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Chapter 19 Programming the PID Algorithm 
 

 

Introduction 
 

The PID algorithm is used to control an analog process having a single control point and a single 

feedback signal.  The PID algorithm controls the output to the control point so that a setpoint is 

achieved.  The setpoint may be entered as a static variable or as a dynamic variable that is 

calculated from a mathematical operation. 

 

For many years, the PID algorithm was not accepted as a function suitable for a PLC.  It was 

included in a DCS (Distributed Control System) or configured from a number of stand-alone PID 

controllers.  However, as PLC prices continued to fall during the 1980’s and later and more 

economical HMI systems were developed for the PLC, PLCs became more accepted as PID 

controllers.  In fact, because PLCs have undercut the cost of competing systems, DCSs and other 

PID controllers have been forced to drop prices dramatically or no longer remain competitive.  

An early hybrid design was introduced into the Allen-Bradley 1771 I/O family including 2 PID 

stand-alone controllers attached to a single I/O slot and executing the PID algorithm from the 

controller in the I/O slot.  Newer control schemes have the PID algorithm executing in the PLC 

with other programs and controlling complicated processes with good success. 

 

Chapter 19 uses the PID block to control a simple process.  Then, it discusses more complex 

operations capable of being programmed by the PID control block.  The chapter describes the 

SLC PID block followed by the CompactLogix processor as well as the Siemens 1200 and their 

implementations of the PID function.  Using these various PLC configurations demonstrates 

differences between the newer PID blocks and the SLC PID block.  The SLC processor uses an 

integer-based PID block.  Integer-based blocks have the disadvantage that scaling must be used 

to convert numbers to more meaningful real values.  Scaling adds complexity to the program that 

becomes transparent with a floating-point PID block.  More sophisticated PID blocks such as is 

available in the PLC/5 and ControLogix processors as well as Siemens allow floating-point 

calculations.  These more robust PID blocks also provide more sophistication in their 

functionality.  All PID blocks are not created equal. 

 

Fundamentals of Closed Loop Control 
 

Closed Loop Control Tasks 

 

"Closed loop control is a process where the value of a variable is established and maintained 

continuously through intervention based on measurements of this variable. This generates a 

sequence of effects that takes place in a closed loop -the control loop- because the process runs 

based on measurements of a variable that is influenced in turn by itself.”  This variable that is to 

be controlled is measured continuously and compared with another specified variable of the same 

type.  Depending on the result of this comparison, an adaptation of the variable to be controlled 

to the value of the specified variable is performed by the control process. 

 

Proportional Controller (P-Controller) 
 

In the case of P-controllers, the manipulated variable is always proportional to the recorded 

system deviation. The result is that a P-controller reacts without a delay to a deviation and 

generates a manipulated variable only if the deviation (error) is present.  The proportional 

pressure regulator sketched in the figure below compares the power FS of the setpoint spring with 
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the power FB that the pressure P2 generates in the spring-elastic metal bellows.  If the forces are 

off balance, the lever rotates around the pivot point D.  The valve position changes and 

accordingly the pressure P2 to be regulated until a new balance of forces is established. 

 

The behavior of the P-controller if a system deviation suddenly occurs is shown in the figure 

below.  The amplitude of the manipulated variable jump y depends on the level of the deviation e 

and the amount of the proportional coefficient Kp: 

 

To keep the deviation low, a proportionality factor as large as possible has to be selected. 

Increasing the factor causes the controller to respond faster.  However, a value that is too high 

may cause overshooting and a large hunting tendency on the part of the controller.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑙𝑜𝑤 ≈  √𝑃2 − 𝑃1 

 

𝑒(𝑒𝑟𝑟𝑜𝑟) = 𝐹𝑙𝑜𝑤 (𝐴𝑐𝑡𝑢𝑎𝑙) − 𝐹𝑙𝑜𝑤 (𝑆𝑒𝑡 𝑃𝑜𝑖𝑛𝑡) 

 

𝑦(𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐾𝑝 ∙ 𝑒 

  

 

The diagram below shows the behavior of the P-controller: 
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Actual
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Control
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time
 

 

Metal bellows 

Setpoint spring 

Fig. 19-1 

Fig. 19-2 
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The advantages of this type of controller consist on the one hand of its simplicity (electronic 

implementation can, in the simplest case, consist of merely a resistor), and on the other hand its 

prompt response in comparison to other controller types.  The main disadvantage of the P-

controller is the continuous deviation; the setpoint is never completely attained, even long term. 

This disadvantage as well as the not yet ideal response speed can be minimized only 

insufficiently with a larger proportionality factor, since otherwise the controller will overshoot.  

In the most unfavorable case, the controller will enter a state of continuous oscillation.  This 

causes the controlled variable to be periodically moved away from the setpoint, not by the 

influencing variable but by the controller.  

 

The problem of continuous deviation is solved best with an integral controller. 

 

Integral Controller (I-Controller) 
 

Integrating controllers are used to completely correct system deviations at each operating point. 

As long as the deviation is unequal to zero, the manipulated variable continues to change.  Only 

when the reference variable and the controlled variable are equal is the control system in a steady 

state. 

 

The mathematical formulation of this integral behavior is as follows: 

 

𝑦 = 𝐾𝑖 ∫(     ) 𝑤𝑖𝑡ℎ 𝐾𝑖 =
1

𝑇𝑛
  

 

How fast the manipulated variable rises (or falls) depends on the deviation and the integration 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
PI-Controller 
 

The PI-controller is a type often used in practice. It results from connecting a P-controller and an 

I-controller in parallel. When laid out correctly it unites the advantages of both controller types 

(stable and fast, no permanent system deviation), so that their disadvantages are compensated at 

the same time. 

 

 

   Block diagram      
 

Fig. 19-3 
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The behavior with respect to time is identified by the proportional coefficient Kp and the reset 

time Tn. Because of the proportional component, the manipulated variable responds immediately 

to every system deviation e, while the integral component takes effect only in the course of time.  

Tn represents the time that passes until the I-component generates the same amplitude of flow as 

occurs immediately because of the P-component (Kp).  As in the case of the I-controller, the reset 

time Tn has to be decreased if we want to increase the integral component. 

 

 
Differential Controller (D-Controller) 

 

The D-controller generates its manipulated variable from the rate of change of the system 

deviation, and not, as the P-controller, from its amplitude. For that reason, it responds 

considerably faster than the P-controller.  Even if the deviation is small, it generates (looking 

ahead) large amplitudes of flow as soon as an amplitude change occurs. However, the D-

controller does not detect permanent deviations, because no matter how large it is, its rate of 

change equals zero. For that reason, the D-controller is used only rarely by itself in practice. 

Rather, it is used jointly with other control elements, usually in connection with a proportional 

component. 

 

 
PID Controller 
 

If we expand the PI controller with a D-component, the universal PID controller is created. As in 

the case of the PD controller, adding the D-component has the effect that, if  laid out correctly, 

the controlled variable reaches its setpoint sooner and its steady state faster.  

Block diagram 

Fig. 19-4 
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𝑦 = 𝐾𝑝 ∙ 𝑒 + 𝐾𝑖 ∫ 𝑒 ∙ 𝑑𝑡 + 𝐾𝐷
𝑑𝑒

𝑑𝑡
   with  𝐾𝑖 =

𝐾𝑝

𝑇𝑛
, 𝐾𝐷 = 𝐾𝑝 ∙ 𝑇𝑣  

 
          Fig. 19-5 PID Diagrams and Equations 
 
 
Objectives of Control System Setting 

 
For the control result to be satisfactory, selecting a suitable controller is an important aspect. 

However, even more important is setting the suitable controller parameters Kp, Tn and Tv, that 

have to be adjusted to the controlled system behavior.  Usually, we have to compromise between 

a very stable but slow control system or a very dynamic, more unsettled control performance 

which under certain circumstances has a tendency to oscillate and can become unstable. 

 

In the case of non-linear systems that are always to process at the same operating point 

-such as fixed setpoint control- the controller parameters have to be adjusted to the controlled 

system behavior at this working point.  If, as in the case of servo controls, a fixed working point 

cannot be defined, a controller setting has to be found that supplies a sufficiently fast and stable 

control result over the entire working range. 

 

In practice, controllers are usually set based on values arrived at through experience.  If these are 

not available, the controlled system behavior has to be analyzed exactly, in order to subsequently 

-with the aid of theoretical or practical layout procedures - specify suitable controller parameters. 
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An Example SLC PID Function 
 

In its simplest form, the SLC PID block is used as a single block with no input contacts and 

surrounded by only two SCP blocks.  This PID instruction is located in Ladder 2.  The SCP block 

is configured to retrieve a numerical value from the analog input channel, linearly scale the input 

and move the resultant value to the PID block.  The input is a 4-20 mA signal from a flow 

transmitter.  The output is a 4-20 mA signal to a variable flow valve. 

 

 

  SCP – Scale with Parameters

  Input

  Input Min

  Input Max

  Scaled Min

  Scaled Max

  Ouptut

  PID

  Control Block

  Process Variable

  Control Variable

  Control Block Length

  SCP – Scale with Parameters

  Input

  Input Min

  Input Max

  Scaled Min

  Scaled Max

  Output
 

 

 Fig. 19-6 Simple Program of PID for SLC Processor 
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In the first SCP instruction, values found in the Input Min and Input Max of the SCP instruction 

are from the I/O card.  The engineer must first decide which I/O card to use and then find the 

proper lower and upper limits from the literature on the card to enter values in the SCP 

instruction. 

 

In this case, the analog card selected is the 1746-NIO4I Ser. A.  This card is a combination card 

with 2 analog inputs and 2 analog outputs.  From the web, select I/O Analog Modules, Analog 

I/O Modules for SLC 500 Programmable Controllers – Technical Data.  Then select 4 Channel 

Module Configuration, 4 Channel Module Wiring, and 4 Channel Module Specifications to find 

the choices available for Analog Inputs and Analog Outputs. 

 

In the section describing 4 Channel Module Specifications are found the following Channel Data 

sheets: 

  

 
Input Type Signal Range Engineering Units EU Scale 

+/- 10 Vdc -10.25 to + 10.25 Vdc -10250 to + 10250 1 mV/step 

0 to 5V dc -0.5 to +5.5 Vdc -500 to +5500 1 mV/step 

1 to 5V dc 0.5 to 5.5 Vdc 500 to 5500 1 mV/step 

0 to 10 Vdc -0.5 to +10.25 Vdc -500 to +10250 1 mV/step 

0 to 20 mA -0.5 to +20.5 mA -500 to +20500 1.0 uA/step 

4 to 20 mA 3.5 to 20.5 mA 3500 to 20500 1.0 uA/step 

+/- 20 mA -20.5 to +20.5 mA -20500 to +20500 1.0 uA/step 

0 to 1 mA -0.05 to 1.05 mA -50 to + 1050 1.0 uA/step 

    

  Channel Data Word Values for Engineering Units 

  
Input Type Signal Range NI4 Data Format 

+/- 10Vdc -10.00 to +10.00 Vdc -32768 to +32767 

0 to 5Vdc 0.0 to 5.00 Vdc 0 to 16384 

1 to 5 Vdc 1.00 to 5.00 Vdc 3277 to 16384 

0 to 10 Vdc 0.0 to 10.00 Vdc 0 to 32767 

0 to 20 mA 0.0 to 20.0 mA 0 to 16384 

4 to 20 mA 4.0 to 20.0 mA 3277 to 16384 

+/- 20 mA -20.0 to +20.0 mA -16384 to +16384 

0 to 1 mA 0.0 to 1.00 mA 0 to 1000 

 

  Channel Data Word Values for Scaled Data 

 

Using the value 4 to 20 mA from the Input Type column, the value in Engineering Units is 3277 

min to 16384 max.  These values are entered in the SCP instruction to scale the variables 

correctly.   

 

  SCP – Scale with Parameters

  Input

  Input Min 3277

  Input Max            16384

  Scaled Min

  Scaled Max

  Ouptut
 

 

The scaled min and max values that are sent to the PID’s process variable are found in the setup 

documentation of the PID block.  The min value is 0 and the max value is 16383.  A location 

must be selected.  In this case, the process variable or PV is selected to be N10:28.  It is 

Fig. 19-7 
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advisable to keep the PID block data separated from other integer data.  In order to do keep the 

data for the PID separated, the data file N10 was created to handle the PID data. 

 

The input address may also be selected.  Remember the value is I:s.w where s is the slot number 

and w is the relative word address down the card.  In this case, the slot address chosen is 1 and 

the w or word address is 0, the first analog input point on the card.  The other option for the input 

in slot 1 is I:1.1.   

 

 

 

  SCP – Scale with Parameters

  Input I:1.0

  Input Min 3277

  Input Max            16384

  Scaled Min       0

  Scaled Max            16383

  Output           N10:28

  PID

  Control Block

  Process Variable      N10:28

  Control Variable

  Control Block Length       23

 
 

   Fig. 19-8 Moving the Process Variable into the PID Block 

 

The control block address is chosen.  This address requires 23 contiguous words reserved in an 

integer table.  The block N10:0 (through N10:22) was chosen.  Also reserve a location for the 

control variable or output of the PID function.  N10:29 was chosen. 

 

This control variable or output is then sent to the analog output card.  Scaling again must be 

chosen.  The min for the PID output is 0 and the max is 16383.  These are the same values as are 

used for the PID input.  To use the entire range of values for a PID input or output, choose the 

range 0 to 16383.  Always strive to use the entire range of the PID block when programming an 

integer PID block.  This gives the greatest accuracy. 

 

The scaled output must be ranged to fit a 4 to 20 mA analog output card.  Use the values as were 

found in the reference manual, 6,242 min and 31,208 max.  Use the first output point on the same 

card as the input.  Its slot number is O:1.0.  Now, the PID and two SCP blocks can be finished.   
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  SCP – Scale with Parameters

  Input I:1.0

  Input Min 3277

  Input Max            16384

  Scaled Min       0

  Scaled Max            16383

  Output           N10:28

  PID

  Control Block

  Process Variable      N10:28

  Control Variable       N10:29

  Control Block Length       23

  SCP – Scale with Parameters

  Input         N10:29

  Input Min      0

  Input Max           16383

  Scaled Min                  6242

  Scaled Max               31208

  Output            O:1.1

 
 

    Fig. 19-9  Moving the Variables Into and Out of the PID 

 
 
Wiring a 4-20 mA Current Loop 
 

Handling wiring and other hardware issues is found from information in the instruction manual 

for the module.  In the case above, the card used was the 1746-NI04I module from Allen-

Bradley.  Look specifically in the chapter on installation and wiring. 

 

In addition to the actual wiring diagram for the application, important information including dip 

switch settings should be noted.  If possible, all dip switch settings should be copied to the 

installation drawing for the card or added as notes to the schematic drawings.  In the case of the 

1746-NI04I card, no dip switches were found.   

 

To wire a 4-20 mA control circuit for a PLC input, wire a loop with the power supply, 

transmitter, and PLC input.  To wire a 4-20 mA PLC output, wire a power supply, valve and 

output.  From the manufacturer's diagram, it should be noted whether the 4-20 mA output 

requires loop power or the analog output card provides loop power.   

 

For the analog input, the transmitter varies the resistance to the PLC input so that the current 

ranges from 4 mA for no flow to 20 mA for maximum flow.  The transmitter “borrows” enough 

voltage from the 24 V dc to activate electronics inside the transmitter.  The voltage drop across 

the transmitter does not affect the current range of the loop.  The PLC analog output varies the 

resistance to the control valve in a similar manner. 
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Transmitter-

Variable Resistor

24 V dc

PLC 

Analog 

Input

4-20 mA

 
 

4-20 mA Analog Input – Current Loop 

   

PLC Analog Output

24 V dc

(may be 

external)

Control 

Element 

(valve)

4-20 mA

 
 

PLC Analog Output24 V dc

(may be 

internal)

Control 

Element 

(valve)

4-20 mA

or

 

4-20 mA Analog Output – Current Loop 

 

         Fig. 19-10  Analog Current Loop Wiring 

 

 

In the case of output cards, care must be taken to find whether or not the 24V dc power supply 

should be added to the loop.  The drawing from the installation manual provides direction here.  

From  the figure below, note that there is no power supply needing to be added in the output 

current loop diagram for this specific card (NI04I).   
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The figure below shows the catalog information for wiring this card.  In fact, the analog output 

does not need a power supply since the output furnishes this power internally.  The term "analog 

source" for the input implies inclusion of the 24V power supply.  Load for the output implies no 

external power supply.  Note the jumpers installed for inputs not used. 

 

 

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

In 0+

In 0-

ANL COM

In 1+

In 1-

ANL COM

not used

Out 0

ANL COM

not used

Out 1

ANL COM

Load 

(valve)

jumper

unused 

inputs

+

analog 

source

-

do not jumper 

unused outputs

 

Fig. 19-11 4-20 mA Analog I/O – Current Loop (NI04I) 

 

Configuring the SCP and PID Instructions for the SLC 
 

The description of the SCP instruction mentions that the inputs may be integer, floating point, 

immediate data values, or indirect referenced values.  The minimum and maximum values for 

both input and output form a range over which the variables are scaled.  The instruction solves 

the equation y = mx + b without the user responsible to calculate actual values for ‘m’ and ‘b’. 

 

Care must be taken to keep the program performing in an acceptable manner if the input value is 

less than the card minimum value.  The scaled output value should continue to solve the equation 

and the output value should scale to less than the minimum value of the instruction.  The same 

result should also occur if the value exceeds the maximum. 

 

In the Instruction Help description, the PID block is described: 

 
“This output instruction is used to control physical properties such as temperature, pressure, liquid level, 
or flow rate of process loops. 
 
The PID instruction normally controls a closed loop using inputs from an analog input module and 
providing an output to an analog output module as a response to effectively hold a process variable at a 
desired setpoint.” 

 

The PID instruction can be chosen to be operated in either the timed mode or the STI mode. In 

the timed mode, the instruction updates the output algorithm periodically at a rate selected in the 

block.  In the STI mode, the PID instruction is placed in an STI (Software Timed Interrupt) 

subroutine. The PID block updates the PID algorithm each time the STI subroutine is called.  A-

B points out that the STI time interval and the PID loop update rate must be equal in order for the 
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equation to perform properly. The suggested time duration for the STI or timed mode is .1 

second. 

 

A Setup screen is provided on the PID instruction. 

 

  PID

  Control Block

  Process Variable      N10:28

  Control Variable       N10:29

  Control Block Length       23

setup screen

 

          Fig. 19-28   Example PID Instruction 

 

From the A-B Text and the Instruction Help Screen is shown the Block Layout of the PID 

Instruction: 
 

15     14     13     12     11     10      9      8      7      6      5      4      3     2     1      0  
Word 0     EN              DN   PV    SP     LL     UL   DB   DA   TF   SC    RG  OL  CM AM  TM 
Word 1  PID Sub Error Code (MSB) 
Word 2  Setpoint SP 
Word 3  Gain Kc 
Word 4  Reset Ti 
Word 5  Rate Td 
Word 6  Feed Forward Bias 
Word 7  Setpoint Maximum (Smax) 
Word 8  Setpoint Minimum (Smin) 
Word 9  Deadband 
Word 10  INTERNAL USE – DO NOT CHANGE  
Word 11  Output Max 
Word 12  Output Min 
Word 13  Loop Update 
Word 14  Scaled Process Variable 
Word 15  Scaled Error SE 
Word 16  Output CV% (0-100%) 
Word 17  MSW Integral Sum 
Word 18  LSW Integral Sum 
Word 19  Altered Derivative Term (Low word) 
Word 20  Altered Derivative Term (High word) 
Word 21  Time of Last Update 
Word 22  Setpoint Old Value    

 

 

The table above corresponds to N10:0 through N10:22 found in our example above.  Word 0 

(N10:0) is used for bit control storage.  For example, bit 1 is the AM or Auto/Manual bit.  When 

bit 1 is on, the block is in manual.  When bit 1 is off, the PID block is in auto.  The address for 

AM in is N10:0/1.  Words 1 through 22 are used for constants and variables used in the solution 

of the PID algorithm. 

 

The PID Setup Screen shown below describes variables found in the table above that may be 

changed from the programming software. 
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Solving the PID Block and Adding the HMI 
 

Once the analog value of the process variable is mapped from the SCP instruction to the PID 

block, the PID block solves the equation for the Control Variable (CV) or Output.  A more 

thorough explanation of how the output is achieved may be found in a text on control systems.  

Equations vary but the three most common equations are given later in the chapter.   

The PID block has two analog inputs.  One is the PV or process variable and the other is the SP 

or setpoint.  The setpoint is manually entered into the PID block.  This may be done through the 

PID Setup screen, through an HMI such as PanelView, or through a program statement (a MOV).  

If the SP is entered manually through the program, the SP is considered static and should never 

be changed by operator control since an operator is not generally considered reliable enough to 

enter variables through the RSLogix500 Setup Screen.   

 

The PID Setup screen is pictured below.  The setup screen allows the engineer or technician full 

capability of modifying the PID block. 

 

 
 

 

The SP may be entered through the PID Setup screen.  The PV is entered using the SCP 

instruction.   

 

From the A-B Instruction Reference Manual: 

 
“Process Variable PV is an element address that stores the process input value.  This address 
can be the location of the analog input word where the value of the input A/D is stored.  This value 
could also be an integer if you choose to pre-scale your input value to the range 0 to 16383.” 

 

The output is referred to as the CV or Control Variable.  It is described in the same manual as: 
 

“Control Variable CV is an element address that stores the output of the PID instruction.  The 
output value ranges from 0 to 16383, with 16383 being the 100% ‘on’ value.  This is normally an 
integer value, so that you can scale the PID output range to the particular analog range your 
application requires.” 

Fig. 19-29 
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The PID block is very much like a black box function with inputs entering and outputs leaving 

the block.  The block diagram for the PID block in auto is: 

 

In Auto:

(AM bit = 0)
Process Variable Setpoint

Control Variable

or Output

 
           Fig. 19-30 

 

The PID algorithm is solved while the block is in auto.  Auto is determined by the status of the 

AM bit.  When AM = 0 the operation is automatic.  When AM = 1, the operation is manual.   

 

The PID algorithm does not output a value for the PID block if the block is in manual.  It is as if 

the block has been manually disengaged.  The PV or SP may change and the output stays at its 

last value unless a new value is written into the CV location.  The CV location may be over-

written in manual.  In auto, the PID block constantly writes the value to the CV. The range of the 

CV is from 0 to 16383.  Writing to the CV allows the user to manipulate the valve in the manual 

mode.  
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In Manual:

(AM bit = 1)

Process Variable 

may be entered 

but equation is not 

being executed

Setpoint may be 

entered but 

equation is not 

being executed

Control Variable

or Output

1 must be written to 

AM bit when in Auto

CV may be written to 

from the program or 

fram an HMI
 

         Fig. 19-31 

 

Another bit that must be set correctly for the PID block to work is the Control (CM) bit.  It 

determines whether the error term E = SP – PV or E = PV – SP.  If the CM bit is set incorrectly, 

the valve will quickly go to full on (100%) or full off (0%).  This bit is never to be set by an 

operator.  Use the PID Setup screen to set it. The bit is not to be changed after it is set in the 

initial configuration of the auto mode.  
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Design of a Faceplate for PID Block 
 

Faceplates of some stand-alone PID controllers are shown below.  These include the Red Lion 

stand-alone TCU controller and the Honeywell stand-alone controller faceplates. 

Red Lion PID Control

Faceplate

Honeywell UDC1000/1500 PID Control 

Faceplate
 

Stand-alone PID controllers such as the Red Lion TCU controller solve the PID equation in a 

manner similar to the PID equation solved in the PLC.  The Red Lion display is referred to as the 

faceplate.  HMI displays are used to allow the operator to run the process from a display in a 

manner similar to the Red Lion faceplate.  To run the PID successfully in the PLC, several 

parameters should be available on the display to adjust the process of controlling the PID 

equation.   

 

Commonly used tags in the HMI are: 

 

      Auto/Manual  

      Setpoint 

      Process Variable 

      Output (CV) 

      Error (Deviation)  (May be on restricted access page.) 

      Deadband    (May be on restricted access page.) 

      Gain, Reset, Rate  (May be on restricted access page.) 

 

Mode switches such as Auto/Manual are included in the SLC PID block.  Other modes normally 

used but not part of the SLC PID block include: 

 

        Local/Remote 

        Maintenance 

 

In Local, the operator is able to change the setpoint manually and verify the output’s response 

while the PID loop is in auto. 

 

In Remote, the process (program) sets the SP and the PID loop responds to the changes.  The PID 

loop is in auto mode in both local and remote modes.  Remote mode is referenced as Cascade 

mode by some PID controller manufacturers. 

 

In Maintenance mode, the loop is in manual and any variable can be changed from the operator 

station.  This mode should be password protected. 

 

Fig. 19-32 
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A faceplate may be drawn on the HMI similar to the one below.  This faceplate is typical for a 

system of PID loops controlling a process. 

 

 

 
 

 

The triangles on the left and right side of the bar graphs are used to add or subtract 5% or 1% of 

the SP or CV.  They provide a quick method to adjust SP or CV to get to a desired number.  The 

more exact approach is to enter a number in the data box for either SP or CV.  This approach is 

slower to implement than the method of touching a triangle when making small changes. 

 
From the example of the PID Block for the SLC controller, to implement a PID Block 

successfully, the PID Block must be programmed with some provision for scaling, whether 

through a programming block or other means.  The analog input or PV must be in an appropriate 

range for the block to calculate an error based on the difference between the PV and a setpoint or 

SP.  In addition, the output or CV must be correctly scaled to an output.  

 

Also, the PV and CV must be wired to analog points correctly. 

Fig. 19-33 
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Processes in Lab 
 
The two processes in the lab are pictured on the following page in Fig. 19-15.  The one on the 

left is the water valve.  The one on the right is the ball-in-tube.  Fig. 19-17 shows the flow sensor 

for the water valve.  Information on the laser, the ball’s feedback sensor, is found in the 

instructions for the laser and the setup of the analog output in Fig. 19-19. 

 

The two processes are controlled by the two processors in the lab, A-B’s Compact Logix 

processor and the Siemens S7-1200 processor.  The feedback devices are both 4-20 mA input 

devices.  The valve requires 4-20 mA from the CompactLogix processor to set the position while 

the fan motor is controlled by a pulsed 24 V output from the Siemens PLC. 

 

The following is a bill of material to construct the flow valve system shown below in Fig. 19-15. 

 

 

  
Fig. 19-15 Water Valve Hardware      Ball in Tube Hardware 
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 Fig. 19-17    The Flow Sensor Input 

 
 

Fig. 19-16  The A-B PLC shown 

controlling the Flow Valve 
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Fig. 19-18 Signet Flow Instrument as seen in Lab 
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Instructions for Laser for Ball-in-Tube Lab 
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Fig. 19-19 
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Siemens Analog Inputs and Outputs 
 

The Siemens’ PID implementation follows a similar path to that of the SLC program.  First, the 

address of all I/O is required as well as the wiring diagram for each analog point.  The S7-1200 

has two analog inputs located on the controller.  There is an analog output added by the signal 

board but the decision was made to add analog outputs with a high resolution card attached to the 

right.  This card is shown in the figure below: 

 

 

 
 

 

Addressing for the two analog input channels is found below: IW64 and IW66.  The two analog 

inputs are wired to these two points and programmed with these addresses. 

 

 

 
 

 

Fig. 19-12 

Fig. 19-13 
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The single analog out is wired and programmed in the slot 2 card below.  It is a 13 bit accurate 

device when wired for current loop and addressed: QW96.   

 

 

 
 

 
To read or write an analog value, use the immediate read or write instruction as shown below:  

 

 
 

Fig. 19-14 
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Use a cyclic interrupt event to house the PID function.  The event is defined as an OB or Object 

Block.  We will use OB 30 for the program containing the PID Block. 

 

 
 
Range values for the analog input and output channels are described in this table: 

 

Specifications for Analog Inputs (CPU, SB, SM)

The CPU contains the two inputs for 
the PID block.  The SM module is 
located in slot 2 and is used for the 
output. 

 

  



 Ch 19 PID Block  27 

 

Specifications for Analog Outputs (CPU, SB, SM)

 

PID control 
 
STEP 7 provides the following PID instructions for the S7-1200 CPU: 

 

The PID_Compact instruction is used to control technical processes with continuous input- and 

output variables.  The PID_3Step instruction is used to control motor-actuated devices, such as 

valves that require discrete signals for open- and close actuation. 

 

Both PID instructions (PID_3Step and PID_Compact) can calculate the P-, I-, and D components 

during startup (if configured for "pretuning").  You can also configure the instruction for "fine 

tuning" to allow you to optimize the parameters. You do not need to manually determine the 

parameters. 

 

Note: Execute the PID instruction at constant intervals of the sampling time (preferably in a cyclic OB).  
Because the PID loop needs a certain time to respond to changes of the control value, do not 
calculate the output value in every cycle. Do not execute the PID instruction in the main program 
cycle OB (such as OB 1). 
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The sampling time of the PID algorithm represents the time between two calculations of the 

output value (control value). The output value is calculated during self-tuning and rounded to a 

multiple of the cycle time.  All other functions of PID instruction are executed at every call.   

 

The PID (Proportional/Integral/Derivative) controller measures the time interval between two 

calls and then evaluates the results for monitoring the sampling time. A mean value of the 

sampling time is generated at each mode changeover and during initial startup. This value is 

used as reference for the monitoring function and is used for calculation. Monitoring includes 

the current measuring time between two calls and the mean value of the defined controller 

sampling time. 

 

The output value for the PID controller consists of three components: 

 

P (proportional): When calculated with the "P" component, the output value is proportional 

to the difference between the setpoint and the process value (input value). 

 

I (integral): When calculated with the "I" component, the output value increases in 

proportion to the duration of the difference between the setpoint and the process value 

(input value) to finally correct the difference. 

 

D (derivative): When calculated with the "D" component, the output value increases as a 

function of the increasing rate of change of the difference between the setpoint and the 

process value (input value). The output value is corrected to the setpoint as quickly as 

possible. 
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Inserting the PID instruction and technological object 
 

STEP 7 provides two instructions for PID control.  Use the PID_Compact instruction for the lab 

in this course, please! 

 

The PID_Compact instruction and its associated technological object provide a universal PID 

controller with tuning. The technological object contains all of the settings for the control loop. 

 

The PID_3Step instruction and its associated technological object provide a PID controller with 

specific settings for motor-activated valves. The technological object contains all of the settings 

for the control loop. The PID_3Step controller provides two additional Boolean outputs. 

 

After creating the technological object, you must configure the parameters. You also adjust the 

autotuning parameters ("pretuning" during startup or manual "fine tuning") to commission the 

operation of the PID controller. 

 

 
  Fig. 19-34 
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When programming the inputs and outputs, the following two instructions are used to scale and 

normalize the analog value.  Use the NORM_X function first to convert the number to a real in 

the range 0-1 and then use SCALE_X to scale the normalized value to a range for the real value. 

 

 
Descriptions of various parameters in the PID block are found below: 

 

 

Fig. 19-35 
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 Ch 19 PID Block  38 
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The Configuration editor for PID_Compact shows the following screen.  Here, the user selects 

the units such as temperature or pressure.  The user also determines whether variables such as the 

PV are Input or Input_Per.  Most users would select ‘general’ for controller type. 

 

Use the commissioning editor to configure the controller for auto-tuning at startup and for auto-

tuning during operation.  To open the commissioning editor, click the icon on either the 

instruction or the project navigator. 
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Fig. 19-36 
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Allen-Bradley Analog Inputs and Outputs 
 
Wiring diagrams for the card as well as the engineering range of the input and output channels 

are found on the next two pages. 

 

 

1769-IF4XOF2/A 
Terminal Door Label 

Fig. 19-23 1769-IF4XOF2/A and F2F/A Analog Card

 

 

Fig. 19-24 
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Fig. 19-25 

Fig. 19-26 
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Using the CompactLogix PID Block with RSView ME 
 

The PID algorithm will be introduced in an application using the CompactLogix hardware and 

software to provide control of the same valve used in the SLC programming experiences.  The 

graphical operator interface will be upgraded to the newer RSView ME operator interface. 

 

Fig. 19-27 
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Inclusion of the data tag to create the list shown above.  The PID algorithm uses these data tags 

to calculate and control a PID block.  For instance, the PV value for the block is mypid.PV.  The 

SP or setpoint is mypid.SP.  The example screens that follow show the newer IF4XOF2F/A card and 

are used to set up the scaling for the present system in the lab. 

 

 

 
 

 

       Fig. 19-57  Controller Configuration of the L30ERM 
 

 

The task was set up to execute every 100 msec.  This is shown in the figure below: 

 

Fig. 19-56 
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       Fig. 19-58  PID Task Set Up for Periodic 

 

 
 

       Fig. 19-59  PID Module Set in Periodic Task 
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          Fig. 19-60  PID Tag in Tag Base 
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The Program Tags for the PID mypid are shown with variable contents.  These variables are 

useful as tag references used for communicating with the variables through program control. 

 

 

 
 

          Fig. 19-61  PID Tag Setup-Tuning 

 

The tuning tab shows the variables used to tune the PID block.  The Kp, Ki and Kd tuning 

constants are probably the best variables for the water valve.  These constants should not vary too 

much from the numbers shown or the PID block may become unstable. 
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          Fig. 19-62  PID Configuration 

 

The configuration tab shows the variables used to set up the type of block used.  The variables 

seen above are the ones used in the download example.  There are a number of variables that are 

not used. 
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         Fig. 19-63  PID Alarms 

 

The alarms tab shows the alarm variables used to set up the block.  The alarm limits are ignored 

for now but in a real application will be necessary when setting up a system of alarms. 
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           Fig. 19-64  PID Scaling 

 

The scaling tab shows the variables as set up in the block. We need to make a decision whether 

to scale the engineering units. The unscaled PV and CV are listed at 16383.  The Engineering 

Units for the PV may be changed or left as is.  For water, the engineered units should be 90 gpm 

max.   

 

 



 Ch 19 PID Block  53 

 

 

 

 
 

           Fig. 19-65  PID Setup 

 

The setup tab shows the variables as set up in the block. 
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Continuing the Allen-Bradley Configuration Pages 
 

After you enter the PID instruction and specify the PID structure, you use the configuration tabs 

to specify how the PID instruction should function. 

 

To specify tuning, select the Tuning tab. Changes take effect as soon as you click on another 

field. 

 

To configure the PID:  
Specify Setpoint (SP)   Enter a setpoint value (.SP). 
 
Set output % Enter a set output percentage (.SO) (In software manual mode, this value is 

used for the output. In auto mode, this value displays the output %.) 
 
Output bias      Enter an output bias percentage (.BIAS). 
 
Proportional gain (Kp) Enter the proportional gain (.KP).For independent gains, it’s the 

proportional gain (unitless).  For dependent gains, it’s the controller gain 
(unitless). 

 
Integral gain (Ki) Enter the integral gain (.KI).  For independent gains, it’s the integral gain 

(1/sec).  For dependent gains, it’s the reset time (minutes per repeat). 
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Derivative time (Kd) Enter the derivative gain (.KD).  For independent gains, it’s the derivative 

gain (seconds).  For dependent gains, it’s the rate time minutes). 
 
Manual mode Select either manual (.MO) or software manual (.SWM). Manual mode 

overrides software manual mode if both are selected. 
 
PID equation Select independent gains or dependent gains (.PE).  Use independent when 

you want the three gains (P, I, and D) to operate independently. Use 
dependent when you want an overall controller gain that affects all three 
terms (P, I, and D). 

 
Control action     Select either E=PV-SP or E=SP-PV for the control action (.CA). 
 
Derivative of: Select PV or error (.DOE).  Use the derivative of PV to eliminate output 

spikes resulting from set-point changes. Use the derivative of error for fast 
responses to set-point changes when the algorithm can tolerate 
overshoots. 

 
Loop update time    Enter the update time (.UPD) for the instruction. 
 
CV high limit      Enter a high limit for the control variable (.MAXO). 
 
CV low limit      Enter a low limit for the control variable (.MINO). 
 
Deadband value    Enter a deadband value (.DB) 
 
No derivative smoothing   Enable or disable this selection (.NDF) 
 
No bias calculation    Enable or disable this selection (.NOBC). 
 
No zero crossing in dbnd   Enable or disable this selection (.NOZC). 
 
PV tracking      Enable or disable this selection (.PVT). 
 
Cascade loop     Enable or disable this selection (.CL). 
 
Cascade type     If cascade loop is enabled, select either slave or master (.CT). 
 
Specify Alarms 
PV high:       Enter a PV high alarm value (.PVH). 
 
PV low:       Enter a PV low alarm value (.PVL). 
 
PV deadband:     Enter a PV alarm deadband value (.PVDB). 
 
Positive deviation    Enter a positive deviation value (.DVP). 
 
Negative deviation    Enter a negative deviation value (.DVN). 
 
Deviation deadband   Enter a deviation alarm deadband value (.DVDB). 
 
Specify Scaling 
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PV unscaled maximum Enter a maximum PV value (.MAXI) that equals the maximum unscaled 
value received from the analog input channel for the PV value. 

 
PV unscaled minimum Enter a minimum PV value (.MINI) that equals the minimum unscaled value 

received from the analog input channel for the PV value. 
 
PV engineering units maximum Enter the maximum engineering units corresponding to .MAXI (.MAXS) 
 
PV engineering units minimum Enter the minimum engineering units corresponding to .MINI (.MINS) 
 
CV maximum     Enter a maximum CV value corresponding to 100% (.MAXCV). 
 
CV minimum     Enter a minimum CV value corresponding to 0% (.MINCV). 
 
Tieback maximum Enter a maximum tieback value (.MAXTIE) that equals the maximum 

unscaled value received from the analog input channel for the tieback 
value. 

 
Tieback minimum Enter a minimum tieback value (.MINTIE) that equals the minimum 

unscaled value received from the analog input channel for the tieback 
value. 

 
PID Initialized If you change scaling constants during Run mode, turn this off to reinitialize 

internal descaling values (.INI) 

 

 

 

 

 

 

 

Shifting to the HMI Program, RS Studio is entered and the Libraries choice and then Face Plates 

choice is entered. 
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          Fig. 19-66  Under Libraries – Face Plates 

 

With RSStudio, build a screen from scratch using a face plate.  There are a number of face plates 

in the template from which to choose.   
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           Fig. 19-67 HMI Loop Face Plate 

 

The various parts of the face plate are animated.  The next screen shows the details:  

 

 
 

    Fig. 19-68 Animation of the Arrow 
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         Fig. 19-69 Animation of the Numeric Entry 
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           Fig. 19-70 One of Many 

 

Choose a faceplate and begin modifying it for the application.  Several tags are provided with 

each faceplate.  These tags may set a number, allow entry of a number, move an animated arrow 

or fill a sliding window.  Bits may be added for auto/manual and local/remote.  Note that alarms 

may also be included such as the red and yellow tags above.   

 

These faceplates may be modified with additional components.  They may also be built from 

scratch using existing components.  At one time, the faceplate could be unbundled.  While no 

longer possible, the individual components may be animated by clicking them and then 

answering the questions. 

  

The next two pages show the animation of the faceplates from Siemens and Allen-Bradley using 

the faceplate as the starting point for the animation.  While the faceplate given is not available 

from Siemens, it can be built from parts using existing Siemens components.  The up and down 

triangles shown in the earlier faceplate may also be added to these faceplates for a more complete 

system.  The logic in the Siemens faceplate below show how to add the triangles. 
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mypid.Input

mypid.Setpoint

mypid.Output

mypid.ManualValue

mypid.Setpoint

mypid.Output

mypid.State

State=0: Inactive

State=1: Pretuning

State=2: Man fine tune

State=3: Automatic mode

State=4: Manual mode

State=5: Safety mode

State=6: Output val meas

State=7: Safety mode trig

State=8: Inactive mode

Siemens PID  

with faceplate

 
          Fig. 19-71 

 

The following logic can be used to add 1 % to the full scale value of the Setpoint.  Similar logic 

can be used for 5% increase or for 1% or 5% decreases.  The triangle buttons on the original 

faceplate showed these triangles.  Similar buttons can be added to the CV or Output logic when 

the PID algorithm is in manual.  Similar logic can be added to the Allen-Bradley program. 
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mypid.PV

mypid.SP

mypid.CV

mypid.SO

mypid.SP

mypid.CV

mypid.SWM

1 = manual

0 = auto

When the PID block is in manual, 

the .SO is placed in the Output.  

When in auto, the PID block 

calculates a value for Output.  

Allen-Bradley PID  

with faceplate

 
         Fig. 19-72  
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Two new topics not explored in the earlier PanelView were alarm screens and trends.  Alarm 

banners were available in the older PanelView but were not as flexible as the newer alarm screen.  

Also, trends are needed.  Trend data is very important in that a trend of any variable can be used 

to diagnose a problem either in the start-up phase of a project or later during daily operation.  

Historical data trends will show long-term trends as well. 

 

Tank of Liquid Fat

Control Valve

 
 

         Fig. 19-73  Graphic of Fat Valve 

 

This figure shows a partially finished graphic of the ‘fat’ portion of the dog food extruder.  When 

the invisible button around the valve is energized, the PID block faceplate appears allowing 

control of the valve in auto and manual mode.  Local and remote control may also be added to 

the screen with the faceplate.  The pipe may be enhanced as well to show flow when the valve is 

open and no flow when the valve is closed. 

 

The graphical application may be run from the PC or downloaded to a target system.  The tags 

for the graphical screen may be those in the PLC.  Care must be taken when selecting where the 

process is to be displayed.  If it is displayed from the computer screen, then Local is selected.  If 

the display is downloaded to the Panelview32, then Target is selected.  In order to display the 

process locally, a number of steps must be incorporated for the local application to correctly 

“see” the PLC.   
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Non-Standard Controller Modes 

 

A number of additional modes may be created for the PID block.  Bits must be programmed 

externally to the PID block for many of these other control modes.   

 

An example is Control Output Tracking (COT).  In COT, the loop is forced to manual and the 

output moves to a programmed position until conditions in the program are stable enough for the 

system to proceed to auto.  In COT, the mode shown to the operator is AUTO with COT.  The 

system is perceived to be in Auto but the output or CV is actually in Manual.   

 

This mode is ideally suited for burner start-up with a large number of burners.  When the burners 

are first turned on, the gas and combustion air are not able to be controlled under automatic 

control.  The burners need to operate in the extreme low range of the CV but the control valve 

cannot be allowed to completely shut off.  In the low range of most valves, proper flow rates are 

not accurate and control becomes very unstable.  COT allows the PID loops to operate for a set 

period of time in manual at a preset position until the burners are all started and flows are at their 

mid-range positions more capable of accurately being controlled.  Then the PID algorithms take 

effect in Auto and the PID loops begin the process of controlling the temperature in the furnace. 

To the operator, the system appears to be in auto but in the program, the PID algorithm is being 

controlled in manual until the auto mode is capable of accurately controlling the PID block.  

COT is to be used only in start-up situations or in recovery operations in which it is necessary to 

operate at a low-end setting to keep the burner system from shutting down. 
  

When operating in a mode such as COT or Maintenance and when the mode is removed, the loop 

should resume its former status.   

 

Use a toggle input from the HMI and the following logic to program bits for A/M, L/R, COT, 

and Maintenance. 

 

AutoAuto
B3:0/0 Error1

B3:0/0

Remote
B3:1/0 Error2

B3:1/0
Remote

 
 

 

Use of toggle bits to turn on a mode may not at first resemble a seal or latch circuit but in fact 

they act in a manner similar to both.  The toggle bit (B3:0/0 or /1) may be turned on by an 

operator through the HMI and will remain on until the operator removes the toggle or until the 

NC contact logic interrupt the flow.  When this happens, the circuit reverts to the safer off state.  

In the example of auto/manual (bit B3:0/0), the bit will turn off to the manual state.  Note that the 

actual state of the SLC Auto/Manual bit is reversed from this logic.   

  

Fig. 19-74 
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Tuning the PID Block 
 

It is interesting that a number of different PID algorithms exist.  No one standard equation is used 

in all controllers.  While the PID block has the same general function, nomenclature and the 

action of the block may differ.  

 

Proportional Band  =  100/gain 

Integral      =  1/reset 

Derivative    =  rate – pre-act 

 

Three classifications of PID algorithms are considered major classes of design equations.  They 

are ideal, parallel and series or interacting.  Equations for the three are listed below: 
 

 

 Ideal:      Output 







  dt

tde
Dtdte

I
teKc

)(
)()(

1
)(        

 Parallel:     Output  
dt

tde
Dtdte

I
teKp

)(
)()(

1
)]([           

 Series (Interacting) Output 
















  dt

d
Dtdte

I
teKc 1)()(

1
)(           

Different manufacturers use one of the above control algorithms as the basis for their PID block.  

The three do not respond identically to different situations.  A control algorithm from one 

manufacturer cannot be guaranteed to work identically to the control algorithm of a second 

manufacturer.  Differences in the derivative action are especially critical to the operation.  For 

this reason, many do not use derivative action in the tuning of a loop.  To not use derivative 

action, set the derivative or D value to zero. 

 

Manufacturers such as Honeywell, Bailey, Allen-Bradley, Modicon, Foxboro, Fisher, and Texas 

Instruments pick one of the above types of equation and implement it on their controllers.  Some 

manufacturers allow a choice between which algorithm is used.  It is the engineer’s or 

technician’s responsibility to understand the application, the PID equation, and choose the best 

overall solution for the application. 
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Using the PID Algorithm to Control a Process          
 

To configure a system, a flow diagram must be drawn to identify the parts of the system.  The 

example below is of a dog-food manufacturing facility.  The basic process for making the dog 

food is the extruder whose function is to make dog food from dry ingredients along with some 

steam, fat, and other wet ingredients.  As the motor speeds up, more ingredients are to be added 

and as the motor slows down, the added ingredients are to slow down as well.  The PID block 

will be used to add one wet ingredient, fat.  
 

Tank of Liquid Fat

Fat

Control Valve

Other Raw 

Ingredients

Extruder Motor Extruder Dog Food

Kibbles ‘n  Bits

 
 

     Fig. 19-75  Extruder/Mixing System making Dog Food 

 

Since the extruder motor speed runs the feed speeds for the other ingredients in the process, its 

speed sets the master speed for the process.  All other feed speeds will be a percent of the motor 

speed. 

 

Control signals for the Dog Food Control include: 

 

 

Motor Speed

Motor Speed Motor Speed Motor Speed Motor Speed

Feed Rate
Ingredient a

Feed Rate
Ingredient b

Feed Rate
Ingredient c

Feed Rate
Fat

 
 

        Fig. 19-76  Motor Speed Settings for Ingredient Adds 
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For the example, it is given that all the feed rates are in place for the ingredients other than ‘fat’.  

From the diagram, motor speed is the master speed reference for all rates in the system and ‘fat’ 

has been added as a separate ingredient.  Modes for the PID algorithm for ‘fat’ include remote 

and local when the PID algorithm is in auto and auto or manual for the PID algorithm itself.  

When the PID algorithm is in local, a setpoint is provided from the local faceplate variable.  

When the PID algorithm is in remote, the motor speed furnishes the value.  Variables are usually 

multiplied by a constant with motor speed * multiplier giving the value of the setpoint when the 

local-remote switch is in remote. 

 

The example will be used as a lab exercise at the end of the chapter.  Design of the faceplate will 

show selector switch positions for local versus remote and manual versus auto.  Usually a 

graphic of the system is provided with a button activated that shows the faceplate.  The screen 

with the faceplate is not the primary screen but is accessed as needed.  The process screen 

displays the entire process with various pop-up buttons available to show the PID algorithm for 

that portion of the process as the operator needs to access a specific PID block.  Many times the 

buttons to activate the PID block are configured as invisible.  If the operator pushes the area 

around the valve – ‘fat’ valve in this case – the PID block for ‘fat’ will be displayed.  The 

diagram below follows the signal path through the PID block and is useful as a programming aid.  

Looking only at the Fat Feed, the following process flow will be implemented: 

 

 

switch in remote or cascade

Setpoint in PID

PID Solver

Cv or Output

Flow Valve to 
Proces Variable

Manual Cv

Motor Speed

Multiplier Local Setpoint

switch in local

switch in auto switch in manual

Signal to Valve
 

 

       Fig. 19-77  Motor Speed Settings for Ingredient Adds 
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Bumpless Transfer  
 

When the PID block is switched from manual to auto, the function responds to the SP presently 

available to the block.  If the process is sensitive to sudden changes in PID output, then the 

program should include logic to give the output a signal matching the present flow when the 

block was in manual.  This is referred to as bumpless transfer.   

 

With the more advanced PID blocks of the PLC/5 and Control Logix platform, the output value 

that is described as the value to write to so that the output will be bumpless is the .SO value.  The 

.SO value of the PID block should be given the value that the operation would like the output to 

have when the PID block is first put in Auto.  This value is usually the value of the output when 

the PID block is in Manual.  The MOV operation should guarantee bumpless transfer when the 

block moves from Manual to Auto.   

 

For example, if the block was in manual and flow was 25.5 gallons per minute, when the PID 

block is transferred to auto, flow should continue to maintain 25.5 gallons per minute.  With PID 

blocks, the addition of logic requires writing the present flow rate to the setpoint when the block 

transfers from manual to auto.   

 

Floating Point PID 
 

The subject of what type of PID block to choose is an easy decision.  Always use the Floating 

Point PID block if floating point is available.  The number representing the flow or pressure or 

temperature is an actual number with units and no need to be transposed to another number 

elsewhere.  With the integer PID block, it is very important to keep a record of the various 

transpositions so the PID block can be used at maximum efficiency with numeric values sent to 

the operator that relate to the process. 

 

PID function blocks using floating point numbers are preferred.  For instance, if flow varies from 

0 to 45 gpm, then the numbers entered for minimum SP and maximum SP’s would be 0.00 and 

45.00.  However, to gain accuracy, any integer setpoint should use the entire range from 0 to 

16383.  The min. value 0.00 equals 0 and the max value 45.00 equals 16383.  With the integer 

PID block, there is a translation in the values between internal units and values displayed to the 

operator.  For examples in the text, this translation is ignored.  In an actual application, however, 

each translation must be implemented with an appropriate SCP instruction.  Effort to keep all 

translations in order is not seen as necessary and most complex applications tend to use floating-

point PID. 

 

Calibration may be used to determine units of flow.  In order to determine flow, a test is run with 

a watch and a calibration system.  For instance, running a 5 gallon bucket full of water in a 

certain time is an acceptable method of calibrating flow through a valve.  Repeating the 

calibration a number of times over a range of settings gives a better overall measurement. 
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Fault Circuits 
 

Faults occur at different levels in the program and require a variety of responses.  Some types of 

faults should shut the process down. Shutting down may require that valves turn off.  Many 

times, to shut down automatic operation is desired and the valves are to stop moving, staying in 

the same position.  If the desire is to move from Auto to Manual, the bit in the PID algorithm 

labeled AM must be changed from 0 to 1.  The bit is set to 0 in Auto and 1 in Manual.  The fault 

contact represents various faults that can harm the process if the PID algorithm is allowed to 

continue in auto.  

 

Two levels are present in most processes.  As with the dog food application, the process is 

capable of being run in remote or local for both automatic modes or in manual.  In a hierarchical 

picture, remote mode is favored over local mode and the manual mode is the least desirable mode 

to run the process.  This may be pictured as: 

 
 

 

Bit B3/x on 

Bit B3/y on 

 

 

Bit B3/x off 

Bit B3/y on 

 

 

     Bit B3/x off 

     Bit B3/y off 

 

 

Bit B3/x is the Remote Control Bit 

Bit B3/y is the Auto/Manual Control Bit 

   
In this description, Manual and Remote mode is not allowed. 

 

Note that when the PID block is in auto, the control bit is on.  A second bit must be programmed 

to reverse the status of this bit to turn off the AM bit in the PID block to correctly run the PID 

block. 

 

One of the control button types in PanelView is ideal to program the Remote/Local and 

Auto/Manual layout for the PID block.  It is the Multistate Button.  Define two multistate buttons 

for the process above.  Reference the first multistate button to B3/x to represent Remote or Local.  

Reference the second multistate button to B3/y to represent Auto or Manual.  
 

 Let B3:0/0 represent the remote/local mode and let B3:0/1 represent auto/manual.   

Remote Auto 

 Local Auto 

 Manual (Local) 

Most  

Desired 

Least  

Desired 

Fig. 19-78 
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The logic for control bits for remote/local and auto/manual is provided.  Multistate pushbuttons 

are programmed in the HMI for B3:0/0 and B3:0/1.  B3:0/0 is labeled Remote when the bit is 

on and Local when the bit is off.  B3:0/1 is in Auto when the bit is on and Manual when the bit 

is off.  The state is set to ‘on’ when the operator places the buttons in the remote or auto mode.  

The operator can also place the buttons in local or manual mode.  Operation of the process can 

also place the process in the local or manual mode as well when faults occur.  Faults as 

represented by B3:2/5 will energize the NC contact and take the PID block from remote to local.  

Faults represented by B3:3/5 will energize the NC contact and take the PID block from auto to 

manual. 

 

Multistate buttons are used for remote/local and auto/manual so one button can be used instead of 

two buttons.  Most graphical applications encourage the use of a single button as opposed to two 

separate buttons.  Using the multistate button provides a single button with toggle functionality.  

Multistate buttons also respond to program logic in the PLC and will turn on or off with logic 

internal to the program. 

 

To complete the mode program for the PID block, be able to add logic to the rungs above to turn 

on or off B3/0 and B3/1 from the program as well as from the HMI.  From the HMI software, 

configure two multistate buttons.  These buttons are programmed as follows: 

 

 
Button 1 

B3:0/1 Tag 

Off Local 

On Remote 

 

Button 2  

B3:0/0 Tag 

Off Manual 

On Auto 

 
  

Fig. 19-79 
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Faults that move the operation from remote to local are different than faults that move the 

operation from automatic to local.  Always, the option most highly sought is for the operation to 

run in remote.  However, if a fault occurs in the process but not necessarily in the individual PID 

block, the fault should cause the process to revert to local from remote and sound an alarm.   

 

If a fault occurs in the PID block, the best practice is to change the block from automatic to 

manual.  One of these faults is referred to as anti-reset windup.  In manual, the algorithm is not 

active and the error term is reset to zero eliminating the integral term from growing with a 

growing error.  

 

Example of Fault Causing Switch from Remote to Local  

When looking at PV, a temperature profile may be found to form a composite PV.  The values of 

a number of different temperature inputs are summed together.  The sum is weighted with the 

weighted values having to add to 100%.  If the weights do not add to 100%, the individual PID 

blocks used to control their CV outputs are switched to local mode.  The local setpoint is used 

until the weights have been adjusted to add to 100% and the operator switches control back to 

remote.  

 

 

 x 

 

 

 x 

   

 

 x 

  + 

 

 

 

 

 

In the example, Weights 1-3 must add to 100 % for the Temperature PV to run the temperature 

PID block in remote. 

 

 

 

 

 

 

 

 

 

  

  

Weight 1 Temperature 1 

Weight 2 Temperature 2 

Weight 3 Temperature 3 

Temperature PV 

EQU 
Sum of Weights 
(W1 + W2 + W3) 
= 
100% 

Auto Enable 

Fig. 19-80 

Fig. 19-81 
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Example of Fault Causing Switch from Auto to Manual 
 

When operating between Auto and Manual, the PID block should be monitored so that a failure 

to achieve the desired result is not defeated by faulty equipment.  If the equipment fails, the PID 

block should be faulted to the Manual Mode and an alarm sounded.  For instance, if a valve is 

attached to the CV and the valve does not turn when the CV changes, this should be considered a 

fault condition.  To find if this is the case, the CV or output is compared to a position on an 

analog scale.  The sensor is usually nothing more than a potentiometer.  If the CV does not keep 

within 10% (or other constant) over a time period such as 10 seconds, the PID block for the valve 

should fail. 

 

Another type of failure is the restriction of flow that can cause the CV to travel to full ‘on’.  A 

restriction in flow may be simulated by simply pinching off a hand valve in the line of flow.  Any 

restriction over time can cause the CV to not be able to control the process.  If the CV is allowed 

to go to 100% for a period of time, the PID block should fault and the output be placed in 

Manual.  Ranges other than 100% may be used as well with a time delay appropriate to shut 

down the process in abnormal conditions.  The programmer must be able to decide acceptable 

ranges for these cutoffs, usually through experience with the PID block and with the process. 

 

Eliminating Anti-Reset Windup 
 

In order to avoid anti-reset windup of the PID controller, the controller must be switched from 

auto to manual when conditions exist that would wind up the controller integral term.  The 

integral term is reset to zero in manual mode.  To detect integral error, monitor the PV.  If the PV 

does not follow the CV after a preset time, something is perceived to be wrong with the system 

and action should be taken.   

 

For example, a check valve may be turned off starving the system. When this happens, the PID 

controller must be placed in manual to eliminate windup and an alarm sounded.  

 

An experienced operator will find the problem and reset the loop to auto control.  And the system 

will continue to function with only a small upset to the system.  If the PID block is allowed to 

wind up over several minutes or hours, the output valve may stay open 100% (or closed 100%) 

for long periods of time after the system comes back into operation before control is re-

established.  In this time period, excessive gas may flow through a gas valve causing an 

explosion or too much liquid may flow through a control valve flooding a process vessel 

downstream.  In any case, the result usually upsets the entire system causing scrapped product or 

worse. 
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When switched from Auto to Manual, the error integral term is reset to zero: 

 

Auto 

 

Manual 

 

           0E     0E  

 
windup may occur     no windup 

 

 

When switched from Manual to Auto, the error integral term starts at zero and adjusts: 

 

 Auto 

  

 Manual  

 

  0E     0E  

 
no windup   error term initially 0 

 

Changes from Manual to Auto are usually made by the operator and imply that the operator is 

aware that a problem occurred, has found the problem and is ready to put the process back into 

Auto.   
 

 
Building a Ramp Block 
 
A ramp block is a function block that is added in front of a PID block to change the SP over a 

period of time instead of immediately.  It is constructed in the PLC diagram to increment from 

the old SP to the new SP in increments of 1.  More sophisticated ramp blocks allow the ramp rate 

to be set by an operator or engineer.  Some PLC instruction sets include a ramp block.  The SLC 

instruction set does not include a separate Ramp block so one must be programmed from 

available instructions. 
 

In this example, the old setpoint was 50 and the new setpoint was 62.  In order to move from the 

old setpoint to the new one, the SP value must be incremented to climb.  The rate at which the SP 

is incremented may be changed which varies the rate at which the new SP achieves its value.  For 

example, if the time interval is lengthened, the new setpoint is reached much later:  

     

Fig. 19-82 

Fig. 19-83 
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             Fig. 19-84 
 

Of course, a setpoint may vary as high as 5000 or more integer units and the incremental ramping 

may need to be very rapid (in msec).  Quickly moving ramp blocks are possible with the higher 

speed timer blocks. Ramp blocks may also require very slow operation and this can be 

accomplished using slower preset timer blocks.  Examples of slow-acting ramp blocks include 

cure operations that require hours to advance the setpoint to the final point or a ramp-soak 

operation for operations such as steel in which the annealing requires a slow temperature rise 

over an extended period of time. 

  

Ramp blocks are used to cause the PID block to be tuned to a different set of tuning constants 

than would be required if the ramp were not present.  A PID having ramping would have a set of 

tuning parameters that would be tuned to respond to only much smaller step changes seen with 

small upsets in the process.  In block diagram format, if a ramp function is needed, it may be 

shown as a block before the PID SP as follows: 
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Target

Setpoint

Actual

Setpoint

Rate 

Block

PID 

Block

 

 

It is preferred for the ramp block to move in small increments.  If the increment speed in units of 

1 is less than the PID update speed, increments should definitely be handled in increments of 1.  

The goal of the ramp block should be a smooth continuous ramping.  

 

Loops within Loops 
 

The discussion now describes multiple PID blocks used to control a process. 

The following example shows how a PID loop can be imbedded within another PID loop: 

Level Probe

Level PID Block

Level Probe = PV

Setpoint from 

Operator or Remote

Cv output to Flow PID

Level = xxxx

Flow PID Block

Flow Meter = PV

Valve = Cv

Setpoint from PID 

Level Block

 
 

In the example above, the inner loop is the flow valve with its setpoint the CV from the Level 

PID block.  The outer loop is the Level PID block controlling level in the tank. 
 

To successfully tune loops such as these, it is important to establish the order for tuning the 

loops.  It is also important to establish parameters for tuning them.   

 

1. Tune the inner loop first.  In this case, tune the Flow PID loop first. 

 

2. Establish comfortable tuning parameters for it and then proceed to tune the outer loop.  

The outer loop should be tuned to respond more slowly than the inner loop.  The outer 

loop in the example is the Level PID loop.  Try to tune it to respond about 2 to 10 

times slower than the inner loop. 

Fig. 19-85 

Fig. 19-86 
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3. Stability problems occur in general if the two loops are tuned too closely together or 

the outer loop is tuned to respond more quickly than the inner loop.  So, keep the 

inner loop fast, outer loop slow and observe any instability.  Ramp blocks should not 

be used on PID blocks such as these unless they are very quick acting.  The inner loop 

should not have a Ramp block.   

 

 

Level Probe

Level PID Block

Level Probe = PV

Setpoint from 

Operator or Remote

Cv output to Flow PID

Level = xxxx

Flow PID Block

Flow Meter = PV

Valve = Cv

Setpoint from PID 

Level Block

Ki term rather slow

Ki term rather fast

 

 

  

Fig. 19-87 
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Using Multiple Controllers for Temperature Control 

Most systems used in process control require a number of PID loops working together.  In the 

example of the dog food extruder, if more than one ingredient had been discussed, the system 

would have included a PID controller for each ingredient.  In general, each control element 

requires a PID block. 

 

In the case of temperature control with gas and oxygen combustion, temperature is a PID block 

as well as gas and oxygen flow.  The interaction of temp, gas and air are shown next: 

 

Temperature

Controller

Gas

Controller

Oxygen

Controller

Temp PV
Temp SP

Gas PV

Gas SP Oxygen SP

Oxygen PV

Gas CV Oxygen CV

 
This algorithm controls the combustion for a furnace or section of a furnace.  Temperature 

Setpoint may come from a number of sources.  The local SP may come from an entry from an 

operator.  Setpoints may also be calculated using a formula for best performance.  Setpoints from 

a formula would be considered as remote setpoints in the temperature PID loop. 

 

In some applications involving gas and oxygen, the oxygen must be guaranteed to be in excess 

relative to fuel.  Otherwise, excess gas may build up in the chamber and explode.  Above certain 

temperatures, gas will burn without exploding. Below a certain temperature, gas will continue to 

build up and not burn until an explosion occurs.  This is an especially prevalent condition in 

some steel reheat furnaces. 

 

In the case of gas and oxygen below the critical temperature for gas to burn, a cross-limiting 

control scheme is introduced to allow only enough gas to be present to burn with at least enough 

oxygen or combustion air to burn all the gas all the time.  This implies that the gas valve always 

must be more closed than the oxygen valve (times the air-fuel ratio).  Control of the cross-

limiting requires the same temperature control as the master control but introduces lag control, 

high select, low select and other control blocks in addition to the PID control.  The oxygen 

control for the cross-limiting control algorithm would be: 

 

Fig. 19-88 
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Temperature

Controller

Oxygen

Controller

Temp PV
Temp SP

Gas PV

Oxygen SP

Oxygen PV

Oxygen CV

High SelectLag

 

 

The gas control for the cross-limiting control algorithm would be: 

 

Low Select Lag

Temperature

Controller

Gas

Controller

Temp PV
Temp SP

Gas PV Gas SP

Oxygen PV

Gas CV
 

 

As can be seen, the Gas PID block selects the lower of the values of the Temperature Setpoint or 

the Oxygen value after a lag has occurred.  The value of the Oxygen PV must be multiplied by a 

constant to compensate for units.  The Gas PV must also be multiplied by a constant to 

compensate for units of temperature.  The effect of the cross-limiting control is to assure a Gas-

Oxygen ratio that will never allow more gas into the combustion chamber than can be burned in 

the combustion process.  This is an example of a much more complex algorithm than was first 

discussed earlier with a simple PID block.  The same PID blocks are still used.  Logic added to 

program multiple interactions becomes much more complex, however.   

 

  

Fig. 19-89 

Fig. 19-90 
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Example of PID Block for Feedforward Control 
 
The PID block is a device used for feedback control.  Many times, however, a small amount of 

feed-forward control is required.  Feed-forward control may include control that anticipates an 

action and is ready to apply control as a situation arises more quickly than the pure feedback 

solution is able to provide.  Since there is only one set of tuning parameters for the PID block, it 

is not practical to switch to a second set of parameters for a special case.  The following example 

shows how a little tweaking of the PID block can be useful for some anticipatory or feed-forward 

control.  The example below is of a furnace with a door on the front. This example shows just 

one of many additions to the PID block to give it characteristics not normally associated with 

PID control. 

 

The gas burners use air for combustion and the air must be exhausted through an exhaust stack.  

Pressure in the furnace is adjusted by adjusting the damper in the stack.  Pressure should be 

adjusted to be slightly negative so flames do not jump out of the door when the door is opened. 

 

Stack Damper

Furnace Door

Pressure 

Sensor

Furnace Pressure PID Block

Pressure Sensor = Pv

Operator entry of 

  Furnace Pressure = SP

Position of Stack 

  Damper = Cv

Operator Entry

Furnace Pressure = xxxx

 
  

Fig. 19-91 
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The concern of the pressure PID loop is:   

 

        What happens when the door opens? 

 

This is a major concern because the PID loop must respond in a much different manner in this 

circumstance than under normal operating conditions with the door closed.  The fact that an 

event such as the door opening occurs helps to accomplish the control of this task.  While not 

true feed forward, augmentation of the PID block will help offset the pressure upset and keep the 

flames pretty much inside the furnace.  (Flames coming out the furnace tend to ignite grease from 

bearings causing grease fires around the furnace.) 

 

To accomplish better pressure control, place a limit switch on the door and adjust the output of 

the PID block so the output will open the damper rapidly and then recover.  The constant of the 

jump is a number that should be adjustable by an operator in the maintenance mode only. 

 

When the door swings open, perform the following operation using a one-shot rung: 

 
          CV = CV + constant 

 

This statement should be written only once to the CV.  Use a one-shot circuit to add the constant 

to CV.  The CV then is allowed to recover to its new value but from a new higher starting point 

as opposed to the original value.  The value of the constant is the amount shown by the arrow 

below.  This is a constant that is adjusted to fit the application.  Once set, it should not be 

changed. 

Furnace 

Pressure

(negative)

New 

Response

Old Response

One Shot 

Add to Cv

 
The response is a simulated response but makes the point that the response to a pressure change 

requires fast action to adjust to the conditions of the door opening.  A change in the CV provides 

this type of change.  Not much change in CV will start the adjustment procedure and trick the 

PID tuning parameters into responding to the new situation quickly instead of more slowly as 

would be the case for a slow-acting PID function such as oven pressure. 

 

While the addition of a small incremental value to CV may be considered a trick on the PID 

block, it is important to note that such an action may be accomplished in the PLC very easily.  

Ladder logic accommodates this type of programming through the use of one-shot ladder logic 

and math functions.  This type of change to the PID block provides quick response to an upset 

outside the normal range of the PID block's algorithm. 

 

  

Fig. 19-92 
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Understanding Flow Diagrams 
 
Processes are described using flow diagrams.  Symbols for diagrams are defined by the 

organization – Instrumentation, Systems, and Automation Society (ISA).  Letter codes are written 

in circles representing various devices that control a process.  For instance, FIC represents Flow 

Rate, Indicator, Controller.  Any three-letter code with C as the final letter represents a PID 

controller.  First a review of the letter codes used to configure an instrument: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Letter First Position Succeeding Positions 

A Analysis Alarm 

B Burner Flame  

C Conductivity Control 

D 
Density / 

Differential 
 

E Voltage  

F Flow Rate / Ratio  

G Gaging Glass 

H Hand High 

I Current Indicate 

J Power / Scan  

K Time  

L Level Light / Low 

M Moisture Middle/ Manual 

N Choice  

O Choice  

P Pressure  

R Radioactivity Record 

S Speed Switch 

T Temperature Transmit 

V Viscosity Valve 

W Weight Well 

X Interlock  

Y Choice Relay 

Z Position Drive 
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Process 

Measurement 

Element 

Type Element Transmitter Indicator 

Indicator 

controller Controller 

Ratio 

Controller Recorder 

Code E T I IC C FC R 

Analysis A AE AT AI AIC AC AFC AR 

Conductivity C CE CT CI CIC CC CFC CR 

Density D DE DT DI DIC DC DFC DR 

Voltage E EE ET EI EIC EC EFC ER 

Flow F FE FT FI FIC FC FFC FR 

Dimension G GE GT GI GIC GC GFC GR 

Hand H HE HT HI HIC HC HFC HR 

Current I IE IT II IIC IC IFC IR 

Time K KE KT KI KIC KC KFC KR 

Level L LE LT LI LIC LC LFC LR 

Humidity M ME MT MI MIC MC MFC MR 

Power N NE NT NI NIC NC NFC NR 

Pressure P PE PT PI PIC PC PFC PR 

Delta 

Pressure dP dPE dPT dPI dPIC dPC dPFC dPR 

Quantity Q QE QT OI OIC QC QFC QR 

Radioactivity R RE RT RI RIC RC RFC RR 

Speed S SE ST SI SIC SC SFC SR 

Temperature T TE TT TI TIC TC TFC TR 

Delta 

Temperature dT dTE dTT dTI dTIC dTC dTFC dTR 

Viscosity V VE VT VI VIC VC VFC VR 

Weight W WE WT WI WIC WC WFC WR 

Vibration Y YE YT YI YIC YC YFC YR 

Position Z ZE ZT ZI ZIC ZC ZFC ZR 

 

 

The table above contains descriptions of various types of transmitters, indicators, controllers and 

recorders.  Most PID blocks are used to program controller items.  There is a one-to-one 

programming transfer for most xIC (various, Indicating Controller) or xC controllers. 
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Process 

Measurement 

Element 

Type 

Hand 

Switch 

Hand 

Valve Totalizer 

Indicating 

Totalizer 

Solenoid 

Valve 

Control 

Valve Calculation 

Code HS HV Q IQ XV V Y 

Analysis A AHS AHV AQ AIQ AXV AV AY 

Conductivity C CHS CHV CQ CIQ CXV CV CY 

Density D DHS DHV DQ DIQ DXV DV DY 

Voltage E EHS EHV EQ EIQ EXV EV EY 

Flow F FHS FHV FQ FIQ FXV FV FY 

Dimension G GHS GHV GQ GIQ GXV GV GY 

Hand H HHS HHV HQ HIQ HXV HV HY 

Current I IHS IHV IQ IIQ IXV IV IY 

Time K KHS KHV KQ KIQ KXV KV KY 

Level L LHS LHV LQ LIQ LXV LV LY 

Humidity M MHS MHV MQ MIQ MXV MV MY 

Power N NHS NHV NQ NIQ NXV NV NY 

Pressure P PHS PHV PQ PIQ PXV PV PY 

Delta Pressure dP dPHS dPHV dPQ dPIQ dPXV dPV dPY 

Quantity Q QHS QHV QQ QIQ QXV QV QY 

Radioactivity R RHS RHV RQ RIQ RXV RV RY 

Speed S SHS SHV SQ SIQ SXV SV SY 

Temperature T THS THV TQ TIQ TXV TV TY 

Delta 

Temperature dT dTHS dTHV dTQ dTIQ dTXV dTV dTY 

Viscosity V VHS VHV VQ VIQ VXV VV VY 

Weight W WHS WHV WQ WIQ WXV WV WY 

Vibration Y YHS YHV YQ YIQ YXV YV YY 

Position Z ZHS ZHV ZQ ZIQ ZXV ZV ZY 

 

 

Devices such as hand switches, valves and some electronic devices such as totalizers and 

calculation elements are described here.  Most calculation elements are executed inside the 

computer and algorithms become much too difficult to describe on the P&ID.  The designer of 

the P&ID is free to decide how much of the calculation information is to be included on the 

drawing. 
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Process 

Measurement 

Element 

Type 

Ratio 

Calculation 

Switch 

Low Switch  High 

Alarm 

Low 

Alarm 

Low Low 

Alarm 

High 

Alarm 

High 

High 

Code FY SL SH AL ALL AH AHH 

Analysis A AFY ASL ASH AAL AALL AAH AAHH 

Conductivity C CFY CSL CSH CAL CALL CAH CAHH 

Density D DFY DSL DSH DAL DALL DAH DAHH 

Voltage E EFY ESL ESH EAL EALL EAH EAHH 

Flow F FFY FSL FSH FAL FALL FAH FAHH 

Dimension G GFY GSL GSH GAL GALL GAH GAHH 

Hand H HFY HSL HSH HAL HALL HAH HAHH 

Current I IFY ISL ISH IAL IALL IAH IAHH 

Time K KFY KSL KSH KAL KALL KAH KAHH 

Level L LFY LSL LSH LAL LALL LAH LAHH 

Humidity M MFY MSL MSH MAL MALL MAH MAHH 

Power N NFY NSL NSH NAL NALL NAH NAHH 

Pressure P PFY PSL PSH PAL PALL PAH PAHH 

Delta 

Pressure dP dPFY dPSL dPSH dPAL dPALL dPAH dPAHH 

Quantity Q QFY QSL QSH QAL QALL QAH QAHH 

Radioactivity R RFY RSL RSH RAL RALL RAH RAHH 

Speed S SFY SSL SSH SAL SALL SAH SAHH 

Temperature T TFY TSL TSH TAL TALL TAH TAHH 

Delta 

Temperature dT dTFY dTSL dTSH dTAL dTALL dTAH dTAHH 

Viscosity V VFY VSL VSH VAL VALL VAH VAHH 

Weight W WFY WSL WSH WAL WALL WAH WAHH 

Vibration Y YFY YSL YSH YAL YALL YAH YAHH 

Position Z ZFY ZSL ZSH ZAL ZALL ZAH ZAHH 
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Devices such as those of the table above are primarily used for checking position of switches and 

for various types of alarm. It is not uncommon to assign switches for end-of-travel on analog 

devices.  With most analog systems, there is an alarm reserved for both low and low-low.  Low-

low is the signal that is just past low and should be attached to an alarm as well as shut-off logic.  

The same logic is used for high and high-high.  The inner alarm is the low or high alarm bit and 

the low-low and high-high are the outer or fail-safe alarm.   

 

Process and Instrumentation Drawings (P&ID) are formalized drawings of a process explaining 

flow and movement of material.  It is important to know the symbols for this type of drawing.  It 

is also important to be able to understand the functionality of the devices on the drawing so the 

engineer or technologist can program the process on the PLC or other computer.   

 

It is also hoped that down the road, the engineer or technologist is allowed to design the P&ID 

for others.  The programmer usually understands the process as well as anyone and has insight 

into the complexities of the process and should be allowed to take responsibility for design of the 

P&ID.   

 

A note about PID vs P&ID:  Of course, the similarities are glaring.  PID refers to the control 

block Proportional Integral Derivative, a control algorithm.  P&ID refers to Process and 

Instrumentation Drawings.  Some refer to them as Piping and Instrumentation Drawings. 

 

The design of a P&ID may start with a senior engineer familiar with the process.  Other sources 

for P&ID’s are reference books such as the Liptak reference handbook Process Control.  Texts 

and company reference drawings are good sources for a starting point for a new P&ID.  Of 

course, names such as those listed above are to be used in defining the devices used in the 

process. 

 

Symbol types are also described by ANSI/ISA’s S5.1-1984 (R 1992) specification.  The location 

of the device as well as the type of device is also described on the drawing per the type of symbol 

drawn.  The drawing may also describe the signal type: electrical, pneumatic, or other type of 

signal. 

 

These tables demonstrate the breadth of labeling that can be included on a device.  The devices 

are also numbered and contain a 3 or 4 digit number in addition to the device type name.  These 

numbers are usually assigned sequentially and are placed on a metal tag that is attached to the 

device itself.  In the plant, one should be able to find a device, then find its metal tag, and find the 

reference to the device on the P&ID.  Names of devices are used on electrical drawings as well as 

on the P&ID.  If a device is referenced as a flow transmitter and numbered 087, then FT-087 is 

referenced on all drawings using the same name. 
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For example, the flow drawing of level control using flow would be drawn as follows: 

 

FT

00
FV

00

FIC

00

LIC

01

LT

01

 
 

While in many P&ID’s the symbols are kept as simple as possible, there is delineation in the ISA 

S5.1 standard for location as well as type of device.  These symbol types are shown below: 

 

A discrepancy between the symbols and the usage of the devices is that the PLC has traditionally 

been viewed as only useful for some safety circuits and for discrete control.  The PLC has taken 

over much of the analog control and more logically fits the computer function as well as the 

traditional PLC role.  The device providing control has changed dramatically over the years from 

discrete hardwired controllers to DCS systems and finally to PLC analog systems.  The primary 

rationale for using the PLC in analog situations is cost. 

For instance, the door-mounted limit switch on the oven above would be drawn as:  

 

FV

00

ZSL 

00

FY 

00
ZSH 

00

 
 

  

Fig. 19-93 

Fig. 19-94 
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Example Programming for P&ID: 

 

FIC

001
x

DIC

001

PDT

001

DT

001

FT

001

 
 

 

 

The P&ID above is used to generate a PLC ladder diagram as follows: 

 

 

 

 

 

 

 

 

 

  

PID DIC 001 

PV PDT 001 

SP From HMI 

CV To Multiply  

PID FIC 001 

PV FT 001 

SP From Multiply 

CV to  FCV 001 

Multiply Block 

DT  001 x DIC 001 

to FIC 001 

Fig. 19-95 

Fig. 19-96 
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Example Programming for P&ID (The PLC program is left as an exercise for the student): 
 

x

FT

002

FIC

002

FIC

001

 

FT

001

FSL

001

Shut

off

 
  

Fig. 19-97 
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Specifications for P&ID design and the design of a process may be found at the ISA website.  

The following list is a partial list of design specifications used in constructing a modern process. 

 

 
ANSI/ISA-75.01.01-2002 (60534-2-1 Mod) Flow Equations for Sizing Control Valves 

ANSI/ISA-75.02-1996 Control Valve Capacity Test Procedures 

ANSI/ISA-TR75.04.01-1998 Control Valve Position Stability 

ANSI/ISA-75.05.01-2000 (R2005) Control Valve Terminology 

ISA-75.07-1997 Laboratory Measurement of Aerodynamic Noise 
Generated by Control Valves 
 

ANSI/ISA-75.08-1999 Installed Face-to-Face Dimensions for Flanged 
Clamp or Pinch Valves 
 

ANSI/ISA-75.08.01-2002 Face-to-Face Dimensions for Integral Flanged Globe-
Style Control Valve Bodies (Classes 125, 150, 250, 
300, and 600) 
 

ANSI/ISA-75.08.02-2003 Face-to-Face Dimensions for Flangeless Control 
Valves (Classes 150, 300, and 600) 
 

ANSI/ISA-75.08.03-2001 Face-to-Face Dimensions for Socket Weld-End and 
Screwed-End Globe-Style Control Valves (Classes 
150, 300, 600, 900, 1500, and 2500) 
 

ANSI/ISA-75.11.01-1985 (R2002) Inherent Flow Characteristic and Rangeability of 
Control Valves 
 

ISA-75.13-1996 Method of Evaluating the Performance of 
Positioners with Analog Input Signals and Pneumatic 
Output 
 

ISA-75.17-1989 Control Valve Aerodynamic Noise Prediction 

ANSI/ISA-75.19.01-2001 Hydrostatic Testing of Control Valves 

ISA-RP75.21-1989 (R1996) Process Data Presentation for Control Valves 

ANSI/ISA-75.22-1999 Face-to-Centerline Dimensions for Flanged Globe-
Style Angle Control Valve Bodies (ANSI Classes 150, 
300, and 600) 
 

ISA-RP75.23-1995 Considerations for Evaluating Control Valve 
Cavitation 

ANSI/ISA-75.25.01-2000 Test Procedure for Control Valve Response 
Measurement from Step Inputs 
 

ANSI/ISA-TR75.25.02-2000 Control Valve Response Measurement from Step 
Inputs 

ANSI/ISA-75.26.01-2006 Control Valve Diagnostic Data Acquisition and 
Reporting 

   Partial List of ANSI-ISA Specifications for Process Control 
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Using Visio for P&ID Drawings 
 
Microsoft’s Visio is useful for a flow-diagram generation and has provision for generating the 

P&ID drawings similar to those described above.  An example below gives a description of how 

the drawing type is chosen in Visio. 

 
 

The elements are automatically connected with piping (lines) and names are attached in 

sequential order. 

 
 

 

Below the diagrams show a number of different pre-drawn figures for use in a P&ID.  The 

diagrams follow ISA symbol standards. 

Fig. 19-98 

Fig. 19-99 
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Fig. 19-100 
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The PIDE  Function 
 

The PIDE is only available as a function block.  Like the PID instruction, it is best to set it up in 

its own periodic task.  The period of the task automatically becomes the sample rate of the PID 

loop.  Just make sure when adding the new routine to the task to select Type as “Function Block 

Diagram – FBD”. 

 

The PIDE (Enhanced PID) is an Allen-Bradley Logix5000 function block that improves on the 

standard PID found in all their controllers.  First impressions tend to be intimidating.  The 

advanced instruction boasts the following: 

 

1. It uses the velocity form of the PID algorithm.  This is especially useful for adaptive gains 

or multiloop selection 

2. Control of the instruction can be switched between Program and Operator modes 

3. Better support for cascading and ratio control 

4. Built-in autotuner  

5. Support for different timing modes 

6. More limiting and fault handling selections 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once a function block is created, the program tags for the function block must be created.  With 

later versions of RSLogix 5000, the set-up box below gives a view of the variables required. 

 

Fig. 19-101 
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Instead of control of control using the MultiState Button and the logic shown above, the PIDE 

shares program and operator control with control bits in the PIDE block.  The following bits 

partially describe this control: 

 

     .ProgProgReq  Program request to go to Program Control 

     .ProgOperReq  Program request to go to Operator Control 

     .OperProgReq  Operator request to go to Program Control 

     .OperOperReq  Operator request to go to Operator Control 

 

Operating Modes for the PIDE instruction include: 

 

Manual:  

 

While in Manual mode the instruction does not compute the change in CV.  The value of 

CV is determined by the control.  If in Program control, CV = CVProg and if in Operator 

control, CV = CVOper.  Select Manual mode using either OperManualReq or 

ProgManualReq.  The Manual output bit is set when in Manual mode. 

 

Auto: 

 

While in Auto mode the instruction regulates CV to maintain PV at the SP value.  If in 

program control, SP = SPProg and if in Operator control, SP = SPOper.  Select Auto 

mode using either OperAutoReq or PRogAutoReq.  The Auto output bit is set when in 

Auto mode. 

 

Cascade/Ratio: 

 

While in Cascade/Ratio mode the instruction computes the change in CV.  The 

instruction regulates CV to maintain PV at either SPCascade value or the SPCascade 

Fig. 19-102 
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value multiplied by the Ratio value.  SPCascade comes from either the CVEU of a 

primary PID loop for cascade control or from the “uncontrolled” flow of a ratio-

controlled loop.  Select Cascade/Ratio mode using either OperCasRatReq or 

ProgCasRatReq.  The CasRat output bit is set when in Cascade/Ratio mode. 

 

Override: 

 

While in Override mode, the instruction does not compute the change in CV.  CV = 

CVOverride, regardless of the control mode.  Override mode is typically used to set a 

“safe state” for the PID loop.  Select Override mode using ProgOverrideReq.  The 

Override output bit is set when in Override mode. 

 

Hand: 

 

While in Hand mode, the PID algorithm does not compute the change in CV.  CV = 

HandFB, regardless of the control mode.  Hand mode is typically used to indicate that 

control of the final control element was taken over by a field hand/auto station.  Select 

Hand mode using ProgHandReq.  The Hand output but is set when in Hand mode. 

 

The example below is of a PIDE block in FBD programming language: 
 

 

 

 
 

 

 

 

Fig. 19-103 
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Now, a Discussion Comparing DCS and PLC/SCADA for Process Control 

 

DCS and PLC/SCADA – a comparison in use 

22 March 2011 

It may surprise you to know that PLC, HMI and SCADA implementations today are 

consistently proving more expensive than DCS for the same process or batch application. 

CEE finds out more… 

 

Traditionally, DCSs were large, expensive and very complex systems that were considered as a 

control solution for the continuous or batch process industries. In large systems this is, in 

principle, still true today, with engineers usually opting for PLCs and HMIs or SCADA for 

smaller applications, in order to keep costs down.  

 

So what has changed? Integrating independent PLCs, the required operator interface and 

supervisory functionality, takes a lot of time and effort. The focus is on making the disparate 

technology work together, rather than improving operations, reducing costs, or improving the 

quality or profitability of a plant.  

 

Yet a PLC/ SCADA system may have all or part of the following list of independent and 

manually coordinated databases.  

 

* Each controller and its associated I/O  

* Alarm management  

* Batch/recipe and PLI  

* Redundancy at all levels  

* Historian  

* Asset optimisation  

* Fieldbus device management  

 

Each of these databases must be manually synchronised for the whole system to function 

correctly. That is fine immediately after initial system development. However, it becomes an 

unnecessary complication when changes are being implemented in on-going system tuning and 

further changes made as a result of continuous improvement programmes. 

 

Making changes  

Every time a change is made in one database, the others usually need to be updated to reflect that 

change. For example, when an I/O point and some control logic are added there may be a need to 

change or add a SCADA element, the historian and the alarm database. This will require the 

plant engineer to make these changes in each of these databases, not just one – and get it right.  

 

In another scenario, a change may be made in an alarm setting in a control loop. In a PLC 

implementation there is no automatic connection between the PLC and the SCADA/ HMI. This 

can become a problem during start-up of a new application, where alarm limits are being 

constantly tweaked in the controller to work out the process, while trying to keep the alarm 

management and HMI applications up to date with the changes and also being useful to the 

operator.  

 

Today’s DCS, which are also sometimes called ‘process control systems,’ are developed to allow 
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a plant to quickly implement the entire system by integrating all of these databases into one. This 

single database is designed, configured and operated from the same application. 

 

This can bring dramatic cost reductions when using DCS technology, when compared with PLC/ 

SCADA (or HMI): at least in the cost of engineering. DCS hardware has always been considered 

as being large and expensive. This is certainly no longer the case today. DCS hardware even 

looks like a PLC, and the software runs on the same specification PC, with the same networking 

– so why the extra cost? Is it the software? Although it is true to say that DCS software can be 

made to be expensive – but only by buying all of the many advanced functional features that are 

available – and often that you would not use or need!  

 

Where smaller and medium systems are concerned, then price comparisons on acquiring 

hardware and software are comparable to PLC/SCADA. So, the real difference is actually in the 

costs associated with the workflow – which is enhanced and simplified by the single database at 

the heart of a DCS. 

 

At this point one may think that DCS functionality is biased towards control loops, whilst PLCs 

are biased towards discrete sequential applications and that this, therefore, is not a like-for-like 

comparison. This is another myth. A DCS today is just as functionally and cost-effective as a 

PLC in fast logic sequential tasks.  

 

Demonstrating advantages 

ABB was able to offer CEE some examples to demonstrate how savings can be realised by using 

today’s DCS workflow, when compared with a PLC/HMI (SCADA) system. The company has 

compiled the information from decades of implementation expertise of ABB engineers, end-user 

control engineers, consultants and multiple systems integrators who actively implement both 

types of control solutions based on application requirement and user preferences. It is easier to 

structure this explanation along a generic project development sequence of tasks. 

 

Step 1: System design  

PLC/ SCADA control engineers must map out system integration between HMI, alarming, 

controller communications and multiple controllers for every new project. Control addresses 

(tags) must be manually mapped in engineering documents to the rest of the system. This manual 

process is time consuming and error prone. Engineers also have to learn multiple software tools, 

which can often take weeks of time. 

 

DCS approach: As control logic is designed, alarming, HMI and system communications are 

automatically configured. One software configuration tool is used to set up one database used by 

all system components. As the control engineer designs the control logic, the rest of the system 

falls into place. The simplicity of this approach allows engineers to understand this environment 

in a matter of a few days. Potential savings of 15 ‐ 25% depending on how much HMI and 

alarming is being designed into the system. 

 

Step 2: Programming 

PLC/ SCADA control logic, alarming, system communications and HMI are programmed 

independently. Control engineers are responsible for the integration/ linking of multiple 

databases to create the system. Items to be manually duplicated in every element of the system 

include: scalability data, alarm levels, and Tag locations (addresses). Only basic control is 
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available. Extensions in functionality need to be created on a per application basis (e.g. feed 

forward, tracking, self-tuning, alarming). This approach leads to non‐standard applications, 

which are tedious to operate and maintain. Redundancy is rarely used with PLCs. One reason is 

the difficulty in setting it up and managing meaningful redundancy for the application.  

 

The DCS way: When control logic is developed, HMI faceplates, alarms and system 

communications are automatically configured. Faceplates automatically appear using the same 

alarm levels and scalability set up in the control logic. These critical data elements are only set 

up once in the system. This is analogous to having your calendars on your desktop and phone 

automatically sync vs. having to retype every appointment in both devices. People who try to 

keep two calendars in sync manually find it takes twice the time and the calendars are rarely ever 

in sync. Redundancy is set up in software quickly and easily, nearly with a click of a button. 

Potential savings of 15 ‐ 45% 

 
Step 3: Commissioning and start-up 

Testing a PLC/ HMI system is normally conducted on the job site after all of the wiring is 

completed and the production manager is asking “why is the system not running yet?” Off line 

simulation is possible, but this takes an extensive effort of programming to write code which will 

simulates the application you are controlling. Owing to the high cost and complex programming, 

this is rarely done. 

 

DCS benefits: Process control systems come with the ability to automatically simulate the 

process based on the logic, HMI and alarms that are going to be used by the operator at the plant. 

 

This saves significant time on‐site since the programming has already been tested before the 

wiring is begun. Potential savings are 10 ‐ 20% depending on the complexity of the start up and 

commissioning. 

 
Step 4: Troubleshooting 

PLC/ SCADA offers powerful troubleshooting tools for use if the controls engineer programs 

them into the system. For example, if an input or output is connected to the system, the control 

logic will be programmed into utilizing the control point. But when this is updated, did the data 

get linked to the desperate HMI? Have alarms been set up to alert operators of problems? Are 

these points being communicated to the other controllers? Programming logic is rarely exposed 

to the operator since it is in a different software tool and not intuitive for an operator to 

understand. 

 

The DCS way: All information is automatically available to the operator based on the logic being 

executed in the controllers. This greatly reduces the time it takes to identify the issues and get 

your facility up and running again. The operator also has access to view the graphical function 

blocks as they run to see what is working and not (read only). Root Cause Analysis is standard. 

Field device diagnostics (HART and fieldbus) are available from the operator console. Potential 

savings of 10 ‐ 40% (This varies greatly based on the time spent developing HMI and alarming, 

and keeping the system up to date.) 

 
Step 5: The ability to change to meet process requirements 

PLC/ SCADA: Changing the control logic to meet new application requirements is relatively 

easy. The challenge comes with additional requirements to integrate the new functionality to the 
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operator stations. Also, documentation should be developed for every change. This does not 

happen as frequently as it should. If you were to change an input point to a new address or tag, 

that change must be manually propagated throughout the system. 

 

The DCS way: Adding or changing logic in the system is also easy. In many cases even easier to 

change logic with built in and custom libraries of code. When changes are made, the data entered 

into the control logic is automatically propagated to all aspects of the system. This means far less 

errors and the system has been changed with just a single change in the control logic. 

Potential savings of 20 ‐ 25% on changes is not uncommon. This directly affects continuous 

improvement programs.  

 

Step 6: Operator training 

With PLC/ SCADA operator training is the responsibility of the developer of the application. 

There is no operator training from the vendor since every faceplate, HMI screen or alarm 

management function can be set up differently from the next. Even within a single application, 

operators could see different graphics for different areas of the application they are monitoring.  

 

The DCS way: Training for operators is available from the process control vendor. This is owing 

to the standardized way that information is presented to operators. This can significantly reduce 

operator training costs and quality due to the common and expected operator interface on any 

application, no matter who implements the system. This can commonly save 10 ‐15 percent in 

training costs which can be magnified with the consistency found across operators and operator 

stations. 

 

Step 7: System documentation 

PLC/SCADA documentation is based on each part of the overall system. As each element is 

changed, documentation must be created to keep each document up to date. Again, this rarely 

happens, causing many issues with future changes and troubleshooting. 

 

The DCS way: As the control logic is changed, documentation for all aspects of the system is 

automatically created. This can save 30 ‐ 50 percent depending on the nature of the system being 

put in place. These savings will directly minimize downtime recovery. 

 

Timesaving estimates are based on typical costs associated with a system using ~500 I/O, Two 

controllers, one workstation and 25 PID Loops. 

 

Conclusion  

If you are using, or planning to use, PLCs and HMI/ SCADA to control your process or batch 

applications, your application could be a candidate for the use of a DCS solution to help reduce 

costs and gain better control. The developer can concentrate on adding functionality that will 

provide more benefits, reducing the return on investment payback period and enhancing the 

system’s contribution for years to come. The divide between DCS and PLC/ SCADA approaches 

is wide, even though some commonality at the hardware level can be observed; the single 

database is at the heart of the DCS benefit and is a feature that holds its value throughout its life. 

The new economic proposal may be a DCS, says ABB. 
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While you may not be a proponent of either the DCS or PLC for Process control, the above is 

something worth thinking about.  The arguments are not trivial.  If one programs a process 

application with PLCs, then the objections mentioned in the above article must be dealt with 

and the negative effects of using the PLC minimized. 

 

Summary 
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1. Lab 19.1  PID  
 

Use the Extruder/Mixing System making Dog Food of Fig. 19-60 to design a PID 

controller for the Fat Valve.  A potentiometer may be present and (if present) may be 

used to represent the motor speed.  Input the potentiometer into a second analog input.  

To simulate the change of speed of the motor, change the analog value from the pot.  

Demonstrate the running face-plate with auto-manual and local-remote to the instructor.  

When the PID algorithm crosses between auto and manual or between auto-remote and 

auto-local provide a bump-less transfer (optional).  You may program the A-B and 

Siemens processors in either Ladder or FBD.  Both processors must be demonstrated and 

their PID control discussed in a lab report.  The Siemens process is the ball-in-tube and 

the A-B process is the water valve. 
 

2. Lab 19.2  Advanced PID 
 

Add logic to PID Lab 17.1 to program to ramp from the old setpoint to a new setpoint 

using a ramping block.  Program the ramping only for the remote mode (although the 

ramping function typically done in all automatic modes since it is needed to protect the 

process).  When a new value is entered in the remote Sp entry location, the PID’s Sp is 

not to immediately change to the new Sp, but rather it is to be ramped up or down from 

the present value (found in the Pv).  Save the Pv when the new Sp is detected and 

determine whether the Pv is below or above the new Sp.  Set a seal coil or latch coil to 

remember which way the ramp is going (either up or down).  Also, start a timer to time 

out each 5 to 10 seconds.  When the timer times out, add a small amount (delta) to the 

new Sp and then compare it to the Remote Sp.  If the ramped Sp went past the Remote 

Sp, stop the ramp and put the Remote Sp in the PID’s Sp.  Then end the ramp program 

and wait for another Sp change.  Also, stop the ramp if the PID loop is taken to manual 

from auto.  Add a fault circuit that detects if the flow is dangerously low for the value of 

the output.  If this kind of fault occurs, the PID algorithm might begin to wind up (read 

about anti-reset-windup in the PID section of the A-B book).  If the low-flow fault occurs, 

blink an alarm light on the PanelView and turn the PID block to manual. Set the bit in the 

alarm banner. 
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Exercises 
 

1. When a PID controller is in remote, is the mode in auto or manual?   

 

2. T/F  Windup of the controller is possible in manual mode? 

 

3. T/F  The controller performs exactly the same whether the controller is set for E = PV – 

SP or E = SP – PV. 

 

4. What is the purpose of the small triangles on the left and right side of the bar graphs of a 

faceplate? 

 

5. List the function of the following ISA symbols: 

 

   LT 

   LIC 

   FIC 

  dTC 

 

6. The process engineer says that you are to move the PID controller from auto to manual if 

any of the analog signals (4-20 mA) are invalid in the low range.  Show with an example 

how to accomplish this in ladder logic. Assume the analog inputs are in slot 5. Label all 

rungs explaining your logic.  

 

7. A temperature profile of two different TT’s is to be added together in varying percentages 

to provide the PV for a PID controller.  Show with an example how to accomplish this in 

adder logic. Provide a mechanism so that if the percentage is not 100% that the PID block 

will only run in manual mode. Label all rungs explaining your logic.  You should show 

the PID block but do not provide logic for the SP or CV. Assume the analog inputs are 

wired to a 4-20 mA  analog card in slot 3. 

 

8. A speed sensor has a high and low alarm attached to it.  The signal from the sensor is 

transmitted to a computer.  Draw a P&ID of the speed signal transmitter, high alarm and 

low alarm.  Assume the signals are attached to a computer and are field mounted.   

 

9. A differential pressure transducer transmits a signal that is used for flow.  However, flow 

is proportional to the square root of the differential pressure.  An analog input card is to 

be used with range 1-5V input for the PV and an analog output card is to be used for the 

CV, range 1-5V. The SP is to be input from an HMI.  Draw the P&ID showing the 

mathematical calculation of the square root. Any symbol type is appropriate. Then write a 

program to control the flow using the analog cards listed. Assume the input card is in slot 

4 and the output card is in slot 6. 

 

10. In some temperature control, the output device is a switch that turns on or off a resistor to 

produce heat.  If the output of a PID block is fed to a discrete output that can only turn the 

resistors on or off, write a program to turn the discrete output on or off a proportion of 10 

seconds based on value of the CV.  Assume the output CV can range only from 0 to 100 

and is its value is found in a storage location. 

 

11. Build a lag controller capable of a 5 second lag with value changes each .5 second.  Build 

a lag controller capable of an x second lag with value changes each y second. 
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12. Using either the PID blocks from A-B or Siemens, provide a program that will work in 

auto mode for the following P&ID.  Use variables as inputs, outputs and internal 

variables as necessary.  Describe these variables in a table.  
 

 
 

13. The following describes a function used by the Siemens PID block.  Describe how to 

accomplish the same using the A-B CompactLogix processor: 
 

 
 

14. The process engineer says that you are to move the PID controller from auto to manual if any 

of the analog signals (4-20 mA) are invalid in the low range.  Show with an example how to 

accomplish this in ladder logic. Assume the analog inputs are addressed as 

Local:3.I.Ch0Data, etc. 
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15. Using either the PID blocks from A-B or Siemens, provide a program that will work in auto 

mode for the following P&ID.  Use variables as inputs, outputs and internal variables as 

necessary.  Describe these variables in a table. 
 

 
 

16. If an input range is listed as 0 mA to 21 mA range is from 0 to 32640 and we want a 4-20 

mA.  What is the numeric range of a 4-20 mA signal. 

17. A good value for P for a servo is:________________________________________________ 

 

A good cyclic time to update the PID Control for a servo is: __________________________ 

 

A good value for P for a water loop is:____________________________________________ 

 

A good cyclic time to update the PID control for a water loop is: _______________________ 

 

A good value for P for a temperature loop is:_______________________________________

  

A good cyclic time for update of the PID control for a temperature loop is:_______________ 

 

Name a PID control loop that does fine with no derivative component___________________ 

 

Name a PID control loop that is unstable if the derivative is left at zero__________________ 

 


