and the software runs on the same specification PC, with the same networking

– so why the extra cost? Is it the software? Although it is true to say that DCS software can be

made to be expensive – but only by buying all of the many advanced functional features that are

available – and often that you would not use or need!

Where smaller and medium systems are concerned, then price comparisons on acquiring

hardware and software are comparable to PLC/SCADA. So, the real difference is actually in the

costs associated with the workflow – which is enhanced and simplified by the single database at

the heart of a DCS.

At this point one may think that DCS functionality is biased towards control loops, whilst PLCs

are biased towards discrete sequential applications and that this, therefore, is not a like-for-like

comparison. This is another myth. A DCS today is just as functionally and cost-effective as a

PLC in fast logic sequential tasks.

Demonstrating advantages

ABB was able to offer CEE some examples to demonstrate how savings can be realised by using

today’s DCS workflow, when compared with a PLC/HMI (SCADA) system. The company has

compiled the information from decades of implementation expertise of ABB engineers, end-user

control engineers, consultants and multiple systems integrators who actively implement both

types of control solutions based on application requirement and user preferences. It is easier to

structure this explanation along a generic project development sequence of tasks.

Step 1: System design

PLC/ SCADA control engineers must map out system integration between HMI, alarming,

controller communications and multiple controllers for every new project. Control addresses

(tags) must be manually mapped in engineering documents to the rest of the system. This manual

process is time consuming and error prone. Engineers also have to learn multiple software tools,

which can often take weeks of time.

DCS approach: As control logic is designed, alarming, HMI and system communications are

automatically configured. One software configuration tool is used to set up one database used by

all system components. As the control engineer designs the control logic, the rest of the system

falls into place. The simplicity of this approach allows engineers to understand this environment

in a matter of a few days. Potential savings of 15 ‐ 25% depending on how much HMI and

alarming is being designed into the system.

Step 2: Programming

PLC/ SCADA control logic, alarming, system communications and HMI are programmed

independently. Control engineers are responsible for the integration/ linking of multiple

databases to create the system. Items to be manually duplicated in every element of the system

include: scalability data, alarm levels, and Tag locations (addresses). Only basic control is

 Ch 19 PID Block 100

available. Extensions in functionality need to be created on a per application basis (e.g. feed

forward, tracking, self-tuning, alarming). This approach leads to non‐standard applications,

which are tedious to operate and maintain. Redundancy is rarely used with PLCs. One reason is

the difficulty in setting it up and managing meaningful redundancy for the application.

The DCS way: When control logic is developed, HMI faceplates, alarms and system

communications are automatically configured. Faceplates automatically appear using the same

alarm levels and scalability set up in the control logic. These critical data elements are only set

up once in the system. This is analogous to having your calendars on your desktop and phone

automatically sync vs. having to retype every appointment in both devices. People who try to

keep two calendars in sync manually find it takes twice the time and the calendars are rarely ever

in sync. Redundancy is set up in software quickly and easily, nearly with a click of a button.

Potential savings of 15 ‐ 45%

Step 3: Commissioning and start-up

Testing a PLC/ HMI system is normally conducted on the job site after all of the wiring is

completed and the production manager is asking “why is the system not running yet?” Off line

simulation is possible, but this takes an extensive effort of programming to write code which will

simulates the application you are controlling. Owing to the high cost and complex programming,

this is rarely done.

DCS benefits: Process control systems come with the ability to automatically simulate the

process based on the logic, HMI and alarms that are going to be used by the operator at the plant.

This saves significant time on‐site since the programming has already been tested before the

wiring is begun. Potential savings are 10 ‐ 20% depending on the complexity of the start up and

commissioning.

Step 4: Troubleshooting

PLC/ SCADA offers powerful troubleshooting tools for use if the controls engineer programs

them into the system. For example, if an input or output is connected to the system, the control

logic will be programmed into utilizing the control point. But when this is updated, did the data

get linked to the desperate HMI? Have alarms been set up to alert operators of problems? Are

these points being communicated to the other controllers? Programming logic is rarely exposed

to the operator since it is in a different software tool and not intuitive for an operator to

understand.

The DCS way: All information is automatically available to the operator based on the logic being

executed in the controllers. This greatly reduces the time it takes to identify the issues and get

your facility up and running again. The operator also has access to view the graphical function

blocks as they run to see what is working and not (read only). Root Cause Analysis is standard.

Field device diagnostics (HART and fieldbus) are available from the operator console. Potential

savings of 10 ‐ 40% (This varies greatly based on the time spent developing HMI and alarming,

and keeping the system up to date.)

Step 5: The ability to change to meet process requirements

PLC/ SCADA: Changing the control logic to meet new application requirements is relatively

easy. The challenge comes with additional requirements to integrate the new functionality to the

 Ch 19 PID Block 101

operator stations. Also, documentation should be developed for every change. This does not

happen as frequently as it should. If you were to change an input point to a new address or tag,

that change must be manually propagated throughout the system.

The DCS way: Adding or changing logic in the system is also easy. In many cases even easier to

change logic with built in and custom libraries of code. When changes are made, the data entered

into the control logic is automatically propagated to all aspects of the system. This means far less

errors and the system has been changed with just a single change in the control logic.

Potential savings of 20 ‐ 25% on changes is not uncommon. This directly affects continuous

improvement programs.

Step 6: Operator training

With PLC/ SCADA operator training is the responsibility of the developer of the application.

There is no operator training from the vendor since every faceplate, HMI screen or alarm

management function can be set up differently from the next. Even within a single application,

operators could see different graphics for different areas of the application they are monitoring.

The DCS way: Training for operators is available from the process control vendor. This is owing

to the standardized way that information is presented to operators. This can significantly reduce

operator training costs and quality due to the common and expected operator interface on any

application, no matter who implements the system. This can commonly save 10 ‐15 percent in

training costs which can be magnified with the consistency found across operators and operator

stations.

Step 7: System documentation

PLC/SCADA documentation is based on each part of the overall system. As each element is

changed, documentation must be created to keep each document up to date. Again, this rarely

happens, causing many issues with future changes and troubleshooting.

The DCS way: As the control logic is changed, documentation for all aspects of the system is

automatically created. This can save 30 ‐ 50 percent depending on the nature of the system being

put in place. These savings will directly minimize downtime recovery.

Timesaving estimates are based on typical costs associated with a system using ~500 I/O, Two

controllers, one workstation and 25 PID Loops.

Conclusion

If you are using, or planning to use, PLCs and HMI/ SCADA to control your process or batch

applications, your application could be a candidate for the use of a DCS solution to help reduce

costs and gain better control. The developer can concentrate on adding functionality that will

provide more benefits, reducing the return on investment payback period and enhancing the

system’s contribution for years to come. The divide between DCS and PLC/ SCADA approaches

is wide, even though some commonality at the hardware level can be observed; the single

database is at the heart of the DCS benefit and is a feature that holds its value throughout its life.

The new economic proposal may be a DCS, says ABB.

 Ch 19 PID Block 102

While you may not be a proponent of either the DCS or PLC for Process control, the above is

something worth thinking about. The arguments are not trivial. If one programs a process

application with PLCs, then the objections mentioned in the above article must be dealt with

and the negative effects of using the PLC minimized.

Summary

 Ch 19 PID Block 103

1. Lab 19.1 PID

Use the Extruder/Mixing System making Dog Food of Fig. 19-60 to design a PID

controller for the Fat Valve. A potentiometer may be present and (if present) may be

used to represent the motor speed. Input the potentiometer into a second analog input.

To simulate the change of speed of the motor, change the analog value from the pot.

Demonstrate the running face-plate with auto-manual and local-remote to the instructor.

When the PID algorithm crosses between auto and manual or between auto-remote and

auto-local provide a bump-less transfer (optional). You may program the A-B and

Siemens processors in either Ladder or FBD. Both processors must be demonstrated and

their PID control discussed in a lab report. The Siemens process is the ball-in-tube and

the A-B process is the water valve.

2. Lab 19.2 Advanced PID

Add logic to PID Lab 17.1 to program to ramp from the old setpoint to a new setpoint

using a ramping block. Program the ramping only for the remote mode (although the

ramping function typically done in all automatic modes since it is needed to protect the

process). When a new value is entered in the remote Sp entry location, the PID’s Sp is

not to immediately change to the new Sp, but rather it is to be ramped up or down from

the present value (found in the Pv). Save the Pv when the new Sp is detected and

determine whether the Pv is below or above the new Sp. Set a seal coil or latch coil to

remember which way the ramp is going (either up or down). Also, start a timer to time

out each 5 to 10 seconds. When the timer times out, add a small amount (delta) to the

new Sp and then compare it to the Remote Sp. If the ramped Sp went past the Remote

Sp, stop the ramp and put the Remote Sp in the PID’s Sp. Then end the ramp program

and wait for another Sp change. Also, stop the ramp if the PID loop is taken to manual

from auto. Add a fault circuit that detects if the flow is dangerously low for the value of

the output. If this kind of fault occurs, the PID algorithm might begin to wind up (read

about anti-reset-windup in the PID section of the A-B book). If the low-flow fault occurs,

blink an alarm light on the PanelView and turn the PID block to manual. Set the bit in the

alarm banner.

 Ch 19 PID Block 104

Exercises

1. When a PID controller is in remote, is the mode in auto or manual?

2. T/F Windup of the controller is possible in manual mode?

3. T/F The controller performs exactly the same whether the controller is set for E = PV –

SP or E = SP – PV.

4. What is the purpose of the small triangles on the left and right side of the bar graphs of a

faceplate?

5. List the function of the following ISA symbols:

 LT

 LIC

 FIC

 dTC

6. The process engineer says that you are to move the PID controller from auto to manual if

any of the analog signals (4-20 mA) are invalid in the low range. Show with an example

how to accomplish this in ladder logic. Assume the analog inputs are in slot 5. Label all

rungs explaining your logic.

7. A temperature profile of two different TT’s is to be added together in varying percentages

to provide the PV for a PID controller. Show with an example how to accomplish this in

adder logic. Provide a mechanism so that if the percentage is not 100% that the PID block

will only run in manual mode. Label all rungs explaining your logic. You should show

the PID block but do not provide logic for the SP or CV. Assume the analog inputs are

wired to a 4-20 mA analog card in slot 3.

8. A speed sensor has a high and low alarm attached to it. The signal from the sensor is

transmitted to a computer. Draw a P&ID of the speed signal transmitter, high alarm and

low alarm. Assume the signals are attached to a computer and are field mounted.

9. A differential pressure transducer transmits a signal that is used for flow. However, flow

is proportional to the square root of the differential pressure. An analog input card is to

be used with range 1-5V input for the PV and an analog output card is to be used for the

CV, range 1-5V. The SP is to be input from an HMI. Draw the P&ID showing the

mathematical calculation of the square root. Any symbol type is appropriate. Then write a

program to control the flow using the analog cards listed. Assume the input card is in slot

4 and the output card is in slot 6.

10. In some temperature control, the output device is a switch that turns on or off a resistor to

produce heat. If the output of a PID block is fed to a discrete output that can only turn the

resistors on or off, write a program to turn the discrete output on or off a proportion of 10

seconds based on value of the CV. Assume the output CV can range only from 0 to 100

and is its value is found in a storage location.

11. Build a lag controller capable of a 5 second lag with value changes each .5 second. Build

a lag controller capable of an x second lag with value changes each y second.

 Ch 19 PID Block 105

12. Using either the PID blocks from A-B or Siemens, provide a program that will work in

auto mode for the following P&ID. Use variables as inputs, outputs and internal

variables as necessary. Describe these variables in a table.

13. The following describes a function used by the Siemens PID block. Describe how to

accomplish the same using the A-B CompactLogix processor:

14. The process engineer says that you are to move the PID controller from auto to manual if any

of the analog signals (4-20 mA) are invalid in the low range. Show with an example how to

accomplish this in ladder logic. Assume the analog inputs are addressed as

Local:3.I.Ch0Data, etc.

 Ch 19 PID Block 106

15. Using either the PID blocks from A-B or Siemens, provide a program that will work in auto

mode for the following P&ID. Use variables as inputs, outputs and internal variables as

necessary. Describe these variables in a table.

16. If an input range is listed as 0 mA to 21 mA range is from 0 to 32640 and we want a 4-20

mA. What is the numeric range of a 4-20 mA signal.

17. A good value for P for a servo is:__

A good cyclic time to update the PID Control for a servo is: __________________________

A good value for P for a water loop is:__

A good cyclic time to update the PID control for a water loop is: _______________________

A good value for P for a temperature loop is:_______________________________________

A good cyclic time for update of the PID control for a temperature loop is:_______________

Name a PID control loop that does fine with no derivative component___________________

Name a PID control loop that is unstable if the derivative is left at zero__________________

